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Abstract. Classification problems have been introduced by M. Ziegler as a generalization
of promise problems. In this paper we are concerned with solvability and unsolvability ques-
tions with respect to a given set or language family, especially with cores of unsolvability.
We generalize the results about unsolvability cores in promise problems to classification
problems. Our main results are a characterization of unsolvability cores via cohesiveness
and existence theorems for such cores in unsolvable classification problems. In contrast
to promise problems we have to strengthen the conditions to assert the existence of such
cores. In general unsolvable classification problems with more than two components exist,
which possess no cores, even if the set family under consideration satisfies the assumptions
which are necessary to prove the existence of cores in unsolvable promise problems. But,
if one of the components is fixed we can use the results on unsolvability cores in promise
problems, to assert the existence of such cores in general. In this case we speak of condi-
tional classification problems and conditional cores. The existence of conditional cores can
be related to complexity cores. Using this connection we can prove for language families,
that conditional cores with recursive components exist, provided that this family admits
an uniform solution for the word problem.

Introduction

The concept of classsification problems was introduced by M. Ziegler ([1]) as a generalization
of promise problems due to S. Even ([5]). Promise problems are a generalization of decision
problems. A classification problem is a vector A = (A1, . . . , Ak) where the Ai are pairwise
disjoint infinite subsets of a given basic set S. For a set family F ⊆ 2S such a classification
problem is F-solvable, if a vector Q = (Q1, . . . , Qk) exists with Ai ⊆ Qi, Qi ∈ F , Qi∩Qj = ∅
for 1 ≤ i 6= j ≤ k and Q1 ∪ · · · ∪Qk = S. If k = 2 we are faced with promise problems. In
applications S = X∗ where X is a finite nonempty alphabet and F = L a language family
and/or a complexity class. From an algorithmic point of view solutions of classification
problems can be used to obtain constant size advices. In this case advices indicate the
inputs to belong to certain subsets (c.f. [1] for further details). We extend the results about
unsolvability cores in promise problems ([4]) to unsolvability cores in classification problems.
Again cohesiveness is the characterizing indicator. For unsolvable promise problems we can
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find in general unsolvability cores, if the set family is closed under union, intersection and
finite variation. But for unsolvable classification problems with k > 2 the existence of
unsolvability cores needs further conditions. We show, that we can assert the existence of
unsolvability cores for k > 2 under the same assumption as needed for promise problems, if
we fix one of the components. In this approach the fixed component is called the condition

for the classification problem. The results are proven under assumptions which involve
closure properties of F against some or all boolean operations union, intersection and
complementation. Moreover, we can relate unsolvability cores for conditional classification
problems to so called proper hard cores introduced by R. Book and D.-Z. Du in a general
form ([3]) and first defined by N. Lynch ([6]) for complexity classes. Using results and proof
techniques from [3] we can apply our results to language families and complexity classes.
Especially, we are able to construct unsolvability cores where the components are recursive.
To do this, the language family or complexity class under consideration must allow an
enumeration where the word problem has a uniform solution. We assume the reader to be
familiar with the theory of recursive functions, languages and complexity (cf.[2],[7]).

1. Set and Language Families, Basic Notations

In the following an infinite basic set S is given. We assume that the elements of set families
F are subsets of S. Moreover, sets A,A′, B,B′, C, · · · , Q, · · · are always subsets of S and
singletons {s} are identified with s. We mainly deal with denumerable set families F ; i.e. a
function eF : N0 → 2S with eF (N0) = F exists (enumeration of F). Consider the boolean

operations A∪B union, A ∩B intersection and Ac = S\A complementation in connection
with set families F . These operations can be lifted to binary operations between set families
F1 and F2 and unary operations for F . Define

F1 ⊕F2 = {A ∪B|A ∈ F1 and B ∈ F2},

F1 ⊙F2 = {A ∩B|A ∈ F1 and B ∈ F2}

and the closure operations

Fu = {A1 ∪ . . . ∪An|n ≥ 1, Ai ∈ F for 1 ≤ i ≤ n}(union),

Fs = {A1 ∩ . . . ∩An|n ≥ 1, Ai ∈ F for 1 ≤ i ≤ n}(intersection),

Fco = {Ac|A ∈ F}, Fcc = F ∪ Fco(complementation) and

Fb = ((Fcc)s)u(boolean closure).

We will frequently use Fdc = F ∩Fco. Note, that (Fu)s = (Fs)u(distributivity), (Fco)u =
(Fs)co(deMorgan), (Fcc)dc = Fcc and (Fco)co = F . Furthermore, F = Fcc ( F = Fu,
F = Fs) if and only if F = Fco (F ⊕ F ⊆ F , F ⊙ F ⊆ F , respectively).

Let fin(S) = {A ⊆ S|A finite}. Then F is closed under finite variation if F ⊕fin(S) ⊆
F and F ⊙ fin(S)co ⊆ F . We call F nontrivial if ∅, S ∈ F and F is closed under finite
variation. In this case fin(S) ⊆ F . Note, that fin(S) = fin(S)b. Moreover, Fcc, Fu, Fs

and Fb are nontrivial, if F is nontrivial.
Consider the case S = X∗, where X∗ is the free monoid overX (a nonempty, finite alphabet)
with concatenation of words as monoid operation and 1 as identity. As usual L ⊆ X∗ is
called a language and L ⊆ 2X∗

a language family. For a word w = x1 . . . xn (xi ∈ X
for 1 ≤ i ≤ n) |w| = n is the length of w and |1| = 0. For languages L1 and L2 the
complex product is defined by L1L2 = {w1w2|w1 ∈ L1, w2 ∈ L2}. There are various kinds
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of quotients available, for example the left quotient defined by L−1
1 L2 = {w| ∃w1 ∈ L1:

w1w ∈ L1}. In this context we are mainly interested in handling leftmarkers, i.e. we consider
the products wL and the quotients w−1L where w ∈ X∗ and L is a language. With respect
to language families L we get the closure operations Lltr = {wL|w ∈ X∗, L ∈ L} and
L-ltr = {w−1L|w ∈ X∗, L ∈ L}. In handling the leftmarkers (for example complementation
of a leftmarked language) we use variation by Lreg(X), the family of regular languages (for
details see [4]). A language family L is closed under regular variation if L ⊕ Lreg(X) ⊆ L
and L ⊙ Lreg(X) ⊆ L.

Looking at (partial) orderings on X∗ the lexicographic ordering is important for our
purposes. For n ≥ 0 let [n]0 = {0, . . . , n − 1} and [n] = {1, . . . , n}. Given a bijection
ω : X → [b]0 (b = #(X)) define w ≤ v if and only if (|w| < |v| or (|w| = |v| and
(∀u ∈ X∗, x, y ∈ X : w ∈ uxX∗ and v ∈ uyX∗ ⇒ ω(x) ≤ ω(y))). This is a well-ordering,
hence we can define a successor function succ for w ∈ X∗ by succ(w) = min{v ∈ X∗|w 6= v
and w ≤ v} where the minimum is taken with respect to the lexicographic ordering. Then
λi.lex (i) = succi(1) defines a bijection lex : N0 → X∗ with inverse ord = lex−1.

Consider the language families Lr.e.(X) (recursively enumerable languages) and Lrec(X)
= Lr.e.(X)dc (recursive languages). Let recn(n ≥ 0) be the set of n-ary recursive functions.
Using 0, 1 ∈ N0 as truth values define for a language L the function λi.δL(i) = ”lex (i) ∈ L”.
Then a language L is recursive if and only if δL ∈ rec1 . Alternatively, a nonempty lan-
guage L is recursive if and only if a function f : N0 → X∗ exists such that λi.ord(f(i)) is
nondecreasing and recursive. Classical language families and complexity classes are always
denumerable. Of special interest are families with enumerations which are in a certain
sense ”effective”. For our purpose it is important to assert that these enumerations allow
a uniform solution for the word problem. More formular, we define for an enumeration e

of a language family L the function λi, j.worde(i, j) = ”lex (j) ∈ e(i)”. If worde ∈ rec2
then e is called WP-recursive. L is called WP-recursive, if a WP-recursive enumeration e

of L exists. Note, that any WP-recursive L is a (proper) subfamily of Lrec(X) and every
complexity class with reasonable ressource bounds (time- and space-constructability [2]) is
WP-recursive.

2. Solvability of Classification Problems

Let k > 0. We consider vectors A = (A1, . . . , Ak) with Ai ⊆ S for 1 ≤ i ≤ k. To
such an A we associate two functions set(A) = A1 ∪ · · · ∪ Ak and |A| = k. Moreover, if
B = (B1, . . . , Bm) with 1 ≤ m ≤ k is another vector, then B ≤ A if and only if an injective
σ : [m] → [k] exists with Bi ⊆ Aσ(i) for 1 ≤ i ≤ m. A is a classification problem if Ai is
infinite and Ai ∩Aj = ∅ for all 1 ≤ i 6= j ≤ k. For a given F a vector Q = (Q1, . . . , Qk) is
an F -partition if set(Q) = S, Qi ∈ F and Qi ∩Qj = ∅ for 1 ≤ i 6= j ≤ k.

Definition 2.1. A classification problem A is F-solvable (A ∈ classk(F)) if and only if
an F-partition Q exists with |Q| = k and A ≤ Q, where k = |A|.

If S = N0 then F-solvability of promise problems corresponds to the separation principle

defined in [7] (exercise 5-33). Our definition of F-solvability for classification problems is
stronger than the definition of F-separability given in [1], where a classification problem A

is F-separable, if there exists a Q, which satisfies the conditions of Definition 2.1. except the
condition ”set(Q) = S”, which may not necessarily be valid. Note that for such a Q, we
always obtain Qk ⊆ (Q1∪· · ·∪Qk−1)

c. Hence, the class of F-solvable classification problems
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with more than one components is identical with the class of F-separable classification
problems, if F is a boolean algebra. That F-solvability is stronger than F-separability,
follows from results in [7]. Consider Lr.e.(X) where X is a one-letter alphabet. Then
a promise problem (A,B) consisting of recursively enumerable sets exists, which is not
Lr.e.(X)-solvable ([7] exercise 5-34). But (A,B) is clearly Lr.e.(X)-separable. We also find
the interesting result that any promise problem (A,B) with A,B ∈ Lr.e.(X)co is Lr.e.(X)co-
solvable ([7] exercise 5-33). Hence all promise problems, which are Lr.e.(X)co-separable are
Lr.e.(X)co-solvable. But Lr.e.(X)co is not closed under complementation.

For k = 1 we identify A1 with (A1). If F is nontrivial then every A1 is F-solvable. If
k > 2 and F satisfies appropriate closure properties, then we can reduce the question of
solvability of classification problems to solvability of promise problems. Directly from the
definition we get

Proposition 2.2. If F = Fu then for all classification problems A and B with B ≤ A

A ∈ class|A|(F) implies B ∈ class|B|(F).

Proof. Suppose B ≤ A ≤ Q where Q is an F-partition. Let B = (B1, . . . , Bm), A =
(A1, . . . , Ak) and Q = (Q1, . . . , Qk). Then we can assume without loss of generality Bi ⊆
Ai ⊆ Qi for all i. Consider P = Q1 ∪ · · · ∪ Qk. Then P c = Qm+1 ∪ · · · ∪ Qk ∈ F . Hence,
Q′ = (Q1, . . . , Qk−1, Qk ∪ P c) is an F-partition with B ≤ Q′.

Lemma 2.3. If F = Fu = Fs and A = (A1, . . . Ak) is a classification problem then

A ∈ classk(F) if and only if (Ai, Aj) ∈ class2(F) for all 1 ≤ i 6= j ≤ k.

Proof. The ”if part” follows by Proposition 2.2. Suppose that (Ai, Aj) ∈ class2(F) for
1 ≤ i 6= j ≤ k. Now we proceed by induction over |A| = k. If k = 2 nothing is to prove.
Let A = (A1, . . . , Ak+1) and suppose (A1, . . . , Ak) ∈ classk(F). Then an F-partition
Q′ = (Q′

1, . . . , Q
′
k) with (A1, . . . , Ak) ≤ Q′ exists. Assume without loss of generality Ai ⊆ Q′

i

for 1 ≤ i ≤ k. On the other side Q′′
i ∈ Fdc exist with Ai ⊆ Q′′

i and Ak+1 ⊆ (Q′′
i )

c

for 1 ≤ i ≤ k. Consider P = Q′′
1 ∪ · · · ∪ Q′′

k. Then Ai ⊆ P ∈ F for 1 ≤ i ≤ k and
P c = (Q′′

1)
c ∩ · · · ∩ (Q′′

k)
c ∈ F with Ak+1 ⊆ P c. This shows Q = (Q′

1 ∩ P, . . . , Q′
k ∩ P,P c)

is an F-partition with A ≤ Q.

As indicated in the introduction we generalize the notion of a classification problem
to conditional classification problems by fixing one component as condition. Consider C ⊆
S and a classification problem A. Then (C,A) is a conditional classification problem if
C ∩ set(A) = ∅, referring to C as the problem condition. C could be finite, even empty. If
Cc is finite, then no conditional classification problems (C,A) exist.

Definition 2.4. A conditional classification problem (C,A) is called F-solvable (A ∈
cclassk(C,F)) if and only if an F-partition Q = (Q0, Q1, . . . , Qk) exists with C ⊆ Q0

and A ≤ (Q1, . . . , Qk) where k = |A|.

The following facts follow directly from the definition

Proposition 2.5. Let F and k > 0 be given.

(1) C1 ⊆ C2 ⊆ S ⇒ cclassk(C2,F) ⊆ cclassk(C1,F).
(2) Cc ∈ fin(S) ⇒ cclassk(C,F) = ∅.
(3) ∅ ∈ F ⇒ classk(F) ⊆ cclassk(∅,F).
(4) F = Fu ⇒ classk(F) = cclassk(∅,F).
(5) F nontrivial and C ∈ fin(S) ⇒ cclassk(C,F) = cclassk(∅,F).
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Example 2.6. Consider X = {a, b}. Let L = Lltr = L-ltr a nontrivial language family,
which is closed under regular variation. If A is a set with Ac, A /∈ L, then (Ac, A) /∈
class2(L) and by our assumption on L (xAc, xA) /∈ class2(L) for x = a, b (Lemma 5.4.
in [4]). Clearly, (aAc, bA) ∈ class2(L), but (aA ∪ bAc, aAc, bA) /∈ class3(L). Hence
(aAc, bA) /∈ cclass2(aA ∪ bAc,L).

3. Unsolvability Cores in Classification Problems

As in the case of promise problems unsolvability of classification problems is closely related
to cohesiveness.

Definition 3.1. A ⊆ S is F-cohesive (A ∈ cohesive(F)) if and only if A is infinite and
for all Q ∈ Fdc either A ∩Q or A ∩Qc is finite (cf.[4] and [7]).

Remark 3.2. It is interesting to compare our definition of cohesiveness with related classical
definitions, as they are presented in [7]. Consider the families Lr.e.(X)cc, Lr.e.(X) and
Lrec(X). Then L ∈ cohesive(Lr.e.(X)cc) if and only if L is cohesive in the classical sense.
Moreover, cohesive(Lrec(X)) = cohesive(Lr.e.(X)), since a language Q is recursive if
and only if Q and Qc are recursively enumerable. Furthermore the definition of recursively
indecomposability coincides with the definition of Lrec(X)-cohesiveness. In [7] we also
find the notion of indecomposability. L is indecomposable if there exist no infinite sets
L1, L2 ∈ Lr.e.(X) such that L1 ∩ L2 = ∅, L ⊆ L1 ∪ L2, L ∩ L1 is infinite and L ∩ L2 is
infinite. Then we find the following results in [7]. If L ∈ cohesive(Lr.e.(X)cc) then it
is indecomposable and any indecomposable L is Lrec(X)-cohesive. None of the converse
implications hold.

In [4] (Theorem 5.1.) it is proven, that for a promise problem (A,B) and a nontrivial set
family F A∪B ∈ cohesive(F) if and only if A,B ∈ cohesive(F) and (A,B) /∈ class2(F).
This result leads to a much stronger one. In the theory of complexity we find the notion of
hard cores inside those sets which can be computed with bounded ressources (time, space,
e.t.c. [3]). Similarily, we can consider unsolvability cores of classification problems which
are not solvable.

Definition 3.3. For k > 1 a classification problem A with |A| = k is a k-core of F
(A ∈ corek(F)) if and only if for all classification problems A′ with A′ ≤ A and |A′| > 1 :
A′ /∈ class |A′|(F).

Clearly, any subproblem of a core is itself a core. This is especially true for subproblems,
which are promise problems. This enables us to use the results about unsolvability cores
for promise problems from [4].

Lemma 3.4. If F = Fu and A = (A1, . . . , Ak)(k > 1) is a classification problem then

A ∈ corek(F) if and only if (Ai, Aj) ∈ core2(F) for all 1 ≤ i 6= j ≤ k.

Proof. Suppose A ∈ corek(F), then by definition (Ai, Aj) ≤ A and therefore (Ai, Aj) ∈
core2(F). Conversely, suppose that A /∈ corek(F), i. e. A′ = (A′

1, . . . , A′
m) exists with

A′ ≤ A, m > 1 and A′ ∈ class |A′|(F). Since F = Fu we know (A′
1, A

′
2) ∈ class2(F).

Moreover, A′
1 ⊆ Ai and A′

2 ⊆ Aj for some 1 ≤ i 6= j ≤ k. But then (Ai, Aj) /∈ core2(F).
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Now we can characterize cores by cohesiveness. Using Theorem 5.1. and Theorem 6.7.
of [4] we can prove

Theorem 3.5. If F = Fu is nontrivial and A a classification problem with |A| = k > 1
then A ∈ corek(F) if and only if set(A) ∈ cohesive(F).

Proof. If A = (A1, . . . , Ak) ∈ corek(F), then (Ai, Aj) ∈ core2(F) for all 1 ≤ i 6= j ≤ k.
By Theorem 6.7. in [4] we know A1 ∪ Ai ∈ cohesive(F) for all 2 ≤ i ≤ k. But then
A1 ∪ · · · ∪ Ak = (A1 ∪ A2) ∪ · · · ∪ (A1 ∪ Ak). Since A1 ⊆ (A1 ∪ Ai) ∩ (A1 ∪ Aj) for all
2 ≤ i 6= j ≤ k and A1 is infinite, a simple induction proof shows set(A) ∈ cohesive(F).

Conversely, if A1 ∪ · · · ∪ Ak ∈ cohesive(F) then for all 1 ≤ i 6= j ≤ k, Ai ∪ Aj ∈
cohesive(F). Again by Theorem 6.7. of [4] (Ai, Aj) ∈ core2(F) and therefore by Lemma
3.4. A ∈ corek(F).

We can find to any classification problem A with |A| = 2 and A /∈ class2(F) a B ≤ A

such that B ∈ core2(F) if F = Fu = Fs is denumerable ([4]). But this is not true
for classification problems A with |A| > 2. To see this we prove the following theorem,
where we use S = X∗ with X = {a, b, c}. Define for A ⊆ X∗ the classification problem
C(A) = (Aab, Abc, Aca), where Axy = xA ∪ yAc for x, y ∈ X.

Theorem 3.6. Let L be a nontrivial language family with L = Lu = Lltr = L-ltr, which is

closed under regular variation. If A ⊆ S with A /∈ L or Ac /∈ L, then C(A) /∈ class3(L)
and for all B ≤ C(A) with |B| = 3 : B /∈ core3(L).

Proof. (1) We know (Ac, A) /∈ class2(L) ([4]). But then by Lemma 5.4. of [4] (xAc, xA) /∈
class2(L) for all x ∈ X. Now (bAc, bA) ≤ (Aab, Abc) , (cAc, cA) ≤ (Abc, Aca) and
(aAc, aA) ≤ (Aca, Aab). This shows (Axy, Axz) /∈ class2(L) for all x 6= y , z 6= y and
x 6= z.

(2) Suppose B ≤ C(A) exists with B ∈ core3(L). Then by Theorem 3.5. set(B) ∈
cohesive(L). Assume without loss of generality that B = (B(a, b), B(b, c), B(c, a)) and
B(x, y) ⊆ Axy for x, y ∈ X with x 6= y.. In the following let B′(x, y) = B(x, y) ∩ xX∗ and
B′′(x, y) = B(x, y) ∩ (xX∗)c.

Assertion : B′(x, y) ∈ fin(X∗) for all x, y ∈ X with x 6= y.
Suppose to the contrary (without loss of generality) B′(a, b) /∈ fin(X∗). But then B′(b, c) ∈
fin(X∗). Otherwise we obtain (B′(a, b), B′(b, c)) ≤ (aX∗, bX∗) ≤ (aX∗, (aX∗)c). Since
Lreg ⊆ L, B /∈ core3(L) - a contradiction. But now B′′(b, c) is infinite and B′′(b, c) ⊆
cX∗ ⊆ (aX∗)c, hence both set(B)∩ aX∗ and set(B)∩ (aX∗)c are infinite - a contradiction
to set(B) ∈ cohesive(L).
Now consider B′′(a, b) and B′′(c, a). Then both sets are infinite and (B′′(a, b), B′′(c, a)) ≤
(bX∗, aX∗) ≤ (bX∗, (bX∗)c) - a contradiction to B ∈ core3(L). This completes the proof.

Remark 3.7. The basic idea behind the proof of Theorem 3.6. is due to M. Ziegler ([1]).
Note, that complexity classes and most of the known language families satisfy the conditions
of Theorem 3.6.

Using conditional unsolvability, we can derive an existence theorem for cores.

Theorem 3.8. Let F = Fu = Fs be denumerable and nontrivial. If A = (A1, . . . , Ak)
is a classification problem and C ⊆ set(A)c is F-cohesive with (C,Ai) /∈ class2(F) for

1 ≤ i ≤ k, then there exists B ≤ A with |B| = k and B ∈ corek(F).
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Proof. Since (C,Ai) /∈ class2(F), we can find Ci ⊆ C and Bi ⊆ Ai with (Ci, Bi) ∈ core2(F)
(Theorem 6.14. in [4]). By Theorem 3.5. Ci ∪ Bi ∈ cohesive(F) and therefore Bi ∈
cohesive(F). Now (C,Bi) /∈ class2(F) and C ∈ cohesive(F). By Theorem 5.1. in [4] we
know C ∪ Bi ∈ cohesive(F). But then C ∪ B1 ∪ · · · ∪ Bk = (C ∪ B1) ∪ · · · ∪ (C ∪ Bk) ∈
cohesive(F), since for all 1 ≤ i 6= j ≤ k C is infinite and C ⊆ (C ∪ Bi) ∩ (C ∪ Bj). It
follows B1∪· · · ∪Bk ∈ cohesive(F) and we obtain B = (B1, . . . , Bk) ≤ A and by Theorem
3.5. B ∈ corek(F).

Remark 3.9. Consider the situation of Theorem 3.6. Then set(C(A)) = XX∗ and there is
no room for an infinite condition C to make the conditional classification problem (C,C(A))
L-solvable.

4. Cores in Conditional Classification Problems

Unsolvability of conditional classification problems can be related to cohesiveness, too.

Definition 4.1. Let C,A ⊆ S. Then A is F-cohesive under condition C (in short: A ∈
ccohesive(C,F)), if and only if A is infinite and for all Q ∈ Fdc with Q ⊆ C either A∩Q
or A ∩Qc is finite.

Clearly, if C1 ⊆ C2 ⊆ S, then ccohesive(C2,F) ⊆ ccohesive(C1,F). Especially, we
get ccohesive(S,F) = cohesive(F) and therefore cohesive(F) ⊆ ccohesive(C,F) for
all C ⊆ S. Rewriting the definition, we also find ccohesive(C,F)) = cohesive(F(C)cc)
where F(C) = {Q| Q ⊆ C and Q ∈ F}. Analogously, we define conditional cores by

Definition 4.2. Let C ⊆ S and A a classification problem. Then A is a C-conditional core
of F (A ∈ ccore |A|(C,F)) if and only if for allA′ ≤ A with |A′| > 0 : A′ /∈ cclass |A′|(C,F).

In contrast to the definition of core(F) subproblems A′ with |A′| = 1 are considered,
too. Note, that (C,A′) is a conditional-classification problem, if A′ ≤ A. Moreover, if
A ∈ ccore |A|(C,F), then A′ ∈ ccore |A′|(C,F). The following lemma characterizes A ∈
ccore1(C,F) by conditional cohesiveness.

Lemma 4.3. Let F be nontrivial and C,A ⊆ S with A infinite and A ∩ C = ∅. Then the

following statements are equivalent

(i) A ∈ ccore1(C,F)
(ii) A /∈ cclass1(C,F) and A ∈ ccohesive(Cc,F).

Proof. (i) ⇒ (ii): Suppose A ∈ ccore1(C,F). Then A /∈ cclass1(C,F). Assume to the
contrary that A /∈ ccohesive(Cc,F). Then Q ∈ Fdc exists with Q ⊆ Cc, A ∩ Q /∈ fin(S)
and A∩Qc /∈ fin(S). Let B = A∩Q. Then B ⊆ Q, but Q ⊆ Cc, hence C ⊆ Qc. Moreover,
Q,Qc ∈ F , i.e. B ∈ cclass1(C,F).

(ii) ⇒ (i): Suppose that A /∈ cclass1(C,F) and A ∈ ccohesive(Cc,F). Assume to the
contrary that an infinite set B ⊆ A exists, such that B ⊆ Qc and C ⊆ Q for some Q ∈ Fdc.
Then Qc ⊆ Cc. Since B ∩ Qc /∈ fin(S), A ∩ Qc /∈ fin(S), too. Hence A ∩ Q ∈ fin(S),
because A ∈ ccohesive(Cc,F). Consider Q′ = Qc∪ (A∩Q). Since F is nontrivial, Q′ ∈ F .
Note that A = (A ∩Q) ∪ (A ∩Qc) ⊆ Qc ∪ (A ∩Q) = Q′. On the other side, Qc ⊆ Cc and
A ∩ Q ⊆ A ⊆ Cc, i.e. Q′ ⊆ Cc. Hence C ⊆ Q′c. This shows that A /∈ cclass1(C,F) - a
contradiction.
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Theorem 4.4. Let F be nontrivial with F = Fu and (C,A) a conditional k-classification

problem. If A = (A1, . . . , Ak) then the following statements are equivalent

(i) A ∈ ccorek(C,F)
(ii) Ai /∈ cclass1(C,F) and Ai ∈ ccohesive(Cc,F) for all 1 ≤ i ≤ k.

Proof.

(i) ⇒ (ii): Suppose that A ∈ ccorek(C,F). Then for all 1 ≤ i ≤ k : (C,Ai) ∈
ccore1(C,F), since Ai ≤ A. Applying Lemma 4.3. we get the result.

(ii) ⇒ (i): Let the Ai be given according to the assumption. Assume to the contrary that
B ≤ A exists with B = (B1, . . . , Bm) ∈ cclassm(C,F). Then an injective σ : [m] → [k]
exists with Bi ⊆ Aσ(i) for 1 ≤ i ≤ k. Since F = Fu, Bi ∈ cclass1(C,F). But Aσ(i) ∈
core1(C,F) and Bi ⊆ Aσ(i). This is a contradiction.

Now, we are able to assert the existence of conditional cores in the case that both C
and Cc are infinite. Observe that under this assumption A ∈ cclass1(C,F) if and only if
(C,A) considered as a promise problem is solvable for F , i.e. (C,A) ∈ class1(F).

Lemma 4.5. Let F be denumerable and nontrivial with F = Fu = Fs. If A /∈ fin(S),
C /∈ fin(S)cc, A∩C = ∅ and A /∈ cclass1(C,F), then B ⊆ A exists with B ∈ ccore1(C,F).

Proof. If A /∈ cclass1(C,F), i.e. (C,A) /∈ class1(F). By cor.5.16. in[4] we can find B ⊆ A
such that for all infinite B′ ⊆ B (C,B′) /∈ class2(F), i.e. B ∈ ccore1(C,F).

Using this lemma in connection with Theorem 4.4. we get

Lemma 4.6. Let F be denumerable and nontrivial with F = Fu = Fs and (C,A) a

conditional classification problem where C and Cc are infinite. If A = (A1, . . . , Ak) with

Ai /∈ cclass1(C,F) for 1 ≤ i ≤ k then a B ≤ A exists with |B| = k and B ∈ ccorek(C,F).

Proof. By Lemma 4.5. we find for each 1 ≤ i ≤ k Bi ∈ ccore1(C,F) and Bi ⊆ Ai. Let
B = (B1, . . . , Bk). Then B ≤ A and |B| = k. By Theorem 4.4. B ∈ ccorek(C,F).

5. Conditional Cores and Hard Cores

For WP-recursive language families we can prove a much stronger result. This depends on
the relation between A ∈ ccore1(C,F) and proper hard cores introduced by N. Lynch [6]
for complexity classes and in a very general form by R. Book- D.-Z. Du [3].

Definition 5.1. B is a F-hardcore of A if and only if B is infinite and for all C ∈ F(A):
B ∩ C ∈ fin(S). If additionally B ⊆ A then B is a proper F-hardcore of A. (Remind
F(A) = {Q ⊆ A | Q ∈ F} for F and A.)

Note, that for A′ ⊆ A with A′ infinite every F-hardcore of A is a F-hardcore of A′.
Rephrasing Lemma 7.2. of [4] we get the following

Lemma 5.2. If F is nontrivial with F = Fco and (C,A) a conditional classification problem

then A is a proper F-hardcore of Cc if and only if A ∈ ccore1(C,F).

Now we can use a construction for proper hard cores from [3] in a modified form.

Theorem 5.3. If L is a nontrivial and WP-recursive language family with L = Lb and

(C,A) a conditional classification problem with A /∈ cclass1(C,L) and C,A are recursive

then a recursive B ⊆ A exists with B ∈ ccore1(C,L).
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Proof. Consider an enumeration e of L such that worde ∈ rec2. Furthermore, let δC , δA ∈
rec1. Now define for all n ≥ 0 B(n), cancel(n) and card(n) by the following algorithm:

if lex (0) ∈ C then

cancel(0) := 0
end if

if lex (0) ∈ A and lex /∈ e(0) then
B(0) := 0; card(0) := 1

end if

n := 1;
while n 6= 0 do

B(n) := B(n− 1); cancel(n) := cancel(n− 1); card(n) := card(n− 1);
if lex (n) ∈ C then

cancel(n) := cancel(n) ∪ {i|0 ≤ i ≤ card(n) and lex (n) ∈ e(i)}
end if

if lex (n) ∈ A and ∀ 0 ≤ i ≤ card(n) : (i /∈ cancel(n) ⇒ lex (n) /∈ e(i)) then

B(n) := B(n) ∪ lex (n); card(n) := card(n) + 1
end if ;
n := n+ 1

end while

(For A = Cc we get the construction of [3]).

Now, let B =
⋃∞

i=0B(n) and cancel =
⋃∞

i=0 cancel(i). Assume for the moment that
B is infinite. B is recursive and B ⊆ A, since all basic functions are recursive, cancel(n)
is finite for all n and the elements of B are added in increasing order with respect to lex .
Moreover, limn→∞card(n) = ∞. Hence {k|e(k) ∩ C 6= ∅} = cancel and we get e(i) ⊆ Cc

and by construction e(i)∩B ∈ fin(X∗) for i /∈ cancel (cf. [3]). In conclusion, B is a proper
L-hardcore of Cc and by Lemma 4.9. B ∈ ccore1(C,L). It remains to show the

Assertion: B /∈ fin(X∗).
Suppose to the contrary, that B is finite. Then M exists with card(n) = M for almost
all n. Moreover, for every i ∈ [M + 1]0 with e(i) ∩ C 6= ∅ there must exist K(i) with
i ∈ cancel(K(i)). Let K = max{K(i)|i ∈ [M +1]0 with e(i)∩C 6= ∅}. Then we know that
for all i ∈ [M +1]0 with i /∈ cancel(K(i)) : e(i) ⊆ Cc. Choose N ≥ K sufficiently large such
that additionally card(n) = M for every n ≥ N . Consider lex (n) ∈ A with n ≥ N . Since
lex (n) /∈ B, i ∈ [M + 1]0 exists with lex (n) ∈ e(i). This shows A ⊆ {lex (k)|k < N and

lex (k) ∈ A} ∪
⋃M

i=0,i/∈cancel e(i) = Q ⊆ Cc and therefore C ⊆ Qc. Since L is nontrivial and

L = Lu, we know Q ∈ L. Moreover, L = Lco implies Qc ∈ L, hence A /∈ cclass1(C,L) - a
contradiction.

Now we can derive a stronger result than Lemma 4.6.:

Theorem 5.4. Let L be a nontrivial and WP-recursive language family with L = Lb and

(C,A) a conditional k-classification problem. If C is recursive and A = (A1, . . . , Ak) such

that Ai ∈ cclass1(C,L) and Ai is recursive for 1 ≤ i ≤ k then B = (B1, . . . , Bk) exists with
B ≤ A,B ∈ ccorek(C,L) and Bi is recursive for 1 ≤ i ≤ k.

Proof. By Theorem 5.3. we find for each 1 ≤ i ≤ k Bi ∈ cclass1(C,L) with Bi ⊆ Ai and Bi

is recursive. Let B = (B1, . . . , Bk). Then B ≤ A and by Theorem 4.4. B ∈ ccorek(C,L).
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Remark 5.5. The Bi’s constructed in Theorem 5.4. are all infinite. By the Dekker-Myhill
theorem (§12.3 Theorem VI in [7]), we can find in every Bi a L-cohesive B′

i, but we cannot
show, that B′

i is recursive under the conditions of Theorem 5.4. The best result to our
knowledge is the result of Friedberg (§12.4 Theorem XI in [7]). The construction (due to
Yates) in the proof given in [7] can be easily modified in such a way, that to any infinite,
recursive A a Lr.e.(X)-cohesive subset B with Bc ∈ Lr.e.(X) can be found. Since any
WP-recursive language family L is a subfamily of Lr.e.(X) this B is L-cohesive, too.

Concluding Remarks

This paper continues our research about unsolvability cores in promise problems ([4]) gen-
eralizing the results to classification problems. Our approach is very general, though the
applications in this paper deal mainly with language families and complexity classes. The
main open problem in our approach is to construct cohesive sets with ”nice” properties.
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