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Abstract. We investigate the connection between measure, capacity and algorithmic
randomness for the space of closed sets. For any computable measure m, a computable
capacity T may be defined by letting T (Q) be the measure of the family of closed sets
K which have nonempty intersection with Q. We prove an effective version of Choquet’s
capacity theorem by showing that every computable capacity may be obtained from a
computable measure in this way. We establish conditions on the measure m that char-
acterize when the capacity of an m-random closed set equals zero. This includes new
results in classical probability theory as well as results for algorithmic randomness. For
certain computable measures, we construct effectively closed sets with positive capacity
and with Lebesgue measure zero. We show that for computable measures, a real q is upper
semi-computable if and only if there is an effectively closed set with capacity q.

Introduction

The study of algorithmic randomness has been an active area of research in recent years.
The basic problem is to quantify the randomness of a single real number. Here we think of a
real r ∈ [0, 1] as an infinite sequence of 0’s and 1’s, i.e. as an element in 2N. There are three
basic approaches to algorithmic randomness: the measure-theoretic approach of Martin-Löf
tests, the incompressibility approach of Kolmogorov complexity, and the betting approach
in terms of martingales. All three approaches have been shown to yield the same notion
of (algorithmic) randomness. The present paper will consider only the measure-theoretic
approach. A real x is Martin-Löf random if for any effective sequence S1, S2, . . . of c. e. open
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sets with µ(Sn) ≤ 2−n, x /∈ ⋂

n Sn. For background and history of algorithmic randomness
we refer to [8, 15].

The study of random sets and in particular of random closed sets is a vibrant area in
probability and statistics, with many applications in science and engineering. The notion
of capacity plays an important role here as a part of the analysis of imprecise or uncertain
observations, for example in intelligent systems. For background on the theory of random
sets see [14].

In a series of recent papers [4, 2], G. Barmpalias, P. Brodhead, D. Cenzer, S. Dashti,
J.B. Remmel and R. Weber have defined a notion of algorithmic randomness for closed sets
and continuous functions on 2N. Here the Polish space 2N is equipped with usual product
topology and has a basis of clopen sets. Definitions are given below in section 1. The space
C of closed subsets of 2N has the hit-or-miss or Fell topology which is also described in
section 1. In general when we discuss closed sets in this paper we are refering to closed
subsets of 2N.

The study of randomness for closed sets and continuous functions has several interesting
aspects concerning properties of those sets and properties of the members of such sets. The
topological and measure-theoretic properties of effectively random closed sets has been
studied. For example, it is shown in [4] that every effectively random closed set is perfect
and has Lebesgue measure 0. The complexity of effectively random closed sets as subsets of
2N was considered in [4], where it was shown that no effectively closed (Π0

1) set is random
but there is a random ∆0

2 closed set.
The members of a closed set are reals and hence we can study the complexity of the

members of an effectively random closed set. The following results were obtained in [4].
Every effectively random closed set contains a random member but not every member is
random. Every random real belongs to some random closed set. Every effectively random
∆0

2 closed set contains a random ∆0
2 member. Effectively random closed set contain no

computable elements (in fact, no n-c. e. elements). It was shown in [2] that the set of zeroes
of an effectively random continuous function is an effectively random closed set.

Just as an effectively closed set in 2N may be viewed as the set of infinite paths through
a computable tree T ⊆ {0, 1}∗, an algorithmically random closed set in 2N may be viewed
as the set of infinite paths through an algorithmically random tree T . Diamondstone and
Kjos-Hanssen [11, 10] give an alternative definition of algorithmic randomness for closed
sets according to the Galton-Watson distribution and show that this definition produces
the same family of algorithmically random closed sets.

We note that in probability theory a random closed subset of a topological space X
is considered a random variable which takes on the values in the space C(X) of closed
subsets of X. That is, let (Ω,A, P ) be a probability space with underlying topological
space Ω, σ-algebra A ⊆ P(X) and measure P such that P (Ω) = 1 and P (S) is defined
for all sets S ∈ A. For example, we might have Ω = 2N, A the family of Borel subsets
of 2N, and P the standard Lebesgue measure. The map X induces a probability measure
PX on C(X) given by P (X−1(S)). Classically, the statement that a random closed set
has no computable elements means that the collection of closed sets with no computable
elements has measure one. In effective randomness, there is a particular collection R of
algorithmically random closed sets which has measure one. In this context, the statement
that effectively random closed sets have no computable elements is to say that the closed
sets in R have no computable elements. The latter result of course implies the former, but
is stronger.



RANDOMNESS AND CAPACITY 3

A random closed set is a specific type of random recursive construction, as studied by
Graf, Mauldin and Williams [9]. McLinden and Mauldin [13] showed that the Hausdorff
dimension of a random closed set is log2(4/3), that is, almost every closed subset of 2N has
Hausdorff dimension log2(4/3). It was shown in [4] that every effectively random closed set
has box dimension log2(4/3). The effective Hausdorff dimension of members of effectively
random closed sets is studied in [11]. It is shown that every member of an effectively random
closed set has effective Hausdorff dimension ≥ log2(3/2) and that any real with effective
Hausdorff dimension > log2(3/2) is a member of some effectively random closed set.

In the present paper we will examine the notion of computable capacity and its relation
to computable measures on the space C of nonempty closed sets. Given a domain U , a
capacity T is a real-valued function defined on some σ-field of subsets of U , which is closely
related to measure. T may be thought of as a belief function in the context of reasoning
with uncertainty. (See [14, p. 71] and also [18]. ) The capacity T (A) for a set A is the
probability that a randomly chosen set S is a subset of A.

Choquet [6] developed the Choquet capacity for the space C of closed subsets of an
infinite set X. A probability measure µ∗ on C induces a capacity T on C by defining the
capacity T (C) of a closed set C to be µ∗({K ∈ C : K ⊆ C}). Choquet’s capacity theorem
states that every capacity T on C arises in this way from some measure µ∗.

In section one, we give some basic definitions including the definition of the space of
C(X) of closed subsets of a computable Polish space X. We present a family of computable
measures on C which will lead to different notions of effective randomness for closed sets.

In section two, we define the notion of computable capacity and show how a measure
on the space of closed sets induces a capacity. An effective version of Choquet’s capacity
theorem is proved.

The main theorem of section three gives conditions under which the capacity T (Q)
of a µ∗-random closed set Q is either equal to 0 or > 0. In particular, suppose that the
measure µb on {0, 1, 2}N is defined so that, for all σ ∈ {0, 1, 2}∗, µb(I(σ

⌢i)) = b · µb(I(σ))
for i = 0, 1 and define the corresponding probability measure µ∗

b and capacity Tb on the
space C of closed sets and the corresponding capacity Tb. This means that for any node
σ in the tree TQ, σ has unique extension σ⌢0 in TQ with probability b, and similarly σ

has unique extension σ⌢1 with probability b. Then we show the following. If b ≥ 1 −
√
2
2 ,

then every effectively µ∗
b -random closed set Q has capacity Tb(Q) = 0. It is important to

note that, since the random closed sets have measure one in the space C of closed sets, this
result implies that almost all closed sets have capacity zero. This is a new result about
the classical measure and capacity of closed sets in general and not only about algorithmic
randomness or computability.

On the other hand, if b < 1 −
√
2
2 , then every effectively µ∗

b -random closed set Q has
capacity Tb(Q) > 0, and hence almost every closed set has positive capacity. A more general
result is given.

In section four, we consider the capacity of effectively closed sets. Fix computable reals
b0 and b1 such that 0 < b1 ≤ b0 and b0 + b1 < 1 and define the measure µ on {0, 1, 2}N
so that for any σ ∈ {0, 1, 2}∗ and for i ∈ {0, 1}, µ(I(σ⌢i)) = bi · µ(I(σ)). Let µ∗ be the
corresponding measure on C and let T be the corresponding capacity. It is easy to see that
for any effectively closed set Q, T (Q) is an upper-semi-computable real. Conversely, for
any upper-semi-computable real q, there exists an effectively closed set Q with capacity
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T (Q) = q. We also show that if b0 = b1, there exists an effectively closed set Q with
Lebesgue measure zero and with positive capacity.

A preliminary version [3] of this paper appeared in the electronic proceedings of the
conference CCA 2010. The current paper contains several improvements and new results,
including Theorems 3.1, 3.4, 3.8 and 4.3. We thank the referees for very helpful comments.

1. Computable Measures on the Space of Closed Sets

We present an effective version of Choquet’s theorem connecting measure and capacity.
In this section, we describe the hit-or-miss topology on the space C of closed sets,

we define certain probability measures µd on the space {0, 1, 2}N and the corresponding
measures µ∗

d on the homeomorphic space C. These give rise to notions of algorithmic
randomness for closed sets.

Some definitions are needed. For a finite string σ ∈ {0, 1}n, let |σ| = n. Let λ denote
the empty string so that |λ| = 0. For two strings σ, τ , say that σ is an initial segment of
τ and write σ ⊑ τ if |σ| ≤ |τ | and σ(i) = τ(i) for i < |σ|. For x ∈ 2N, σ ❁ x means that
σ(i) = x(i) for i < |σ|. Let σ⌢τ denote the concatenation of σ and τ and let σ⌢i denote
σ⌢(i) for i = 0, 1. For σ ∈ {0, 1}∗ and x ∈ 2N, σ⌢x = (σ(0), . . . , σ(|σ| − 1), x(0), x(1), . . . ).
Let x⌈n = (x(0), . . . , x(n − 1)). Two reals x and y may be coded together into z = x ⊕ y,
where z(2n) = x(n) and z(2n + 1) = y(n) for all n. For a finite string σ, let I(σ) denote
{x ∈ 2N : σ ❁ x}. We shall call I(σ) the interval determined by σ. Each such interval
is a clopen set and the clopen sets are just finite unions of intervals. We let B denote the
computable Boolean algebra of clopen sets. Note that this is a countable atomless Boolean
algebra.

A set T ⊆ {0, 1}∗ is a tree if it is closed under initial segments. For an arbitrary tree
T ⊆ {0, 1}∗, let [T ] denote the set of infinite paths through T . It is well-known that P ⊆ 2N

is a closed set if and only if P = [T ] for some tree T . P is a Π0
1 class, or an effectively closed

set, if P = [T ] for some computable tree T .
A closed set P may be identified with a tree TP ⊆ {0, 1}∗ where TP = {σ : P∩I(σ) 6= ∅}.

Note that TP has no dead ends. That is, if σ ∈ TP , then either σ⌢0 ∈ TP or σ⌢1 ∈ TP .
The complexity of the closed set P is generally identified with that of TP . Thus P is said
to be a Π0

2 closed set if TP is Π0
2; in this case P = [T ] for some ∆0

2 tree T . The complement
of an effectively closed set is sometimes called a c. e. open set. We remark that if P is an
effectively closed set, then TP is a Π0

1 set, but it is not, in general, computable. For any
σ ∈ {0, 1}∗ and any Q ⊆ 2N, we let σ⌢Q denote {σ⌢x : x ∈ Q}. There is a natural effective
enumeration P0, P1, . . . of the effectively closed sets and thus an enumeration of the c. e.
open sets. Thus we can say that a sequence S0, S1, . . . of c. e. open sets is effective if there
is a computable function, f , such that Sn = 2N−Pf(n) for all n. For a detailed development
of effectively closed sets, see [5].

It was observed in [4] that there is a natural isomorphism between the space C of
nonempty closed subsets of {0, 1}N and the space {0, 1, 2}N (with the product topology)
defined as follows. Given a nonempty closed Q ⊆ 2N, let T = TQ be the tree without dead
ends such that Q = [T ]. Let σ0, σ1, . . . enumerate the elements of T in order, first by length
and then lexicographically. We then define the code x = xQ = xT by recursion such that
for each n, x(n) = 2 if both σn

⌢0 and σn
⌢1 are in T , x(n) = 1 if σn

⌢0 /∈ T and σn
⌢1 ∈ T ,

and x(n) = 0 if σn
⌢0 ∈ T and σn

⌢1 /∈ T . For a finite tree T ⊆ {0, 1}≤n, the finite code
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ρT is similarly defined, ending with ρT (k) where σk is the lexicographically last element of
T ∩ {0, 1}≤n.

We defined in [4] a measure µ∗ on the space C of closed subsets of 2N as follows.

µ∗(X ) = µ({xQ : Q ∈ X}) (1.1)

for any X ⊆ C and µ is the standard measure on {0, 1, 2}N . Informally this means that
given σ ∈ TQ, there is probability 1

3 that both σ⌢0 ∈ TQ and σ⌢1 ∈ TQ and, for i = 0, 1,

there is probability 1
3 that only σ⌢i ∈ TQ. In particular, this means that Q ∩ I(σ) 6= ∅

implies that for i = 0, 1, Q ∩ I(σ⌢i) 6= ∅ with probability 2
3 .

Then we say that a closed set Q ⊆ 2N is (Martin-Löf) random if xQ is (Martin-Löf)

random. Note that the equal probability of 1
3 for the three cases of branching allows the

application of Schnorr’s theorem that Martin-Löf randomness is equivalent to prefix-free
Kolmogorov randomness.

The standard (hit-or-miss) topology [7, p. 45] on the space C of closed sets is given by
a sub-basis of sets of two types, where U is any open set in 2N.

V (U) = {K : K ∩ U 6= ∅}; W (U) = {K : K ⊆ U}
Note that W (∅) = {∅} and that V (2N) = C \ {∅}, so that ∅ is an isolated element of C

under this topology. Thus we may omit ∅ from C without complications.
A basis for the hit-or-miss topology may be formed by taking finite intersections of the

basic open sets. We want to work with the following simpler basis. For each n and each
finite tree A ⊆ {0, 1}≤n, let

UA = {K ∈ C : (∀σ ∈ {0, 1}≤n) (σ ∈ A ⇐⇒ K ∩ I(σ) 6= ∅)}.
That is,

UA = {K ∈ C : TK ∩ {0, 1}≤n = A}.
Note that the sets UA are in fact clopen. That is, for any tree A ⊆ {0, 1}≤n, define the tree
A′ = {σ ∈ {0, 1}≤n : (∃τ ∈ {0, 1}n \A)σ ⊑ τ}. Then UA′ is the complement of UA.

For any finite n and any tree T ⊆ {0, 1}≤n, define the clopen set [T ] =
⋃

σ∈T I(σ).

Then K ∩ [T ] 6= ∅ if and only if there exists some A ⊆ {0, 1}≤n such that K ∈ UA and
A ∩ T 6= ∅. That is,

V ([T ]) =
⋃

{UA : A ∩ T 6= ∅}.
Similarly, K ⊆ [T ] if and only if there exists some A ⊆ {0, 1}n such that K ∈ UA and
A ⊆ T . That is,

W ([T ]) =
⋃

{UA : A ⊆ T}.
The following lemma can now be easily verified.

Lemma 1.1. The family of sets {UA : A ⊆ {0, 1}≤n A is a tree} is a basis of clopen sets
for the hit-or-miss topology on C.

Recall the mapping from C to {0, 1, 2}N taking Q to xQ. It can be shown that this is in
fact a homeomorphism. (See Axon [1] for details.) Let B∗ be the family of clopen subsets
of C; each set is a finite union of basic sets of the form UA and thus B∗ is a computable
atomless Boolean algebra. Note that elements U of B∗ are collections of closed sets and
are closed and open in the hit-or-miss topology on the space C of closed subsets of {0, 1}N.
Recall that B denotes the family of clopen subsets of {0, 1}N.
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Proposition 1.2. The space C of nonempty closed subsets of 2N is computably homeo-
morphic to the space {0, 1, 2}N. Furthermore, the corresponding map from B to B∗ is a
computable isomorphism of these computable Boolean algebras.

Next we consider probability measures µ on the space {0, 1, 2}N and the corresponding
measures µ∗ on C induced by µ.

A probability measure on {0, 1, 2}N may be defined as in [16] from a function d :
{0, 1, 2}∗ → [0, 1] such that d(λ) = 1 and, for any σ ∈ {0, 1, 2}∗ ,

d(σ) =
2

∑

i=0

d(σ⌢i).

The corresponding measure µd on {0, 1, 2}N is then defined by letting µd(I(σ)) = d(σ).
Since the intervals I(σ) form a basis for the standard product topology on {0, 1, 2}N, this
will extend to a measure on all Borel sets. If d is computable, then µd is said to be
computable. The measure µd is said to be nonatomic or continuous if µd({x}) = 0 for all
x ∈ {0, 1, 2}N. We will say that µd is bounded if there exist bounds b, c ∈ (0, 1) such that,
for any σ ∈ {0, 1, 2}∗ and i ∈ {0, 1, 2},

b · d(σ) < d(σ⌢i) < c · d(σ).
It is easy to see that any bounded measure must be continuous. We will say that the
measure µd is uniform if there exist constants b0, b1, b2 with b0 + b1 + b2 = 1 such that for
all σ and for i ≤ 2, d(σ⌢i) = bi · d(σ).

Now let µ∗
d be defined by

µ∗
d(X ) = µd({xQ : Q ∈ X}).

Let us say that a measure µ∗ on C is computable if the restriction of µ∗ to the family B∗

of clopen sets is computable. That is, if there is a computable function F mapping B∗ to
[0, 1] such that F (B) = µ∗(B) for all B ∈ B∗.

Proposition 1.3. For any computable d, the measure µ∗
d is a computable measure on C.

Proof. For any tree A ⊆ {0, 1}≤n, it is easy to see that

K ∈ UA ⇐⇒ ρA ❁ xK ,

so that µ∗
d(UA) = µd(I(ρA)).

2. Computable Capacity and Choquet’s Theorem

In this section, we define the notion of capacity and of computable capacity. We present
an effective version of Choquet’s theorem connecting measure and capacity. For details on
capacity and random set variables, see Nguyen [14] and also Matheron [12].

Definition 2.1. A capacity on C is a function T : C → [0, 1] with T (∅) = 0 such that

(1) T is monotone increasing, that is,

Q1 ⊆ Q2 −→ T (Q1) ≤ T (Q2).
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(2) T has the alternating of infinite order property, that is, for n ≥ 2 and any Q1, . . . , Qn ∈
C

T (

n
⋂

i=1

Qi) ≤
∑

{(−1)|I|+1T (
⋃

i∈I
Qi) : ∅ 6= I ⊆ {1, 2, . . . , n}}.

(3) If Q =
⋂

n Qn and Qn+1 ⊆ Qn for all n, then T (Q) = limn→∞ T (Qn).

We will also assume, unless otherwise specified, that the capacity T (2N) = 1.
We will say that a capacity T is computable if it is computable on the family of clopen

sets, that is, if there is a computable function F from the Boolean algebra B of clopen sets
into [0, 1] such that F (B) = T (B) for any B ∈ B.

Define Td(Q) = µ∗
d(V (Q)). That is, Td(Q) is the probability that a randomly cho-

sen closed set meets Q. Here is the first result connecting effective measure and effective
capacity. This follows easily from the classical proof of Choquet.

Theorem 2.2. If µ∗
d is a (computable) probability measure on C, then Td is a (computable)

capacity.

Proof. Certainly Td(∅) = 0. The alternating property follows by basic probability. For (iii),
suppose that Q =

⋂

nQn is a decreasing intersection. Then by compactness, Q ∩K 6= ∅ if
and only if Qn ∩K 6= ∅ for all n. Furthermore, V (Qn+1) ⊆ V (Qn) for all n. Thus

Td(Q) = µ∗
d(V (Q)) = µ∗

d(
⋂

n

V (Qn)) = lim
n

µ∗
d(V (Qn)) = lim

n
Td(Qn).

If d is computable, then Td may be computed as follows. For any clopen set I(σ1)∪· · ·∪I(σk)
where each σi ∈ {0, 1}n, we compute the probability distribution for all trees of height n
and add the probabilities of those trees which contain one of the σi.

Choquet’s Capacity Theorem states that any capacity T is determined by a measure,
that is T = Td for some d. See [14] for details. We now give an effective version of Choquet’s
theorem. It is not so easy, but this does follow from the classical proof of Choquet [6]. See
also [12] and Axon [1].

Theorem 2.3 (Effective Choquet Capacity Theorem). If T is a computable capacity, then
there is a computable measure µ∗

d on the space of closed sets such that T = Td.
Proof. Given the values T (U) for all clopen sets I(σ1)∪ · · · ∪ I(σk) where each σi ∈ {0, 1}n,
there is in fact a unique probability measure µd on these clopen sets such that T = Td and
this can be computed as follows.

Suppose first that T (I(i)) = ai for i < 2 and note that each ai ≤ 1 and a0 + a1 ≥ 1
by the alternating property. If T = Td, then we must have d((0)) + d((2)) = a0 and
d((1)) + d((2)) = a1 and also d((0)) + d((1)) + d((2)) = 1, so that d((2)) = a0 + a1 − 1,
d((0)) = 1− a1 and d((1)) = 1− a0. This will imply that T (I(τ)) = Td(I(τ)) when |τ | = 1.
Now suppose that we have defined d(τ) and that τ is the code for a finite tree with elements
σ0, . . . , σn = σ and thus d(τ⌢i) is giving the probability that σ will have one or both
immediate successors. We proceed as above. Let T (I(σ⌢i)) = ai · T (I(σ)) for i < 2. Then
as above d(τ⌢2) = d(τ) · (a0 + a1 − 1) and d(τ⌢i) = d(τ) · (1− ai) for each i.
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3. Zero Capacity

In this section, we compute the capacity of a random closed set under certain computable
probability measures. In particular, suppose that µd is a symmetric measure, that is,

let d(σ⌢0) = d(σ⌢1) for all σ. We show the following. If d(σ⌢2) ≤
√
2
2 d(σ) for all σ,

then Td(R) = 0 for any µ∗
d-random closed set R. Thus for the uniform measure with

d(σ⌢0) = d(σ⌢1) = 1
3 · d(σ) for all σ, effectively random closed sets have capacity zero.

Thus for almost all closed sets R, Td(R) = 0. If d(σ⌢2) ≥ b · d(σ) for all σ, where b >
√
2
2

is a constant, then Td(R) > 0 for any µ∗
d-random closed set R. Thus for almost all closed

sets R, Td(R) > 0. This result, and others in this section are new results about classical
measure and capacity as well as results about algorithmic randomness.

For non-symmetric measures, where d(σ⌢i) = bi ·d(σ) for i < 2, the question of whether
a random closed set has zero capacity depends on the sum b0+b1 and also on their difference.
If b0 + b1 ≥ 2−

√
2 and |b0 − b1| is sufficiently small, then every µ∗

d-random closed set will
have capacity zero (so that for almost all closed sets R, Td(R) = 0) and otherwise there is
a µ∗

d-random closed set with positive capacity.
We say that K ∈ C is µ∗

d-random if xK is Martin-Löf random with respect to the
measure µd. (See [16] for details.) Our results show that the Td capacity of a µ∗

d-random
closed set depends on the particular measure.

In the following proofs, the key idea is that an arbitrary closed set Q can be given as the
intersection of a sequence 〈Qn〉n∈ω of clopen sets, so that the capacity T (Q) = limn T (Qn).
Thus we want to compute the capacity qn of Qn when Q is a random closed set, or at
least to compute bounds on this capacity. Now the capacity of Q is the probability that
Q ∩K 6= ∅ for a random closed set K, that is to say T (Q) = µ∗

d({K : Q ∩K 6= ∅}). Thus
we first compute the probability that Qn ∩Kn 6= ∅ for randomly chosen closed sets Q and
K and use this to determine T (Q) for a random closed set. In the first two theorems, these
computations can be converted into Martin-Löf tests, so that the capacity of an effectively
µ∗
d-random closed set can be determined.

Theorem 3.1. Suppose that the measure µd is defined by d such that, for all sufficiently

long σ ∈ {0, 1}∗, d(σ⌢2) ≤
√
2
2 d(σ) and d(σ⌢0) = d(σ⌢1). Then, for any µ∗

d-random closed
set R, Td(R) = 0. Thus for almost all closed sets R, Td(R) = 0.

Proof. We first present the proof for a uniform measure µd and then give the modifications
necessary for non-uniform measure.

Fix b with 1 − 2b ≤
√
2
2 and suppose that, for all σ, d(σ⌢2) = (1 − 2b) · d(σ) and,

for i = 0, 1, d(σ⌢i) = b · d(σ). Now let µ∗ = µ∗
d. We will compute the probability, given

two closed sets Q and K, that Q ∩ K is nonempty. Here we define the usual product
measure on the product space C × C of pairs (Q,K) of nonempty closed sets by letting
µ2(UA × UB) = µ∗(UA) · µ∗(UB) for arbitrary subsets A,B of {0, 1}n.

Let
Qn =

⋃

{I(σ) : σ ∈ {0, 1}n & Q ∩ I(σ) 6= ∅}
and similarly for Kn. Then Q ∩ K 6= ∅ if and only if Qn ∩ Kn 6= ∅ for all n. Let pn be
the probability that Qn ∩ Kn 6= ∅ for two arbitrary closed sets K and Q, relative to our
measure µ∗. It is immediate that p1 = 1− 2b2, since Q1 ∩K1 = ∅ only when Q1 = I(i) and
K1 = I(1 − i). Next we will determine the quadratic function f such that pn+1 = f(pn).
There are 9 possible cases for Q1 and K1, which break down into 4 distinct cases in the
computation of pn+1.
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Case (i): As we have seen, Q1 ∩K1 = ∅ with probability 1− 2b2.

Case (ii): There are two chances that Q1 = K1 = I(i), each with probability b2 so that
Qn+1 ∩Kn+1 6= ∅ with probability pn.

Case (iii): There are four chances where Q1 = 2N and K1 = I(i) or vice versa, each with
probability b · (1− 2b), so that once again Qn+1 ∩Kn+1 6= ∅ with relative probability pn.

Case (iv): There is one chance that Q1 = K1 = 2N, with probability (1 − 2b)2, in which
case Qn+1 ∩Kn+1 6= ∅ with relative probability 1− (1− pn)

2 = 2pn− p2n. This is because
Qn+1 ∩Kn+1 = ∅ if and only if both Qn+1 ∩ I(i) ∩Kn+1 = ∅ for both i = 0 and i = 1.

Adding these cases together, we see that

pn+1 = [2b2 + 4b(1 − 2b)]pn + (1− 2b)2(2pn − p2n) = (2b2 − 4b+ 2)pn − (1− 4b+ 4b2)p2n.

Next we investigate the limit of the computable sequence 〈pn〉n∈ω. Let f(p) = (2b2 −
4b+2)p− (1−4b+4b2)p2. Note that f(0) = 0 and f(1) = 1−2b2 < 1. It is easy to see that

the fixed points of f are p = 0 and p = 2b2−4b+1
(1−2b)2 . Note that since b < 1

2 , the denominator

is not zero and hence is always positive.
Now consider the function g(b) = 2b2 − 4b+ 1 = 2(b− 1)2 − 1, which has positive root

b̂ = 1−
√
2
2 and is decreasing for 0 ≤ b ≤ 1.

There are three cases to consider when comparing b with b̂.

Case 1: If b > b̂, then g(b) < 0 and hence the other fixed point of f is negative. Furthermore,
2b2 − 4b+ 2 < 1 so that f(p) < p for all p > 0. It follows that the sequence {pn : n ∈ N}
is decreasing with lower bound zero and hence must converge to a fixed point of f (since
pn+1 = f(pn)). Thus limn pn = 0.

Case 2: If b = b̂, then g(b) = 0 and f(p) = p− (4b− 1)p2, so that p = 0 is the unique fixed
point of f . Furthermore, 4b − 1 = 3 − 2

√
2 > 0, so again f(p) < p for all p. It follows

again that limn pn = 0.

In these two cases, we can define a Martin-Löf test to prove that Td(R) = 0 for any µ-random
closed set R.

For each m,n ∈ N, let

Bm = {(K,Q) : Km ∩Qm 6= ∅},
so that µ∗(Bm) = pm and let

Am,n = {Q : µ∗({K : Km ∩Qm 6= ∅}) ≥ 2−n}.
Claim 3.2. For each m and n, µ∗(Am,n) ≤ 2n · pm.

Proof. Define the Borel measurable function Fm : C × C → {0, 1} to be the characteristic
function of Bm. Then

pm = µ2(Bm) =

∫

Q∈C

∫

K∈C
F (Q,K)dKdQ.

Now for fixed Q,

µ∗({K : Km ∩Qm 6= ∅}) =
∫

K∈C
F (Q,K)dK,
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so that for Q ∈ Am,n, we have
∫

K∈C F (Q,K)dK ≥ 2−n. It follows that

pm =

∫

Q∈C

∫

K∈C
F (Q,K)dKdQ ≥

∫

Q∈Am,n

∫

K∈C
F (Q,K)dKdQ

≥
∫

Q∈Am,n

2−ndQ = 2−nµ∗(Am,n).

Multiplying both sides by 2n completes the proof of Claim 3.2.

Since the computable sequence 〈pn〉n∈ω converges to 0, there must be a computable
subsequence m0,m1, . . . such that pmn < 2−2n−1 for all n. We can now define our Martin-
Löf test. Let

Sr = Amr ,r

and let
Vn =

⋃

r>n

Sr.

It follows that
µ∗(Sr) ≤ 2r+1µ∗(Bmr ) < 2r+12−2r−1 = 2−r

and therefore
µ∗(Vn) ≤

∑

r>n

2−r = 2−n

Now suppose that R is a random closed set. The sequence 〈Vn〉n∈ω is a computable sequence
of c. e. open sets with measure ≤ 2−n, so that there is some n such that R /∈ Sn. Thus for
all r > n, µ∗({K : Kmr ∩Rmr 6= ∅}) < 2−r and it follows that

µ∗({K : K ∩R 6= ∅}) = lim
n

µ∗({K : Kmn ∩Rmn 6= ∅}) = 0.

Thus Td(R) = 0, as desired.
This completes the proof when the function d is independent of σ.

Next suppose that the value b such that d(σ⌢i) = b · d(σ) for i = 0, 1, depends on σ,

say bσ = d(σ⌢i)/d(σ) and that bσ ≥ b̂ for all σ.
Let fb(p) = (2b2 − 4b + 2)p − (1 − 4b + 4b2)p2 as above and let fb̂(p) = f(p). Let pn

be the probability computed above corresponding to bσ = b̂ for all σ, so that pn+1 = f(pn).
Define pdn to be the probability, under µ∗

d, that Kn ∩Qn 6= ∅, for closed sets K and Q. We

will argue by induction on n that pdn ≤ pn.

Claim 3.3. For any reals b, c, p ∈ [0, 1], if b < c, then fc(p) ≤ fb(p).

Proof. Fixing p and taking the derivative of fb(p) with respect to b, we obtain

∂f

∂b
(b, p) = (4b− 4)p − (8b− 4)p2 ≤ −4bp ≤ 0,

with the inequality due to the fact that p2 ≤ p on [0, 1].
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Now suppose that for all σ ∈ {0, 1}∗ and for i < 2, d(σ⌢i) ≥ b̂d(σ) and again let pdn be
the µd-probability that Kn ∩Qn 6= ∅. Clearly pd0 = 1 = p0.

Now assume that pdn ≤ pn for any d as above. Let d be given as above with d((0)) =

d((1)) = b ≥ b̂ and define di for i = 0, 1 as follows.

di(σ
⌢j) = d(i⌢σ⌢j).

Let pi be the probability under di that Qn ∩Kn 6= ∅. Then the probability under di+1 that
Qn+1 ∩Kn+1 6= ∅ can be computed in the four cases as above to equal

b2(p0 + p1) + 2b(1− 2b)(p0 + p1) + (1− 2b)2(1− (1− p0)(1− p1)).

By induction, both of p0 and p1 are ≤ pn and it follows easily that

b2(p0 + p1) + 2b(1− 2b)(p0 + p1) + (1− 2b)2(1− (1− p0)(1− p1)) ≤ fb(pn) ≤ f(pn) = pn+1.

Finally, suppose that we only have that bσ ≥ b̂ for σ with |σ| ≥ n. Let R be µ∗
d-random and

for each σ of length n, let dσ be defined so that dσ(τ) = d(σ⌢τ) and let Rσ = {X : σ⌢X ∈
R}. Then Rσ is dσ-random for each σ, so that the capacity Tdσ(Rσ) = 0. It follows that
Td(R) = 0 since Q ∩R 6= ∅ if and only if Q ∩R ∩ I(σ) 6= ∅ for some σ of length n.

The appropriate Martin-Löf test can now be given as before to show that any µ∗
d-random

closed set will have capacity zero.

Next we consider the case where random closed sets will have positive capacity.

Theorem 3.4. Suppose that b < b̂ = 1−
√
2
2 is fixed and that the measure µd is defined by d

such that, for all sufficiently long σ, d(σ⌢0) = d(σ⌢1) ≤ b·d(σ). Then {R ∈ C : Td(R) > 0}
has µ∗

d measure one and furthermore every µ∗
d-random closed set has positive capacity. Thus

for almost all closed sets R, Td(R) > 0.

Proof. First fix b < b̂ and fix d so that d(σ⌢i) = d(σ) · b for all σ and for i < 2, and let
µ∗ = µ∗

d. Since 0 < 2b2 − 4b+ 1 < 1, the function f = fb defined above has a positive fixed

point mb = 2b2−4b+1
(1−2b)2

. It is clear that f(p) > p for 0 < p < mb and f(p) < p for mb < p.

Furthermore, the function f has its maximum at p = [ 1−b
1−2b ]

2 > 1, so that f is monotone

increasing on [0, 1] and hence f(p) > f(mb) = mb whenever p > mb. As in the proof of
Theorem 3.1 let pn be the probability that Qn ∩Kn 6= ∅ for arbitrary closed sets Q and K.
Observe that p0 = 1 > mb and hence the sequence {pn : n ∈ N} is decreasing with lower
bound mb. It follows that limn pn = mb > 0.

Now B = {(Q,K) : Q ∩K 6= ∅} =
⋂

nBn is the intersection of a decreasing sequence
of sets and hence µ2(B) = limn pn = mb > 0.

Claim 3.5. µ∗({Q : µ∗({K : K ∩Q 6= ∅}) > 0}) ≥ mb.

Proof. Let B = {(K,Q) : K ∩Q 6= ∅, let A = {Q : µ∗({K : K ∩Q 6= ∅}) > 0} and suppose
that µ∗(A) < mb. As in the proof of Claim 3.2, we have

mb = µ2(B) =

∫

Q∈C

∫

K∈C
F (Q,K)dKdQ.

For Q /∈ A, we have
∫

K∈Q F (Q,K)dK = µ∗({K : K ∩Q 6= ∅}) = 0, so that

mb =

∫

Q∈A

∫

K∈Q
F (Q,K)dKdQ ≤

∫

Q∈A
dQ = µ∗(A),

which completes the proof of Claim 3.5.



12 P. BRODHEAD, D. CENZER, F. TOSKA, AND WYMAN

Claim 3.6. {Q : Td(Q) ≥ mb} has positive measure.

Proof. Recall that Td(Q) = µ∗({K : Q ∩ K 6= ∅}). Let B = {(K,Q) : K ∩ Q 6= ∅, let
A = {Q : Td(Q) ≥ mb} and suppose that µ∗(A) = 0. As in the proof of Claim 3.2, we have

mb = µ2(B) =

∫

Q∈C
Td(Q)dQ.

Since µ∗(A) = 0, it follows that for any B ⊆ C, we have
∫

Q∈B
Td(Q)dQ ≤ mbµ

∗(B).

Furthermore, Td(Q) < mb for almost all Q, so there exists some P with Td(P ) < mb − ǫ for
some positive ǫ. This means that for some n, µ∗({K : Pn ∩Kn 6= ∅}) < mb − ǫ. Then for
any closed set Q with Qn = Pn, we have Td(Q) < mb − ǫ. But E = {Q : Qn = Pn} has
positive measure, say δ > 0. Then we have

mb =

∫

Q∈C
Td(Q)dQ =

∫

Q∈E
Td(Q)dQ +

∫

Q/∈E
Td(Q)dQ

≤ δ(mb − ǫ) + (1− δ)mb = mb − ǫδ < mb.

This contradiction demonstrates Claim 3.6.

It is now easy to see that Td(R) > 0 with probability one. That is, let p be the
probability that Td(R) = 0. Then by considering the first level of R, we can see that
p = 2bp + (1− 2b)p2 and hence either p = 0 or p = 1. Since we know that p < 1, it follows
that p = 0.

Since the set of µ∗-random closed sets has measure one, there must be a random closed
set R such that Td(R) ≥ mb and furthermore, almost every µ∗-random closed set has positive
capacity.

Furthermore, we can construct a Martin-Löf test as follows. First observe that for
any computable q, {Q : Td(Q) < q} is a c. e. open set. This is because Td(Q) < q ⇐⇒
(∃n)Td(Qn) < q and Td(Qn) can be uniformly computed from Q.

Now let h(p) be the probability that Td(Q) < p. Note that if Td(Qi) ≥ p for i = 0 or
for i = 1, then Td(Q) ≥ bp. It follows that h(bp) ≤ h(p)2. Since Td(Q) = 0 with probability
zero, it follows that limp→0 h(p) = 0. Take a rational q small enough so that h(q) < 1

2 .

Then h(bnq) ≤ (12 )
2n ≤ 2−n. Let Sn = {Q : Td(Q) ≤ bnq}. Then µ∗

d(Sn) ≤ 2−n and the
sequence (Sn) is effectively c. e. open, so that no random closed set can be belong to all
Sn. But if Td(Q) = 0, then of course Q ∈ Sn for all n. Thus every µ∗

d random closed set
must have positive capacity.

This completes the proof when d is independent of σ.
Next suppose that b < b̂ and that, for all σ, d(σ⌢0) = d(σ⌢1) ≤ b · d(σ). Let pdn now

be the µ∗
d probability that Qn ∩Kn 6= ∅. It follows from the monotonicity of f (Claim 3.3)

that pdn ≥ pn for all d as above and thus limn p
d
n ≥ mb. The same argument as above now

shows that {Q : Td(Q) ≥ mb} has positive measure and thus Td(Q) has positive capacity
with probability one. The argument that every µ∗

d-random closed set has positive capacity
follows as above.
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Note that random closed sets can have arbitrarily small positive capacity. This follows
from the fact that Td(0⌢Q) = (1− b)Td(Q).

Thus for certain measures, there exists a random closed set with measure zero but with
positive capacity. For the standard measure, a random closed set has capacity zero.

Corollary 3.7. Let d be the uniform measure with b0 = b1 = b2 = 1
3 . Then for any µ∗

d-
random closed set R, Td(R) = 0.

Finally, we consider non-symmetric measures, where d(σ⌢0) does not necessarily equal
d(σ⌢1). We will give the result where µd is a uniform measure. The proofs follow the same
outline as those of Theorems 3.1 and 3.4.

Theorem 3.8. Fix b and let µd be a measure defined by d where d(σ⌢i) = bi · d(σ) with

b0 + b1 = 2b > 0 and b2 = 1− 2b > 0 and let b̂ = 1−
√
2
2 . Then

(1) If b ≥ b̂ and |b0− b1| ≤
√
8b− 4b2 − 2, then for any µ∗

d-random closed set R, Td(R) = 0.
Thus for almost all closed sets R, Td(R) = 0.

(2) If b > b̂ or |b0 − b1| >
√
8b− 4b2 − 2, then there is a µ∗

d-random closed set R with
Td(R) > 0.

Proof. For convenience let µ = µ∗
d and let µ2 = µ× µ be the usual product measure on the

product space C × C. We will compute the probability p = µ2({(Q,K) : Q ∩K 6= ∅}).
As in the proof of Theorem 3.1 let pn be the probability that Qn∩Kn 6= ∅ for arbitrary

closed sets Q and K, so that p = limn pn Clearly, p1 = 1 − 2b0b1 since Q1 ∩ K1 = ∅ only
when Q1 = I(i) and K1 = I(1 − i). We will compute as before a quadratic function f so
that pn+1 = f(pn). Considering the various cases as in the proof of Theorem 3.1, we see
that

pn+1 = (b20 + b21 + 4b(1− 2b))pn + (1− 2b)2(2pn − p2n)

= (2b0 − 4bb0 + 4b2 + 4b+ 2)pn − (1− 2b)2p2n

Next, we investigate limn pn. Let

f(p) = (2b0 − 4bb0 + 4b2 + 4b+ 2)p − (1− 2b)2p2

This function has fixed points p = 0 and p = 2b0−4bb0+4b2+4b+1
(1−2b)2

. Note that we must have

b < 1
2 so (1− 2b)2 > 0.

Now consider the functions g(a) = 2a − 4ba + 4b2 + 4b + 1, which has roots a± =

b±
√

−b2 + 2b− 1
2 and h(b) = −b2 + 2b− 1

2 = −2
(

2(b− 1)2 − 1
)

, which has root b̂. There

are 3 cases to consider when comparing b and b̂.

(1) If b > b̂ and a− ≤ b0 ≤ a+, then g(b0) < 0 and hence the nonzero fixed point of f
is negative. Since (pn) is decreasing with lower bound 0 the sequence converges to a
non-negative fixed point of f . Hence p = limn pn = 0.

(2) If b = b̂ and b0 = b or if b0 = a± then g(b0) = 0 and so p = 0 is the only fixed point of
f hence p = limn pn = 0.

(3) If b < b̂ or b0 6∈ [a−, a+], then g(b0) > 0 and so f has positive fixed point mb,b0 =
2b0−4bb0+4b2+4b+1

(1−2b)2
. Furthermore, f has its maximum at p = b0−2bb0+2b2+2b+1

(1−2b)2
> 1 (since

2b > 2bb0). Thus f is increasing for p < 1, so if p > mb,b0 , then f(p) > f(mb,b0) = mb,b0 .
Hence, since p0 = 1, (pn) is bounded below by mb,b and so, p = limn pn = mb,b0 > 0.
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Due to he inequalities needed for |b0 − b1| in the theorem, it seems that the proof given
above does not easily extend to provide a result for non-uniform measures or to prove that,
in the second case above, every random closed set has positive capacity.

4. Effectively Closed Sets

In this section, we consider the capacity of effectively closed sets. A random closed set can
never be effectively closed. But we can still construct an effectively closed set with measure
zero and with positive capacity.

We begin by characterizing the possible capacity of effectively closed sets. For the
following results we will take T = Td where µd is the computable measure defined by
d(σ⌢i) = bi with 0 < b1 ≤ b0 and 1 > b0 + b1 > 0. For any effectively closed set
Q = [T ], Q is the effective intersection of the decreasing sequence [Tn] of clopen sets, where
Tn = T ∩ {0, 1}≤n. Thus for a computable measure Td, the capacity Td(Q) is the limit of a
computable, decreasing sequence and is therefore an upper semi-computable real. We will
show that for every upper semi-computable real q ∈ [0, 1], there exists an effectively closed
set Q with Td(Q) = q.

Lemma 4.1. Let Q = 0⌢Q0 ∪ 1⌢Q1 and let qi = T (Qi) for i ≤ 1. Then, T (Q) =
(1− b1)q0 + (1− b0)q1 − (1− (b0 + b1)) · q0q1.
Proof. For a closed set K, K ∩Q 6= ∅ if and only if one of the following holds:

(1) K = 0⌢K0 and Q0 ∩K0 6= ∅ (which has probability b0 · T (Q0)), or
(2) K = 1⌢K1 and Q1 ∩K1 6= ∅ (which has probability b1 · T (Q1)), or
(3) K = 0⌢K0 ∪ 1⌢K1 and either Q0 ∩ K0 6= ∅ or Q1 ∩ K1 6= ∅ (which has probability

(1− (b0 + b1))(1 − (1− T (Q0)(1− T (Q1))).

Thus,

T (Q) = b0q0 + b1q1 + (1− (b0 + b1))(1 − (1− q0)(1− q1))

= (1− b1)q0 + (1− b0)q1 − (1− (b0 + b1))q0q1

Lemma 4.2. Let Q =
⋃k=n

k=0 I(σk). Then for each j ≤ k, T (Q)−T (Q\I(σj)) ≤ (1−b1)
|σj |.

Proof. The proof is by induction on |σj |. If |σj | = 0, this is trivial.
Let Q = 0⌢Q0 ∪ 1⌢Q1 and let qi = T (Qi) for i = 0, 1. If σi = (i), then T (Q) =

(1 − b1−i) + b1−i · qi and T (Q \ I(i)) = (1 − bi) · q1−i. Thus, T (Q) − T (Q \ I(i)) =
(1− b1−i)− (1− (b0 + b1)) · qi ≤ 1− b1.

Now let |σj | = n > 0 and let σj = i⌢τ for some i ≤ 1 and some τ . Let r = T (Qi \I(τ)).
Then, T (Q)−T (Q\I(σj)) = (1−b1−i)(qi−r)− (1− (b0+b1))q1−i(q−r) ≤ (1−b1)(q−r) ≤
(1− b1)(1 − b1)

n−1, where the last inequality holds by the induction hypothesis.

Theorem 4.3. Let the real number q ∈ [0, 1] be upper semi-computable, i.e. there is a
computable, decreasing sequence {qn : n ∈ N} such that lim qn = q. Then there exists an
effectively closed set P such that T (P ) = q. Moreover, P can be written as

⋂

n Pn where
{Pn : n ∈ N is a computable sequence of clopen sets with qn+1 ≤ T (Pn) ≤ qn.

Proof. We may assume without loss of generality that q0 = 1. We will construct Pn by
recursion beginning with P0 = 2N. Now suppose we have constructed the clopen set Qn−1 =
⋃m

k=0 I(σk) such that qn ≤ Td(Qn−1) ≤ qn−1.
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Let δ = qn− qn−1 and compute s large enough so that (1− b1)
s < δ and |σk| ≤ s for all

k ≤ m. Then we can rewrite each interval I(σk) as a union of intervals I(τ) with |σ| = s and

thus obtain Qn−1 =
⋃r

k=0 I(τk) with |τk| = s for all k ≤ r. Now let Qn−1,k =
⋃k−1

j=0 I(τj)

for each k ≤ r + 1, so that Qn−1,k = Qn−1,k+1 \ I(τk) for each k ≤ r. Observe that
Td(Qn−1,r+1) = Td(Qn−1) ≥ qn and that Td(Qn−1,0) = Td(∅) = 0 ≤ qn.

It follows from Lemma 4.2 that, for any k, Td(Qn−1,k+1) − Td(Qn−1,k) ≤ δ. Now let k
be the least such that Td(Qn−1,k) ≤ qn. Then Td(Qn−1,k+1) > qn and also Td(Qn−1,k+1) ≤
Td(Qn−1,k) + δ ≤ qn + δ ≤ qn−1. So we let Qn = Qn−1,k+1.

In this way, we have constructed a computable, decreasing sequence Qn of clopen sets
with qn ≤ Td(Qn) ≤ qn−1, so that, for Q =

⋂

nQn, we have Td(Q) = limn Td(Qn) = q.

Theorem 4.4. For the uniform measure µd defined by d(σ⌢i) = b · d(σ) for all σ, there is
an effectively closed set Q with Lebesgue measure zero and positive capacity Td(Q).

Proof. First let us compute the capacity of Xn = {x : x(n) = 0}. For n = 0, we have
Td(X0) = 1−b. That is, Q meets X0 if and only if Q0 = I(0) (which occurs with probability
b), or Q0 = 2N (which occurs with probability 1− 2b). Now the probability Td(Xn+1) that
an arbitrary closed set K meets Xn+1 may be calculated in two distinct cases. As in the
proof of Theorem 3.7, let

Kn =
⋃

{I(σ) : σ ∈ {0, 1}n & K ∩ I(σ) 6= ∅}
Case I: If K0 = 2N, then Td(Xn+1) = 1− (1− Td(Xn))

2.

Case II: If K0 = I((i)) for some i < 2, then Td(Xn+1) = Td(Xn).

It follows that

Td(Xn+1) = 2b · Td(Xn) + (1− 2b)(2Td(Xn)− (Td(Xn))
2)

= (2− 2b)Td(Xn)− (1− 2b)(Td(Xn))
2

Now consider the function f(p) = (2 − 2b)p − (1 − 2b)p2, where 0 < b < 1
2 . This

function has the properties that f(0) = 0, f(1) = 1 and f(p) > p for 0 < p < 1. Since
Td(Xn+1) = f(Td(Xn)), it follows that limn Td(Xn) = 1 and is the limit of a computable
sequence.

For any σ = (n0, n1, . . . , nk) ∈ N
N, with n0 < n1 < · · · < nk, similarly define Xσ = {x :

(∀i ≤ k)x(ni) = 0}. A similar argument to that above shows that limn Td(Xσ⌢n)/Td(Xσ) =
1.

Now consider the decreasing sequence ck = 2k+1+1
2k+2 with limit 1

2 . Choose n = n0 such

that Td(Xn) ≥ 3
4 = c0 and for each k, choose n = nk+1 such that Td(X(n0,...,nk,n)) ≥

ck+1. This can be done since ck+1 < ck. Finally, let Q =
⋂

k X(n0,...,nk). Then Td(Q) =

limk Td(X(n0,...,nk)) ≥ limk ck = 1
2 .

It is clear that we can make the capacity in Theorem 4.4 arbitrarily large below 1.

5. Conclusions

In this paper, we have established a connection between measure and capacity for the space
C of closed subsets of 2N. We showed that for a computable measure µ∗, a computable
capacity may be defined by letting T (Q) be the measure of the family of closed sets K
which have nonempty intersection with Q. We have proved an effective version of the
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Choquet’s theorem by showing that every computable capacity may be obtained from a
computable measure in this way.

We have established conditions on computable measures that characterize when the
capacity of a random closed set equals zero or is > 0. In particular, for symmetric measures
where d(σ⌢0) = d(σ⌢1) = b · d(σ) for all σ, where b depends on σ, we have shown the

following. If d(σ⌢2) ≤
√
2
2 d(σ) for all σ, then Td(R) = 0 for any µ∗

d-random closed set R. If

d(σ⌢2) ≥ b · d(σ) for all σ, where b >
√
2
2 is a constant, then Td(R) > 0 for any µ∗

d-random
closed set R.

We have shown that the set of capacities of an effectively closed set is exactly the set of
upper semi-computable reals. We have also constructed effectively closed set with positive
capacity and with Lebesgue measure zero.
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