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Abstract. In this work we continue the syntactic study of completeness that began with
the works of Immerman and Medina. In particular, we take a conjecture raised by Medina
in his dissertation that says if a conjunction of a second-order and a first-order sentences
defines an NP-complete problems via fops, then it must be the case that the second-
order conjoint alone also defines a NP-complete problem. Although this claim looks very
plausible and intuitive, currently we cannot provide a definite answer for it. However,
we can solve in the affirmative a weaker claim that says that all “consistent” universal
first-order sentences can be safely eliminated without the fear of losing completeness. Our
methods are quite general and can be applied to complexity classes other than NP (in
this paper: to NLSPACE, PTIME, and coNP), provided the class has a complete problem
satisfying a certain combinatorial property.

1. Introduction

Descriptive complexity studies the interplay between complexity theory, finite model theory
and mathematical logic. Since its inception in 1974 [6], descriptive complexity has been able
to characterize all the major complexity classes in terms of logical languages independent of
any computational model, thus suggesting that the computational complexity of languages
is a property intrinsic to them and not an accidental consequence of our choice for the
computational model.

In descriptive complexity, problems are understood as sets of (finite) models which
are described by logical formulas over given vocabularies, and reductions between problems
correspond to first-order definable functions between the sets of models that characterize the
problems. Like in structural complexity, reductions play a fundamental role in descriptive
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complexity, yet unlike the former where the predominant type of reduction is the many-one
reduction, in descriptive complexity the predominant type of reduction is the first-order
projection (fop). A fop is a weak type of reduction whose study has provided interesting
results such as that common NP-complete problems like SAT, HamiltonianPath and
others remain complete via fop reductions, and that such NP-complete problems can be
described in a canonical syntactic form [1, 3, 11, 12].

The research that led to this paper was motivated by the following conjecture:

Conjecture 1.1 (Medina [11]). Suppose Φ is a SO∃ sentence and ψ is a FO sentence. If
Φ ∧ ψ defines an NP-complete problem, then Φ defines an NP-complete problem as well.

This is a plausible and intuitive conjecture because it is known that SO∃ captures the
class NP while FO captures (over ordered structures) AC0 (i.e., languages recognized by
circuits of polynomial size, constant depth and unbounded fan-in) which is known to be
strictly contained in L ⊆ P ⊆ NP, and thus the conjunction of ψ with Φ should not “add”
hardness to the problem defined by Φ because the property defined by ψ is, by comparison,
very easy to check. In such a case, we say that ψ is superfluous with respect to NP, and
since ψ is arbitrary, we say that FO is superfluous with respect to NP.

Medina’s syntactic study of NP-completeness includes the study of syntactic operators
that preserve completeness; i.e., functions that map sentences into sentences in such a
way that a sentence defining an NP-complete problem is mapped into a sentence defining
another NP-complete problem. Conjecture 1.1 arises in this context since he observed that
superfluous first-order sentences appear in conjunction with SO∃ sentences in the image of
SO∃ sentences for NP-complete problems for the operator known as edge creation [11].

On the other hand, the elimination of such first-order formulas from conjunctions may
prove to be a valuable completeness-preserving operator in itself, and also provide theoretical
justification for the well-known restriction heuristics that are used to prove the completeness
of problems by enforcing constraints that can be expressed in first-order logic.

In spite of the intuitiveness of this claim, until this date, we cannot provide a definite
answer for it. However, the main result in this paper implies that the answer is positive
when ψ is a FO∀ sentence (i.e., a universal first-order sentence of the form ∀x̄θ(x̄) where
θ(x̄) is a quantifier-free formula), and not only for the class NP but also for the classes NL,
P, coNP and others. In general, we show that FO∀ is superfluous for all classes that are
“connected” in certain way to a combinatorial property that we call (n, k)-uniformity, which
up to our knowledge is introduced in this work.

The paper is organized as follows. In the following section, we make the paper self-
contained by revising the necessary definitions from logic, model theory and descriptive
complexity. Next, we introduce the combinatorial notion of (n, k)-uniformity that apply to
problems, establish some basic properties, and give examples. Section 4 proves the main
result, which partially solves the above conjecture in the affirmative by showing that that
FO∀ is superfluous for NP (and other classes). Section 5 shows two applications of our
results. The last section wraps up with a brief summary and a discussion of future work.
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2. Preliminaries

2.1. Logic.

2.1.1. Syntax. We consider logical vocabularies without functional symbols of the form σ =
〈R1, . . . , Rr, c1, . . . , cs〉 where each Rj is a relational symbol of arity aj ∈ Z

+ and each ci is
a constant symbol. Throughout the paper, we assume that our logical languages contain
the set {=,≤,BIT, suc, 0,max} of fixed numeric relational and constant symbols, disjoint
with σ [10].

First-order and second-order formulas over vocabulary σ are defined as usual [5]. We
follow most of the standard notational conventions found in [4, 5, 10]. The set of all of
the first-order (respectively second-order) formulas over vocabulary σ is denoted as FO(σ)
(respectively SO(σ)). We write FO (respectively SO) to denote

⋃

σ FO(σ) (respectively
⋃

σ SO(σ)). In general if L is a logic, L(σ) denotes the set of all well formed formulas in L
over the vocabulary σ.

An atomic formula over vocabulary σ has the form P (t1, . . . tk) where P is a k-ary
relational symbol (numeric or not) and t1, . . . tk are terms over σ. A literal is an atomic
formula (and then we say it is positive) or the negation of an atomic formula (and then
we say it is negative). A clause (respectively an implicant) is a disjunction L1 ∨ · · · ∨ Lk

(respectively conjunction L1 ∧ · · · ∧Lk) of literals. A numeric formula in L(σ) is a formula
without relational symbols from σ, and thus a numeric formula can mention constants from
the vocabulary σ. Although counterintuitive, this notion guarantees that any non-numeric
literal always refers to a relational symbol in σ, and also agrees with the notion given in
[10, Def. 11.7] where a “numeric formula” is one where “no input relations occur”.

If θ is a formula without quantifiers, we say it is in conjunctive normal form (CNF)
(respectively disjunctive normal form (DNF)) if it is a conjunction (respectively disjunction)
of clauses (respectively implicants). k-CNF (respectively k-DNF) is the class of all CNF
(respectively DNF) formulas with at most k literals in each clause (implicant). These classes
may be “tagged” with a vocabulary σ (e.g., k-CNF(σ)) when we talk about formulas over
the vocabulary σ. Likewise, we define CNFk(σ) as the class of CNF formulas over σ whose
clauses have at most k non-numeric literals, and similarly for DNFk(σ).

In general, we use lowercase Greek letters to denote first-order formulas and uppercase
Greek letter to denote second-order formulas. We write ψ(x1, . . . , xm) to emphasize that the
free variables in ψ are among those in 〈x1, . . . , xm〉. A tuple of variables such as 〈x1, . . . , xm〉
is written as x̄ and its length m is denoted by |x̄|. A formula with no free variables is
referred to as a sentence. Finally, we use Σ0

k(σ) and Π0
k(σ) to denote first-order formulas

over vocabulary σ with k blocks of alternating quantifiers, beginning with an existential and
universal quantifier respectively. For second-order formulas, we use the notations Σ1

k(σ) and
Π1

k(σ) respectively. In all cases, when the vocabulary σ is clear from context, we drop it
from the notation.

2.1.2. Semantics. Let σ = 〈R1, . . . , Rr, c1, . . . , cs〉 be a vocabulary. The symbols in σ as
well as the numeric symbols are interpreted by σ-structures. A (finite) σ-structure or just
a structure, is a tuple

A = 〈|A|, RA
1 , . . . , R

A
r , c

A
1 , . . . , c

A
s 〉
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where |A| is a symbol that denotes the universe (or domain) of A, each RA
j ⊆ |A|

aj is a

aj-ary relation over |A| and each cj ∈ |A| is an element of |A|. The number of elements
in the universe, size or cardinality of A is denoted by ‖A‖. Following [10], we assume
|A| to be an initial segment of size greater than 1 of the set of the natural numbers; i.e.,
|A| = [n] = {0, 1, . . . , n − 1} with n > 1. We say that RA

j and cAj are the interpretations
of the relational and constant symbols Rj and cj in the structure A. On the other hand,
the numeric symbols obtain the standard interpretations in the fragment [n] of the natural
numbers [10]; e.g., the symbols ‘=’ and ‘≤’ are interpreted by the equality and non-strict
natural order in N respectively, while the relational symbol BIT is interpreted by the binary
relation BITA given by

(i, j) ∈ BITA ⇐⇒ the j-th bit in the binary expansion of i is 1 ,

where the zeroth position is the least significant bit of i. The set of all the finite σ-structures
is denoted by Struc(σ).

We follow the standard definition for the relation � between structures and first-order
formulas, and its extension to second-order formulas (see, e.g., [4, 5, 10]). These relations are
defined in terms of the relation � for pairs 〈A, i〉 and formulas ψ, where A is a structure and
i is an interpretation of variables into the elements of A. If ϕ(x1, . . . , xm) is a formula over
the vocabulary σ, A ∈ Struc(σ), and 〈a1, . . . , am〉 is a tuple over |A|, then A � ϕ(a1, . . . , am)
means that 〈A, i〉 � ϕ for every interpretation i that maps xj into aj for 1 ≤ j ≤ m. In
particular, when ϕ is a sentence, A � ϕ iff 〈A, i〉 � ϕ for every interpretation i.

Given a vocabulary σ, we say that a σ-structure A is a model of sentence φ if A � φ.
The set of all the finite models of φ is denoted by Mod(φ); notice that Mod(φ) ⊆ Struc(σ).
Similarly for second-order formulas.

2.2. Decision Problems and Complexity Classes. A decision problem (or just prob-
lem) S is a subset of Struc(σ) for some fixed σ, which is closed under isomorphisms. For
example, the problem ThreeDimensionalMatching (3dm) can be thought as the set of
all structures A = 〈|A|,MA〉 over the vocabulary σ = 〈M3〉, whereM is a ternary relational
symbol, such thatMA contains a 3-dimensional matching; i.e., MA contains a set of triplets

M ′ = {(a0, b0, c0), . . . , (a‖A‖, b‖A‖, c‖A‖)}

such that ai 6= aj , bi 6= bj and ci 6= cj for every i 6= j.
If S ⊆ Struc(σ) is a decision problem, then every finite σ-structure A is an instance

and every element of S is a positive instance of S. We say that a Turing Machine M [7, 13]
decides a problem S if, given a suitable encoding of an instance A of S as input to M , M
accepts the input iff A is a positive instance of S.

Decision problems are classified into complexity classes accordingly to their difficulty.
We assume the standard computational resources (time and space) and computational
modes (deterministic and non-deterministic) found in the literature [7, 10, 13]. The most
important complexity classes [10, 13] are L, NL, P, NP and PSPACE. The following chain
of inclusions is a well-known fact:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE .

L and NL are respectively the classes of all problems solvable by deterministic and non-
deterministic Turing machines that use logarithmic space, P and NP are respectively the
classes of problems solvable by deterministic and non-deterministic Turing machines in
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polynomial time, and PSPACE is the class of problems solvable by deterministic Turing
machines that use polynomial space [7, 10, 13]. Given a complexity class C, the class
coC is the class of all problems whose complement is in C. For example, for a problem
S ⊆ Struc(σ) in the class C, the problem S = Struc(σ)\S belongs to coC. Turing machines
can also compute functions [13], and similar complexity measures apply to such functions.

A decision problem is typically characterized by a sentence over some logic L. 3dm, for
example, is characterized by the sentence:

Φ3dm := ∃R3
[

∀x̄(R(x̄) −→M(x̄))∧

∀x(∃x2x3R(x, x2, x3) ∧ ∃x1x3R(x1, x, x3) ∧ ∃x1x2R(x1, x2, x))∧

∀x̄ȳ(R(x̄) ∧R(ȳ) ∧ x̄ 6= ȳ −→ x1 6= y1 ∧ x2 6= y2 ∧ x3 6= y3)
]

in which the quantified ternary relation R denotes the 3-dimensional matching contained in
the input instance whose triplets are given byM . Hence, if Φ3dm is satisfied by a structureA,
then the set of triplets MA that interpret the relational symbolM contains a 3-dimensional
matching. Thus, the problem 3dm corresponds to the class Mod(Φ3dm) of finite σ-structures
A such that A � Φ3dm. We also say that Φ3dm defines 3dm in SO∃ and that 3dm is definable
in SO∃.

In general, for a logical language L and complexity class C, we write C ≤ L if every
problem in C is definable in the logic L. On the contrary, if Mod(φ) is a problem in C

for every sentence φ in L, we write L ≤ C. If both L ≤ C and C ≤ L hold, we say that
the logic L captures C and write L = C. The logic L captures the complexity class C over
the class of structures K if for every problem A in C there is a sentence φ ∈ L such that
Mod(φ) = A ∩K and for every sentence φ ∈ L: (Mod(φ) ∩K) ∈ C.

It is known that SO∃ = NP [6], and SO∃-Horn = P and SO∃-Krom = NL over ordered
structures [8]. See the textbook of Immerman [10] for other characterizations and results.

2.3. First-Order Queries and Projections.

2.3.1. Reductions and Completeness. The idea of reduction is fundamental in complexity
theory. Roughly speaking, we say that a problem S ⊆ Struc(σ) reduces to a problem
T ⊆ Struc(τ) if there is a function f : Struc(σ)→ Struc(τ) such that, for every σ-structure
A, f(A) is a positive instance of T if and only if A is a positive instance of S; in such a
case, we say that f is a reduction from S to T . Informally, this means that S is as hard to
solve as T provided that f is relatively “easy” to compute.

Reductions are classified according to their computation complexity. If there is a func-
tion f of type r reducing S to T , the we write S ≤r T and say that S reduces to T via
r-reductions. Given a complexity class C we say that the problem T is C-complete via
r-reductions if T belongs to C and S ≤r T for every problem S in C. If the type of the
reductions is clear from the context, we just say that T is C-complete.

2.3.2. First-Order Projections. In this paper we are concerned with a very simple type of
reduction that is definable in first-order logic and called first-order projections. We describe
it in the following, but first need to define first-order queries.

Let σ and τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs〉 be two vocabularies, k ≥ 1 be an integer, and

consider the tuple I = 〈ϕ1, . . . , ϕr, ψ1, . . . , ψs〉 of r + s first-order formulas in FO(σ) of the
form ϕi(x1, . . . , xkai) for 1 ≤ i ≤ r, and ψj(x1, . . . , xk) for 1 ≤ j ≤ s. That is, ϕi has at
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most kai free variables among those in {x1, . . . , xkai}, and ψj has at most k free variables
among those in {x1, . . . , xk}.

The tuple I defines a mapping A 7→ I(A), called a first-order query of arity k, from
σ-structures into τ -structures. For given A ∈ Struc(σ), the map A 7→ I(A) is given by:

(1) Universe |I(A)| defined as |A|k (the k-tuples over |A|),

(2) Relations R
I(A)
i

.
= {(ū1, . . . , ūai) ∈ |A|

kai : A � ϕi(ū1, . . . , ūai)}, and

(3) Constants c
I(A)
j

.
= ū for the unique ū with A � ψj(ū). If there is no such ū or there is

more than one, the query is not well defined.

Notice that we defined |I(A)| as |A|k. In order to keep our convention of |I(A)| being
an initial segment of N, we identify it with the set {0, . . . , ‖A‖k − 1} by lexicographically
ordering |A|k. The numeric relations and constants in I(A) are defined in the standard
way such that the numeric symbols obtain the intended interpretations. It is not difficult
to show that the formulas defining the numeric predicates are all first-order formulas [10].
Some authors consider mappings I extended with a formula ϕ0 used to define the universe
as |I(A)| = {ū ∈ |A|k : ϕ0(ū)}. This however causes difficulties when defining the interpre-
tation of the numeric predicates as, in some cases, the formulas defining them cease to be
first-order [10]. For this reason, we do not consider such formulas ϕ0.

If S ⊆ Struc(σ) and T ⊆ Struc(τ) are two problems, and the query I is such that A ∈ S
iff I(A) ∈ T , then I is called a first-order reduction from S to T . A first-order query is
called a first-order projection (fop) if each ϕi, and each ψj, has the form

α0(x̄) ∨ (α1(x̄) ∧ λ1(x̄)) ∨ · · · ∨ (αe(x̄) ∧ λe(x̄))

where the αk’s are numeric and pairwise mutually exclusive, and each λk is a σ-literal. Two
formulas α(x̄) and β(x̄) over vocabulary σ are mutually exclusive if, given any finite σ
structure A and tuple ā ∈ |A||x̄|, it holds A � ¬α(ā) ∨ ¬β(ā). Projections are typically
denoted by the letter ρ. If S is complete for the class C via ≤fop reductions, then we say
that S is C-complete via fops or simply C-complete.

3. Definitions and Basic Facts

This section contains most of the new definitions that we will need throughout the rest of
the paper and some basic properties. We begin by extending Medina’s notion of superfluity
[11]:

Definition 3.1 (Superfluity). Let σ and τ be two vocabularies, L be a logic and C be a
complexity class captured by L. Then,

(1) A sentence ψ in L is superfluous with respect to fop ρ : Struc(σ) → Struc(τ) if ρ(A)
satisfies ψ for every finite σ-structure A.

(2) A sentence ψ in L is superfluous with respect to L if for every sentence Φ in L:

Mod[Φ ∧ ψ] is C-complete =⇒ Mod[Φ] is C-complete .

(3) A fragment L′ ⊆ L is superfluous with respect to L if every sentence ψ in L′ is super-
fluous with respect to L.

(4) A fragment L′ ⊆ L is superfluous with respect to a complexity class C if C is captured
by L and L′ is superfluous with respect to L.
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We will use these definitions to successively break down the problem of showing that FO∀ is
superfluous with respect to a complexity class like NP into the simpler problem of showing
that an implicant ψ is superfluous with respect to a fop-reduction ρ. Indeed, the problem
of showing that FO∀ is superfluous for NP is reduced to showing that FO∀ is superfluous
for SO∃, that is again reduced to showing that every formula ∀x̄ψ(x̄), where ψ(x̄) is in
CNFr for some r, is superfluous for SO∃, which is ultimately reduced to showing that ψ(x̄)
is superfluous with respect to a fop ρ. With the terminology offered in this definition, the
conjecture at the beginning of this paper can be rephrased as saying that FO is superfluous
with respect to NP.

In the following, we develop the notions of n-consistency of a formula and (n, k)-
uniformity of a subset of structures. These notions will play a fundamental role in our
methods.

Definition 3.2. Let σ be a vocabulary, ϕ(x̄) be a formula in FO(σ), n be a natural number,
and ū ∈ [n]|x̄| be a tuple of natural numbers. We say that 〈ϕ(x̄), ū〉 is n-consistent if there
is a σ-structure A with ‖A‖ = n such that A � ϕ(ū). If S is a subset of finite σ-structures,
we sat that 〈ϕ(x̄), ū〉 is n-consistent in S if there is a σ-structure A in S with ‖A‖ = n such
that A � ϕ(ū). When there is no risk of confusion, we abbreviate by just saying that ϕ(ū)
is n-consistent (in S).

Definition 3.3 (Uniformity). Let σ = 〈Ra1
1 , . . . , R

as
s , c1, . . . , ct〉 be a vocabulary, and S be

a subset of finite σ-structures. Let n and k be two natural numbers. We say that S is
(n, k)-uniform iff for

• every integer m ≥ n and non-negative integers p and q such that p+ q ≤ k,
• every sequence L1(t̄1), . . . , Lp(t̄p) of σ-literals,

• every sequence ū1, . . . , ūp of tuples with ūj ∈ [m]|t̄j | for 1 ≤ j ≤ p,
• every sequence ct1 , . . . , ctq of constant symbols in σ, and
• every sequence b1, . . . , bq of integers with bj ∈ [m] for 1 ≤ j ≤ q, the following holds:

If ϕ(ū, b̄) :=
∧p

j=1 Lj(ūj) ∧
∧q

j=1 ctj = bj is m-consistent, then it is also m-consistent in S.

The following properties follow directly from the definition.

Lemma 3.4. If S ⊆ Struc(σ) is (n, k)-uniform, then it is also (n, k − 1)-uniform and
(n+ 1, k)-uniform. If S is (n, k)-uniform and S ⊆ T , then T is (n, k)-uniform.

Finally, we provide some examples of (n(k), k)-uniform problems, where k ranges over
positive integers and n(k) is an increasing function from Z

+ to itself:

Lemma 3.5. For every positive integer k:

(1) Reach is (2k + 1, k)-uniform,
(2) AltReach is (2k + 1, k)-uniform,
(3) HamiltonianPathBetweenZeroAndMax (0m-HP) is (4k, k)-uniform, and
(4) coMonoTriangle is (2k + 6, k)-uniform.

Here, Reach and AltReach refer to graphs G in which there is a path from a desig-
nated vertex s to a designated vertex t, the difference among the two problems being that
the first refers to regular graphs while the second to alternating graphs. An alternating
graph is a directed graph whose vertices are partitioned into universal and existential. The
accessibility relation or alternating paths are defined as follows. Any vertex u is accessible
from itself. If u is an existential vertex, there is an edge (u, v) and w is a vertex accessible
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from v, then w is accessible from u. Finally, if u is an universal vertex, there is at least one
edge leaving u and w is accessible from every vertex v such that (u, v) is an edge, then w is
accessible from u.

0m-HP refers to graphs in which there is a Hamiltonian path between the vertex denoted
by the constant 0 and the vertex denoted by the constant max. coMonoTriangle is the
complement of the problem MonochromaticTriangle; i.e., coMonoTriangle consists
of all graphs G for which every 2-coloring of the edges of G contains a monochromatic
triangle. Formal definitions for these problems are provided in the Appendix.

Proof. Case 1. Reach is defined with the vocabulary σ = 〈E, s, t〉 where E a binary
relation and s, t are two constant symbols. Let ϕ be an implicant formula like the one in
Definition 3.3 that has at most k literals. Such a formula postulates the presence/absence
of at most k edges in the graph encoded by a given σ-structure. The idea of the proof is to
construct a path from s to t by adding two new edges (s, a′) and (a′, t) for a vertex a′ that
is not referred to by the formula ϕ, which exists since the graph is assumed to have 2k + 1
vertices and ϕ can refer to at most 2k different vertices. Formally, notice that that ϕ has at
most 2k free-variables that we denote by x̄ and write ϕ(x̄). Let k ≥ 0 and m ≥ 2k + 1 be
two integers and consider a sequence ā of 2k integers in [m] such that ϕ(ā) is m-consistent.
Then, there is a model A = 〈[m], EA, sA, tA〉 of size m that satisfies ϕ(ā). Let a′ ∈ [m]
be an integer not contained in the sequence ā, which exists since m ≥ 2k + 1. Then, the
structure A′ = 〈[m], EA′

, sA, tA〉, where EA′
= EA ∪ {(sA, a′), (a′, tA)}, satisfies ϕ(ā) and

belongs to Reach. Therefore, Reach is (2k + 1, k)-uniform for every k ≥ 0.

Case 2. AltReach is defined with the vocabulary σ = 〈E,U, s, t〉 where E denotes the
edges of the graph and U is a unary relation denoting the universal vertices. As before,
let ϕ be an implicant with at most k literals. Such a formula refers to at most 2k vertices
and thus can be written as ϕ(x̄) where |x̄| = 2k. Let k ≥ 0 and m ≥ 2k + 1 be two
integers and consider a sequence ā of 2k integers in [m] such that ϕ(ā) is m-consistent. Let
A = 〈[m], EA, UA, sA, tA〉 be a minimum σ-structure of size [m] that satisfies ϕ(ā), where
the minimum is with respect to the sizes of EA and UA (i.e., A satisfies ϕ(ā) but if some
edge from EA or some vertex from UA is removed, then A ceases to satisfy ϕ(ā)). It is not
hard to see that in the graph encoded by A, there are at most 2k vertices connected to s
through simple (non-alternating) paths. Let a′ be an integer in [m] not contained in ā. We
form a new structure A′ that is like A but with the additional edges

{(sA, a′), (a′, tA)} ∪ {(ai, a
′) : 1 ≤ i ≤ 2k} .

It is not hard to see that A′ satisfies ϕ(ā) and has an alternating path connecting s to t.
The latter because every vertex ai connected to s through a simple path in A is connected
to t through an alternating path, which then implies that every such vertex ai and s itself is
connected to t through an alternating path. Therefore, AltReach is (2k + 1, k)-uniform.

Case 3. 0m-HP is defined with the vocabulary σ = 〈E〉 consisting of a single binary relation
symbol E. As before, the formula ϕ refers to at most 2k vertices and can be written as
ϕ(x̄) with |x̄| = 2k. Let k ≥ 0 and m ≥ 4k be two integers and consider a sequence ā
of 2k integers in [m] such that ϕ(ā) is m-consistent. Let A = 〈[m], EA〉 be a σ-structure
satisfying ϕ(ā). We need to construct a structure A′ of the same size that also satisfies ϕ(ā)
and has a Hamiltonian path between 0 and max = m− 1.

Let V = {a1, a2, . . . , a2k} \ {0,m − 1} be the set of unique elements in the sequence
ā except 0 and m − 1. The set V has ℓ ≤ 2k elements and thus we can pick another ℓ
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elements V ′ = {c1, . . . , cℓ} such that V ∩ V ′ = ∅. We construct A′ like A but add edges so
to construct the path

0c1a
′
1c2a

′
2 . . . cℓa

′
ℓ

that begins at 0 and does not repeat any vertex. This path contains 2ℓ+1 ≤ m vertices. If
there are vertices w1, . . . , wq in [m] that do not lie on the path, the path can be “completed”
into a Hamiltonian path joining 0 and m− 1 of the form

0c1a
′
1c2a

′
2 . . . cℓa

′
ℓw1w2 . . . wq(m− 1) .

This path contains all the elements in [m] and does not violate any of the conditions imposed
by ϕ(ā). Therefore, there is a positive instance of 0m-HP that satisfies ϕ(ā), and 0m-HP
is thus (4k, k)-uniform for every k ≥ 0.

Case 4. coMonoTriangle is also defined with the vocabulary σ = 〈E〉. Consider
a formula ϕ(x̄) as the above for 0m-HP. Let k ≥ 0 and m ≥ 2k + 6 be two integers
and consider a sequence a1, . . . , a2k of integers in [m] such that ϕ(ā) is m-consistent. Let
A = 〈[m], EA〉 be a σ-structure satisfying ϕ(ā). Since m ≥ 2k + 6, there are 6 vertices

{u0, . . . , u5} that are not mentioned in ā. Then, the structure A′ = 〈[m], EA′
〉 where

EA′
= EA ∪ {(ui, uj) : 0 ≤ i, j ≤ 5} is a structure that satisfies ϕ(ā). However, A′

encodes a graph G that has a complete subgraph of order 6 and therefore every 2-coloring
of the edges of G contains a monochromatic triangle1 and A′ belongs to coMonoTriangle.
Hence coMonoTriangle is (2k + 6, k)-uniform for every k ≥ 0.

Notice that (n, k)-uniformity is not preserved under complementation. For example, it
is easy to see that MonoTriangle is not (n, k)-uniform for any pair of natural numbers
(n, k) with k ≥ 15 since, by a result of Ramsey [9], no graph in MonoTriangle satisfies
∧

{E(i, j) : 0 ≤ i < j ≤ 5}.

4. Main Result

In this section we state and prove the main result of this paper which, among other things,
implies the superfluity of FO∀ with respect to NP. Basically, the result says that if a com-
plexity class C contains a family of complete problems that are (n, k)-uniform for increasing
values of k, plus other conditions, then FO∀ is superfluous with respect to C. The proof is
a direct consequence of a series of results that are presented in the form of one proposition
and two lemmas.

The proposition is a standard result in logic whose proof is left to the reader. It is used
in the proof of Lemma 4.2 to show that a numeric formula γ(x̄) holds in a structure A′

when it holds in a structure A of the same size and with the same interpretation for the
constant symbols. Remember that a numeric formula is one with no relation symbols from
the vocabulary.

Proposition 4.1. Let σ be a vocabulary with constants c1, . . . , ct and ϕ(x̄) ∈ FO(σ) be a

numeric formula. If A and A′ are two finite σ-structures of the same size and cAj = cA
′

j for

every 1 ≤ j ≤ t, then for every interpretation of variables i: 〈A, i〉 � ϕ(x̄) iff 〈A′, i〉 � ϕ(x̄).

1This is a well-known result in Ramsey theory, but follows easily using the pigeonhole principle [9].
Consider a red/blue coloring of the edges of a K6 and pick any vertex v. There are 5 edges incident at
v, so by the pigeonhole principle there are at least three edges of the same color: say blue and incident
at the vertices {x, y, z}. If any edge of the edges connecting {x, y, z} is blue, then there is a blue triangle.
Otherwise, all such edges are red and there is a red triangle.
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The following two lemmas are novel and related to the concepts of consistency and
uniformity presented above. The first establishes the consistency of the image (of a fop ρ)
for a uniform subset S of structures with respect to formulas ψ(x̄) that are implicants. This
result is then used in the second lemma to establish that FO∀ formulas ψ = ∀x̄θ(x̄) are
superfluous with respect to reductions ρ that map a uniform subset S into Mod(Φ ∧ ψ) for
any sentence Φ.

Lemma 4.2. Let σ and τ = 〈R1, . . . , Rs, c1, . . . , ct〉 be two vocabularies where each Rj is
an aj-ary relation symbol and σ has constants {c′1, . . . , c

′
t′}, and let n ≥ 0 and k ≥ t+ t′ be

two non-negative integers. Further, let

H1: ρ : Struc(σ) → Struc(τ) be a d-ary fop given by the tuple 〈ϕ1, . . . , ϕs, ψ1, . . . , ψt〉
consisting of projective formulas,

H2: S ⊆ Struc(σ) be an (n, k)-uniform subset of σ-structures,
H3: ψ(x̄) be a DNFk−t−t′(τ) implicant,
H4: A be a finite σ-structure with ‖A‖ ≥ n, and
H5: ū be a tuple of elements from |ρ(A)| such that ρ(A) � ψ(ū).

Then, there is a structure A′ in S with ‖A‖ = ‖A′‖ such that ρ(A′) � ψ(ū).

Proof. The strategy for the proof is as follows. First, we give a claim that relates statements
about ρ(A) in terms of statements about A, and vice versa. Second, we use the claim
to construct a formula δ(x̄) and tuple ā over |A| such that A � δ(ā) iff ρ(A) � ψ(ū)
plus conditions that guarantee that the constants are interpreted in the same way in the
structures A and A′, and in ρ(A) and ρ(A′) respectively. Third, we use the uniformity of S
to obtain a structure A′ ∈ S that satisfies δ(ā). Finally, we use the claim again, but applied
to the structure A′, to show ρ(A′) � ψ(ū).

For the claim, recall that the mapping B 7→ ρ(B) is defined by the projective formulas
that define the interpretations in ρ(B) of the relation and constant symbols in τ ; i.e., ρ(B) �
Rj(ā) iff B � ϕj(ā) where ā is a tuple in |B|daj (because ρ has arity d and Rj has arity aj),

and ρ(B) � cj = w̄ iff B � ψj(w̄) where w̄ is a tuple in |B|d. So, whether we are dealing
with formulas interpreted in B or ρ(B), the tuples ā are always over elements in |B|.

Claim 4.3. 2

Let B be a σ-structure, η(ȳ) be either a non-numeric τ -literal or an atomic formula of
the form c = ȳ, and ā be a tuple of |ȳ| elements in the universe |B|. Then, there is a formula
µ(ȳ) over σ that is either numeric or a conjunction α(ȳ) ∧ λ(ȳ), with α being numeric and
λ being a non-numeric σ-literal, such that ρ(B) � η(ā) iff B � µ(ā).

We now use the claim to prove the lemma. The proof of the claim appears at the end of
this proof.

By H3, the implicant has form ψ(x̄) = θ(x̄)∧L1(x̄)∧· · ·∧Lm(x̄) where θ(x̄) is a numeric
implicant and L1, . . . , Lm are non-numeric τ -literals with m ≤ k − t− t′. By H5, we know
that

ρ(A) � θ(ū), ρ(A) � L1(ū), ρ(A) � L2(ū), · · · ρ(A) � Lm(ū) .

Let us apply the Claim to these entailments and the tuple ū to obtain the formulas

µ1(ȳ), µ2(ȳ), . . . , µm(ȳ)

2This claim is a special case of a more general result expressed in terms of the dual operator associated
with a first-order query [10].
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such that A � µj(ū) for 1 ≤ j ≤ m. Thus, A � µ1(ū) ∧ · · · ∧ µm(ū). By collecting the
numeric subformulas in the µj’s into a single numeric formula β(ȳ), we obtain

A � β(ū) ∧ λ1(ū) ∧ · · · ∧ λℓ(ū)

where each λj is a non-numeric σ-literal for 1 ≤ j ≤ ℓ with ℓ ≤ m. At this stage, we can
apply the uniformity of S to obtain a structure A′ ∈ S satisfying λj(ū) for 1 ≤ j ≤ ℓ; yet
this is not enough as we also require A′ � β(ū) and ρ(A′) � θ(ū). However, Proposition 4.1
can help us provided that A and A′ interpret the constants in the same way, and the same
for ρ(A) and ρ(A′).

So, consider the tuples v̄1, . . . , v̄t that interpret the constant symbols c1, . . . , ct in ρ(A).
Applying the claim again to the formulas cj = v̄j in the image ρ(A) and the tuple v̄ =

〈v̄1, . . . , v̄t〉, we obtain a numeric formula β̃(v̄) and non-numeric σ-literals λ̃1(v̄1), . . . , λ̃ℓ′(v̄t)
with ℓ′ ≤ t such that

A � β̃(v̄) ∧ λ̃1(v̄) ∧ · · · ∧ λ̃ℓ′(v̄) .

Further, if w1, . . . , wt′ are the interpretation of the constants c′1, . . . , c
′
t′ in A, then

A � λ1(ū) ∧ · · · ∧ λℓ(ū) ∧ λ̃1(v̄) ∧ · · · ∧ λ̃ℓ′(v̄) ∧ c
′
1 = w1 ∧ · · · ∧ c

′
t′ = wt′

with ℓ + ℓ′ + t′ ≤ k. Thus, apply the (n, k)-uniformity of S to obtain a structure A′ ∈ S
with ‖A′‖ = ‖A‖ and such that

A′ � λ1(ū) ∧ · · · ∧ λℓ(ū) ∧ λ̃1(v̄) ∧ · · · ∧ λ̃ℓ′(v̄) ∧ c
′
1 = w1 ∧ · · · ∧ c

′
t′ = wt′ .

In particular, A and A′ have the same interpretation for the constants {c′1, . . . , c
′
t′} and

thus, by Proposition 4.1, A′ � β(ū) ∧ β̃(v̄). On the other hand, a new application of the
claim but using the structure A′, gives us ρ(A′) � L1(ū) ∧ · · · ∧ Lm(ū) and ρ(A′) � c1 =
v̄1 ∧ · · · ∧ ct = v̄t. The latter implies that ρ(A) and ρ(A′) have the same interpretation for
the constants {c1, . . . , ct}. By Proposition 4.1, ρ(A′) � θ(ū) as well. Therefore, ρ(A′) � ψ(ū)
as needed.

Proof of the Claim: Let us consider the two cases whether η(ȳ) is a positive or negative
literal. In the first case, η(ȳ) is either R(ȳ) or c = ȳ for some R ∈ {R1, . . . , Rs} or
c ∈ {c1, . . . , ct}. Suppose that ρ(B) � η(ā). Then, there is a projective formula of the form

ϕ(ȳ) = α0(ȳ) ∨ (α1(ȳ) ∧ λ1(ȳ)) ∨ · · · ∨ (αp(ȳ) ∧ λp(ȳ)) (4.1)

that defines the interpretation of η(ȳ) in ρ(B) such that B � ϕ(ā). Then, either B � α0(ā)
which is numeric or B � αj(ā) ∧ λj(ā) for exactly one 1 ≤ j ≤ p since the formulas αj ’s are
mutually exclusive. Conversely, if B � α0(ā) or B � αj(ā) ∧ λj(ā) for some 1 ≤ j ≤ p, then
ρ(B) � η(ā).

The second case is when η(ȳ) is a negative τ -literal of the form η(ȳ) = ¬R(ȳ). Let ϕ(ȳ)
be the projective formula like (4.1) that defines the interpretation of R in the image of ρ.
Assume that ρ(B) � η(ā). Then, B 2 ϕ(ā). There are two possibilities. First, B 2 α0(ā) ∨
· · · ∨ αp(ā) in which case B � γ(ā) for the numeric implicant γ(ȳ) = ¬α0(ȳ) ∧ · · · ∧ ¬αp(ȳ).
Second, B � αj(ā) ∧ ¬λj(ā) for exactly one 1 ≤ j ≤ p. In either case, the claim is satisfied.
Finally, for the converse direction, if B � γ(ā) or B � αj(ā)∧¬λj(ā), then ρ(B) 2 R(ā) and
hence ρ(B) � η(ā).
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Lemma 4.4. Let σ and τ = 〈R1, . . . , Rs, c1, . . . , ct〉 be two vocabularies where σ has con-
stants {c′1, . . . , c

′
t′}, and let n ≥ 0 be a non-negative integers. Further, let

H1: S ⊆ Struc(σ) be a subset of structures that contains all the structures A with ‖A‖ < n,
H2: ψ = ∀x̄θ(x̄) be a FO-sentence with θ(x̄) ∈ CNFr(τ) for some integer r, and
H3: Φ be a sentence in L(τ).

If S is (n, k)-uniform for k ≥ t+ t′ + r and ρ is a fop that reduces S to Mod(Φ ∧ ψ), then
ψ is superfluous with respect to ρ.

Proof. Assume that θ(x̄) =
∧

1≤i≤m θi(x̄) where each θi is a clause of the form

θi(x̄) ≡ βi(x̄) ∨ L
i
1(x̄) ∨ · · · ∨ L

i
mi

(x̄) ,

where βi is a disjunction of numeric literals and Li
1(x̄), . . . , L

i
mi

(x̄) are non-numeric literals
with mi ≤ r. We want to show that ρ(A) � ∀x̄θ(x̄) for every A ∈ Struc(σ). Let us consider
two cases:

• If A ∈ S, then ρ(A) � ψ since ρ reduces S to Mod(Φ ∧ ψ).
• If A 6∈ S, then ‖A‖ ≥ n and ρ(A) 6∈ Mod(Φ ∧ ψ). Thus, either ρ(A) 2 Φ or ρ(A) 2 ψ.
Assume, for the sake of a contradiction, that ρ(A) 6� ψ. So, there is a clause θi(x̄) and a
tuple ū ∈ |ρ(A)||x̄| such that ρ(A) 6� θi(ū); i.e.,

ρ(A) 2 βi(ū) ∨ L
i
1(ū) ∨ · · · ∨ L

i
mi

(ū)

or equivalently

ρ(A) � γ(ū) ∧ λ1(ū) ∧ · · · ∧ λmi
(ū)

where γ(x̄) ≡ ¬βi(x̄) is a conjunction of numeric literals, and each λj(x̄) ≡ ¬L
i
j(x̄) is a

non-numeric literal. At this moment, all the hypotheses of Lemma 4.2 are satisfied and
thus there is a finite σ-structure A′ ∈ S with ‖A′‖ = ‖A‖ such that ρ(A′) � γ(ū)∧λ1(ū)∧
· · · ∧ λm1

(ū). Hence, ρ(A′) does not satisfy ψ. This is a contradiction since A′ ∈ S and ρ
reduces S to Mod(Φ ∧ ψ). Therefore, ρ(A) � ψ.

Corollary 4.5. With the same hypotheses of Lemma 4.4, the fop ρ reduces S to Mod(Φ).
Hence, if L captures C and S is C-complete, then Mod(Φ) is C-complete.

Proof. Direct since for every structure A ∈ Struc(σ), ρ(A) � ψ.

We now define what is a complete and uniform family of problems for a class C, and
state and prove the main theorem of the paper.

Definition 4.6. A family F of problems over vocabulary σ = 〈R1, . . . , Rs, c1, . . . , ct〉 is
complete and uniform for a complexity class C if 1) every problem in F is C-complete, and
2) there is a sequence {nk}k≥0 and a natural number m such that for every k ≥ m there
is a (nk, k)-uniform problem Snk

in F that contains all the structures A ∈ Struc(σ) with
‖A‖ < nk.

Theorem 4.7 (Main). Let C be a complexity class captured by L with FO ⊆ L. If C

contains a complete and uniform family F , then FO∀ is superfluous with respect to C.

Proof. Let τ be a vocabulary and ψ be a FO∀-sentence on τ . It is enough to prove that
ψ is superfluous with respect to L since ψ is an arbitrary sentence. First notice that ψ
can be written in prenex normal form with a quantifier-free part in CNFr for some r ∈ N.
Let Φ ∈ L(τ) be a sentence such that Mod(Φ ∧ ψ) is C-complete. Let t be the number of
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constant symbols in the vocabulary σ for the family F , k = r+ t+ t′ where t′ is the number
of constant symbols in τ , and {nk}k≥0 and m be the sequence and natural number for F .
If k ≥ m, there is a problem Snk

∈ F that is (nk, k)-uniform, C-complete, and contains all
the structures A ∈ Struc(σ) with ‖A‖ < nk. Then, there is a fop ρ that reduces Snk

to T .
Thus, all the hypotheses in Lemma 4.4 are fulfilled and therefore Mod(Φ) is C-complete by
Corollary 4.5. The case k < m is covered by the case k = m since (nk, k)-uniformity implies
(nk, k − 1)-uniformity according to Lemma 3.4.

4.1. Superfluity of FO∀ for Some Complexity Classes. We have seen that 0m-HP is
(4k, k)-uniform for every k ∈ N, but it easy to see that it has negative instances of every
size and thus the Theorem 4.7 cannot be applied directly. Hence, we make the following
definitions:

Definition 4.8. If S is a problem over σ, we define for each n ∈ N:

Sn := S ∪ {A ∈ Struc(σ) : ‖A‖ < n}

and the family of problems
F(S) := {Sn}n≥2 .

We will also use another property. The notion of autoreducibility is well known [2]. We
can translate it in the context of fops by saying that a problem is autoreducible if there is
a reduction from it to itself different than the identity. We need autoreducible sets with an
extra requirement on the cardinalities of the image structures:

Definition 4.9. Given a vocabulary σ and a natural number n, a set S ⊆ Struc(σ) is
n-autoreducible if there is a fop ρ : Struc(σ)→ Struc(σ) which reduces S to itself and such
that ‖ρ(A)‖ > n for every A ∈ Struc(σ).

It is immediate to see that the problem Sn is C-hard if S is C-hard and n-autoreducible.

Theorem 4.10. F(Reach), F(AltReach), F(0m-HP) and F(CoMonoTriangle) are
complete and uniform families for NL, P, NP and coNP respectively.

Then, as a consequence of Theorems 4.7 and 4.10:

Corollary 4.11. FO∀ is superfluous with respect to NL, P, NP, and coNP

This corollary answers Conjecture 1.1 for FO∀ instead of FO.

Proof of Theorem 4.10. We begin showing that the families F(Reach), F(AltReach),
F(0m-HP) and F(CoMonoTriangle) are uniform.

By Lemma 3.5, the problems in F(Reach) and F(AltReach) are (2k+1, k) uniform,
the problems in F(0m-HP) are (4k, k)-uniform, and the problems in F(CoMonoTriangle)
are (2k + 6, k)-uniform for every integer k ≥ 0. Thus, it is easy to these that these families
are uniform: for F(Reach) and F(AltReach) the sequence is {2k+1}k≥0, for F(0m-HP)
the sequence is {4k}k≥0, and for F(coMonoTriangle) the sequence is {2k + 6}k≥0. In
all cases, m = 1.

It remains to show that the families are complete; i.e., that every problem in the
families F(Reach), F(AltReach), F(0m-HP) and F(CoMonoTriangle) is complete
for the classes NL, P, NP and coNP respectively. That is, that every problem belongs and
is hard for the respective complexity class.
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Let us first show that each problem in the above families belongs to the respective
complexity class. Consider the family F(S) where S is a problem in a complexity class C
captured by the logic L with FO ⊆ L. There is a sentence Φ ∈ L such that S = Mod(Φ).
On the other hand, given integer n ≥ 0, we have a FO-sentence ζn such that A � ζn ⇐⇒
‖A‖ < n. Thus, Φ ∨ ζn defines Sn and, since FO ⊆ L, Φ ∨ ζn ∈ L and Sn belongs to C.
Therefore, every problem in F(S) belongs to C. Since the logics that capture the classes NL,
P, NP and coNP all include FO, then each problem in each family belongs to the respective
complexity class.

The hardness for each problem in the families F(S), when S is Reach, AltReach,
0m-HP or coMonoTriangle, follows from the facts that S is hard for its complexity class
and that S is n-autoreducible for each integer n ≥ 0. We begin by showing the latter fact.
That is, given integer n ≥ 0, we need to construct a fop-reduction ρ such that the image
ρ(A) has a universe of size greater than n. The reduction in all cases essentially consists of
padding the original structure to obtain a new one with the desired size. Given an integer
n ≥ 0 we let k be the least natural number such that 2k > n. The integer k will be the
arity of the fop ρ in each case.

AltReach is defined over the vocabulary σ = 〈E,U, s, t〉 where E and U are a binary
and monadic relations denoting the edges and universal vertices in the graph, and s and t
are constant symbols denoting designated vertices. In this case the reduction simply adds
as much disconnected vertices as necessary.

IfA = 〈|A|, EA, UA, sA, tA〉 is a finite σ-structure. The image of A is the finite structure
ρ(A) defined as follows:

|ρ(A)| = |A|k

Eρ(A) =







(ū, v̄) :
∧

1≤j<k

(uj = vj = 0) ∧ (uk, vk) ∈ E
A







Uρ(A) =
{

v̄ : v̄ ↾k−1= 0̄ ∧ vk ∈ U
A
}

sρ(A) = 〈0, . . . , 0, v〉 with v = sA

tρ(A) = 〈0, . . . , 0, v〉 with v = tA

it should be clear that ρ is a reduction since A contains an alternating path from s to t
iff ρ(A) contains one. The projection reducing Reach to Reachn is almost the same but
without any reference to universal vertices.

In the case of F(0m-HP) given a strucureA its image ρ(A) consists of k copies of A with
edges joining the vertex corresponding to max in the j-th with the vertex corresponding
to 0 in the j + 1-th copy with j < n. There are no other edges connecting different copies
of A. It is clear that ρ(A) will have a Hamiltonian path joining the vertices 〈0, . . . , 0〉 and
〈max, . . . ,max〉 iff there is a Hamiltonian path joining 0 and max in A

For coMonoTriangle it is enough to have the ‖A‖k−1 copies of the input structure
without connecting them. Since they are all different connected components of ρ(A), a
2-coloring of the edges in ρ(A) is just a combination of 2-colorings of the edges in A and
ρ(A) is a positive instance of CoMonoTriangle if and only if A is.

We finish the proof of the theorem by showing that each of the problems is complete
for its complexity class. We already know that Reach is NL-complete, AltReach is
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P-complete [10, Corollary 11.3] and coMonoTriangle is coNP-complete since Mono-
Triangle is NP-complete [11, 7]. It remains to show that 0m-HP is NP-complete. For
the inclusion, notice that 0m-HP can be defined in SO∃ by stating a total ordering of the
vertices such that any two consecutive vertices in the ordering form an edge in the graph
and with the first and last element in the ordering being 0 and max respectively. For the
hardness, it is enough to reduce the similar 01-HP problem (known to be NP-complete [1])
to 0m-HP with a projection that interchanges 1 with max.

5. Applications

We show two applications of the superfluity of FO∀. In the first application, we establish
the NP-completeness of the problem LongestPath for determining the existence of a path
between two designated vertices s and t of length bigger than a given threshold K. In the
second application, we show that establishing the completeness of a property for undirected
graphs is enough for establishing the completeness of the same property for directed graphs.
Up to our knowledge, these are novel results in the area.

Theorem 5.1. LongestPath is NP-complete via fops.

Before giving the proof of the theorem, let us define some terminology. Let S be
a problem where each instance includes a function f defined from the set of k-tuples of
elements in the universe to the non-negative integers. If σ is the vocabulary used to define
S, we say that a k + 1-ary relation symbol F in σ is the binary expansion of f if, given a
finite σ-structure A and a k-tuple ā ∈ ‖A‖k:

(a1, . . . , ak, i) ∈ F
A ⇐⇒ the i-th bit in the binary expansion of f(ā) is 1.

Proof. LongestPath is known to be in NP [7], hence there is a SO∃ sentence ΦLP for
it over the vocabulary σ = 〈L3, E2,K1, s, t〉, where L defines the binary expansion of the
lengths of the edges, E is the edge relation and K defines the binary expansion of the bound
on the total length for a path joining s and t.

Consider the FO∀ sentence ψ = ψ1 ∧ ψ2 where

ψ1 = ∀xyz L(x, y, z) −→ z = 0

ψ2 = ∀xK(x)←→ BIT(max, x) .

Then a finite σ-structures A is a model of the sentence Φ = ΦLP ∧ ψ if and only if every
edge of A has length 1 and there is a path from sA to tA with total length at least max.

Since max = ‖A‖ − 1 and every edge has length 1, the path joining s and t must be
Hamiltonian. Therefore Φ = ΦLP ∧ ψ defines HamiltonianPathBetweenTwoPoints
(which is NP-Complete [1]) and ΦLP defines an NP-complete problem because ψ is super-
fluous for NP.

The second application considers directed and undirected versions of problems on
graphs. If S ⊆ Struc(〈E2〉) is a problem over undirected graphs, we say that S̃ is the

version over directed graphs of S if there is a sentence Φ such that S̃ = Mod(Φ) and
S = Mod(Φ ∧ ψ) where ψ ≡ ∀xy E(x, y) −→ E(y, x). In such case, if S is C-complete for a

class C for which FO∀ is superfluous, then S̃ is also C-complete.

Theorem 5.2. If FO∀ is superfluous with respect to class C and S is a C-complete problem
over undirected graphs, then its version over directed graphs is C-complete as well.
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6. Discussion

We gave a partial affirmative answer to Conjecture 1.1 by proving that the universal frag-
ment FO∀ is superfluous with respect to NP. This is a consequence of Theorem 4.7 which
also implies that FO∀ is superfluous with respect to NL, P and coNP. Our method is fairly
general and it is based on the (n, r)-uniformity concept which is new, as far as we know. On
the other hand, we extended the previous concept of superfluity [11] to complexity classes
(and languages) beyond NP.

In one application of these results, the superfluity of FO∀ allows to give syntactic proofs
for NP-completeness if one can find a suitable restriction of the problem that is expressible
with a FO∀ sentence and already known to be complete (cf. Theorem 5.1). In another
application we show that the directed versions of any NP-complete problem on undirected
remain NP-complete.

In the future, we want to continue this research with the aim of proving Medina’s
conjecture in its full generality, which we believe to be true. On the other hand, one can
think in generalizations and related versions of this conjecture. For example, a more general
conjecture is the following:

Conjecture 6.1. Let L and L′ be two logics capturing classes C and C′ respectively and
such that L′ ⊆ L, and let Φ ∈ L and Φ′ ∈ L′ be two sentences. Then,

Mod(Φ ∧ Φ′) is C-complete =⇒ either Mod(Φ) or Mod(Φ′) is C-complete .

This conjecture reduces to Medina’s when L′ is FO∀ and AC0 (languages recognized by
circuits of polynomial size, constant depth and unbounded fan-in) is known to be strictly
included in C.

Another direction is to use the concept of complete and uniform families to separate
complexity classes. That is, if C and C′ are two complexity classes such that C ⊆ C′ and
C′ contains a complete and uniform family F but C does not contain such a family, then
it must be the case that the two classes are different.

The converse of Medina’s conjecture is also interesting. In general, we know that the
completeness of Mod(Φ) does not necessarily imply the completeness of Mod(Φ∧ψ). Indeed,
it is enough for ψ to be inconsistent to see this or, for example, consider the case of SAT
and 2SAT in which the first is NP-complete while the second is in P and not believed to
be NP-complete, yet 2SAT can be expressed as Mod(ΦSAT ∧ ψ) for a suitable choice of ψ
where ΦSAT defines SAT. However, an interesting question is what syntactic characteristics
must have ψ ∈ FO in order for the C-completeness of Φ to be preserved by the conjunction
Φ ∧ ψ.

Finally, there is a clear relation between the concept of (n, r)-uniformity and Ramsey-
type problems. Let S be a (n, r)-uniform class of graphs defined over the vocabulary
〈E2〉 and m ≥ n. Then, a sequence {Lj(xj, yj)}1≤j≤r of literals together with a sequence
{(aj , bj)}1≤j≤r of different pairs from [m]2, with aj 6= bj for 1 ≤ j ≤ r, can be interpreted as
a partial 2-coloring on the edges of Km, the complete graph on m vertices, by considering
the edge (u, v) to be colored red or blue whether E(u, v) or ¬E(u, v) belong to the sequence
of literals respectively. Since S is (n, r)-uniform, there there is a coloring c of the edges of
Km such that the subgraph consisting of all the m vertices but only the red edges belongs to
S. This connection may prove useful when giving a definite answer to Medina’s conjecture.
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Appendix A. Decision Problems

3-DimensionalMatching
Instance:: a collection M of triplets over a set S.
Property:: the existence of a three dimensional matching M ′ contained in M ; i.e., a
subset M ′ ⊆ M with |M ′| = |S| such that for every a ∈ S, there are exactly three
triplets (a, y, z), (x′, a, z′) and (x′′, y′, a) in M ′.
Vocabulary:: σ = 〈M3〉.

AltReach
Instance:: an alternating graph G with two highlighted vertices s and t.
Property:: the vertex t is accessible from the vertex s.
Vocabulary:: σ = 〈E2, U1, s, t〉.
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HamiltonianPathBetweenTwoPoints
Instance:: a finite simple graph G with two special vertices s and t.
Property:: existence of a Hamiltonian path between s and t.
Vocabulary:: σ = 〈E2, s, t〉.

HamiltonianPathBetweenZeroAndMax
Instance:: a finite simple graph G with {0, . . . , n− 1} as its set of vertices.
Property:: existence of a Hamiltonian path between 0 and n− 1.
Vocabulary:: σ = 〈E2〉.

LongestPath
Instance:: a finite simple graph G with lengths ℓ(e) ∈ Z

+ associated to each edge, two
special vertices s and t, and an lower bound K ∈ Z

+.
Property:: existence of a simple path between s and t with length at least K.
Vocabulary:: σ = 〈L3, E2,K1, s, t〉.

MonochromaticTriangle
Instance:: A graph G.
Property:: There is a 2-coloring of the edges of G such that G contains no triangle
with all edges of the same color.
Vocabulary:: σ = 〈E2〉.

Reach
Instance:: A graph G with two highlighted vertices s and t.
Property:: There is a path between s and t.
Vocabulary:: σ = 〈E2, s, t〉.
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