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Abstract. We study and compare in degree-theoretic ways (iterated Halting oracles anal-
ogous to Kleene’s arithmetical hierarchy, and the Borel hierarchy of descriptive set theory)
the capabilities and limitations of three models of real computation: BSS machines (aka
real-RAM) and strongly/weakly analytic machines as introduced by Hotz et al. (1995).

1. Introduction

The Turing machine as standard model of (finite) computation and computational complex-
ity over discrete universes like N or {0, 1}∗ suggests two both natural but distinct ways of
extension to real numbers: Already Alan Turing [Turi37] considered infinitely long calcula-
tions producing as output a sequence of integer fractions rn/sn ∈ Q (i.e. discrete objects)
approximating some real x ∈ R up to error 2−n.

The first model (dominant in Recursive Analysis) reflects that actual digital computers
can operate in each step only on finite information, and in particular with limited precision
on real numbers [Weih00, Theorem 4.3.1]. It is, however, often criticized [Koep01] for the
consequence that any computable function must necessarily be continuous. In the second
model, simple discontinuous functions like Heaviside or Gauß Staircase are computable,
whereas intricate and intuitively non-computable functions (such as the characteristic of
Mandelbrot’s fractal set) can indeed be proven uncomputable. Criticism of this model
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arises from its ability to compute certain pathological functions [Weih00, Example 9.7.2]
but not as simple functions as square root or exponential. A formal introduction to this
model is deferred to Section 1.4. We refer to [Zhon98, BoVi99, Brat00] for comparisons
between both models.

1.1. Oracle Computation and Turing Degrees. Classical (i.e. discrete) computability
and complexity theory had, almost from the very beginning [Turi39], started considering
machines with access to oracles: not so much to model actual computational practice,
but because it permits to formally compare problems according to their degree of uncom-
putability or complexity [Soar87, Papa94]. For a universe U like N or, equivalently (cmp.
Example 2.1 below), {0, 1}∗, the Halting problem H ⊆ U (sometimes denoted as jump of
∅) for instance becomes trivially decidable when granted oracle access to H; whereas the
iterated Halting problem (or jump of H)

HH :=
{

〈M,~x〉 : oracle Turing machine MH terminates on input ~x ∈ U
}

, (1.1)

that is the question of termination of a given such Turing machine with H-oracle, remains
undecidable by an H-oracle Turing machine.

The class of semidecidable problems is often denoted as Σ1; Π1 are their complements,
and ∆1 = Σ1 ∩Π1 the decidable problems. Σ2 are problems of the form

{

~x ∈ U
∣

∣ ∃~y ∈ U ∀~z ∈ U : 〈~x, ~y, ~z〉 ∈ T
}

(1.2)

with decidable T ⊆ U ; Π2 consists of complements of Σ2-problems, that is problems defined
by “∀∃”-formulas. Similarly, “∃∀∃” defines Σ3; and so on: Kleene’sArithmetical Hierarchy.
Post’s Theorem [Soar87, Section IV.2] asserts for a set S ⊆ U the following to be
equivalent:

a) S is semidecidable relative to the Turing Halting Problem H.
b) S ∈ Σ2, i.e. has the form (1.2) with decidable T .
c) S is many-one reducible to the iterated Halting problem (written “S � HH”).

Analogously, S is semidecidable relative to HH iff S ∈ Σ3 iff S is many-one reducible

to HHH
. Some natural Σ2-complete and Σ3-complete problems are identified in [Soar87,

Section IV.3].
Similar investigations have been pursued in both the BSS model [Cuck92] and in Recur-

sive Analysis [Ho99, ZhWe01]. However, and as opposed to the discrete setting, oracles turn
out to be of limited help in the case of real functions: both square root and exponential still
remain uncomputable to a BSS machine; and computability in Recursive Analysis remains
restricted to continuous functions [Zie07a, Zie07b].

1.2. Limiting Computation. This subsumes calculations whose result occurs after ≥ ω
steps. It may include transfinite cases [HaLe00] although we shall restrict to computations
producing a countable sequence of outputs that ‘converge’ to the result. For finite binary
strings (i.e. w.r.t. the discrete topology), this appears in the literature as limiting recursion
[Gold65, Schm02], inductive algorithms [Burg04], or trial-and-error predicates [Putn65].

On continuous universes like Cantor or Baire space or reals, a classical Turing ma-
chine processing finite information in each step needs an infinite amount of time. This led
to the field of Recursive Analysis (Rd) and Weihrauch’s Type-2 Theory ({0, 1}ω , Nω).
Here, convergence is required to be effective in the sense that the n-approximate output
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differs from the ultimate result by no more than an absolute error of 2−n; equivalently, the
approximations are to be accompanied by absolute error bounds tending to 0.

On the other hand, relaxing the output (but not input [BrHe02, Section 6]) to merely
converging approximations does render some discontinuous functions computable; and in
fact corresponds to climbing up the effective Borel Hierarchy [Brat05]:

1.3. Topological Complexity and Borel Degrees. Recall the Borel Hierarchy on an
arbitrary topological space X: Σ1(X) denotes the family of open subsets of X, Π1(X) that
of closed sets (i.e. complements of open ones), Σ2(X) the class of countable unions of closed
sets (aka Fσ), Π2(X) that of countable intersections of open sets (aka Gδ, i.e. complements
of Fσ), and iteratively Σk(X) the class of countable unions of Πk−1-sets, and Πk(X) their
complements; ∆k(X) = Σk(X) ∩Πk(X).

We shall frequently make use of the folklore

Fact 1.1.

a) It holds Q ∈ Σ2(R) \Π2(R).
b) It holds Q× (R \Q) 6∈ Π2(R

2) ∪Σ2(R
2).

c) If X ∈ Σk(Y ) and Y ∈ Σk(Z), then X ∈ Σk(Z); similarly for Πk.

Proof.

a) Q is a countable union of (closed) singletons, hence in Σ2. Suppose Q ∈ Π2, i.e. Q∁ =
⋃

nAn with closed An. But R\Q being of second category according to Baire’s Theorem,

there has to exist at least one with nonempty interior: ∅ 6= An
◦
= A◦

n ⊆ (R \ Q)◦, a
contradiction.

b) Q × (R \ Q) contains as sections both Q 6∈ Π2 and R \ Q 6∈ Σ2, hence cannot be in Π2

nor in Σ2.
c) Since Y is equipped with the relative topology of Z, induction on k shows that X ∈

Σk(Y ) implies X = Y ∩X ′ for some X ′ ∈ Σk(Z); and the latter class is closed under
finite intersection.

If X is a polish space, the Borel hierarchy is strict and contains complete members [Kech95].
According to Alexandrov’s Theorem, every Gδ–subset of a Polish space (such as Rd) is again
Polish. In the sequel, all spaces X under consideration will be (not necessarily closed)
subspaces of some Rd (d ∈ N) equipped with the Euclidean topology.

Also recall that continuity of a (total) function f : X → Y means that preimages
f−1[V ] of open sets V ⊆ Y are open in X; and, more generally, f is called Σk-measurable
if preimages of open subsets of Y are in Σk(X).

As common in classical computability theory, partial functions f :⊆ Rd → R arise
naturally also in the real case. We distinguish between the Borel complexity of their domain
dom(f) ⊆ Rd and that of the total function f : dom(f) → R; cmp. Remark 1.4 below.

1.4. Blum-Shub-Smale Machines. The BSS model (over R) considers real numbers as
entities that can be read, stored, output, added, subtracted, multiplied, divided, and com-
pared exactly. It captures the semantics of, e.g., the FORTRAN programming language
and essentially coincides with the real-RAM model underlying, e.g., Algorithmic Geom-
etry [BKOS97]. Specifically, a program consists of a sequence of arithmetic instructions
(+,-,×,÷) and branchings based on tests (=,<). A countably infinite sequence of working
registers can be accessed directly or via indirect addressing through dedicated integer-valued
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index registers. Assignments (a:=b) may copy data between registers or initialize them to
one of finitely many real constants listed in the program. Upon start, the input vector
(x1, . . . , xd) ∈ Rd is provided in the real registers and, for uniformity purposes, its dimen-
sion d in the index registers. If the machine terminates within finitely many steps, the
contents of the real registers (up to index given by the index register) is considered as
output. For further details we refer to [BCSS98] or [Cuck92, Definition 1.1].

Definition 1.2. For X ⊆ R∗, a set L ⊆ X is called BSS-decidable in X if some BSS machine
can, given any ~x ∈ X, report within finite time which one of ~x ∈ L or ~x 6∈ L holds. L

is BSS-semidecidable in X if some BSS machine terminates for every ~x ∈ L and does not
terminate (‘diverges’) for every ~x ∈ X \ L. A (possibly partial) function f :⊆ R∗ → R∗

is BSS-computable in X if some BSS machine, on inputs ~x ∈ dom(f) ∩ X, terminates with
output f(~x) and diverges on inputs ~x ∈ X \ dom(f).

Note that this common notion [BCSS98, Definition 4.2] ignores the behavior on in-
puts outside of X. In the case X = R∗, we simply speak of BSS (semi-)decidability/computa-
bility of L/f .

1.5. The Arithmetical Hierarchy for BSS Machines. [Cuck92, Theorems 2.11+2.13]
has succeeded in generalizing Post’s Theorem to oracle BSS machines, however based on
entirely different arguments:

Fact 1.3. For a set S ⊆ R∗ the following are equivalent:

a) S is semidecidable by a BSS machine with oracle access to H.
b) There exists a BSS-decidable set W ⊆ R∗ such that

S =
{

~x ∈ R∗
∣

∣ ∃y ∈ N ∀z ∈ N : (~x, y, z) ∈ W
}

. (1.3)

c) S is BSS many-one reducible to the iterated BSS Halting problem:

S < HH :=
{

(〈M〉, ~x) : oracle BSS machine MH terminates on input ~x
}

.

Observe that, in spite of referring to a real complexity class, quantifiers in Equation (1.3)
range over integers.

1.6. Analytic Machines. In [HVS95, ChHo99], a third model and kind of synthesis of
the above two had been proposed: An analytic machine is essentially a BSS machine (i.e.
with exact arithmetic operations and tests) permitted to approximate the output; either
with (strongly analytic) or without (weakly analytic) error bounds. More precisely, let
‖~y‖ :=

∑

i |yi| denote the 1-norm and dim(~y) = d for ~y ∈ Rd. Then computing f : R∗ → R∗

means producing, on input ~x ∈ dom(f), some infinite sequence ~yn ∈ R∗ with, for ~y := f(~x),

dim(~yn) = dim(~y) and ‖~yn − ~y‖ ≤ 2−n for all n ∈ N (strong)

dim(~yn) = dim(~y) for all but finitely many n and limn ~yn = ~y (weak)
(1.4)

Another variation depends on whether the ‘program’ may employ finitely many pre-stored
real constants or not. (Several further variants considered in [ChHo99] are outside the
scope of the present work. . . ) Now Heaviside and square root and exponential function are
easily seen to be computable by a strongly analytic machine. In fact, every computation in
Recursive Analysis or by a BSS machine (without constants) can be simulated on a strongly
analytic machine (without constants).
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Remark 1.4. Recall that a BSS machine computing a partial function f :⊆ R∗ → R∗

is required to diverge on inputs ~x 6∈ dom(f). This convention is common in the BSS
community and corresponds to what in Recursive Analysis is called strong computability
[Weih00, Exercise 4.3.18]. Similarly, a strongly/weakly analytic machine computing f
must violate Equation (1.4) for ~x 6∈ dom(f).

Note that in the strong case, this amounts to the output of either only a finite sequence
(i.e. a terminating computation or an indefinite one which, however, eventually ceases to
print further approximations) or of one for which the following fails:

‖~yn − ~ym‖ ≤ 2−n + 2−m ∀n,m . (1.5)

As a consequence, the domain (not to mention its complement) of a strongly analytically
computable partial function in general need not be BSS-semidecidable (i.e. the domain of
a BSS-computable function):

Examples 1.5.

a) There exists a BSS-computable function f :⊆ R∗ → {1} with dom(f) = H, the Halting
problem for BSS machines:

H :=
{

(〈M〉, ~x) : constant-free BSS machine M terminates on input ~x ∈ R∗
}

b) There is a function g :⊆ R∗ → {1} computable by a strongly analytic machine with

dom(g) = H∁.

Proof.

a) Define f(〈M〉, ~x) := 1 for (〈M〉, ~x) ∈ H, f(〈M〉, ~x) := ⊥ otherwise. A universal BSS
machine can obviously compute this.

b) Define g(〈M〉, ~x) := ⊥ for (〈M〉, ~x) ∈ H, g(〈M〉, ~x) := 1 otherwise. Consider a variant
of the universal BSS machine which, upon input (〈M〉, ~x), simulates the computation of
M on ~x and at each step outputs 1s but switches to alternating its outputs between 0s
and 1s at each step when M terminates.

We will explore this discrepancy more closely in Corollary 2.6a+d). Technically this means
that certain of our results (have to) refer to some extension of a given partial function; cmp.
Definition 1.2.

1.7. Overview. Section 2 explores the power of strongly analytic machines by comparison
to classical BSS machines. Roughly speaking, it turns out that BSS-computable total
functions are ∆2-measurable and partial functions have Σ2-measurable domains; whereas
total functions computable by strongly analytic machines cover all Σ1-measurable (i.e.
continuous) ones while including also some Σ2-measurable ones—but in order to cover all
of them, the composition of two such functions is sufficient and in general necessary. Partial
functions here have Π3-measurable domains.

We then (Section 3) proceed to weakly analytic machines. These are characterized as
strongly analytic ones relative to the BSS halting problem by establishing a real variant
of the Shoenfield Limit Lemma. The proof is assisted by a particular notion of weak
semidecidability (Section 3.1) many-one equivalent to the iterated (i.e. jump of the) BSS
Halting problem. Similar to the strongly analytic case from Example 1.5, Section 3.3
reveals the convergence problem (i.e. domain of a function computable by a weakly analytic
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machine) to not be weakly semidecidable in general. In fact we show the complement of
this problem equivalent to the jump of the iterated BSS Halting problem.

2. Exploring the Power of Strongly Analytic Machines

Both Recursive Analysis and the BSS model exhibit many properties similar to the classical
theory of computation—although not all of them. Analytic Machines behave even more
nicely in this sense:

Examples 2.1. A major part of discrete recursion theory relies on the existence of a
bicomputable pairing function, that is a bijective encoding

N× N ∋ (x, y) 7→ 〈x, y〉 ∈ N

and decoding of pairs of integers into a single one, both computable by a Turing machine.
(〈x, y〉 := 2x−1 · (2y − 1) for instance will do. . . )
This significantly differs from the real case where there is no BSS-computable (even local)
real pairing function:

a) Let ∅ 6= U ⊆ R2 be open and f : U → R injective. Then f is not BSS-computable.
b) Let ∅ 6= U ⊆ R2 be open and g :⊆ R → U surjective. Then g is not BSS-computable

relative to any (set) oracle.
c) There is, however, a strongly analytic machine without constants computing a total

bijection h : R2 → R and its inverse.

Proof.

a) Suppose f is computable by some BSS machine; then its path decomposition yields
a non-empty open ball B ⊆ U such that f |B is a rational function and in particular
continuous. But a continuous f from a convex open B ⊆ R2 to R cannot be injective:
Consider ~u,~v ∈ B and two disjoint paths g, h : [0, 1] → B connecting them, that is with
g(0) = ~u = h(0) and g(1) = ~v = h(1) and g([0, 1]) ∩ h([0, 1]) = {~u,~v}. By continuity, it
follows from the intermediate value theorem that f ◦ g and f ◦ h must have a common
value on the open interval (0, 1). This contradicts the assumption of f being injective.

b) Recall that for fields F ⊆ E, the transcendence degree of S ⊆ E (over F) trdegF(S) denotes
the cardinality of a largest subset of S algebraically independent over F; equivalently: of a
least T ⊆ S such that F(S) is algebraic over F(T ). In particular, a finite S is algebraically
independent over a finite field extension F(T ) iff trdegF(S ∪ T ) = Card(S) + trdegF(T )
[Cohn91, Proposition 5.1.2].
Now observe that the output of a BSS-machine M with constants c1, . . . , cd on input
x1, . . . , xn is limited to the rational field extension Q(c1, . . . , cd, x1, . . . , xn). On the other
hand, the transcendence degree trdegQ(R) of R over Q is infinite. In particular, there

exist y, z ∈ R with {y, z} algebraically independent over Q(c1, . . . , cd). Now Q2 is dense
in R2 and U ⊆ R2 is open; hence there are p, q ∈ Q with (y + p, z + q) ∈ U ; and
{y + p, z + q} remains algebraically independent over Q(c1, . . . , cd). So suppose there is
a machine M with constants c1, . . . , cd computing g and in particular (y + p, z + q) =
g(x) for some x. Then y + p, z + q ∈ Q(c1, . . . , cd, x) by the above observation, hence
trdegQ(y + p, z + q, c1, . . . , cd) ≤ trdegQ(c1, . . . , cd, x) ≤ trdegQ(c1, . . . , cd) + 1; whereas
algebraic independence of {y + p, z + q} over Q(c1, . . . , cd) requires trdegQ(y + p, z +
q, c1, . . . , cd) = 2 + trdegQ(c1, . . . , cd): contradiction.
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c) Observe that the mapping

[0, 1) ∋ x =
∑∞

n=1
bn2

−n 7→ (b1, b2, . . . , bn, . . .) ∈ {0, 1}N ,

extracting from a given real number its∗ binary expansion is computable digit by digit
by (exact) comparison: For n = 1, let bn := 1 in case x ≥ 1/2 and bn := 0 otherwise;
then iterate with x 7→ 2x− 1 and n 7→ n+ 1.
Conversely, a strongly analytic machine (but no BSS machine) can encode any binary
sequence bn (say, of intermediate results) into a real number

∑∞
n=1 bn2

−n ∈ [0, 1] by

approximations
∑N

n=1 bn2
−n up to error 2−N .

We will thus decode both x, y ∈ [0, 1) into their binary expansions an and bn, merge the
latter into c2n := an and c2n−1 := bn, and then re-code (cm)m into z ∈ [0, 1).
This procedure obviously extends from [0, 1) to [0,∞) with binary expansion
∑∞

n=−k an2
−n and, incorporating also sign(x) and sign(y), to a pairing function h :

R× R → R.
Its inverse can be computed similarly by a strongly analytic machine: From a given z ∈ R,
extract from its binary expansion the (sub)sequence of those digits with even/odd index
and compose them into (approximations up to error 2−n of) x, y ∈ R with h(x, y) = z.

It is clear that a BSS machine without constants cannot compute the constant function
f(x) ≡ c unless c ∈ Q; and oracles do not help. This is different for analytic machines:

Proposition 2.2. Let H denote the Halting problem for BSS machines from Example 1.5a).
To every strongly/weakly analytic machine M with recursive constants, there exists a
strongly/weakly analytic oracle machine N such that NH is equivalent to M.

Proof. Let c1, . . . , ck ∈ R denote the constants of an analytic machine M. Observe that
each computation of M on some input ~x ∈ Rd can be described as an infinite sequence
of elementary operations (arithmetic on two intermediate results, branch based on testing
some intermediate result, output of an intermediate result); where each intermediate result
is a rational function R(x1, . . . , xd, c1, . . . , ck) with rational coefficients. Now given such an
input ~x, let NH symbolically record the intermediate calculations R performed by M up to
the first test “R(~x,~c) : 0?” Since ~c is presumed recursive, so is R(~x,~c) and can be output up
to any desired precision whenever M would output R(~x,~c) exactly. Another consequence,
both “R(~x,~c) < 0” and “R(~x,~c) > 0” are semidecidable; thus by querying H, NH can decide
“R(~x,~c) = 0” and proceed with the simulation of M’s control flow accordingly.

The following technical tool will be used in the sequel:

Fact 2.3. For a set S ⊆ Rk, consider its distance function

dist(·;S) : Rk → [0,∞], ~x 7→ inf
{

‖~x− ~y‖ : ~y ∈ S
}

. (2.1)

a) The function dist(·;S) is always continuous.
b) If S is closed, the infimum in Equation (2.1) is a minimum, i.e. attained.
c) For closed A,B ⊆ Rk, it holds dist(~x;A ∪B) = min{dist(~x;A),dist(~x;B)}.

Example 2.4. Cantor’s Excluded Middle set C ⊆ [0, 1] is closed; its distance function
x 7→ dist(x; C) is computable by a strongly analytic machine without constants.

∗Dyadic rationals x = (2ℓ + 1)/2k have two distinct such expansions. For the purpose of well-definition,
we here refer to the one with only finitely many 1s.
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Proof. Recall that C consists of all real numbers x ∈ [0, 1] having a ternary expansion
x =

∑∞
n=1 cn3

−n with cn ∈ {0, 2} and is obviously closed.
Concerning computability of x 7→ dist(x; C), observe that the sequence of open rational
intervals I〈m,k〉 :=

(

(3k + 1)/3m, (3k + 2)/3m
)

, m ∈ N, k = 0, . . . , 3m−1 − 1 is recursive and
exhausts [0, 1] \C. Therefore the sequence ym, defined by ym := min{|x− (3k+1)/3m|, |x−
(3k+2)/3m|} if x ∈ I〈m,k〉 for some k and ym := 0 otherwise, is computable from x and has
max{y1, y2, . . . , ym} converging to dist(x; C) from below.
In order to approximate dist(x; C) from above, observe that the sequence

xc̄ := (
∑|c̄|

n=1 cn3
−n)

c̄∈{0,2}∗
(w.r.t. lexicographically ordered index set) is recursive and

dense in C. Therefore, zm := min{|x − xc̄| : c̄ ∈ {0, 2}≤m} is computable from x and con-
verges to dist(x; C) from above.
So ym ≤ supm ym = dist(x; C) = infm zm ≤ zm shows the existence of a subsequence
ymn with zmn − zmn ≤ 2−n: this can be sought for computationally and satisfies |ymn −
dist(y; C)| ≤ 2−n as required.

2.1. Topological Complexity of BSS and Strongly Analytic Computation. While
strongly analytic machines can compute strictly more (e.g., the exponential function) than
BSS machines, the present section reveals that the topological complexity (in the sense of
descriptive set theory) does not increase for decision problems, and increases only slightly
for function problems.

Recall that, classically, a (possibly partial) function f :⊆ N∗ → N∗ is computable iff its
graph is semidecidable. The appropriate counterpart for a real function f :⊆ R∗ → R are
the strict epigraph and strict hypograph [Brat00]:

s-epigraph(f) :=
{

(~x, y) : ~x ∈ dom(f), y > f(~x)
}

,

s-hypograph(f) :=
{

(~x, y) : ~x ∈ dom(f), y < f(~x)
}

.

In the BSS model, the square root has both strict epigraph and strict hypograph decidable
yet is not computable.

Theorem 2.5.

a) Conversely, if both s-epigraph(f) and s-hypograph(f) are semidecidable by a BSS ma-
chine with/out constants, then f is computable by a strongly analytic machine with/out
constants.

b) And if both s-epigraph(f) and s-hypograph(f) are semidecidable in dom(f) by a BSS ma-
chine with/out constants, then some extension of f is computable by a strongly analytic
machine with/out constants.

c) A set S ⊆ R∗ is decidable by a BSS machine with/out constants iff its characteristic
function 1S : R∗ → {0, 1} is computable by a strongly analytic machine with/out con-
stants.

d) Every open subset of Rk is BSS-semidecidable.
e) Every continuous (i.e. Σ1-measurable) total function f : Rd → Rk is computable by a

strongly analytic machine;
f) and so is every countable family fℓ : R

d → Rk (ℓ ∈ N) of continuous total functions.

Note the subtle mismatch between a) and b+c) with respect to relative/absolute semidecid-
ability, imposed by Example 1.5b). Similarly, Item f) does not extend to arbitrary partial
functions.
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We remark also that Item f), together with Fact 2.3, yields the distance function of the
Mandelbrot Set to be computable by a strongly analytic machine—whereas its computabil-
ity in Recursive Analysis is still an open question (and consequence of the Hyperbolicity
Conjecture) [Hert05]; yet the Mandelbrot Set cannot be decided by a BSS[BCSS98, Theo-

rem 2.4.2] nor (Item d) by a strongly analytic machine.

Proof. (Theorem 2.5)

a) Given (~x, z) with ~x ∈ dom(f), let the BSS machine simulate the strongly analytic com-
putation of y := f(~x) and denote by (yn) the output sequence it generates, i.e satisfying
|yn−y| ≤ 2−n. Now search for some n with yn+2−n < z; if found, y < z follows and the
machine accepts (~x, z) ∈ s-epigraph(f); and conversely, in case (~x, z) ∈ s-epigraph(f),
y < z holds and there exists n with yn + 2−n < z.
Note that for ~x 6∈ dom(f), such n may or may not exist; hence the described procedure
semidecides s-epigraph(f) only in dom(f).

b) Let M and N denote BSS machines semideciding s-epigraph(f) and s-hypograph(f),
respectively. In order to approximate f(~x) for given ~x up to error 2−n+1 simulate, for
all q ∈ Q in parallel, both M on (~x, q + 2−n) and N on (~x, q − 2−n). If both terminate,
q−2−n < f(~x) < q+2−n justifies to output q; and, conversely, for ~x ∈ dom(f), there is a
rational approximation q to f(~x) up to error 2−n for which both simulations terminate;
whereas for ~x 6∈ dom(f), both simulations stall by hypothesis.

c) Similarly to b), but now the behavior ofM andN on ~x 6∈ dom(f) is undefined. Hence the
search for approximations may or may not yield a strongly converging output sequence,
i.e. produce ⊥ or some value y for f(~x).

d) If S is decidable by a BSS machine, its characteristic function is BSS-computable; hence
strongly analytic, recall Section 1.6.
Conversely let 1S be computable by a strongly analytic machine M. Upon input of ~x, M
will thus output a sequence (yn) of reals with |yn − 1S(~x)| ≤ 2−n. Since 1S(~x) ∈ {0, 1},
this means y2 uniquely exhibits whether ~x ∈ S or ~x 6∈ S holds. A BSS machine thus
suffices to simulate M for the finitely many steps it takes to generate y2 and then output
either 0 or 1 accordingly.

e) The open rectangles (~a,~b) := {~x : ~a < ~x <~b} with rational corners ~a,~b are well-known to
form a base of the Euclidean topology on Rk; that is, every open V ⊆ Rk can be written

as a countable union of certain such open rational rectangles (~ai,~bi). Their corners’
coordinates, being integer fractions, can be encoded in binary into a single real number
[Cuck92, Lemma 2.3]. Perusing this as a pre-stored constant, a BSS machine can, given
~x ∈ Rk, iteratively extract the coordinates of the open rational rectangles and search for
one to contain ~x.

f) W.l.o.g. k = 1. By the Weierstraß Approximation Theorem, there exists a double
sequence pn,m of d-variate rational polynomials such that pn,m converges to f as n → ∞
uniformly on [−m,+m]d, w.l.o.g. with uniform error ≤ 2−n. Now encoding the list of
rational coefficients into a real constant as in d), a BSS machine can, given ~x first find
m with ~x ∈ [−m,+m]d and then evaluate and output pn,m(~x) for n = 1, 2, . . ..

g) Similarly to f), encode the (still countable) list of rational coefficients of pn,m,ℓ into a
real constant.

Note that Item e) is an extension of [GaHo10, Proposition 1], where in the current case
for the one-dimensional case all inputs in the open interval between two integers have the
same computation path.
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Corollary 2.6.

a) Fix X ⊆ Rd. Every set S ⊆ X BSS-semidecidable in X belongs to the Borel class Σ2(X).
b) Every S ⊆ X decidable in X by a strongly analytic machine belongs to ∆2(X).
c) Each function f :⊆ Rd → R computable by a strongly analytic machine is Σ2-measurable

in dom(f).
d) For f :⊆ Rd → R computable by a strongly analytic machine, it holds dom(f) ∈ Π3(R

d).

Compare also [Cuck92, Section 4].

Proof.

a) Note that every semialgebraic set is (a finite union of basic semialgebraic sets and thus)
the intersection of a closed and an open set [BCSS98, p.51 l.6] and in particular in Σ2,
which is closed under countable unions. Now the Path Decomposition Theorem for BSS
machines [BCSS98, Theorem 2.3.1] shows that every BSS-semidecidable set (in X) is
the countable union of semialgebraic sets (intersected with X).

b) Decidability of S means that both S and its complement are semidecidable, hence in Σ2

by a); that means S ∈ Σ2 ∩Π2 = ∆2.
c) Let V ⊆ R be open, V =

⋃

n(an, bn) with an, bn ∈ Q enumerated by a BSS machine
according to the proof of Theorem 2.5e). Now f−1[(a, b)] = f−1

[

(a,∞)
]

∩f−1
[

(−∞, b)
]

is

semidecidable in dom(f) according to Theorem 2.5a); hence so is f−1[V ] =
⋃

n f
−1[(an, bn)];

and thus Σ2 in view of a).
d) Let M denote a strongly analytic machine computing f :⊆ R∗ → R. According to

Equation (1.5), ~x ∈ dom(f) iff for all n,m ∈ N, (~x, n,m) belongs to the set
{

(~x, n,m) : M on input ~x prints y1, . . . , yn, . . . , ym with |yn − ym| ≤ 2−n + 2−m
}

which is clearly BSS semidecidable and thus Σ2 according to a). Adding the universal
quantification over n,m, it follows that dom(f) is Π3.

The following result due to Arno Pauly (personal communication) exhibits the topological
difference between functions computable by BSS machines and by strongly analytical ones,
recall Corollary 2.6c).

Theorem 2.7.

a) Every (possibly partial) function f :⊆ Rd → R computable by a BSS machine is ∆2-
measurable in dom(f).

b) More generally, let F denote a family of continuous, partial real functions f :⊆ Rdf → R

of various arities df ∈ N with domains in ∆2. Let R denote a family of ∆2-measurable

real relations R ⊆ RkR of various arities kR ∈ N. Consider a uniform machine model
over the structure † (R,F ,R), i.e. capable of performing a finite sequence of operations
from F and branchings based on tests from R. Then any (possibly partial) function
g :⊆ Rd → Rk computable by such a machine is necessarily ∆2-measurable in dom(f).

Proof.

a) follows from b) with F := {+,−,×,÷} and R := {=, <}.

†We refrain from formally defining the intuitive but tedious concept of a (nonuniform) machine model
over a structure but refer, e.g., to [Poiz95, §4.A] (which technically restricts to structures having only total
functions); cmp. also [TuZu00, §3]
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b) Similarly to the proof of [BCSS98, Theorem 3.3.1], the computation of such a machine
can be unrolled into a (possibly infinite) binary tree T : Each internal node u describes
the branching based on the outcome of a test “~y ∈ Ru?” (Ru ∈ F) of intermediate results
~y; intermediate results which arise from the input ~x evaluated on functions gu which are
compositions of functions from F . In particular, for a leaf v of T , the set Gv of inputs
~x ∈ Rd ending up in v is the intersection Gv =

⋂

u

{

~x : gu(~x) ∈ Ru

}

with u running over
the (finitely many) internal nodes from T ’s root to v; and the output printed in v is of
the form gv(~x). This yields a disjoint decomposition g =

⊎

v gv |Gv , now with v running
over all (countably many) leaves of T . In particular, g−1[Y ] =

⊎

v(g
−1
v [Y ] ∩ Gv) holds

for any Y ⊆ Rk.
Now by hypothesis, gv is continuous as the composition of continuous functions; and
for continuous f1, f2 with dom(f1) and dom(f2) both ∆2-measurable, dom(f2 ◦ f1) =
{~x : f1(~x) ∈ dom(f2)} is easily verified to be again ∆2-measurable: recall that ∆2 is
closed under both finite unions and finite intersections. Similarly, it follows that each
Gv ⊆ Rd is ∆2-measurable as well. Thus, both for open and for closed Y ⊆ Rk, g−1[Y ]
is a countable union of Σ2 sets.

Corollary 2.6, Theorem 2.5e), and Theorem 2.7a) are (almost) best possible:

Examples 2.8.

a) The set Q of rational numbers is BSS-semidecidable (but not in Π2).
b) The characteristic function 1[0,1) : R → {0, 1} is BSS-computable but is not Σ1 ∪ Π1-

measurable.
c) Cantor’s Excluded Middle set C ⊆ [0, 1] belongs to Π1 ⊆ Σ2, but is not BSS semide-

cidable.
d) Recall Thomae’s or Popcorn Function h : R → R, defined as h(x) = 0 for x ∈ R \ Q

and h(±p/q) = 1/q for coprime p, q ∈ N, h(0) = 1.
This function is computable by a strongly analytic machine but is not Π2-measurable.

e) There is a function f :⊆ R2 → {0} computable by a strongly analytic machine with
dom(f) = Q× (R \Q) not Σ2 ∪Π2-measurable.

Proof.

a) A BSS machine can, given x ∈ R, enumerate all pairs r, s ∈ Z and compare x = r/s to
semidecide “x ∈ Q”.

b) The set [0, 1) is neither closed nor open, hence its characteristic function is not Σ1∪Π1-
measurable.

c) Note that each singleton {x} ⊆ C is a connected component of C of its own. Hence C has
uncountably many connected components; whereas any BSS-semidecidable set, being a
countable union of semialgebraic sets (recall the proof of Corollary 2.6a) of only finitely
many connected components each [BPR03, Section 5.2], can have at most countably
many connected components.

d) Recall from a) that Q is not in Π2 but the preimage of an open set: Q = h−1[(0, 2)]. We
now describe a machine computing h(x) on input x > 0:
Iteratively for q = 1, 2, 3, . . . test whether q · x is an integer; if not, output q as approx-
imation to h(x) up to error 1/q and continue with the iteration; otherwise switch to
outputting 1/q, 1/q, 1/q, . . . as approximations to h(x) up to error 1/m for all m ≥ q.
It is easy to convert this sequence (yq)q of approximations up to error 1/q into a sequence
(zn)n of approximations up to error 2−n by printing only the subsequence (y2n)n .
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e) Consider a machine which, given (x, y), first searches (without output) for p, q ∈ Z with
x = p/q. When found, it starts similarly enumerating each rn ∈ Q and printing 2−n

until (and if) arriving at one with rn = y.

The rough conclusion of this subsection is that both BSS model and analytic machines lie
slightly skew to the Borel Hierarchy, having topological power strictly between Σ1 and Σ2;
and partial functions are even more skewed relative to the hierarchy.

2.2. Composition of Strongly Analytic Machines. The analytic machine models pre-
sume the input to be given exactly but produce only approximations to the output. It is thus
reasonable to expect that the composition of two functions computable by analytic machines
in general need not itself be computable by an analytic machine. This has been proven for
weakly analytic machines in [ChHo99, Lemma 6]; cmp. [GaHo09, Corollary 2.4]. It
is not surprising that we can establish the same for strongly analytic machines in Propo-
sition 2.9b) below. However the use of descriptive set theory is of interest because of the
new perspective it provides: It is well-known that the composition of two Σ2-measurable
functions is in general no more than Σ3-measurable [Brat05, Corollary 3.9]; whereas the
composition of a Σ2-measurable function with a continuous one is again Σ2-measurable. In
view of Theorem 2.5f) and Corollary 2.6c), Vassilios Gregoriades (personal communi-
cation) thus raised the natural question of whether the composition of a strongly analytic
and a continuous function is again strongly analytic. A complete answer is given by the
already mentioned

Proposition 2.9.

a) Let g : Rk → Rℓ be computable by a strongly analytic machine and let h : Rd → Rk

denote a continuous function. Then h ◦ g is computable by a strongly analytic machine.
b) There exists a function g : R → R and a continuous function f : R → R, both computable

by strongly analytic machines without constants, such that g ◦ f is not computable by a
strongly analytic machine.

In particular, we obtain:

Corollary 2.10. The class of total real functions computable by strongly analytic machines
is not closed under composition.

Proof. (Prop. 2.9)

a) We refine the proof of Theorem 2.5f) by storing, in addition to the coefficients of rational
polynomials pn,m approximating h|[−m,+m]d up to error 2−n also some moduli of uniform
continuity, that is, integers µn,m subject to:

~y, ~y′ ∈ [−m,+m]d, |~y − ~y′| ≤ 2−µn,m =⇒ |h(~y)− h(~y′)| ≤ 2−n . (2.2)

Now, given ~x and a desired precision 2−n, determinem with ~x ∈ [−m,+m]d and evaluate
~y := g(~x): By hypothesis, the strongly analytic machine computing g can produce an
approximation ~y′ up to precision 2−µn+1,m+1 . Finally output z := pn+1,m+1(~y

′) and verify

|h ◦ g(~x)− z| ≤ |h(~y)− h(~y′)| + |h(~y′)− z|
(2.2)

≤ 2−n−1 + 2−n−1 .

b) Let g(0) := 1 and g(y) := 0 for y 6= 0 denote the characteristic function of {0}. Let
f := dist(·, C) denote the distance function of the Cantor set, recall Example 2.4. Since C
is closed, it follows g ◦f = 1C : a function not computable by a strongly analytic machine
according to Example 2.8c).
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We now extend Theorem 2.5f):

Theorem 2.11. Every Σ2-measurable f : Rd → R can be expressed as the composition
f = h ◦ g of a strongly analytic g : Rd → Rω and a strongly analytic partial function
h :⊆ Rω → R.

Proof. Being Σ2-measurable means

f−1
[

(q, p)
]

=
⋃

k
Ak,q,p, for q, p ∈ Q and closed Ak,q,p ⊆ Rd . (2.3)

• Since Q := {(q, p, k) : k ∈ N, q, p ∈ Q, q < p} is countable, Theorem 2.5g) yields a strongly
analytic machine computing the function

ĝ : Q× Rd ∋
(

(q, p, k), ~x
)

7→ dist(~x,Ak,q,p) ∈ [0,∞)

which we shall identify with the function g : Rd → RQ, ~x 7→
(

(q, p, k) 7→ ĝ(q, p, k, ~x)
)

.
Note that ∃k : ĝ(q, p, k, ~x) = 0 ⇔ q < f(~x) < p.

• Now consider the function

h :⊆ RQ → R, δ 7→ sup{q : ∃k, p : δ(q, p, k) = 0} with dom(h) :=
{

δ : Q → [0,∞)
∣

∣ sup{q : ∃k, p : δ(q, p, k) = 0} = inf{p : ∃k, q : δ(q, p, k) = 0}
}

and observe that δ := g(~x) has sup{q : ∃k, p : δ(q, p, k) = 0} = f(~x) = inf{p : ∃k, q :
δ(q, p, k) = 0}; hence dom(h) ⊆ range(g) holds and, moreover, (h ◦ g)(~x) = f(~x).

• Finally, h is computable by a strongly analytic machine: Given δ ∈ dom(h) and for each
n ∈ N, search for q, p, k with δ(q, p, k) = 0 and p − q ≤ 2−n and, when found, print q,
then continue with n+ 1. On the one hand such (q, p, k) exist because, according to the
hypothesis δ ∈ dom(h), it holds sup{q : ∃k, p : δ(q, p, k) = 0} = inf{p : ∃k, q : δ(q, p, k) =
0}
}

= h(δ) =: y. On the other hand such a tuple satisfies q < y < p ≤ q+2−n, hence the
output sequence converges effectively to this y.

Note that we have silently extended the classical analytic machine model to infinite dimen-
sional arguments and values—which raises

Question 2.12. In Theorem 2.11, can the infinite-dimensional intermediate results be
avoided? Can h be chosen total? How far up on the Borel hierarchy of measurability
do compositions of k strongly analytic functions reach/cover?

Indeed, strongly analytic machines can encode infinite sequences into single reals and
back; but a priori, each such operation incurs an additional machine, thus resulting in the
composition in Theorem 2.11 to become three-fold.

3. Comparing Weakly and Strongly Analytic Machines

It will turn out (Theorem 3.5) that weakly analytic machines are essentially strongly ones
equipped with oracle access to the BSS Halting problem.

We first record the following relativizations of Theorem 2.5 and Corollary 2.6:

Corollary 3.1.

a) Each set S ⊆ Rd BSS-semidecidable with oracle H necessarily belongs to Borel class Σ3.
b) Every S ∈ Σ2 is BSS-semidecidable with oracle H.
c) Each total function f : Rd → R computable by a strongly analytic machine with H-oracle

is Σ3-measurable.
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d) Every Σ2-measurable total function f : Rd → R is computable by a strongly analytic
machine with H-oracle.

Proof.

a) follows from Corollary 2.6a) and Fact 1.3b), observing that {(~x, y) : ∀z ∈ N : (~x, y, z) ∈
W} is in Π2 because its complement is BSS-semidecidable.

b) Let S =
⋃

nAn with An closed, i.e. the complement of An is of the form
⋃

m(~an,m,~bn,m)

with rational corners ~an,m,~bn,m. Just like in the proof of Theorem 2.5e), this rational
double sequence can be encoded into one single real constant in order to enable a BSS

machine deciding W := {(~x, n,m) : ~x 6∈ (~an,m,~bn,m)}. Now apply Fact 1.3c) to
⋃

nAn =
{

~x
∣

∣∃n∀m : (~x, n,m) ∈ W
}

.
c) Like in the proof of Corollary 2.6c) and relativizing Theorem 2.5a), we observe that

f−1[
⋃

n(an, bn)] is semidecidable by a BSS machine with H-oracle. Now apply a).
d) For q ∈ Q and n ∈ N, consider the Σ2-set f−1[(q − 2−n, q + 2−n)]. Extending Item b),

we see that these sets are BSS-semidecidable with H-oracle uniformly in q and n. Hence
given ~x, an H-oracle machine can search and output, for each n ∈ N, some q ∈ Q with
~x ∈ f−1[(q − 2−n−1, q + 2−n−1)].

[Cuck92, Theorems 2.15+2.16] establishes two natural problems over the reals as BSS-
equivalent for (i.e. many-one reducible from and to) HH. The next section will add Bound-

edness; and Theorem 3.11 shows (the complement of) Convergence BSS-equivalent to HHH

.

3.1. The Boundedness Problem and Weak Semidecidability.

Consider the boundedness problem for analytic machines:

B :=
{

(〈M〉, ~x) : machine M produces on input ~x some bounded sequence (~yn)n
}

.

By convention, we regard also a finite sequence as bounded.

Proposition 3.2.

a) A BSS machine with oracle access to H can semidecide B

b) but cannot decide B. More precisely, it holds HH
< B.

Proof.

a) Given M and ~x, iteratively try the bounds n = 1, 2, . . . and use oracle access to H in
order to detect whether some output of M on ~x has norm exceeding n: If so, retry with
n+ 1; otherwise accept.

b) Since HH is semidecidable relative to H, it has the form of Equation (1.3). Now consider
the BSS machine M executing the following algorithm: Given ~x and iteratively for each
y = 1, 2, . . ., M looks for some z = 1, 2, . . . such that (~x, y, z) 6∈ W. If such a z is found,
M outputs y and restarts with y + 1; otherwise M keeps looking for z indefinitely.
For ~x ∈ HH, the above machine will thus eventually find an y that leads to an infinite
loop on z; and hence a bounded (even finite) output sequence. Whereas for ~x 6∈ HH,
every y ∈ N will eventually be output by M, that is, an unbounded sequence.
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Theorem 2.5d) suggests the following

Definition 3.3. A set S ⊆ R∗ is weakly decidable iff its characteristic function 1S : R∗ →
{0, 1} is computable by a weakly analytic machine.
S is weakly semidecidable iff S is BSS-semidecidable with H-oracle.

In view of Fact 1.3 and Proposition 3.2, S is weakly semidecidable iff it is BSS many-one
reducible to HH or, equivalently, to B.

Examples 3.4.

a) For a function f : R∗ → Rk computable by a weakly analytic machine and for open
V ⊆ Rk, the pre-image f−1[V ] ⊆ R∗ is weakly semidecidable.

b) Every Σ2-set is weakly semidecidable.

Proof. Let (~yn) be a sequence output by the weakly analytic machine on input ~x, i.e. with
limn ~yn = ~y := f(~x). In view of Theorem 2.5e), we can assume to have an enumeration
(Vm) of rational open rectangles exhausting V =

⋃

m Vm at our disposition.

a) For each m,k = 1, 2, . . . test whether it holds that the rectangle [~yn − 2−m, ~yn + 2−m] is
contained in Vk for all n ≥ m. This can be achieved by setting up a machine N searching
for a counter-example n and querying oracle H for non-termination of N . If so, since
~y ∈ [~yn − 2−m, ~yn + 2−m] for all sufficiently large n, it follows ~y ∈ V and we can safely
accept. Conversely in case ~y ∈ Vk, it holds [~yn − 2−m, ~yn + 2−m] ⊆ Vk for all sufficiently
large n,m; hence the above search succeeds.

b) Let V =
⋃

j Aj ∈ Σ2. Analogously to the proof of Theorem 2.5e), the closed sets
Aj can be represented as complements of a countable union of open rectangles with

rational corners Aj =
(

⋃

i(~aj,i,
~bj,i)

)∁

. The rational coordinates of ~aj,i and ~bj,i can all be

encoded into one real constant. A machine that semidecides ~x ∈ V tries, for increasing
n = 1, 2, . . ., whether ~x ∈ An. To this end, the coordinates of the rectangles exhausting

An are extracted and for increasing m the condition ~x ∈ (~an,m,~bn,m) is checked. After
each check, the machine outputs n, and as soon as a rectangle containing x is found,
the machine proceeds to the next n. If ~x ∈ V , then it is in some An, and therefore in

no rectangle (~an,m,~bn,m), m ∈ N. In this case, the machine never exceeds stage n. If,
on the other hand, ~x 6∈ V , then for each n there is such a rectangle, and the machine
reaches (and outputs) each n ∈ N.

3.2. Weakly Analytic Machines are the Jump of Strongly Analytic Ones.

Definition 3.3 is justified by Item a) of the following

Theorem 3.5.

a) S ⊆ R∗ is weakly decidable iff both S and its complement are weakly semidecidable.
b) If a (possibly partial) function f : R∗ → R∗ is computable by a weakly analytic machine,

f is also computable by a strongly analytic machine with oracle access to H.
c) Conversely, if f is computable by a strongly analytic machine with oracle access to H,

then some extension of f is computable by a weakly analytic machine.

The equivalence in b+c) constitutes an analytic analogue of the Shoenfield Limit Lemma.
The slight mismatch with respect to partial functions resembles Theorem 2.5abc) and raises
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Question 3.6. Is every partial function computable by a strongly analytic machine with
oracle access to H also computable by a weakly analytic machine?

Proof. (Theorem 3.5)

a) SupposeM is a weakly analytic machine computing 1S, and let (yn) denote the sequence

output by M on input ~x. We show that both S and its complement S∁ are reducible
to B. To this end modify M to output un := 1/max{yn, 1/n}: Since {0, 1} ∋ limn yn
exists, un is bounded iff yn → 1 iff ~x ∈ S. Similarly, vn := 1/max{1 − yn, 1/n} is
bounded iff yn → 0 iff ~x 6∈ S.

Conversely consider BSS machines M and N computing reductions from S and S∁ to B,
respectively. Then the following machine weakly computes 1S: Given input ~x, test (by
parallel simulation) for increasing bounds n = 1, 2, . . . whether some output of M or of
N exceed the bound n. If so, append “0” to the output if it was M, and “1” if it was N ;

then increment the bound n. Since ~x belongs to exactly one of S and S∁, precisely one
of M,N produces an unbounded sequence; and our output thus becomes a stationary

sequence of 1s (in case ~x ∈ S) or of 0s (~x ∈ S∁), respectively.
b) Let M denote a weakly analytic machine computing f and (~yn) the (possibly finite)

sequence output on input ~x. We describe another machineN that uses oracle queries toH
in order to output a subsequence of (~yn) satisfying Equation (1.5). Note that the violation
of this condition can be detected by searching for n,m and hence is semidecidable. Using
H, N can thus decide, for each required precision index k = 1, 2, . . . and each K ∈ N,
whether ‖~yK − ~ym‖ ≤ 2−k + 2−m holds for all m. On the other hand such K = K(k)
exists to every k iff (~yn) converges. N will thus, iteratively for k = 1, 2, . . ., search for
such a K and, when found, output the corresponding ~yK . Note that, if M outputs only a
finite sequence, so will N . In effect, the subsequence printed by N satisfies the bottom of
Equation (1.4) iff the original sequence printed by M satisfies the top of Equation (1.4).

c) Assume f is computed by the strongly analytic machine M with oracle access to H.
We describe a weakly analytic machine N that computes f . Fix an input ~x ∈ R∗. For
σ ∈ {0, 1}N, let ~yσn be the output of the machine M, simulated under the assumption
that the j-th oracle query is negative or positive, depending on σ(j). For increasing
n = 1, 2, . . . (simulation level), the machine N simulates (without output) M up to
the n-th output. It simulates all machines queried by the oracle, up to n output steps
(or until they halt), and stores the knowledge about the oracle answer in the sequence
σn ∈ {0, 1}N (0: does not halt, 1: halts), initially assuming all oracle queries to be
answered negatively. In addition, the conditions

‖~yσn

i − ~yσn

j ‖ ≤ 2−i + 2−j ∀1 ≤ i < j ≤ n . (3.1)

are checked. If one of these conditions is violated, the number of steps of all simulated
oracle queries is increased until all these conditions are fulfilled. As soon as this is the
case, N outputs ~yσm

n , m being the number of simulated steps of the oracle queries. Then,
N proceeds to level n+ 1.
Given ~x ∈ dom(f) and N ∈ N, there is a number of simulation steps n0(N) after
which all oracle queries made until output N of M have been answered correctly. At
level n ≥ n0(N), M produces an output ~yσn

n which, because of Equation (3.1), satisfies
‖~yσn

N − ~yσn
n ‖ ≤ 2−N + 2−n. Furthermore, because at level n, all oracle assumptions up

to output N are correct, we know that ~yσn

N = ~yN . Therefore, the outputs of N correctly
converge to ~y.
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In connection with Corollary 3.1, we conclude

Corollary 3.7.

a) Every weakly semidecidable S ⊆ Rd belongs to Borel class Σ3.
b) Every function f : Rd → Rk computable by a weakly analytic machine is Σ3-measurable.
c) Conversely, every Σ2-measurable f : Rd → Rk is computable by a weakly analytic ma-

chine.

Again, Corollary 3.7 is (almost) best possible:

Example 3.8. The set Q× (R \Q) is decidable by a weakly analytic machine (but not in
Π2 ∪Σ2).

Proof. Since Q is semidecidable by a BSS machine, it is decidable relative to H; and so is
R \ Q. Q × (R \ Q) can be decided relative to H by testing both components separately;
hence this set is weakly decidable according to Theorem 3.5a).

Question 3.9. Is there a set S ⊆ R weakly semidecidable yet such that S 6∈ Π3?

3.3. The Convergence Problem and Näıve Semidecidability. Our proof of Exam-
ple 3.4a) erroneously accepts in case the output sequence ~yn fails to converge by having
several accumulation points all contained in some Vm. This cannot happen for ~yn produced
by the weak evaluation of a total function f .

Definition 3.10. In view of the second part of Equation (1.4), consider

K :=
{

(〈M〉, ~x) : machine M produces on input ~x some convergent infinite sequence (~yn)n
}

Call a set S ⊆ R∗ näıvely semidecidable if there is a weakly analytic machine calculating
(i.e. printing a sequence of approximations which converge to)

i) the real number 0 for inputs ~x ∈ S

ii) ⊥ (i.e. fails to converge) for inputs ~x 6∈ S.

A machine that produces only finitely many outputs is considered divergent.

Diagonalization shows [HVS95] that K is undecidable to a weakly analytic machine;
yet it can be written as the composition of two functions computable by weakly analytic
machines [GaHo09, Theorem 2.3].

Theorem 3.11.

a) If S ⊆ R∗ is näıvely semidecidable, it is BSS many-one reducible to the convergence
problem K.

b) Conversely, every S ⊆ R∗ BSS many-one reducible to K is näıvely semidecidable.

c) The complement of K is BSS many-one reducible to HHH

.

d) Conversely, HHH

is BSS many-one reducible to K∁.

Since HHH

is strictly harder than HH, convergence is strictly harder than boundedness;
and weak semidecidability is strictly stronger a notion than näıve semidecidability.

Proof.

a) Let M näıvely semidecide S. Then ~x 7→ (〈M〉, ~x) constitutes a BSS-computable many-
one reduction of S to K: For ~x ∈ S, M on input ~x outputs a sequence converging to 0;
whereas for ~x 6∈ S, M on input ~x outputs a divergent sequence.
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b) Consider a many-one reduction from S to K, i.e. mapping an instance ~u for S to an
instance (〈M〉, ~x) of K. Consider a BSS machine which simulates M and replaces its
output sequence (yn) by the sequence (|yn− ym|)

〈n,m〉
, where 〈 · , · 〉 : N×N → N denotes

a recursive pairing function. To see that this machine näıvely semidecides S, observe
that (yn) converges (i.e. is Cauchy) iff (|yn − ym|)

〈n,m〉
converges to 0: To every N ∈ N

there is some M ∈ N such that n,m ≥ N implies 〈n,m〉 ≥ M ; and, conversely, to every
M ∈ N there is some N ∈ N such that 〈n,m〉 ≥ M implies n,m ≥ N .

c) We employ from [Cuck92, Theorem 2.11] the following extension of Fact 1.3b+c):

S ⊆ R∗ is BSS many-one reducible to HHH

iff there exists some BSS-decidable
W ⊆ R∗ such that

S =
{

~x ∈ R∗
∣

∣ ∃u ∈ N ∀v ∈ N ∃w ∈ N : (~x, u, v, w) ∈ W
}

. (3.2)

Now observe that an infinite real sequence (yn) fails to converge iff

∃k ∈ N ∀K ∈ N ∃〈n,m, ℓ〉 ∈ N : n,m ≥ K ∧ |yn − ym| ≥ 1/k .

Finally, to take into account the computation of (yn), consider the BSS-decidable

W :=
{

(〈M〉, x, k,K, n,m, ℓ) : ~x ∈ R∗, k,K, n,m, ℓ ∈ N; n ≥ m ≥ K and

M on input ~x within ℓ steps outputs y1, . . . , ym, . . . , yn with |yn − ym| ≥ 1/k
}

d) Again we invoke the characterization from [Cuck92, Theorem 2.11] and show that every

S of the form (3.2) is BSS many-one reducible to K∁. To this end execute the following
procedure for each u ∈ N in parallel:

Let v := 1 and, for each w = 1, 2, . . . output “0”. Moreover, if (~x, u, v, w) ∈ W,
output “2−u”, increment v, and restart with w = 1, 2, . . .

Observe that, if ∀v∃w : (~x, u, v, w) ∈ W holds, this will for each such u produce a sequence
with accumulation points precisely 0 and 2−u; and otherwise a sequence containing
finitely many 2−u’s and 0’s otherwise. Hence, if ∃u∀v∃w : (~x, u, v, w) ∈ W holds, the
parallel search for such u will result in a non-converging output; and otherwise in an
output converging to 0.

4. Conclusion

In Recursive Analysis, adding oracle access‡ (to the, say, Halting Problem) does not increase
the topological power of computation: Computable real functions are still necessarily con-
tinuous (i.e. Σ1-measurable). Relaxing the output representation from approximations with
error bounds to converging approximations without error bounds, however, does increase
the topological capabilities by proceeding one step up the (effective) Borel Hierarchy.

For Analytic Machines, on the other hand, we have revealed both to be equivalent: re-
laxing output with to without error bounds and permitting oracle access to the BSS Halting
Problem. Both amount to climbing up one step in the (non-effective) Borel Hierarchy—
although the algebraic model lies slightly skewly to its levels.

Question 4.1. How about degrees of quasi-strongly analytic machines?

‡in the sense of querying digits of a single infinite sequence. As a referee kindly pointed out, this corre-
sponds more to a pre-stored constant of a BSS machine than to real number oracle queries. Other notions
of oracles in Recursive Analysis are discussed in [BdBP10].
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These are a blend of weak and strong ones, required to provide error bounds which,
however, they are permitted to violate a finite (yet unbounded) number of times.
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[GaHo10] T. Gärtner, G. Hotz: “Representation Theorems for Analytic Machines”, pp.117–120 in Proc.

Logical Approaches to Barriers in Computing and Complexity, Greifswald Math Preprints vol.6
(2010).

[Gold65] E.M. Gold: “Limiting Recursion”, pp.28–48 in Journal of Symbolic Logic vol.30:1 (1965).
[HaLe00] J.D. Hamkins, A. Lewis: “Infinite Time Turing machines”, pp.567–604 in Journal of Symbolic

Logic vol.65(2) (2000).
[Hert05] P. Hertling: “Is the Mandelbrot Set Computable?”, pp.5–18 in Mathematical Logic Quarterly

vol.51:1 (2005).
[Ho99] C.-K. Ho: “Relatively recursive reals and real functions”, pp.99–120 in Theoretical Computer

Science vol.210 (1999).
[HVS95] G. Hotz, G. Vierke, B. Schieffer: “Analytic Machines”, p.25 in ECCC vol.2 (1995).
[Kech95] A.S. Kechris: “Classical Descriptive Set Theory”, Springer GTM vol.156 (1995).
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