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Abstract. Optimizations in a traditional compiler are applied sequentially, with each
optimization destructively modifying the program to produce a transformed program that
is then passed to the next optimization. We present a new approach for structuring the
optimization phase of a compiler. In our approach, optimizations take the form of equality
analyses that add equality information to a common intermediate representation. The op-
timizer works by repeatedly applying these analyses to infer equivalences between program
fragments, thus saturating the intermediate representation with equalities. Once saturated,
the intermediate representation encodes multiple optimized versions of the input program.
At this point, a profitability heuristic picks the final optimized program from the various
programs represented in the saturated representation. Our proposed way of structuring
optimizers has a variety of benefits over previous approaches: our approach obviates the
need to worry about optimization ordering, enables the use of a global optimization heuris-
tic that selects among fully optimized programs, and can be used to perform translation
validation, even on compilers other than our own. We present our approach, formalize
it, and describe our choice of intermediate representation. We also present experimental
results showing that our approach is practical in terms of time and space overhead, is
effective at discovering intricate optimization opportunities, and is effective at performing
translation validation for a realistic optimizer.

Introduction

In a traditional compilation system, optimizations are applied sequentially, with each
optimization taking as input the program produced by the previous one. This traditional
approach to compilation has several well-known drawbacks. One of these drawbacks is
that the order in which optimizations are run affects the quality of the generated code,
a problem commonly known as the phase ordering problem. Another drawback is that
profitability heuristics, which decide whether or not to apply a given optimization, tend to
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make their decisions one optimization at a time, and so it is difficult for these heuristics to
account for the effect of future transformations.

In this paper, we present a new approach for structuring optimizers that addresses the
above limitations of the traditional approach, and also has a variety of other benefits. Our
approach consists of computing a set of optimized versions of the input program and then
selecting the best candidate from this set. The set of candidate optimized programs is
computed by repeatedly inferring equivalences between program fragments, thus allowing
us to represent the effect of many possible optimizations at once. This, in turn, enables the
compiler to delay the decision of whether or not an optimization is profitable until it observes
the full ramifications of that decision. Although related ideas have been explored in the
context of super-optimizers, as Section 10 on related work will point out, super-optimizers
typically operate on straight-line code, whereas our approach is meant as a general-purpose
compilation paradigm that can optimize complicated control flow structures.

At its core, our approach is based on a simple change to the traditional compilation
model: whereas traditional optimizations operate by destructively performing transforma-
tions, in our approach optimizations take the form of equality analyses that simply add
equality information to a common intermediate representation (IR), without losing the
original program. Thus, after each equality analysis runs, both the old program and the
new program are represented.

The simplest form of equality analysis looks for ways to instantiate equality axioms like
a ∗ 0 = 0, or a ∗ 4 = a << 2. However, our approach also supports arbitrarily complicated
forms of equality analyses, such as inlining, tail recursion elimination, and various forms of
user defined axioms. The flexibility with which equality analyses are defined makes it easy
for compiler writers to port their traditional optimizations to our equality-based model:
optimizations can work as before, except that when the optimization would have performed
a transformation, it now simply records the transformation as an equality.

The main technical challenge that we face in our approach is that the compiler’s IR
must now use equality information to represent not just one optimized version of the input
program, but multiple versions at once. We address this challenge through a new IR that
compactly represents equality information, and as a result can simultaneously store multiple
optimized versions of the input program. After a program is converted into our IR, we
repeatedly apply equality analyses to infer new equalities until no more equalities can be
inferred, a process known as saturation. Once saturated with equalities, our IR compactly
represents the various possible ways of computing the values from the original program
modulo the given set of equality analyses (and modulo some bound in the case where
applying equality analyses leads to unbounded expansion).

Our approach of having optimizations add equality information to a common IR until
it is saturated with equalities has a variety of benefits over previous optimization models.

Optimization order does not matter. The first benefit of our approach is that it re-
moves the need to think about optimization ordering. When applying optimizations sequen-
tially, ordering is a problem because one optimization, say A, may perform some transfor-
mation that will irrevocably prevent another optimization, say B, from triggering, when in
fact running B first would have produced the better outcome. This so-called phase ordering
problem is ubiquitous in compiler design. In our approach, however, the compiler writer
does not need to worry about ordering, because optimizations do not destructively update
the program – they simply add equality information. Therefore, after an optimization A
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is applied, the original program is still represented (along with the transformed program),
and so any optimization B that could have been applied before A is still applicable after
A. Thus, there is no way that applying an optimization A can irrevocably prevent another
optimization B from applying, and so there is no way that applying optimizations will lead
the search astray. As a result, compiler writers who use our approach do not need to worry
about the order in which optimizations run. Better yet, because optimizations are allowed
to freely interact during equality saturation, without any consideration for ordering, our
approach can discover intricate optimization opportunities that compiler writers may not
have anticipated, and hence would not have implemented in a general purpose compiler.

Global profitability heuristics. The second benefit of our approach is that it enables
global profitability heuristics. Even if there existed a perfect order to run optimizations in,
compiler writers would still have to design profitability heuristics for determining whether
or not to perform certain optimizations such as inlining. Unfortunately, in a traditional
compilation system where optimizations are applied sequentially, each heuristic decides in
isolation whether or not to apply an optimization at a particular point in the compilation
process. The local nature of these heuristics makes it difficult to take into account the effect
of future optimizations.

Our approach, on the other hand, allows the compiler writer to design profitability
heuristics that are global in nature. In particular, rather than choosing whether or not to
apply an optimization locally, these heuristics choose between fully optimized versions of
the input program. Our approach makes this possible by separating the decision of whether
or not a transformation is applicable from the decision of whether or not it is profitable.
Indeed, using an optimization to add an equality in our approach does not indicate a
decision to perform the transformation – the added equality just represents the option of
picking that transformation later. The actual decision of which transformations to apply is
performed by a global heuristic after our IR has been saturated with equalities. This global
heuristic simply chooses among the various optimized versions of the input program that
are represented in the saturated IR, and so it has a global view of all the transformations
that were tried and what programs they generated.

There are many ways to implement this global profitability heuristic, and in our pro-
totype compiler we have chosen to implement it using a Pseudo-Boolean solver (a form of
Integer Linear Programming solver). In particular, after our IR has been saturated with
equalities, we use a Pseudo-Boolean solver and a static cost model for every node to pick
the lowest-cost program that computes the same result as the original program.

Translation validation. The third benefit of our approach is that it can be used not
only to optimize programs, but also to prove programs equivalent: intuitively, if during
saturation an equality analysis finds that the return values of two programs are equal, then
the two programs are equivalent. Our approach can therefore be used to perform translation
validation, a technique that consists of automatically checking whether or not the optimized
version of an input program is semantically equivalent to the original program. For example,
we can prove the correctness of optimizations performed by existing compilers, even if our
profitability heuristic would not have selected those optimizations.
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Contributions. The contributions of this paper can therefore be summarized as follows:

• We present a new approach for structuring optimizers. In our approach optimizations
add equality information to a common IR that simultaneously represents multiple opti-
mized versions of the input program. Our approach obviates the need to worry about
optimization ordering, it enables the use of a global optimization heuristic (such as a
Pseudo-Boolean solver), and it can be used to perform translation validation for any
compiler. Sections 1 and 2 present an overview of our approach and its capabilities, Sec-
tion 4 makes our approach formal, and Sections 5 through 7 describe the new IR that
allows our approach to be effective.
• We have instantiated our approach in a new Java bytecode optimizer called Peggy (Sec-
tion 8). Peggy uses our approach not only to optimize Java methods, but also to perform
translation validation for existing compilers. Our experimental results (Section 9) show
that our approach (1) is practical both in terms of time and space overhead, (2) is effective
at discovering both simple and intricate optimization opportunities and (3) is effective at
performing translation validation for a realistic optimizer – Peggy is able to validate 98%
of the runs of the Soot optimizer [52], and within the remaining 2% it uncovered a bug
in Soot.

1. Overview

Our approach for structuring optimizers is based on the idea of having optimizations
propagate equality information to a common IR that simultaneously represents multiple
optimized versions of the input program. The main challenge in designing this IR is that it
must make equality reasoning effective and efficient.

To make equality reasoning effective, our IR needs to support the same kind of basic
reasoning that one would expect from simple equality axioms like a ∗ (b+ c) = a ∗ b+ a ∗ c,
but with more complicated computations such as branches and loops. We have designed
a representation for computations called Program Expression Graphs (PEGs) that meets
these requirements. Similar to the gated SSA representation [51, 31], PEGs are referen-
tially transparent, which intuitively means that the value of an expression depends only
on the value of its constituent expressions, without any side-effects. As has been observed
previously in many contexts, referential transparency makes equality reasoning simple and
effective. However, unlike previous SSA-based representations, PEGs are also complete,
which means that there is no need to maintain any additional representation such as a
control flow graph (CFG). Completeness makes it easy to use equality for performing trans-
formations: if two PEG nodes are equal, then we can pick either one to create a program
that computes the same result, without worrying about the implications on any underlying
representation.

In addition to being effective, equality reasoning in our IR must be efficient. The main
challenge is that each added equality can potentially double the number of represented
programs, thus making the number of represented programs exponential in the worst case.
To address this challenge, we record equality information of PEG nodes by simply merging
PEG nodes into equivalence classes. We call the resulting equivalence graph an E-PEG,
and it is this E-PEG representation that we use in our approach. Using equivalence classes
allows E-PEGs to efficiently represent exponentially many ways of expressing the input
program, and it also allows the equality saturation engine to efficiently take into account
previously discovered equalities. Among existing IRs, E-PEGs are unique in their ability



EQUALITY SATURATION: A NEW APPROACH TO OPTIMIZATION 5

i := 0;

while (...) {

use(i * 5);

i := i + 1;

if (...) {

i := i + 3;

}

}

i := 0;

while (...) {

use(i);

i := i + 5;

if (...) {

i := i + 15;

}

}
(a) (b)

Figure 1: Loop-induction-variable strength reduction: (a) shows the original code, and (b)
shows the optimized code.
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Figure 2: Loop-induction-variable Strength Reduction using PEGs: (a) shows the original
PEG, (b) shows the E-PEG that our engine produces from the original PEG and
(c) shows the optimized PEG, which results by choosing nodes 6, 8, 10, and 12
from (b).

to represent multiple optimized versions of the input program. A more detailed discussion
of how PEGs and E-PEGs relate to previous IRs can be found in Section 10.

We illustrate the main features of our approach by showing how it can be used to
implement loop-induction-variable strength reduction. The idea behind this optimization is
that if all assignments to a variable i in a loop are increments, then an expression i * c in
the loop (with c being loop invariant) can be replaced with i, provided all the increments
of i in the loop are appropriately scaled by c.

As an example, consider the code snippet from Figure 1(a). The use of i*5 inside the
loop can be replaced with i as long as the two increments in the loop are scaled by 5. The
resulting code is shown in Figure 1(b).

1.1. Program Expression Graphs. A Program Expression Graph (PEG) is a graph
containing: (1) operator nodes, for example “plus”, “minus”, or any of our built-in nodes
for representing conditionals and loops, and (2) “dataflow” edges that specify where operator
nodes get their arguments from. As an example, consider the “use” statement in Figure 1(a).
This is meant as a placeholder for any kind of use of the value i*5; it is used to mark the
specific location inside the loop where we examine this value. The PEG for the value i*5
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is shown in Figure 2(a). At the very top of the PEG we see node 1, which represents
the i*5 multiply operation from inside the loop. Each PEG node represents an operation,
with the children nodes being the arguments to the operation. The links from parents
to children are shown using solid (non-dashed) lines. For example, node 1 represents the
multiplication of node 2 by the constant 5. PEGs follow the notational convention used in
E-graphs [41, 42, 21] and Abstract Syntax Trees (ASTs) of displaying operators above the
arguments that flow into them, which is the opposite convention typically used in Dataflow
Graphs [19, 5]. We use the E-graph/AST orientation because we think of PEGs as recursive
expressions.

Node 2 in our PEG represents the value of variable i inside the loop, right before the
first instruction in the loop is executed. We use θ nodes to represent values that vary inside
of a loop. A PEG contains one θ node per variable that is live in the loop, and a variable’s
θ node represents the entire sequence of values that the variable takes throughout the loop.
Intuitively, the left child of a θ node computes the initial value, whereas the right child
computes the value at the current iteration in terms of the value at the previous iteration.
In our example, the left child of the θ node is the constant 0, representing the initial value
of i. The right child of the θ node uses nodes 3, 4, and 5 to compute the value of i at
the current iteration in terms of the value of i from the previous iteration. The two plus
nodes (nodes 4 and 5) represent the two increments of i in the loop, whereas the φ node
(node 3) represents the merging of the two values of i produced by the two plus nodes. In
traditional SSA, a φ node has only two inputs (the true value and the false value) and as
a result the node itself does not know which of the two inputs to select, relying instead on
an explicit control-flow join to know at run-time which case of the branch was taken. In
contrast, our φ nodes are like those in gated SSA [51, 31]: they take an additional parameter
(the first left-most one) which is used to select between the second and the third parameter.
As a result, our φ nodes are executable by themselves, and so there is no need to explicitly
encode a control-flow join. Our example doesn’t use the branch condition in an interesting
way, and so we just let δ represent the PEG sub-graph that computes the branch condition.
Furthermore, since this PEG represents the value of i inside the loop, it does not contain
any operators to describe the while-condition, since this information is only relevant for
computing the value of i after the loop has terminated. We show how to express the value
of variables after a loop in Section 2.

From a more formal point of view, each θ node produces a sequence of values, one
value for each iteration of the loop. The first argument of a θ node is the value for the
first iteration, whereas the second argument is a sequence that represents the values for
the remaining iterations. For example, in Figure 2, the nodes labeled 3 through 5 compute
this sequence of remaining values in terms of the sequence produced by the θ node. In
particular, nodes 3, 4 and 5 have been implicitly lifted to operate on this sequence. The
fact that a single θ node represents the entire sequence of values that a loop produces allows
us to represent that two loops compute the same sequence of values with a single equality
between two θ nodes.

PEGs are well-suited for equality reasoning because all PEG operators, even those for
branches and loops, are mathematical functions with no side effects. As a result, PEGs are
referentially transparent, which allows us to perform the same kind of equality reasoning that
one is familiar with from mathematics. Though PEGs are related to functional programs, in
our work we have used PEGs to represent intra-procedural imperative code with branches
and looping constructs. Furthermore, even though all PEG operators are pure, PEGs can
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still represent programs with state by using heap summary nodes: stateful operations,
such as heap reads and writes, can take a heap as an argument and return a new heap.
This functional representation of stateful programs allows our Peggy compiler to use PEGs
to reason about Java programs. The heap summary node can also be used to encode
method/function calls in an intra-procedural setting by simply threading the heap summary
node through special nodes representing method/function calls. There is however one big
challenge with heap summary nodes, which we have not yet fully addressed yet. Although
in the PEG domain, heap summary nodes can be reasoned about as if the heap can be
duplicated, when a PEG is converted back to a CFG, heap summary nodes must obey a
linear-typing discipline. We have developed a simple constraint solving technique for finding
a linearization of heap operations in a PEG, but this technique is not complete (as in, even
if there is a linearization, we are not guaranteed to find it). In our Peggy implementation,
after optimizations have been applied, this incompleteness affects 3% of Java methods (in
which case we do not optimize the method). Section 8 explains in more detail how we
represent several features of Java programs in PEGs (including the heap and method calls)
and what the issues are with our linearization incompleteness. We also present some ideas
on how to address this incompleteness in future work.

1.2. Encoding equalities using E-PEGs. A PEG by itself can only represent a single
way of expressing the input program. To represent multiple optimized versions of the
input program, we need to encode equalities in our representation. To this end, an E-
PEG is a graph that groups together PEG nodes that are equal into equivalence classes.
As an example, Figure 2(b) shows the E-PEG that our engine produces from the PEG of
Figure 2(a). We display equalities graphically by adding a dashed edge between two nodes
that have become equal. These dashed edges are only a visualization mechanism. In reality,
PEG nodes that are equal are grouped together into an equivalence class.

Reasoning in an E-PEG is done through the application of optimizations, which in our
approach take the form of equality analyses that add equality information to the E-PEG.
An equality analysis consists of two components: a trigger, which is an expression pattern
stating the kinds of expressions that the analysis is interested in, and a callback function,
which should be invoked when the trigger pattern is found in the E-PEG. The saturation
engine continuously monitors all the triggers simultaneously, and invokes the necessary
callbacks when triggers match. When invoked, a callback function adds the appropriate
equalities to the E-PEG.

The simplest form of equality analysis consists of instantiating axioms such as a∗0 = 0.
In this case, the trigger would be a ∗ 0, and the callback function would add the equality
a ∗ 0 = 0. Even though the vast majority of our reasoning is done through such declarative
axiom application, our trigger and callback mechanism is much more general, and has
allowed us to implement equality analyses such as inlining, tail-recursion elimination, and
constant folding.

The following three axioms are the equality analyses required to perform loop-induction-
variable strength reduction. They state that multiplication distributes over addition, θ, and
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φ:

(a+ b) ∗m = a ∗m+ b ∗m (1.1)

θ(a, b) ∗m = θ(a ∗m, b ∗m) (1.2)

φ(a, b, c) ∗m = φ(a, b ∗m, c ∗m) (1.3)

After a program is converted to a PEG, a saturation engine repeatedly applies equality
analyses until either no more equalities can be added, or a bound is reached on the number
of expressions that have been processed by the engine. As Section 9 will describe in more
detail, our experiments show that 84% of methods can be completely saturated, without
any bounds being imposed.

Figure 2(b) shows the saturated E-PEG that results from applying the above distribu-
tivity axioms, along with a simple constant folding equality analysis. In particular, dis-
tributivity is applied four times: axiom (1.2) adds equality edge A, axiom (1.3) edge B,
axiom (1.1) edge C, and axiom (1.1) edge D. Our engine also applies the constant folding
equality analysis to show that 0∗5 = 0, 3∗5 = 15 and 1∗5 = 5. Note that when axiom (1.2)
adds edge A, it also adds node 7, which then enables axiom (1.3). Thus, equality analy-
ses essentially communicate with each other by propagating equalities through the E-PEG.
Furthermore, note that the instantiation of axiom (1.1) adds node 12 to the E-PEG, but it
does not add the right child of node 12, namely θ(. . .) ∗ 5, because it is already represented
in the E-PEG.

Once saturated with equalities, an E-PEG compactly represents multiple optimized
versions of the input program – in fact, it compactly represents all the programs that could
result from applying the optimizations in any order to the input program. For example,
the E-PEG in Figure 2(b) encodes 128 ways of expressing the original program (because it
encodes 7 independent equalities, namely the 7 dashed edges). In general, a single E-PEG
can efficiently represent exponentially many ways of expressing the input program.

After saturation, a global profitability heuristic can pick which optimized version of the
input program is best. Because this profitability heuristic can inspect the entire E-PEG
at once, it has a global view of the programs produced by various optimizations, after all
other optimizations were also run. In our example, starting at node 1, by choosing nodes
6, 8, 10, and 12, we can construct the graph in Figure 2(c), which corresponds exactly to
performing loop-induction-variable strength reduction in Figure 1(b).

More generally, when optimizing an entire function, one has to pick a node for the
equivalence class of the return value and nodes for all equivalence classes that the return
value depends on. There are many plausible heuristics for choosing nodes in an E-PEG. In
our Peggy implementation, we have chosen to select nodes using a Pseudo-Boolean solver,
which is an Integer Linear Programming solver where variables are constrained to 0 or
1. In particular, we use a Pseudo-Boolean solver and a static cost model for every node
to compute the lowest-cost program that is encoded in the E-PEG. In the example from
Figure 2, the Pseudo-Boolean solver picks the nodes described above. Section 8.3 describes
our technique for selecting nodes in more detail.
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1.3. Benefits of our approach.

Optimization order does not matter. To understand how our approach addresses the
phase ordering problem, consider a simple peephole optimization that transforms i * 5

into i << 2 + i. On the surface, one may think that this transformation should always be
performed if it is applicable – after all, it replaces a multiplication with the much cheaper
shift and add. In reality, however, this peephole optimization may disable other more
profitable transformations. The code from Figure 1(a) is such an example: transforming
i * 5 to i << 2 + i disables loop-induction-variable strength reduction, and therefore
generates code that is worse than the one from Figure 1(b).

The above example illustrates the ubiquitous phase ordering problem. In systems that
apply optimizations sequentially, the quality of the generated code depends on the order in
which optimizations are applied. Whitfield and Soffa [60] have shown experimentally that
enabling and disabling interactions between optimizations occur frequently in practice, and
furthermore that the patterns of interaction vary not only from program to program, but
also within a single program. Thus, no one order is best across all compilation.

A common partial solution consists of carefully considering all the possible interactions
between optimizations, possibly with the help of automated tools, and then coming up
with a carefully tuned sequence for running optimizations that strives to enable most of
the beneficial interactions. This technique, however, puts a heavy burden on the compiler
writer, and it also does not account for the fact that the best order may vary between
programs.

At high levels of optimizations, some compilers may even run optimizations in a loop
until no more changes can be made. Even so, if the compiler picks the wrong optimization to
start with, then no matter what optimizations are applied later, in any order, any number
of times, the compiler will not be able to reverse the disabling consequences of the first
optimization.

In our approach, the compiler writer does not need to worry about the order in which
optimizations are applied. The previous peephole optimization would be expressed as the
axiom i * 5 = i << 2 + i. However, unlike in a traditional compilation system, applying
this axiom in our approach does not remove the original program from the representation
— it only adds information — and so it cannot disable other optimizations. Therefore, the
code from Figure 1(b) would still be discovered, even if the peephole optimization was run
first. In essence, our approach is able to simultaneously explore all possible sequences of
optimizations, while sharing work that is common across the various sequences.

In addition to reducing the burden on compiler writers, removing the need to think
about optimization ordering has two additional benefits. First, because optimizations in-
teract freely with no regard to order, our approach often ends up combining optimizations
in unanticipated ways, leading to surprisingly complicated optimizations given how simple
our equality analyses are — Section 2 gives such an example. Second, it makes it easier for
end-user programmers to add domain-specific axioms to the compiler, because they don’t
have to think about where exactly in the compiler the axiom should be run, and in what
order relative to other optimizations.

Global profitability heuristics. Profitability heuristics in traditional compilers tend to
be local in nature, making it difficult to take into account the effect of future optimizations.
For example, consider inlining. Although it is straightforward to estimate the direct cost of
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inlining (the code-size increase) and the direct benefit of inlining (the savings from removing
the call overhead), it is far more difficult to estimate the potentially larger indirect benefit,
namely the additional optimization opportunities that inlining exposes.

To see how inlining would affect our running example, consider again the code from
Figure 1(a), but assume that instead of use(i * 5), there was a call to a function f, and the
use of i*5 occurred inside f. If f is sufficiently large, a traditional inliner would not inline
f, because the code bloat would outweigh the call-overhead savings. However, a traditional
inliner would miss the fact that it may still be worth inlining f, despite its size, because
inlining would expose the opportunity for loop-induction-variable strength reduction. One
solution to this problem consists of performing an inlining trial [20], where the compiler
simulates the inlining transformation, along with the effect of subsequent optimizations, in
order to decide whether or not to actually inline. However, in the face of multiple inlining
decisions (or more generally multiple optimization decisions), there can be exponentially
many possible outcomes, each one of which has to be compiled separately.

In our approach, on the other hand, inlining simply adds an equality to the E-PEG
stating that the call to a given function is equal to its body instantiated with the actual
arguments. The resulting E-PEG simultaneously represents the program where inlining is
performed and where it is not. Subsequent optimizations then operate on both of these
programs at the same time. More generally, our approach can simultaneously explore
exponentially many possibilities in parallel, while sharing the work that is redundant across
these various possibilities. In the above example with inlining, once the E-PEG is saturated,
a global profitability heuristic can make a more informed decision as to whether or not to
pick the inlined version, since it will be able to take into account the fact that inlining
enabled loop-induction-variable strength reduction.

Translation Validation. Unlike traditional compilation frameworks, our approach can be
used not only to optimize programs, but also to establish equivalences between programs. In
particular, if we convert two programs into an E-PEG, and then saturate it with equalities,
then we can conclude that the two programs are equivalent if they belong to the same
equivalence class in the saturated E-PEG. In this way, our approach can be used to perform
translation validation for any compiler (not just our own), by checking that each function
in the input program is equivalent to the corresponding optimized function in the output
program.

For example, our approach would be able to show that the two program fragments from
Figure 1 are equivalent. Furthermore, it would also be able to validate a compilation run in
which i * 5 = i << 2 + i was applied first to Figure 1(a). This shows that we are able to
perform translation validation regardless of what optimized program our own profitability
heuristic would choose.

Although our translation validation technique is intraprocedural, we can use interpro-
cedural equality analyses such as inlining to enable a certain amount of interprocedural
reasoning. This allows us to reason about transformations like reordering function calls.

2. Reasoning about loops

This section shows how our approach can be used to reason across nested loops. The
example highlights the fact that a simple axiom set can produce unanticipated optimizations
which traditional compilers would have to explicitly search for.
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for (i := 0; i < 29; i++) {

i++;

}

return i;

sum := 0;

for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {

sum++;

}

}

return sum;
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Figure 3: Two loops and their PEG representations.

We start in Sections 2.1 and 2.2 by describing all PEG constructs used to represent
loops. We then show in Section 2.3 how our approach can perform an inter-loop strength
reduction optimization.

2.1. Single loop. Consider the simple loop from Figure 3(a). This loop iterates 15 times,
incrementing the value of i each time by 2. The final value of i is then returned at the end
of the function. The PEG for this code is shown in Figure 3(c). The value of i inside the
loop is represented by a θ node. Intuitively, this θ node produces the sequence of values
that i takes throughout the loop, in this case [0, 2, 4, . . .]. The value of i after the loop is
represented by the eval node at the top of the PEG. Given a sequence s and an index n,
eval(s, n) produces the nth element of sequence s. To determine which element to select
from a sequence, our PEG representation uses pass nodes. Given a sequence s of booleans,
pass(s) returns the index of the first element in the sequence that is true. In our example,
the ≥ node uses the result of the θ node to produce the sequence of values taken on by the
boolean expression i ≥ 29 throughout the loop. This sequence is then sent to pass , which
in this case produces the value 15, since the 15th value (counting from 0) of i in the loop
(which is 30) is the first one to make i ≥ 29 true. The eval node then selects the 15th

element of the sequence produced by the θ node, which is 30. In our previous example from
Section 1, we omitted eval/pass from the PEG for clarity – because we were not interested
in any of the values after the loop, the eval/pass nodes would not have been used in any
reasoning.

Note that every loop-varying value will be represented by its own θ node, and so there
will be one θ node in the PEG per live variable in the loop. Also, every variable that is live
after the loop has its own eval node, which represents the value after the loop. However,
there is only one pass node per loop, which represents the iteration at which the loop
terminates. Thus, there can be many θ and eval nodes per loop, but only one pass node.

Since the eval and pass operators are often paired together, it is natural to consider
merging them into a single operator. However, we have found that the separation is useful.
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sum := 0;

for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {

use(sum++);

}

}

for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {

use(i*10 + j);

}

}

(b)(a)

(d)(c)
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sum
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Figure 4: Two equivalent loops and their PEG representations. The PEGs for the ex-
pressions inside the use statements in (a) and (b) are shown in (c) and (d),
respectively.

For one, although there will be many eval nodes corresponding to a single loop, each loop
has only one corresponding pass node. Having this single node to represent each loop is
useful in many of the compilation stages for PEGs. Also, pass nodes are not the only nodes
we will use as the second argument to an eval node. For example, to accomplish loop
peeling (as shown in Section 3.3) we use φ nodes and other special-purpose nodes as the
second argument. Furthermore, Section 8.4 will present a more detailed reflection on our
design choice after we have shown how the eval and pass operators are used in our various
compilation stages.

2.2. Nested loops. We now illustrate, through an example, how nested loops can be
encoded in our PEG representation. Consider the code snippet from Figure 3(b), which
has two nested loops. The PEG for this code snippet is shown in Figure 3(d). Each θ,
eval and pass node is labeled with a subscript indicating what loop depth it operates on
(we previously omitted these subscripts for clarity). The topmost eval1 node represents the
final value of sum. The node labeled suminner represents the value of sum at the beginning
of the inner loop body. Similarly, sumouter is the value of sum at the beginning of the outer
loop body. Looking at suminner , we can see that: (1) on the first iteration (the left child
of suminner ), suminner gets the value of sum from the outer loop; (2) on other iterations,
it gets one plus the value of sum from the previous iteration of the inner loop. Looking at
sumouter , we can see that: (1) on the first iteration, sumouter gets 0; (2) on other iterations,
it gets the value of sum right after the inner loop terminates. The value of sum after the
inner loop terminates is computed using a similar eval/pass pattern as in Figure 3(c), as is
the value of sum after the outer loop terminates.

2.3. Inter-loop strength reduction. Our approach allows an optimizing compiler to
perform intricate optimizations of looping structures. We present such an example here,
with a kind of inter-loop strength reduction. Consider the code snippets from Figure 4(a)
and (b). The code in Figure 4(b) is equivalent to the code in Figure 4(a), but it is faster
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Figure 5: E-PEG that results from running the saturation engine on the PEG from Fig-
ure 4(c). By picking the nodes that are checkmarked, we get the PEG from
Figure 4(d). To make the graph more readable, we sometimes label nodes, and
then connect an edge directly to a label name, rather than connecting it to the
node with that label. For example, consider node j in the E-PEG, which reads
as θ2(0, 1 + j). Rather than explicitly drawing an edge from + to j, we connect
+ to a new copy of label j.

because sum++ is cheaper than i ∗ 10 + j. We show how our approach can transform the
code in Figure 4(a) to the code in Figure 4(b).

The PEGs for the code from parts (a) and (b) are shown in parts (c) and (d), re-
spectively. We do not show the entire PEGs, but only the parts that are relevant to the
optimization – namely the PEGs for the expressions inside the use statements. More specif-
ically, Figure 4(c) shows the PEG for i*10 + j, which is the PEG that our optimization
will apply to. The top-level + node occurs in some larger PEG context which includes eval
and pass nodes, but we do not show the larger context (i.e.: the parents of +), because they
are not used in this example, except in one step that we will make explicit. The result of
the optimization, in PEG form, is shown in Figure 4(d). This is the PEG for the sum++

expression from Figure 4(b). Note that the code snippet in Figure 4(b) is the same as
Figure 3(b), and as a result Figure 4(d) is just the suminner node from Figure 3(d), along
with its children. To summarize, in terms of PEGs, our optimization will replace the + node
from Figure 4(c), which occurs in some larger PEG context, with the suminner node from
Figure 4(d). The surrounding PEG context, which we do not show, remains unchanged.

Figure 5 shows the saturated E-PEG that results from running the saturation engine on
the PEG from Figure 4(c). The checkmarks indicate which nodes will eventually be selected
– they can be ignored for now. In drawing Figure 5, we have already performed loop-
induction variable strength reduction on the left child of the topmost + from Figure 4(c).
In particular, this left child has been replaced with a new node i, where i = θ1(0, 10 + i).
We skip the steps in doing this because they are similar to the ones described in Section 1.2.

Figure 5 shows the relevant equalities that our saturation engine would add. We describe
each in turn.

• Edge A is added by distributing + over θ2:

i+ θ2(0, 1 + j) = θ2(i+ 0, i+ (1 + j))
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• Edge B is added because 0 is the identity of +:

i+ 0 = i

• Edge C is added because addition is associative and commutative:

i+ (1 + j) = 1 + (i+ j)

• Edge D is added because 0, incremented n times, produces n:

eval ℓ(idℓ, pass ℓ(idℓ ≥ n)) = n where idℓ = θℓ(0, 1 + idℓ)

This is an example of a loop optimization expressible as a simple PEG axiom.
• Edge E is added by distributing + over the first child of eval2:

eval2(j, k) + i = eval2(j + i, k)

• Edge F is added because addition is commutative:

j + i = i+ j

We use checkmarks in Figure 5 to highlight the nodes that Peggy would select using
its Pseudo-Boolean profitability heuristic. These nodes constitute exactly the PEG from
Figure 4(d), meaning that Peggy optimizes the code in Figure 4(a) to the one in Figure 4(b).

Summary. This example illustrates several points. First, it shows how a transformation
that locally seems undesirable, namely transforming the constant 10 into an expensive
loop (edge D), in the end leads to much better code. Our global profitability heuristic is
perfectly suited for taking advantage of these situations. Second, it shows an example of
an unanticipated optimization, namely an optimization that we did not realize would fall
out from the simple equality analyses we already had in place. In a traditional compilation
system, a specialized analysis would be required to perform this optimization, whereas in
our approach the optimization simply happens without any special casing. In this way,
our approach essentially allows a few general equality analyses to do the work of many
specialized transformations. Finally, it shows how our approach is able to reason about
complex loop interactions, something that is beyond the reach of current super-optimizer-
based techniques.

3. Local changes have non-local effects

The axioms we apply during our saturation phase tend to be simple and local in nature.
It is therefore natural to ask how such axioms can perform anything more than peephole
optimizations. The examples shown so far have already given a flavor of how local reasoning
on a PEG can lead to complex optimizations. In this section, we show additional examples
of how Peggy is capable of making significant changes in the program using its purely local
reasoning. We particularly emphasize how local changes in the PEG representation can
lead to large changes in the CFG of the program. We conclude the section by describing
some loop optimizations that we have not fully explored using PEGs, and which could pose
additional challenges.
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x = 0;

while (...)

x += 1;

return 5*x;

x = 0;

while (...)

x += 5;

return x;
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(b) (c)(a) (d) (e)

Figure 6: An example of loop-based code motion from simple axiom applications; (a) the
original source code, (b) the original PEG, (c) the PEG after distributing ∗
through eval1, (d) the PEG after performing loop-induction-variable strength
reduction, (e) the resulting source code.

3.1. Loop-based code motion. We start with an example showing how Peggy can use
simple local axioms to achieve code motion through a loop. Consider the program in
Figure 6. Part (a) shows the source code for a loop where the counter variable is multiplied
by 5 at the end, and part (e) shows equivalent code where the multiplication is removed
and the increment has been changed to 5. Essentially, this optimization moves the (∗5)
from the end of the loop and applies it to the increment and the initial value instead. This
constitutes code motion into a loop, and is a non-local transformation in the CFG.

Peggy can perform this optimization using local axiom applications, without requiring
any additional non-local reasoning. Figure 6(b) shows the PEG for the expression 5*x in
the code from part (a). Parts (c) and (d) show the relevant pieces of the E-PEG used
to optimize this program. The PEG in part (c) is the result of distributing multiplication
through the eval node. The PEG in part (d) is the result of applying loop-induction-variable
strength reduction to part (c) (the intermediate steps are omitted for brevity since they are
similar to the earlier example from Section 1). Finally, the code in part (e) is equivalent to
the PEG in part (d).

Our mathematical representation of loops is what makes this optimization so simple.
Essentially, when an operator distributes through eval (a local transformation in the PEG),
it enters the loop (leading to code motion). Once inside the loop, distributing it through
θ makes it apply separately to the initial value and the inductive value. Then, if there are
axioms to simplify those two expressions, an optimization may result. This is exactly what
happened to the multiply node in the example. In this case, only a simple operation (∗5)
was moved into the loop, but the same set of axioms would allow more complex operations
to do the same, using the same local reasoning.

3.2. Restructuring the CFG. In addition to allowing non-local optimizations, small
changes in the PEG can cause large changes in the program’s CFG. Consider the pro-
gram in Figure 7. Parts (a) and (f) show two CFGs that are equivalent but have very
different structure. Peggy can use several local axiom applications to achieve this same
restructuring. Figure 7(b) shows the PEG version of the original CFG, and parts (c)-(e)
show the relevant portions of the E-PEG used to optimize it. Part (c) results from dis-
tributing the multiply operator through the left-hand φ node. Similarly, part (d) results
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Figure 7: An example of how local changes in the PEG can cause large changes in the
CFG: (a) the original CFG, (b) the original PEG, (c) the PEG after distributing
∗ through the left-hand φ, (d) the PEG after distributing ∗ through the bottom
φ, (e) the PEG after constant folding, (f) the resulting CFG.

from distributing each of the two multiply operators through the bottom φ node. Part (e)
is simply the result of constant folding, and is equivalent to the CFG in part (f).

By simply using the local reasoning of distributing multiplications through φ nodes, we
have radically altered the branching structure of the corresponding CFG. This illustrates
how small, local changes to the PEG representation can have large, far-reaching effects on
the program.

3.3. Loop Peeling. Here we present an in-depth example to show how loop peeling is
achieved using equality saturation. Loop peeling essentially takes the first iteration from a
loop and places it before the loop. Using very simple, general-purpose axioms, we can peel
a loop of any type and produce code that only executes the peeled loop when the original
would have iterated at least once. Furthermore, the peeled loop will also be a candidate for
additional peeling.

Consider the source code in Figure 8(a). We want to perform a loop peeling on this
code, which will result in the code shown in Figure 8(i). This can be done through axiom
application through the following steps, depicted in Figure 8 parts (c) through (h).

Starting from the PEG for the original code, shown in part (b), the first step transforms
the pass1 node using the axiom pass1(C) = φ(eval 1(C,Z),Z,S(pass1(peel 1(C)))), yielding
the PEG in part (c). In this axiom, Z is the zero iteration count value, S is a function
that takes an iteration count and returns its successor (i.e. S = λx.x+1), and peel takes a
sequence and strips off the first element (i.e. peel(C)[i] = C[i+1]). This axiom is essentially
saying that the iteration where a loop stops is equal to one plus where it would stop if you
peeled off the first iteration, but only if the loop was going to run at least one iteration.

The second step, depicted in part (d), involves distributing the topmost eval1 through
the φ node using the axiom op(φ(A,B,C),D) = φ(A, op(B,D), op(C,D)). Note that op
only distributes on the second and third children of the φ node, because the first child is
the condition.
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x=0;

i=0;

while(i<N){

x+=5;

i++;

}

return x;

if(0>=N){

x=0;

}else{

x=5;

i=1;

while(i<N){

x+=5;

i++;

}

}

return x;

(b) (c)

(a)

(d)

(f) (g)

(e)

(h) (i)

Figure 8: An example of axiom-based loop peeling: (a) the original loop, (b) the PEG for
part (a), (c)-(h) intermediate steps of the optimization, (i) the final peeled loop,
which is equivalent to (h).

The third step, shown in part (e), is the result of propagating the two eval1(·,Z) expres-
sions downward, using the axiom eval1(op(a1, . . . , ak),Z) = op(eval1(a1,Z), . . . , eval1(ak,Z))
when op is a domain operator, such as +, ∗, or S. When the eval meets a θ, it simplifies
using the following axiom: eval1(θ1(A,B),Z) = A. Furthermore, we also use the axiom
that eval1(C,Z) = C for any constant or parameter C, which is why eval1(N,Z) = N.

The fourth step, shown in part (f), involves propagating the peel 1 operator downward,
using the axiom peel1(op(a1, . . . , ak)) = op(peel 1(a1), . . . , peel 1(ak)) when op is a domain op-
erator. When the peel operator meets a θ, it simplifies with the axiom peel1(θ1(A,B)) = B.
Furthermore, we also use the axiom that peel1(C) = C for any constant or parameter C,
which is why peel 1(N) = N.

The fifth step, shown in part (g), involves removing the S node using the axiom
eval1(θ1(A,B),S(C)) = eval1(B,C).

The final step (which is not strictly necessary, as the peeling is complete at this point)
involves distributing the two plus operators through their θ’s and doing constant folding
afterward, to yield the PEG in part (h). This PEG is equivalent to the final peeled source
code in part (i).
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Figure 9: An example of branch hoisting: (a) the original program, (b) the PEG for part
(a), (c) the PEG after distributing eval through φ, (d) the PEG after distributing
eval through ∗, (e) the code resulting from (d).

It is interesting to see that this version of loop peeling includes the conditional test to
make sure that the original loop would iterate at least once, before executing the peeled loop.
Another way to implement loop peeling is to exclude this test, opting only to peel when the
analysis can determine statically that the loop will always have at least one iteration. This
limits peeling to certain types of loops, those with guards that fit a certain pattern. This
can both increase the analysis complexity and reduce the applicability of the optimization.
In the PEG-based loop peeling, not only do we use the more applicable version of peeling,
but the loop guard expression is immaterial to the optimization.

The resulting PEG shown in Figure 8(h) is automatically a candidate for another peel-
ing, since the original axiom on pass can apply again. Since we separate our profitability
heuristic from the saturation engine, Peggy may attempt any number of peelings. After
saturation has completed, the global profitability heuristic will determine which version of
the PEG is best, and hence what degree of peeling yields the best result.

3.4. Branch Hoisting. We now examine an example of branch hoisting, where a condi-
tional branch is moved from inside the loop to after the loop. This is possible when the
condition of the branch is loop-invariant, and hence is not affected by the loop it’s in. This
is another example of code motion, and is an optimization because the evaluation of the
branch no longer happens multiple times inside the loop, but only once at the end.

Consider the code in Figure 9(a). We assume that N is a parameter or a variable
initialized elsewhere, and is clearly not altered inside the loop. Hence the condition on the
if-statement is loop-invariant. Also we see that x is never read inside the loop, so the value
it holds at the end of the loop can be expressed entirely in terms of the final values of the
other variables (i.e. y). Hence, this code is equivalent to the code seen in part (e), where
the branch is moved outside the loop and x is assigned once, using only the final value of y.

Our saturation engine can perform this optimization using simple axioms, starting with
the PEG shown in part (b) corresponding to the code in part (a). In part (b), we display the
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pass condition as P , since we never need to reason about it. Parts (c) and (d) depict the rele-
vant intermediate steps in the optimization. Part (c) results from distributing the eval oper-
ator through the φ operator using the axiom op(φ(A,B,C),D) = φ(A, op(B,D), op(C,D))
with op = eval1. Part (d) comes from distributing the two eval nodes through the multipli-
cation operator, using the axiom eval1(op(A,B), P ) = op(eval1(A,P ), eval 1(B,P )) where
op is any domain operator. Part (e) is the final code, which is equivalent to the PEG in
part (d).

Our semantics for φ nodes allows the eval to distribute through them, and hence the
loop moves inside the conditional in one axiom. Since we can further factor the ∗’s out of
the eval ’s, all of the loop-based operations are joined at the “bottom” of the PEG, which
essentially means that they are at the beginning of the program. Here we again see how a
few simple axioms can work together to perform a quite complex optimization that involves
radical restructuring of the program.

3.5. Limitations of PEGs. The above examples show how local changes to a PEG lead to
non-local changes to the CFG. There are however certain kinds of more advanced loop opti-
mizations that we have not yet fully explored. Although we believe that these optimizations
could be handled with equality saturation, we have not worked out the full details, and there
could be additional challenges in making these optimizations work in practice. One such
optimization would be to fuse loops from different nesting levels into a single loop. For ex-
ample, in the inter-loop strength reduction example from Section 2, the ideal output would
be a single loop that increments the sum variable. One option for doing this kind of opti-
mization is to add build-in axioms for fusing these kinds of loops together into one. Another
optimization that we have not fully explored is loop unrolling. By adding a few additional
higher-level operators to our PEGs, we were able to perform loop unrolling on paper using
just equational reasoning. Furthermore, using similar higher-level operators, we believe that
we could also perform loop interchange (which changes a loop for i in R1, for j in R2

into for j in R2 for i in R1). However, both of these optimizations do require adding
new operators to the PEG, which would require carefully formalizing their semantics and
axioms that govern them. Finally, these more sophisticated loop optimizations would also
require a more sophisticated cost model. In particular, because our current cost model does
not take into account loop bounds (only loop depth), it has only a coarse approximation of
the number of times a loop executes. As a result, it would assign the same cost to the loop
before and after interchange, and it would assign a higher cost to an unrolled loop than
the original. For our cost model to see these optimizations as profitable, we would have to
update it with more precise information about loop bounds, and a more precise modeling of
various architectural effects like caching and scheduling. We leave all of these explorations
to future work.

4. Formalization of our Approach

Having given an intuition of how our approach works through examples, we now move to
a formal description. Figure 10 shows the Optimize function, which embodies our approach.
Optimize takes four steps: first, it converts the input CFG into an internal representation of
the program; second, it saturates this internal representation with equalities; third, it uses
a global profitability heuristic to select the best program from the saturated representation;
finally, it converts the selected program back to a CFG.
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1: function Optimize(cfg : CFG) : CFG
2: let ir = ConvertToIR(cfg)
3: let saturated ir = Saturate(ir , A)
4: let best = SelectBest(saturated ir)
5: return ConvertToCFG(best)

Figure 10: Optimization phase in our approach. We assume a global set A of equality
analyses to be run.

An instantiation of our approach therefore consists of three components: (1) an IR
where equality reasoning is effective, along with the translation functions ConvertToIR and
ConvertToCFG, (2) a saturation engine Saturate, and (3) a global profitability heuristic
SelectBest. Future sections will show how we instantiate these three components in our
Peggy compiler.

Saturation Engine. The saturation engine Saturate infers equalities by repeatedly run-

ning a set A of equality analyses. Given an equality analysis a ∈ A, we define ir1
a
→ ir2 to

mean that ir1 produces ir2 when the equality analysis a runs and adds some equalities to
ir1. If a chooses not to add any equalities, then ir2 is simply the same as ir1. Note that
a is not required to be deterministic: given a single ir1, there may be many ir2 such that

ir1
a
→ ir2. This non-determinism gives equality analyses that are applicable in multiple

locations in the E-PEG the choice of where to apply. For example, the distributivity of an
operator could apply in many locations, and the non-determinism allows the distributivity
analysis the flexibility of choosing which instances of distributivity to apply. Note also that

at this point in the presentation, when saying ir1
a
→ ir2 we keep ir1 and ir2 as abstract

representations of an E-PEG (which includes a PEG graph and a set of equalities over PEG
nodes). Later in Section 5 we will formally define what PEGs and E-PEGs are.

We define a partial order ⊑ on IRs, based on the nodes and equalities they encode:
ir1 ⊑ ir2 iff the nodes in ir1 are a subset of the nodes in ir2, and the equalities in ir1 are
a subset of the equalities in ir2. Immediately from this definition, we get:

(ir1
a
→ ir2)⇒ ir1 ⊑ ir2 (4.1)

We define an equality analysis a to be monotonic iff:

(ir1 ⊑ ir2) ∧ (ir 1
a
→ ir ′1)⇒ ∃ir

′
2.[(ir 2

a
→ ir ′2) ∧ (ir ′1 ⊑ ir ′2)] (4.2)

This basically states that if a is able to apply to ir1 to produce ir ′1 and ir1 ⊑ ir2, then
there is a way to apply a on ir2 to get some ir ′2 such that ir ′1 ⊑ ir ′2

If a is monotonic, properties (4.1) and (4.2) immediately imply the following property:

(ir1
a
→ ir ′1) ∧ (ir1

b
→ ir2)⇒ ∃ir

′
2.[(ir 2

a
→ ir ′2) ∧ (ir ′1 ⊑ ir ′2)] (4.3)

Intuitively, this simply states that applying an equality analysis b before a cannot make a
less effective.

We now define ir1 → ir2 as:

ir1 → ir2 ⇐⇒ ∃a ∈ A . (ir1
a
→ ir2 ∧ ir1 6= ir2)
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The → relation formalizes one step taken by the saturation engine. We also define →∗

to be the reflexive transitive closure of →. The →∗ relation formalizes an entire run of

the saturation engine. We call a sequence ir1
a
→ ir2

b
→ . . . a trace through the saturation

engine. We define ir2 to be a normal form of ir1 if ir1 →
∗ ir2 and there is no ir3 such that

ir2 → ir3. It is straightforward to show the following property:

Given a set A of monotonic equality analyses, if ir2 is a normal formal of ir1,
then any other normal form of ir1 is equal to ir2.

(4.4)

In essence, property (4.4) states that if one trace through the saturation engine leads to a
normal form (and thus a saturated IR), then any other trace that also leads to a normal
form results in the same saturated IR. In other words, if a given ir has a normal form, it is
unique.

If the set A of analyses makes the saturation engine terminate on all inputs, then
property (4.4) implies that the engine is convergent, meaning that every ir has a unique
normal form. In general, however, equality saturation may not terminate. For a given ir
there may not be a normal form, and even if there is a normal form, some traces may not
lead to it because they run forever. Non-termination occurs when the saturation engine
never runs out of equality analyses that can match in the E-PEG and produce new nodes
and new equalities. For example, the axiom A = (A+1)− 1 used in the direction from left
to right can be applied an unbounded number of times, producing successively larger and
larger expressions (x, (x+1)-1, (((x+1)-1)+1)-1, and so on). An inlining axiom applied
to a recursive function can also be applied an unbounded number of times.

Because unrestricted saturation may not terminate, we bound the number of times
that individual analyses can run, thus ensuring that the Saturate function will always
halt. In the case when the saturation engine is stopped early, we cannot provide the same
convergence property, but property (4.3) still implies that no area of the search space can be
made unreachable by applying an equality analysis (a property that traditional compilation
systems lack).

5. PEGs and E-PEGs

The first step in instantiating our approach from the previous section is to pick an
appropriate IR. To this end, we have designed a new IR called the E-PEG which can
simultaneously represent multiple optimized versions of the input program. We first give a
formal description of our IR (Section 5.1), then we present its benefits (Section 5.4), and
finally we give a detailed description of how to translate from CFGs to our IR and back
(Sections 6 and 7).

5.1. Formalization of PEGs. A PEG is a triple 〈N ,L,C 〉, where N is a set of nodes,
L : N → F is a labeling that maps each node to a semantic function from a set of semantic
functions F , and C : N → N ∗ is a function that maps each node to its children (i.e.
arguments). For a given node n, if L(n) = f , we say that n is labeled with f . We say that
a node n′ is a child of node n if n′ is an element of C (n). Finally, we say that nk is a
descendant of n0 if there is a sequence of nodes n0, n1, . . . , nk such that ni+1 is a child of
ni for 0 ≤ i < k.
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Types. Before giving the definition of semantic functions, we first define the types of values
that these functions operate over. Values that flow through a PEG are lifted in two ways.
First, they are ⊥-lifted, meaning that we add the special value ⊥ to each type domain. The
⊥ value indicates that the computation fails or does not terminate. Formally, for each type
τ , we define τ⊥ = τ ∪ {⊥}.

Second, values are loop-lifted, which means that instead of representing the value at
a particular iteration, PEG nodes represent values for all iterations at the same time.
Formally, we let L be a set of loop identifiers, with each ℓ ∈ L representing a loop from
the original code (in our previous examples we used integers). We assume a partial order
≤ that represents the loop nesting structure: ℓ < ℓ′ means that ℓ′ is nested within ℓ. An
iteration index i captures the iteration state of all loops in the PEG. In particular, i is a
function that maps each loop identifier ℓ ∈ L to the iteration that loop ℓ is currently on.
Suppose for example that there are two nested loops in the program, identified as ℓ1 and
ℓ2. Then the iteration index i = [ℓ1 7→ 5, ℓ2 7→ 3] represents the state where loop ℓ1 is on
the 5th iteration and loop ℓ2 is on the 3rd iteration. We let I = L → N be the set of all loop
iteration indices (where N denotes the set of non-negative integers). For i ∈ I, we use the
notation i[ℓ 7→ v] to denote a function that returns the same value as i on all inputs, except
that it returns v on input ℓ. The output of a PEG node is a map from loop iteration indices
in I to values. In particular, for each type τ , we define a loop-lifted version τ̃ = I → τ⊥.
PEG nodes operate on these loop-lifted types.

Semantic Functions. The semantic functions in F actually implement the operations
represented by the PEG nodes. Each function f ∈ F has type τ̃1 × . . . × τ̃k → τ̃ , for some
k. Such an f can be used as the label for a node that has k children. That is to say, if
L(n) = f , where f : τ̃1 × . . .× τ̃k → τ̃ , then C (n) must be a list of k nodes.

The set of semantic functions F is divided into two: F = Prims ∪ Domain . Prims
contains the primitive functions like φ and θ, which are built into the PEG representation,
whereas Domain contains semantic functions for particular domains like arithmetic.

Figure 11 gives the definition of the primitive functions Prims = {φ, θℓ, eval ℓ, pass ℓ}.
These functions are polymorphic in τ , in that they can be instantiated for various τ ’s, rang-
ing from basic types like integers and strings to complicated types like the heap summary
nodes that Peggy uses to represent Java objects. The definitions of eval ℓ and pass ℓ make
use of the function monotonize ℓ, whose definition is given in Figure 11. The monotonize ℓ
function transforms a sequence so that, once an indexed value is undefined, all following in-
dexed values are undefined. The monotonize ℓ function formalizes the fact that once a value
is undefined at a given loop iteration, the value remains undefined at subsequent iterations.

The domain semantic functions are defined as Domain = {õp | op ∈ DomainOp}, where
DomainOp is a set of domain operators (like +, ∗ and − in the case of arithmetic), and
õp is a ⊥-lifted, and then loop-lifted version of op. Intuitively, the ⊥-lifted version of an
operator works like the original operator except that it returns ⊥ if any of its inputs are ⊥,
and the loop-lifted version of an operator applies the original operator for each loop index.

As an example, the semantic function of + in a PEG is +̃, and the semantic function of
1 is 1̃ (since constants like 1 are simply nullary operators). However, to make the notation
less crowded, we omit the tildes on all domain operators.
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φ : B̃× τ̃ × τ̃ → τ̃

φ(cond, t, f)(i) =





if cond(i) = ⊥ then ⊥

if cond(i) = true then t(i)

if cond(i) = false then f(i)

θℓ : τ̃ × τ̃ → τ̃

θℓ(base , loop)(i) =

{
if i(ℓ) = 0 then base(i)

if i(ℓ) > 0 then loop(i[ℓ 7→ i(ℓ)− 1])

eval ℓ : τ̃ × Ñ→ τ̃

eval ℓ(loop, idx )(i) =

{
if idx (i) = ⊥ then ⊥

else monotonize ℓ(loop)(i[ℓ 7→ idx (i)])

pass ℓ : B̃→ Ñ

pass ℓ(cond)(i) =

{
if I = ∅ then ⊥

if I 6= ∅ then minI

where I = {i ∈ N | monotonize ℓ(cond)(i[ℓ 7→ i]) = true}

where monotonize ℓ : τ̃ → τ̃ is defined as:

monotonizeℓ(value)(i) =

{
if ∃ 0 ≤ i < i(ℓ). value(i[ℓ 7→ i]) = ⊥ then ⊥

if ∀ 0 ≤ i < i(ℓ). value(i[ℓ 7→ i]) 6= ⊥ then value(i)

Figure 11: Definition of primitive PEG functions. The important notation: L is the set of
loop identifiers, N is the set of non-negative integers, B is the set of booleans,
I = L → N, τ⊥ = τ ∪ {⊥}, and τ̃ = I→ τ⊥.

Node Semantics. For a PEG node n ∈ N , we denote its semantic value by JnK. We
assume that J·K is lifted to sequences N ∗ in the standard way. The semantic value of n is
defined as:

JnK = L(n)(JC (n)K) (5.1)

Equation 5.1 is essentially the evaluation semantics for expressions. The only complication
here is that our expression graphs are recursive. In this setting, one can think of Equation 5.1
as a set of recursive equations to be solved. To guarantee that a unique solution exists, we
impose some well-formedness constraints on PEGs.

Definition 5.1 (PEG Well-formedness). A PEG is well-formed iff:

(1) All cycles pass through the second child edge of a θ
(2) A path from a θℓ, eval ℓ, or pass ℓ to a θℓ′ implies ℓ′ ≤ ℓ or the path passes through the

first child edge of an eval ℓ′ or pass ℓ′
(3) All cycles containing eval ℓ or pass ℓ contain some θℓ′ with ℓ′ < ℓ

Condition 1 states that all cyclic paths in the PEG are due to looping constructs.
Condition 2 states that a computation in an outer-loop cannot reference a value from inside
an inner-loop. Condition 3 states that the final value produced by an inner-loop cannot
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be expressed in terms of itself, except if it’s referencing the value of the inner-loop from a
previous outer-loop iteration. From this point on, all of our discussion of PEGs will assume
they are well-formed.

Theorem 1. If a PEG is well-formed, then for each node n in the PEG there is a unique
semantic value JnK satisfying Equation 5.1.

The proof is by induction over the strongly-connected-component DAG of the PEG and
the loop nesting structure ≤.

Evaluation Semantics. The meaning function J·K can be evaluated on demand, which
provides an executable semantics for PEGs. For example, suppose we want to know the
result of eval ℓ(x, pass ℓ(y)) at some iteration state i. To determine which case of eval ℓ’s
definition we are in, we must evaluate pass ℓ(y) on i. From the definition of pass ℓ, we must
compute the minimum i that makes y true. To do this, we iterate through values of i until
we find an appropriate one. The value of i we’ve found is the number of times the loop
iterates, and we can use this i back in the eval ℓ function to extract the appropriate value out
of x. This example shows how an on-demand evaluation of an eval/pass sequence essentially
leads to an operational semantics for loops. Though it may seem that this semantics requires
each loop to be evaluated twice (once to determine the pass value and once to determine
the eval result), a practical implementation of PEGs (such as our PEG-to-imperative-code
conversion algorithm in Section 7) can use a single loop to compute both the pass result
and the eval result.

Parameter nodes. Our PEG definition can easily be extended to have parameter nodes,
which are useful for encoding the input parameters of a function or method. In partic-
ular, we assume that a PEG 〈N ,L,C 〉 has a (possibly empty) set Np ⊆ N of parame-
ter nodes. A parameter node n does not have any children, and its label is of the form
param(x) where x is the variable name of the parameter. To accommodate for this in
the formalism, we extend the type of our labeling function L as L : N → F ∪ P , where
P = {param(x) | x is a variable name}. There are several ways to give semantics to PEGs
with parameter nodes. One way is to update the semantic functions in Figure 11 to pass
around a value context Σ mapping variables to values. Another way, which we use here, is
to first apply a substitution to the PEG that replaces all parameter nodes with constants,
and then use the node semantics J·K defined earlier. The node semantics J·K is well defined
on a PEG where all parameters have been replaced, since L(n) in this case would always
return a semantic function from F , never a parameter label param(x) from P .

We use the following notation for substitution: given a PEG node n, a variable name x,
and a constant c (which is just a nullary domain operator op ∈ Domain), we use n[x 7→ c]
to denote n with every descendant of n that is labeled with param(x) replaced with a node
labeled with c̃. We use n[x1 7→ c1, . . . , xk 7→ ck] to denote n[x1 7→ c1] . . . [xk 7→ ck]. Figure 12
shows an example with parameter nodes and an example of the substitution notation.
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X:=1;

Y:=1;

while(Y !N){

X:=X*Y;

Y:=1+Y;

};

return X; param(N)

1 +

1 

1

1 *

1 
pass

¬

 

eval1

1
X

Y

n n[ N 10] 

(a)

10

1 +

1 

1

1 *

1 
pass

¬

 

eval1

1
X

Y

(b) (c)

Figure 12: Example showing PEG with parameter nodes. (a) shows code for computing
the factorial of N, where N is a parameter (b) shows the PEG with n being the
value returned and (c) shows n[N 7→ 10], which is now a PEG whose semantics
is well-defined in our formalism.

5.2. Formalization of E-PEGs. An E-PEG is a PEG with a set of equalities E between
nodes. Thus, formally, an E-PEG is a quadruple 〈N ,L,C , E〉, where 〈N ,L,C 〉 is a PEG
and E ⊆ N × N is a set of pairs of nodes representing equalities. An equality between n
and n′ denotes value equality: JnK = Jn′K. The set E forms an equivalence relation ∼ (that
is, ∼ is the reflexive transitive symmetric closure of E), which in turn partitions the PEG
nodes into equivalence classes. We denote by [n] the equivalence class that n belongs, so
that [n] = {n′ ∈ N | n′ ∼ n}. We denote by N/E the set of all equivalence classes. For
n ∈ N , we denote by params(n) the list of equivalence classes that are parameters to n. In
particular, if C (n) = (n1, . . . , nk) then params(n) = ([n1], . . . , [nk]). As mentioned in more
detail in Section 8, our implementation strategy keeps track of these equivalence classes,
rather than the set E.

5.3. Built-in Axioms. We have developed a set of PEG built-in axioms that state prop-
erties of the primitive semantic functions. These axioms are used in our approach as a set
of equality analyses that enable reasoning about primitive PEG operators. Some important
built-in axioms are given below, where • denotes “don’t care”:

θℓ(A,B) = θℓ(eval ℓ(A, 0), B)
eval ℓ(θℓ(A, •), 0) = eval ℓ(A, 0)

eval ℓ(eval ℓ(A,B), C) = eval ℓ(A, eval ℓ(B,C))
pass ℓ(true) = 0

pass ℓ(θℓ(true, •)) = 0
pass ℓ(θℓ(false, A)) = pass ℓ(A) + 1

Furthermore, some axioms make use of an invariance predicate: invariant ℓ(n) is true if
the value of n does not vary on loop ℓ. Although we define invariant ℓ here first, invariant ℓ
will be used more broadly than for defining axioms. It will also be used in Section 7.9 to
optimize the PEG-to-imperative-code translation, and in Section 8.3 to help us define the
cost model for PEGs. Invariance can be computed using several syntactic rules, as shown
in the following definition, although there are PEG nodes which are semantically invariant
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but do not satisfy the following syntactic predicate. Note that we sometimes use “n is
invariant ℓ” instead of invariant ℓ(n).

Definition 5.2 (Invariance Predicate). The invariant ℓ(n) predicate is the largest predicate
that satisfies the following three rules:

(1) if L(n) is θℓ, then n is not invariant ℓ
(2) if L(n) is eval ℓ, then if the second child of n is not invariant ℓ then n is also not invariant ℓ
(3) otherwise if L(n) is not pass ℓ, then if any child of n is not invariant ℓ then n is also not

invariant ℓ

Note that, due to the last rule, nodes without any children, such as constants and
parameter nodes, will always be invariant ℓ for all ℓ. Also, since no rule restricts pass ℓ
nodes, such nodes will always be invariant ℓ. This syntactic definition of invariant ℓ is best
computed using an optimistic dataflow analysis.

Having defined invariant ℓ, the following built-in axioms hold if invariant ℓ(A) holds:

eval ℓ(A, •) = A
x = A where x = θℓ(A, x)

peel ℓ(A) = A

One of the benefits of having a well-defined semantics for primitive PEG functions is
that we can reason formally about these functions. To demonstrate that this is feasible,
we used our semantics to prove a handful of axioms, in particular, the above axioms, and
all the axioms required to perform the optimizations presented in Sections 1 through 3.
Appendix A contains the much longer list of all axioms that we have used in Peggy.

5.4. How PEGs enable our approach. The key feature of PEGs that makes our equality-
saturation approach effective is that they are referentially transparent, which intuitively
means that the value of an expression depends only on the values of its constituent expres-
sions [49, 36, 46]. In our PEG representation, referential transparency can be formalized as
follows:

∀(n, n′) ∈ N 2 .

(
L(n) = L(n′)∧
JC (n)K = JC (n′)K

)
⇒ JnK = Jn′K

This property follows from the definition in Equation (5.1), and the fact that for any n,
L(n) is a pure mathematical function.

Referential transparency makes equality reasoning effective because it allows us to show
that two expressions are equal by only considering their constituent expressions, without
having to worry about side-effects. Furthermore, referential transparency has the benefit
that a single node in the PEG entirely captures the value of a complex program fragment
(including loops) enabling us to record equivalences between program fragments by using
equivalence classes of nodes. Contrast this to CFGs, where to record equality between
complex program fragments, one would have to record subgraph equality.

Finally, PEGs allow us to record equalities at the granularity of individual values,
for example the iteration count in a loop, rather than at the level of the entire program
state. Again, contrast this to CFGs, where the simplest form of equality between program
fragments would record program-state equality.
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p ::= main(x1 : τ1, . . . , xn : τn) : τ {s}
s ::= s1; s2 | x := e | if (e) {s1} else {s2} | while (e) {s}
e ::= x | op(e1, . . . , en)

Figure 13: Grammar for SIMPLE programs

6. Representing Imperative Code as PEGs

In this section we describe how programs written in an imperative style can be trans-
formed to work within our PEG-based optimization system. We first define a minimal
imperative language (Section 6.1) and then present ML-style functional pseudocode for con-
verting any program written in this language into a PEG (Section 6.2). Next, we present a
formal account of the conversion process using type-directed translation rules in the style
of [37] (Section 6.3). Finally, we outline a proof of the semantic preservation of the trans-
lation (Section 6.4). Our technical report [50] shows how to extend the techniques in this
section for converting SIMPLE programs to PEGs in order to convert more complex control
flow graphs to PEGs.

6.1. The SIMPLE programming language. We present our algorithm for converting
to the PEG representation using a simplified source language. In particular, we use the
SIMPLE programming language, the grammar of which is shown in Figure 13. A SIMPLE
program contains a single function main, which declares parameters with their respective
types, a body which uses these variables, and a return type. There is a special variable
retvar, the value of which is returned by main at the end of execution. SIMPLE programs
may have an arbitrary set of primitive operations on an arbitrary set of types; we only
require that there is a Boolean type for conditionals (which makes the translation simpler).
Statements in SIMPLE programs have four forms: statement sequencing (using semicolon),
variable assignment (the variable implicitly inherits the type of the expression), if-then-else
branches and while loops. Expressions in SIMPLE programs are either variables or primitive
operations (such as addition). Constants in SIMPLE are nullary primitive operations.

The type-checking rules for SIMPLE programs are shown in Figure 14. There are three
kinds of judgments: (1) judgment ⊢ p (where p is a program) states that p is well-typed;
(2) judgment Γ ⊢ s : Γ′ (where s is a statement) states that starting with context Γ, after s
the context will be Γ′; (3) judgment Γ ⊢ e : τ (where e is an expression) states that in type
context Γ, expression e has type τ .

For program judgments, there is only one rule, Type-Prog, which ensures that the state-
ment inside of main is well-typed; Γ(retvar) = τ ensures that the return value of main has
type τ . For statement judgments, Type-Seq simply sequences the typing context through
two statements. Type-Asgn replaces the binding for x with the type of the expression as-
signed into x (if Γ contains a binding for x, then (Γ, x : τ) is Γ with the binding for x
replaced with τ ; if Γ does not contain a binding for x, then (Γ, x : τ) is Γ extended with a
binding for x). The rule Type-If requires the context after each branch to be the same. The
rule Type-While requires the context before and after the body to be the same, specifying
the loop-induction variables. The rule Type-Sub allows the definition of variables to be
“forgotten”, enabling the use of temporary variables in branches and loops.
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⊢ p (programs)

Type-Prog
x1 : τ1, . . . , xn : τn ⊢ s : Γ Γ(retvar) = τ

⊢ main(x1 : τ1, . . . , xn : τn) : τ {s}

Γ ⊢ s : Γ′ (statements)

Type-Seq
Γ ⊢ s1 : Γ

′ Γ′ ⊢ s2 : Γ
′′

Γ ⊢ s1; s2 : Γ
′′

Type-Asgn
Γ ⊢ e : τ

Γ ⊢ x := e : (Γ, x : τ)

Type-If
Γ ⊢ e : bool Γ ⊢ s1 : Γ

′ Γ ⊢ s2 : Γ
′

Γ ⊢ if (e) {s1} else {s2} : Γ
′

Type-While
Γ ⊢ e : bool Γ ⊢ s : Γ
Γ ⊢ while (e) {s} : Γ

Type-Sub
Γ ⊢ s : Γ′ Γ′′ ⊆ Γ′

Γ ⊢ s : Γ′′

Γ ⊢ e : τ (expressions)

Type-Var
Γ(x) = τ

Γ ⊢ x : τ
Type-Op

op : (τ1, . . . , τn)→ τ Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ op(e1, . . . , en) : τ

Figure 14: Type-checking rules for SIMPLE programs

6.2. Translating SIMPLE Programs to PEGs. Here we use ML-style functional pseudo-
code to describe the translation from SIMPLE programs to PEGs. Figure 15 shows the
entirety of the algorithm, which uses a variety of simple types and data structures, which
we explain first.Note that if we use SIMPLE programs to instantiate our equality satura-
tion approach described in Figure 10, then the ConvertToIR function from Figure 10 is
implemented using a call to TranslateProg.

In the pseudo-code (and in all of Sections 6 and 7), we use the notation a(n1, . . . , nk)
to represent a PEG node with label a and children n1 through nk. Whereas previously the
distinction between creating PEG nodes and applying functions was clear from context, in
a computational setting like pseudo-code we want to avoid confusion between for example
applying negation in the pseudo-code ¬(. . .), vs. creating a PEG node labeled with negation
¬(. . .). For parameter nodes, there can’t be any confusion because when we write param(x),
param is actually not a function – instead param(x) as a whole is label. Still, to be
consistent in the notation, we use param(x) for constructing parameter nodes.

We introduce the concept of a node context Ψ, which is a set of bindings of the form
x : n, where x is a SIMPLE variable, and n is a PEG node. A node context states, for
each variable x, the PEG node n that represents the current value of x. We use Ψ(x) = n
as shorthand for (x : n) ∈ Ψ. Aside from using node contexts here, we will also use them
later in our type-directed translation rules (Section 6.3). For our pseudo-code, we implement
node contexts as an immutable map data structure that has the following operations defined
on it
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1: function TranslateProg(p : Prog) : N =
2: let m = InitMap(p.params , λx.param(x))
3: in TS(p.body ,m, 0)(retvar)

4: function TS(s : Stmt ,Ψ : map[V,N ], ℓ : N) : map[V,N ] =
5: match s with
6: “s1; s2”⇒ TS(s2,TS(s1,Ψ, ℓ), ℓ)
7: “x := e”⇒ Ψ[x 7→ TE(e,Ψ)]
8: “if (e) {s1} else {s2}”⇒ PHI(TE(e,Ψ),TS(s1,Ψ, ℓ),TS(s2,Ψ, ℓ))
9: “while (e) {s}”⇒

10: let vars = Keys(Ψ)
11: let Ψt = InitMap(vars , λv.TemporaryNode(v))
12: let Ψ′ = TS(s,Ψt, ℓ+ 1)
13: let Ψθ = THETAℓ+1(Ψ,Ψ′)
14: let Ψ′

θ = InitMap(vars , λv.FixpointTemps(Ψθ,Ψθ(v)))
15: in EVALℓ+1(Ψ

′
θ, pass ℓ+1(¬(TE(e,Ψ

′
θ))))

16: function TE(e : Expr ,Ψ : map[V,N ]) : N =
17: match e with
18: “x”⇒ Ψ(x)
19: “op(e1, . . . , ek)”⇒ op(TE(e1,Ψ), . . . ,TE(ek,Ψ))

20: function PHI(n : N,Ψ1 : map[V,N ],Ψ2 : map[V,N ]) : map[V,N ] =
21: Combine(Ψ1,Ψ2, λ t f . φ(n, t, f))

22: function THETAℓ:N(Ψ1 : map[V,N ],Ψ2 : map[V,N ]) : map[V,N ] =
23: Combine(Ψ1,Ψ2, λ b n . θℓ(b, n))

24: function EVALℓ:N(Ψ : map[V,N ], n : N) : map[V,N ] =
25: InitMap(Keys(Ψ), λv . eval ℓ(Ψ(v), n)

26: function Combine(m1 : map[a, b],m2 : map[a, c], f : b ∗ c→ d) : map[a, d] =
27: InitMap(Keys(m1) ∩Keys(m2), λk.f(m1[k],m2[k]))

Figure 15: ML-style pseudo-code for converting SIMPLE programs to PEGs

• Map initialization. The InitMap function is used to create maps. Given a set K of keys
and a function f from K to D, InitMap creates a map of type map[K,D] containing, for
every element k ∈ K, an entry mapping k to f(k).
• Keys of a map. Given a map m, Keys(m) returns the set of keys of m.
• Map read. Given a map m and a key k ∈ Keys(m), m(k) returns the value associated
with key k in m.
• Map update. Given a map m, m[k 7→ d] returns a new map in which key k has been
updated to map to d.

The pseudo-code also uses the types Prog , Stmt , Expr and V to represent SIMPLE
programs, statements, expressions and variables. Given a program p, p.params is a list of
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its parameter variables, and p.body is its body statement. We use syntax-based pattern
matching to extract information from Stmt and Expr types (as shown on lines 6,7 for
statements, and 18, 19 for expressions).

Expressions. We explain the pieces of this algorithm one-by-one, starting with the TE
function on line 16. This function takes a SIMPLE expression e and a node context Ψ and
returns the PEG node corresponding to e. There are two cases, based on what type of
expression e is. Line 18 states that if e is a reference to variable x, then we simply ask Ψ
for its current binding for x. Line 19 states that if e is the evaluation of operator op on
arguments e1, . . . , ek, then we recursively call TE on each ei to get ni, and then create a
new PEG node labeled op that has child nodes n1, . . . , nk.

Statements. Next we explore the TS function on line 4, which takes a SIMPLE statement
s, a node context Ψ, and a loop depth ℓ and returns a new node context that represents
the changes s made to Ψ. There are four cases, based on the four statement types.

Line 6 states that a sequence s1; s2 is simply the result of translating s2 using the node
context that results from translating s1. Line 7 states that for an assignment x := e, we
simply update the current binding for x with the PEG node that corresponds to e, which
is computed with a call to TE.

Line 8 handles if-then-else statements by introducing φ nodes. We recursively produce
updated node contexts Ψ1 and Ψ2 for statements s1 and s2 respectively, and compute the
PEG node that represents the guard condition, call it nc. We then create PEG φ nodes by
calling the PHI function defined on line 20. This function takes the guard node nc and the
two node contexts Ψ1 and Ψ2 and creates a new φ node in the PEG for each variable that
is defined in both node contexts. The true child for each φ node is taken from Ψ1 and the
false child is taken from Ψ2, while all of them share the same guard node nc. Note that
this is slightly inefficient in that it will create φ nodes for all variables defined before the
if-then-else statement, whether they are modified by it or not. These can be easily removed,
however, by applying the rewrite φ(C,A,A) = A.

Finally we come to the most complicated case on line 9, which handles while loops.
In line 10 we extract the set of all variables defined up to this point, in the set vars . We
allocate a temporary PEG node for each item in vars on line 11, and bind them together
in the node context Ψt. We use TemporaryNode(v) to refer to a temporary PEG node
named v, which is a new kind of node that we use only for the conversion process. We
then recursively translate the body of the while loop using the context full of temporary
nodes on line 12. In the resulting context Ψ′, the temporary nodes act as placeholders for
loop-varying values. Note that here is the first real use of the loop depth parameter ℓ, which
is incremented by 1 since the body of this loop will be at a higher loop depth than the code
before the loop. For every variable in vars , we create θℓ+1 nodes using the THETA function
defined on line 22. This function takes node contexts Ψ and Ψ′, which have bindings for
the values of each variable before and during the loop, respectively. The binding for each
variable in Ψ becomes the first child of the θ (the base case) and the binding in Ψ′ becomes
the second child (the inductive case). Unfortunately, the θ expressions we just created are
not yet accurate, because the second child of each θ node is defined in terms of temporary
nodes. The correct expression should replace each temporary node with the new θ node
that corresponds to that temporary node’s variable, to “close the loop” of each θ node.
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That is the purpose of the FixpointTemps function called on line 14. For each variable
v ∈ vars , FixpointTemps will rewrite Ψθ(v) by replacing any edges to TemporaryNode(x)
with edges to Ψθ(x), yielding new node context Ψ′

θ. Now that we have created the correct
θ nodes, we merely need to create the eval and pass nodes to go with them. Line 15 does
this, first by creating the pass ℓ+1 node which takes the break condition expression as its
child. The break condition is computed with a call to TE on e, using node context Ψ′

θ since
it may reference some of the newly-created θ nodes. The last step is to create eval nodes
to represent the values of each variable after the loop has terminated. This is done by the
EVAL function defined on line 24. This function takes the node context Ψ′

θ and the pass ℓ+1

node and creates a new eval ℓ+1 node for each variable in vars . This final node context
that maps each variable to an eval is the return value of TS. Note that, as in the case
of if-then-else statements, we introduce an inefficiency here by replacing all variables with
eval ′s, not just the ones that are modified in the loop. For any variable v that was bound
to node n in Ψ and not modified by the loop, its binding in the final node context would be
eval ℓ+1(T, pass ℓ+1(C)), where C is the guard condition node and T = θℓ+1(n, T ) (i.e. the θ
node has a direct self-loop). We can easily remove the spurious nodes by applying a rewrite
to replace the eval node with n.

Programs. The TranslateProg function on line 1 is the top-level call to convert an entire
SIMPLE program to a PEG. It takes a SIMPLE program p and returns the root node of
the translated PEG. It begins on line 2 by creating the initial node context which contains
bindings for each parameter variable. The nodes that correspond to the parameters are
opaque parameter nodes, that simply name the parameter variable they represent. Using
this node context, we translate the body of the program starting at loop depth 0 on line
3. This will yield a node context that has PEG expressions for the final values of all the
variables in the program. Hence, the root of our translated PEG will be the node that is
bound to the special return variable retvar in this final node context.

Example. We illustrate how the translation process works on the SIMPLE program from
Figure 16(a), which computes the factorial of 10. After processing the first two statements,
both X and Y are bound to the PEG node 1. Then TS is called on the while loop, at which
point Ψ maps both X and Y to 1. Figures 16(b) through 16(g) show the details of processing
the while loop. In particular, (b) through (f) show the contents of the variables in TS, and
(g) shows the return value of TS. Note that in (g) the node labeled i corresponds to the
pass node created on line 15 in TS. After the loop is processed, the assignment to retvar

simply binds retvar to whatever X is bound to in Figure 16(g).

6.3. Type-directed translation. In this section we formalize the translation process de-
scribed by the pseudo-code implementation with a type-directed translation from SIMPLE
programs to PEGs, in the style of [37]. The type-directed translation in Figure 17 is more
complicated than the implementation in Figure 15, but it makes it easier to prove the cor-
rectness of the translation. For example, the implementation uses maps from variables to
PEG nodes, and at various points queries these maps (for example, line 18 in Figure 15
queries the Ψ map for variable x). The fact that these map operations never fail relies
on implicit properties which are tedious to establish in Figure 15, as they rely on the fact
that the program being translated is well-typed. In the type-directed translation, these
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Figure 16: Steps of the translation process. (a) shows a SIMPLE program computing the
factorial of 10; (b) through (f) show the contents of the variables in TS when
processing the while loop; and (g) shows the return value of TS when processing
the while loop.

properties are almost immediate since the translation operates on an actual proof that the
program is well-typed.

In fact, the rules in Figure 17 are really representations of each case in a constructive
total deterministic function defined inductively on the proof of well-typedness. Thus when
we use the judgment Γ ⊢ e : τ ⊲ Ψ  n as an assumption, we are simply binding n
to the result of this constructive function applied to the proof of Γ ⊢ e : τ and the PEG
context Ψ. Likewise, we use the judgment Γ ⊢ s : Γ′

⊲ Ψ ℓ Ψ
′ to bind Ψ′ to the result

of the constructive function applied to the proof of Γ ⊢ s : Γ′ and the PEG context Ψ. Here
we explain how this type-directed translation works.

Expressions. The translation process for an expression e takes two inputs: (1) a derivation
showing the type correctness of e, and (2) a node context Ψ. The translation process
produces one output, which is the node n that e translates to. We formalize this with a
judgment Γ ⊢ e : τ ⊲ Ψ  n, which states that from a derivation of Γ ⊢ e : τ , and a
node context Ψ (stating what node to use for each variable), the translation produces node
n for expression e. For example, consider the Trans-Op rule, which is used for a primitive
operation expression. The output of the translation process is a new PEG node with
label op, where the argument nodes n1 . . . nk are determined by translating the argument
expressions e1 . . . ek.
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⊢ p ⊲ n (programs)

Trans-Prog

{x1 : τ1, . . . , xk : τk} ⊢ s : Γ ⊲ {x1 : param(x1), . . . , xk : param(xk)} 0 Ψ
n = Ψ(retvar) (well defined because Γ(retvar) = τ)

⊢ main(x1 : τ1, . . . , xk : τk) : τ {s} ⊲ n

Γ ⊢ s : Γ′
⊲ Ψ ℓ Ψ

′ (statements)

Trans-Seq
Γ ⊢ s1 : Γ

′
⊲ Ψ ℓ Ψ

′ Γ′ ⊢ s2 : Γ
′′
⊲ Ψ′

 ℓ Ψ
′′

Γ ⊢ s1; s2 : Γ
′′
⊲ Ψ ℓ Ψ

′′

Trans-Asgn
Γ ⊢ e : τ ⊲ Ψ n

Γ ⊢ x := e : (Γ, x : τ) ⊲ Ψ ℓ (Ψ, x : n)

Trans-If

Γ ⊢ e : bool ⊲ Ψ n
Γ ⊢ s1 : Γ

′
⊲ Ψ ℓ Ψ1 Γ ⊢ s2 : Γ

′
⊲ Ψ ℓ Ψ2

{x : n(x,1)}x∈Γ′ = Ψ1 {x : n(x,2)}x∈Γ′ = Ψ2

Ψ′ = {x : φ(n, n(x,1), n(x,2))}x∈Γ′

Γ ⊢ if (e) {s1} else {s2} : Γ
′
⊲ Ψ ℓ Ψ

′

Trans-While

Γ ⊢ e : bool ⊲ Ψ n
Ψ = {x : vx}x∈Γ each vx fresh ℓ′ = ℓ+ 1 Γ ⊢ s : Γ ⊲ Ψ ℓ′ Ψ

′

{x : nx}x∈Γ = Ψ0 {x : n′
x}x∈Γ = Ψ′

Ψ∞ = {x : eval ℓ′(vx, pass ℓ′(¬(n)))}x∈Γ with each vx unified with θℓ′(nx, n
′
x)

Γ ⊢ while (e) {s} : Γ ⊲ Ψ0  ℓ Ψ∞

Trans-Sub

Γ ⊢ s : Γ′
⊲ Ψ ℓ Ψ

′

{x : nx}x∈Γ′ = Ψ′ Ψ′′ = {x : nx}x∈Γ′′ (well defined because Γ′′ ⊆ Γ′)

Γ ⊢ s : Γ′′
⊲ Ψ ℓ Ψ

′′

Γ ⊢ e : τ ⊲ Ψ n (expressions)

Trans-Var
n = Ψ(x) (well defined because Γ(x) = τ)

Γ ⊢ x : τ ⊲ Ψ n

Trans-Op
Γ ⊢ e1 : τ1 ⊲ Ψ n1 . . . Γ ⊢ ek : τk ⊲ Ψ nk

Γ ⊢ op(e1, . . . , ek) : τ ⊲ Ψ op(n1, . . . , nk)

Figure 17: Type-directed translation from SIMPLE programs to PEGs

The Trans-Var rule returns the PEG node associated with the variable x in Ψ. The defi-
nition n = Ψ(x) is well defined because we maintain the invariant that Γ ⊢ e : τ ⊲ Ψ n
is only used with contexts Γ and Ψ that are defined on precisely the same set of variables.
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Thus, because the Type-Var rule requires Γ(x) = τ , Γ must be defined on x and so we know
Ψ is also defined on x.

Note that a concrete implementation of the translation, like the one in Figure 15, would
explore a derivation of Γ ⊢ e : τ ⊲ Ψ n bottom-up: the translation starts at the bottom
of the derivation tree and makes recursive calls to itself, each recursive call corresponding
to a step up in the derivation tree. Also note that there is a close relation between the
rules in Figure 17 and those in Figure 14. In particular, the formulas on the left of the ⊲
correspond directly to the typing rules from Figure 14.

Statements. The translation for a statement s takes as input a derivation of the type-
correctness of s, a node context capturing the translation that has been performed up to s,
and returns the node context to be used in the translation of statements following s. We
formalize this with a judgment Γ ⊢ s : Γ′

⊲ Ψ ℓ Ψ
′, which states that from a derivation

of Γ ⊢ s : Γ′, and a node context Ψ (stating what node to use for each variable in s), the
translation produces an updated node context Ψ′ after statement s (ignore ℓ for now). For
example, the rule Trans-Asgn updates the node context to map variable x to the node n
resulting from translating e (which relies on the fact that e is well typed in type context Γ).

Again, we maintain the invariant that in all the derivations we explore, the judgment
Γ ⊢ s : Γ′

⊲ Ψ Ψ′ is only used with contexts Γ and Ψ that are defined on precisely
the same set of variables, and furthermore the resulting contexts Γ′ and Ψ′ will always be
defined on the same set of variables (although potentially different from Γ and Ψ). It is fairly
obvious that the rules preserve this invariant, although Trans-Sub relies on the fact that Γ′′

must be a subcontext of Γ′. The Trans-Seq and Trans-Asgn rules are self explanatatory, so
below we discuss the more complicated rules for control flow.

The rule Trans-If describes how to translate if-then-else statements in SIMPLE pro-
grams to φ nodes in PEGs. First, it translates the Boolean guard expression e to a node
n which will later be used as the condition argument for each φ node. Then it translates
the statement s1 for the “true” branch, producing a node context Ψ1 assigning each live
variable after s1 to a PEG node representing its value after s1. Similarly, it translates s2
for the “false” branch, producing a node context Ψ2 representing the “false” values of each
variable. Due to the invariant we maintain, both Ψ1 and Ψ2 will be defined on the same set
of variables as Γ′. For each x defined in Γ′, we use the name n(x,1) to represent the “true”
value of x after the branch (taken from Ψ1) and n(x,2) to represent the “false” value (taken
from Ψ2). Finally, the rule constructs a node context Ψ′ which assigns each variable x de-
fined in Γ′ to the node φ(n, n(x,1), n(x,2)), indicating that after the if-then-else statement the
variable x has “value” n(x,1) if n evaluates to true and n(x,2) otherwise. Furthermore, this
process maintains the invariant that the type context Γ′ and node context Ψ′ are defined
on exactly the same set of variables.

The last rule, Trans-While, describes how to translate while loops in SIMPLE programs
to combinations of θ, eval , and pass nodes in PEGs. The rule starts by creating a node
context Ψ which assigns to each variable x defined in Γ a fresh temporary variable node
vx. The clause ℓ′ = ℓ + 1 is used to indicate that the body of the loop is being translated
at a higher loop depth. In general, the ℓ subscript in the notation Ψ  ℓ Ψ

′ indicates the
loop depth of the translation. Thus, the judgment Γ ⊢ s : Γ′

⊲ Ψ  ℓ′ Ψ
′ translates the

body of the loop s at a higher loop depth to produce the node context Ψ′. The nodes in Ψ′

are in terms of the temporary nodes vx in Γ and essentially represent how variables change
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in each iteration of the loop. Each variable x defined in Γ has a corresponding node nx

in the node context Ψ0 from before the loop, again due to the invariants we maintain that
Γ and Ψ are always defined on the same set of variables. This invariant also guarantees
that each variable x defined in Γ also has a corresponding node n′

x in the node context Ψ′.
Thus, for each such variable, nx provides the base value and n′

x provides the iterative value,
which can now combined using a θ node. To this end, we unify the temporary variable
node vx with the node θℓ′(nx, n

′
x) to produce a recursive expression which represents the

value of x at each iteration of the loop. Lastly, the rule constructs the final node context
Ψ∞ by assigning each variable x defined in Γ to the node eval ℓ′(vx, pass ℓ′(¬(n))) (where
vx has been unified to produce the recursive expression for x). The node ¬(n) represents
the break condition of the loop; thus pass ℓ′(¬(n)) represents the number of times the loop
iterates. Note that the same pass node is used for each variable, whereas each variable
gets its own θ node. In this manner, the rule Trans-While translates while loops to PEGs,
and furthermore preserves the invariant that the type context Γ and node context Ψ∞ are
defined on exactly the same set of variables.

Programs. Finally, the rule Trans-Prog shows how to use the above translation technique
in order to translate an entire SIMPLE program. It creates a node context with a PEG
parameter node for each parameter to main. It then translates the body of the main at loop
depth 0 to produce a node context Ψ. Since the return retvar is guaranteed to be in the
final context Γ, the invariant that Γ and Ψ are always defined on the same variables ensure
that there is a node n corresponding to retvar in the final node context Ψ. This PEG node
n represents the entire SIMPLE program.

Translation vs. pseudo-code. The pseudo-code in Figure 15 follows the rules from
Figure 17 very closely. Indeed, the code can be seen as using the rules from the type-
directed translation to find a derivation of ⊢ p ⊲ n. The search starts at the end
of the derivation tree, and moves up from there. The entry-point of the pseudo-code is
TranslateProg, which corresponds to rule Trans-Prog, the last rule to be used in a deriva-
tion of ⊢ p ⊲ n. TranslateProg calls TS, which corresponds to finding a derivation for
Γ ⊢ s : Γ′

⊲ Ψ  ℓ Ψ
′. Finally, TS calls TE, which corresponds to finding a derivation

for Γ ⊢ e : τ ⊲ Ψ n. Each pattern-matching case in the pseudo-code corresponds to a
rule from the type-directed translation.

The one difference between the pseudo-code and the type-directed translation is that
in the judgments of the type-directed translation, one of the inputs to the translation is a
derivation of the type correctness of the expression/statement/program being translated,
whereas the pseudo-code does not manipulate any derivations. This can be explained by
a simple erasure optimization in the pseudo-code: because of the structure of the type-
checking rules for SIMPLE (in particular there is only one rule per statement kind), the
implementation does not need to inspect the entire derivation – it only needs to look at the
final expression/statement/program in the type derivation (which is precisely the expres-
sion/statement/program being translated). It is still useful to have the derivation expressed
formally in the type-directed translation, as it makes the proof of correctness more direct.
Furthermore, there are small changes that can be made to the SIMPLE language that pre-
vent the erasure optimization from being performed. For example, if we add subtyping and
implicit coercions, and we want the PEG translation process to make coercions explicit,
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then the translation process would need to look at the type derivation to see where the
subtyping rules are applied.

Because the type-directed translation in Figure 17 is essentially structural induction on
the proof that the SIMPLE program is well typed, we can guarantee that its implementation
in Figure 15 terminates. Additionally, because of the invariants we maintain in the type-
directed translation, we can guarantee that the implementation always successfully produces
a translation. We discuss the correctness guarantees provided by the translation below.

6.4. Preservation of Semantics. While SIMPLE is a standard representation of pro-
grams, PEGs are far from standard. Furthermore, the semantics of PEGs are even less
so, especially since the node representing the returned value is the first to be “evaluated”.
Thus, it is natural to ask whether the translation above preserves the semantics of the
specified programs. We begin by defining the semantics of SIMPLE programs, and go on
to examine their relationship to the semantics of PEGs produced by our algorithm.

Here we define the evaluation functions J·K, which implement the operational semantics
of SIMPLE programs. We don’t give full definitions, since these are standard. These
functions are defined in terms of an evaluation context Σ, which is a map that for each
variable x gives its value ν = Σ(x).

Definition 1 (Semantics of expressions). For a SIMPLE expression e we define JeK to be a
partial function from evaluation contexts to values. This represents the standard operational
semantics for SIMPLE expressions. For a given Σ, JeK(Σ) returns the result of evaluating
e, using the values of variables given in Σ.

Definition 2 (Semantics of statements). For a SIMPLE statement s we define JsK to
be a partial function from evaluation contexts to evaluation contexts. This represents the
standard operational semantics for SIMPLE statements. For a given Σ, JsK(Σ) returns the
evaluation context that results from executing s in context Σ. If s does not terminate when
started in Σ, then JsK(Σ) is not defined.

Definition 3 (Semantics of programs). For a SIMPLE program main(x1 : τ1, . . . , xk : τk){s}
and an evaluation context Σ that maps each xi to an appropriately typed value, we define
JmainK(Σ) = JsK(Σ)(retvar).

We will use these functions in our discussion below. For the translation defined in
Section 6.3 we have proven the following theorem (recall the substitution notation n[x 7→ ν]
from Section 5.1).

Theorem 2. If (1) ⊢main(x1 : τ1, . . . , xk : τk) : τ {s} ⊲ n, (2) Σ is an evaluation con-
text mapping each xi to an appropriately typed value νi, and (3) n̂ = n[x1 7→ ν1, . . . , xk 7→ νk],
then JmainK(Σ) = ν =⇒ Jn̂K(λℓ.0) = ν.

The above theorem only states that our conversion process is nearly semantics-pre-
serving, since it does not perfectly preserve non-termination. In particular, our translation
from SIMPLE to PEG discards any PEG nodes which are never used to calculate the return
value. Thus, an infinite SIMPLE loop whose value is never used will be removed, changing
the termination behavior of the program. In the broader setting beyond SIMPLE, the only
case where we would change the termination behavior of the program is if there is an infinite
loop that causes no side effects (aside from non-termination) and does not contribute to the
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return value of the function. It is important to keep in mind that these loops have no side-
effects (aside from non-termination), and so they cannot modify the heap or perform I/O.
This basically means that these loops are equivalent to a while(true) { } loop. Other
modern compilers perform similar transformations that remove such IO-less infinite loops
which do not contribute to the result [3]. In fact, the newly planned C++ standard allows
the implementation to remove such IO-less loops, even if termination cannot be proven [2].
Nonetheless, at the end of this section, we give a brief overview of how to encode non-
termination in PEGs.

In this theorem, we use both the function J·K defined above for SIMPLE programs, as
well as the function J·K defined in Equation 5.1 for PEG nodes. Throughout the rest of this
section we will mix our uses of the various J·K functions, and the reader can disambiguate
them based on context. The common intuition is that these functions all implement program
semantics, and thus represent executing the program fragment they are called upon.

We proved the above theorem in full formal detail using the Coq interactive theorem
prover [12]. To conduct the proof in Coq we only had to assume the standard axioms
for extensional equality of functions and of coinductive types. The machine-checkable Coq
proof is available at: http://cseweb.ucsd.edu/groups/progsys/peg-coq-proof. Here
we present only the major invariants used in this proof without showing the details of why
these invariants are preserved.

Given a program main with parameters x1, . . . , xk, suppose we are given a set of actual
values v1, . . . , vk that correspond to the values passed in for those parameters. Then given
the PEG G created during the translation of main, we can construct a new PEG Ĝ that
is identical to G except that every parameter node for xi is replaced with a constant node
for vi. Thus, for every node n ∈ G, there is a corresponding node n̂ ∈ Ĝ. Furthermore,
this correspondence is natural: θ nodes correspond to θ nodes and so on (except for the
parameter nodes which have been explicitly replaced). Similarly, every PEG context Ψ for

G has a naturally corresponding PEG context Ψ̂ in terms of nodes in Ĝ. We can now phrase
our primary invariants in terms of this node correspondence.

In this proof we will rely on the concept of loop-invariance of PEG nodes. Earlier in
Section 5.1, we defined some simple rules for determining when a node n is invariant with
respect to a given loop-depth ℓ, which we denote as invariant ℓ(n). These rules are based on
the syntax of the PEG rather than the semantics, so we say that the rules detect syntactic
loop-invariance, rather than semantic loop-invariance. Syntactic loop-invariance is a useful
property since it implies semantic loop-invariance, which is in general undecidable. We can
generalize the notion of invariant ℓ to a PEG context as follows.

Definition 4. Given a PEG context Ψ and a loop-depth ℓ, we say that Ψ is syntactically
loop-invariant with respect to ℓ if for each binding (x : n) ∈ Ψ, n is syntactically loop-
invariant with respect to ℓ. We denote this by invariant ℓ(Ψ).

With this definition in mind, we can express the first two lemmas that will help in our
proof of semantics preservation.

Lemma 1. If Γ ⊢ e : τ ⊲ Ψ n, then ∀ℓ, invariant ℓ(Ψ̂) =⇒ invariant ℓ(n̂)

Proof. Proved using induction on the proof of Γ ⊢ e : τ .

Lemma 2. For all loop-depths ℓ, if Γ ⊢ s : Γ′
⊲ Ψ ℓ Ψ

′, then

∀ℓ′ > ℓ, invariant ℓ′(Ψ̂) =⇒ ∀ℓ′ > ℓ, invariant ℓ′(Ψ̂
′)

http://cseweb.ucsd.edu/groups/progsys/peg-coq-proof
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Proof. Proved using induction on the proof of Γ ⊢ s : Γ′, with Lemma 1.

Using the above lemmas, and the fact that invariant(·) implies semantic loop-invariance,
we can proceed to the critical invariant. First we must introduce the notion of the semantics
of a PEG context. Given a PEG context Ψ, there is a unique evaluation context that is
induced by Ψ for a given loop vector i. Namely, it is the evaluation context that maps every
variable x to the value JΨ(x)K(i). This provides a useful relationship between the semantics
of PEGs and the semantics of SIMPLE programs.

Definition 5. Given PEG context Ψ, we define JΨK to be a partial function from loop
vectors to evaluation contexts defined by

∀i . JΨK(i) = {(x : v) | v = JΨ(x)K}

Lemma 3. If Γ ⊢ e : τ ⊲ Ψ n and JΨ̂K(i) = Σ, then

∀ν . JeK(Σ) = ν =⇒ n̂(i) = ν

Proof. Proved using induction on the proof of Γ ⊢ e : τ , with Lemma 1.

Lemma 4. For any loop-depth ℓ, if (1) Γ ⊢ s : Γ′
⊲ Ψ  ℓ Ψ′, and (2) for each

ℓ′ > ℓ, invariant ℓ′(Ψ̂) holds, and (3) JΨ̂K(i) = Σ, then

∀Σ′ . JsK(Σ) = Σ′ =⇒ JΨ̂′K(i) = Σ′

Proof. Proved using induction on the proof of Γ ⊢ s : Γ′, with Lemmas 2 and 3. For the
while case, the proof relies on the fact that syntactic invariance of Ψ̂ implies semantic
invariance of Ψ̂, which implies that Ψ̂ corresponds to Σ at all loop vectors i′ which only
differ from i at loop-depth ℓ+ 1.

Our semantics-preservation theorem is a direct corollary of the above lemma, and so we
have shown that the evaluation of a PEG is equivalent to the evaluation of its corresponding
SIMPLE program, modulo termination.

Preserving Non-Termination. There is a simple change to PEGs that would allow them
to preserve non-termination, even for loops that don’t contribute to the result. In particular,
we can use the concept of an effect token. For our task of preserving non-termination, the
effect token will encode the non-termination effect, although one can use a similar strategy
for other effects (and in fact we use a similar strategy for encoding heap modifications and
exceptions using a σ heap summary node in Section 8). Any effectful operation must take
an effect token. If the operation might also change the state of the effect, then it must
produce an effect token as output. In SIMPLE, the ÷ operation could modify our non-
termination effect token, if we choose to encode division-by-zero as non-termination (since
SIMPLE does not contain exceptions). In we added functions to SIMPLE, then function
calls would also consume and produce a non-termination effect token, since the function
call could possibly not terminate.

For every loop, there is one pass node (although there may be many eval nodes), and
evaluation of a pass node fails to terminate if the condition is never true. As a result, since
a pass node may fail to terminate, it therefore must take and produce a non-termination
effect token. In particular, we would modify the pass node to take two inputs: a node
representing the break condition of the loop and a node representing how the state of the
effect changes inside the loop. The pass node would also be modified to have an additional
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Figure 18: Representation of a division by zero: (a) the original source code, (b) the PEG
produced without effect tokens, (c) the PEG produced with effect tokens. The
arrows indicate the return values.

output, which is the state of the effect at the point when the loop terminates. Then, the
translation process is modified to thread this effect token through all the effectful operations
(which includes pass nodes), and finally produce a node representing the effect of the entire
function. This final effect node is added as an output of the function, along with the node
representing the return value.

Whereas before an infinite loop would be elided if it does not contribute to the final
return value of the program, now the pass node of the loop contributes to the result because
the effect token is threaded through it and returned. This causes the pass node to be
evaluated, which causes the loop’s break condition to be evaluated, which will lead to non-
termination since the condition is never true.

We present an example in Figure 18 to demonstrate the use of effect tokens. The
SIMPLE code in part (a) shows an attempt to divide by zero, followed by a return value
of 13. Let’s assume that ÷ does not terminate when dividing by 0. A similar encoding
works if ÷ throws an exception instead of running forever – we describe our encoding of
exceptions in Section 8, but in short the example would look essentially the same, except
that we would use a σ heap summary node instead of an effect token. Part (b) shows the
corresponding PEG without effect tokens. The arrow indicates the return value, which is
13. Even though this PEG has the nodes for the division by zero, they are not reachable
from the return value, and hence the PEG would be optimized to 13, which would remove
the divide-by-zero (thus changing the termination behavior of the code).

Using a non-termination effect token can fix this problem, by producing the PEG in
part (c). The division operator now returns a tuple of (effect , value) and the components
are fetched using ρe and ρv respectively. As previously, we have 13 as a return value, but
we now have an additional return value: the effect token produced by the PEG. Since the
division is now reachable from the return values, it is not removed anymore, even if the
value of the division (the ρv node) is never used.

7. Reverting a PEG to Imperative Code

In this section we present the complement to the previous section: a procedure for
converting a PEG back to a SIMPLE program. Whereas the translation from SIMPLE
programs to PEGs was fairly simple, the translation back (which we call reversion) is much
more complicated. Since the order of SIMPLE execution is specified explicitly, SIMPLE
programs have more structure than PEGs, and so it is not surprising that the translation
from PEGs back to SIMPLE is more complex than the translation in the forward direction.
Because of the complexity involved in reversion, we start by presenting a simplified version of
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the process in Sections 7.1 through 7.5. This simple version is correct but produces SIMPLE
programs that are inefficient because they contain a lot of duplicated code. We then present
in Sections 7.6 through 7.9 several optimizations on top of the simple process to improve
the quality of the generated code by removing the code duplication. These optimizations
include branch fusion, loop fusion, hoisting code that is common to both sides of a branch,
and hoisting code out of loops. In the setting of SIMPLE, these optimizations are optional
– they improve the performance of the generated code, but are not required for correctness.
However, if we add side-effecting operations like heap reads/writes (as we do in Section 8),
these optimizations are not optional anymore: they are needed to make sure that we don’t
incorrectly duplicate side-effecting operations. In our technical report [50],] we present more
advanced techniques for reverting PEGs to CFGs rather than SIMPLE programs, taking
advantage of the flexibility of CFGs in order to produce even more efficient translations of
PEGs. This is particularly important when reverting PEGs translated from programs in a
language with more advanced control flow such as breaks and continues.

7.1. CFG-like PEGs. Before we can proceed, we need to define the precondition of our
reversion process. In particular, our reversion process assumes that the PEGs we are pro-
cessing are CFG-like, as formalized by the following definition.

Definition 6 (CFG-like PEG context). We say that a PEG context Ψ is CFG-like if
Γ ⊢ Ψ : Γ′ using the rules in Figure 19.

The rules in Figure 19 impose various restrictions on the structure of the PEG which
makes our reversion process simpler. For example, these rules guarantee that the second
child of an eval node is a pass node, and that by removing the second outgoing edge of
each θ node, the PEG becomes acyclic. If a PEG context is CFG-like, then it is well-formed
(Definition 5.1 from Section 5.1). Furthermore, all PEGs produced by our SIMPLE-to-PEG
translation process from Section 6 are CFG-like. However, not all well-formed PEGs are
CFG-like, and in fact it is useful for equality saturation to consider PEGs that are not
CFG-like as intermediate steps. To guarantee that the reversion process will work during
optimization, the Pseudo-boolean formulation described in Section 8.3 ensures that the
PEG selected for reversion is CFG-like.

In Figure 19, Γ is a type context assigning parameter variables to types. ℓ is the largest
loop-depth with respect to which the PEG node n is allowed to be loop-variant; initializing
ℓ to 0 requires n to be loop-invariant with respect to all loops. Θ is an assumption context
used to type-check recursive expressions. Each assumption in Θ has the form ℓ ⊢ n : τ ,
where n is a θℓ node; ℓ ⊢ n : τ states that n has type τ at loop depth ℓ. Assumptions in Θ are
introduced in the Type-Theta rule, and used in the Type-Assume rule. The assumptions in
Θ prevent “unsolvable” recursive PEGs such as x = 1 + x or “ambiguous” recursive PEGs
such as x = 0∗x. The requirement in Type-Eval-Pass regarding Θ prevents situations such
as x = θ2(eval1(eval2(x, . . . ), . . . ), . . . ), in which essentially the initializer for the nested
loop is the final result of the outer loop.

Although Γ ⊢ Ψ : Γ′ is the syntactic form which we will use in the body of the text, our
diagrams will use the visual representation of Γ ⊢ Ψ : Γ′ shown in Figure 20. Part (a) of the
figure shows the syntactic form of the judgment (used in the text); (b) shows an example of
the syntactic form; and finally (c) shows the same example in the visual form used in our
diagrams.
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Γ ⊢ Ψ : Γ′

Type-PEG-Context
∀(x : τ) ∈ Γ′. Ψ(x) = n⇒ Γ ⊢ n : τ

Γ ⊢ Ψ : Γ′

Γ ⊢ n : τ

Type-PEG
Γ, 0,∅ ⊢ n : τ

Γ ⊢ n : τ

Γ, ℓ,Θ ⊢ n : τ

Type-Param
Γ(x) = τ

Γ, ℓ,Θ ⊢ param(x) : τ

Type-Op
op : (τ1, . . . , τn)→ τ Γ, ℓ,Θ ⊢ n1 : τ1 . . . Γ, ℓ,Θ ⊢ nn : τn

Γ, ℓ,Θ ⊢ op(n1, . . . , nn) : τ

Type-Phi
Γ, ℓ,Θ ⊢ c : bool Γ, ℓ,Θ ⊢ t : τ Γ, ℓ,Θ ⊢ f : τ

Γ, ℓ,Θ ⊢ φ(c, t, f) : τ

Type-Theta

ℓ′ = ℓ− 1
Γ, ℓ′,Θ ⊢ b : τ Γ, ℓ, (Θ, (ℓ ⊢ θℓ(b, n) : τ)) ⊢ n : τ

Γ, ℓ,Θ ⊢ θℓ(b, n) : τ

Type-Eval-Pass

ℓ = ℓ′ + 1 ∀ℓ1, n, τ
′.[(ℓ1 ⊢ n : τ ′) ∈ Θ⇒ ℓ1 < ℓ′]

Γ, ℓ′,Θ ⊢ v : τ Γ, ℓ′,Θ ⊢ c : bool

Γ, ℓ,Θ ⊢ eval ℓ′(v, pass ℓ′(c)) : τ

Type-Reduce
ℓ ≥ ℓ′ Θ ⊇ Θ′ Γ, ℓ′,Θ′ ⊢ n : τ

Γ, ℓ,Θ ⊢ n : τ

Type-Assume
(ℓ ⊢ n : τ) ∈ Θ

Γ, ℓ,Θ ⊢ n : τ

Figure 19: Rules for defining CFG-like PEGs

7.2. Overview. We can draw a parallel between CFG-like PEG contexts and well-typed
statements: both can be seen as taking inputs Γ and producing outputs Γ′. With this
parallel in mind, our basic strategy for reverting PEGs to SIMPLE programs is to recursively
translate CFG-like PEG contexts Γ ⊢ Ψ : Γ′ to well-typed SIMPLE statements Γ ⊢ s : Γ′.
Therefore, the precondition for our reversion algorithm is that the PEG context we revert
must be CFG-like according to the rules in Figure 19.

For the reversion process, we make two small changes to the type checking rules for
SIMPLE programs. First, we want to allow the reversion process to introduce temporary
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Figure 21: Diagrammatic representation of a statement node

variables without having to add them to Γ′ (in Γ ⊢ s : Γ′). To this end, we allow intermediate
variables to be dropped from Γ′, so that Γ ⊢ s : Γ′ and Γ′′ ⊆ Γ′ implies Γ ⊢ s : Γ′′.

Second, to more clearly highlight which parts of the generated SIMPLE code modify
which variables, we introduce a notion Γ0; Γ ⊢ s : Γ′ of SIMPLE statements s which use
but do not modify variables in Γ0 (where Γ and Γ0 are disjoint). We call Γ0 the immutable
context. The rules in Figure 14 can be updated appropriately to disallow variables from Γ0 to
be modified. Similarly, we add Γ0 to the notion of CFG-like PEG contexts: Γ0; Γ ⊢ Ψ : Γ′.
Since PEG contexts cannot modify variables anyway, the semantics of bindings in Γ0 is
exactly the same as bindings in Γ (and so we do not need to update the rules from Figure 19).
Still, we keep an immutable context Γ0 around for PEG contexts because Γ0 from the PEG
context gets reflected into the generated SIMPLE statements where it has a meaning. Thus,
our reversion algorithm will recursively translate CFG-like PEG contexts Γ0; Γ ⊢ Ψ : Γ′ to
well-typed SIMPLE statements Γ0; Γ ⊢ s : Γ′.

Throughout the rest of section 7, we assume that there is a PEG context Γ0; Γ ⊢ Ψ : Γ′

that we are currently reverting. Furthermore, we define Γ0 to be:

Γ0 = Γ0 ∪ Γ (7.1)

As will become clear in Section 7.3, the Γ0 from Equation (7.1) will primarily be used as
the immutable context in recursive calls to the reversion algorithm. The above definition of
Γ0 states that when making a recursive invocation to the reversion process, the immutable
context for the recursive invocation is the entire context from the current invocation.

Statement nodes. The major challenge in reverting a CFG-like PEG context lies in han-
dling the primitive operators for encoding control flow: φ for branches and eval , pass and θ
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for loops. To handle such primitive nodes, our general approach is to repeatedly replace a
subset of the PEG nodes with a new kind of PEG node called a statement node. A statement
node is a PEG node 〈s〉Γ

′

Γ where s is a SIMPLE statement satisfying Γ0; Γ ⊢ s : Γ′ (recall
that Γ0 comes from Equation (7.1)). The node has many inputs, one for each variable in
the domain Γ, and unlike any other node we’ve seen so far, it also has many outputs, one
for each variable of Γ′. A statement node can be perceived as a primitive operator which,
given an appropriately typed list of input values, executes the statement s with those val-
ues in order to produce an appropriately typed list of output values. Although 〈s〉Γ

′

Γ is the
syntactic form which we will use in the body of the text, our diagrams will use the visual
representation of 〈s〉Γ

′

Γ shown in Figure 21. Part (a) of the figure shows the syntactic form of
a statement node (used in the text); (b) shows an example of the syntactic form; and finally
(c) shows the same example in the visual form used in our diagrams. Note that the visual
representation in part (c) uses the same visual convention that we have used throughout
for all PEG nodes: the inputs flow into the bottom side of the node, and the outputs flow
out from the top side of the node.

The general approach we take is that eval nodes will be replaced with while-loop state-
ment nodes (which are statement nodes 〈s〉Γ

′

Γ where s is a while statement) and φ nodes

will be replaced with if-then-else statement nodes (which are statement nodes 〈s〉Γ
′

Γ where
s is an if-then-else statement). To this end, our most simplistic reversion algorithm, which
we present first, converts PEG contexts to statements in three steps:

(1) We replace all eval , pass , and θ nodes with while-loop statement nodes. This results
in an acyclic PEG.

(2) We replace all φ nodes with if-then-else statement nodes. This results in a PEG
with only statement nodes and domain operators such as + and ∗ (that is to say,
there are no more eval , pass , θ or φ nodes).

(3) We sequence the statement nodes and domain operators into successive assignment

statements. For a statement node 〈s〉Γ
′

Γ , we simply inline the statement s into the
generated code.

We present the above three steps in Sections 7.3, 7.4 and 7.5, respectively. Finally, since
the process described above is simplistic and results in large amounts of code duplication,
we present in sections 7.6 through 7.9 several optimizations that improve the quality of the
generated SIMPLE code.

7.3. Translating Loops. In our first pass, we repeatedly convert each loop-invariant eval
node, along with the appropriate pass and θ nodes, into a while-loop statement node. The
nested loop-variant eval nodes will be taken care of when we recursively revert the “body”
of the loop-invariant eval nodes to statements. For each loop-invariant eval ℓ node, we apply
the process described below.

First, we identify the set of θℓ nodes reachable from the current eval ℓ node or its pass ℓ
node without passing through other loop-invariant nodes (in particular, without passing
through other eval ℓ nodes). Let us call this set of nodes S. As an illustrative example,
consider the left-most PEG context in Figure 22, which computes the factorial of 10. When
processing the single eval1 node in this PEG, the set S will contain both θ1 nodes. The
intuition is that each θ node in S will be a loop variable in the SIMPLE code we generate.
Thus, our next step is to assign a fresh variable x for each θℓ node in S; let bx refer to
the first child of the θℓ node (i.e. the base case), and ix refer to the second child (i.e. the



44 R. TATE, M. STEPP, Z. TATLOCK, AND S. LERNER

*

param(Y)param(X)

X Y

+

1

X:=X*Y;

Y:=1+Y

c:=¬(Y 10)

r:=X

¬

 

10

c

param(Y)

param(X)

r

c:=¬(Y 10);

while(¬c){

X:=X*Y;

Y:=1+Y;

c:=¬(Y 10)

};

r:=X

Y

r

X

retvar

1 1

Recursively

Translate

Recursively

Translate

Recursively

Translate

Extract

Condition

Sequence

X:=1;

Y:=1;

c:=¬(Y 10);

while(¬c){

X:=X*Y;

Y:=1+Y;

c:=¬(Y 10)

};

r:=X;

retvar:=r

1 +

1 

1

1 *

1 
pass

¬

 

10

eval1

retvar

X

Y

1

Figure 22: Example of converting eval nodes to while-loop statement nodes

iterative case); also, given a node n ∈ S, we use var(n) for the fresh variable we just created
for n. In the example from Figure 22, we created two fresh variables x and y for the two θ1
nodes in S. After assigning fresh variables to all nodes in S, we then create a type context
Γ as follows: for each n ∈ S, Γ maps var (n) to the type of node n in the PEG, as given by
the type-checking rules in Figure 19. For example, in Figure 22 the resulting type context
Γ is {x : int, y : int}.

Second, we construct a new PEG context Ψi that represents the body of the loop. This
PEG context will state in PEG terms how the loop variables are changed in one iteration of
the loop. For each variable x in the domain of Γ, we add an entry to Ψi mapping x to a copy
of ix (recall that ix is the second child of the θ node which was assigned variable x). The
copy of ix is a fully recursive copy, in which descendants have also been copied, but with one
important modification: while performing the copy, when we reach a node n ∈ S, we don’t
copy n; instead we use a parameter node referring to var(n). This has the effect of creating
a copy of ix with any occurrence of n ∈ S replaced by a parameter node referring to var(n),
which in turn has the effect of expressing the next value of variable x in terms of the current
values of all loop variables. From the way it is constructed, Ψi will satisfy Γ0; Γ ⊢ Ψi : Γ,
essentially specifying, in terms of PEGs, how the loop variables in Γ are changed as the
loop iterates (recall that Γ0 comes from Equation (7.1)). Next, we recursively revert Ψi

satisfying Γ0; Γ ⊢ Ψi : Γ to a SIMPLE statement si satisfying Γ0; Γ ⊢ si : Γ. The top-center
PEG context in Figure 22 shows Ψi for our running example. In this case Ψi states that
the body of the loop modifies the loop variables as follows: the new value of x is x*y, and
the new value of y is 1+y. Figure 22 also shows the SIMPLE statement resulting from the
recursive invocation of the reversion process.

Third, we take the second child of the eval node that we are processing. From the way
the PEG type rules are setup in Figure 19, this second child must be the pass node of the
eval . Next, we take the first child of this pass node, and make a copy of this first child with
any occurrence of n ∈ S replaced by a parameter node referring to var(n). Let c be the PEG
node produced by this operation, and let Ψc be the singleton PEG context {xc : c}, where
xc is fresh. Ψc represents the computation of the break condition of the loop in terms of
the loop variables. From the way it is constructed, Ψc will satisfy Γ0; Γ ⊢ Ψc : {xc : bool}.
We then recursively revert Ψc satisfying Γ0; Γ ⊢ Ψc : {xc : bool} to a SIMPLE statement sc
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satisfying Γ0; Γ ⊢ sc : {xc : bool}. sc simply assigns the break condition of the loop to the
variable xc. The middle row of Figure 22 shows the PEG context for the break condition
and the corresponding SIMPLE statement evaluating the break condition.

Fourth, we take the first child of the eval node and make a copy of this first child
with any occurrence of n ∈ S replaced with a parameter node referring to var(n). Let r
be the PEG node produced by this operation, and let Ψr be the singleton PEG context
{xr : r}, where xr is fresh. Ψr represents the value desired after the loop in terms of the loop
variables. From the way it is constructed, Ψr will satisfy Γ0; Γ ⊢ Ψr : {xr : τ}, where τ is the
type of the first child of the eval node in the original PEG. We then recursively revert Ψr

satisfying Γ0; Γ ⊢ Ψr : {xr : τ} to a SIMPLE statement sr satisfying Γ0; Γ ⊢ sr : {xr : τ}. sr
simply assigns the value desired after the loop into variable xr. The bottom row of Figure 22
shows the PEG context for the value desired after the loop and the corresponding SIMPLE
statement evaluating the desired value. Often, but not always, the first child of the eval ℓ
node will be a θℓ node, in which case the statement will simply copy the variable as in this
example.

Finally, we replace the eval ℓ node being processed with the while-loop statement node

〈sc; while (¬xc) {si; sc}; sr〉
{xr :τ}
Γ . Figure 22 shows the while-loop statement node resulting

from translating the eval node in the original PEG context. Note that the while-loop
statement node has one input for each loop variable, namely one input for each variable in
the domain of Γ. For each such variable x, we connect bx to the corresponding x input of the
while-loop statement node (recall that bx is the first child of the θ node which was assigned
variable x). Figure 22 shows how in our running example, this amounts to connecting 1 to
both inputs of the while-loop statement node. In general, our way of connecting the inputs
of the while-loop statement node makes sure that each loop variable x is initialized with
the its corresponding base value bx. After this input initialization, sc assigns the status of
the break condition to xc. While the break condition fails, the statement si updates the
values of the loop variables, then sc assigns the new status of the break condition to xc.
Once the break condition passes, sr computes the desired value in terms of the final values
of the loop variables and assigns it to xr. Note that it would be more “faithful” to place sr
inside the loop, doing the final calculations in each iteration, but we place it after the loop
as an optimization since sr does not affect the loop variables. The step labeled “Sequence”
in Figure 22 shows the result of sequencing the PEG context that contains the while-loop
statement node. This sequencing process will be covered in detail in Section 7.5.

Note that in the computation of the break condition in Figure 22, there is a double
negation, in that we have c := ¬ . . . ; and while(¬c). Our more advanced reversion
algorithm, described in the accompanying technical report [50], takes advantage of more
advanced control structures present in CFGs but not in SIMPLE, and does not introduce
these double negations.

7.4. Translating Branches. After our first pass, we have replaced eval , pass and θ nodes
with while-loop statement nodes. Thus, we are left with an acyclic PEG context that
contains φ nodes, while-loop statement nodes, and domain operators like + and ∗. In our
second pass, we repeatedly translate each φ node into an if-then-else statement node. In
order to convert a φ node to an if-then-else statement node, we must first determine the set
of nodes which will always need to be evaluated regardless of whether the guard condition is
true or false. This set can be hard to determine when there is another φ node nested inside
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Figure 23: Example of converting φ nodes to if-then-else statement nodes

the φ node. To see why this would be the case, consider the example in Figure 23, which
we will use as a running example to demonstrate branch translation. Looking at part (a),
one might think at first glance that the ÷ node in the first diagram is always evaluated by
the φ node labeled 1© since it is used in the PEGs for both the second and third children.
However, upon further examination one realizes that actually the ÷ node is evaluated in the
second child only when x 6=0 due to the φ node labeled 2©. To avoid these complications, it
is simplest if we first convert φ nodes that do not have any other φ nodes as descendants.
After this replacement, there will be more φ nodes that do not have φ descendants, so we
can repeat this until no φ nodes are remaining. In the example from Figure 23, we would
convert node 2© first, resulting in (b). After this conversion, node 1© no longer has any
φ descendants and so it can be converted next. Thus, we replace φ nodes in a bottom-up
order. For each φ node, we use the following process.

First, we determine the set S of nodes that are descendants of both the second and
third child of the current φ node (i.e. the true and false branches). These are the nodes
that will get evaluated regardless of which way the φ goes. We assign a fresh variable to
each node in this set, and as in the case of loops we use var(n) to denote the variable we’ve
assigned to n. In Figure 23(a), the * node is a descendant of both the second and third
child of node 2©, so we assign it the fresh variable a. Note that the 3 node should also be
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assigned a variable, but we do not show this in the figure since the variable is never used.
Next, we take the second child of the φ node and make a copy of this second child in which
any occurrence of n ∈ S has been replaced with a parameter node referring to var (n). Let
t be the PEG node produced by this operation. Then we do the same for the third child of
the φ node to produce another PEG node f . The t and f nodes represent the true and false
computations in terms of the PEG nodes that get evaluated regardless of the direction the
φ goes. In the example from Figure 23(a), t is param(a) and f is ÷(param(a), param(x)).
Examining t and f , we produce a context Γ of the newly created fresh variables used by
either t or f . In the example, Γ would be simply {a : int}. The domain of Γ does not
contain x since x is not a new variable (i.e. x is in the domain of Γ0, where Γ0 comes from
Equation (7.1)). Thus, t and f are PEGs representing the true and false cases in terms of
variables Γ representing values that would be calculated regardless.

Second, we invoke the reversion process recursively to translate t and f to statements.
In particular, we create two singleton contexts Ψt = {xφ : t} and Ψf = {xφ : f} where xφ is
a fresh variable, making sure to use the same fresh variable in the two contexts. From the
way it is constructed, Ψt satisfies Γ0; Γ ⊢ Ψt : {xφ : τ}, where τ is the type of the φ node.
Thus, we recursively revert Ψt satisfying Γ0; Γ ⊢ Ψt : {xφ : τ} to a SIMPLE statement st
satisfying Γ0; Γ ⊢ st : {xφ : τ}. Similarly, we revert Ψf satisfying Γ0; Γ ⊢ Ψf : {xφ : τ}
to a statement sf satisfying Γ0; Γ ⊢ sf : {xφ : τ}. The steps labeled “Extract True” and
“Extract False” in Figure 23 show the process of producing Ψt and Ψf in our running
example, where the fresh variable xφ is b in part (a) and e in part (b). Note that Ψt and
Ψf may themselves contain statement nodes, as in Figure 23(b), but this poses no problems
for our recursive algorithm. Finally, there is an important notational convention to note
in Figure 23(a). Recall that Ψf satisfies Γ0; Γ ⊢ Ψf : {xφ : τ}, and that in Figure 23(a)
Γ0 = {x : int} and Γ = {a : int}. In the graphical representation of Γ0; Γ ⊢ Ψf : {xφ : τ}
in Figure 23(a), we display variable a as a real boxed input (since it is part of Γ), whereas
because x is in Γ0, we display x without a box, and using the shorthand of omitting the
param (even though in reality it is there).

Finally, we replace the φ node we are processing with the if-then-else statement node

〈if (xc) {st} else {sf}〉
{xφ:τ}

(Γ,xc:bool)
(where xc is fresh). This statement node has one input

for each entry in Γ, and it has one additional input xc for the guard value. We connect the
xc input to the first child of the φ node we are currently processing. For each variable x in
the domain of Γ, we connect the x input of the statement node to the “always-evaluated”
node n for which var (n) = x. Figure 23 shows the newly created if-then-else statement
nodes and how they are connected when processing φ node 1© and 2©. In general, our way
of connecting the inputs of the if-then-else statement node makes sure that each always-
evaluated node is assigned to the appropriate variable, and the guard condition is assigned
to xc. After this initialization, the statement checks xc, the guard condition, to determine
whether to take the true or false branch. In either case, the chosen statement computes the
desired value of the branch and assigns it to xφ.

7.5. Sequencing Operations and Statements. When we reach our final pass, we have
already eliminated all primitive operators (eval , pass , θ, and φ) and replaced them with
statement nodes, resulting in an acyclic PEG context containing only statement nodes
and domain operators like + and ∗. At this point, we need to sequence these statement
nodes and operator nodes. We start off by initializing a statement variable S as the empty



48 R. TATE, M. STEPP, Z. TATLOCK, AND S. LERNER

+

=

7

g

param(d)

e

X

b

if(c1)

{b:=a}

else

{b:=a÷X}

c1 a

+

=

7

0
param(d)

e

X

b

if(c1)

{b:=a}

else

{b:=a÷X}

c1 a

g:=0

+

7

h

param(d)

e

b

if(c1)

{b:=a}

else

{b:=a÷X}

c1 a

g:=0;

h:=(X=g)

+

7 b

e

g:=0;

h:=(X=g);

c1:=h;

a:=d;

if(c1)

{b:=a}

else

{b:=a÷X}

+

i b

e

g:=0;

h:=(X=g);

c1:=h;

a:=d;

if(c1)

{b:=a}

else

{b:=a÷X};

i:=7

g:=0;

h:=(X=g);

c1:=h;

a:=d;

if(c1)

{b:=a}

else

{b:=a÷X};

i:=7;

j:=i+b;

e:=j

j

e

g:=0;

h:=(X=g);

c1:=h;

a:=d;

if(c1)

{b:=a}

else

{b:=a÷X};

i:=7;

j:=i+b

(1) process “0” (3) process  stmt (4) process “7”(2) process “=“ (5) process “+” (6) assign outputs

Figure 24: Example of sequencing a PEG context (with statement nodes) into a statement

statement. We will process each PEG node one by one, postpending lines to S and then
replacing the PEG node with a parameter node. It is simplest to process the PEG nodes
from the bottom up, processing a node once all of its inputs are parameter nodes. Figure 24
shows every stage of converting a PEG context to a statement. At each step, the current
statement S is shown below the PEG context.

If the node being processed is a domain operator, we do the following. Because we
only process nodes where all of its inputs are parameter nodes, the domain operator node
we are processing must be of the following form: op(param(x1), . . . , param(xk)). We first
designate a fresh variable x. Then, we postpend the line x := op(x1, . . . , xk) to S. Finally,
we replace the current node with the node param(x). This process is applied in the first,
second, fourth, and fifth steps of Figure 24. Note that in the first and fourth steps, the
constants 0 and 7 are a null-ary domain operators.

If on the other hand the node being processed is a statement node, we do the following.
This node must be of the following form: 〈s〉Γ

′

Γ . For each input variable x in the domain of
Γ, we find the param(x0) that is connected to input x, and postpend the line x := x0 to S.
In this way, we are initializing all the variables in the domain of Γ. Next, we postpend s to
S. Finally, for each output variable x′ in the domain of Γ′, we replace any links in the PEG
to the x′ output of the statement node with a link to param(x′). This process is applied in
the third step of Figure 24.

Finally, after processing all domain operators and statement nodes, we will have each
variable x in the domain of the PEG context being mapped to a parameter node param(x′).
So, for each such variable, we postpend the line x′ := x to S. All these assignments should
intuitively run in parallel. This causes problems if there is a naming conflict, for example x
gets y and y gets x. In such cases, we simply introduce intermediate fresh copies of all the
variables being read, and then we perform all the assignments by reading from the fresh
copies. In the case of x and y, we would create copies x′ and y′ of x and y, and then assign
x′ to y, and y′ to x. This process is applied in the sixth and last step of Figure 24 (without
any naming conflicts). The value of S is the final result of the reversion, although in practice
we apply copy propagation to this statement since the sequencing process produces a lot of
intermediate variables.
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Figure 26: Conversion of eval nodes to revised loop nodes

7.6. Loop Fusion. Although the process described above will successfully revert a PEG to
a SIMPLE program, it does so by duplicating a lot of code. Consider the reversion process
in Figure 25. The original SIMPLE program for this PEG was as follows:

s:=0; f:=1; i:=1;

while(i<=x) { s:=s+i; f:=f*i; i:=1+i };

retvar:=s÷f

The conversion of the above code to PEG results in two eval nodes, one for each
variable that is used after the loop. The reversion process described so far converts each
eval node separately, resulting in two separate loops in the final SIMPLE program. Here
we present a simple optimization that prevents this code duplication by fusing loops during
reversion. In fact, this added loop-fusion step can even fuse loops that were distinct in
the original program. Thus, loop fusion can be performed simply by converting to a PEG
and immediately reverting back to a SIMPLE program, without even having to do any
intermediate transformations on the PEG.

We update our reversion process to perform loop-fusion by making several changes.
First, we modify the process for converting eval nodes to while-loop statement nodes in
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three ways; the revised conversion process is shown in Figure 26 using the same PEG as
before. The first modification is that we tag each converted θ node with the fresh variable
we designate for it. For example, the conversion process for the first eval node in Figure 26
generates a fresh variable i for one of the θ nodes, and so we tag this θ node with i. If we
ever convert a θ node that has already been tagged from an earlier eval conversion, we reuse
that variable. For example, when converting the second eval node in Figure 26, we reuse
the variable i unlike in Figure 25 where we introduced a fresh variable j. This way all the
eval nodes are using the same naming convention. The second modification is that when
processing an eval node, we do not immediately revert the PEG context for the loop body
into a statement, but rather we remember it for later. This is why the bodies of the while-
loop statement nodes in Figure 26 are still PEG contexts rather than statements. Thus, we
have to introduce a new kind of node, which we call a loop node, which is like a while-loop
statement node, except that it stores the body (and only the body) of the loop as a PEG
context rather than a statement – the remaining parts of the loop are still converted to
statements (in particular, the condition and the post-loop computation are still converted
to statements, as was previously shown in Figure 22). As an example, nodes 1© and 2© in
the right most part of Figure 26 are loop nodes. Furthermore, because we are leaving PEGs
inside the loop nodes to be converted for later, we use the term “convert lazily” in Figure 26.
The third modification is that the newly introduced loop nodes store an additional piece of
information when compared to while-loop statement nodes. In particular, when we replace
an eval node with a loop node, the new loop node will store a link back to the pass node of
the eval node being replaced. We store these additional links so that we can later identify
fusable loops: we will consider two loop nodes fusable only if they share the same pass node.
We do not show these additional links explicitly in Figure 26, but all the loop nodes in that
Figure implicitly store a link back to the same pass node, namely node 3©.

Second, after converting the φ nodes but before sequencing, we search for loop nodes
which can be fused. Two loop nodes can be fused if they share the same pass node and
neither one is a descendant of the other. For example, the two loop nodes in Figure 26
can be fused. If one loop node is a descendant of the other, then the result of finishing
the descendant loop is required as input to the other loop, and so they cannot be executed
simultaneously. To fuse the loops, we simply union their body PEG contexts, as well as
their inputs and their outputs. The step labeled “fuse 1© & 2©” in Figure 27 demonstrates
this process on the result of Figure 26. This technique produces correct results because we
used the same naming convention across eval nodes and we used fresh variables for all θ
nodes, so no two distinct θ nodes are assigned the same variable. We repeat this process
until there are no fusable loop nodes.

Finally, the sequencing process is changed to first convert all loop nodes to while-loop
statement nodes, which involves recursively translating the body PEG context inside the
loop node to a statement. This additional step is labeled “convert loops to statements”
in Figure 27. The final SIMPLE program has only one while loop which simultaneously
calculates both of the desired results of the loop, as one would expect.

To summarize, the process described so far is to (1) translate eval nodes into loop nodes,
(2) translate φ nodes into if-then-else statements, (3) perform fusion of loop nodes and (4)
sequencing step. It is important to perform the fusion of loop nodes after converting φ
nodes, rather than after converting eval nodes. Consider for example two loops with the
same break condition, neither of which depend on the other, but where one is always
executed and the other is only executed when some branch guard is true (that is to say,
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Figure 28: Reversion of a PEG without applying branch fusion

its result is used only on one side of a φ node). If we perform fusion of loop nodes before
converting φ nodes, then these two loop nodes appear to be fusable, but fusing them would
cause both loops to always be evaluated, which is not semantics preserving. We avoid this
problem by processing all φ nodes first, after which point we know that all the remaining
nodes in the PEG context must be executed (although some of these nodes may be branch
nodes). In the example just mentioned with two loops, the loop which is under the guard
(and thus under a φ node) will be extracted and recursively processed when the φ node is
transformed into a branch node. In this recursive reversion, only one loop will be present,
the one under the guard, and so no loop fusion is performed. After the φ node is processed,
there will be only one remaining loop node, the one which is executed unconditionally.
Again, since there is only one loop node, no loop fusion is performed, and so the semantics
is preserved.

7.7. Branch Fusion. In the same way that our previously described reversion process
duplicated loops, so does it duplicate branches, as demonstrated in Figure 28. Similarly to
loop fusion, our reversion process can be updated to perform branch fusion.

First, we modify the processing of φ nodes to make the reversion of recursive PEG con-
texts lazy: rather than immediately processing the extracted true and false PEG contexts,
as was done in Figure 23, we instead create a new kind of node called a branch node and
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Figure 29: Conversion of φ nodes to revised branch nodes

store the true and false PEG contexts in that node. A branch node is like an if-then-else
statement node, except that instead of having SIMPLE code for the true and false sides
of the statement, the branch node contains PEG contexts to be processed later. As with
if-then-else statement nodes, a branch node has a guard input which is the first child of
the φ node being replaced (that is to say, the value of the branch condition). For example,
Figure 29 shows this lazy conversion of φ nodes on the same example as Figure 28. The
nodes labeled 1© and 2© in the right most part of Figure 29 are branch nodes.

Second, after all φ nodes have been converted to branch nodes, we search for branch
nodes that can be fused. If two branch nodes share the same guard condition input, and
neither one is a descendant of the other, then they can be fused. Their true PEG contexts,
false PEG contexts, inputs, and outputs are all unioned together respectively. This process
is much like the one for loop fusion, and is demonstrated in Figure 30 in the step labeled
“fuse 1© & 2©”. Notice that when we union two PEGs, if there is a node in each of the
two PEGs representing the exact same expression, the resulting union will only contain one
copy of this node. This leads to an occurrence of common sub-expression elimination in
Figure 30: when the false and true PEGs are combined during fusion, the resulting PEG
only has one x*x*x, which allows the computation for q in the final generated code to be
c*x, rather than x*x*x*x.

Finally, the sequencing process is changed to first convert all branch nodes into state-
ment nodes, which involves recursively translating the true and false PEG contexts inside
the branch node to convert them to statements. This additional step is labeled “convert
branches to statements” in Figure 30. The final SIMPLE program has only one if-then-else
which simultaneously calculates both of the desired results of the branches, as one would
expect.

To summarize, the process described so far is to (1) translate eval nodes into loop nodes,
(2) translate φ nodes into branch nodes, (3) perform fusion of loop nodes (4) perform fusion
of branch nodes (5 sequencing step. As with loop fusion, it is important to perform fusion of
branch nodes after each and every φ node has been converted to branch nodes. Otherwise,
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one may end up fusing two branch nodes where one branch node is used under some φ and
the other is used unconditionally.

If two branch nodes share the same guard condition input, but one is a descendant of
the other, we can even elect to fuse them vertically, as shown in Figure 31. In particular,
we sequence the true PEG context of one branch node with the true PEG context of the
other, and do the same with the false PEG contexts. Note how, because the node labeled
i© is used elsewhere than just as an input to branch node 1©, we added it as an output of
the fused branch node.

7.8. Hoisting Redundancies from Branches. Looking back at the branch fusion exam-
ple from Figures 29 and 30, there is still one inefficiency in the generated code. In particular,
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x*x is computed in the false side of the branch, even though x*x has already been computed
before the branch.

In our original description for converting φ nodes in Section 7.4, we tried to avoid this
kind of redundant computation by looking at the set of nodes that are reachable from both
the true and false children (second and third children) of a φ node. This set was meant to
capture the nodes that, for a given φ, are need to be computed regardless of which side the
φ node goes – we say that such nodes execute unconditionally with respect to the given φ
node. These nodes were kept outside of the branch node (or the if-then-else statement node
if using such nodes). As an example, the node labeled a© in Figure 23 was identified as
belonging to this set when translating φ node 2©, and this is why the generated if-then-else
statement node does not contain node a©, instead taking it as an input (in addition to the
c1 input which is the branch condition).

It is important to determine as completely as possible the set of nodes that execute
unconditionally with respect to a φ. Otherwise, code that intuitively one would think
of executing unconditionally outside of the branch (either before the branch or after it)
would get duplicated in one or both sides of branch. This is precisely what happened in
Figure 29: our approach of computing the nodes that execute unconditionally (by looking
at nodes reachable from the true and false children) returned the empty set, even though
x*x actually executes unconditionally. This is what lead to x*x being duplicated, rather
than being kept outside of the branch (in the way that a was in Figure 23). A more precise
analysis would be to say that a node executes unconditionally with respect to a φ node if it is
reachable from the true and false children of the φ (second and third children), or from the
branch condition (first child). This would identify x*x as being executed unconditionally in
Figure 23. However, even this more precise analysis has limitations. Suppose for example
that some node is used only on the true side of the φ node, and never used by the condition,
so that the more precise analysis would not identify this node as always executing. However,
this node could be used unconditionally higher up in the PEG, or alternatively it could be
the case that the condition of the φ node is actually equivalent to true. In fact, this last
possibility points to the fact that computing exactly what nodes execute unconditionally
with respect to a φ node is undecidable (since it reduces to deciding if a branch is taken in
a Turing-complete computation). However, even though the problem is undecidable, more
precision leads to less code duplication in branches.

MustEval Analysis. To modularize the part of the system that deals with identifying
nodes that must be evaluated unconditionally, we define a MustEval analysis. This analysis
returns a set of nodes that are known to evaluate unconditionally in the current PEG
context. An implementation has a lot of flexibility in how to define the MustEval analysis.
More precision in this analysis leads to less code duplication in branches.

Figure 32 shows the example from Figure 29 again, but this time using a refined process
that uses the MustEval analysis. The nodes which our MustEval analysis identifies as
always evaluated have been marked, including x*x. After running the MustEval analysis,
we convert all φ nodes which are marked as always evaluated. All remaining φ nodes will be
pulled into the resulting branch nodes and so handled by recursive calls. Note that this is a
change from Section 7.4, where φ nodes were processed starting from the lower ones (such
as node 2© in Figure 23) to the higher ones (such as node 1© in Figure 23). Our updated
process, when running on the example from Figure 23, would process node 1© first, and in
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Figure 32: Same example as in Figure 29, but this time hoisting redundancies from branches

doing so would place node 2© in the true PEG context of a branch node. Thus, node 2©
would get processed later in a recursive reversion.

Going back to Figure 32, both φ nodes are marked as always evaluated, and so we
process both of them. To have names for any values that are always computed, we assign a
fresh variable to each node that is marked by the MustEval analysis, reusing the same fresh
variables for each φ node we convert. For example, in Figure 32 we use the fresh variable s©
for the node x*x. We then produce a t and f node for each φ node as before, replacing nodes
which will always be evaluated with parameter nodes of appropriate variables. Figure 29
shows that t for the first φ node is simply 0 whereas f is s*x, using s in place of x*x.
After all the φ nodes have been converted, we perform branch fusion and sequencing as
before. Figure 29 shows this updated process. The resulting code now performs the x*x

computation before the branch.
One subtlety is that the MustEval analysis must satisfy some minimal precision re-

quirements. To see why this is needed, recall that after the MustEval analysis is run, we
now only process the φ nodes that are marked as always evaluated, leaving the remaining
φ nodes to recursive invocations. Thus, if MustEval doesn’t mark any nodes as being al-
ways evaluated, then we would not process any φ nodes, which is a problem before after
the φ-processing stage, we require there to be no more φ nodes in the PEG. As a result,
we require the MustEval analysis to be minimally precise, as formalized in the following
definition.

Definition 7. We say that a MustEval analysis is minimally precise if for any PEG context
Ψ, S = MustEval(Ψ) implies the following properties:

(x, n) ∈ Ψ ⇒ n ∈ S
op(n1 . . . nk) ∈ S ⇒ n1 ∈ S ∧ . . . ∧ nk ∈ S

φ(c, a, b) ∈ S ⇒ c ∈ S

〈s〉(n1 . . . nk) ∈ S ⇒ n1 ∈ S ∧ . . . ∧ nk ∈ S

In essence the above simply states that MustEval must at least return those nodes which
can trivially be identified as always evaluated. To see why this is sufficient to guarantee
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Figure 33: Reversion of a PEG without applying loop-invariant code motion

that we make progress on φ nodes, consider the worst case, which is when MustEval returns
nothing more than the above trivially identified nodes. Suppose we have a φ node that is not
identified as always evaluated. This node will be left to recursive invocations of reversion,
and at some point in the recursive invocation chain, as we translate more and more φ nodes
into branch nodes, our original φ node will become a top-level node that is always evaluated
(in the PEG context being processed in the recursive invocation). At that point we will
process it into a branch node.

7.9. Loop-Invariant Code Motion. The process described so far for converting eval
nodes in Section 7.3 duplicates code unnecessarily. In particular, every node used by the
loop body is copied into the loop body, including loop-invariant nodes. Figure 33 shows how
placing the loop-invariant operation 99÷x into the loop body results in the operation being
evaluated in every iteration of the loop. In the same way that in Section 7.7 we updated
our processing of φ nodes to hoist computations that are common to both the true and
false sides, we can also update our processing of eval nodes to hoist computations that are
common across all loop iterations, namely loop-invariant computations.

Recall that in Section 5.3 we defined a predicate invariant ℓ(n) which is true if the value
of n does not vary in loop ℓ, meaning that n is invariant with respect to loop ℓ. The general
approach will therefore be as follows: when converting eval ℓ, we simply keep any node n
that is invariant with respect to ℓ outside of the loop body. Unfortunately, there are some
subtleties with making this approach work correctly. For example, consider the PEG from
Figure 33. In this PEG the ÷ node is invariant with respect to loop 1 (99÷x produces the
same value no matter what iteration the execution is at). However, if we were to evaluate
the loop-invariant operation 99÷x before the loop, we would change the semantics of the
program. In particular, if x were 0, the ÷ operation would fail, whereas the original program
would simply terminate and return 1 (because the original program only evaluates 99÷x if
x is strictly greater than 0). Thus, by pulling the loop-invariant operation out of the loop,
we have changed the semantics of the program.

Even traditional formulations of loop-invariant code motion must deal with this prob-
lem. The standard solution is to make sure that pulling loop-invariant code outside of a
loop does not cause it to execute in cases where it would not have originally. In our PEG
setting, there is a simple but very conservative way to guarantee this: when processing an
eval ℓ node, if we find a node n that is invariant with respect to ℓ, we pull n outside of
the loop only if there are no θ or φ nodes between the eval ℓ node and n. The intuition
behind disallowing φ and θ is that both of these nodes can bypass evaluation of some of
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Figure 34: Reversion of a PEG after peeling the loop once

their children: the φ chooses between its second and third child, bypassing the other, and
the θ node can bypass its second child if the loop performs no iterations. This require-
ment is more restrictive than it needs to be, since a φ node always evaluates its first child,
and so we could even allow φ nodes, as long as the loop invariant node was used in the
first child, not the second or third. In general, it is possible to modularize the decision
as to whether some code executes more frequently than another in an evaluation-condition
analysis, or EvalCond for short. An EvalCond analysis would compute for every node in
the PEG context an abstract evaluation condition capturing under which cases the PEG
node is evaluated. EvalCond is a generalization of the MustEval analysis from Section 7.8,
and as with MustEval, an implementation has a lot of flexibility in defining EvalCond. In
the more general setting of using an EvalCond analysis, we would only pull a loop-invariant
node if its evaluation condition is implied by the evaluation condition of the eval node being
processed.

Since we now prevent loop-invariant code from being hoisted if it would execute more
often after being hoisted, we correctly avoid pulling 99÷x out of the loop. However, as is
well known in the compiler literature [7], even in such cases it is still possible to pull the loop-
invariant code out of the loop by performing loop peeling first. For this reason, we perform
loop peeling in the reversion process in cases where we find a loop invariant-node that (1)
cannot directly be pulled out because doing so would make the node evaluate more often
after hosting and (2) is always evaluated provided the loop iterates a few times. Loop peeling
in the reversion process works very similarly to loop peeling as performed in the engine (see
Section 3.3), except that instead of using equality analyses, it is performed destructively
on the PEG representation. Using the same starting example as before, Figure 34 shows
the result of this peeling process (step labeled “peel”). After peeling, the φ node checks
the entry condition of the original loop and evaluates the peeled loop if this condition fails.
Notice that the eval and ≤ nodes in the new PEG loop refer to the second child of the θ
nodes rather than θ nodes themselves, effectively using the value of the loop variables after
one iteration. An easy way to read such nodes is to simply follow the edges of the PEG; for
example, the “+” node can be read as “1 + θ1(. . .)”.

In general, we repeat the peeling process until the desired loop-invariant nodes used
by the body of the loop are also used before the body of the loop. In our example from
Figure 34, only one run of peeling is needed. Notice that, after peeling, the ÷ node is
still loop-invariant, but now there are no φ or θ nodes between the eval node and the
÷ node. Thus, although 99÷x is not always evaluated (such as when x≤0 is true), it is
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always evaluated whenever the eval node is evaluated, so it is safe to keep it out of the
loop body. As a result, when we convert the eval nodes to loop nodes, we no longer need
to keep the ÷ node in the body of the loop, as shown in Figure 34. Figure 34 also shows
the final generated SIMPLE program for the peeled loop. Note that the final code still has
some code duplication: 1+i is evaluated multiple times in the same iteration, and d*f is
evaluated both when the while-loop guard succeeds and the guard fails. These redundancies
are difficult to remove without using more advanced control structures that are not present
in SIMPLE. Our implementation can take advantage of more advanced control structures
to remove these remaining redundancies. We do not show the details here – instead we refer
the interested reader to our technical report [50].

We should also note that, since the EvalCond analysis can handle loop operators and
subsumes the MustEval analysis, it is possible to convert φ nodes before converting eval
nodes, although both still need to happen after the loop peeling stage. This rearrangement
enables more advanced redundancy elimination optimizations.

8. The Peggy Instantiation

In this section we discuss details of our concrete implementation of equality saturation as
the core of an optimizer for Java bytecode programs. We call our system Peggy, named after
our PEG intermediate representation. As opposed to the previous discussion of the SIMPLE
language, Peggy operates on the entire Java bytecode instruction set, complete with side
effects, method calls, heaps, and exceptions. Recall from Figure 10 that an instantiation of
our approach consists of three components: (1) an IR where equality reasoning is effective,
along with the translation functions ConvertToIR and ConvertToCFG, (2) a saturation
engine Saturate, and (3) a global profitability heuristic SelectBest. We now describe how
each of these three components work in Peggy.

8.1. Intermediate Representation. Peggy uses the PEG and E-PEG representations
which, as explained in Section 5, are well suited for our approach. Because Peggy is a Java
bytecode optimizer, an additional challenge is to encode Java-specific concepts like the heap
and exceptions in PEGs.

Heap. We model the heap using heap summaries which we call σ nodes. Any operation
that can read and/or write some object state may have to take and/or return additional
σ values. Because Java stack variables cannot be modified except by direct assignments,
operations on stack variables are precise in our PEGs and do not involve σ nodes. None
of these decisions of how to represent the heap are built into the PEG representation. As
with any heap summarization strategy, one can have different levels of abstraction, and we
have simply chosen one where all objects are put into a single summarization object σ.
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(b)(a)

invoke

paramsC2.barobj2

 !  v

Figure 35: Representation of Java method calls in a PEG; (a) the original Java source code,
(b) the corresponding PEG.

Method calls. Figure 35 shows an example of how we encode two sequential method calls
in a PEG. Each non-static method call operator has four parameters: the input σ heap
summary, the receiver object of the method call, a method identifier, and a list of actual
parameters. A static method call simply elides the receiver object. Logically, our invoke
nodes return a tuple (σ, v), where σ is the resulting heap summary and the v is the return
value of the method. The operator ρσ is used to project out the σ value from this tuple,
and ρv is used to project out the return value. From this figure we can see that the call
to bar uses the output σ value from foo as its input σ value. This is how we encode
the control dependency between the two invoke operators; by representing it as a data
dependency on the heap. Many other Java operators have side effects that can be modeled
as modifications to our σ heap summary, including array accesses, field accesses, object
creation, and synchronization. They similarly take a σ value as input and/or return one as
output, which encodes the data dependencies between the different heap operations.

Exceptions. In order to maintain the program state at points where exceptions are thrown,
we bundle the exception state into our abstraction of the heap, namely the σ summary nodes.
As a result, operations like division which may throw an exception, but do not otherwise
modify the heap, now take and return a σ node (in addition to their regular parameters
and return values).

The control flow of exceptions in a PEG is computed from a CFG where exceptional
control flow has been made explicit. To build such an exception-aware CFG, we introduce
a new boolean function called isException , which returns true if the current state of the
program is in an exceptional state. After every statement in the CFG that could possibly
cause an exception, we insert a conditional branch on isException , which jumps to the ex-
ception handler if one exists in the current method, or to the end of the CFG otherwise.
Once exceptions have been made explicit in the CFG, we simply use our conversion algo-
rithm to create a PEG from the exception-aware CFG. The isException tester in the CFG
gets translated into a new PEG operator isException , which reads the output σ node of an
operation, and returns a boolean indicating whether an exception occurred. The normal
translation from CFG to PEG introduces the appropriate φ nodes to produce the correct
values in the exception vs. non-exception cases.
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Figure 36: Example demonstrating challenges of linearizing heap values.

By bundling the exceptional state inside the heap summary node σ, and using an
explicit tester function isException , the above encoding makes exceptions explicit. Since
our optimization process preserves heap behavior, it therefore forces the observable state at
the point where an exception is thrown to be preserved.

Reverting Uses of the Heap. One issue that affects our Peggy instantiation is that the
σ nodes representing the heap cannot be duplicated or copied when running the program.
More technically, heap values must be used linearly in the CFG. Linear values complicate
the reversion presented in Section 7, which assumes any value can be duplicated freely. In
order to adapt the algorithm from Section 7 to handle linear values, one has to “linearize”
heap uses, which consists of finding a valid order for executing operations so that the heap
does not need to be duplicated. Since PEGs come from actual programs which use the heap
linearly, we decided to linearize the uses of the heap within each branch nodes and loop nodes
generated in the reversion algorithm. This approach, unfortunately, is not complete. There
are cases (which we can detect while running the conversion algorithm) where partitioning
into branch nodes and loop nodes, and then trying to solve linearity constraints, leads to
unsolvable constraints, even though the constraints are solvable when taking a global view
of the PEG. Experimentally, this incompleteness occurs in less than 3% of the Java methods
we compiled (in which case we simply do not optimize the method). We briefly present the
challenges behind solving this problem and some potential solutions.

Consider the SIMPLE style code shown in Figure 36(a), and its PEG representation in
Figure 36(b). Suppose that g is a side-effect free operation of one parameter, which reads
the heap and returns a value (but does not make any heap modifications). Thus, in the
PEG representation, g takes two inputs: a heap value σ (which is the original heap at the
entry), and its regular input parameter; g also returns a single value – the computed return
value of g – but it does not return a new heap value since it does not modify the heap. We
also assume that f is an operation that reads and writes to the heap, but returns void. For
example, f could just increment a global on the heap. Thus, in the PEG representation, f
takes an input heap parameter, and produces an output heap (but does not produce a real
return value since it returns void). We see from the code in part (a) that the return value
is produced by g. However, since f may have produced a new heap, we must also encode
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the new heap as a return value. Thus, the code in part (a) returns two values: its regular
return value, and a new heap, as shown with the two arrows in part (b).

Looking at the PEG in Figure 36(b), we already see something that may be cause
for concern: the σ node, which represents a linear value in imperative code, is used in
three different places. However, there is absolutely nothing wrong with doing this from the
perspective of PEGs, since PEGs treat all values (including heap values) functionally. The
only problem is that to convert this PEG back to imperative code, we must find a valid
ordering of instructions so that we can run all the instructions in the PEG without having
to duplicate the heap. The ordering in this case is obvious: since f modifies the heap, and
g does not, run g first, followed by f.

The problem with our current approach is that our reversion first creates and fuses
branch nodes, and then it tries to linearize heap values in each branch nodes. For example,
Figure 36(c) shows the PEG after creating a branch node for each of the two φ nodes in
part (a), and fusing these two branch nodes together. Unfortunately, once we have decided
to place f inside of the branch block, the linearization constraints are not solvable anymore:
f can no longer be executed after g since g relies on the result of the branch block which
executes f. This example shows the source of incompleteness in our current reversion
algorithm for linear values, and points to the fact that one needs to solve the linearization
constraints while taking a global view of the PEG.

However, devising a complete linearization algorithm for heap nodes that takes a global
view of the PEG is non-trivial. Heap nodes can be used by many functions, some of which
may commute with others. Other functions may occur in different control paths, such as
one on the true path of a branch and the other on the false path. In a PEG, identifying
which situations these functions fall in is not a simple task, especially considering that
PEGs can represent complex loops and branches. This gets more challenging when using
the saturation engine. The saturation engine can determine that a write is accessing a
different array-index or field than a read, and therefore the write commutes with the read.
This information isn’t available to the reversion algorithm, though, so it cannot determine
that the write can be safely moved after the read.

Equivalences. The E-PEG data structure contains a large number of PEGs, and stores the
equivalences between their nodes. The number of equivalences discovered during saturation
can be exponential in the number of axioms applied. So far in this paper, we have depicted
equivalences as dotted lines between E-PEG nodes. In reality, storing a distinct object
for each equivalence discovered would require a large amount of memory. Instead, we
represent equivalences between nodes by partitioning the nodes into equivalence classes,
then simply storing the members of each class. Before saturation, every node is in its own
equivalence class. Saturation proceeds by merging pairs of equivalence classes A and B
together whenever an equality is discovered between a node in A and a node in B. The
merging is performed using Tarjan’s union-find algorithm [27]. This approach makes the
memory overhead of an E-PEG proportional to the number of nodes it contains, and requires
no additional memory to represent the equivalences between nodes.

8.2. Saturation Engine. The saturation engine’s purpose is to repeatedly dispatch equal-
ity analyses. In our implementation an equality analysis is a pair (p, f) where p is a trigger,
which is an E-PEG pattern with free variables, and f is a callback function that should
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1: function Saturate(peg : PEG , A : set of analyses) : EPEG
2: let epeg = CreateInitialEPEG(peg)
3: while ∃(p, f) ∈ A, subst ∈ S . subst = Match(p, epeg) do
4: epeg := AddEqualities(epeg , f(subst , epeg))
5: return epeg

Figure 37: Peggy’s Saturation Engine. We use S to denote the set of all substitutions from
pattern nodes to E-PEG nodes.

be run when the pattern p is found in the E-PEG. While running, the engine continuously
monitors the E-PEG for the presence of the pattern p, and when it is discovered, the en-
gine constructs a matching substitution, which is a map from each node in the pattern to
the corresponding E-PEG node. At this point, the engine invokes f with this matching
substitution as a parameter, and f returns a set of equalities that the engine adds to the
E-PEG. In this way, an equality analysis will be invoked only when events of interest to it
are discovered. Furthermore, the analysis does not need to search the entire E-PEG because
it is provided with the matching substitution.

Figure 37 shows the pseudo-code for Peggy’s saturation engine. On line 2, the call to
CreateInitialEPEG takes the input PEG and generates an E-PEG that initially contains no
equality information. The Match function invoked in the loop condition performs pattern
matching: if an analysis trigger occurs inside an E-PEG, then Match returns the matching
substitution. Once a match occurs, the saturation engine uses AddEqualities to add the
equalities computed by the analysis into the E-PEG.

A remaining concern in Figure 37 is how to efficiently implement the existential check
on line 3. The main challenge in applying axioms lies in the fact that one axiom application
may trigger others. A naive implementation would repeatedly check all axioms once an
equality has been added, which leads to a lot of redundant work since many of the axioms
will not be triggered by the new equality. Our original attempt at an implementation
used this approach, and it was unusably slow. To make our engine efficient, we use well-
known techniques from the AI community. In particular, our problem of applying axioms is
very similar to that of applying rules to infer facts in rule-based systems, expert systems, or
planning systems. These systems make use of an efficient pattern matching algorithm called
the Rete algorithm [28]. Intuitively, the Rete algorithm stores the state of every partially
completed match as a finite state machine. When new information is added to the system,
rather than reapplying every pattern to every object, it simply steps the state of the relevant
machines. When a machine reaches its accept state, the corresponding pattern has made a
complete match. We have adapted this pattern matching algorithm to the E-PEG domain.
The patterns of our Rete network are the preconditions of our axioms. These generally look
for the existence of particular sub-PEGs within the E-PEG, but can also check for other
properties such as loop-invariance. When a pattern is complete it triggers the response part
of the axiom, which can build new nodes and establish new equalities within the E-PEG.
The creation of new nodes and equalities can cause other state machines to progress, and
hence earlier axioms applications may enable later ones.

In general, equality saturation may not terminate. Termination is also a concern in
traditional compilers where, for example, inlining recursive functions can lead to unbounded
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expansion. By using triggers to control when equality edges are added (a technique also
used in automated theorem provers), we can often avoid infinite expansion. The trigger for
an equality axiom typically looks for the left-hand-side of the equality, and then makes it
equal to the right-hand-side. On occasion, though, we use more restrictive triggers to avoid
expansions that are likely to be useless. For example, the trigger for the axiom equating a
constant with a loop expression used to add edge D in Figure 5 also checks that there is an
appropriate “pass” expression. In this way, it does not add a loop to the E-PEG if there
wasn’t some kind of loop to begin with. Using our current axioms and triggers, our engine
completely saturates 84% of the methods in our benchmarks.

In the remaining cases, we impose a limit on the number of expressions that the en-
gine fully processes (where fully processing an expression includes adding all the equalities
that the expression triggers). To prevent the search from running astray and exploring a
single infinitely deep branch of the search space, we currently use a breadth-first order for
processing new nodes in the E-PEG. This traversal strategy, however, can be customized in
the implementation of the Rete algorithm to better control the searching strategy in those
cases where an exhaustive search would not terminate.

8.3. Global Profitability Heuristic. Peggy’s SelectBest function uses a Pseudo-Boolean
solver called Pueblo [47] to select which nodes from an E-PEG to include in the optimized
program. A Pseudo-Boolean problem is an integer linear programming problem where all
the variables have been restricted to 0 or 1. By using these 0-1 variables to represent
whether or not nodes have been selected, we can encode the constraints that must hold
for the selected nodes to be a CFG-like PEG. In particular, for each node or equivalence
class x, we define a pseudo-boolean variable that takes on the value 1 (true) if we choose
to evaluate x, and 0 (false) otherwise. The constraints then enforce that the resulting PEG
is CFG-like. The nodes assigned 1 in the solution that Pueblo returns are selected to form
the PEG that SelectBest returns.

Recall that an E-PEG is a quadruple 〈N ,L,C , E〉, where 〈N ,L,C 〉 is a PEG and E is a
set of equalities which induces a set of equivalence classes N /E. Also recall that for n ∈ N ,
params(n) is the list equivalence classes that are parameters to n. We use q ∈ params(n)
to denote that equivalence class q is in the list. For each node n ∈ N , we define a boolean
variable Bn that takes on the value true if we choose to evaluate node n, and false otherwise.
For equivalence class q ∈ (N /E), we define a boolean variable Bq that takes on the value
true if we choose to evaluate some node in the equivalence class, and false otherwise. We
use r to denote the equivalence class of the return value.

Peggy generates the boolean constraints for a given E-PEG 〈N ,L,C , E〉 using the
following Constraints function (to simplify exposition, we describe the constraints here as
boolean constraints, but these can easily be converted into the standard ILP constraints
that Pueblo expects):

Constraints(〈N ,L,C , E〉) ≡ Br ∧
∧

n∈N F(n) ∧
∧

q∈(N/E) G(q)

F(n) ≡ Bn ⇒
∧

q∈params(n)Bq

G(q) ≡ Bq ⇒
∨

n∈q Bn

Intuitively, these constraints state that: (1) we must compute the return value of the
function (2) for each node that is selected, we must select all of its parameters (3) for each
equivalence class that is selected, we must compute at least one of its nodes.



64 R. TATE, M. STEPP, Z. TATLOCK, AND S. LERNER

Once the constraints are computed, Peggy sends the following minimization problem
to Pueblo:

min
∑

n∈N

Bn · Cn s.t. Constraints(〈N ,L,C , E〉)

where Cn is the constant cost of evaluating n according to our cost model. The nodes which
are set to true in the solution that Pueblo returns are selected to form a PEG.

The cost model that we use assigns a constant cost Cn to each node n. In particular,
Cn = basic cost(n) · kdepth(n), where basic cost(n) accounts for how expensive n is by itself,

and kdepth(n) accounts for how often n is executed. k is simply a constant, which we have
chosen as 20. We use depth(n) to denote the loop nesting depth of n, computed as follows (re-
calling definition 5.2 of invariant ℓ from Section 5.3): depth(n) = max{ℓ | ¬invariant ℓ(n)}.
Using this cost model, Peggy asks Pueblo to minimize the objective function subject to
the constraints described above. Hence, the PEG that Pueblo returns is CFG-like and has
minimal cost, according to our cost model.

The above cost model is very simple, taking into account only the cost of operators
and how deeply nested they are in loops. Despite being crude, and despite the fact that
PEGs pass through a reversion process that performs branch fusion, loop fusion and loop-
invariant code motion, our cost model is a good predictor of relative performance. A smaller
cost usually means that, after reversion, the code will use cheaper operators, or will have
certain operators moved outside of loops, which leads to more efficient code. One of the
main contributors to the accuracy of our cost model is that depth(n) is defined in terms of
invariant ℓ, and invariant ℓ is what the reversion process uses for pulling code outside of loops
(see Section 7.9). As a result, the cost model can accurately predict at what loop depth
the reversion algorithm will place a certain node, which makes the cost model relatively
accurate, even in the face of reversion.

There is an additional subtlety in the above encoding. Unless we are careful, the
Pseudo-Boolean solver can return a PEG that contains cycles in which none of the nodes
are θ nodes. Such PEGs are not CFG-like. For example, consider the expression x + 0.
After axiom application, this expression (namely, the + node) will become equivalent to
the x node. Since + and x are in the same equivalence class, the above encoding allows the
Pseudo-Boolean solver to select + with + and 0 as its parameters. To forbid such invalid
PEGs, we explicitly encode that all cycles must have a θ node in them. In particular, for
each pair of nodes i and j, we define a boolean variable Bi j that represents whether or
not i reaches j without going through any θ nodes in the selected solution. We then state
rules for how these variables are constrained. In particular, if a non-θ node i is selected (Bi)
then i reaches its immediate children (for each child j of i, Bi j). Also, if i reaches a non-θ
node j in the current solution (Bi j), and j is selected (Bj), then i reaches j’s immediate
children (for each child k of j, Bi k). Finally, we add the constraint that for each non-θ
node n, Bn n must be false.

It is worth noting that the particular choice of Pseudo-Boolean solver is independent
of the correctness of this encoding. We have chosen to use Pueblo because we have found
that it runs efficiently on the types of problems that Peggy generates, but it is a completely
pluggable component of the overall system. This modularity is beneficial because it makes
it easy to take advantage of advances in the field of Pseudo-Boolean solvers. In fact, we
have tested two other solvers within our framework: Minisat [23] and SAT4J [1]. We have
found that occasionally Minisat performs better than Pueblo, and that SAT4J uniformly
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performs worse than the other two. These kinds of comparisons are very simple to do with
our framework since we can easily swap one solver for another.

8.4. Eval and Pass. One might wonder why we have eval and pass as separate operators
rather than combining them into a single operator, say µ. At this point we can reflect
upon this design decision and argue why we maintain the separation. One simple reason
why we maintain this separation is that there are useful operators other than pass that can
act as the second child to an eval . The loop peeling example from Section 3.3 gives three
such examples, namely S, Z, and φ. It is also convenient to have each loop represented
by a single node, namely the pass node. This does not happen when using µ nodes, since
there would be many µ nodes for each loop. These µ nodes would all share the same break
condition, but we illustrate below why that does not suffice.

Suppose that during equality saturation, some expensive analysis decides the engine
should explore peeling a loop. Using eval and pass , this expensive analysis could initiate
the peeling process by simply replacing the pass node of that loop with an appropriate φ
node. Afterward, simple axioms would apply to each eval node independently in order to
propagate the peeling process. Using µ nodes on the other hand, the expensive analysis
would have to explicitly replace every µ node with its peeled version. Thus, using eval
and pass allows the advanced analysis to initiate peeling only once, whereas using µ nodes
requires the advanced analysis to process each µ node separately.

Next we consider our global profitability heuristic in this situation after loop peeling
has been performed. Now for every eval or µ node there are two versions: the peeled version
and the original version. Ideally we would select either only peeled versions or only original
versions. If we mix them up, this forces us to have two different versions of the loop in the
final result. In our Pseudo-Boolean heuristic with eval and pass nodes, we encourage the
use of only one loop by making pass nodes expensive; thus the solver would favor PEGs
with only one pass node (i.e. one loop) over two pass nodes. However, there is no way
to encourage this behavior using µ nodes as there is no single node which represents a
loop. The heuristic would select the peeled versions for those µ nodes where peeling was
beneficial and the original versions for those µ nodes where peeling was detrimental, in fact
encouraging an undesirable mix of peeled and original versions.

For similar reasons, the separation of eval and pass nodes is beneficial to the process
of reverting PEGs to CFGs. A loop is peeled by rewriting the pass node, and then all
eval nodes using that pass node are automatically peeled simultaneously. Thus, when an
optimization such as loop-invariant code motion determines that a loop needs to be peeled,
the optimization needs to make only one change and the automatic rewriting mechanisms
will take care of the rest.

To summarize, the separation of eval and pass nodes makes it easy to ensure that any
restructuring of a loop is applied consistently: the change is just made to the pass node and
the rest follows suit. This allows restructuring analyses to apply once and be done with.
The separation also enables us to encourage the global profitability heuristic to select PEGs
with fewer loops.

9. Evaluation

In this section we use our Peggy implementation to validate three hypotheses about
our approach for structuring optimizers: our approach is practical both in terms of space
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(a) EQ Analyses Description
1. Built-in E-PEG ops Axioms about primitive PEG nodes (φ, θ, eval , pass)
2. Basic Arithmetic Axioms about arithmetic operators like +, −, ∗, /, <<, >>
3. Constant Folding Equates a constant expression with its constant value
4. Java-specific Axioms about Java operators like field/array accesses
5. TRE Replaces the body of a tail-recursive procedure with a loop
6. Method Inlining Inlining based on intraprocedural class analysis
7. Domain-specific User-provided axioms about application domains

(b) Optimizations Description
8. Constant Prop/Fold Traditional Constant Propagation and Folding
9. Simplify Algebraic Various forms of traditional algebraic simplifications
10. Peephole SR Various forms of traditional peephole optimizations
11. Array Copy Prop Replace read of array element by last expression written
12. CSE for Arrays Remove redundant array accesses
13. Loop Peeling Pulls the first iteration of a loop outside of the loop
14. LIVSR Loop-induction-variable Strength Reduction
15. Interloop SR Optimization described in Section 2
16. Entire-loop SR Entire loop becomes one op, e.g. n incrs becomes “plus n”
17. Loop-op Factoring Factor op out of a loop, e.g. multiplication
18. Loop-op Distributing Distribute op into loop, where it cancels out with another
19. Partial Inlining Inlines part of method in caller, but keeps the call
20. Polynomial Factoring Evaluates a polynomial in a more efficient manner

(c) DS Opts Description
21. DS LIVSR LIVSR on domain ops like matrix addition and multiply
22. DS Code Hoisting Code hoisting based on domain-specific invariance axioms
23. DS Remove Redundant Removes redundant computations based on domain axioms
24. Temp. Object Removal Remove temp objects made by calls to, e.g., matrix libraries
25. Math Lib Specializing Specialize matrix algs based on, e.g., the size of the matrix
26. Design-pattern Opts Remove overhead of common design patterns
27. Method Outlining Replace code by method call performing same computation
28. Specialized Redirect Replace call with more efficient call based on calling context

Figure 38: Optimizations performed by Peggy. Throughout this table we use the following
abbreviations: EQ means “equality”, DS means “domain-specific”, TRE means
“tail-recursion elimination”, SR means “strength reduction”

and time (Section 9.1), it is effective at discovering both simple and intricate optimization
opportunities (Section 9.2), and it is effective at performing translation validation (Sec-
tion 9.3).

9.1. Time and space overhead. To evaluate the running time of the various Peggy com-
ponents, we compiled SpecJVM, which comprises 2,461 methods. For 1% of these methods,
Pueblo exceeded a one minute timeout we imposed on it, in which case we just ran the
conversion to PEG and back. We imposed this timeout because in some rare cases, Pueblo
runs too long to be practical.
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The following table shows the average time in milliseconds taken per method for the 4
main Peggy phases (for Pueblo, a timeout counts as 60 seconds).

CFG to PEG Saturation Pueblo PEG to CFG
Time 13.9 ms 87.4 ms 1,499 ms 52.8 ms

All phases combined take slightly over 1.5 seconds. An end-to-end run of Peggy is on
average 6 times slower than Soot with all of its intraprocedural optimizations turned on.
Nearly all of our time is spent in the Pseudo-Boolean solver. We have not focused our
efforts on compile-time, and we conjecture there is significant room for improvement, such
as better pseudo-boolean encodings, or other kinds of profitability heuristics that run faster.

Since Peggy is implemented in Java, to evaluate memory footprint, we limited the JVM
to a heap size of 200 MB, and observed that Peggy was able to compile all the benchmarks
without running out of memory.

In 84% of compiled methods, the engine ran to complete saturation, without imposing
bounds. For the remaining cases, the engine limit of 500 was reached, meaning that the
engine ran until fully processing 500 expressions in the E-PEG, along with all the equalities
they triggered. In these cases, we cannot provide a completeness guarantee, but we can
give an estimate of the size of the explored state space. In particular, using just 200 MB
of heap, our E-PEGs represented more than 2103 versions of the input program (using
geometric average).

9.2. Implementing optimizations. The main goal of our evaluation is to demonstrate
that common, as well as unanticipated, optimizations result in a natural way from our
approach. To achieve this, we implemented a set of basic equality analyses, listed in Fig-
ure 38(a). We then manually browsed through the code that Peggy generates on a variety
of benchmarks (including SpecJVM) and made a list of the optimizations that we observed.
Figure 38(b) shows the optimizations that we observed fall out from our approach using
equality analyses 1 through 6, and Figure 38(c) shows optimizations that we observed fall
out from our approach using equality analyses 1 through 7. Based on the optimizations
we observed, we designed some micro-benchmarks that exemplify these optimizations. We
then ran Peggy on each of these micro-benchmarks to show how much these optimizations
improve the code when isolated from the rest of the program.

Figure 39 shows our experimental results for the runtimes of the micro-benchmarks
listed in Figure 38(b) and (c). The y-axis shows run-time normalized to the runtime of
the unoptimized code. Each number along the x-axis is a micro-benchmark exemplifying
the optimization from the corresponding row number in Figure 38. The “rt” and “sp”
columns correspond to our larger raytracer benchmark and SpecJVM, respectively. The
value reported for SpecJVM is the average ratio over all benchmarks within SpecJVM. Our
experiments with Soot involve running it with all intra-procedural optimizations turned
on, which include: common sub-expression elimination, lazy code motion, copy propaga-
tion, constant propagation, constant folding, conditional branch folding, dead assignment
elimination, and unreachable code elimination. Soot can also perform interprocedural opti-
mizations, such as class-hierarchy-analysis, pointer-analysis, and method-specialization. We
did not enable these optimizations when performing our comparison against Soot, because
we have not yet attempted to express any interprocedural optimizations in Peggy. In terms
of runtime improvement, Peggy performed very well on the micro-benchmarks, optimizing



68 R. TATE, M. STEPP, Z. TATLOCK, AND S. LERNER

0

0.2

0.4

0.6

0.8

1

1.2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 rt sp

Soot
Peggy

Figure 39: Runtimes of generated code from Soot and Peggy, normalized to the runtime
of the unoptimized code. The x-axis denotes the optimization number from
Figure 38, where “rt” is our raytracer benchmark and “sp” is the average over
the SpecJVM benchmarks.

all of them by at least 10%, and in many cases much more. Conversely, Soot gives almost
no runtime improvements, and in some cases makes the program run slower. For the larger
raytracer benchmark, Peggy is able to achieve a 7% speedup, while Soot does not improve
performance. On the SpecJVM benchmarks both Peggy and Soot had no positive effect,
and Peggy on average made the code run slightly slower. This leads us to believe that
traditional intraprocedural optimizations on Java bytecode generally produce only small
gains, and in this case there were few or no opportunities for improvement.

With effort similar to what would be required for a compiler writer to implement the
optimizations from part (a), our approach enables the more advanced optimizations from
parts (b) and (c). Peggy performs some optimizations (for example 15 through 20) that are
quite complex given the simplicity of its equality analyses. To implement such optimizations
in a traditional compiler, the compiler writer would have to explicitly design a pattern that
is specific to those optimizations. In contrast, with our approach these optimizations fall out
from the interaction of basic equality analyses without any additional developer effort, and
without specifying an order in which to run them. Essentially, Peggy finds the right sequence
of equality analyses to apply for producing the effect of these complex optimizations.

With the addition of domain-specific axioms, our approach enables even more opti-
mizations, as shown in part (c). To give a flavor for these domain-specific optimizations,
we describe two examples.

The first is a ray tracer application (5 KLOCs) that one of the authors had previously
developed. To make the implementation clean and easy to understand, the author used
immutable vector objects in a functional programming style. This approach however in-
troduces many intermediate objects. With a few simple vector axioms, Peggy is able to
remove the overhead of these temporary objects, thus performing a kind of deforestation
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optimization. This makes the application 7% faster, and reduces the number of allocated
objects by 40%. Soot is not able to recover any of the overhead, even with interprocedural
optimizations turned on. This is an instance of a more general technique where user-defined
axioms allow Peggy to remove temporary objects (optimization 24 in Figure 38).

Our second example targets a common programming idiom involving Lists, which
consists of checking that a List contains an element e, and if it does, fetching and us-
ing the index of the element. If written cleanly, this pattern would be implemented with
a branch whose guard is contains(e) and a call to indexOf(e) on the true side of the
branch. Unfortunately, contains and indexOf would perform the same linear search,
which makes this clean way of writing the code inefficient. Using the equality axiom
l.contains(e) = (l.indexOf(e) 6= −1), Peggy can convert the clean code into the hand-
optimized code that programmers typically write, which stores indexOf(e) into a tem-
porary, and then branches if the temporary is not −1. An extensible rewrite system would
not be able to provide the same easy solution: although a rewrite of l.contains(e) to
(l.indexOf(e) 6= −1) would remove the redundancy mentioned above, it could also degrade
performance in the case where the list implements an efficient hash-based contains. In
our approach, the equality simply adds information to the E-PEG, and the profitability
heuristic can decide after saturation which option is best, taking the entire context into
account. In this way our approach transforms contains to indexOf, but only if indexOf
would have been called anyway.

These two examples illustrate the benefits of user-defined axioms. In particular, the
clean, readable, and maintainable way of writing code can sometimes incur performance
overheads. User-defined axioms allow the programmer to reduce these overheads while
keeping the code base clean of performance-related hacks. Our approach makes domain-
specific axioms easier to add for the end-user programmer, because the programmer does
not need to worry about what order the user-defined axioms should be run in, or how
they will interact with the compiler’s internal optimizations. The set of axioms used in the
programs from Figure 38 is presented in Appendix A.

9.3. Translation Validation. We used Peggy to perform translation validation for the
Soot optimizer [52]. In particular, we used Soot to optimize a set of benchmarks with
all of its intraprocedural optimizations turned on, which include: common sub-expression
elimination, lazy code motion, copy propagation, constant propagation, constant folding,
conditional branch folding, dead assignment elimination, and unreachable code elimination.
The benchmarks included SpecJVM, along with other programs, comprising a total of 3,416
methods. After Soot finished compiling, for each method we asked Peggy’s saturation engine
to show that the original method was equivalent to the corresponding method that Soot
produced. The engine was able to show that 98% of methods were compiled correctly.

Among the cases that Peggy was unable to validate, we found three methods that
Soot optimized incorrectly. In particular, Soot incorrectly pulled statements outside of an
intricate loop, transforming a terminating loop into an infinite loop. It is a testament to the
power of our approach that it is able not only to perform optimizations, but also to validate
a large fraction of Soot runs, and that in doing so it exposed a bug in Soot. Furthermore,
because most false positives are a consequence of our coarse heap model (single σ node),
a finer-grained model can increase the effectiveness of translation validation, and it would
also enable more optimizations.
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Our equality saturation engine can easily be extended so that, after each translation
validation, it generates a machine-checkable proof of equivalence. With this in place, the
trusted computing base for our translation validator would only be: (1) the proof checker,
(2) the built-in axioms used in translation validation, most of which we have proved by
hand, and (3) the conversion from Java bytecode to PEG.

10. Related Work

Superoptimizers. Our approach of computing a set of programs and then choosing from
this set is related to the approach taken by super-optimizers [39, 29, 11, 26]. Superoptimizers
strive to produce optimal code, rather than simply improve programs. Although super-
optimizers can generate (near) optimal code, they have so far scaled only to small code sizes,
mostly straight line code. Our approach, on the other hand, is meant as a general purpose
paradigm that can optimize branches and loops, as shown by the inter-loop optimization
from Section 2.

Our approach was inspired by Denali [33], a super-optimizer for finding near-optimal
ways of computing a given basic block. Denali represents the computations performed
in the basic block as an expression graph, and applies axioms to create an E-graph data
structure representing the various ways of computing the values in the basic block. It then
uses repeated calls to a SAT solver to find the best way of computing the basic block given
the equalities stored in the E-graph. The biggest difference between our work and Denali
is that our approach can perform intricate optimizations involving branches and loops. On
the other hand, the Denali cost model is more precise than ours because it assigns costs to
entire sequences of operations, and so it can take into account the effects of scheduling and
register allocation.

Rewrite-Based Optimizers. Axioms or rewrite-rules have been used in many compila-
tion systems, for example TAMPR [13], ASF+SDF [53], the ML compilation system of
Visser et al. [54], and Stratego [14]. These systems, however, perform transformations in
sequence, with each axiom or rewrite rule destructively updating the IR. Typically, such
compilers also provide a mechanism for controlling the application of rewrites through built-
in or user-defined strategies. Our approach, in contrast, does not use strategies – we instead
simultaneously explore all possible optimization orderings, while avoiding redundant work.
Furthermore, even with no strategies, we can perform a variety of intricate optimizations.

Optimization Ordering. Many research projects have been aimed at mitigating the
phase ordering problem, including automated assistance for exploring enabling and dis-
abling properties of optimizations [59, 60], automated techniques for generating good se-
quences [17, 4, 34], manual techniques for combining analyses and optimizations [15], and
automated techniques for the same purpose [38]. However, we tackle the problem from a
different perspective than previous approaches, in particular, by simultaneously exploring
all possible sequences of optimizations, up to some bound. Aside from the theoretical guar-
antees from Section 4, our approach can do well even if every part of the input program
requires a different ordering.
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Translation Validation. Although previous approaches to translation validation have
been explored [45, 40, 62], our approach has the advantage that it can perform translation
validation by using the same technique as for program optimization.

Intermediate Representations. Our main contribution is an approach for structuring
optimizers based on equality saturation. However, to make our approach effective, we have
also designed the E-PEG representation. There has been a long line of work on developing
IRs that make analysis and optimizations easier to perform [19, 5, 51, 31, 24, 58, 16, 48, 44].
The key distinguishing feature of E-PEGs is that a single E-PEG can represent many
optimized versions of the input program, which allows us to use global profitability heuristics
and to perform translation validation.

We now compare the PEG component of our IR with previous IRs. PEGs are related
to SSA [19], gated SSA [51] and thinned-gated SSA [31]. The µ function from gated SSA
is similar to our θ function, and the η function is similar to our eval/pass pair. However,
in all these variants of SSA, the SSA nodes are inserted into the CFG, whereas we do
not keep the CFG around. The fact that PEGs are not tied to a CFG imposes fewer
placement constraints on IR nodes, allowing us to implicitly restructure the CFG simply
by manipulating the PEG, as shown in Section 3. Furthermore, the conversion from any
of the SSA representations back to imperative code is extremely simple since the CFG is
already there. It suffices for each assignment x := φ(a, b) to simply insert the assignments
x := a and x := b at the end of the two predecessors CFG basic blocks. The fact that
our PEG representation is not tied to a CFG makes the conversion from PEGs back to
a CFG-like representation much more challenging, since it requires reconstructing explicit
control information.

The Program Dependence Graph [24] (PDG) represents control information by grouping
together operations that execute in the same control region. The representation, however, is
still statement-based. Also, even though the PDG makes many analyses and optimizations
easier to implement, each one has to be developed independently. In our representation,
analyses and optimizations fall out from a single unified reasoning mechanism.

The Program Dependence Web [43] (PDW) combines the PDG with gated SSA. Our
conversion algorithms have some similarities with the ones from the PDW. The PDW how-
ever still maintains explicit PDG control edges, whereas we do not have such explicit control
edges, making converting back to a CFG-like structure more complex.

Dependence Flow Graphs [44] (DFGs) are a complete and executable representation
of programs based on dependencies. However, DFGs employ a side-effecting storage model
with an imperative store operation, whereas our representation is entirely functional, making
equational reasoning more natural.

Like PEGs, the Value Dependence Graph [58] (VDG) is a complete functional represen-
tation. VDGs use λ nodes (i.e. regular function abstraction) to represent loops, whereas we
use specialized θ, eval and pass nodes. Using λs as a key component in an IR is problematic
for the equality saturation process. In order to effectively reason about λs one must par-
ticularly be able to reason about substitution. While this is possible to do during equality
saturation, it is not efficient. The reason is that equality saturation is also being done to the
body of the λ expression (essentially optimizing the body of the loop in the case of VDGs),
so when the substitution needs to be applied, it needs to be applied to all versions of the
body and even all future versions of the body as more axioms are applied. Furthermore,
one has to determine when to perform λ abstraction on an expression, that is to say, turn
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e into (λx.ebody )(earg ), which essentially amounts to pulling earg out of e. Not only can it
be challenging to determine when to perform this transformation, but one also has to take
particular care to perform the transformation in a way that applies to all equivalent forms
of e and earg .

The problem with λ expressions stems in fact from a more fundamental problem: λ
expressions use intermediate variables (the parameters of the λs), and the level of indi-
rection introduced by these intermediate variables adds reasoning overhead. In particular,
as was explained above for VDGs, the added level of indirection requires reasoning about
substitution, which in the face of equality saturation is cumbersome and inefficient. An
important property of PEGs is that they have no intermediate variables. The overhead of
using intermediate variables is also why we chose to represent effects with an effect token
rather than using the techniques from the functional languages community such as mon-
ads [55, 56, 57] or continuation-passing style [6, 35, 30, 25, 8], both of which introduce
indirection through intermediate variables. It is also why we used recursive expressions
rather than using syntactic fixpoint operators.

Dataflow Languages. Our PEG intermediate representation is related to the broad area
of dataflow languages [32]. The most closely related is the Lucid programming language [9],
in which variables are maps from iteration counts to possibly undefined values, as in our
PEGs. Lucid’s first/next operators are similar to our θ nodes, and Lucid’s as soon as
operator is similar to our eval/pass pair. However, Lucid and PEGs differ in their intended
use and application. Lucid is a programming language designed to make formal proofs of
correctness easier to do, whereas Peggy uses equivalences of PEG nodes to optimize code
expressed in existing imperative languages. Furthermore, we incorporate a monotonize
function into our semantics and axioms, which guarantees the correctness of our conversion
to and from CFGs with loops.

Theorem Proving. Because most of our reasoning is performed using simple axioms, our
work is related to the broad area of automated theorem proving. The theorem prover that
most inspired our work is Simplify [21], with its E-graph data structure for representing
equalities [42]. Our E-PEGs are in essence specialized E-graphs for reasoning about PEGs.
Furthermore, the way our analyses communicate through equality is conceptually similar
to the equality propagation approach used in Nelson-Oppen theorem provers [41].

Execution Indices. Execution indices identify the state of progress of an execution [22,
61]. The call stack typically acts as the interprocedural portion, and the loop iteration
counts in our semantics can act as the intraprocedural portion. As a result, one of the
benefits of PEGs is that they make intraprocedural execution indices explicit.

11. Conclusion and future work

We have presented a new approach to structuring optimizers that is based on equal-
ity saturation. Our approach has a variety of benefits over previous compilation models:
it addresses the phase ordering problem, it enables global profitability heuristics, and it
performs translation validation.
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There are a variety of directions for future work. One direction is to extend Peggy so
that it generates a proof of correctness for the optimizations it performs. Each step in this
proof would be the application of an equality analysis. Since the majority of our analyses
are axiom applications, these proofs would be similar to standard mathematical proofs. We
would then like to use these proofs as a way of automatically generating optimizations. In
particular, by determining which nodes of the original PEG the proof depends on, and what
properties of these nodes are important, we will explore how one can generalize not only the
proof but also the transformation. Using such an approach, we hope to develop a compiler
that can learn optimizations as it compiles.

Another direction involves addressing our heap linearizing issues when reverting a PEG
to a CFG. One promising solution to this problem involves adapting our PEG representation
to use string diagrams [10, 18]. Expressions are an excellent theory for non-linear values;
string diagrams are a similar theory, but for linear values. A string diagram is comprised
of nodes with many inputs and many outputs along with strings which connect outputs of
nodes to inputs of other nodes. By default these strings cannot be forked, capturing the
linear quality of the values carried by the strings; however, strings for non-linear types are
privileged with the ability to fork. In addition to using string diagrams to encode linear-
ity in our PEGs, we could also re-express all of our axioms in terms of string diagrams,
thus preserving the linear qualities of any strings involved. This prevents the saturation
engine from producing PEGs which cannot be linearized without additional information.
Also, string diagrams can be used to preserve well-formedness of PEGs. Well-formedness
constraints are the only quadratic component of our Pseudo-Boolean profitability heuris-
tic formulation, so removing these constraints could drastically improve the speed of our
Pseudo-Boolean solver.

Appendix A. Axioms

In this section we describe the axioms used to produce the optimizations listed in Fig-
ure 38. We organize the axioms into two categories: general-purpose and domain-specific.
The general-purpose axioms are useful enough to apply to a wide range of programming
domains, while the domain-specific axioms give useful information about a particular do-
main.

The axioms provided below are not a complete list of the ones generally included in our
engine during saturation. Instead, we highlight only those that were necessary to perform
the optimizations in Figure 38.

A.1. General-purpose Axioms. The axioms presented here are usable in a wide range
of programs. Hence, these axioms are included in all runs of Peggy.

(Built-in E-PEG ops): This group of axioms relates to the special PEG operators
θ, eval , and φ. Many of these axioms describe properties that hold for any operation
op.
• if T = θi(A, T ) exists, then T = A

[If a loop-varying value always equals its previous value, then it equals its initial value]

• if A is invariant w.r.t. i, then eval i(A,P) = A
[Loop-invariant operations have the same value regardless of the current loop iteration]
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• op(A1, . . . , θj(Bi,Ci), . . . ,Ak) = θj(op(eval j(A1, 0), . . . ,Bi, . . . , eval j(Ak, 0)),
op(peel j(A1), . . . ,Ci, . . . , peel j(Ak)))

[Any operator can distribute through θj ]

• φ(C,A,A) = A
[If a φ node has the same value regardless of its condition, then it is equal to that value]

• φ(C, φ(C,T2,F2),F1) = φ(C,T2,F1)
[A φ node in a context where its condition is true is equal to its true case]

• op(A1, . . . , φ(B,C,D), . . . ,Ak) = φ(B,op(A1, . . . ,C, . . . ,Ak),
op(A1, . . . ,D, . . . ,Ak))

[All operators distribute through φ nodes]

• op(A1, . . . , eval j(Ai,P), . . . ,Ak) = eval j(op(A1, . . . ,Ai, . . . ,Ak),P), when
A1, . . . ,Ai−1,Ai+1, . . . ,Ak are invariant w.r.t. j
[Any operator can distribute through eval j ]

(Code patterns): These axioms are more elaborate and describe some complicated (yet
still non-domain-specific) code patterns. These axioms are awkward to depict using our
expression notation, so instead we present them in terms of before-and-after source code
snippets.
• Unroll loop entirely:
x = B; == x = B;

for (i=0;i<D;i++) if (D>=0) x += C*D;

x += C;

[Adding C to a variable D times is the same as adding C*D (assuming D ≥ 0)]

• Loop peeling:
A; == if (N>0) {

for (i=0;i<N;i++) B[i -> 0];

B; for (i=1;i<N;i++)

B;

} else {

A;

}

[This axiom describes one specific type of loop peeling, where B[i→ 0] means copying the body

of B and replacing all uses of i with 0]

• Replace loop with constant:
for (i=0;i<N;i++){} == x = N;

x = i;

[Incrementing N times starting at 0 produces N]

(Basic Arithmetic): This group of axioms encodes arithmetic properties including facts
about addition, multiplication, and inequalities. Once again, this is not the complete list
of arithmetic axioms used in Peggy, just those that were relevant to the optimizations
mentioned in Figure 38.
• (A ∗B) + (A ∗C) = A ∗ (B+C)
• if C 6= 0, then (A/C) ∗C = A
• A ∗B = B ∗A
• A+B = B+A
• A ∗ 1 = A
• A+ 0 = A
• A ∗ 0 = 0
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• A−A = 0
• A mod 8 = A&7
• A+ (−B) = A−B
• −(−A) = A
• A ∗ 2 = A << 1
• (A+B)−C = A+ (B−C)
• (A+B) +C = A+ (B+C)
• if A ≥ B then (A+ 1) > B
• if A ≤ B then (A− 1) < B
• (A > A) = false
• (A ≥ A) = true
• ¬(A > B) = (A ≤ B)
• ¬(A ≤ B) = (A > B)
• (A < B) = (B > A)
• (A ≤ B) = (B ≥ A)
• if A ≥ B and C ≥ 0 then (A ∗C) ≥ (B ∗C)

(Java-specific): This group of axioms describes facts about Java-specific operations like
reading from an array or field. Though they refer to Java operators explicitly, these
axioms are still general-purpose within the scope of the Java programming language.
• getarray(setarray(S,A, I,V),A, I) = V

[Reading A[I] after writing A[I]← V yields V]

• If I 6= J, then getarray(setarray(S,A,J,V),A, I) = getarray(S,A, I)
[Reading A[I] after writing A[J] (where I 6= J) is the same as reading before the write]

• setarray(setarray(S,A, I,V1),A, I,V2) = setarray(S,A, I,V2)
[Writing A[I]← V1 then A[I]← V2 is the same as only writing V2]

• getfield(setfield(S,O,F,V),O,F) = V
[Reading O.F after writing O.F← V yields V]

• If F1 6= F2,
then getfield(setfield(S,O,F1,V),O,F2) = getfield(S,O,F2)
[Reading A[I] after writing A[J] (where I 6= J) is the same as reading before the write]

• setfield(setfield(S,O,F,V1),O,F,V2) = setfield(S,O,F,V2)
[Writing O.F← V1 then O.F← V2 is the same as only writing V2]

A.2. Domain-specific. Each of these axioms provides useful information about a partic-
ular programming domain. These could be considered “application-specific” or “program-
specific” axioms, and are only expected to apply to that particular application/program.

(Inlining): Inlining in Peggy acts like one giant axiom application, equating the inputs
of the inlined PEG with the actual parameters, and the outputs of the PEG with the
outputs of the invoke operator.
• Inlining axiom:
x = pow(A,B); == result = 1;

for (e = 0;e < B;e++)

result *= A;

x = result;

[A method call to pow is equal to its inlined body]
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(Sigma-invariance):— It is very common for certain Java methods to have no effect on
the heap. This fact is often useful, and can easily be encoded with axioms like the
following.
• ρσ(invoke(S,L, [Object List.get()],P)) = S

[List.get is σ-invariant]

• ρσ(invoke(S,L, [int List.size()],P)) = S
[List.size is σ-invariant]

• ρσ(invokestatic(S, [double Math.sqrt(double)],P)) = S
[Math.sqrt is σ-invariant]

(Vector axioms): In our raytracer benchmark, there are many methods that deal with
immutable 3D vectors. The following are some axioms that pertain to methods of the
Vector class. These axioms when expressed in terms of PEG nodes are large and awkward,
so we present them here in terms of before-and-after source code snippets.
• construct(A,B,C).scaled(D) = construct(A ∗D,B ∗D,C ∗D)

[Vector (A,B,C) scaled by D equals vector (A ∗D,B ∗D,C ∗D)]

• A.distance2(B) = A.difference(B).length2()

[The squared distance between A and B equals the squared length of vector (A−B)]

•
A.getX() = A.mX

A.getY() = A.mY

A.getZ() = A.mZ
[Calling the getter method is equal to accessing the field directly]

•
construct(A,B,C).mX = A
construct(A,B,C).mY = B
construct(A,B,C).mZ = C
[Accessing the field of constructed vector (A,B,C) is equal to appropriate parameter]

•
construct(A,B,C).difference(construct(D,E,F)) =
construct(A−D,B−E,C− F)
[The difference of vectors (A,B,C) and (D,E, F ) equals (A−D,B − E,C − F )]

• construct(A,B,C).dot(construct(D,E,F)) = A ∗D+B ∗E+C ∗F
[The dot product of vectors (A,B,C) and (D,E, F ) equals A ∗D +B ∗ E + C ∗ F ]

• construct(A,B,C).length2() = A ∗A+B ∗B+C ∗C
[The squared length of vector (A,B,C) equals A2 +B2 + C2]

• construct(A,B,C).negative() = construct(−A,−B,−C)

[The negation of vector (A,B,C) equals (−A,−B,−C)]

• construct(A,B,C).scaled(D) = construct(A ∗D,B ∗D,C ∗D)

[Scaling vector (A,B,C) by D equals (A ∗D,B ∗D,C ∗D)]

•
construct(A,B,C).sum(construct(D,E,F)) =
construct(A+D,B+E,C+ F)
[The sum of vectors (A,B,C) and (D,E, F ) equals (A+D,B + E,C + F )]

• getZero().mX = getZero().mY = getZero().mZ = 0.0
[The components of the zero vector are 0]

(Design patterns): These axioms encode scenarios that occur when programmers use
particular coding styles that are common but inefficient.
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• Axiom about integer wrapper object:
A.plus(B).getValue() = A.getValue()+B.getValue()

[Where plus returns a new integer wrapper, and getValue returns the wrapped value]

• Axiom about redundant method calls when using java.util.List:
Object o = ... == Object o = ...

List l = ... List l = ...

if (l.contains(o)) { int index = l.indexOf(o);

int index = l.indexOf(o); if (index >= 0) {

... ...

} }

[Checking if a list contains an item then asking for its index is redundant]

(Method Outlining): Method “outlining” is the opposite of method inlining; it is an
attempt to replace a snippet of code with a procedure call that performs the same
task. This type of optimization is useful when refactoring code to remove a common yet
inefficient snippet of code, by replacing it with a more efficient library implementation.
• Body of selection sort replaced with Arrays.sort(int[]):
length = A.length; == Arrays.sort(A);

for (i=0;i<length;i++) {

for (j=i+1;j<length;j++) {

if (A[i] > A[j]) {

temp = A[i];

A[i] = A[j];

A[j] = temp;

}

}

}

(Specialized Redirect): This optimization is similar to Method Outlining, but instead of
replacing a snippet of code with a procedure call, it replaces one procedure call with an
equivalent yet more efficient one. This is usually in response to some learned contextual
information that allows the program to use a special-case implementation.
• if I = invokestatic(S, [void sort(int[])],params(A)) exists,

then add equality isSorted(ρσ(I),A) = true
[If you call sort on an array A, then A is sorted in the subsequent heap]

• if isSorted(S,A) = true, then
invokestatic(S, [int linearSearch(int[],int)],params(A,B)) =
invokestatic(S, [int binarySearch(int[],int)],params(A,B))
[If array A is sorted, then a linear search equals a binary search]
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