
Logical Methods in Computer Science
Vol. 6 (3:25) 2010, pp. 1–22
www.lmcs-online.org

Submitted Sep. 21, 2009
Published Sep. 20, 2010

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL

QUANTIFIERS ∗

JUHA KONTINEN a AND HERIBERT VOLLMER b

a Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 Univer-
sity of Helsinki, Finland
e-mail address: juha.kontinen@helsinki.fi

b Institut für Theoretische Informatik, Universität Hannover, Appelstraße 4, 30167 Hannover, Ger-
many
e-mail address: vollmer@thi.uni-hannover.de

Abstract. We study logics defined in terms of second-order monadic monoidal and
groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid
word-problems, equivalently, by regular and context-free languages. We give a computa-
tional classification of the expressive power of these logics over strings with varying built-in
predicates. In particular, we show that ATIME(n) can be logically characterized in terms
of second-order monadic monoidal quantifiers.

1. Introduction

We study logics defined in terms of so-called second-order monadic monoidal and groupoidal
quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems,
equivalently, by regular and context-free languages. A groupoid is a finite multiplication
table with an identity element. For a fixed groupoid G, each S ⊆ G defines a G-word-
problem, i.e., a language W(S,G) composed of all words w, over the alphabet G, that can
be bracketed in such a way that w multiplies out to an element of S. The word-problem
of a monoid, i.e., an associative groupoid, is defined analogously. Groupoid word-problems
relate to context-free languages in the same way as monoid word-problems relate to regular
languages: every such word-problem is context-free, and every context-free language is a
homomorphic pre-image of a groupoid word-problem (this result is credited to Valiant in
[5]).

1998 ACM Subject Classification: F.4.1, F.4.3.
Key words and phrases: Monoid, groupoid, word-problem, leaf language, second-order generalized quan-

tifier, computational complexity, descriptive complexity.
∗ A previous version of this paper appeared in the Proceedings of the Workshop on Logic, Language,

Information and Computation 2008, Springer Lecture Notes in Computer Science Vol. 5110, pp. 238–248,
Springer Verlag, 2008.
a Supported by grant 127661 of the Academy of Finland.
b Supported partially by DFG grants VO 630/6-1 and 6-2.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:25) 2010

c© J. Kontinen and H. Vollmer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. KONTINEN AND H. VOLLMER

In descriptive complexity, (first-order) monoidal quantifiers have been studied exten-
sively in connection to the complexity class NC1 and its sub-classes (see [4, 3, 24, 25]).
However, in order to define non-regular languages in terms of monoidal quantifiers, some
built-in relations, in addition to <, need to be assumed. It was shown already in [4] that
first-order logic with unnested unary monoidal quantifiers characterizes the class of regular
languages, REG, over strings without auxiliary built-in relations. This characterization of
REG was generalized in [16] to allow also non-unary monoidal quantifiers, even with ar-
bitrary nestings. In [11], the same was shown to hold for second-order monadic monoidal
quantifiers:

mon-Q1
MonFO ≡ SOM(mon-Q1

Mon) ≡ REG ≡ ∃SOM. (1.1)

In (1.1), ∃SOM denotes existential second-order monadic logic and the logic mon-Q1
MonFO

consists of all formulas in which a monadic second-order monoidal quantifier Q1
L is applied

to an appropriate tuple of FO-formulas without further occurrences of second-order quanti-
fiers. On the other hand, in SOM(mon-Q1

Mon) arbitrary nestings of monoidal quantifiers are
allowed. Here a crucial assumption is that there are no auxiliary built-in relations, besides
the order, since already SOM(+), i.e., second-order monadic logic with built-in addition,
defines exactly the languages in the linear fragment of the polynomial hierarchy [20].

We see that with monoidal quantifiers the situation is clear-cut, i.e., formulas with
monadic second-order monoidal quantifiers cannot define non-regular languages. On the
other hand, over strings with built-in arithmetic (i.e., built-in + and ×) the classes in (1.1)
are presumably not equal, e.g., ∃SOM ⊆ NP and already in mon-Q1

MonFO(+,×) PSPACE-
complete languages can be defined as we show below in Corollary 5.2.

In [5], the elaborate theory connecting monoids to the fine structure of NC1 was gen-
eralized to groupoids and LOGCFL. It was shown in [5] that there exists a single groupoid
whose word-problem is complete for LOGCFL under DLOGTIME-reductions, implying
also a logical characterization for LOGCFL in terms of first-order groupoidal quantifiers.
Building on this result, a systematic investigation of first-order groupoidal quantifiers was
initiated in [16].

In [11] it was asked what is the relationship of the corresponding (second-order) logics
if monoidal quantifiers are replaced by groupoidal quantifiers in (1.1). Here we address this
question and show the following (see Corollary 3.4):

mon-Q1
GrpFO(+,×) ≡ SOM(mon-Q1

Grp). (1.2)

It is interesting to note that for groupoidal quantifiers we have a similar collapse result as
for monoidal quantifiers, but this time assuming built-in arithmetic on the left. Note that,
over ordered structures, the relations + and × are definable in the logic SOM(mon-Q1

Grp)

(see [4] and [16]). It is an open question whether the built-in relations + and × are really
needed for the equivalence in (1.2) to hold.

In the literature, second-order monadic quantifiers have been studied under two slightly
different semantics (for each L, quantifiers Q1

L and Q⋆
L). We will show that the analogue of

(1.2) for the alternative semantics Q⋆
L remains valid even if we drop the built-in predicates

+ and × from mon-Q⋆
GrpFO(+,×), i.e.,

mon-Q⋆
GrpFO ≡ SOM(mon-Q⋆

Grp). (1.3)

Since the logics in (1.2) and (1.3) are all equivalent (see Corollary 3.4), it follows that the
only remaining open question regarding the equivalences between logics with groupoidal

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 3

quantifiers is whether
mon-Q1

GrpFO ≡ mon-Q⋆
GrpFO?

This question is directly concerned with the problem of pinning down the exact expressive
power of the so-called finite leaf automata with context-free leaf languages (see Theorem
2.13 and Corollary 2.14).

In this paper we aim for a concise classification of the expressive power of the logics
with second-order monadic monoidal and groupoidal quantifiers. We first note that the
difference between the two semantics, i.e., Q1

L and Q⋆
L, disappears assuming built-in arith-

metic. This already simplifies the picture considerably. However, especially in the monoidal
case, the expressive power of the quantifiers Q⋆

L without built-in arithmetic remains open.
For groupoidal quantifiers, we find that

mon-Q⋆
GrpFO ≡ SOM(mon-Q⋆

Grp) ≡ 2LOGCFL,

where 2LOGCFL equals the class of languages whose tally version resides in LOGCFL. For
monoidal quantifiers, we show that

SOM(mon-Q⋆
Mon,+,×) ≡ ATIME(n).

Table 1 below contains a summary of our complexity results.

2. Preliminaries

We follow standard notation for second-order monadic logic with linear order, see, e.g., [24].
We mainly restrict our attention to string structures, i.e., structures of string signatures
τ = 〈Pa1 , . . . , Pas〉, where all the predicates Pai are unary. We assume that the universe
dom(A) of each structure A is of the form {0, . . . , n − 1} and that the logic’s linear order
symbol refers to the numerical order on {0, . . . , n−1}. We restrict attention to structures A
in which the interpretations PA

ai
of the predicates Pai satisfy the following: PA

ai
∩PA

aj
= ∅, for

i 6= j, and ∪1≤i≤sP
A
ai

= dom(A). Such τ -structures correspond to strings over the alphabet
{a1, . . . , as} in the usual way.

An alphabet Σ is a finite set of symbols. For technical reasons to be motivated shortly,
we assume that every alphabet has a built-in linear order, and, to indicate that order, we
write alphabets as sequences of symbols, e.g., in the above case we write (a1, . . . , as). The
set of all finite Σ-strings is denoted by Σ∗ and Σ+ = Σ∗ \ {ǫ}, where ǫ is the empty string.
For a string w, |w| denotes the length of w and |w|a the number of occurrences of the letter
a in w. The concatenation of the strings w and w′ is denoted by waw′, and ak denotes the
string b1 · · · bk, where bi = a for 1 ≤ i ≤ k. For L ⊆ Σ∗ and e ∈ Σ, the letter e is a neutral
letter of L if for all u, v ∈ Σ∗, we have uv ∈ L ⇐⇒ uev ∈ L. The class of languages that
have a neutral letter is denoted by N.

For a signature τ = 〈Pa1 , . . . , Pas〉, the first-order τ -formulas, FO[τ], are built from first-
order variables in the usual way, using the Boolean connectives {∧,∨,¬}, the predicates
Pai together with {=, <}, the constants min and max, the first-order quantifiers {∃,∀}, and
parentheses. SOM[τ] extends FO[τ] in terms of unary second-order variables and second-
order quantifiers {∃,∀}. (The letters SOM stand for second order monadic logic; in the
literature, this logic is sometimes denoted by MSO.)

For a complexity class C and logics L and L
′, we write L ≤ L

′ if for every string
signature τ (unless otherwise specified), and every sentence ϕ ∈ L[τ] there is an equivalent
sentence ψ ∈ L

′[τ]. Analogously, we write L ≤ C if the class of languages, over any

4 J. KONTINEN AND H. VOLLMER

alphabet, which can be defined in L is contained in C. We write L ≡ L
′ (L ≡ C) if L ≤ L

′

and L
′ ≤ L (L ≤ C and C ≤ L). It is known [19] that FO is equal to the class of star-free

regular languages and that SOM ≡ REG, where REG is the class of regular languages (see
[8, 7, 26]).

Sometimes we assume that our structures (and logics) are equipped with auxiliary built-
in predicates in addition to <, e.g., the ternary predicates + and ×. The predicates + and
× are defined as

+(i, j, k) ⇔ i+ j = k,

×(i, j, k) ⇔ i× j = k.

The predicate BIT is a further important predicate which is defined by: BIT(a, j) holds
iff the bit with weight 2j is 1 in the binary representation of a. The presence of built-in
predicates is signalled, e.g., by the notation FO(+,×) and FO(QL,+,×). It is well known
that FO(+,×) ≡ FO(BIT) (see [14]). In fact, it was shown in [10] that BIT alone can
define the corresponding canonical ordering, i.e., the symbol < can dropped from FO(BIT)
without a loss in expressive power.

2.1. Generalized quantifiers. Next, we extend logics in terms of generalized quantifiers.
The Lindström quantifiers of Definition 2.1 are precisely what has been referred to as
“Lindström quantifiers on strings” [9]. The original more general definition [17] uses trans-
formations to arbitrary structures, not necessarily of string signature.

Definition 2.1. Consider a language L over an alphabet Σ = (a1, a2, . . . , as). Such a
language gives rise to a Lindström quantifier QL, that may be applied to any sequence of
s− 1 formulas as follows:

Let x be a k-tuple of pairwise distinct variables. Let A be a structure and dom(A) =
{0, 1, . . . , n− 1}. We assume the lexicographic ordering on {0, 1, . . . , n− 1}k, and we write

x(0) < x(1) < · · · < x(n
k−1) for the sequence of potential values taken on by x. The k-ary

Lindström quantifier QL binding x takes a meaning if s − 1 formulas, each having as free
variables the variables in x (and possibly others), are available. Let ϕ1(x), ϕ2(x), . . . ,
ϕs−1(x) be these s− 1 formulas. Then

A |= QLx
[

ϕ1(x), ϕ2(x), . . . , ϕs−1(x)
]

iff the word of length nk whose ith letter, 0 ≤ i ≤ nk − 1, is


















a1 if A |= ϕ1(x
(i)),

a2 if A |= ¬ϕ1(x
(i)) ∧ ϕ2(x

(i)),
...

as if A |= ¬ϕ1(x
(i)) ∧ ¬ϕ2(x

(i)) ∧ · · · ∧ ¬ϕs−1(x
(i)),

belongs to L.

As an example, take s = 2 and consider L∃ := 0∗1(0 + 1)∗; then QL∃
is the usual

first-order existential quantifier. Similarly, the universal quantifier can be expressed using
the language L∀ := 1∗. Finally, for p > 1 and Lmod p = {w ∈ {0, 1}∗ | |w|1 ≡ 0 (mod p)},
the quantifiers QLmod p

are known as modular counting quantifiers [24].

Definition 2.2. Let τ be a signature, L a language over an alphabet Σ = (a1, a2, . . . , as),
and C a class of languages.

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 5

• The set of τ -formulas, QLFO[τ], of the logic QLFO consists of all formulas of the form

QLx
[

ϕ1(x), ϕ2(x), . . . , ϕs−1(x)
]

,

where, for some k, x is a k-tuple of pairwise distinct variables, and ϕi(x) is a FO[τ]-formula
for 1 ≤ i ≤ s− 1.

• The set of τ -formulas, FO(QL)[τ], of the logic FO(QL) is defined by extending the formula
formation rules of FO by the following clause: if, for some k, x is a k-tuple of pairwise
distinct variables, and ϕi(x) is a formula for 1 ≤ i ≤ s− 1, then

QLx
[

ϕ1(x), ϕ2(x), . . . , ϕs−1(x)
]

is a formula, too.
• Define the sets of τ -formulas of the logics QCFO and FO(QC) by

QCFO[τ] :=
⋃

L∈C

QLFO[τ],

FO(QC)[τ] :=
⋃

L∈C

FO(QL)[τ].

In this article we are especially interested in quantifiers defined by monoid and groupoid
word-problems.

Definition 2.3. A groupoidal quantifier (a monoidal quantifier) is a Lindström quantifier
QL where L is a word-problem of some finite groupoid (monoid). The usage of groupoidal
quantifiers and monoidal quantifiers in our logical language is signalled by the subscripts
Grp and Mon, respectively. We define

QGrpFO := QCFO FO(QGrp) := FO(QC)

QMonFO := QC′FO FO(QMon) := FO(QC′),

where C (C′) is the class of all word-problems of finite groupoids (monoids).

Second-order Lindström quantifiers on strings were introduced in [9]. Here, we are
mainly interested in those binding only set variables (i.e., unary relations), so-called monadic
quantifiers. For each language L, we define two monadic quantifiers Q1

L and Q⋆
L with slightly

different interpretations. It turns out that the interpretation Q1
L, which was used in [11], is

natural in the context of finite leaf automata. On the other hand, the quantifier Q⋆
L is the

exact second-order analogue of the corresponding first-order quantifier QL.

Definition 2.4. Consider a language L over an alphabet Σ = (a1, a2, . . . , as). Let X =
(X1, . . . ,Xk) be a k-tuple of pairwise distinct unary second-order variables and let A be a
structure with dom(A) = {0, 1, . . . , n− 1}. There are 2nk different instances (assignments)
of X over A. We assume the following ordering on those instances: Let each instance of a
single Xi be encoded by the bit string si0 · · · s

i
n−1 with the meaning sij = 1 ⇐⇒ j ∈ Xi.

Then

(1) we encode an instance of X by the bit string

s10s
2
0 · · · s

k
0s

1
1s

2
1 · · · s

k
1 · · · s

1
n−1s

2
n−1 · · · s

k
n−1

and order the instances lexicographically by their codes.
(2) we encode an instance of X by the bit string

s10s
1
1 · · · s

1
n−1s

2
0s

2
1 · · · s

2
n−1 · · · s

k
0s

k
1 · · · s

k
n−1

and order the instances lexicographically by their codes.

6 J. KONTINEN AND H. VOLLMER

The monadic second-order Lindström quantifier Q1
L (respectively Q⋆

L) binding X takes a

meaning if s − 1 formulas, each having free variables X, are available. Let ϕ1(X), ϕ2(X),
. . . , ϕs−1(X) be these s− 1 formulas. Then

A |= Q1
LX

[

ϕ1(X), ϕ2(X), . . . , ϕs−1(X)
]

iff the word of length 2nk whose ith letter, 0 ≤ i ≤ 2nk − 1, is






















a1 if A |= ϕ1(X
(i)
),

a2 if A |= ¬ϕ1(X
(i)
) ∧ ϕ2(X

(i)
),

...

as if A |= ¬ϕ1(X
(i)
) ∧ ¬ϕ2(X

(i)
) ∧ · · · ∧ ¬ϕs−1(X

(i)
),

belongs to L. Above, X
(0)

< X
(2)

< · · · < X
(2nk−1)

denotes the sequence of all instances
ordered as in (1). The notation Q⋆

L is used when the instances are ordered according to (2).

Again, taking as examples the languages L∃ and L∀, we obtain the usual second-order
monadic existential and universal quantifiers. Note that for L ∈ {L∃, L∀} the quantifiers
Q1

L and Q⋆
L are “equivalent”. This is due to the fact that, for the membership in L, the

order of the letters in a word does not matter.

Definition 2.5. Let τ be a signature, L a language over an alphabet Σ = (a1, a2, . . . , as),
and C a class of languages.

• The set of τ -formulas, mon-Q1
LFO[τ], of the logic mon-Q1

LFO consists of all formulas of
the form

Q1
LX

[

ϕ1(X), ϕ2(X), . . . , ϕs−1(X)
]

, (2.1)

where, for some k, X is a k-tuple of pairwise distinct unary second-order variables, and
ϕi(X) is a FO[τ]-formula with variables X , for 1 ≤ i ≤ s− 1.

• The set of τ -formulas, SOM(mon-Q1
L)[τ], of the logic SOM(mon-Q1

L) is defined by ex-

tending the formula formation rules of SOM[τ] by the following clause: if, for some k, X
is a k-tuple of pairwise distinct unary second-order variables, and ϕi(X) is a formula for
1 ≤ i ≤ s− 1, then

Q1
LX

[

ϕ1(X), ϕ2(X), . . . , ϕs−1(X)
]

is a formula, too.
• Define the sets of τ -formulas of the logics mon-Q1

C
FO and SOM(mon-Q1

C
)[τ] by

mon-Q1
CFO[τ] :=

⋃

L∈C

mon-Q1
LFO[τ],

SOM(mon-Q1
C)[τ] :=

⋃

L∈C

SOM(mon-Q1
L)[τ].

• The logics mon-Q⋆
LFO, SOM(mon-Q⋆

L), mon-Q⋆
C
FO, and SOM(mon-Q⋆

C
) are defined anal-

ogously by replacing Q1
L everywhere with Q⋆

L.

Analogously to the first-order case (see Definition 2.3), we use the subscripts Grp and
Mon to indicate that all groupoidal quantifiers or monoidal quantifiers are available in the
corresponding logic, e.g., SOM(mon-Q1

Grp) := SOM(mon-Q1
C
), where C is the class of all

word-problems of finite groupoids.

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 7

The next proposition shows that the difference between the two semantics of second-
order monadic quantifiers disappears in the presence of built-in arithmetic (or if the arith-
metic predicates are definable). Below, we write ψA for the relation defined by the formula
ψ in a structure A, i.e., if ψ has k free variables, then

ψA = {a ∈ dom(A)k | A |= ψ(a)}.

Lemma 2.6. Let X1, . . . ,Xk be unary second-order variables. There are FO(+,×)-formulas
φ1(x,X), . . . , φk(x,X) and ψ1(x,X), . . . , ψk(x,X) such that for all A and A1, . . . , Ak ⊆
dom(A) = {0, 1, . . . , n−1}, (where Ai is encoded by si0 · · · s

i
n−1 as in Definition 2.4) it holds

that the encoding of (φ
(A,A)
1 , . . . , φ

(A,A)
k) as a bit string as in clause 1 of Definition 2.4 results

with
s10s

1
1 · · · s

1
n−1s

2
0s

2
1 · · · s

2
n−1 · · · s

k
0s

k
1 · · · s

k
n−1, (2.2)

and the encoding of (ψ
(A,A)
1 , . . . , ψ

(A,A)
k) as a bit string as in clause 2 of Definition 2.4 results

with
s10s

2
0 · · · s

k
0s

1
1s

2
1 · · · s

k
1 · · · s

1
n−1s

2
n−1 · · · s

k
n−1. (2.3)

Proof. Let us show how to construct the formulas φ1(x,X) . . . , φk(x,X). The idea simply
is that

A |= φi(j,A)

should hold if the bit in position jk + i from the left in (2.2) is 1 if and only if jk + i =
(c− 1)n+ r and r− 1 ∈ Ac, where 0 ≤ j ≤ n− 1, 1 ≤ i ≤ k, 1 ≤ c ≤ k, and 1 ≤ r ≤ n. This
condition can be easily expressed in FO(+,×). The formulas ψ1(x,X) . . . , ψk(x,X) can be
constructed completely analogously.

Note also that the formulas φ1(x,X), . . . , φk(x,X) define a permutation of k-tuples of
unary relations and that ψ1(x,X), . . . , ψk(x,X) define the inverse of this permutation.

Proposition 2.7. For any L, mon-Q1
LFO(+,×) ≡ mon-Q⋆

LFO(+,×).

Proof. by Lemma 2.6, Q⋆
LX

[

ϕ1(X), . . . , ϕs−1(X)
]

can be expressed as

Q1
LX

[

ϕ1(X1/ψ1(X), . . . ,Xk/ψk(X)), . . . , ϕs−1(X1/ψ1(X), . . . ,Xk/ψk(X))
]

.

Analogously, Q1
LX

[

ϕ1(X), . . . , ϕs−1(X)
]

can be expressed as

Q⋆
LX

[

ϕ1(X1/φ1(X), . . . ,Xk/φk(X)), . . . , ϕs−1(X1/φ1(X), . . . ,Xk/φk(X))
]

.

By Proposition 2.7, the two semantics of second-order quantifiers coincide for all the logics
(with built-in or definable arithmetic) considered in this article.

Remark 2.8. Let L and A be as in Definition 2.4. It is worth noting that, for m > 1, the
m-ary second-order quantifiers Q1

L and Q⋆
L can be defined by straightforward modifications

to Definition 2.4. The m-ary quantifiers binds a k-tuple X = (X1, . . . ,Xk) (for some k)
of m-ary second-order variables in s − 1 many formulas. Each Xi is encoded by the bit
string s0 · · · snm−1 with the meaning sj = 1 if and only if the jth tuple in the lexicographic
ordering of {0, 1, . . . , n − 1}m is in Xi. The semantics of the m-ary quantifiers Q1

L and Q⋆
L

can be now defined analogously to Definition 2.4. We use the notation Q1
LFO and Q⋆

LFO
for the analogues of mon-Q1

LFO and mon-Q⋆
LFO in which the m-ary quantifiers Q1

L and Q⋆
L

are allowed for m ≥ 1.

8 J. KONTINEN AND H. VOLLMER

We end this section by showing that, in the non-monadic case, the analogue of Propo-
sition 2.7 holds without built-in arithmetic if L has a neutral letter.

Proposition 2.9. For any L ∈ N, Q⋆
LFO ≡ Q1

LFO.

Proof. We may assume that L has an alphabet Σ = (a1, a2, . . . , as), where as is a neutral
letter.

We will first show that Q⋆
LFO ≤ Q1

LFO. The idea of the proof is to show that a formula
ψ ∈ Q⋆

LFO can be replaced by a formula ψ′ ∈ Q⋆
LFO in which only one second-order variable

with higher arity is quantified. Now, in ψ′, the quantifier Q⋆
L can be replaced by Q1

L since
the difference of the two semantics only appears if more than one variable is quantified.
The converse inclusion follows directly from the fact that Q1

LFO ≤ LeafP(L) ≡ Q⋆
LFO (see

Theorem 2.11).
Let ψ ∈ Q⋆

LFO be of the

ψ := Q⋆
LX

[

ϕ1(X), ϕ2(X), . . . , ϕs−1(X)
]

,

where X = (X1, . . . ,Xk) is a tuple of m-ary second-order variables. It is straightforward to
construct a formula ψ′ ∈ Q⋆

LFO

ψ′ := Q⋆
LR1

[

ϕ′
1(R1), ϕ

′
2(R1), . . . , ϕ

′
s−1(R1)

]

,

where the arity of R1 is m+ ⌊log(k)⌋ + 1, which is equivalent to ψ over structures A with
|dom(A)| ≥ 2. Let A be a structure such that |dom(A)| ≥ 2 and Ai ⊆ dom(A)m. The idea
is to encode the tuple A = (A1, . . . , Ak) by a unique (m+ ⌊log(k)⌋ + 1)-ary relation BA

BA =
⋃

1≤i≤k

{(ji1, . . . , j
i
⌊log(k)⌋+1)} ×Ai,

where ji1 · · · j
i
⌊log(k)⌋+1 is the length ⌊log(k)⌋ + 1 binary representation of i. This ensures

that the ordering of the tuples A (see Definition 2.4 and Remark 2.8) coincides with the
ordering of the corresponding codes BA. Therefore, it suffices to construct the formulas
ϕ′
i(R1) in such a way that, for all A1, . . . , Ak ⊆ dom(A)m

A |= ϕ′
i(BA) ⇐⇒ A |= ϕi(A1, . . . , Ak),

and, if B 6= BA for all A, then A 6|= ϕ′
i(B) implying that the formulas ϕ′

i(R1) output the
neutral letter when R1 is interpreted by the relation B.

In order to ensure that ψ and ψ′ are equivalent also over structures A for which
|dom(A)| = 1, we may further replace the formulas ϕ′

i(R1) by formulas ϕ∗
i (R1, . . . , Rk),

where each Ri, for 2 ≤ i ≤ k, is also (m + ⌊log(k)⌋ + 1)-ary and ϕ∗
i (R1, . . . , Rk) has the

following form

(|dom(A)| = 1 ∧ χi(R1, . . . , Rk)) ∨ (|dom(A)| > 1 ∧
∧

2≤i≤k

Ri = ∅ ∧ ϕ′
i(R1))),

where χi simulates the behavior of ϕi on structures with cardinality 1 (on structures with
cardinality 1 the quantifiersQ1

L and Q⋆
L are equivalent). Note that, for A with |dom(A)| ≥ 2,

the formulas ϕ∗
i (R1, . . . , Rk) output the neutral letter if RA

i 6= ∅ for some 2 ≤ i ≤ k. It
follows that for all A

A |= ψ ⇔ A |= Q1
LR

[

ϕ∗
1(R), ϕ

∗
2(R), . . . , ϕ

∗
s−1(R)

]

.

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 9

For the converse, it suffices to note that a polynomial-time non-deterministic Turing
machine with the leaf language L can easily evaluate sentences of Q1

LFO implying that

Q1
LFO ≤ LeafP(L) (see [9]). Therefore, by Theorem 2.11, we get that Q1

LFO ≤ Q⋆
LFO.

2.2. Leaf languages. In this section we give a brief introduction to the leaf languages
approach in computational complexity.

The leaf languages approach was introduced by Bovet, Crescenzi and Silvestri in [6] and
independently by Vereshchagin in [28]. In this approach the acceptance of a word input to
a nondeterministic Turing machine depends only on the values printed at the leaves of the
computation tree.

Let M be a nondeterministic Turing machine which halts on every computation path
with some order on the nondeterministic choices. The order of the nondeterministic choices
induces a left-to-right ordering of all the leaves in the computation tree of M on input x.
Define leafstringM (x) to be the concatenation of the symbols printed at the leaves of the
computation tree in this order. Given now a language B, the class LeafP(B) contains those
languages L for which there is a polynomial-time non-deterministic Turing machineM such
that for all inputs x: x ∈ L iff leafstringM (x) ∈ B.

Let us look at some examples. Define Maj := {w ∈ {0, 1}+| |w|1 > |w|0}.

Example 2.10. The following leaf language classes are well known:

• NP = LeafP(0∗1(0 + 1)∗),
• PP = LeafP(Maj),

• ModqP = LeafP(Lmod q).

In [9] complexity classes defined by leaf languages were logically characterized in terms of
generalized second-order quantifiers. In particular, for every language B that has a neutral
letter the following was shown to hold.

Theorem 2.11 ([9]). For any B ∈ N, LeafP(B) ≡ Q⋆
BFO.

Note that, for Theorem 2.11 to hold, the quantifier Q⋆
B must be allowed to bind relation

variables of arbitrary arity (see Remark 2.8). Although the m-ary second-order quantifiers
Q1

B and Q⋆
B differ, in Theorem 2.11 we can equivalently use the semantics Q1

B instead of
Q⋆

B by Proposition 2.9.
Since it is known that there are regular languages B, e.g., the word-problem for the

group S5, for which LeafP(B) ≡ PSPACE [13], we conclude that for such B,

Q⋆
BFO ≡ PSPACE.

2.3. Finite leaf automata. The automata theoretic analogue of a Turing machine with a
leaf language is the so-called finite leaf automaton [22].

A finite leaf automaton is a tuple M = (Q,Σ, δ, s,Γ, β) where Q is a finite set of states,
Σ is an alphabet, the input alphabet, δ : Q × Σ → Q+ is the transition function, s ∈ Q
is the initial state, Γ is an alphabet, the leaf alphabet, and β : Q → Γ is a function that
associates a state q with its value β(q). The sequence δ(q, a), for q ∈ Q and a ∈ Σ, contains
all possible successor states of M when reading letter a while in state q, and the order of

10 J. KONTINEN AND H. VOLLMER

letters in that sequence defines a total order on these successor states. This definition allows
the same state to appear more than once as a successor in δ(q, a).

LetM be as above. The computation tree TM (w) ofM on input w is a labeled directed
rooted tree defined as follows:

• The root of TM (w) is labeled (s,w).
• Let v be a node in TM (w) labeled by (q, x), where x 6= ǫ (the empty word), x = ay for
a ∈ Σ, y ∈ Σ∗. Let δ(q, a) = q1q2 · · · qk. Then v has k children in TM (w), and these are
labeled by (q1, y), (q2, y), . . . , (qk, y) in this order.

If we look at the tree TM (w) and attach the symbol β(q) to a leaf in this tree with label
(q, ε), then leafstringM (w) is defined to be the string of symbols attached to the leaves, read
from left to right in the order induced by δ.

Definition 2.12. For A ⊆ Γ∗, the class LeafFA(A) consists of all languages B ⊆ Σ∗, for
which there is a leaf automaton M as just defined, with input alphabet Σ and leaf alphabet
Γ such that for all w ∈ Σ∗, w ∈ B iff leafstringM (w) ∈ A. If C is a class of languages then
LeafFA(C) ≡ ∪A∈CLeaf

FA(A).

In [22] the acceptance power of leaf automata with different kinds of leaf languages was
examined. It was shown that, with respect to resource-bounded leaf language classes, there
is not much difference, e.g., between automata and Turing machines. On the other hand,
if the leaf language class is a formal language class then the differences can be huge. In
particular, it was shown that

LeafFA(REG) ≡ REG,

while it is known that
LeafP(REG) ≡ PSPACE.

In [22] the power of LeafFA(CFL) was left as an open question. The only upper and lower

bounds known at that time were CFL (LeafFA(CFL) ⊆ DSPACE(n2) ∩ DTIME
(

2O(n)
)

.

Recently it was shown by Lohrey [18] that indeed LeafFA(CFL) does contain a PSPACE-
complete language.

In [11] the class LeafFA(L) was logically characterized assuming that the language L
has a neutral letter.

Theorem 2.13 ([11]). For any L ∈ N, LeafFA(L) ≡ mon-Q1
LFO.

Corollary 2.14. PSPACE-complete languages can be defined in mon-Q1
GrpFO.

Proof. By the result of [18], there is a language L ∈ CFL such that the class LeafFA(L) con-
tains a PSPACE-complete language. Since L reduces via a length-preserving homomorphism
to some groupoid word-problem A [5], it follows that also the class LeafFA(A) ≡ mon-Q1

AFO
contains a PSPACE-complete language.

2.4. Complexity theory. We assume familiarity with the basic notions in formal lan-
guages and complexity theory, e.g., complexity classes such as NP, PP, PH, and PSPACE.
REG and CFL refer to the regular and context-free languages. Also, LOGCFL denotes the
closure of CFL under log-space reductions.

In this article AC0, ACC0, TC0, NC1, and SAC1 refer to the classes of languages
recognized by DLOGTIME-uniform families (Cn)n∈N of polynomial-size circuits with the
following kinds of gates:

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 11

AC0: the circuit Cn may have NOT, unbounded fan-in AND and OR gates, and constant
depth.

ACC0: the circuit Cn may have NOT, unbounded fan-in AND, OR and MODq gates, and
constant depth.

TC0: the circuit Cn may have NOT, unbounded fan-in AND, OR, and MAJORITY gates,
and constant depth.

NC1: the circuit Cn may have NOT, bounded fan-in AND and OR gates, and O(log(n))
depth.

SAC1: the circuit Cn may have input level NOT gates, bounded fan-in AND and unbounded
fan-in OR gates, and O(log(n)) depth.

The requirement of DLOGTIME-uniformity means that (Cn)n∈N, as a family of directed
acyclic graphs, can be recognized by a deterministic Turing machine, with random access
to its input, in time O(log(n)) (see [29] for details). Note that, e.g., the classes ACi and
TCi are defined analogously as above but allowing O(logi(n)) circuit-depth.

In this article we also discuss certain complexity classes defined in terms of alternat-
ing Turing machines. We denote by ATIME(t(n)), the class of languages which can be
recognized in time t(n) by some alternating Turing machine.

Let M be an alternating Turing machine accepting x and denote by T the computation
tree produced by M with input x. An accepting computation subtree S of M on input x is
a subtree of T witnessing that M accepts x. The idea is that all the nodes in S must be
accepting configurations, and, furthermore, S must contain the initial configuration, i.e.,
the root of T , all successors of universal configurations, and exactly one successor of each
existential configuration.

We say that an alternating machine M is tree-size bounded by t : N → N if for every x
accepted by M there is an accepting computation subtree of M on input x which has at
most t(|x|) nodes. Let now

ASPACE-TREESIZE(s(n), t(n))

denote the class of languages which can be recognized by an alternating Turing machine M
which is space bounded by s and tree-size bounded by t.

The following (non-trivial) inclusions and equalities are known to hold among the classes
defined above:

TC0 ⊆ NC1 = ATIME(log(n)) ⊆ SAC1 = LOGCFL

= ASPACE-TREESIZE(log(n), nO(1)).

The last two equalities where shown by Venkateswaran [27] and Ruzzo [23], respectively.

3. Groupoidal quantifiers

In this section we consider second-order monadic groupoidal quantifiers. We show that the
extension of SOM in terms of all second-order monadic groupoidal quantifiers collapses in
expressive power to its fragment mon-Q⋆

GrpFO (respectively to mon-Q1
GrpFO(+,×)).

The following result on first-order groupoidal quantifiers will be central for our reason-
ing. Below, QF refers to the set of quantifier-free formulas (of suitable signature) in which
the predicates + and × do not appear.

Theorem 3.1 ([16]). QGrpQF ≡ FO(QGrp) ≡ FO(QGrp,+,×) ≡ LOGCFL.

12 J. KONTINEN AND H. VOLLMER

We shall use the following version of Theorem 3.1.

Lemma 3.2. Let τ = {c1, . . . , cs}, where c1, . . . , cs are constant symbols. Then on τ -
structures

QGrpQF ≡ FO(QGrp) ≡ FO(QGrp,+,×).

Proof. The idea of the proof is to translate ϕ ∈ FO(QGrp,+,×)[τ] into ϕ∗ ∈ FO(QGrp,+,×)
of a suitable string signature using a simple encoding of τ -structures into strings. By
Theorem 3.1, we may then replace ϕ∗ by an equivalent formula θ ∈ QGrpQF. Finally, we
show that θ can be translated back to a formula θ∗ ∈ QGrpQF[τ] in such a way that θ∗ and
ϕ are equivalent.

Suppose that K is a class of τ -structures definable by ϕ ∈ FO(QGrp,+,×). We shall
encode K as a class of strings over signature 〈PS1

, . . . , PS2s
〉, where S1, . . . , S2s is some fixed

enumeration of the subsets of {c1, . . . , cs}. We associate every τ -structure A with a unique
string wA over the same universe in the following way. For S ⊆ {c1, . . . , cs}, define

PwA

S = {b | cAi = b⇔ ci ∈ S}.

Note that the predicate P∅ is interpreted by the set {0, . . . , n − 1} \ {cA1 , . . . , c
A
s } where

{0, . . . , n− 1} is the universe of A.
Let ϕ∗ be acquired from ϕ by replacing atomic subformulas of the form ci = t by

∨ci∈SPS(t) and ci = cj by the formula ∃y(∨ci,cj∈SPS(y)). It is now obvious how to translate
atomic formulas using the predicates +,×, and <, e.g., the formula ci < t is replaced
by ∃y(∨ci∈SPS(y)) ∧ y < t). It is easy to show using induction on the construction of
ϕ ∈ FO(QGrp,+,×) that for all τ -structures A,

A |= ϕ⇔ wA |= ϕ∗.

By Theorem 3.1 there is a sentence θ ∈ QGrpQF which is equivalent to ϕ∗ over strings. Let
θ∗ be acquired from θ by replacing subformulas PS(t) by

(
∧

ci∈S

ci = t) ∧ (
∧

cj∈{c1,...,cs}\S

cj 6= t).

Again by induction on θ ∈ QGrpQF we get that for all τ -structures A,

A |= θ∗ ⇔ wA |= θ.

It follows that θ∗ ∈ QGrpQF defines K.

We are now ready for the main result of this section. Note that the built-in predicates
+ and × are definable already in terms of (first-order) majority quantifiers (see [4] and [16])
and hence definable in the logics in which groupoidal quantifies are allowed to be nested.

Theorem 3.3. SOM(mon-Q⋆
Grp) ≡ mon-Q⋆

GrpFO.

Proof. Fix a signature τ = 〈Pa1 , . . . , Pas〉. Suppose that ϕ ∈ SOM(mon-Q⋆
Grp) is a sentence.

We will show how to construct a sentence of the logic mon-Q⋆
GrpFO equivalent to ϕ. The

idea of the proof is to represent ϕ ∈ SOM(mon-Q⋆
Grp), and the language of signature τ

defined by ϕ, in terms of ϕ∗ ∈ FO(QGrp,+,×), and the class of σ-structures defined by ϕ∗,
where σ = {c1, . . . , cs} and c1, . . . , cs are constant symbols. More precisely, by representing
τ -structures of cardinality n by σ-structures of cardinality 2n, we can replace second-order
variables over the domain {0, . . . , n−1} by first-order variables ranging over {0, . . . , 2n−1}
using the BIT-predicate. Then we apply Lemma 3.2 to get a formula θ ∈ QGrpQF equivalent

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 13

to ϕ∗. Finally, we show that θ can be translated back to a formula θ′ ∈ mon-Q⋆
GrpFO[τ] in

such a way that the original formula ϕ and θ′ are equivalent.
Denote by σ = {c1, . . . , cs} the signature where each ci is a constant symbol. For a

τ -structure A = 〈{0, . . . , n − 1}, <, PA
a1
, . . . , PA

as
〉, let A∗ be the following σ-structure

A
∗ = 〈{0, . . . , 2n − 1}, <,+,×, cA

∗

1 , . . . , cA
∗

s 〉,

where cA
∗

i is the unique integer (< 2n) whose binary representation is given by s0 · · · sn−1

where sj = 1 ⇐⇒ j ∈ PA
ai
.

We shall first show that there is a sentence ϕ∗ ∈ FO(QGrp,+,×)[σ] such that for all
τ -structures A,

A |= ϕ⇔ A
∗ |= ϕ∗. (3.1)

The translation ϕ ϕ∗ is defined inductively as follows. For ϕ of the form xi = xj or
xi < xj, ϕ

∗ := ϕ, and in the remaining cases (we may exclude the definable constants
min, max, and the second-order existential quantifier from SOM(mon-Q⋆

Grp) since Q⋆
L∃

is

available) the translation is defined in the following way:

Pai(xi) BIT(ci, n− (xi + 1))

Yi(xj) BIT(yi, n− (xj + 1))

ψ ∧ φ ψ∗ ∧ φ∗

¬ψ ¬ψ∗

∃xiψ ∃xi(xi < n ∧ ψ∗(xi))

Q⋆
LY1, . . . , Yk[ψ1, . . . , ψs−1] QLy1, . . . , yk[ψ

∗
1 , . . . , ψ

∗
s−1]

It is straightforward to show using induction on the construction of ϕ ∈ SOM(mon-Q⋆
Grp)[τ],

that for all τ -structures A and assignments s,

A |=s ϕ⇔ A
∗ |=s∗ ϕ

∗,

where the assignment s∗ over A
∗ is defined such that s∗(xi) = s(xi), for all first-order

variables xi, and, for a second-order Yi: if s(Yi) = A ⊆ {0, . . . , n − 1}, then s∗(yi) is
the unique a < 2n whose length n binary representation is given by s0 · · · sn−1 where
sj = 1 ⇐⇒ j ∈ A.

Above, we use the predicate BIT which is definable in FO(+,×) (see, e.g., [14]). Note
also that, using the predicate BIT, the integer n can be easily defined over the structure
A

∗.
By Lemma 3.2, there is a sentence

θ = QLx1, . . . , xl[χ1, . . . , χw],

where each χi is quantifier-free and does not contain the predicates + and ×, equivalent to
ϕ∗. The idea is now to translate θ into θ′ ∈ mon-Q⋆

GrpFO by changing first-order variables

to second-order variables. Denote by X = Y the formula ∀z(X(z) ↔ Y (z)), and by X < Y
the first-order formula defining the ordering of subsets when treated as length n binary

14 J. KONTINEN AND H. VOLLMER

strings. The translation θ θ′ is now defined by

t = t̂ Xt = Xt̂

t < t̂ Xt < Xt̂

ψ ∧ φ ψ′ ∧ φ′

¬ψ ¬ψ′

QLx1, . . . , xv[ψ1, . . . , ψv] Q⋆
LX1, . . . ,Xv [ψ

′
1, . . . , ψ

′
v]

Above, t is either min, max, cl, for 1 ≤ l ≤ s, or a variable x, and, respectively, Xti is either
⊥, ⊤, Pal , or X. A straightforward induction implies, in particular, that for all sentences
ψ ∈ QGrpQF[σ], and τ -structures A

A |= ψ′ ⇔ A
∗ |= ψ,

where A
∗ is defined as above. It is now immediate that θ′ and the original sentence ϕ ∈

SOM(mon-Q⋆
Grp)[τ] are equivalent.

Note that, by Proposition 2.7, we do not need to consider the semantics Q1
L separately.

By combining Theorem 3.3 and Proposition 2.7, we get

Corollary 3.4.

SOM(mon-Q1
Grp) ≡ mon-Q1

GrpFO(+,×)

≡ mon-Q⋆
GrpFO ≡ SOM(mon-Q⋆

Grp).

We close this section by showing that a much stronger analogue of Corollary 3.4 holds.
Recall that the so-called Greibach’s hardest context-free language H is a nondeterministic
version of the Dyck language D2, the language of all syntactically correct sequences con-
sisting of letters for two types of parentheses. It is known that every L ∈ CFL reduces to
H under some homomorphism [12]. It was shown in [16] that the statement of Theorem 3.1
remains valid even if the logic QGrpQF is replaced by the logic Qpad(H)QF, where pad(H)
is H extended by a neutral letter. This result directly implies the following strengthening
of Corollary 3.4.

Theorem 3.5.

SOM(mon-Q1
Grp) ≡ mon-Q1

pad(H)FO(+,×)

≡ mon-Q⋆
pad(H)FO ≡ SOM(mon-Q⋆

Grp).

Proof. The proof is analogous to the proof of Theorem 3.3. It suffices to prove the last
equality in the statement of the theorem. Suppose that ϕ ∈ SOM(mon-Q⋆

Grp) is a sentence.
By an analogous argument as in the proof of Theorem 3.3, we first translate ϕ into a sentence
ϕ∗ ∈ FO(QGrp,+,×). Then we replace ϕ∗ by an equivalent sentence θ ∈ Qpad(H)QF. Now,
again by an analogous argument as in the proof of Theorem 3.3, θ can be translated back
to the logic mon-Q⋆

pad(H)FO.

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 15

4. Monoidal quantifiers

In this section we consider second-order monadic monoidal quantifiers.
As already mentioned, the following result completely characterizes the picture in the

case of the semantics Q1
L without built-in arithmetic.

Theorem 4.1 ([11]). mon-Q1
MonFO ≡ SOM(mon-Q1

Mon) ≡ REG ≡ ∃SOM.

Interestingly, the expressive power of monoidal quantifiers collapses to regular languages
when built-in arithmetic is not present. Under reasonable complexity theoretic assumptions,
the corresponding equalities between the logics in Theorem 4.1 do not hold with built-in
arithmetic. Furthermore, it is an open question if the analogue of Theorem 4.1 holds with
respect to the semantics Q⋆

L. Again, by Proposition 2.7, we however know that the semantics
coincide assuming built-in arithmetic.

Theorem 4.2. The following equivalences hold

(1) mon-Q1
MonFO(+,×) ≡ mon-Q⋆

MonFO(+,×),
(2) SOM(mon-Q1

Mon,+,×) ≡ SOM(mon-Q⋆
Mon,+,×).

Note that also in equivalence 2 of Theorem 4.2 the arithmetic predicates (in fact + would
also suffice) need to be assumed by Theorem 4.1, i.e., + and × are not definable in
SOM(mon-Q1

Mon). It is an open question whether the equivalences of Theorem 4.2 hold
without built-in arithmetic.

5. Complexity results

In this section we study the data complexity of the logics discussed in the previous sections.
We begin with a simple logical padding argument which allows us to utilize Theorem

2.11 in the context of second-order monadic quantifiers. Recall that, in the statement of
Theorem 2.11, the quantifier Q⋆

B is allowed to bind relation variables of arbitrary arity (see
Remark 2.8). Below, we do not distinguish notationally between a string w of alphabet
(a1, . . . , as), and the string structure of signature 〈Pa1 , . . . , Pas〉 corresponding to w.

Proposition 5.1. Let L be a language and suppose that a language A of alphabet Σ is
definable by a sentence ϕ ∈ Q⋆

LFO. Let k be the arity of the relations quantified in ϕ and
♯ /∈ Σ. Then the language

A∗ = {wa♯|w|k−|w| | w ∈ A}

is definable in FO(mon-Q⋆
L,+,×).

Proof. Let ϕ be of the form
Q⋆

LR1, . . . , Rt[ψ1, . . . , ψs],

where each of the relations Ri has arity k. Define a translation ϕ ϕ∗ as follows. For ϕ of
the form xi = xj , xi < xj, or Pai(xj), ϕ

∗ := ϕ, and in the remaining cases (we exclude the
definable constants min and max) the translation is defined in the following way:

Ri(x1, . . . , xk) ∃z(XRi
(z) ∧ z = |w|k−1x1 + · · ·+ |w|xk−1 + xk)

ψ ∧ φ ψ∗ ∧ φ∗

¬ψ ¬ψ∗

∃xψ ∃x(x < |w| ∧ ψ∗(x))

Q⋆
LR1, . . . , Rt[ψ1, . . . , ψs−1] Q⋆

LXR1
, . . . ,XRt [ψ

∗
1 , . . . , ψ

∗
s−1]

16 J. KONTINEN AND H. VOLLMER

It is straightforward to show using induction on ψ ∈ Q⋆
LFO that for all w and assignments

s
w |=s ψ ⇔ wa♯|w|k−|w| |=s∗ ψ

∗,

where s∗ agrees with s with respect to first-order variables, and

s∗(XRi
) = {a | a = |w|k−1b1 + · · ·+ |w|bk−1 + bk for some (b1, . . . , bk) ∈ s(Ri)}.

Note also that, by our conventions, the universe of wa♯|w|k−|w| is {0, . . . , nk−1} hence there
is 1-1 correspondence between the subsets of {0, . . . , nk − 1} and the k-ary relations over
the universe, {0, . . . , n− 1}, of w.

Finally, the language A∗ is defined by ϕ∗ ∧ χ, where χ ∈ FO(+,×) and

w |= χ⇔ ∃w̃(w = w̃a♯|w̃|k−|w̃|).

Proposition 5.1 shows that logics FO(mon-Q⋆
L,+,×) can be quite powerful. In fact, it is

apparent from the proof that if, e.g., ϕ ∈ Q⋆
LFO in the proof of Proposition 5.1 defines a

PSPACE-complete language, then the language defined by ϕ∗ ∈ mon-Q⋆
LFO(+,×) is also

PSPACE-complete.

Corollary 5.2. In the logic mon-Q1
MonFO(+,×), PSPACE-complete languages can be de-

fined.

Proof. This follows, e.g., by the fact that

Q⋆
BFO ≡ PSPACE,

where B is the word-problem for the group S5 (see Section 2.2), and by Proposition 2.7.

Recall that in the case of groupoidal quantifiers, already in mon-Q1
GrpFO PSPACE-complete

languages can be defined by Corollary 2.14.
Next we show that the logics SOM(mon-Q⋆

Mon,+,×) and SOM(mon-Q⋆
Grp) capture the

exponential versions of the language classes captured by the logics FO(QMon,+,×) and
FO(QGrp,+,×). As already noted in Theorem 3.1, the logic FO(QGrp,+,×) corresponds
to LOGCFL [16]. On the other hand, in [4] it was show that

FO(QMon,+,×) ≡ NC1 = ATIME(log(n)). (5.1)

Definition 5.3. For n ∈ N, denote by bin(n) the binary representation of n without leading
zeros. Let L ⊆ {0, 1}+ and 1L = {1w | w ∈ L}. Define now tally(L) as

tally(L) = {1n | bin(n) ∈ 1L}.

Let us now define the classes of languages 2ATIME(log(n)) and 2LOGCFL by

2ATIME(log(n)) = {L ⊆ {0, 1}+| tally(L) ∈ ATIME(log(n))},

2LOGCFL = {L ⊆ {0, 1}+| tally(L) ∈ LOGCFL}.

The following is easily seen to hold:

Proposition 5.4. The following equalities hold

(1) 2ATIME(log(n)) = ATIME(n),
(2) 2LOGCFL = ASPACE-TREESIZE(n, 2O(n)).

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 17

Proof. The first equality is obvious and the second follows from Ruzzo’s characterization of
LOGCFL:

LOGCFL = ASPACE-TREESIZE(log(n), nO(1))

(see [23] and [29]).

Remark 5.5. By the above, we immediately get that

NSPACE(n) ⊆ 2LOGCFL.

It is also straightforward to show that 2LOGCFL includes the languages that can be recog-
nized in linear time on a Threshold Turing machine (introduced in [21]).

The main result of this section can be now stated as follows:

Theorem 5.6. The following equivalences hold

(1) SOM(mon-Q⋆
Mon,+,×) ≡ ATIME(n),

(2) SOM(mon-Q⋆
Grp) ≡ 2LOGCFL.

Proof. We will prove equivalence 2. Equivalence 1 is proved analogously using the fact that
ATIME(log(n)) ≡ FO(QMon,+,×) (see (5.1)).

We will show that, for all L ⊆ {0, 1}+, L is definable in SOM(mon-Q⋆
Grp) iff tally(L) ∈

LOGCFL. Since LOGCFL ≡ FO(QGrp,+,×), it suffices to show that for all L ⊆ {0, 1}+,
L is definable in SOM(mon-Q⋆

Grp) iff tally(L) is definable in FO(QGrp,+,×).

We will first show that if L is definable in SOM(mon-Q⋆
Grp), then tally(L) can be defined

in FO(QGrp,+,×). The idea is now to translate formulas between string structures

w = 〈{0, . . . ,m− 1}, <, P1, P0〉, (5.2)

and
1n = 〈{0, . . . , n− 1}, P1, <,+,×〉, (5.3)

where w ∈ {1, 0}+, bin(n) = 1w, and P1 = {0, . . . , n − 1}. Some technical difficulties arise
here, which were not encountered in the proof of Theorem 3.3, due to the fact that the sizes
of the universes of w and 1n are not necessarily exactly of the form l and 2l for some l.

We define a translation ϕ ϕ∗ of ϕ ∈ SOM(mon-Q⋆
Grp) into ϕ∗ ∈ FO(QGrp,+,×)

below. Analogously to the proof of Theorem 3.3, it can be shown using induction on
ϕ ∈ SOM(mon-Q⋆

Grp), that for all w and assignments s,

w |=s ϕ⇔ 1n |=s∗ ϕ
∗.

The assignment s∗ is defined so that it agrees with s on first-order variables xi, and, for
a variable yi, corresponding to a second-order variable Yi, s

∗(yi) = a < 2m, where a =
Σm−1
i=0 si2

m−1−i and si = 1 iff i ∈ s(Yi).
The translation ϕ ϕ∗ is defined inductively as follows. For ϕ of the form xi = xj

or xi < xj, ϕ
∗ := ϕ, and in the remaining cases (again, we exclude the definable constants

min, max, and the second-order existential quantifier from SOM(mon-Q⋆
Grp) since Q⋆

L∃
is

available) the translation is defined in the following way (recall that by (5.2) and (5.3) we

18 J. KONTINEN AND H. VOLLMER

have ⌊log(n)⌋ = m = |w|):

P1(xi) BIT(n, ⌊log(n)⌋ − (xi + 1))

P0(xi) ¬BIT(n, ⌊log(n)⌋ − (xi + 1))

Yi(xj) BIT(yi, ⌊log(n)⌋ − (xj + 1))

ψ ∧ φ ψ∗ ∧ φ∗

¬ψ ¬ψ∗

∃xiψ ∃xi(xi < ⌊log(n)⌋ ∧ ψ∗(xi))

Q⋆
LY1, . . . , Yk[ψ1, . . . , ψs−1] QLy1, . . . , yk[χ ∧ ψ∗

1, . . . , χ ∧ ψ∗
s−1]

Note that, e.g., the formula BIT(n, ⌊log(n)⌋−(xi+1)) above can be easily constructed even
though the integer n is not in the universe of the structure 1n. Without loss of generality,
we may assume that the letter as in the alphabet (a1, a2, . . . , as) of L is a neutral letter.
Now the formula χ, used to translate Q⋆

L, ensures that the interpretation b1, . . . , bk ∈
{0, . . . , n − 1} of the tuple y1, . . . , yk does correspond to some tuple of unary relations
B1, . . . , Bk ⊆ {0, . . . ,m − 1}. The problem is that there can be more tuples b than tuples
B. The formula χ is defined as

∧

1≤i≤k

yi < 2⌊log(n)⌋ − 1.

Now if χ is not satisfied by b, then none of the formulas χ ∧ ψ∗
i will be satisfied and hence

these formulas produce the neutral letter as when y is interpreted as b.
We conclude that, by the above, if L is defined by a sentence ϕ ∈ SOM(mon-Q⋆

Grp),
then the sentence

(ϕ∗ ∧ ∀xP1(x)) ∈ FO(QGrp,+,×),

defines tally(L).
We will next define a formula translation ϕ ϕ′ mapping ϕ ∈ FO(QGrp,+,×) into

ϕ′ ∈ SOM(mon-Q⋆
Grp). Again, an analogous induction on the construction of ϕ shows, in

particular, that for all sentences ϕ and all n ∈ N,

bin(n) |= ϕ′ ⇔ 1n |= ϕ.

The translation ϕ ϕ′ is defined by replacing first-order variables by unary second-order
variables:

x = y X = Y

x < y X < Y

x+ y = z X + Y = Z

x× y = z X × Y = Z

P1(x) ⊤

ψ ∧ φ ψ′ ∧ φ′

¬ψ ¬ψ′

∃xψ ∃X(δ ∧ ψ′)

QLx1, . . . , xv[ψ1, . . . , ψv] Q⋆
LX1, . . . ,Xv[δ ∧ ψ

′
1, . . . , δ ∧ ψ

′
v]

Above, X = Y denotes the formula ∀z(X(z) ↔ Y (z)). Also X < Y , X + Y = Z, and
X × Y = Z are formulas defining the ordering, addition, and multiplication of unary

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 19

relations, when treated as binary strings. Finally, the formula δ is simply

δ = X < P1,

and it has an analogous role here as χ had above. Again, we may assume that as is a neutral
letter of L when translating the quantifier QL.

By the above, it holds that for all L ⊆ {0, 1}+: if tally(L) ∈ LOGCFL, then 1L is
definable in SOM(mon-Q⋆

Grp). In order to complete the proof, it suffices to show that L

is definable in SOM(mon-Q⋆
Grp) iff 1L is definable in SOM(mon-Q⋆

Grp). Note that on the
computational side, L and 1L are easily definable from each other. On the logical side, it
follows from the fact that SOM(mon-Q⋆

Grp) is closed under logical reductions for which the

target structure w∗ has size linear in w. The idea is that if |w∗| = k|w| then subsets of w∗

can be encoded by k subsets over w and, hence, such a formula translation can be defined
in terms of second-order monadic quantifiers. This implies1, in particular, that for any
sentence ϕ ∈ SOM(mon-Q⋆

Grp) we can construct a sentence ϕ∗ ∈ SOM(mon-Q⋆
Grp) which

holds over w iff 1w |= ϕ. We do not give the proof here but refer to the proof of Corollary
8.6 in [15] in which an analogous result is proved for the extension of FO in terms of the
second-order monadic majority quantifier.

Finally, we turn to the case of symmetric (commutative) languages. It is obvious that,
for a symmetric language L, the quantifiers Q1

L and Q∗
L are equivalent. Let CFLs and REGs

denote the classes of symmetric context-free and regular languages, respectively.
Denote by Mod-LinH the linear analogue of the class Mod-PH. Recall that Mod-PH is

the oracle hierarchy, analogous to the polynomial hierarchy PH, in which the building block
of the hierarchy is NP ∪ (ModqP)q>1 and the (k + 1)th level is defined by allowing access
to oracles from the Boolean closure of the kth level. Similarly, we denote by Lin-CH the
linear analogue of the counting hierarchy CH, which is the oracle hierarchy with PP as the
building block.

The expressive power of second-order monadic quantifiers defined by symmetric regular
and context-free languages can be characterized as follows:

Theorem 5.7. The following equivalences hold

(1) SOM(mon-Q⋆
REGs ,+,×) ≡ Mod-LinH,

(2) SOM(mon-Q⋆
CFLs) ≡ Lin-CH.

Proof. Let us first show equivalence 2. Note that by Parikh’s theorem on context-free
languages, every symmetric context-free language is already in TC0 and, by [4], TC0 ≡
FO(QMaj,+,×). Therefore, we get that

SOM(mon-Q⋆
CFLs) ≡ SOM(mon-Q⋆

Maj)

by an analogous argument as in Theorem 3.3. In [15] it was shown that

SOM(mon-Q⋆
Maj) ≡ Lin-CH,

hence the claim follows.
For equivalence 1, note that FO(QREGs ,+,×) ≡ ACC0 (see [4]) and that, analogously

to AC0 and PH, ACC0 is the logarithmic analogue of Mod-PH (see [2, 1]). Hence, by

1More generally, it also implies that SOM(mon-Q⋆
Grp) captures 2

LOGCFL over all string signatures, since

a string w of any signature can be encoded in binary with length O(|w|).

20 J. KONTINEN AND H. VOLLMER

standard padding we get that 2ACC0

= Mod-LinH and, mimicking the proof of Theorem
5.6, it follows that

SOM(mon-Q⋆
REGs ,+,×) ≡ Mod-LinH.

We conclude this section by the following table summarising the results on the data-
complexity of the logics studied in this paper.

Table 1: Summary of the results

Logic & built-ins {≤} {+,×} Result

mon-Q1
MonFO REG PSPACE-comp. Thm 4.1 [11], Cor 5.2

mon-Q⋆
MonFO ≥ REG PSPACE-comp. [7, 26], Cor 5.2

SOM(mon-Q1
Mon) REG ATIME(n) Thm 4.1 [11], Thm 5.6

SOM(mon-Q⋆
Mon) ≥ REG ATIME(n) [7, 26], Thm 5.6

mon-Q1
GrpFO PSPACE-comp. 2LOGCFL Cor 2.14 [18], Thm 5.6

mon-Q⋆
GrpFO 2LOGCFL 2LOGCFL Thm 5.6

SOM(mon-Q1
Grp) 2LOGCFL 2LOGCFL Thm 5.6

SOM(mon-Q⋆
Grp) 2LOGCFL 2LOGCFL Thm 5.6

SOM(mon-Q⋆
REGs) REG Mod-LinH Thm 4.1 [11], Thm 5.7

SOM(mon-Q⋆
CFLs) Lin-CH Lin-CH Thm 5.7

6. Conclusion

We conclude with two questions for further study. The main open question regarding
groupoidal quantifiers is to determine whether the two variants of semantics for second-
order groupoidal quantifiers coincide in the most restricted case studied in this paper, i.e.,
is it the case that

mon-Q1
GrpFO ≡ mon-Q⋆

GrpFO?

A positive answer would imply that

LeafFA(CFL) = ASPACE-TREESIZE(n, 2O(n)).

This would strengthen the recent PSPACE-hardness result [18] considerably (showing that
LeafFA(CFL) contains PSPACE-complete problems, and answering the open question from
[11]).

The second open question concerns the expressive power of the quantifiers Q⋆
L, for

a regular L. It is an open question whether non-regular languages can be defined in
SOM(mon-Q⋆

Mon).

References

[1] E. Allender. The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical
Computer Science, 1999.

[2] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM Journal on Comput-
ing, 23:1026–49, 1994.

[3] D. A. M. Barrington, K. Compton, H. Straubing, and D. Thérien. Regular languages in NC1. Journal
of Computer and System Sciences, 44:478–499, 1992.

ON SECOND-ORDER MONADIC MONOIDAL AND GROUPOIDAL QUANTIFIERS 21

[4] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer
and System Sciences, 41:274–306, 1990.

[5] F. Bédard, F. Lemieux, and P. McKenzie. Extensions to Barrington’s M-program model. Theoretical
Computer Science, 107:31–61, 1993.

[6] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoretical
Computer Science, 104:263–283, 1992.

[7] J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proceedings Logic, Method-
ology and Philosophy of Sciences 1960, Stanford, CA, 1962. Stanford University Press.

[8] J. R. Büchi and C. C. Elgot. Decision problems of weak second order arithmetics and finite automata,
Part I. Notices of the American Mathematical Society, 5:834, 1958.

[9] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability. International
Journal of Foundations of Computer Science, 9:277–294, 1998.

[10] A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of the finite ranks. MLQ Math.
Log. Q., 44(3):349–353, 1998.

[11] M. Galota and H. Vollmer. A generalization of the Büchi-Elgot-Trakhtenbrot theorem. In Computer
science logic (Paris, 2001), volume 2142 of Lecture Notes in Comput. Sci., pages 355–368. Springer,
Berlin, 2001.

[12] S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2:304–310, 1973.
[13] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polyno-

mial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages 200–207, 1993.
[14] N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer Verlag, New

York, 1999.
[15] J. Kontinen and H. Niemistö. Extensions of MSO and the monadic counting hierarchy. Information and

Computation (to appear). Manuscript available at http://www.helsinki.fi/˜jkontine/.
[16] C. Lautemann, P. McKenzie, T. Schwentick, and H. Vollmer. The descriptive complexity approach to

LOGCFL. Journal of Computer and Systems Sciences, 62(4):629–652, 2001.
[17] P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195, 1966.
[18] M. Lohrey. Leaf languages and string compression. In R. Hariharan, M. Mukund, and V. Vinay, edi-

tors, FSTTCS 2008, volume 08004 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[19] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
[20] M. More and F. Olive. Rudimentary languages and second-order logic. Mathematical Logic Quarterly,

43(3):419–426, 1997.
[21] I. Parberry and G. Schnitger. Parallel computation with threshold functions. Journal of Computer and

System Sciences, 36:287–302, 1988.
[22] T. Peichl and H. Vollmer. Finite automata with generalized acceptance criteria. Discrete Mathematics

and Theoretical Computer Science, 4:179–192, 2001.
[23] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences, 21:218–235,

1980.
[24] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, 1994.
[25] H. Straubing, D. Thérien, and W. Thomas. Regular languages defined with generalized quantifiers.

Information and Computation, 118:289–301, 1995.
[26] B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR,

140:326–329, 1961. In Russian.
[27] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System Sciences,

43:380–404, 1991.
[28] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory of algorithms.

Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.
[29] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer

Science. Springer Verlag, Berlin Heidelberg, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Generalized quantifiers
	2.2. Leaf languages
	2.3. Finite leaf automata
	2.4. Complexity theory

	3. Groupoidal quantifiers
	4. Monoidal quantifiers
	5. Complexity results
	6. Conclusion
	References

