
Logical Methods in Computer Science
Vol. 7 (3:04) 2011, pp. 1–43
www.lmcs-online.org

Submitted Apr. 26, 2010
Published Aug. 24, 2011

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE

INTEGER DOMAIN

AMIR M. BEN-AMRAM

School of Computer Science, The Tel-Aviv Yaffo Academic College, Israel
e-mail address: benamram.amir@gmail.com

Abstract. Size-Change Termination (SCT) is a method of proving program
termination based on the impossibility of infinite descent. To this end we use
a program abstraction in which transitions are described by monotonicity con-
straints over (abstract) variables. When only constraints of the form x > y′ and
x ≥ y′ are allowed, we have size-change graphs. In the last decade, both theory
and practice have evolved significantly in this restricted framework. The crucial
underlying assumption of most of the past work is that the domain of the variables
is well-founded. In a recent paper I showed how to extend and adapt some theory
from the domain of size-change graphs to general monotonicity constraints, thus
complementing previous work, but remaining in the realm of well-founded do-
mains. However, monotonicity constraints are, interestingly, capable of proving
termination also in the integer domain, which is not well-founded.

The purpose of this paper is to explore the application of monotonicity con-
straints in this domain. We lay the necessary theoretical foundation, and present
precise decision procedures for termination; finally, we provide a procedure to con-
struct explicit global ranking functions from monotonicity constraints in singly-
exponential time, and of optimal worst-case size and dimension (ordinal).

1. Introduction

This paper concerns automated termination analysis—deciding whether a program
terminates, and possibly generating a global ranking function. The termination prob-
lem is well-known undecidable for Turing-complete programming languages; one of
the ways in which this obstacle may be circumvented is to study, for this purpose,
a class of abstract programs that are expressive enough to allow many concrete pro-
grams to be represented, so that termination of the abstraction implies termination
of the concrete program. An important point is that the abstract programs do not
constitute a Turing-complete programming language and can have a decidable ter-
mination problem. The abstraction studied in this paper is monotonicity constraint
transition systems [12, 6]. The term will be usually abbreviated to MCS.

1998 ACM Subject Classification: D.2.4; F.3.1.
Key words and phrases: program analysis, SCT, termination, ranking functions.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (3:04) 2011
c© A. M. Ben-Amram
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. M. BEN-AMRAM

The MCS abstraction is an extension of the SCT (Size-Change Termination [23])
abstraction, which has been studied quite extensively during the last decade1. repre-
sent a program as a transition system with states. Abstraction of a program consists
of the formation of a control-flow graph for the program, identification of a set of
state variables, and formation of a finite set of abstract transitions (i.e., abstract
descriptions of program steps, where the notion of step can be tuned to different
needs).

In the SCT abstraction, an abstract transition is specified by a set of inequali-
ties, that relate variable values in the target state to those of the source state (these
inequalities are often represented by a size-change graph). Extending this notion,
a monotonicity constraint (MC) allows for any conjunction of order relations, in-
cluding equalities as well as strict and non-strict inequalities, and involving any pair
of variables from the source state and target state. The Monotonicity Constraint
Transition Systems treated in this paper also allow constraints to be associated with
a point in the control-flow graph (these are called state invariants).

The size-change technique was conceived to deal with well-founded domains,
where infinite descent is impossible. Termination is deduced by proving that any
(hypothetical) infinite run would decrease some value monotonically and endlessly,
so that well-foundedness would be contradicted.

Monotonicity constraints generalize the SCT abstraction and are clearly more
expressive, a fact that was highlighted by Codish, Lagoon and Stuckey [12]. They
made the intriguing observation that pre-existing termination analyzers based on
monotonicity constraints [24, 13, 25] apply a termination test which is sound and
complete for SCT, but incomplete for general monotonicity constraints, even if one
does not change the underlying model—namely that “data” are from an unspecified
well-founded domain. In addition, they pointed out that monotonicity constraints
can imply termination under a different assumption—that the data are integers.
Integers, not being well-founded, cannot be handled by the SCT abstraction.

In practice, the integers are already the predominant domain for monotonicity
constraints and size-change termination. Often—in particular in functional and logic
programming—they represent the size of a list or tree (whence the term size-change
termination), and are necessarily non-negative, which allows the well-founded model
to be used. In contrast, in certain application domains, and typically in imperative
programming, the crucial variables are of integer type and might be negative (by
design or by mistake). But MCs can still imply termination, as witnessed by the
loop while(x<y) x=x+1. The value of x does not descend but grow; however the
constraint x < y (along with the fact that y does not change) tells us that this
cannot go on forever.

In a previous paper [6], the theory of monotonicity constraint transition systems
in the well-founded model was investigated. Main results include:

• The syntax and semantics of the abstraction are presented.
• A combinatorial termination criterion is formulated in terms of the representa-
tion of monotonicity constraints as graphs (briefly: the existence of an infinite

1References are too numerous to cite here, but see the author’s summary web page
http://www2.mta.ac.il/~amirben/sct.html).

http://www2.mta.ac.il/~amirben/sct.html

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 3

descending path, or walk, in every infinite multipath). This is an adaptation of
the SCT criterion from [23].
• It is proved that satisfaction of this criterion is equivalent to the termination of
transition system that satisfies the constraints—in logical terms, the criterion is
sound and complete.
• Termination of MCSs is shown decidable, and more precisely, PSPACE-complete.
Two decision procedures are given: a direct closure-based algorithm, and a reduc-
tion of the problem to SCT, which provides an alternative algorithm, along with
insight into the relationship between the two constraint domains.
• An algorithm is given to construct explicit global ranking functions given any ter-
minating MCS (recall that a global ranking function is a function from program
states into a well-founded domain, that decreases on every transition). The algo-

rithm has optimal time complexity (2O(n logn)) and produces a ranking function
whose values are tuples, under the lexicographic ordering. It is also optimal in the
dimension (length of the tuples, implying the ordinal of the codomain), at least
in a worst-case sense.

The contribution of this paper is to obtain some similar results in the integer model.
This development is more complicated than in the well-founded model, but is cer-
tainly worthwhile due to the practical importance of this domain (many published
termination analyses target the integers specifically; a few, closest to this work, are
referenced in the related-work section).

An intuitive reduction of the integer case back to the well-founded case is to
create a new variable for every difference xi − xj which can be deduced from the
constraints to be non-negative, and also deduce relations among these new variables
to obtain a new abstract program over the natural numbers. But this solution may
square the number of variables, which is bad because this number is in the exponent
of the complexity, and in general is not complete (see Example 2.9) in the next
section). We tackle the problem directly instead, but as an interesting corollary
we shall find that the above reduction is, in fact, a correct solution given a certain
preprocessing of the program.

This paper is organized as follows. In the next section we formally introduce
monotonicity constraint transition systems and their semantics. After this quick
technical introduction a sample of examples are given, witnessing the range of ter-
mination arguments captured by this framework. Section 3 recalls the notion of
a stable MCS (introduced in [6]). Stabilization propagates invariants around the
abstract program and makes it more amenable to local analysis. Section 4 gives a
combinatorial termination criterion (in terms of graphs), similar to what has been
known for SCT and for MCS in previous work. The criterion is proved sound and
complete and decision algorithms are discussed. In Section 5, we recall another
notion from [6], that of elaboration. Elaborating a systems makes some informa-
tion which implicit in it, explicit, and further simplifies its algorithmic processing.
It is used in Section 6, presenting the algorithm to construct ranking functions.
Section 7 complements the previous sections by briefly explaining the role of reach-
ability (sometimes a program may seem to contain an infinite loop, but it is not
reachable). Section 8 discusses related work and Section 9 concludes.

4 A. M. BEN-AMRAM

This paper is intended to be self-contained, so that it can be read indepen-
dently of its predecessor [6]. However, a reader may be interested to know what the
challenges were in handling the integer domain in constrast with the well-founded
domain, where the definitions or techniques are the same, when they differ and how.
The paper is interspersed with special comments marked with the symbol Z. These
comments are meant to answer the above questions. They can be skipped without
compromising the integrity of the text.

The central results of this work have been presented in the 20th International
Conference on Computer Aided Verification conference (2009) and are stated, very
briefly, in the proceedings [5] .

2. Basic Definitions and Motivating Examples

Z: The basic definitions (Sect. 2.1–2.2) are essentially as in [6], except for the notation π-
termination, introduced for distinction between the integer interpretation of an MCS and
the well-founded interpretation. Section 2.3 includes examples to show the expressiveness
of the integer MCS model and contrast it with the usage of SCT to analyze the same
programs.

2.1. Monotonicity constraint transition systems. A monotonicity constraint
transition system is an abstract program. An abstract program is, essentially, a set
of abstract transitions. An abstract transition is a relation on (abstract) program
states. When describing program transitions, it is customary to mark the variables in
the resulting state with primes (e.g., x′). For simplicity, we will name the variables
x1, . . . , xn (regardless of what program variables they represent). This notation
also suggests that the same number of variables (n) is used to represent all states.
Of course, in actual programs this is not necessarily the case (for example due to
different scopes) and it will be more efficient to maintain only the necessary variables
at each program point.

Definition 2.1 (MCS). A monotonicity constraint transition system, or MCS, is
an abstract program representation that consists of a control-flow graph (CFG),
monotonicity constraints and state invariants, all defined below.

• A control-flow graph is a directed graph (allowing parallel arcs) over the set F of
flow points.
• A monotonicity constraint (MC) is a conjunction of order constraints x ⊲⊳ y where
x, y ∈ {x1, . . . , xn, x

′
1, . . . , x

′
n}, and ⊲⊳ ∈ {>,≥,=}.

• Every CFG arc f → g is associated with a monotonicity constraint G. We write
G : f → g.
• For each f ∈ F , there is an invariant If , which is a conjunction of order constraints
among the variables.

The terms “abstract program” and “MCS” are used interchangeably, when context
permits. The letter A is usually used to denote such a program; FA will be its flow-
point set. When notions of connectivity are applied to A (such as, “A is strongly
connected”), they concern the underlying CFG.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 5

2.2. Semantics.

Definition 2.2 (states). A state of A (or an abstract state) is s = (f, σ), where
f ∈ FA and σ : {1, . . . , n} → Z represents an assignment of values to the variables.

Satisfaction of a predicate e with free variables x1, . . . , xn (for example, x1 > x2)
by an assignment σ is defined in the natural way, and expressed by σ |= e. If e is a
predicate involving the 2n variables x1, . . . , xn, x

′
1, . . . , x

′
n, we write σ, σ′ |= e when

e is satisfied by setting the unprimed variables according to σ and the primed ones
according to σ′.

Definition 2.3 (transitions). A transition is a pair of states, a source state s and
a target state s′. For G : f → g ∈ A, we write (f, σ), (g, σ′) |= G if σ |= If , σ

′ |= Ig
and σ, σ′ |= G. We say that transition s 7→ s′ satisfies G.

Note that we may have unsatisfiable MCs, such as x1 > x2∧x2 > x1; it is useful
to view all such MCs as synonyms and use the common notation ⊥ for them (as one
would typically do in an Abstract Interpretation domain).

Definition 2.4 (transition system). The transition system associated with A is the
binary relation

TA = {(s, s′) | s, s′ |= G for some G ∈ A}.

Note that a program representation may also be called a “transition system.” I am
using the unqualified term for a semantic object. The program representation is
referred to as an MC transition system (or sometimes just MC system).

Definition 2.5 (run). A run of TA is a (finite or infinite) sequence of states s̃ =
s0, s1, s2 . . . such that for all i, (si, si+1) ∈ TA.

Note that by the definition of TA, a run is associated with a sequence of CFG
arcs labeled byG1, G2, . . . where si−1, si |= Gi. This sequence constitutes a (possibly
non-simple) path in the CFG.

Definition 2.6 (termination). Transition system TA is uniformly terminating if it
has no infinite run. MCS A is said to be π-terminating if TA is uniformly terminat-
ing.

The prefix π (a symbol for the order type of the integers [26]) is included since
the same MCS can be interpreted in the well-founded model of [6] and may possibly
be non-terminating there (though this would require the value domain to be of an
order type greater than ω). The term uniform refers to termination that is inde-
pendent of the initial state. In Section 7 we discuss the consequences of specifying
an initial flow-point.

Remark. It may be tempting to abstract away from the integers and, just as the
well-founded case was treated generally (so that any well-founded domain could be
used), give a general definition of the property that the domain has to satisfy for our
termination arguments to apply. The property is that for any two elements there
are only finitely many elements strictly between them. However, this abstraction
buys us no generality, as every total order with this property is isomorphic to a
subset of the integers. On the other hand, the fact that we assume the underlying
set to be, specifically, the integers, has the satisfactory outcome that completeness

6 A. M. BEN-AMRAM

of our deduction means that specific knowledge about the integers could not have
been used in any better way.

2.3. Examples. Here are a few small examples that illustrate the transformation
of programs into MCS. The reader is invited to verify that the abstract programs
created are indeed terminating. To contrast the expressiveness of the MC abstrac-
tion with that of the better-known SCT, comments are included regarding how the
examples might be treated by SCT-based tools. Recall that in the SCT framework,
only well-founded domains are handled.

Example 2.7. Consider the following program, in a self-explanatory functional
programming language with integer data.

f(m,n) = if m <= 0 then n

else if n <= 0 then f(m-1, n-1)

else f(m, n-1)

In this example the recursive calls depend on some variable being positive, and
therefore the proof can somehow be embedded in the well-founded framework. This
requires placing the control-flow points at the call sites, where we can rely on the
guards; it is also necessary to deal with the fact that n, while being pertinent to
the termination proof, is only known to be positive (and thus can be admitted into
the SCT abstraction) in the second call. When using MCs, we need not worry
about all of this. We can place a single flow-point at the function entry (as done in
the simple-minded abstraction of [23]). When analysing the body of the function,
we create an abstract transition for each recursive branch, taking into account the
branch condition. The abstract variables will be m, n and 0 (the analyser should
recognize that these three quantities are involved in the comparisons). The resulting
MCS thus consists of two abstract transitions:

G1 : m > 0 ∧ n > 0 ∧ n > n′ ∧ m = m′ ∧ 0 = 0′

G2 : m > 0 ∧ n ≤ 0 ∧ n > n′ ∧ m > m′ ∧ 0 = 0′

Example 2.8. This simple example involves descent in a difference.

s(m,n) = if m > n then 1 + s(m-1, n)

else 0

Here, it is possible to use the SCT framework by placing the control-flow point at
the call site, where we know that the difference m − n is positive, and using the
difference as the abstract variable. With an MCS, we can use a straight-forward
translation:

G1 : m > n ∧ n = n′ ∧ m > m′

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 7

As noted, both of the above examples could be proven terminating by SCT using an
abstraction that relies on invariants and judicious placement of the flow-points; such
techniques have been implemented, for example, in the theorem prover ACL2 [27].
The next programs challenge to the simple invariant-based technique, and therefore
illustrate more significantly the advantage of monotonicity constraints.

Example 2.9. Consider the following program:

g(m,n) = if m <= 0 then n

else g(n, m-1)

Both parameters are pertinent to termination, but only m is known to be positive at
the call site. But as m′ is unrelated to m, this does not suffice to prove termination.
Neither is the difference n − m useful as an abstract variable, since there is no
information on its sign and it does not change monotonically. Nonetheless, it is not
hard to prove termination with the straight-forward MCS abstraction:

G1 : m > 0 ∧ n = m′ ∧ m > n′

Example 2.10. In this example, unsatisfiability of certain paths is crucial to the
termination proof.

while (0<x<n)

if b then

x := x+1

else

x := x-1

A way to handle this program with SCT might be the calling-context method imple-
mented in ACL2; the theorem prover is used to discover the fact that an increment
cannot be followed by a decrement (or vice versa). It produces an abstract program
into which this information is already coded. It also produces the abstract variable
n−x. In contrast, with monotonicity constraints, a näıve translation of the program
is sufficient. Since only the integer domain is treated in this work, we represent the
Boolean variable b as an integer with the test interpreted as b>0. This yields:

G1 : 0 < x ∧ x < n ∧ b > 0 ∧ x < x′ ∧ n = n′ ∧ b = b′ ∧ 0 = 0′

G2 : 0 < x ∧ x < n ∧ b ≤ 0 ∧ x > x′ ∧ n = n′ ∧ b = b′ ∧ 0 = 0′

Example 2.11. Consider the following program.

g(m,n) = if m <= 0 then n

else g(m+n, n-1)

The apparent difficulty here is that the sign of n is not known at the point where it is
added to m. Hence, one cannot adequately represent the effect of such an update by
a monotonicity constraint. A similar problem arises with other operations (notably
subtraction). However, this nut is easily cracked, since one can represent the effect

8 A. M. BEN-AMRAM

m

		

m′oo

n

��

// n′

0 33X _ f 0′
tt X_f

m 33X _ f

		

m′
tt X_f

n

���
�
�

// n′

0 33X _ f

EE

.
� �

0′
tt X_f

m //

		

m′

n // n′

0 33X _ f

JJ

0′
tt X_f

G1 G2 G3

Figure 1: MCs of Example 2.11 as graphs. The left-hand side is the source. Broken
arcs represent non-strict descent.

of addition as a disjunction of three monotonicity constraints. Thus, for the above
program, we have the following (terminating) abstraction:

G1 : m > 0 ∧ n > 0 ∧ m < m′ ∧ n > n′ ∧ 0 = 0′

G2 : m > 0 ∧ n = 0 ∧ m = m′ ∧ n > n′ ∧ 0 = 0′

G3 : m > 0 ∧ n < 0 ∧ m > m′ ∧ n > n′ ∧ 0 = 0′

Note that when n is initially positive, the first parameter grows at first, until n
reaches zero and then the first parameter begins to shrink. Programs with such
“phase shift” have attracted the attention of termination researchers, and appear in
several publications, e.g., [11].

2.4. A comment regarding state invariants. None of the above examples used
state invariants (associated with a flow-point rather than a transition), and in fact
it is easy to see that one can always do without them, as it is possible to include the
constraints If in every MC that transitions from f . However, it may be convenient
to make the association of certain assertions with a flow point, rather than a specific
transition, explicit, and our algorithms make significant use of such invariants.

Z: The next two sections deal, respectively, with the representation and transformation of
MCSs; the ideas are not essentially different from those used in [6] but there are some
new details which are important for the sequel.

2.5. Weighted graph representation. An MC can be represented by a labeled
digraph (directed graph). This representation enables a style of reasoning, using
graph properties like paths, which has been very useful in most, if not all, previous

work on SCT and monotonicity constraints. An arc x
r
−→ y (r is the label) represents

a relation x > y or x ≥ y. One only needs two labels, > and ≥. It is convenient to
use integers for the labels, and apply techniques from the world of weighted graphs.
Hence, we employ the term weighted graph representation.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 9

Definition 2.12. The weighted graph representation of a monotonicity constraint
is a weighted digraph with node set {x1, . . . , xn, x

′
1, . . . , x

′
n} and for each constraint

x > y (respectively x ≥ y), an arc x
−1
−−→ y (x

0
−→ y′). The arcs are referred to,

verbally, as strict (label −1) or non-strict (label 0).

The notation x→ y may be used to represent an arc from x to y (of unspecified
label). In diagrams, to avoid clutter, we distinguish the types of arcs by using
a dashed arrow for the weak inequalities (see Figure 1). Note that an equality
constraint x = y is represented by a pair of non-strict arcs. In certain algorithms,
it is convenient to assume that the such arcs are distinguished from “ordinary”
non-strict arcs. We refer to them as no-change arcs.

Definition 2.13 (⊢). Let P (s, s′) be any predicate over states s, s′, possibly written
using variable names, e.g., x1 > x2∧x2 < x′2. We write G ⊢ P if ∀s, s′ : s, s′ |= G⇒
P (s, s′).

Definition 2.14. A monotonicity constraint G, in graph representation, is closed
under logical consequence (or just closed) if, whenever G ⊢ x > y, or G ⊢ x ≥ y,
for x, y ∈ {x1, . . . , xn, x

′
1, . . . , x

′
n}, the stronger of the implied relations is explicitly

included in the graph.

Note that for G : f → g, the condition G ⊢ P takes the invariants If and Ig
into account (consider Definitions 2.3 and 2.13). Thus, a closed MC subsumes the
invariants in its source and target states.

Definition 2.15. An MC H is at least as strong as G if whenever G ⊢ P , also
H ⊢ P . The (consequence) closure of a monotonicity constraint G, denoted G, is
the weakest MC that is at least as strong as G and is consequence-closed.

The closure of a graph be computed efficiently (O(n3) time) by a DFS-based
algorithm. First the graph is divided in strongly connected components. Within
every component, only non-strict arcs should appear; otherwise the graph is unsat-
isfiable and should be immediately replaced by the fixed object ⊥. Otherwise, the
components represent groups of variables constrained to be equal, and the acyclic
graph of components can be processed to determine the constraints relating each
pair.

Henceforth, we identify a MC with its consequence-closed graph representation,
and assume that this is how our algorithms will maintain them. In graph represen-
tation, the restriction of the SCT framework is that only arcs of the form x→ y′ are
admitted. Graphs of this form are called size-change graphs in the SCT literature
and so will they be called in this paper.

2.6. Transforming MC systems. A key tool in processing MC systems is the
idea of transforming them for the purposes of analysis. We employ two kinds of
transformations: the first kindcreates a new system that is “equivalent” in the sense
that they have the same runs, up to renaming of flow-points and possibly variables—
the precise notion is bisimulation, defined below. The second kind of transformation
creates a system that represents part of the runs of the given one—see the definition
of restriction below. These definitions are given here for later reference. The first
(bisimulation) is cited verbatim from [6].

10 A. M. BEN-AMRAM

Definition 2.16. Let A, B be transition systems, with flow-point sets FA, FB

respectively, and both having states described by n variables. We say that A sim-
ulates B if there is a relation φ ⊆ FB × FA (“correspondence of flow-points”) and,
for all (f, g) ∈ φ, a bijection ψg,f : {1, . . . , n} → {1, . . . , n} (“variable renaming”)
such that for every (finite or infinite) state-transition sequence (f1, σ1) 7→ (f2, σ2) 7→
(f3, σ3) 7→ . . . of B there is a corresponding sequence (g1, σ

′
1) 7→ (g2, σ

′
2) 7→ (g3, σ

′
3) 7→

. . . of A with (fi, gi) ∈ φ and σ′i = σi ◦ (ψgi,fi). We say that A bisimulates B if, in
addition, for every (finite or infinite) state-transition sequence (g1, σ

′
1) 7→ (g2, σ

′
2) 7→

(g3, σ
′
3) 7→ . . . ofA there is a corresponding sequence (f1, σ1) 7→ (f2, σ2) 7→ (f3, σ3) 7→

. . . of B, also with (fi, gi) ∈ φ and σ′i = σi ◦ (ψgi,fi).

Thus, A bisimulates B if they simulate each other via the same pair of mappings.

Definition 2.17. We say that an abstract program A (bi-)simulates an abstract
program B if TA (bi-)simulates TB, via mappings φ and ψ, as above.

We say that A simulates B deterministically if for every f ∈ FB and assignment
σ satisfying If there is a unique g ∈ FA with (f, g) ∈ φ such that, letting σ′ =
σ ◦ (ψg,f), assignment σ′ satisfies Ig.

If A bisimulates B, and A simulates B deterministically, we say (for brevity)
that A bisimulates B deterministically.

Determinism means that the invariants of different A flow-points that simulate
a given B flow-point have to be mutually exclusive.

Definition 2.18. The notation A ∼φ,ψ B means that A simulates B determinis-
tically via flow-point correspondence φ and the variable renaming function φ. We
omit φ when it is the identity, and omit both if it is not important to specify them.

Definition 2.19. Let A, B be transition systems, with same flow-point sets FA =
FB, and both having states described by n variables. We say that A is a restric-
tion of B, and write A ⋐ B, if every (finite or infinite) state-transition sequence
(f1, σ1) 7→ (f2, σ2) 7→ (f3, σ3) 7→ . . . of B is also a transition sequence of A.

A restriction results, obviously, from tightening the constraints at certain flow-
points or transitions.

Definition 2.20. We write A ⋐φ B, if there exists C such that A ⋐ C and C ∼φ B.

3. Stable Systems

The notion of stable MC systems is from [6]. This section recalls the definition and
states some consequences of stability that are used in forthcoming proofs.

Z: There is no novelty here.

Definition 3.1. An MCS A is stable if (1) all MCs in A are satisfiable; (2) For all
G : f → g in A, whenever G ⊢ xi ✄ xj (some relation between source variables),
also If ⊢ xi ✄ xj. (4) Similarly, if G ⊢ x′i ✄ x′j, also Ig ⊢ xi ✄ xj.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 11

Note that while consequence-closure requires that all information from If and
Ig be present in G, stability requires that G cannot add information to If and Ig.

Stabilizing a given system may require flow-points to be duplicated, since two
MCs coming out of f may disagree on the conditions that must be placed in If .

It is always possible to tranform an MC system B into a stable A such that
A ∼ B; this transformation is called stabilization, and an algorithm is described
in [6]. Stabilization does not rename variables, but may require flow-points to be
duplicated, since two MCs coming out of f may disagree on the conditions that must
be placed in If . In the worst case, it can multiply the size of the system by a factor
exponential in the number of variables n (specifically by the Ordered Bell Number
Bn which is between n! and 2n−1n! [30, Seq. A670]). A brute-force solution, which
always reaches the worst case, was also described. This solution turned out useful
in constructing global ranking functions and will also be used for this purpose in
this paper.

3.1. Properties of stable systems.

Lemma 3.2. Let M = G1G2 . . . Gℓ be a finite multipath of a stable MCS. Suppose
that there is a path in M from x[0, s] to x[ℓ, t]. Then there is a thread with such
endpoints.

The lemma works for down-paths (and down-threads) as well as for up-paths
(and up-threads), which can be seen (for more convenient argument) as paths in the
transposed graph.

Proof. We consider the shortest path among the given endpoints. It has to be a
thread, for otherwise it has two consecutive arcs among the nodes of a single graph
Gi. Stability and consequence-closure of the graphs imply that these two arcs can
always be replaced by a single one, contradicting the choice of a shortest path.

Lemma 3.3. Let M = G1G2 . . . Gℓ be a finite multipath of a stable MCS. Suppose
that there is a path in M from x[t, i] to x[t, j] for some t, i, j with i 6= j. Then there
is an arc with such endpoints.

The argument is very similar to the previous one and we omit a detailed proof.

Lemma 3.4. In a stable MCS, every finite multipath is satisfiable.

The proof, again, is rather similar to the previous ones and is given in full in [6].

4. Termination

A central contribution of [23] was the definition of a “path based” termination con-
dition for systems of size-change graphs, dubbed the SCT criterion. The condition
hinges on the presence of certain infinite paths in infinite sequences of size-change
graphs (such sequences represent hypothetic execution histories). This criterion was
generalized in [6] to monotonicity constraints, where the paths have become walks
(possibly cyclic). It has also been shown that assuming stability, the condition
reduces to the SCT criterion, which is easier to reason about as well as to test for.

12 A. M. BEN-AMRAM

x[0, 1]

��

x[1, 1]

��

oo // x[2, 1]

��

x[3, 1]oo

x[0, 2] //

��

x[1, 2] // x[2, 2]

��

// x[3, 2]

x[0, 3] 11\] _ a b x[1, 3]
qq \]_ab

11\] _ a b

OO

x[2, 3]
qq \]_ab

11\] _ a b x[3, 3]
qq \]_ab

Figure 2: A multipath.

In this section we prove that for π-termination too, termination is captured by a
path-based criterion. We consider in particular the case of a stable system, but also
the general case. This yields a proof that π-termination is decidable in PSPACE.

Z: The path-based criterion, and consequently the algorithm, enhance the criteria and algo-
rithm of [6] in a way which seems, at least after the fact, very natural. The completeness
proof was the challenging part as it differs significantly from [6]; it is inspired by [12].
This section also includes a discussion of the algorithm proposed in [12].

4.1. Some definitions.

Definition 4.1 (multipath). Let A be an n-variable MCS, and let f0
G1→ f1

G2→ f2 . . .
be an MC-labeled path in the CFG (either finite or infinite). The multipath M that
corresponds to this path is a (finite or infinite) graph with nodes x[t, i], where t
ranges from 0 up to the length of the path (which we also refer to as the length
of M), and 1 ≤ i ≤ n. Its arcs are obtained by merging the following sets: for all
t ≥ 1, M includes the arcs of Gt, with source variable xi renamed to x[t− 1, i] and
target variable x′j renamed to x[t, j].

The multipath may be written concisely as G1G2 . . . ; if M1,M2 are finite mul-
tipaths, M1 corresponding to a CFG path that ends where M2 begins, we denote
by M1M2 the result of concatenating them in the obvious way. The notation (G)x

represent a multipath made of x copies of G.
Figure 2 depicts multipath G1G3G1, based on the MCs from Figure 1.
Clearly, a multipath can be interpreted as a conjunction of constraints on a set

of variables associated with its nodes. We consider assignments σ to these variables,
where the value assigned to x[t, i] are denoted σ[t, i]. A multipath can be seen as
an execution trace of the abstract program, whereas a satisfying assignment consti-
tutes a (concrete) run of TA. Conversely: every run of TA constitutes a satisfying
assignment to the corresponding multipath.

Definition 4.2. A path in the graph representation of an MC or a multipath is
strict if it includes a strict arc.

Observation 4.3. A finite multipath is satisfiable if and only if it does not contain
a strict cycle.

We next define down-paths and up-paths. The definition of a down-path is just
the standard definition of path (which has already been used in this paper) but it
is renamed in order to accommodate the notion of an up-path.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 13

Definition 4.4. A down-path in a graph is a sequence (v0, e1, v1, e2, v2, . . .) where
for all i, ei is an arc from vi−1 to vi (in the absence of parallel arcs, it suffices to list
the nodes). An up-path is a sequence (v0, e1, v1, e2, v2, . . .) where for all i, ei is an
arc from vi to vi−1.

The term path may be used generically to mean either a down-path or an up-
path (such usage should be clarified by context).

Semantically, in an MC or a multipath, a down-path represents a descending
chain of values, whereas an up-path represents an ascending chain. Note also that
an up-path is a down-path in the transposed graph.

Definition 4.5. Let M = G1G2 . . . be a multipath. A down-thread in M is a
down-path that only includes arcs in a forward direction (x[t, i]→ x[t+ 1, j]).

An up-thread inM is an up-path that only includes arcs in a backward direction
(x[t, i]← x[t+ 1, j]).

A thread is either.

4.2. Combinatorial criteria for π-termination. We formulate necessary and
sufficient conditions for the termination of an MCS in terms of its multipaths. The
first criterion is called Condition S as it assumes a stable MCS. The second, Con-
dition G, works with any MCS.

4.2.1. The Stable Case.

Definition 4.6. A stable MCS A satisfies Condition S if in any infinite multipath
M (with variables x[t, i]) there are an infinite down-thread (x[k, hk])k=k0,k0+1,... and
an up-thread (x[k, lk])k=k0,k0+1,..., such that all the constraints x[k, lk] ≤ x[k, hk] are
present in M . In addition, at least one of the threads has infinitely many strict arcs.

We may later refer to the up-thread (x[k, lk]) as the low thread, while the down-
thread (x[k, hk]) is the high thread. This naming is meant to stress the relation
x[k, lk] ≤ x[k, hk]: the values assumed by the variables on the low thread are always
lower than those assumed on the high thread. The fact that the values in the high
thread descend, while those in the low thread ascend, suggests that the process can-
not go on forever, which is what we want. A down-thread/up-thread pair satisfying
this condition will be called an approaching pair. If the condition of infinitely many
strict arcs is not guaranteed, we will use the term a weakly approaching pair.

Theorem 4.7. Condition S is a sufficient condition for π-termination.

Proof. Suppose that Condition S is satisfied and that A does not terminate. Thus,
some infinite multipath M is satisfiable. The threads postulated in Condition S
imply that the sequence of differences σ[k, hk] − σ[k, lk] is infinitely descending,
while consisting of non-negative integers. This is impossible, so we conclude that A
is π-terminating.

14 A. M. BEN-AMRAM

Condition S is also a necessary condition for termination of stable systems (i.e.,
the criterion is sound and complete), but we will prove this later.

Readers familiar with SCT will surely notice that if, for each flow-point f ,
for every pair of variables such that If ⊢ xi ≤ xj , we create a variable x(i,j) to
represent xj − xi (guaranteed to be non-negative) and we connect such variables
with the obvious size-change arcs (if xi ≤ x′l and xj ≥ x′h then x(i,j) ≥ x′(l,h), etc),

Condition S becomes equivalent to ordinary (well-founded) size-change termination
in the new variables. The SCT condition requires every infinite multipath to include
an infinitely-descending thread (a down-thread which is infinitely often strict). Our
approaching pairs correspond precisely to threads in the difference variables.

Thus, given a stable system, π-termination reduces to SCT, and this imme-
diately provides us with a decision algorithm. Nevertheless, we dedicate the next
couple of subsections to new decision algorithms, based directly on Condition S. The
motivation for doing so is threefold. First, it is theoretically interesting to see how
such a direct algorithm would work. Secondly, the SCT algorithms are exponential
in the number of variables. Creating difference variables in advance squares the
exponent, which is bad. Finally, we shall employ one version of the direct algorithm
in proving the completeness of our termination criterion.

4.2.2. The General Case. Dropping the stability does not complicate the statement
of the termination condition very much. Instead of threads, we have to consider
paths of any form (even such that repeat arcs).

Definition 4.8. MCS A satisfies Condition G if in any infinite multipath M (with
variables denoted by x[i, j]) there is an up-path (x[Lj , lj])j=0,1,... and a down-path
(x[Hj , hj])j=0,1,... such that at least one of the paths has infinitely many strict arcs.
Moreover, for infinitely many values of k, there is a path from x[Hk, hk] ≤ x[Lk, lk].

Theorem 4.9. Condition G is a sound condition for Z-termination.

Proof. Suppose that Condition G is satisfied and that some infinite multipath M
is satisfiable. Then the paths described in Condition G exist and imply that the
sequence of differences x[Hj , hj]− x[Lj, lj] is infinitely descending, while consisting
of non-negative integers (note that if x[Lk, lk] ≤ x[Hk, hk], then also for all j ≤ k,
x[Lj , lj] ≤ x[Hj, hj]). This is impossible, hence no infinite multipath is satisfiable,
or equivalently, the MCS Z-terminates.

Theorem 4.10. Conditions G and S are equivalent for a stable system.

Proof. Condition S is a special caes of Condition G, so all we have to prove is that if
Condition G is satisified, so is Condition S. Suppose, then, that Condition G holds,
and we have the paths (x[Lj , lj])j=0,1,... and (x[Hj , hj])j=0,1,..., as above. It is easy
to see that since for infinitely many values of k, there is a path from x[Hk, hk] to
x[Lk, lk], it is also true that for any k and j, there is a path from x[Hk, hk] to x[Lj , lj]
(the path may use parts of the up-path and down-path themselves).

To each path, we can apply Lemma 3.2 to obtain a thread whose nodes are
a subset of the nodes of the path; an up-thread (x[t, ljt])t≥t0 and a down-thread
(x[t, hkt])t≥t0 . At least one of the threads is infinitely often strict.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 15

From the previous observation, we know that there is, for every t, a path from
x[t, hkt] to x[t, ljt]. Applying Lemma 3.3, we cam show that the relation x[t, hkt] ≥
x[t, ljt] must be included in the invariant for the corresponding flow-point.

Condition G is also a complete criterion for termination; the proof is based on
stabilizing the system and the equivalence of Conditions G with Condition S in the
stable one. The details are omitted as they are tedious and give no new insight.

4.3. A Closure Algorithm for Stable Systems. We next present an algorithm
to decide termination of stable Integer MCS by computing a composition-closure
and applying a certain test to the elements of the closure set. This algorithm
is based on the Closure Algorithm for the well-founded model [24, 13, 17, 23, 6],
and is theoretically related to the Disjunctive Well-Foundedness principle [19]. An
algorithm sans stability is presented later for completeness; but our analysis of the
algorithms and their correctness makes substantial use of stability (note the previous
paragraph).

The following definitions are essentially from [6]:

Definition 4.11 (composition). The composition of MC G1 : f → g with G2 :
g → h, written G1;G2, is a MC with source f and target h, which includes all the
constraints among s, s′ implied by ∃s′′ : s, s′′ |= G1 ∧ s

′′, s′ |= G2.

Composition is similar to logical closure and can be implemented by a DFS-
based algorithm in O(n3) time.

Definition 4.12 (collapse). For a finite multipath M = G1 . . . Gℓ, Let M =
G1; · · · ;Gℓ. This is called the collapse of M (if ℓ = 1, it is just the consequence-
closure of G1).

Applying composition together with logical closure, we can easily compute of
M for a given M .

Definition 4.13. Given an MCS A, its closure set cl(A) is

{M |M is a satisfiable finite A-multipath}.

The closure set can be computed by a routine least-fixed-point procedure, as in [5].

Definition 4.14 (cyclic MC). We say that a MC G is cyclic if its source and target
flow-points are equal. This is equivalent to stating that GG is a valid multipath.

Definition 4.15 (circular variant). For a cyclic G, the circular variant G◦ is a
weighted graph obtained by adding, for every variable xi, an edge xi ↔ x′i. This
edge is treated as a pair of no-change arcs, but is distinguished from edges already
present in G. These additional edges are called shortcut edges.

Definition 4.16 (types of cycles). Let G be a cyclic MC. A cycle in G◦ is a path
commencing and ending at the same node. It is a forward cycle if it traverses
shortcut edges only in the backward direction (from x′i to xi)

2. It is a backward
cycle if it traverses shortcut edges only in the forward direction.

2this naming may seem strange, but will will later see that such a cycle is “unwound” into a
forward-going thread in the multipath (G)ω.

16 A. M. BEN-AMRAM

x1

$$JJJJJJ x′1

x2

::tttttt

���
� x′2

x3 x′3

zzt
t

t

x4 x′4

ddJJJJJJ

x1

$$JJJJJJ x′1
//oo

x2

::tttttt

���
� x′2

//oo

x3 oo // x′3

zzt
t

t

x4 oo // x′4

ddJJJJJJ

x1

$$JJJJJJ x′1
oo

x2

::tttttt

���
� x′2

oo

x3 // x′3

zzt
t

t

x4 // x′4

ddJJJJJJ

(a) (b) (c)

Figure 3: (a) An MC G, (b) its circular variant G◦; (c) the directions of shortcut
edges are set to highlight the two cycles required by the LTTS.

Definition 4.17 (Local π-Termination Test for Stable Systems). For a cyclic G, we
say that G passes the Local π-Termination Test for Stable Systems, or LTTS, if G◦

includes a forward cycle F and a backward cycle B, at least one of which is strict,
and an arc from a node of F to a node of B.

This test resembles Sagiv’s local test for the well-founded case [24], and likewise
can be implemented as a DFS-based algorithm in linear time, on which we will not
elaborate. Figure 3 illustrates the test.

Algorithm 4.18. (The Closure Algorithm)

(1) Build cl(A).
(2) For each cyclic G in cl(A), apply the LTTS.

Pronounce failure (non-termination) if a graph that fails the test is found.
(3) If the previous step has completed, the MCS terminates.

Theorem 4.19 (closure algorithm—soundness). Let A be a stable MCS. If every
cyclic MC in cl(A) passes the Local π-Termination Test for Stable Systems, A sat-
isfies Condition S.

The proof will use the next lemma.

Lemma 4.20. Consider an infinite multipath M of a stable system, represented as
the concatenation of finite segments M1M2 . . . , and let M ′ = (M1)(M 2) Then
M ′ satisfies Condition S if and only if M does.

Proof. Suppose first that M ′ satisfies Condition S. The down-thread in M ′ can be
mapped back to M , where it consists of variables x[ki, hi], such that ki is the length
of M1 . . .Mi. The arc x[i, hi]→ x[i+ 1, hi+1] in M

′ is actually an arc of M i+1, and
reflects (by the definition of composition) a path in Mi+1. By Lemma 3.2, this path
can be assumed to be a thread. We thus obtain an infinite down-thread that passes
through the variables x[ki, hi]. Similarly, we obtain an infinite up-thread through
the variables x[ki, li]. Condition S also implies that the constraint x[ki, hi] ≥ x[ki, li]
is present in M for every i. For ki−1 < k < ki, we have a down-thread from some
x[k, h] to x[ki, hi], and an up-thread from some x[k, l] to x[ki, li], so we have a path
from x[k, h] to x[k, l]. By Lemma 3.3, x[k, h] and x[k, l] must be explicitly related
in M .

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 17

For the converse implication, we assume that M satisfies Condition S and we
are to prove it for M ′: this is symmetric, but simpler than the above argument, and
so is left to the interested reader.

Proof. (of Theorem 4.19) We suppose that every cyclic MC in cl(A) passes the
LTTS. LetM = G1G2 . . . be any infinite A-multipath.

Consider the set of positive integers, and label each pair (t, t′) , where t < t′, by

G = Gt;Gt+1; · · ·Gt′−1

which is included in cl(A), since this multipath is satisfiable (Lemma 3.4). By
Ramsey’s theorem (in its infinite version), there is an infinite set of positive integers,
I, such that all pairs (t, t′) with t, t′ ∈ I carry the same label GI .

Thus for any t, t′ ∈ I with t < t′, Gt;Gt+1; · · ·Gt′−1 = GI . By Lemma 4.20,
it now suffices to show that multipath (GI)

ω (infinite sequence of GI ’s) satisfies
Condition S.

By assumption, GI passes the LTTS. Let F be the forward cycle. Due to
consequence-closure, we can shrink each segment of F that consists of ordinary arcs
(not shortcuts) into a single arc, so that without loss of generatlity we may assume
that the cycle alternates source (unprimed) with target (primed) variables. We can
thus choose indices h1, h2, . . . such that the nodes of the cycle are xh0 , x

′
h1
, xh1 , x

′
h2

and so on up to x′hs for some s > 0, with hs = h0. We can do the same for the

backward cycle B, denoting the variables by xlj and x′lj , for 0 ≤ j < ŝ, where ŝ is

the length of that cycle. By LTTS, there is also an arc from a node of F to a node
of B; suppose that they are both source nodes; then, without loss of generality (a
cycle can be begun at any point), we can assume that G ⊢ xh0 ≥ xl0 . In fact, there
is no loss of generality in assuming that the related nodes are source nodes, either;
suppose, for example, that we have G ⊢ x′h1 ≥ xl0 ; then G ⊢ xh0 ≥ xl0 is implied.
Other situations can be handled similarly.

To show that Condition S is satisfied, we map the cycles onto infinite threads
in (GI)

ω. The kth node of the down-thread is x[k, hk mod s]. The kth node of the
up-thread is x[k, l(ŝ−k) mod ŝ] (indexing the backward cycle with ŝ− k rather than k
yields an up-thread). Either the infinite down-thread or the infinite up-thread (or
both) is infinitely often strict.

According to our assumptions, for all q we have the constraint x[qsŝ, h0] ≥
x[qsŝ, l0]. This implies x[k, hk mod s] ≥ x[k, lk mod ŝ] since we have the following path:
traversing part of the up-thread from x[k, hk mod s] to x[qsŝ, h0] for some q such that
qsŝ ≥ k, then using x[qsŝ, h0] ≥ x[qsŝ, l0] which we have by assumption, and then
traversing the down-thread in the reverse direction from x[qsŝ, l0] to x[k, lk mod ŝ].
By Lemma 3.3, the deduced constraint must explicitly appear in in the multipath.

We conclude that Condition S is satisfied by (GI)
ω.

4.4. The Role of Idempotence. We callG idempotent ifG is cyclic andG;G = G.
Following [12] (and similar results in [17, 23]), we claim:

(1) In the closure algorithm, it suffices to test only idempotent members of cl(A).
(2) The local test becomes simpler with idempotent graphs.

18 A. M. BEN-AMRAM

The first claim is easy to justify by studying the argument in the soundness
proof: the graph GI whose existence is established there is clearly idempotent. For
the second, let us describe the simple test and justify it.

Definition 4.21 (Local π-Termination Test for Idempotent MCs). We say that G
passes the Local π-Termination Test for Idempotent MCs, or LTT1, if it is idempo-
tent, and for some 1 ≤ l, h ≤ n, G ⊢ xl ≤ xh ∧ xl ≤ x

′
l ∧ xh ≥ x

′
h, where at least one

of the last two inequalities is strict.

Lemma 4.22. Let A be a stable MCS and G an idempotent, cyclic MC in cl(A).
Then G passes the LTTS if and only if it passes the LTT1.

Proof. One direction of this equivalence is easy: if G passes the LTT1, it has the
cycles xh → x′h → xh and xl → x′l → xl, that satisfy the LTTS.

For the other direction, suppose that G passes the LTTS. Repeating the analysis
in the proof of Theorem 4.19, and re-using the notation, we let 2s be the length
of the forward cycle (assuming it alternates shortcut and ordinary arcs) and 2ŝ the
length of backward cycle (under a similar assumption), and consider the multipath

M = (G)sŝ. It has a down-thread from x[0, h0] to x[sŝ, h0], so (G)sŝ ⊢ xh ≥ x′h.

But by idempotence, (G)sŝ = G. Similarly, we deduce that G ⊢ xl ≤ x
′
l, that one of

these relations is strict, and that G ⊢ xl ≤ xh. Therefore, G passes the LTT1.

We obtain the following version of the closure algorithm:

Algorithm 4.23. (Closure Algorithm with Idempotence)

(1) Build cl(A).
(2) For each cyclic G in cl(A), if it is idempotent apply the LTT1 to G. Pronounce

failure (non-termination) if a graph that fails the test is found.
(3) If the previous step has completed, the MCS terminates.

Though this algorithm makes fewer local tests, it does not seem to be practically
better than the previous, since the local test is quite efficient. On the contrary,
applying the test to every graph in the closure allows for early discovery of fail-
ure. More importantly, it allows for reducing the size of the set by subsumption
(consider [8, 18] and others).

4.5. Complexity. The closure algorithm, regardless of minor savings based on
idempotency or subsumption, has an exponential worst-case for time and space.
This follows from the fact that the closure set can be exponential. An easy upper
bound is this: for any pair of flow points f, g, an MC relates the 2n variables in the

source and target states. The number of such MCs is easily bounded by 34n
2
as an

MC is completely specified by choosing either ≤, < or “nothing” for every ordered
pair of variables. The complexity of the whole data structure, and the time of the

algorithm, are thus poly(m) · 2O(n2) where m is the number of flow-points3.
In Section 5, a polynomial-space algorithm will be described, just to make the

theoretical classification of the problem in PSPACE. Practically, the polynomial-
space version is not attractive because its running time gets worse. On the other

3There are instances of size O(n) that actually generate a closure of 2Θ(n2) MCs. The exponent
is thus not an overestimate.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 19

hand, in Section 4 we show that the exponent in the running time can be brought
down to O(n log n). But this, too, seems to be an improvement only in a highly
theoretical sense.

4.6. Completeness. This section proves the completeness of Condition S, as well
as the closure algorithm, by proving that if an idempotent MC in a stable system
does not satisfy the LTTS, the system fails to terminate.

To show that the system does not terminate, we exhibit a satisfiable infinite
multipath.

Lemma 4.24. Let M be a finite, cyclic, satisfiable multipath and G =M . If (G)ω

is satisfiable, so is (M)ω.

Proof. Suppose that (G)ω is satisfiable. That is, a satisfying assignment σ exists
such that σ[t, i] is the value of x[t, i]. Consider (M)ω. For distinction, let us denote
its variables by x′[,]. Let ℓ be the length of M ; the variables x′[ℓt, i] represent
the borders of the copies of M , and correspond to the source and target variables
of G. Recall that i varies between 1 and n, the number of variables. Set σ′[ℓt, i] =
n(ℓ + 1)σ[t, i]. We claim that σ′ can be extended to a satisfying assignment for
(M)ω. The construction is illustrated in Figure 4.

When considering the assignment to a particular copy of M , it is possible to
ignore all others, since all nodes on its boundary are already assigned. Thus, suppose
that we are given a copy ofM , say the p th copy, with an assignment to its boundary
nodes given by σ′[pℓ,] and σ′[(p+1)ℓ,]. ConsiderM as a weighted graph; the graph
has no negative-weight cycles, or M would be unsatisfiable.

Let µ be the biggest value assumed by σ′ over the boundary nodes of M . Add
an auxiliary node z to M and arcs from z to all M ’s nodes, weighted as follows:
an arc to a boundary node x′[(p + j)ℓ, i] is weighted by σ′[(p + j)ℓ, i]. All other
arcs have weight µ + n(ℓ+ 1) (note that n(ℓ+ 1) bounds the length of any simple
path in M). Let δz(j, i) be the weight of the lightest path from z to x′[j, i]. This is
well-defined, due to the absence of negative cycles.

If there is an arc of weight w from x′[j, i] to x′[j′, i′], then δz(j
′, i′) ≤ δz(j, i)+w.

Recalling that non-strict arcs have a weight of 0 and strict arcs, of −1, it is easy to
see that assigning δz(j, i) to x

′[j, i] is a satisfying assignment for M .
It rests to show that this assignment agrees with σ′. To this end, let x[(p+j)ℓ, i]

be a boundary node. By construction, δz((p + j)ℓ, i) ≤ σ′[(p + j)ℓ, i]. A strict
inequality can only arise if there is a path from z to x′[(p + j)ℓ, i], lighter than
the immediate arc. It can be assumed to be a simple path; it begins with an arc
z → x′[r, s] and then rests within M . Let P be the segment within M ; since it is
simple, its weight w is bigger than −n(ℓ+ 1). Using this, one can easily eliminate
the possibility that the path begins with an arc z → x′[r, s] where x′[r, s] is not a
boundary node. Suppose, then, that x′[r, s] is a boundary node, and can be written
as x′[(p+ k)ℓ, s]. Then, we have

σ′[(p + k)ℓ, s] + w < σ′[(p+ j)ℓ, i] . (4.1)

We now distinguish two cases. If σ[p + k, s] > σ[p + j, i], we get (multiplying by
n(ℓ+ 1)):

σ′[(p + k)ℓ, s] ≥ n(ℓ+ 1) + σ′[(p+ j)ℓ, i] (4.2)

20 A. M. BEN-AMRAM

◦

!!C
C

C
C ◦ // ◦

��

�
�

'

◦oo_ _ _

◦

��

◦

���
�
� ◦

��

◦oo_ _ _

◦ ◦

VV

◦ // ◦

◦

��1
11

11
11

11
11

1 ◦

◦

��

◦

��
◦ ◦

2

��0
00

00
00

00
00

00
3

��

1

��

2

��
0 1

(a) (b) (c)

24

!!C
C

C
C ◦ // ◦

��

�
�

'

36oo_ _ _

12

��

◦

���
�
� ◦

��

24oo_ _ _

0 ◦

UU

◦ // 12

24

""E
E

E
E 23 // 22

��

�
�

'

36oo_ _ _

12

��

24

���
�
� 24

��

24oo_ _ _

0 24

UU

22 // 12

(d) (e)

Figure 4: An illustration for the proof of Lemma 4.23: (a) A multipath M ; (b)
G =M ; (c) G with an assignment σ; (d) M with its boundary values set
(note that n(ℓ+ 1) = 3 · 4 = 12); (e) the assignment to M completed by
a lightest-path computation.

contradicting Inequality (4.1).
If σ[p+k, s] = σ[p+j, i], there can be no strict path from x[p+k, s] to x[p+j, i],

and hence no strict path from x′[(p+k)ℓ, s] to x′[(p+ j)ℓ, i]. Thus w ≥ 0; and again
a contradiction ensues.

If σ[p+k, s] < σ[p+j, i], there can be no path at all from x[p+k, s] to x[p+j, i],
and hence no path from x′[(p+ k)ℓ, s] to x′[(p+ j)ℓ, i].

We conclude that δz((p+ j)ℓ, i) = σ′[(p+ j)ℓ, i], so we have a satisfying assign-
ment that extends σ′, as desired.

Lemma 4.25. Let A be a stable MCS and G ∈ cl(A) be an idempotent MC that does
not pass the Local π-Termination Test for Stable Systems. Then A has a satisfiable,
infinite multipath.

Proof. We will show that (G)ω is a satisfiable multipath. Then, the conclusion will
follow by Lemma 4.24.

The first step is to add a new variable x0 (“the zero line”) with constraint
x0 = x′0. Next, we make sure that every other variable is related to x0. We do this
as follows:

(1) For each xi such that G ⊢ xi < x′i, we add xi > x0 and x′i > x′0.
(2) For each xi such that G ⊢ xi > x′i, we add xi < x0 and x′i < x′0.
(3) If there is a variable xi which is still unrelated to x0, we add xi > x0 and x

′
i > x′0.

This is repeated until all variables are related to x0 or x′0.

It is not hard to verify that G remains idempotent throughout this process. G also
remains satisfiable, since the above additions are non-contradictory: It is easily seen
that in the first stage, the additions cannot be contradictory—they cannot form

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 21

a directed cycle; the additions in the second stage cannot be contradictory among
themselves, and they cannot form a contradiction with the additions of the first
stage, because, by assumption, we cannot have xi < x′i in G together with xj > x′j
and xj ≥ xi (or x

′
j > x′i). In the third stage, it is obvious that no contradictions

can arise.
Let Ĝ denote the extended MC; we will show that (Ĝ)ω is satisfiable. Let V be

the set of variables of (Ĝ)ω. We define an assignment σ : V → Z as follows:

• For all t, σ(x[t, 0]) = 0. We shall refer to these variables collectively as 0 (note
that they are all related by equalities so if a variable is related to one of them, it
is related to all).
• For all v ∈ V such that there is a directed path from v to 0, let σ(v) be the
maximum number of strict arcs on such a path (note that only simple paths need
be considered, since there are no strict cycles).
• For all v ∈ V such that there is a directed path from 0 to v, let σ(v) be the
negation of the maximum number of strict arcs on such a path.

Note that since every variable in G is related to x0 (or x′0), we have covered all
cases. Why are the assignments well-defined? The only problem to worry about is
the existence of a node v such that its distance from 0 is unbounded.

Suppose that such v exists and that there is a path from v to 0 (the other case,
a path from 0 to v, is symmetric). Thus, there are infinitely many paths Pi from
v to 0, such that Pi has at least i strict arcs. For each such path, we can assume
that only one 0 appears on the path; otherwise we can cut the path at the first
occurrence (there can be no strict arcs among occurrences of 0).

The pigeon-hole principle shows that for sufficiently large i, Pi must visit a
certain state-variable xj twice, say as x[t, j] first and x[t′, j] later, with a strict arc
in-between. Moreover, by choosing i big enough, we can enforce the condition t′ > t.

Then, by idempotence of Ĝ, we have Ĝ ⊢ xj > x′j. But then, xj < x0 is in Ĝ; the

rest of Pi implies that there is a path from x[t′, j] to 0, so we also have G ⊢ x′j ≥ x0,
a contradiction.

We conclude that our assignment σ is well defined; and the fact that it satisfies

all constraints is easy to prove by its construction. Since it satisfies (Ĝ)ω, it also
satisfies (G)ω.

Theorem 4.26. If a stable MCS does not satisfy Condition S, it is not π-terminating.

Proof. Let A be such a system; suppose that every idempotent MC in cl(A) passes
the LTT1. The Condition S is satisfied, contradictory to assumption. So there
has to be an idempotent MC which fails the LTTS, and by the last lemma, a non-
terminating run exists.

Corollary 4.27. Condition S is a equivalent to π-termination of a stable MCS, and
the closure algorithm is a sound and complete decision procedure.

4.7. Codish, Lagoon and Stuckey’s Algorithm. Codish, Lagoon and Stuckey [12]
also gave (albeit implicitly) an algorithm to decide termination of an integer MCS,
under the assumption that the data represented are non-negative integers (so ter-
mination follows either by descent towards zero, or by approaching variables). The
algorithm is closely related to Algorithms 4.18 and 4.23.

22 A. M. BEN-AMRAM

Definition 4.28 (balanced constraint, [12]). A cyclic monotonicity constraint G is
balanced if G ⊢ xi✄xj ⇔ G |= x′i✄x

′
j (where ✄ is > or ≥). The balanced extension

GB of G is the weakest monotonicity constraint which is at least as strong as G and
is balanced.

To compute the balanced extension, Codish, Lagoon and Stuckey suggest a
fixed-point computation: Define bal(G) = G∧{xi✄xj | G ⊢ x

′
i✄x

′
j}∧{x

′
i✄x

′
j | G ⊢

xi ✄ xj}. They observe that there always is a p such that bal(p)(G) is balanced and
equals GB (it is then a fixed point of bal). Since there are at most 4n(n − 1)
constraints that can be added by bal, p ≤ 4n(n − 1) (according to [12], there are
tighter bounds). Hence, GB can be computed from G in polynomial time.

Algorithm 4.29. (CLS Algorithm)

Input: an MCS A, not necessarily stable.

(1) Build cl(A).
(2) For each cyclic G in cl(A), apply the LTTS to GB .

Pronounce failure (non-termination) if a graph that fails the test is found.
(3) If the previous step has completed, the MCS terminates.

The CLS algorithm relies on the balancing procedure to compensate for lack of
stability in A. In fact, the significance of GB can be related to stability. Consider
the MCS {G}, consisting of a single cyclic MC. Let S{G} be the smallest stable
system bisimulating {G} It is not hard to prove that in S{G} there is a single cyclic
graph, namely GB .

Soundness and completeness of Algorithm 4.29 are quite similar to those given
for Algorithms 4.18 and 4.23. Codish et al. give a partial completeness proof, specif-
ically they prove that if GB fails the test than {G} does not terminate. The piece
missing for proving non-termination of A is precisely Lemma 4.24.

4.8. A General Closure Algorithm. We next present an algorithm which com-
putes the composition-closure and applies a local test, which does not rely on sta-
bility. In essence, it corresponds to Algorithm 4.18 in the way that Condition G
(Section 4.2.2) corresponds to Condition S; as Condition G refers to general paths
instead of (up or down) threads, so will this test refer to cycles in the graph that
may have a more complicated form than those used by Algorithm 4.18. Since this
is a strict generalization and does not conflict with the prior definitions, we use the
same terminology for cycles, redefined as follows.

Definition 4.30 (types of cycles, generalized). Let G be a cyclic MC. A cycle in
G◦ is a forward cycle if it traverses shortcut edges more often in the backward
direction (from x′i to xi) than it does in the forward direction; a backward cycle, if
it traverses shortcut edges more often in the forward direction; and a balanced cycle
if it traverses shortcut edges equally often in both directions.

Figure 5 (a–c) illustrates a forward cycle in the extended sense.

Definition 4.31 (Local Termination Test, General Case). For a cyclic G, we say
that G passes the Local π-Termination Test, or LTT, if G◦ either has a balanced
strict cycle, or both a forward cycle f and a backward cycle b, at least one of which
is strict, and a path from a node of f to a node of b.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 23

x1

$$JJJJJJ x′1

x2

��

x′2

x3 x′3

WW

�

�

+
x1

$$JJJJJJ x′1
//oo

x2

��

x′2
//oo

x3 oo // x′3

WW

�

�

+
x1

$$JJJJJJ x′1
oo

x2

��

x′2
oo

x3 // x′3

WW

�

�

+

(a) (b) (c)

x[0, 1]

##GG
GGG

GG
x[1, 1]

##GG
GG

GG
G

x[2, 1]

##GG
GG

GG
G

x[3, 1]

""FF
FF

FF
FF

F

x[0, 2] x[1, 2]

��

x[2, 2]

��

x[3, 2]

��

. . .

x[0, 3] x[1, 3]

VV

�
�
�

�
#
(

,

x[2, 3]

VV

�
�
�

�
#
(

,

x[3, 3]

VV

�
�
�

�
#
(

,

(d)

Figure 5: (a) An MC G, (b) its circular variant G◦; (c) the directions of shortcut
edges are set to form a forward descending cycle, (d) a walk in a prefix of
Gω, corresponding to the cycle. The notation xti is a shorthand for x[t, i].
(Example after Codish, Lagoon and Stuckey)

Algorithm 4.32. (Closure Algorithm not presuming stability)

(1) Build cl(A).
(2) For each cyclic G in cl(A), apply the Local π-Termination Test.

Pronounce failure (non-termination) if a graph that fails the test is found.
(3) If the previous step has completed, the MCS terminates.

The proof of this algorithm much alike the proof of a similar algorithm for the
well-founded model [6], but rather tedious and is omitted.

4.9. Summary. In this section we have presented a path-based condition for termi-
nation, its soundness and completeness, and sound and complete decision procedures
based on it. The condition comes in two flavours: there is a version for general MCSs
and a version for stable ones. We concentrated on the latter. Stabilization may be
costly (the worst case incurs exponential blow-up), and hence the algorithms that
do not require this preprocessing may be more efficient in practice (at least, if all we
require is to decide termination). We also included Codish, Lagoon and Stuckey’s
algorithm, which is similar to the new algorithms proposed here. The contribution
of the new algorithms may be mostly theoretical—a contribution to the understand-
ing of MCS termination, as they are directly related to the path-based criteria. In
addition, we have closed a gap in the completeness proof of [12]. In the sequel,
an entirely different algorithm will be proposed, which constructs an explicit global
ranking function. If only the decision problem is of interest, the last (without stabi-
lization) is probably the most efficient, except for simple cases (such a simple case
is SCT transition systems, since they are always stable).

24 A. M. BEN-AMRAM

5. Full and Partial Elaboration

In [6], some of the results were proved using the following observation: for a finite
number of variables, there are only finitely many orderings of their values. It is thus
possible to exhaustively list all possibilities and create an explicit representation
of how transitions will affect each one. This is called full elaboration of an MCS.
It served two purposes in [6] (and so it will in the current paper): first, since it
generates a stable system, it gives an easy route to a decision procedure—one which
is inefficient regarding time but can be used to prove that the problem is decidable
in polynomial space. The second purpose was the algorithm to construct a global
ranking function; the fully-elaborated system has some structural properties that the
construction was based on. In this paper, too, we use full elaboration in that way.
The current section presents full elaboration as defined in [6], and infers PSPACE-
completeness of the termination problem; then, partial elaboration is introduced, as
a tool to be used in the subsequent section.

Z: The idea of full elaboration is taken from [6] , and Theorem 5.4 is a straight-forward
application, as it was in the previous paper. The idea and details of partial elaboration
are new definitions that are necessary for the new algorithm in the following section.

Definition 5.1 (full elaboration). An MCS A is fully elaborated if the following
conditions hold:

(1) Each state invariant fully specifies the relations among all variables. That is,
for i, j ≤ n, one of the relations xi = xj , xi < xj or xi > xj is specified by If .

(2) Each MC is closed under logical consequence.
(3) Each MC in A is satisfiable.

Since the state invariant fully determines the relations among all variables, we
can re-index the variables into sorted order, so that the invariant becomes

x1
{
<
=

}
x2

{
<
=

}
. . .

{
<
=

}
xn. (5.1)

Of course, the re-indexing has to be incorporated also in MCs incident to this flow-
point, but this is straight-forward to do. Indexing the variables in sorted order has
some convenient consequences, such as the having the property:

Definition 5.2. G has the downward closure property if for all k < j, G ⊢ xi≥x
′
j

entails G ⊢ xi≥x
′
k.

The number of possible orderings of n variables, hence the maximum number
of copies we may need to make of any flow-point to achieve full elaboration, is the
the nth ordered Bell number Bn, already mentioned. We denote the set of these
orderings by Belln, and assume that we fix some convenient representation so that
“orderings” can be algorithmically manipulated.

The algorithm of full elaboration follows almost immediately from the defini-
tions, and here it is, quoted from [6]:

Algorithm 5.3. (full elaboration) Given an MCS B, this algorithm produces a
fully-elaborated MCS A, along with mappings φ and ψ, such that A ∼φ,ψ B.

(1) For every f ∈ FB, generate flow-points fπ where π ranges over Belln. Define
the variable renaming function ψfπ,f so that ψfπ,f (i) is the ith variable in sorted
order, according to π. Thus, Ifπ will have exactly the form (5.1).

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 25

(2) Next, for every MC G : f → g in B, and every pair fπ, g̟, create a size-change
graph Gπ,̟ : fπ → g̟ as follows:
(a) For every arc x→ y ∈ G, include the corresponding arc in Gπ,̟, according

to the variable renaming used in the two A flow-points.
(b) Complete Gπ,̟ by closure under consequences; unsatisfiable graphs (de-

tected by the closure computation) are removed from the constructed sys-
tem.

Since a fully elaborated system is stable, full elaboration allows termination to be
checked by a closure algorithm as previously described. However, full elaboration
will often be costlier than stabilization by fixed-point computation. Therefore, it is
not worthwhile—unless we are interested in worst-case complexity! The complexity
of the closure algorithm has an exponent of n2, while full elaboration only intro-
duces an exponent of n log n and can subsequently be tested for termination by an
algorithm of the same exponent, as the next section will show. Full elaboration is
also a convenient means to justify the PSPACE upper bound.

Theorem 5.4. The MCS π-termination problem is PSPACE-complete.

Proof. It is known [23] that the SCT Termination problem is PSPACE-hard, which
also applies to MCS because SCT is a special case (to reduce an SCT problem,
which assumes well-foundedness, to a π-termination problem, include a “bottom”
variable and constrain all others to be bigger. This is like restricting the domain to
the positive integers).

To show that the problem is in PSPACE, we will outline a non-deterministic
polynomial-space algorithm for the complement problem, that is, non-termination.
The result will follow since (by Savitch’s theorem) coNPSPACE = NPSPACE =
PSPACE.

Algorithm 4.18 can be seen as a search for a counter-example—a cycle in the
CFG that fails the test. The non-deterministic algorithm guesses such a cycle. In
each step, it adds a transition to the cycle while composing the transition’s MC
with an MC that represents the CFG path traversed so far. Only this MC, along
with the initial and current flow-point, have to be maintained in memory. Whenever
the current flow-point is the same as the initial one, the local termination test is
applied. If at some point, an unsatisfiable MC results, the algorithm has failed to
find a counter-example. Otherwise it continues until finding one.

Given an input MCS B, we apply the Closure Algorithm to the fully elaborated
system A equivalent to B. To achieve the polynomial space bound, A is never
constructed explicitly. In fact, to represent a flow-point fπ of A, we just maintain
the B flow-point f along with the ordering π (we do not re-index the variables). If
the next flow-point is chosen to be g̟ (both the flow-point and the ordering are
chosen non-deterministically), the MC Gπ,̟ is computed on the spot.

It should be easy to see that the algorithm only needs access to the original
MCS B and to an additional linear amount of memory.

In the next section we will have a situation where we require information about
the ordering of variables which is not present in the given flow-point invariant, but
we do not need the whole ordering. We gain efficiency by only performing a partial
elaboration, defined generally as follows:

26 A. M. BEN-AMRAM

Definition 5.5. Let f be a flow-point in an MCS and let I1, . . . , Ik be conjunctions
of order constraints that are mutually exclusive and satisfy I1 ∨ I2 ∨ · · · Ik ≡ If .

A partial elaboration step applied to f, I1, . . . , If splits f into k flow-points, fi
having the invariant Ii, and accordingly replicates every MC from f (or into f).
Every such MC is consequence-closed under the new source (or target) invariant,
and eliminated if unsatisfiable.

Again, it should be obvious that partial elaboration only refines the abstract
program; it does not lose or add possible runs, up to the renaming of flow-points.
But it makes the program easier to analyse. As described, it makes the system
possibly unstable. Stabilizing the system again may require additional flow-point
splitting. For example, if we split f according to the three possible relations among
x1 and x2, and there is an MC f → g with constraints x = x′ ∧ y = y′, we will be
forced to split g as well. An important case in which we avoid this complication is
SCT constraints, and in fact we can allow a bit more:

Definition 5.6. A semi-SCT system is one in which there are no constraints of the
form x < y′ or x ≤ y′.

This definition generalizes SCT because flow-point invariants are allowed.

Lemma 5.7. If A is semi-SCT and stable, applying a partial elaboration step to A
results in a system A′ which is stable as well.

Proof. It is not hard to see that changing the flow-point invariant of f in a semi-SCT
system does not imply any consequences for the ordering of variable values at other
flow-points.

In the next section we have to handle a situation where it is necessary to know
which variable has smallest value among k unrelated variables, say x1, . . . , xk. The
reader may verify that it is possible to create k mutually exclusive invariants such
that in Ii, xi is minimum (with some arbitrary breaking of ties).

6. Ranking Functions for Integer MCSs

In this section we develop the algorithm to construct global ranking functions for
Integer MCSs. The algorithm will process an MCS and either report that it is
non-terminating, or provide an explicit global ranking function. This problem has
been solved in the well-founded setting in [6], improving on a previous solution for
SCT [22]. Assuming stability, it is possible to solve the problem in the integer do-
main by a reduction to the well-founded setting (creating difference variables). This
solution is not satisfactory, due to the potential squaring of the number of vari-
ables, figuring in the exponent of the complexity. This motivates the development
of a specialized algorithm. The algorithm will achieve optimal results—in fact, a
complexity similar to that obtained in the well-founded case. Achieving this results
required dealing with some complications that will be pointed out in the sequel.

In preparation, let us recall the definitions and result of [6].

Definition 6.1. A global ranking function for a transition system T with state space
S t is a function ρ : S t→ W , where W is a well-founded set, such that ρ(s) > ρ(s′)
for every (s, s′) ∈ T .

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 27

A ranking function for a MCSA is a ranking function for TA. Namely, it satisfies
G ⊢ ρ(s) > ρ(s′) for every G ∈ A.

Remarks: (1) The qualifier global may be omitted in the sequel, since we do not
deal with the notion of local ranking functions. (2) The definition highlights the
role of the transition system TA. In fact, to find a ranking function for an MCS, we
transform it into other MC systems that represent the transition system in a refined
manner. Therefore the ranking function obtained will be correct with respect to the
original MCS.

Definition 6.2 (vectors). Let V be a set of variables. We define 〈〈V 〉〉 to be the
set of tuples v = 〈v1, v2, . . . 〉 of even length, where every even position is a variable
of V , such that every variable appears at most once; and every odd position is a
non-negative integer constant.

Definition 6.3. The value of v ∈ 〈〈V 〉〉 in program state (f, σ), denoted vσ, is a
tuple of integers obtained by substituting the values of variables in v according to
σ. Tuples are compared lexicographically.

Theorem 6.4 ([6]). Suppose that MCS B is terminating in the well-founded model,
and has variables V = {x1, . . . , xn}. There is a ranking function ρ for B where
ρ(f, σ) is described by a set of elements of 〈〈V 〉〉, each one associated with certain
inequalities on variables, which define the region where that vector determines the
function value. The complexity of constructing ρ is O(|B| · n2n+1).

Here is an example, just to illustrate the form of the function:

ρ(f, σ) =

{
〈1, x1, 1, x3〉σ if x1 > x2
〈1, x2, 1, x4〉σ if x1 ≤ x2.

Later, to simplify the presentation and the manipulation of such functions, we can
omit σ and write, for example

ρ(f) =

{
〈1, x1, 1, x3〉 if x1 > x2
〈1, x2, 1, x4〉 if x1 ≤ x2.

We are thus dealing with functions that associate a symbolic tuple (or set of tuples
selected by order constraints) to a flow-point. Under the assumption of a well-
founded domain, the set of tuples is also well-founded by the lexicographic order.

The theorem can be easily translated to a theorem for Integer MCS, based on
using pairs of variables whose difference is non-negative and forming a tuple over N
(so again we have well-foundedness). This is formalized next, and yields our first
(non-optimal, but simple to describe) solution.

6.1. The Difference MCS. Let D = {(i, j) | 1 ≤ i < j ≤ n}. We introduce a
variable x(i,j), with (i, j) ∈ D, to represent each difference xj − xi.

Definition 6.5 (difference MCS). Let A be a fully elaborated system, with n vari-
ables in each flow point, indexed in ascending order of value. The initial difference
MCS of A is an MCS A∆

0 where:

(1) The set of flow-points is as in A. The variables are V ∪ W , where V =
{x1, . . . , xn} and W = {x(i,j) : (i, j) ∈ D}.

28 A. M. BEN-AMRAM

(2) For every flow point f , the state invariant I∆f includes If plus any constraints
that can be deduced from the constraints in A, using the rule:

xi ≤ xℓ ≤ xu ≤ xj ⇒ x(ℓ,u) ≤ x(i,j).

(3) To every MC G ∈ A, there is a corresponding MC, G∆, in A∆
0 . It includes the

constraints in G plus any constraints that can be deduced from the constraints
of G using the rules

xi ≤ x
′
ℓ ≤ x

′
u ≤ xj ⇒ x′(ℓ,u) ≤ x(i,j)

xi < x′ℓ ≤ x
′
u ≤ xj ⇒ x′(ℓ,u) < x(i,j)

xi ≤ x
′
ℓ ≤ x

′
u < xj ⇒ x′(ℓ,u) < x(i,j).

Observe that A∆
0 can be derived from A by a straight-forward, polynomial-time

algorithm. It is called initial because in the algorithm presented later it will be
iteratively refined. But at this stage it suffices. We reproduce the observation from
Section 4.2.1:

Observation 6.6. Satisfaction of Condition S by A is equivalent to satisfaction of
the SCT condition by A∆

0 , restricted to the difference variables.

This allows us to find a ranking function based on the difference variables. The
original variables (V) will not be used in it. We keep them in the system, however,
as an aid to the forthcoming, more efficient, algorithm. Applying Theorem 6.4 yields

Corollary 6.7. Suppose that MCS B is π-terminating, and has variables x1, . . . , xn.
There is a ranking function ρ for B where ρ(f) is given as a set of elements of 〈〈W 〉〉,
each one associated with certain inequalities on differences of variables. These in-
equalities define the region where that vector determines the function value. There
are at most Bn(n−1)/2 different vectors for any flow-point. The complexity of con-

structing ρ is O(|B| · (n(n− 1)/2)n(n−1)+1) = O(|B| · n2n
2
).

To present the function in a readable way, we will replace the difference variables
by expressions xi−xj , so we obtain a function like this: (the example is only meant
to illustrate the form)

ρ(f) =

{
〈1, x2 − x4, 1, x3 − x4〉 if x2 − x4 > x2 − x3
〈1, x2 − x4, 0, x3 − x4〉 if x2 − x4 ≤ x2 − x3

But this is an unsatisfactory result, because of the n2 exponent and the fact that
tuples may include up to n(n−1)/2 variable positions (or at least, this is the bound
that the theorem gives). The challenge tackled in the rest of this section is how to

reduce the complexity to nO(n) and the number of variables in each tuple to n− 1,
by solving the problem specifically rather than reducing it to the well-founded case.
This brings the upper bound close to lower bounds (for the length of the tuples, the
worst-case lower bound is matched exactly) based on the results of [9].

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 29

6.2. Overview. The construction below follows the same basic outline as the one
in [6], which is also similar to other global ranking-function algorithms such as [7, 2].
The construction is iterative, based on the notions of a quasi-ranking function and
a residual transition system.

Definition 6.8. Let T be a transition system with state space St . A quasi-ranking
function for T is a function ρ : S t → W , where W is a well-founded set, such that
ρ(s) ≥ ρ(s′) for every (s, s′) ∈ T .

The residual transition system relative to ρ, denoted T /ρ, includes all (and
only) the transitions of T which do not decrease ρ.

The outline of the algorithm is: find a quasi-ranking function, generate a rep-
resentation of the residual system, repeat as long as the system is not vacant (i.e.,
has transitions). If the quasi-ranking functions found are tuple-valued functions
ρ1, ρ2, . . . , ρk, it is easy to see that ρ1 · ρ2 · . . . · ρk is a ranking function, where · is
tuple concatenation, extended naturally to functions (it is tacitly assumed that care
is taken to maintain the correct structure regarding even and odd positions in the
tuples).

What are the quasi-ranking functions and how are they found? We have two
major cases, depending on the connectivity of the control-flow graph. If it is not
strongly connected, there are flow-points that can only occur in a particular order,
and we obtain the quasi-ranking function just by assigning suitable numbers to
flow-points. This is the easy case. The case of a strongly-connected system is the
important one. In [6], it was shown that, thanks to full elaboration, it is always
possible to identify a single variable xif for each flow-point f so that the function
ρ(f) = xif is quasi-ranking. The proof of the existence of such a variable, and the
algorithm to find it, make essential use of the fact that the n variables are totally
ordered by the flow-point invariant. In the current setting, we have a total order on
the original n variables, but this does not induce a total order on the n(n − 1)/2
difference variables, and it is them that will constitute the quasi-ranking functions.
So, to obtain the results below, the main effort (given the results of [6]) has been
to find a way to deal with the partially-ordered set of difference variables without
resorting to fully ordering them (as that would create an n2 exponent again).

Throughout the rest of this section, A denotes a fully-elaborated MCS that
satisfies Condition S, and A∆

0 the initial difference MCS. The algorithm begins with
A∆

0 , and then, iteratively, refines and restricts it, while constructing quasi-ranking
functions, so that in general, the sub-algorithm for finding a q.r.f. works on an MCS
that has already changed from the initial one. We define a difference MCS to be
any MCS A∆ obtained from A∆

0 by a series of partial elaboration steps, as defined
in Section 5, and restrictions. Thus A∆ is one of a sequence of MC systems A∆

j ,

starting with A∆
0 , so that

A∆
2i+1 ≃φi A

∆
2i

A∆
2i+2 ⋐ A

∆
2i

So, for all j, A∆
j ⋐φ A

∆
0 for an appropriate φ. The goal of each elaboration step is

to allow for finding a q.r.f., and the subsequent restriction represents the residual
transition system relative to the current quasi-ranking function. Note that the

30 A. M. BEN-AMRAM

elaboration steps do not involve a re-indexing of variables—this is important since
we rely on the indexing of the original elaborated MCS A.

6.3. Preparations for the construction. We begin with a few definitions and
properties that the algorithm relies on. These definitions are taken (with some
adaptation) from previous work on SCT, and therefore refer as threads to what
we have named down-threads. Since our analysis of the difference variables is SCT
analysis—only down-threads are considered—let it be understood that in the context
of difference variables, a “thread” is a down-thread.

Definition 6.9 (thread preserver). Given difference MCS A∆, a mapping P : FA →
P(D) is called a thread preserver of A∆ if for every G∆ : f → g in A∆ it holds that
whenever α ∈ P (f), there is β ∈ P (g) such that G∆ ⊢ xα≥x

′
β.

It is easy to see that the set of thread preservers is closed under union. Hence,
there is a unique maximal thread preserver, which we denote by MTP(A∆). Given
a standard representation of A∆, MTP(A∆) can be computed in linear time [8].

We also need the following definition and results:

Definition 6.10 (complete thread). A thread in a given multipath is complete if it
starts at the beginning of the multipath, and is as long as the multipath.

Lemma 6.11. Let M∞ be an infinite multipath. If every finite prefix M of M∞

contains a complete thread, then M∞ contains an infinite thread.

Proof. The proof is a straight-forward application of König’s Lemma.

Lemma 6.12. If a strongly connected MCS satisfies SCT, every finite multipath
includes a complete thread.

The proof is straight-forward and left out.

Definition 6.13 (thread-safe). We call a variable thread-safe at flow-point f if
every finite multipath, starting at f , includes a complete thread starting at that
variable.

6.4. Finding a singleton thread-preserver. The role of this part of the algo-
rithm is to single out a variable xαf

for every flow point, such that these variables
constitute a singleton thread-preserver (i.e., P (f) = {αf} be a thread preserver).
Observe that this induces a quasi-ranking function, namely ρ(f) = 〈xαf

〉. We as-
sume, until further notice, that we are dealing with a strongly-connected MCS; the
complete algorithm will provide for the non-strongly-connected case.

Definition 6.14 (ordering of D). We write (i, j) ⊆ (i′, j′) for containment of the
interval {i, . . . , j} in the interval {i′, . . . , j′}.

Containment is a partial order, and moreover a semi-lattice with join operation
(i, j) ⊔ (i′, j′) = (min(i, j),max(i′, j′)).

Recall that indexing the variables in ascending order of value, during full elab-
oration, provided a useful downward closure property. In particular, the lowest-
numbered variable among a set of variables has the smallest value. This was crucial
in the construction of [6], and here, we give as a substitute the following (more
subtle) lemma for the difference variables.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 31

Lemma 6.15. Let A∆ be a difference MCS for a fully elaborated A. Each MC, G∆,
of A∆ has the following properties:

(1) If G∆ ⊢ xα ≥ x
′
β, then G

∆ ⊢ xγ ≥ x
′
β for every γ ⊇ α.

(2) If G∆ ⊢ xα ≥ x
′
β, and G

∆ ⊢ xα ≥ x
′
γ , then G

∆ ⊢ xα≥x
′
δ for every δ ⊆ β ⊔ γ.

Proof. We prove only the second claim (being a bit more involved). Let α = (al, ah),
β = (bl, bh) and γ = (cl, ch). The inequality xα ≥ x

′
β means xal ≤ x

′
bl
and xah ≥ x

′
bh

and similarly for the second inequality, so we have:

xal ≤ xmin(bl,cl); xah ≥ xmax(bh,ch).

That is, xα ≥ xβ⊔γ , which entails the conclusion.

Lemma 6.16. Assume that A∆ is strongly connected and satisfies SCT in the dif-
ference variables. For every f , let S(f) be the set of indices of difference variables

that are thread-safe at f in A∆. Then S(f) is not empty for any f ∈ FA∆
and

S = MTP(A∆)4.

Proof. LetM be any finite A∆-multipath starting at f . Since A∆ satisfies SCT and
is strongly connected, there must be a complete thread in M , say starting at xα.
But then x(1,n) can also start a thread. It follows that (1, n) ∈ S(f), so S(f) is not
empty.

We now aim to show that S is a thread preserver. Let α ∈ S(f), and let
G∆ : f → g. Let H∆ be any MC with source point g, M a finite multipath starting
with H∆ and consider the multipath G∆M = G∆H∆. . . . By definition of S(f), it
has a complete thread that begins with an arc from xα, say xα → x′βM , followed

by an arc of H∆, say xβM → x′γM . Let B be the set of all such indices βM (where

M ranges over all multipaths starting with H∆), and κ =
⊔
B. Then xα → xκ

is an arc of G∆ by Lemma 6.15(2); and by 6.15(1) one can see that, for each M ,
H∆ has an arc xκ → x′γM . Thus, M has a complete thread beginning with xκ,
and κ is, by definition, in S(g). We have proved that S has the thread-preservation
property. On the other hand, it is easy to see that if P is a thread preserver such
that P (f) 6= ∅, then the variables indexed by P (f) are thread-safe at f . Thus every
thread preserver is contained in S, and we conclude that S = MTP(A∆).

Lemma 6.17. Assume that A∆ is strongly connected and satisfies SCT in the dif-
ference variables. Let P be a thread preserver (in difference variables) and suppose

that for every f ∈ FA∆
, invariant I∆f implies that a certain variable xαf

has small-

est value among the variables of P (f). Then every G∆ : f → g includes xαf
→ x′αg

.

In other words, {αf} constitutes a singleton thread preserver.

Proof. By the definition of a thread-preserver, each MC G∆ : f → g must have an
arc xαf

→ x′β for some β ∈ P (g); so by Lemma 6.15(2), G∆ includes xαf
→ x′αg

.

4This notation refers to a maximal thread preserver involving the difference variables only.

32 A. M. BEN-AMRAM

Since the lemma applies to any thread preserver, the easiest implementation is
to use the MTP, just because it can be found efficiently. The difficulty in applying
the lemma is that the difference variables are only partially ordered, so in a given set
of variables there may be no variable that is necessarily of smallest value. In order
to make the lemma applicable, we shall use partial elaboration. Specifically, observe
that given P (f), there can be at most n− 1 candidates for the variable of smallest
value. This is so because in the poset of intervals there is no antichain bigger than
n− 1. Suppose that for flow-point f , the set of potential smallest variables in P (f),
Pmin(f), has more than a single element. We will then create a duplicate fα of f
for each α ∈ Pmin(f), and add different constraints to each one, such that in fα, xα
will be minimum, as required by the lemma. This is a case of partial elaboration,
as described in Section 5, and due to the fact that the constraints on difference
variables are semi-SCT, the duplication does not trigger a cascade of duplications
of other flow-points (Lemma 5.7); we thus increase the size of the system at most
(n− 1)-fold. After this processing, Lemma 6.17 can be applied.

In the following lemma we formulate the conclusion in a somewhat generalized
manner, which will be useful later. Recall that D is the set of indices of all difference
variables.

Lemma 6.18. Let A∆ be a strongly connected difference MCS, that satisfies SCT
restricted to a certain subset of the difference variables at each flow-point f , given
by T (f) ⊆ D, such that T (f) is closed under ⊔. Procedure SingletonTP(A∆, T)
below finds a singleton thread preserver within T , while (possibly) modifying the
MCS by partial elaboration. The partial elaboration involves duplicating each point
f at most n− 1 times.

Algorithm 6.19. SingletonTP(A∆, T)

(1) Compute P = MTP(A∆, T), the MTP of A∆ restricted to the variables T (f)
for each f . If empty, the procedure fails.

(2) For each f ∈ FA∆
, identify the minimal elements of P (f), based on the flow-

point invariants. Suppose that there are k > 1 minima, xα1 , . . . , xαk
. Let

I be the invariant of f ; create mutually exclusive invariants I1, . . . , Ik such
that Ii includes I with added constraints xαi

< xαj
for j < i, and xαi

≤ xαj

for i ≤ i ≤ k. Perform partial elaboration, replacing f by k copies with the
respective invariants. Choose xαi

for the thread preserver at the i’th copy of f .

Note that the results of the procedure (unless it fails) are a possibly modified MCS
and its thread preserver.

6.5. Systems with frozen threads. Having found a quasi-ranking function, our
next step is to modify to A∆ so that it expresses the residual system. This includes
the following changes

(1) Transitions in which the quasi-ranking function strictly decreases (that is, we
have G∆ ⊢ xαf

> xαg) are removed.
(2) In transitions where the quasi-ranking function was not known to decrease

strictly (that is, we only had G∆ ⊢ xαf
≥ xαg) it is now required not to change.

We now recall another idea from [6], freezers. A freezer is a singleton thread-
preserver where the values are “frozen,” that is, constrained not to change.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 33

Definition 6.20 (freezer). Let A be an MCS and C : FA → {1, . . . , n} a function
that associates one original variable (technically, the index of one such variable) to
to each flow-point. Such C is called a freezer if for every G ∈ A, G ⊢ xC(f) = x′C(g).

In our case, we have a thread of difference variables xαf
that we wish to constrain

not to change. Suppose that G∆ ⊢ xαf
≥ xαg , where αf = (l, h) and αg = (i, j).

In order that the differences before and after the transition be the same, we must
have both xl = x′i and xh = x′j. Therefore, every arc like that, participating in the
singleton thread-preserver found, implies that two inequalities in original variables
are restricted to equalities, creating two freezers.

Assuming that there still are cycles in the MCS, we need to look for an additional
quasi-ranking function. We have to restrict the search in order not to find the same
quasi-ranking function again (which, albeit “frozen,” is still a q.r.f.). This requires
a bit further analysis.

The following observation comes easily from full elaboration:

Observation 6.21. Freezers are consistently ordered by the relations among their
variables. That is, if CL and CH are freezers and If ⊢ xCL(f) < xCH (f) for some
flow-point f , then this relation holds in every flow-point and we write CL < CH .

Note that due to the re-indexing in full elaboration, the order relation among
the freezers matches the relation among the indices CL(f) and CH(f). The case
of variables related by an equality constraint at a flow-point is less obvious but, in
fact, if variable x1, say, is “frozen” and If ⊢ x1 = x2, then x2 is also “frozen”. To
make a long story short, the algorithm below has the property that if two variables
are constrained by equality, once one of them has been used for a thread-preserver
and thereafter put into a freezer, the other can safely (and advantageously) be
ignored (yet we ignore this situation in the description of the algorithm, to simplify
presentation).

Lemma 6.22. Suppose that A∆ is strongly connected, and has some freezers, among
which CL is lowest and CH highest. And suppose that A∆ terminates. Divide the
indices of original variables, for every flow-point f , into three regions: the lower
region V0(f) = {1, . . . , CL(f)}, the middle region V1(f) = {CL(f), . . . , CH(f)}, and
the upper region V2(f) = {CH(f), . . . , n}. Then every infinite A∆-multipath has an
approaching pair confined to one of the regions.

Proof. Let M be an infinite multipath of A, M = f0
G1→ f1

G2→ f2 . . . Suppose that
M has an approaching pair: the low up-thread (x[k, lk])k=0,1,... and the high down-
thread (x[k, hk])k=0,1,....

At least one of the low and high threads has to be infinitely often strict; let us
suppose that it is the high thread (the other case is similar). This thread cannot
intersect any of the the frozen threads infinitely often (or we would have an unsat-
isfiable section of the multipath, contradicting Lemma 3.4); so in an infinite tail of
the multipath (which is all that matters) it lies either always above CH , or below
CL, or between them; to avoid a trite case analysis, let us pick just one of the cases,
and suppose that the thread uses variables above CH , that is, from V2. Now, we
can let CH play the part of the low thread, to obtain an approaching pair within
the upper region (V2).

34 A. M. BEN-AMRAM

Corollary 6.23. Under the assumptions of the last lemma, define regions of differ-
ence variables:

D0(f) = {(i, j) | i < j ≤ CL(f)}; (6.1)

D1(f) = {(i, j) | CL(f) ≤ i < j ≤ CH(f)}; (6.2)

D2(f) = {(i, j) | CH(f) ≤ i < j}; (6.3)

then in every infinite A∆-multipath there is an infinitely-descending thread of dif-
ference variables within one of these regions.

Lemma 6.24. Under the assumptions of the last lemma, there is a region Dr that
contains an infinite thread (corresponding to a weakly approaching pair in Vr) in
every infinite A∆-multipath.

Note the change in the order of quantification: the region is selected before the
multipath, at the expense of not guaranteeing strict descent in every multipath.

Proof. Assume to the contrary that for each of r = 0, 1, 2 there is an infinite multi-
path in which Region Dr contains no infinite thread. By Lemma 6.11, there are finite
multipaths M0, M1, M2 such that Mi has no complete thread in region i. Since our
MCS is strongly connected, one can form a multipath (M0 . . .M1 . . .M2 . . .)

ω, which
will have no infinite thread in any of the regions, contradicting Corollary 6.23.

Let r be such that there is always an infinite thread in Dr. We can use the
strategy of the previous subsection to find a singleton thread preserver, thus making
progress in our construction. But is it progress? There is a pitfall: in the case of
the middle region, our procedure may find a pair of variables that was already
frozen (they constitute a weakly approaching pair, but they really never approach).
However, the middle region can be treated in a special way that avoids the pitfall
and is also more efficient.

Lemma 6.25. Under the assumptions of Lemma 6.22, An infinite multipath M
contains an approaching pair within the middle region (V1) if and only if this region
contains a thread—either a down-thread or an up-thread—which is infinitely often
strict. Such a thread is disjoint from the two freezers delimiting this region.

Proof. The non-trivial implication is the “if,” but it is also quite easy: suppose that
the region contains an infinitely-often strict down-thread (up-thread). It can be
complemented to an approaching pair by using CL (CH) for the other thread.

From this lemma we conclude that the middle region can be reduced to the
following two subsets of difference variables:

DL
1 (f) = {(CL(f), j) | CL(f) < j < CH(f) such that xj is not frozen in f} (6.4)

DH
1 (f) = {(i, CH (f)) | CL(f) < i < CH(f) such that xi is not frozen in f}. (6.5)

Both sets of intervals are closed under ⊔ and Lemma 6.18 applies. Moreover, these
sets of intervals are totally ordered, which means that no elaboration steps will be
needed when looking for a singleton thread-preserver among them.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 35

6.6. Putting it all together.

Algorithm 6.26. (ranking function construction for A∆)

Assumes that A∆ is a difference MCS. The system may also be adorned with
any number of freezers. If A∆ terminates, a ranking function will be returned.
Otherwise, the algorithm will fail.

(1) List the SCCs of A∆ in reverse-topological order. For each f ∈ FA∆
, let κf be

the position of the SCC of f . Define ρ(f) = 〈κf 〉.
If all SCCs are vacant (contain no transitions), return ρ.

(2) For each SCC C, compute a ranking function ρC by applying the next algorithm
to the component (separately). Let ρ′ =

⋃
ρC . Return ρ · ρ

′.

Algorithm 6.27. (for a strongly connected A∆)

(1) If no freezers are associated with A∆, run SingletonTP(A∆,D) and proceed
to Step 3.

(2) If some freezers are associated with A∆, let CL and CH be the lowest and highest
freezers5. For every flow-point f , create the sets of difference variables D0(f),
DL

1 (f), D
H
1 (f), D2(f), as defined in Equations (6.1–6.5).

(1) Run SingletonTP(A∆,Dx
1) for x = L and then H. If one of these calls

succeeds, proceed to Step 3.
(2) Run SingletonTP(A∆,D0). If successful, proceed to Step 3.
(3) Run SingletonTP(A∆,D2). If successful, proceed to Step 3. If not, the

algorithm fails.
(3) (Create residual system) Let P be the thread preserver found. For every graph

G∆ : f → g, if it includes xP (f) > x′P (g), delete the graph from A∆. Otherwise,

retain the graph. Also include 6 C1(f) = π1P (f), C2(f) = π2P (f) as freezers
associated with A∆.

(4) For every f , let ρ(f) = 〈xP (f)〉.

(5) If A∆ is now vacant, return ρ. Otherwise, compute a ranking function ρ′ recur-
sively for (what remains of) A∆, using Algorithm 6.26, and return ρ · ρ′.

Recall that Õ(f) is a shorthand forO(f ·logO(1) f). Thus Õ(nn) is asymptotically
dominated by nn times a polynomial in n. For an MCS A, let |A| denote the number
of abstract transitions (MCs) in A (without loss of generality, |A| ≥ |FA|).

Theorem 6.28. Let A be a fully-elaborated, π-terminating MCS, with n variables
per point. Algorithm 6.26, applied to A∆, produces a ranking function ρ : FA →
〈〈W 〉〉 where each vector includes at most n− 1 difference variables. The complexity

of construction of ρ is Õ(|A| · n!).

Proof. Assuming that the correctness of the algorithm has been justified convinc-
ingly enough, we now discuss the complexity. One should consider the effect of
partial elaborations by SingletonTP. Such a step may make up to n − 1 copies
of every flow-point. However, each time it is performed, at least one new freezer is
subsequently created (in the first time, two freezers). Therefore, this multiplication

5A case in which there is only one freezer is acceptable. CL and CH are then the same thread
and Step (2a) is skipped.

6We use the projections π1, π2 to map indices from D to their components.

36 A. M. BEN-AMRAM

of flow-points can occur at most n − 1 times, leading to the upper bound on the
length of the vectors. Since the number of variables participating in the search for
quasi-ranking functions diminishes in each iteration, we obtain a bound of |FA| · n!
on the size of the resulting expression, which associates a vector with each of the
flow points of the mostly elaborated system obtained. The running time is further
multiplied by a (low order) polynomial expressing the complexity of the procedures
at each level of the recursion.

Theorem 6.29. Let B be a π-terminating MCS, with n variables per point. A
ranking function ρ for B where ρ(f) is given by a case expression with inequalities
among differences for guards; the value in each case is given by a vector in 〈〈W 〉〉,
that includes at most n − 1 difference variables. The complexity of construction of
ρ, as well as the size of the expression, are Õ(|B| · 2n(n!)2).

Proof. First, fully elaborate B, yielding an MCS of size at most |B|·Bn ≤ |B|·2
n(n!),

then use the last theorem.

The algorithm could, in principle, be used just to determine if a system is
terminating, and with an exponent of O(n log n), better than the O(n2) exponent
given in Section 4. However, the use of full elaboration makes it unattractive in
practice because it blindly generates the worst case (all possible ordering of variables)
for every input instance. In contrast, the algorithms of Section 4 will often perform
much better than their worst-case behaviour.

7. Rooted Versus Uniform Termination

Up to this point, the notion of termination used was uniform termination, which
means that there must be no cycles in the whole state space of the modeled transi-
tion system. Practically, what we usually require is rooted termination, when only
computation paths beginning at a given initial point f0 are considered.

Z: There is no difference between the treatment of this subject in the well-founded case and
here, but the examples below should illustrate that the issue is doubly important in the
current setting.

Here is a little C example to show the importance of rooted termination:

if (x<0)

while (y > 0) y = y+x

Consider an abstraction that represents the command y=y+x by three parallel MCs,
as discussed in Example 2.11. It can be shown to terminate when only paths from
the top of the program are considered. The example could also be solved by a
preprocessing that calculates state invariants, such as x < 0 inside the while, as
is often done in program analysers. But this can get complicated: the following
example would require an invariant that specifies the dependence of variable b on
x. This kind of invariant that is not found in common invariant generators (namely
those that describe a state by a conjunction of linear constraints). However with
rooted termination, no invariants are necessary other than the direct translation of
the conditionals to monotonicity constraints.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 37

if (x<0) b=1

else b=0;

if (x<>0)

while (y > 0)

if (b) y = y+x;

else y = y-x;

We conclude that it is desirable, practically, to account for rooted termination. Up
to this point, this was avoided only in favor of simplicity of presentation. However,
it is very easy to do: with a stable system, unreachable states will be represented
by flow-points that are inaccessible from f0, due to Lemma 3.4.

Thus, all that is necessary is to remove inaccessible parts of the CFG, or bet-
ter yet, never generate them in the first place, by creating the stabilized (or fully
elaborated) system in the manner of a graph exploration (say, DFS) starting at the
initial point, only covering the reachable state space. This can occasionally have a
significant effect on efficiency (in particular with full elaboration), as confirmed by
our experience with implementing full elaboration [31].

Example 7.1. To conclude this section, here is another example which illustrates
the effectiveness of the MCS abstraction in expressing disjunctions, besides the need
for rooted termination. Disjunction is used in expressing the condition x != 0, as
well as representing the command x := x-1.

assert x > 0

while (x != 0) x := x-1

Abstraction: unlike previous examples, we will not merge this time the loop guard
with the loop body, in order to clarify the transformation. We will thus have three
flow-points, 0 (initial), 1 (loop header) and 2 (loop body).

G1 : 0→ 1 : x > 0 ∧ x = x′ ∧ 0 = 0′

G2 : 1→ 2 : x > 0 ∧ x = x′ ∧ 0 = 0′

G3 : 1→ 2 : x < 0 ∧ x = x′ ∧ 0 = 0′

G4 : 2→ 1 : x > 0 ∧ x > x′ ∧ x′ ≥ 0′ ∧ 0 = 0′

G5 : 2→ 1 : x ≤ 0 ∧ x > x′ ∧ x′ < 0′ ∧ 0 = 0′

8. Some Related work

The field of termination analysis is well developed and it is infeasible to survey it
extensively here. This section will point out some works that are related inasmuch as
they base a termination analysis on the behavior of integer variables. The following
questions are asked when considering such works:

(1) Does the proposed algorithm or tool work on an abstract transition system,
or on concrete programs? Clearly the case that can be best related to the current

38 A. M. BEN-AMRAM

work is the former. Therefore, much work of the second kind is ignored here; but it
is not hard to find.

(2) What abstraction is used? In particular, are monotonicity constraints used?
(3) What is the main technique? Is it complete for the given abstraction? (It

is also possible to ask if there would have been completeness, had the method been
applied to MCS. I have tried to answer this question, though some of the methods
are not fully described in the publications, so it is difficult to be precise.)

We start with those works which mostly resemble the current paper.

(1) Manolios and Vroon [27] describe a termination analysis implemented in the
ACL2 theorem prover. It works on concrete programs using the SCT abstrac-
tion. It handles termination arguments involving integers by introducing the
difference of two concrete integer variables as an abstract variable, when it can
be determined (using theorem proving techniques applied to the source program)
to be non-negative. Of course, it may also include a single integer variable if
it is determined to be lower-bounded. Since concrete programs are the subject,
no completeness claim is made. It would be possible to represent an MCS as a
program and apply the tool, but completeness is still unlikely because, as pre-
viously remarked, this reduction to SCT has to be combined with stabilization
to achieve completeness.

(2) Avery [3] describes a tool to analyze C programs by first abstracting them
to a constraint transition system of the following form: transition constraints
use inequalities (≥, >, ≤, <) to relate source and target variables; flow-point
invariants are polyhedral ones, that is, conjunctions of linear inequalities in
state variables and constants. This is clearly a generalization of MC transition
systems, however one expressive enough to represent counter programs, which
means that termination is undecidable. The (sound but incomplete) algorithm
is based on closure computation, where the composition operation used to form
the closure takes into account only the variants (source-to-target relations, which
are MCs) and not the invariants. For each idempotent graph in the closure, the
invariants are taken into account when deciding which variables would imply
termination if they descend.

Clearly, the algorithm could be applied to MCs. What bars it from achieving
completeness in this case is the fact that the control-flow graph is not refined
(i.e., no stabilization). Here is an example to illustrate this limitation (the
program consists of a single loop with the following description)

y > w ∧ x > x′ ∧ x > y′ ∧ w ≤ z′ ∧ w ≤ w′

Note that the only invariant which is valid whenever the transition is entered is
y > w, which is not very helpful.

(3) Termilog [24] was a termination analyzer for Prolog, that made use of an
abstraction to monotonicity constraints and a closure computation plus a local
test, which is sound but incomplete for the MC constraint domain, as pointed
out in [12]. The variables of the abstraction represent certain norms of symbolic
terms in the Prolog program. They are, therefore, non-negative integers and the
termination proof only looks for descent towards zero. We should remark, how-
ever that they do not use “abstract compilation” as in our examples. Instead,

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 39

an abstract interpreter is used to compute the closure set. This may be more
precise with respect to the semantics of the subject program, see [19].

In [17], Dershowitz et al. reformulated the principles underlying the usage
of monotonicity constraints in Termilog, and also proposed an extension to
handle programs with integer variables and arithmetics. Their proposal is based
on creating a “custom-tailored” domain for abstraction of the integer variables,
based on constraints extracted from the program. Their algorithms are Prolog-
specific, and do not analyze a contraint-based abstract program, but it seems
that it could be applied to MC transition systems (appropriately represented)
and that the proposed abstraction process may actually compute a (partial)
elaboration and obtain a stable system. It will further attempt to prove termi-
nation for every cyclic MC by “guessing” a local ranking function. The functions
they propose to “guess” are differences (xi − xj), which we know to suffice for
Idempotent cyclic MCs (See Definition 4.21: the function is xh − xl). How-
ever, such functions do not suffice for all cyclic MCs [12]. We conlcude that it
would be desirable to apply the idempotence-based algorithm with their frame-
work (which, in fact, they do in the part that deals with symbolic variables and
norms).

(4) Terminweb [13] is a termination analyzer for Prolog. It uses a procedure which
tries to prove termination of an abstract program, and there are two kinds of
abstractions used. In the first, transitions are described by polyhedra. In the
second, by monotonicity constraints. In both cases, the data are non-negative
integers and the termination proof sought is based on descent towards zero. As
for the methods, closure computation and a local termination test are used; in
the polyhedral case, the closure is approximated (using widening) for otherwise
it might be infinite. For the monotonicity-constraint abstraction, the closure
computation is precise, but the local termination test is incomplete, as pointed
out in [12].

(5) Mesnard and Serebrenik [28] show that for abstract programs with transitions
defined by polyhedra (conjunctions of linear inequalities), when the data are
rationals or real numbers, it is possible to determine in polynomial time (using
linear programming) whether there is a global ranking function that associates
an affine combination of the variables with each flow-point. This is an extension
of the idea previously presented by Sohn and van-Gelder [32]. The existence of
such a function is, of course, a sound (but incomplete) criterion for termination,
and restricting the data to integers maintains its soundness.

(6) The BinTerm analyzer of Spoto, Mesnard and Payet analyzes abstract pro-
grams and serves as a back-end to the Java Bytecode termination analyzer
Julia [33]. The abstraction that it uses is a transition system with polyhedral
constaints, and it applies a selection of strategies, which it tries one by one. The
first two correspond to the two methods of Terminweb, slightly modified since
the domain is now the integers. Thus, both for polyhedral transitions and for
MCs, its local test is based on a search for an affine ranking function. In the MC
domain, such a test would be complete in the stable case, but is not complete
in general. The third method used is the method of Mesnard and Serebrenik.

40 A. M. BEN-AMRAM

(7) Colón and Sipma [14] is representative of a series of works that ostensibly target
imperative programs, but work, in fact, on a constraint-transition system with
linear (affine) constraints (the domain may be assumed to be the rationals, the
reals or the integers) and search for global ranking functions of the lexicographic-
linear type, using linear programming techniques.

Alias et al. [2] use the same general approach, but their class of ranking
functions is more general (specifically, each q.r.f. associates a linear expression
with every flow-point, whereas in [14], a q.r.f. is a single expression throughout a
SCC). The lexicographic approach is, of course, more general than just looking
for a single affine global ranking function (as in [28]), but still does not guarantee
completeness for MCSs, where the ranking function sometimes has to depend
on the order relations of the variables, and so is not linear (a simple example is
a ranking function min(x, y)).

Both methods rely on polyhedral invariants associated with a flow-point
(in [2], they are part of the abstract program, and would be generated by a
front-end; in [14], they are recomputed in each stage of the algorithm, which
may improve its precision).

(8) Noting that monotonicity constraints are a special case of polyhedral constraints,
it is natural to look for other interesting subclasses, possibly richer than mono-
tonicity constraints. The class of difference constraints is defined by constraints
of the form x−y ≤ c. Termination of such constraint transition systems is shown
undecidable in [4]. Decidability in PSPACE is proved for a restricted subclass,
called fan-in free δSCT. This class is incomparable to MCSs (their intersection
is fan-in free SCT).

(9) There are several published works that address a special subclass of constraint
transition systems: simple loops, namely transition systems with only one con-
trol location (flow point). Moreover, some of them consider a single-path loop,
consisting of one abstract transition only. This appears like a far-fetched re-
striction, but nonetheless, such simple loops can be complex enough to merit
theoretical interest, and practically, an algorithm to decide termination of such
a loop can be used as the local test in a closure-based algorithm, or an algorithm
based on counter-example based search (see [16] for a well-known example of
the approach).

Single-path loops, represented with polyhedral constraints, are handled using
linear ranking functions in [29]. Bradley, Manna and Sipma [10] extend this to
a multi-path loop, and show how to find a lexicographic-linear ranking function.
In [11], the approach is generalized so that the components of the ranking tuple
are not required to be quasi-ranking functions, but only “eventually” quasi-
ranking, that is, they may ascend initially but must eventually descend (as in
Example 2.11).

A few of the works mentioned also generate global ranking functions. [2] generates
lexicographic-linear ranking functions. This is also the case with [14], although they
are not explicit about it, and their class of functions is more restricted. In [28], the
class is restricted to affine functions. All the works mentioned for analyzing simple
loops are ranking-function based, but only those in [10, 11] may be truly called
“global” since they apply to all the paths of a multi-path loop.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 41

9. Conclusion and Research Questions

We studied the MCS abstraction, an appealing extension of the Size-Change Termi-
nation framework, that can be used for termination analysis in the integer domain.
We showed how several elements of the theory developed in the well-founded model
can be achieved in the integer case: sound and complete termination criteria, closure-
based algorithms and the construction of ranking functions in singly-exponential
time. Global ranking functions may be useful for certified termination [21, 15, 20]
and cost analysis [1, 2], and the complexity achieved here is better than what has
been published before for SCT.

Hopefully, this paper will trigger further research, moving towards the prac-
tical application of the theory presented. Some of the systems mentioned in the
last section can gain an increase in precision by incorporating a complete decision
procedure for monotonicity constraints, and it is encouraging that abstraction of a
concrete program to monotonicity constraints either exists already in these systems
or can be added with very little effort, typically because richer domains are already
used (such as affine relations).

The algorithms in this article were aimed at getting the theoretical results with a
minimum of complications. They can certainly be improved in practice (as discussed
in the conclusion of [6]).

Cases like Example 2.10 suggest that it may be worthwhile to treat Boolean
variables as such, so that they do not get entangled with the integer variables in the
course of elaboration, creating an unnecessary combinatorial explosion. A better
idea is to extend the MCS abstraction to include Boolean variables and extend the
termination criteria and algorithms to account for them precisely. This may be a
useful extension in practice, and moreover, it allows for adding information that does
not come straight-forwardly from the program, in the form of “invented” Boolean
variables—leveraging abstraction techniques used in the area of model checking.

Here are a few other directions for extension of this work:

(1) Investigating extensions of the constraint domain, particular to the integers
(i.e., not appropriate for general SCT). An example is difference constraints
(mentioned in the last section).

(2) Proceeding from termination analysis to analysis of a program’s complexity
[1, 2].

(3) The idea of using multiple abstractions (one may speak of abstractions of vary-
ing refinement) in a single tool in quite enticing. One can also consider an
abstraction-refinement loop [16] which allows for eliminating spurious counterex-
amples by specialized tools, while using size-change analysis as a backbone.

Acknowledgments. The author thanks the APL group at DIKU (the Computer Sci-
ence department at the University of Copenhagen), where part of this work was
done, for hospitality, and the anonymous referees, whose thorough reviews and sug-
gestions contributed significant improvements to this paper.

42 A. M. BEN-AMRAM

References

[1] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic inference of upper
bounds for recurrence relations in cost analysis. In Maŕıa Alpuente and Germán Vidal, edi-
tors, Static Analysis, 15th International Symposium, SAS 2008, Valencia, Spain, Proceedings,
volume 5079 of Lecture Notes in Computer Science, pages 221–237. Springer, 2008.

[2] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional rank-
ings, program termination, and complexity bounds of flowchart programs. In Static Analysis,
Proceedings of the 17th International Symposium, Perpignan, France, 2010.

[3] James Avery. Size-change termination and bound analysis. In M. Hagiya and P.Wadler, editors,
Functional and Logic Programming: 8th International Symposium, FLOPS 2006, volume 3945
of Lecture Notes in Computer Science. Springer, 2006.

[4] Amir M. Ben-Amram. Size-change termination with difference constraints. ACM Trans. Pro-
gram. Lang. Syst., 30(3):1–31, 2008.

[5] Amir M. Ben-Amram. Size-change termination, monotonicity constraints and ranking func-
tions. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, 20th Inter-
national Conference, CAV 2009, Grenoble, France, volume 5643 of Lecture Notes in Computer
Science, pages 109–123. Springer, 2009.

[6] Amir M. Ben-Amram. Size-change termination, monotonicity constraints and ranking func-
tions. Logical Methods in Computer Science, 6(3), 2010.

[7] Amir M. Ben-Amram and Michael Codish. A SAT-based approach to size change termination
with global ranking functions. In C.R. Ramakrishnan and Jakob Rehof, editors, 14th Intl.
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 5028 of LNCS, pages 46–55. Springer, 2008.

[8] Amir M. Ben-Amram and Chin Soon Lee. Size-change analysis in polynomial time. ACM
Transactions on Programming Languages and Systems, 29(1), 2007.

[9] Amir M. Ben-Amram and Chin Soon Lee. Ranking functions for size-change termination II.
Logical Methods in Computer Science, 5(2), 2009.

[10] Aaron Bradley, Zohar Manna, and Henny Sipma. Linear ranking with reachability. In Kousha
Etessami and Sriram Rajamani, editors, Computer Aided Verification, volume 3576 of Lecture
Notes in Computer Science, pages 247–250. Springer Berlin / Heidelberg, 2005.

[11] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In Lúıs
Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
Proc. 32nd International Colloquium on Automata, Languages and Programming, volume 3580
of Lecture Notes in Computer Science, pages 1349–1361. Springer Verlag, 2005.

[12] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Testing for termination with monotonic-
ity constraints. In Maurizio Gabbrielli and Gopal Gupta, editors, Logic Programming, 21st
International Conference, ICLP 2005, volume 3668 of Lecture Notes in Computer Science,
pages 326–340. Springer, 2005.

[13] Michael Codish and Cohavit Taboch. A semantic basis for termination analysis of logic pro-
grams. The Journal of Logic Programming, 41(1):103–123, 1999. preliminary (conference) ver-
sion in LNCS 1298 (1997).

[14] Michael Colón and Henny Sipma. Practical methods for proving program termination. In 14th
International Conference on Computer Aided Verification (CAV), volume 2404 of Lecture Notes
in Computer Science, pages 442–454. Springer, 2002.

[15] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Certifica-
tion of automated termination proofs. In Boris Konev and Frank Wolter, editors, Frontiers of
Combining Systems, 6th International Symposium, FroCoS 2007, Liverpool, UK, Proceedings,
volume 4720 of Lecture Notes in Computer Science, pages 148–162. Springer, 2007.

[16] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code.
In Michael I. Schwartzbach and Thomas Ball, editors, Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation (PLDI), Ottawa, Canada,
pages 415–426. ACM, 2006. Terminator.

[17] Nachum Dershowitz, Naomi Lindenstrauss, Yehoshua Sagiv, and Alexander Serebrenik. A
general framework for automatic termination analysis of logic programs. Applicable Algebra in
Engineering, Communication and Computing, 12(1–2):117–156, 2001.

MONOTONICITY CONSTRAINTS FOR TERMINATION IN THE INTEGER DOMAIN 43

[18] Seth Fogarty and Moshe Y. Vardi. Büchi complementation and Size-Change Termination. In
Proceedings of the 15th Intl. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 5505 of Lecture Notes in Computer Science, pages
16–30. Springer, 2009.

[19] Matthias Heizmann, Neil D. Jones, and Andreas Podelski. Size-change termination and transi-
tion invariants. In Radhia Cousot and Matthieu Martel, editors, Proc. 17th Int’l Static Analy-
sis Symposium (SAS), Perpignan, France, volume 6337 of Lecture Notes in Computer Science,
pages 22–50. Springer-Verlag, 2010.

[20] Adam Koprowski and Hans Zantema. Certification of proving termination of term rewriting by
matrix interpretations. In Viliam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Preneel,
Pavol Návrat, and Mária Bieliková, editors, SOFSEM 2008: Theory and Practice of Computer
Science, 34th Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, Proceedings, volume 4910 of Lecture Notes in Computer Science,
pages 328–339. Springer, 2008.

[21] Alexander Krauss. Certified size-change termination. In Frank Pfenning, editor, 11th Interna-
tional Conference on Automated Deduction (CADE), volume 4603 of LNAI, pages 460–475.
Springer-Verlag, July 2007.

[22] Chin Soon Lee. Ranking functions for size-change termination. ACM Transactions on Pro-
gramming Languages and Systems, 31(3), April 2009.

[23] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for program
termination. In Proceedings of the Twenty-Eigth ACM Symposium on Principles of Program-
ming Languages, January 2001, volume 28, pages 81–92. ACM press, January 2001.

[24] Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination analysis of Prolog programs.
In Lee Naish, editor, Proceedings of the Fourteenth International Conference on Logic Program-
ming, pages 64–77, Leuven, Belgium, Jul 1997. MIT Press.

[25] Naomi Lindenstrauss, Yehoshua Sagiv, and Alexander Serebrenik. Proving termination for
logic programs by the query-mapping pairs approach. In Maurice Bruynooghe and Kung-Kiu
Lau, editors, Program Development in Computational Logic: A Decade of Research Advances
in Logic-Based Program Development, volume 3049 of Lecture Notes in Computer Science,
pages 453–498. Springer, 2004.

[26] Seymour Lipschutz. Schaum’s outline of theory and problems of set theory and related topics.
McGraw-Hill, 1998.

[27] Panagiotis Manolios and Daron Vroon. Termination analysis with calling context graphs. In
Proceedings, Computer Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, volume 4144 of LNCS, pages 401–414. Springer-Verlag, 2006.

[28] Frédéric Mesnard and Alexander Serebrenik. Recurrence with affine level mappings is p-time
decidable for CLP(R). TPLP, 8(1):111–119, 2008.

[29] Andreas Podelski and Andrey Rybalchenko. A complete method for synthesis of linear ranking
functions. In Bernhard Steffen and Giorgio Levi, editors, VMCAI 2003: Verification, Model
Checking, and Abstract Interpretation, volume 2937 of LNCS, pages 239–251. Springer, 2004.

[30] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Published electronically at
www.research.att.com/~njas/sequences/.

[31] Ariel Snir. Termination and ranking function generation for monotonicity constraints systems.
Technical report, Tel-Aviv Yaffo Academic College, 2010.

[32] Kirack Sohn and Allen Van Gelder. Termination detection in logic programs using argument
sizes (extended abstract). In Proceedings of the Tenth ACM SIGACT-SIGMOD-SOGART Sym-
posium on Principles of Database Systems (PODS), May 1991, Denver, Colorado, pages 216–
226. ACM Press, 1991.

[33] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode
based on path-length. ACM Trans. Program. Lang. Syst., 32(3):1–70, 2010.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/
or send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA
94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

www.research.att.com/~njas/sequences/

	1. Introduction
	2. Basic Definitions and Motivating Examples
	2.1. Monotonicity constraint transition systems
	2.2. Semantics
	2.3. Examples
	2.4. A comment regarding state invariants
	2.5. Weighted graph representation
	2.6. Transforming MC systems

	3. Stable Systems
	3.1. Properties of stable systems

	4. Termination
	4.1. Some definitions
	4.2. Combinatorial criteria for -termination
	4.3. A Closure Algorithm for Stable Systems
	4.4. The Role of Idempotence
	4.5. Complexity
	4.6. Completeness
	4.7. Codish, Lagoon and Stuckey's Algorithm
	4.8. A General Closure Algorithm
	4.9. Summary

	5. Full and Partial Elaboration
	6. Ranking Functions for Integer MCSs
	6.1. The Difference MCS
	6.2. Overview
	6.3. Preparations for the construction
	6.4. Finding a singleton thread-preserver
	6.5. Systems with frozen threads
	6.6. Putting it all together

	7. Rooted Versus Uniform Termination
	8. Some Related work
	9. Conclusion and Research Questions
	References

