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Abstract. The reachability problem for Vector Addition Systems (VASs) is a central
problem of net theory. The general problem is known to be decidable by algorithms ex-
clusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposition.
This decomposition is used in this paper to prove that the Parikh images of languages rec-
ognized by VASs are semi-pseudo-linear ; a class that extends the semi-linear sets, a.k.a.
the sets definable in Presburger arithmetic. We provide an application of this result; we
prove that a final configuration is not reachable from an initial one if and only if there
exists a semi-linear inductive invariant that contains the initial configuration but not the
final one. Since we can decide if a Presburger formula denotes an inductive invariant,
we deduce that there exist checkable certificates of non-reachability. In particular, there
exists a simple algorithm for deciding the general VAS reachability problem based on two
semi-algorithms. A first one that tries to prove the reachability by enumerating finite se-
quences of actions and a second one that tries to prove the non-reachability by enumerating
Presburger formulas.

1. Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular
formal methods for the representation and the analysis of parallel processes [2]. The reach-
ability problem is central since many computational problems (even outside the parallel
processes) reduce to the reachability problem. Sacerdote and Tenney provided in [10] a
partial proof of decidability of this problem. The proof was completed in 1981 by Mayr
[7] and simplified by Kosaraju [5] from [10, 7]. Ten years later, Lambert[6] provided a
more simplified version based on [5]. This last proof still remains difficult and the upper
bound complexity of the corresponding algorithm is just known to be non-primitive recur-
sive. Nowadays, it is an open problem wether an elementary upper complexity bound for
this problem exists. In fact, the known general reachability algorithms are exclusively based
on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

In this paper, by using the KLMST decomposition we prove that the Parikh images of
languages recognized by VASs are semi-pseudo-linear, a class that extends the semi-linear
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sets, a.k.a. the sets definable in Presburger arithmetic [3]. We provide an application of this
result; we prove that a final configuration is not reachable from an initial one if and only if
there exists a forward inductive invariant definable in Presburger arithmetic that contains
the initial configuration but not the final one. Since we can decide if a Presburger formula
denotes a forward inductive invariant, we deduce that there exist checkable certificates of
non-reachability. In particular, there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first one that proves the reachability
by enumerating finite sequences of actions denoting a path from the initial configuration to
the final one and a second one that proves the non-reachability by enumerating Presburger
formulas denoting inductive invariant containing the initial configuration but not the final
one.

Outline of the paper : Section 2 introduces the class of Vector Addition Systems (VASs).
Section 3 recalls the class of Marked Reachability Graph Sequences (MRGSs) and the KLMST
decomposition of languages recognized by VASs into finite unions of languages recognized
by perfect MRGSs. Semi-pseudo-linear sets are introduced in Section 4. In Section 5,
Parikh images of languages recognized by perfect MRGSs are proved to be pseudo-linear.
In Section 6 we introduce the class of Petri sets a subclass of the semi-pseudo-linear sets
stable by intersection with every semi-linear set. Reachability sets of VASs from semi-linear
sets are proved to be Petri sets in this section. In Section 7 we study approximations of two
pseudo-linear sets with an empty intersection. Finally in Section 8 we deduce that if a final
configuration is not reachable from an initial one, there exists a forward inductive invariant
definable in Presburger arithmetic that contains the initial configuration but not the final
one.

2. Vector Addition Systems

We denote by Q,Q+,Z,N, respectively, the set of rational values, non-negative rational
values, the set of integers and the set of non-negative integers. The components of a vector
x ∈ Qn are denoted by (x[1], . . . ,x[n]). Let x1,x2,x ∈ Qn and r ∈ Q. The sum x1+x2 and
the product rx are naturally defined component wise. Given a function f : E → F where
E,F are sets, we denote by f(X) = {f(x) | x ∈ X} for every subset X ⊆ E. This definition
naturally defines sets X1 + X2 and RX where X1,X2,X ⊆ Qn and R ⊆ Q. With slight
abuse of notation, {x1}+X2, X1 + {x2}, {r}X and R{x} are simply denoted by x1 +X2,
X1 + x2, rX and Rx.

The lattice (N,≤) is completed with an additional element ⊤ such that k ≤ ⊤ for
every k ∈ N ∪ {⊤}. The set N ∪ {⊤} is denoted by N⊤. Given a non-decreasing sequence
(xi)i≥0 in (N⊤,≤) we denote by limi→+∞(xi) the least upper bound in N⊤. The ⊤ element
is interpreted as a “don’t care value” by introducing the partial order ✂ over N⊤ defined by
x1 ✂ x2 if and only if x1 = x2 or x2 = ⊤. Orders ≤ and ✂ are extended component-wise
over Nn

⊤. The set of minimal elements for ≤ of a set X ⊆ Nn is denoted by min(X). As
(Nn,≤) is a well partially ordered set, the set min(X) is finite and X ⊆ min(X) + Nn for
every X ⊆ Nn.

An alphabet is a non-empty finite set Σ. The set of words over Σ is denoted by Σ∗. The
empty word is denoted by ǫ. The concatenation of two words σ1 and σ2 is simply denoted
by σ1σ2. The concatenation of r ≥ 1 times a word σ is denoted by σr. By definition σ0 = ǫ.
The number of occurrences of an element a ∈ Σ in a word σ ∈ Σ∗ is denoted by |σ|a. The
Parikh image of a word σ over Σ is the function ||σ||Σ : Σ → N defined by ||σ||Σ(a) = |σ|a
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for every a ∈ Σ. This function is simply denoted by ||σ|| when Σ is known without every
ambiguity. The Parikh image ||L|| of a language L ⊆ Σ∗ is defined as the set of functions
||σ|| over the words σ ∈ L.

A Vector Addition System (VAS) is a tuple V = (Σ, n, δ) where Σ is an alphabet, n ∈ N

is the dimension, and δ : Σ→ Zn is a displacement function. In the sequel, such a functions

is naturally extended to a function δ : Σ∗ → Zn satisfying δ(ǫ) = 0 and δ(σ) =
∑k

i=1 δ(ai)
for every word σ = a1 . . . ak of k ≥ 1 elements ai ∈ Σ. A configuration is a vector in Nn

and an extended configuration is a vector in Nn
⊤. For a ∈ Σ, the binary relation

a
−→V is

defined over the set of extended configurations by x
a
−→V x′ if and only if x′ = x+ δ(a) with

⊤+ z = ⊤ by definition for every z ∈ Z. Let k ≥ 1. Given a word σ = a1 . . . ak of elements

ai ∈ Σ, we denote by
σ
−→V the concatenation

a1−→V · · ·
ak−→V . By definition

ǫ
−→V is the identity

binary relation over the set of extended configurations. We denote by
∗
−→V the reachability

binary relation over the set of extended configurations defined by x
∗
−→V x′ if and only if

there exists σ ∈ Σ∗ such that x
σ
−→V x′. Observe that in this case x[i] = ⊤ if and only if

x′[i] = ⊤. Intuitively the ⊤ element provides a simple way to get rid of some components
of a VAS since these components remain equal to ⊤.

Definition 2.1. The reachability problem for a tuple (s,V, s′) where (s, s′) are two config-

urations of a VAS V consists in deciding if s
∗
−→V s′.

Let m,m′ be two extended configurations. The language recognized by (m,V,m′) is the

set L(m,V,m′) = {σ ∈ Σ∗ | ∃s, s′ ∈ Nn s✂m ∧ s
σ
−→V s′ ∧ s′ ✂m′}. Given two sets S, S′

of configurations, the set post∗V(S) of reachable configurations from S and the set pre∗V(S
′)

of co-reachable configurations from S′ are formally defined by:

post∗V(S) = {s
′ ∈ Nn | ∃s ∈ S s

∗
−→V s′}

pre∗V(S
′) = {s ∈ Nn | ∃s′ ∈ S′ s

∗
−→V s′}

Example 2.2. A VAS V = (Σ, n, δ) with Σ = {a, b}, n = 2, δ(a) = (1, 1) and δ(b) =

(−1,−2) is depicted in Figure 1. Observe that s
a4b3
−−→V s′ with s = (0, 2) and s′ = (1, 0). Note

that post∗V({s}) = {x ∈ N2 | x[2] ≤ x[1]+2} and pre∗V({s
′}) = {x ∈ N2 | x[2] ≥ 2(x[1]−1)}.

s

s′

a
a
a
a

b

b

b

with

δ(a) =

δ(b) =

Figure 1: A Vector Addition System.

A graph is a tuple G = (Q,Σ, T ) where Q is a finite set of states, Σ is an alphabet,
T ⊆ Q × Σ × Q is a finite set of transitions. A path π is a word π = t1 . . . tk of k ∈ N

transitions ti ∈ T such that there exists q0, . . . , qk ∈ Q and there exists a1, . . . , ak ∈ Σ such
that ti = (qj−1, aj , qj) for every 1 ≤ j ≤ k. In this case we say that π is a path labeled by

σ = a1 . . . ak from q0 to qk. In the sequel we denote by q0
σ
−→G qk such a path π. If the states
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q0 and qk are equal, the path π is called a cycle on this state. As usual a graph is said to be
strongly connected if for every pair of states (q, q′) ∈ Q×Q, there exists a path from q to q′.

Remark 2.3. A Vector Addition System with States (VASS) is a tuple (Q,Σ, T, n, δ) where
G = (Q,Σ, T ) is a graph and V = (Σ, n, δ) is a VAS. A pair in Q × Nn is called a VASS
configuration. Let σ ∈ Σ∗. The VASS semantics is defined over the VASS configurations

by (q, s)
σ
−→ (q′, s′) if and only if q

σ
−→G q′ and s

σ
−→V s′. Note [4] that n-dim VASSs can be

simulated by (n+ 3)-dim VASs.

Example 2.4. Recall [4] that sets post∗V(S) and pre∗V(S
′) are definable in Presburger arith-

metic FO (N,+,≤) if S and S′ are definable in this logic and n ≤ 5. Moreover from [4]

we deduce an example of a 6-dim VAS V and a pair of configurations (s, s′) 6∈
∗
−→V such that

neither post∗V({s}) nor pre∗V({s
′}) are definable in Presburger arithmetic. This example is

obtained by considering the VASS depicted in Figure 2. This VASS has a loop on state p
and another loop on state q. Intuitively, iterating the loop on state p transfers the content
of the first counter to the second counter whereas iterating the loop on state q transfers and
multiplies by two the content of the second counter to the first counter. The third counter is
incremented each time we come back to state p from q. In [4] the set of reachable configura-

tions from (p, (1, 0, 0)) is proved equal to ({p}×{x ∈ N3 | x[1] +x[2] ≤ 2x[3]})∪ ({q}×{x ∈
N3 | x[1] + 2x[2] ≤ 2x[3]+1}). This set is not definable in Presburger arithmetic.

p q

(0, 0, 0)

(−1, 1, 0)
(0, 0, 1)

(2,−1, 0)

Figure 2: A VASS taken from [4].

3. The KLMST decomposition

The emptiness of L(m,V,m′) can be decided with the Kosaraju-Lambert-Mayr-Sacerdote-
Tenney (KLMST) decomposition. This decomposition shows that L(m,V,m′) is effectively
decomposable as a finite union

⋃

U∈F L(U) where L(U) is the language recognized by a
perfect Marked Reachability Graph Sequence (MRGS) U . We provide in Section 3.1 a new
definition of perfect MRGS that does not require complex constructions. This definition is
proved equivalent to the original one [6] in Section 3.2. Finally in Section 3.3 we recall the
KLMST decomposition.

3.1. The Perfect MRGSs. In this section we introduce the class of Marked Reachability
Graph Sequences (MRGSs) by following notations introduced by Lambert [6]. We also
provide a new definition for the class of MRGSs said to be perfect [6].

A reachability graph for a VAS V = (Σ, n, δ) is a graph G = (Q,Σ, T ) with Q ⊆

Nn
⊤ and T ⊆ {(q, a, q′) ∈ Q × Σ × Q | q

a
−→V q′}. A marked reachability graph M =

(m,x, G,x′,m′) for V is a strongly connected reachability graph G for V equipped with
two extended configurations x,x′ ∈ Q respectively called the input state and the output
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state, and equipped with two extended configurations m,m′ satisfying m✂ x and m′ ✂ x′

respectively called the input constraint and the output constraint. An accepted tuple forM
is a tuple (s, π, s′) where π = (x

σ
−→G x′) is a path in G labeled by σ from the input state x

to the output state x′ and where s, s′ ∈ Nn are two configurations such that s✂m, s
σ
−→V s′

and s′ ✂m′. Intuitively the graph G and the input/output states enforce σ to label a path
in G from x to x′. The input/output constraints enforce s[i] and s′[i] to be equal to m[i]
and m′[i], respectively, if m[i] and m′[i] are not equal to the “don’t care value” ⊤.

A marked reachability graph sequence (MRGS) for (m,V,m′) is a sequence

U =M0a1M1 . . . akMk

that alternates elements aj ∈ Σ and marked reachability graphs Mj = (mj ,xj , Gj ,x
′
j ,m

′
j)

with Gj = (Qj ,Σ, Tj) such that m0 ✂ m and m′
k ✂ m′. An accepted sequence for U is a

sequence (sj , πj , s
′
j)0≤j≤k such that (sj , πj , s

′
j) is an accepted tuple for Mj for every 0 ≤

j ≤ k and such that s′j−1

aj
−→V sj for every 1 ≤ j ≤ k. The language recognized by U is the

set of words of the form σ = σ0a1σ1 . . . akσk such that there exists an accepted sequence
(sj , πj , s

′
j)0≤j≤k where πj is labeled by σj. This set is denoted by L(U). Since m0 ✂ m

and m′
k ✂m′, relations s0 ✂m0 and s′k ✂m′

k imply s0 ✂m and s′k ✂m′. In particular the
inclusion L(U) ⊆ L(m,V,m′) holds.

Example 3.1. Let V = (Σ, n, δ) be a VAS and let (s, s′) be a pair of configurations of
V. Let us introduce an MRGS U such that L(U) = L(s,V, s′). We consider the graph
G = (Q,Σ, T ) where Q = {(⊤, . . . ,⊤)} and T = Q × Σ × Q, and the marked reachability
graph M = (s, (⊤, . . . ,⊤), G, (⊤, . . . ,⊤), s′). Now just observe that the MRGS U = M
satisfies L(U) = L(s,V, s′).

Definition 3.2. An MRGS U is said to be perfect if for every c ∈ N, there exists an accepted
sequence (sj , πj, s

′
j)0≤j≤k for U such that for every 0 ≤ j ≤ k:

• sj [i] ≥ c for every i such that mj [i] = ⊤,

• there exists a prefix xj

wj
−→Gj

xj of πj and a configuration rj such that sj
wj
−→V rj and

such that rj[i] ≥ c for every i such that xj[i] = ⊤, and
• |πj |t ≥ c for every t ∈ Tj ,

• there exists a suffix x′
j

wj
−→

′

Gj
x′
j of πj and a configuration r′j such that r′j

wj
−→

′

V s′j and

such that r′j[i] ≥ c for every i such that x′
j[i] = ⊤,

• s′j [i] ≥ c for every i such that m′
j [i] = ⊤.

3.2. Original perfect condition. The perfect condition given in Definition 3.2 is proved
equivalent to the original one [6]. The original definition requires additional notions recalled
in this section. These results are also used in Section 5 to establish the pseudo-linearity of
Parikh images of language recognized by perfect MRGSs.

Let M = (m,x, G,x′,m′) be a marked reachability graph. We say that M satis-

fies the input loop condition if there exists a sequence (x
wc−→G x)c of cycles and a non-

decreasing sequence (mc)c of extended configurations such that m
wc−→V mc for every c and

limc→+∞mc = x. Symmetrically, we say thatM satisfies the output loop condition if there

exists a sequence (x′ wc−→
′

G x′)c of cycles and a non-decreasing sequence (m′
c)c of extended

configurations such that m′
c

wc−→
′

V m′ for every c and limc→+∞m′
c = x′. The following
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Lemma 3.3 and Lemma 3.4 show that these conditions are in EXPSPACE since they reduce
to covering problems [9].

Lemma 3.3. The input loop condition is satisfied by M iff there exist a cycle x
w
−→G x and

an extended configuration y satisfying m
w
−→V y and satisfying y[i] > m[i] for every i such

that m[i] < x[i].

Proof. Assume first that M satisfies the input loop condition. There exist a sequence

(x
wc−→G x)c of cycles and a non-decreasing sequence (mc)c of extended configurations such

that m
wc−→V mc for every c and limc→+∞mc = x. Let us consider the set I of integers i

such that m[i] < x[i]. Let us prove that for every i ∈ I there exists an integer ci such that
mc[i] > m[i] for every c ≥ ci. Let i ∈ I. Since m[i] ✂ x[i] we deduce that m[i] ∈ N and
x[i] = ⊤. From limc→+∞mc[i] = x[i] we deduce that there exists an integer ci ≥ 0 such
that mc[i] > m[i] for every c ≥ ci. Now let us consider an integer c such that c ≥ ci for
every i ∈ I. Observe that mc[i] > m[i] for every i ∈ I. We have proved that there exist a

cycle x
w
−→G x with w = wc and an extended configuration y = mc satisfying m

w
−→V y and

satisfying y[i] >m[i] for every i such that m[i] < x[i].

Next, assume that there exist a cycle x
w
−→G x and an extended configuration y satisfying

m
w
−→V y and satisfying y[i] >m[i] for every i such that m[i] < x[i].
Let us prove that for every i such that m[i] ≥ x[i] we have y[i] = m[i]. The relation

m[i] ✂ x[i] implies m[i] ≤ x[i]. Thus m[i] = x[i]. The paths m
w
−→V y and x

w
−→V x with

m[i] = x[i] provides y[i] = x[i]. We have proved that y[i] = m[i].
Therefore y ≥m and an immediate induction shows that there exists a non-decreasing

sequence (mc)c of extended configurations such that m
wc

−→V mc. Finally, just observe that

(x
wc

−→G x) is a cycle and limc→+∞mc = x.

Symetrically, we prove the following lemma.

Lemma 3.4. The output loop condition is satisfied by M iff there exist a cycle x′ w
−→

′

G x′

and an extended configuration y′ satisfying y′ w
−→

′

V m′ and satisfying y′[i] >m′[i] for every
i such that m′[i] < x′[i].

Let (q, q′) a pair of states of a graph G = (Q,Σ, T ). We say that a function µ : Q →
Q satisfies the Kirchhoff’s laws of (q,G, q′) if the following system χq,G,q′(µ) holds where
e : Q ×Q → {0, 1} denotes the function that takes the value one iff its two arguments are
equal:

χq,G,q′(µ) :=
∧

p∈Q









∑

t=(p0,a,p)∈T

µ(t) + e(q, p)

=
∑

t=(p,a,p1)∈T

µ(t) + e(p, q′)









The Parikh image ||π|| of a path π from a state q to a state q′ in a graph G = (Q,Σ, T )
provides a function ||π|| that satisfies χq,G,q′. Euler’s Lemma shows that if G is strongly
connected then every function µ : T → N\{0} satisfying the Kirchhoff’s laws of (q,G, q′)
is the Parikh image of a path from q to q′. Since χq,G,q does not depend on q ∈ Q, this
linear system is simply denoted by χG in the sequel. Naturally, the Parikh image of a cycle
satisfies this linear system.
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Let (sj , πj, s
′
j)0≤j≤k be an accepted sequence of an MRGS U . Observe that ξ =

(sj , µj , s
′
j)0≤j≤k with µj = ||πj || is a solution of the linear system given in Figure 3 where

δ(t) denotes δ(a) for every transition t = (q, a, q′). This linear system is called the charac-
teristic system of U . A solution ξ of the characteristic system is called concretizable if there
exists an accepted sequence (sj , πj , s

′
j)0≤j≤k such that ξ = (sj , ||πj ||, s

′
j)j . The homogeneous

form of the characteristic system, obtained by replacing constant terms by zero is called the
homogeneous characteristic system of U . This system is given in Figure 3. In the sequel, a
solution of the homogeneous characteristic system is denoted by ξ0 = (s0,j , µ0,j , s

′
0,j)j .







































































































for all 1 ≤ j ≤ k

s′j−1 + δ(aj) = sj

for all 0 ≤ j ≤ k

sj +
∑

t∈Tj

µj(t)δ(t) = s′j

for all 0 ≤ j ≤ k, 1 ≤ i ≤ n

sj [i] = mj[i] if mj [i] ∈ N

s′j [i] = mj
′[i] if m′

j [i] ∈ N

for all 0 ≤ j ≤ k

χxj ,Gj ,x
′
j
(µj)







































































































for all 1 ≤ j ≤ k

s′0,j−1 = s0,j

for all 0 ≤ j ≤ k

s0,j +
∑

t∈Tj

µ0,j(t)δ(t) = s′0,j

for all 0 ≤ j ≤ k, 1 ≤ i ≤ n

s0,j[i] = 0 if mj [i] ∈ N

s′0,j[i] = 0 if m′
j [i] ∈ N

for all 0 ≤ j ≤ k

χGj
(µ0,j)

Figure 3: On the left the characteristic system. On the right the homogeneous characteristic
system.

We say that U satisfies the large solution condition if there exists a non-decreasing sequence
(ξc)c∈N of solutions ξc = (sj,c, µj,c, s

′
j,c)j with components in N of the characteristic system

such that:

• limc→+∞ sj,c = mj for every j,
• limc→+∞ µj,c(t) = ⊤ for every j and t ∈ Tj , and
• limc→+∞ sj,c = m′

j for every j.

The following lemma shows that the large solution condition is decidable in polynomial
time since the condition (i) of this lemma is in PTIME with the Hermite decomposition and
the condition (ii) is in PTIME with the interior points method.

Lemma 3.5. The large solution condition is satisfied by U iff the following conditions (i)
and (ii) hold:

(i) Its characteristic system has a solution ξ with components in Z,
(ii) Its homogeneous characteristic system has a solution ξ0 = (s0,j , µ0,j, s

′
0,j)j with compo-

nents in Q satisfying for every j:
⋆ s0,j[i] > 0 for every i such that mj [i] = ⊤,
⋆ µ0,j(t) > 0 for every t ∈ Tj , and
⋆ s′0,j[i] > 0 for every i such that m′

j [i] = ⊤.
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Proof. Let us consider ξ and ξ0 satisfying condition (i) and (ii). Since ξ0 is the solution of a
linear system, by multiplying ξ0 by a positive integer, its components can be assumed in Z.
Note that in this case the components are in fact in N. Since there exists an integer c ≥ 0
such that ξ + cξ0 has its components in N, by replacing ξ by ξ + cξ0 we can assume that
the components of ξ are in N. Now, just observe that ξc = ξ + cξ0 provides a sequence (ξc)c
that proves that U satisfies the large solution condition.

Next assume that U satisfies the large solution condition. There exists a sequence (ξc)c
proving the large solution condition of U . Let us denote by ξ = (sj , µj, s

′
j)j the first solution

of this sequence. This solution naturally satisfies (i). Observe that there exists an integer
c ≥ 0 such that for every j:

• sj,c[i] > sj [i] for every i such that mj[i] = ⊤,
• µj,c(t) > µj(t) for every t ∈ Tj, and
• s′j,c[i] > s′j [i] for every i such that m′

j[i] = ⊤.

Notice that ξ0 = ξc − ξ provides a solution of the homogeneous characteristic system satis-
fying condition (ii).

By adapting [6], we deduce that the perfect condition given in Definition 3.2 is equivalent
to the original one [6] (also equivalent to the θ-condition [5]). More formally, we prove the
following Proposition 3.6 (the proof is given in Appendix A).

Proposition 3.6. An MRGS U is perfect if and only if it satisfies the large solution con-
dition and if its marked reachability graphs satisfy the input and output loop conditions.

3.3. The KLMST decomposition. We provide an informal presentation of the algorithm
deciding the emptiness of L(s,V, s′). This algorithm is based on a well-founded order ⊑ over
the MRGSs. During its execution, a finite set F of MRGSs is computed. This set satisfies
the invariant L(s,V, s′) =

⋃

U∈F L(U). Initially, the algorithm starts with the set F = {U}
where U is an MRGS such that L(U) = L(s,V, s′) (see Example 3.1). Recursively, while the
set F is non empty and it only contains MRGSs that do not satisfy the perfect condition,
such an MRGS U is picked up from F . Since U is not perfect, Proposition 3.6 shows that
either it does not satisfy the large solution condition or one of its marked reachability graphs
does not satisfy the input or the output loop condition. Considering separately these cases,
the algorithm computes a finite set F ′ of MRGSs satisfying U ′ ❁ U for every U ′ ∈ F ′ and
L(U) =

⋃′
U ′∈F L(U ′). Then, the algorithm replaces F by F\{U} ∪ F ′ and it restarts the

while loop. Since ⊑ is well-founded, the loop termination is guaranteed. When the loop
terminates, the set F is either empty or it contains at least one perfect MRGS. If F is
non empty the algorithm decides that L(s,V, s′) is non empty, otherwise it decides that
L(s,V, s′) is empty. The correctness of the algorithm is obtained by observing that the
language recognized by a perfect MRGS is always non empty.

Now, let us assume that the while loop is continuing still there exists in F at least one
MRGS that does not satisfy the perfect condition. The loop termination is still guaranty
since ⊑ is well-founded and when the while loop terminates we get an eventually empty
set F of perfect MRGSs such that L(s,V, s′) =

⋃

U∈F L(U). This algorithm provides the
following Theorem 3.7.
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Theorem 3.7 (Fundamental Decomposition [5, 6]). For every tuple (s,V, s′), we can effec-
tively compute a finite set F of perfect MRGSs for (s,V, s′) such that:

L(s,V, s′) =
⋃

U∈F

L(U)

4. Semi-Pseudo-Linear Sets

We introduce the class of semi-pseudo-linear sets.

We first introduce the class of monoids. A monoid of Qn is a set M ⊆ Qn such that
0 ∈ M and M +M ⊆ M . Observe that for every X ⊆ Qn, the set M = {0} ∪ {

∑k
i=1 xi |

k ≥ 1 ∧ xi ∈ X} is the minimal monoid that contains X with respect to the inclusion.
This monoid is called the monoid generated by X and denoted X∗. A monoid is said to be
finitely generated if it can be generated by a finite set.

Let M be a monoid. A vector a ∈ M is said to be interior to M if for every x ∈ M
there exists an integer N ≥ 1 satisfying Na ∈ x +M . The interior of a monoid M is the
set of interior vectors to M . It is denoted by I(M).

Example 4.1. Let P = {(1, 1), (−1, 1)}. The monoid M = P ∗ and its interior are depicted
in Figure 4.

Figure 4: On the left a monoid M . On the right its interior I(M).

The following Lemma 4.2 characterizes the set I(P ∗) where P is a finite set.

Lemma 4.2. Let P = {p1, . . . ,pk} ⊆ Qn with k ∈ N. We have I(P ∗) = {0} if k = 0 and
I(P ∗) = P ∗ ∩ ((Q+\{0})p1 + · · · + (Q+\{0})pk) if k ≥ 1.

Proof. Since the case k = 0 is immediate, we assume that k ≥ 1. Let us first consider an

interior vector a ∈ I(P ∗). As
∑k

j=1 pj ∈ P
∗ and a ∈ I(P ∗), there exists N ≥ 1 such that

Na ∈ (
∑k

j=1 pj) + P ∗. Let p ∈ P ∗ such that Na =
∑k

j=1 pj + p. As p ∈ P ∗, there exists

a sequence (Nj)1≤j≤k of elements in N such that p =
∑k

j=1Njpj. Combining this equality

with the previous one provides a =
∑k

j=1
1+Nj

N
pj . Thus a ∈ (Q+\{0})p1+· · ·+(Q+\{0})pk .

Conversely, let us consider a ∈ P ∗ ∩ ((Q+\{0})p1 + · · ·+ (Q+\{0})pk). Observe that there
exists an integer d ≥ 1 large enough such that da ∈ (N\{0})p1 + · · · + (N\{0})pk . In
particular for every x ∈ P ∗ there exists N ≥ 1 such that Nda ∈ x+ P ∗.
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A set L ⊆ Zn is said to be linear [3] if there exists a vector b ∈ Zn and a finitely
generated monoid M ⊆ Zn such that L = b+M . A semi-linear set S ⊆ Zn is a finite union
of linear sets Li ⊆ Zn. Recall [3] that sets definable in FO (N,+,≤), also called Presburger
sets, are exactly the non-negative semi-linear sets. By observing that integers are differences
of two non-negative integers, we deduce that sets definable in FO (Z,+,≤) are exactly the
semi-linear sets.

Let us now introduce the class of pseudo-linear sets and semi-pseudo-linear sets. Intu-
itively, the pseudo-linear sets extend the linear sets, and the semi-pseudo-linear sets extend
the semi-linear sets. More formally, a set X ⊆ Zn is said to be pseudo-linear if there exists
b ∈ Zn and a finitely generated monoid M ⊆ Zn such that X ⊆ b +M and such that for
every finite set R of interior vectors to M , there exists x ∈ X such that x+R∗ ⊆ X. In this
case, M is called a linearizator for X and the linear set L = b+M is called a linearization
of X. A semi-pseudo-linear set is a finite union of pseudo-linear sets.

Example 4.3. The set X = {x ∈ Z2 | 0 ≤ x[2] ≤ x[1] ≤ 2x[2]} is depicted in Figure 5.
Observe that X is pseudo-linear and L = {x ∈ Z2 | 0 ≤ x[2] ≤ x[1]} is a linearization
of X. The set Y = {(2k, 0) | k ∈ N} is not semi-pseudo-linear. However Z = X ∪ Y is
pseudo-linear since L is still a linearization of Z.

x[1] = 2x[2]

x[1] = x[2]

Figure 5: A pseudo-linear set.

Remark 4.4. Every linear set L = b+M is pseudo-linear. M is a linearizator for L and
L is a linearization of L. Every semi-linear set is semi-pseudo-linear.

Remark 4.5. Semi-pseudo-linear sets can be empty whereas pseudo-linear sets cannot be
empty.

As expected, the class of pseudo-linear sets is stable by linear function images. A
function f : Zn → Zn′

is said linear if there exists a matrix A ∈ Zn×n′
and a vector v ∈ Zn′

such that f(x) = Ax+ v for every x ∈ Zn.

Proposition 4.6. Images X ′ = f(X) of pseudo-linear sets X by a linear function f are
pseudo-linear. Moreover L′ = f(L) is a linearization of X ′ for every linearization L of X.

Proof. Let us consider a linear function f : Zn → Zn′
defined by a matrix A ∈ Zn×n′

and a
vector v ∈ Zn′

. Let us consider a pseudo-linear set X ⊆ Zn. As X is pseudo-linear, there
exists a linearizator M of X and a vector b ∈ Zn such that X ⊆ b+M . Let L = b +M .
As M is finitely generated there exists a finite set P such that M = P ∗. We are going
to prove that L′ = f(L) is a linearization of X ′ = f(X). Let us consider b′ = f(b) and
P ′ = {Ap | p ∈ P} and observe that L′ = b′ + (P ′)∗. In particular L′ is a linear set.
Since X ⊆ L we deduce that X ′ ⊆ L′. Let us consider a set R′ = {r′1, . . . , r

′
d} included in

the interior of (P ′)∗. As r′i ∈ (P ′)∗ there exists pi ∈ P
∗ such that r′i = Api. Lemma 4.2
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shows that r′i is a sum of vectors of the form λi,pAp over all p ∈ P where λi,p > 0 is a
value in Q. There exists an integer ni ≥ 1 large enough such that niλi,p ∈ N\{0} for every
p ∈ P . We deduce that ri =

∑

p∈P niλi,pp is a vector in P ∗. Moreover, from Lemma 4.2
we deduce that ri is in the interior of P ∗. Let us consider the set R of vectors ri + kipi

where ki is an integer such that 0 ≤ ki < ni. As ri ∈ I(P
∗) and pi ∈ P

∗ we deduce that
ri + kipi ∈ I(P

∗). We have proved that R ⊆ I(P ∗). As L is a linearization of X, there
exists x ∈ X such that x + R∗ ⊆ X. We deduce that f(x) + AR∗ ⊆ X ′. Let us consider

x′ = f(x) + A(
∑d

i=1 ri) and let us prove that x′ + (R′)∗ ⊆ X ′. Consider r′ ∈ (R′)∗. There

exists a sequence (µ′i)1≤i≤d of integers in N such that r′ =
∑d

i=1 µ
′
ir

′
i. The Euclid division

of µ′i by ni shows that µ′i = ki + niµi where µi ∈ N and 0 ≤ ki < ni. From nir
′
i = Ari we

deduce that x′ + r′ = f(x)+A(
∑d

i=1(ri + kipi)+
∑d

i=1 µiri). Observe that ri + kipi and ri
are both in R. We have proved that x′ + r′ ∈ f(x) +AR∗. Thus x′ + (R′)∗ ⊆ X ′. We have
proved that L′ is a linearization of X ′.

5. The Parikh Images of Perfect MRGSs

The Parikh images of languages recognized by perfect MRGSs are proved to be pseudo-linear
in this section. From the KLMST decomposition, we deduce the semi-pseudo-linearity of
the Parikh image of L(m,V,m′).

Let us consider a perfect MRGS U for (m,V,m′). We denote by H the solutions with
components in N of the characteristic system of U . We consider the set of concretizable
solutions H ′. Since the Parikh image of L(U) is the image by a linear function of H ′, by
Proposition 4.6 it is sufficient to prove that H ′ is pseudo-linear. Let us introduce the set H0

of solutions with components in N of the homogeneous characteristic system. We prove in
the sequel that H0 is a linearizator for H ′. First of all observe that H0 is a finitely generated
monoid since H0 = P ∗

0 where P0 = min(H0\{0}), and P0 is finite since ≤ is a well-order
over H0.

Since H ′ ⊆ H, the following Lemma 5.1 shows that H ′ is included in (ξ− ξ0)+H0. We
follow notations introduced in Definition 3.2.

Lemma 5.1. There exists ξ ∈ H and ξ0 ∈ H0 such that H ⊆ (ξ − ξ0) +H0.

Proof. As U satisfies the large solution condition there exists ξ ∈ H. Moreover, Lemma 3.5
shows that there exists a solution ξ0 with components in Q of the homogeneous characteristic
system satisfying the additional conditions s0,j[i] > 0 if mj [i] = ⊤, s′0,j [i] > 0 if m′

j[i] = ⊤,

and µ0,j(t) > 0 for every t ∈ Tj. By multiplying ξ0 by a positive integer, we can assume
that the components of ξ0 are in N. Note that for every ξ′ ∈ H, there exists c ∈ N such that
ξ′+ cξ0 ≥ ξ. As min(H) is finite, by multiplying ξ0 by a positive integer we can assume that
ξ′ + ξ0 ≥ ξ for every ξ′ ∈ H. That means H ⊆ (ξ − ξ0) +H0.

Now, let us consider a finite set R0 = {ξ1, . . . , ξd} included in the interior of H0. We are
going to prove that there exists ξ ∈ H such that ξ + R∗

0 ⊆ H ′. We first prove the following
lemma.

Lemma 5.2. For every ξl = (sl,j, µl,j , s
′
l,j)j interior vector of H0, the function µl,j is the

Parikh image of a cycle πl,j = (xj

σl,j
−−→Gj

xj).
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Proof. Since U satisfies the large solution condition, Lemma 3.5 shows for every t ∈ Tj , there
exists a solution ξ0 = (s0,j , µ0,j, s

′
0,j)j in H0 such that µ0,j(t) > 0. As H0 = P ∗

0 , for every
t ∈ Tj there exists ξ0 ∈ P0 satisfying the same property. As ξl is in the interior of H0, Lemma
4.2 shows that there exists a sequence (λξ0)ξ0∈P0

of positive rational values λξ0 ∈ Q>0 such
that ξl =

∑

ξ0
λξ0ξ0. In particular, we deduce that µl,j(t) > 0 for every t ∈ Tj and for every

0 ≤ j ≤ k. As ξl satisfies χGj
we deduce that µl,j satisfies the Kirchhoff’s laws. As Gj is

strongly connected and µl,j(t) ≥ 1 for every t ∈ Tj, Euler’s Lemma shows that µl,j is the

Parikh image of a cycle πl,j = (xj

σl,j
−−→Gj

xj).

Since xj

σl,j
−−→V , there exists an integer c ≥ 0 such that for every 0 ≤ j ≤ k and for

every configuration rj satisfying rj[i] ≥ c if xj [i] = ⊤ and rj [i] = xj [i] otherwise, we have

rj
σl,j
−−→V .

As U is perfect, there exists an accepted tuple (sj , πj , s
′
j)0≤j≤k such that for every j, πj

can be decomposed into:

πj = (xj

wj
−→Gj

xj

σj
−→Gj

x′
j

w′
j
−→Gj

x′
j)

and such that the pair of configurations (rj , r
′
j) satisfying the following relations:

sj
wj
−→V rj

σj
−→V r′j

w′
j
−→V s′j

also satisfy:

• rj [i] ≥ c if xj [i] = ⊤ and rj [i] = xj [i] otherwise,
• r′j [i] ≥ c if x′

j [i] = ⊤ and r′j [i] = x′
j [i] otherwise.

In particular we have rj
σl,j
−−→V for every 0 ≤ j ≤ k and for every 1 ≤ l ≤ d.

As sl,j ≥ 0 and rj
σl,j
−−→V we deduce that rj+sl,j

σl,j
−−→V . Moreover, from sl,j+δ(σl,j) = s′l,j

we get:

rj + sl,j
σl,j
−−→V rj + s′l,j

As sl,j, s
′
l,j ≥ 0, an immediate induction shows that for every sequence n1, . . . , nd ∈ N we

have the following relation:

rj +

d
∑

l=1

nlsl,j
σ
n1

1,j ...σ
nd
d,j

−−−−−−→V rj +

d
∑

l=1

nls
′
l,j

Let ξ = (sj , ||πj ||, s
′
j)0≤j≤k. We have proved that ξ +

∑d
l=1 nlξl is concretizable. Thus

ξ+R∗
0 ⊆ H

′. Therefore H ′ is pseudo-linear and H0 is a linearizator for H ′. We have proved
the following Theorem 5.3.

Theorem 5.3. The Parikh image of L(U) is pseudo-linear for every perfect MRGS U .

From Theorem 3.7 and Theorem 5.3 we deduce the following Corollary 5.4.

Corollary 5.4. The Parikh image of L(m,V,m′) is semi-pseudo-linear.
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6. Petri Sets

A set X ⊆ Zn is said to be a Petri set if X ∩ S is semi-pseudo-linear for every semi-linear
set S ⊆ Zn. Since Zn is a linear set, Petri sets are semi-pseudo-linear. However the converse
is not true in general (see Example 6.1). In this section, post∗V(S) and pre∗V(S

′) are proved
to be Petri sets for every semi-linear sets S, S′ ⊆ Nn. This result is used in Section 8 to get
a local analysis of post∗V(S) and pre∗V(S

′) with respect to some semi-linear sets.

Example 6.1. Let us consider the pseudo-linear set Z = X ∪ Y introduced in Example 4.3
and observe that Z is not a Petri set since Y = Z ∩ S is not semi-pseudo-linear with
S = (1, 0) + {(1, 0)}∗.

Let us prove that post∗V(S)∩S
′ and S ∩ pre∗V(S

′) are semi-pseudo-linear for every semi-
linear sets S, S′ ⊆ Nn. Since semi-linear sets are finite unions of linear sets we only prove
this result for the special case of two linear sets S = s + P ∗ and S′ = s′ + (P ′)∗ where
s, s′ ∈ Nn and P,P ′ ⊆ Nn are two finite sets. We consider two alphabets ΣP ,ΣP ′ disjoint of
Σ and a displacement function δ̄ defined over Σ̄ = ΣP ∪Σ ∪ ΣP ′ that extends δ such that:

P = {δ̄(a) | a ∈ ΣP } P ′ = {−δ̄(a) | a ∈ ΣP ′}

We consider the VAS V̄ = (Σ̄, n, δ̄). Intuitively, since δ̄(ΣP ) ⊆ Nn and δ̄(ΣP ′) ⊆ −Nn, words
in L(s, V̄ , s′) can be reordered into words in (Σ∗

PΣ
∗Σ∗

P ′) ∩ L(s, V̄ , s′). More formally, we
prove the following lemma.

Lemma 6.2. Assume that s
σaσ′

−−−→V s′ holds with σ, σ′ ∈ Σ∗, and a ∈ Σ. We have:

• s
aσσ′

−−−→V s′ if δ(a) ≥ 0.

• s
σσ′a
−−−→V s′ if δ(a) ≤ 0.

Proof. We only consider the case δ(a) ≥ 0 since the other case is symmetrical by replacing
(s,V, s′) by (s′,−V, s) where −V = (Σ, n,−δ). Let us consider the pair of configurations

(r, r′) such that s
σ
−→V r

a
−→V r′

σ′

−→V s′. Since δ(a) ≥ 0 we have s
a
−→V s+δ(a). As s+δ(a) ≥ s

and s
σ
−→V we deduce that s+ δ(a)

σ
−→V s+ δ(a)+ δ(σ). From r′ = s+ δ(σ)+ δ(a) we deduce

the lemma.

Let us consider the displacement functions f and f ′ defined over Σ̄ by:

f(a) =

{

δ̄(a) if a ∈ ΣP

0 otherwise

f ′(a) =

{

−δ̄(a) if a ∈ ΣP ′

0 otherwise

Lemma 6.3. We have post∗V(S)∩S
′ = s′+f ′(L(s, V̄ , s′)) and S∩pre∗V(S

′) = s+f(L(s, V̄, s′)).

Proof. Let us consider c′ ∈ post∗V(S) ∩ S
′ and let us prove that c′ ∈ s′ + f ′(L(s, V̄ , s′)).

There exists c ∈ S and a word v ∈ Σ∗ such that c
v
−→V c′. In particular c

v
−→V̄ c′. Since

S = s + P ∗ we observe that there exists a word u ∈ Σ∗
P such that s

u
−→V̄ c. Symmetrically

since S′ = s′ + (P ′)∗ there exists u′ ∈ Σ∗
P ′ such that c′

u′

−→V̄ s′. We have proved that
uvu′ ∈ L(s, V̄ , s′). Note that f ′(uvu′) = −δ̄(u′). From s′ = c′ + δ̄(u′) we have proved that
c′ ∈ s′ + f ′(L(s, V̄ , s′)).
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Conversely, let us consider a vector c′ ∈ s′ + f ′(L(s, V̄ , s′)) and let us prove that c′ ∈
post∗V(S)∩S

′. There exists a word σ ∈ L(s, V̄ , s′) such that c′ = s′+f ′(σ). Since δ(ΣP ) ⊆ Nn

and δ(ΣP ′) ⊆ −Nn, Lemma 6.2 shows that σ can be reordered into a word σ0 ∈ L(s, V̄ , s′)∩
(Σ∗

PΣ
∗Σ∗

P ′). As σ0 and σ have the same Parikh image we deduce that f ′(σ) = f ′(σ0). In
particular, we can assume without loss of generality that σ = uvu′ with u ∈ Σ∗

P , v ∈ Σ∗

and u′ ∈ Σ∗
P ′ . Let us consider the two configurations c, c′′ such that s

u
−→V̄ c

v
−→V̄ c′′

u′

−→V̄ s′.
As s′ = c′′ + δ̄(u′) and f ′(σ) = −δ̄(u′) we deduce that c′′ = c′. Moreover, since u ∈ Σ∗

P we

deduce that c ∈ S and since u′ ∈ Σ∗
P ′ we get c′ ∈ S′. From v ∈ Σ∗ we deduce c

v
−→V c′. We

have proved that c′ ∈ post∗V(S) ∩ S
′.

Thus post∗V(S) ∩ S
′ = s′ + f ′(L(s, V̄ , s′)). Symmetrically we get S ∩ pre∗V(S

′) = s +
f(L(s, V̄ , s′)).

Observe that sets s′+f ′(L(s, V̄ , s′)) and s+f(L(s, V̄, s′)) are images by linear functions
of the Parikh image of L(s, V̄ , s′). Corollary 5.4 shows that the Parikh image of L(s, V̄ , s′)
is semi-pseudo-linear. From Proposition 4.6 we deduce the following Theorem 6.4.

Theorem 6.4. post∗V(S) and pre∗V(S
′) are Petri sets for every semi-linear sets S, S′ ⊆ Nn.

7. Pseudo-Linear Sets Intersections

Let X1,X2 be two pseudo-linear sets with an empty intersection X1 ∩ X2 and let L1, L2

be linearizations of X1,X2. Since L1, L2 over-approximate X1,X2, the intersection L1 ∩ L2

is not empty in general. In this section we introduce a dimension function that satisfies
dim(L1 ∩ L2) < dim(X1 ∪ X2). This dimension function is defined in Section 7.1 and the
strict inequality is proved in Section 7.2.

7.1. Dimension. A vector space V of Qn is a set V ⊆ Qn such that 0 ∈ V , V +V ⊆ V and

QV ⊆ V . Observe that for every set X ⊆ Qn the set V = {0} ∪ {
∑k

i=1 λixi | k ≥ 1 ∧ λi ∈
Q ∧ xi ∈ X} is the minimal vector space that contains X with respect to the inclusion.
This vector space is called the vector space generated by X. Recall that for every vector
space V there exists a finite set B ⊆ V that generates V . The minimal integer d ∈ N such
that there exists a finite set B ⊆ V with d elements that generates V is called the rank of
V and denoted rank(V ). Note that rank(V ) ∈ {0, . . . , n} and for every set X ⊆ Qn there
exists a finite set B ⊆ X such that the vector space V generated by B is equal to the vector
space generated by X and such that |B| = rank(V ).

The dimension of a non empty set X ⊆ Qn is the minimal integer d ∈ {0, . . . , n} such
that there exist k ∈ N, a sequence (V1, . . . , Vk) of vector spaces Vj ⊆ Qn, and a sequence

(a1, . . . ,ak) of vectors aj ∈ Qn such that X ⊆
⋃k

j=1(aj + Vj) and rank(Vj) ≤ d. We denote

by dim(X) the dimension of X. By definition dim(∅) = −∞.

Example 7.1. Let X0 = {(0, 0)}, X1 = {x ∈ N2 | x[1] = x[2]} and X2 = {x ∈ N2 |
x[2] ≤ x[1]} be the sets depicted in Figure 6. We have dim(X0) = 0, dim(X1) = 1 and
dim(X2) = 2.

Let us show some immediate properties satisfied by the dimension function. Ob-
serve that dim(X) = −∞ if and only if X is empty. The dimension function is mono-
tonic dim(X1) ≤ dim(X2) for every X1 ⊆ X2. Moreover it satisfies dim(X1 ∪ X2) =
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dim(X0) = 0 dim(X1) = 1 dim(X2) = 2

Figure 6: Dimension of some sets.

max{dim(X1),dim(X2)} and dim(X1 +X2) ≤ dim(X1)+dim(X2). Note also that dim(a+
X) = dim(X) for every a ∈ Qn. In the sequel, we prove that (1) rank(V ) = dim(V ) for
every vector space V , (2) dim(M) = dim(V ) for every vector space V generated by a monoid
M , and (3) dim(L) = dim(X) for every linearization L of a pseudo linear set X. We first
prove the following lemma.

Lemma 7.2. Let M ⊆ Qn be a monoid and let (V1, . . . , Vk) be a sequence of vector spaces

Vj ⊆ Qn and let (a1, . . . ,ak) be a sequence of vectors aj ∈ Qn. If M ⊆
⋃k

j=1(aj + Vj) then
there exists j such that aj ∈ Vj and M ⊆ aj + Vj .

Proof. Let us observe that aj ∈ Vj implies aj+Vj = Vj. We first prove that M ⊆
⋃k

j=1(aj+

Vj) implies M ⊆
⋃

j∈J Vj where J is the set of j ∈ {1, . . . , k} such that aj ∈ Vj . Let us
consider m ∈ M . Since M is a monoid we deduce that λx ∈ M for every λ ∈ N. In
particular there exists j ∈ {1, . . . , k} such that λx ∈ aj + Vj for infinitely many λ. In
particular there exist λ < λ′ in N and v,v′ ∈ Vj such that λx = aj + v and λ′x = aj + v′.

Now, just observe that aj = λv′−λ′v
λ′−λ

implies aj ∈ Vj and x =
aj+v′

j

λ′ implies that x ∈ Vj .
Therefore M ⊆

⋃

j∈J Vj.

Now let us prove by induction over k ∈ N>0 that for every sequence (V1, . . . , Vk) of

vector spaces Vj ⊆ Qn, if M ⊆
⋃k

j=1 Vj then there exists j such that M ⊆ Vj. The case
k = 1 is immediate. Assume that the lemma is already proven for an integer k ∈ N>0. Let
us consider a monoid M ⊆ Qn, a sequence (V1, . . . , Vk+1) of vector spaces Vj ⊆ Qn such

that M ⊆
⋃k+1

j=1 Vj. Let us prove that there exists j ∈ {1, . . . , k + 1} such that M ⊆ Vj .
Naturally if M ⊆ Vk+1 we are done. Thus, we can assume that M is not included in Vk+1

and we can pick a vector m ∈M\Vk+1. Let x ∈M and let us prove that x ∈
⋃k

j=1 Vj . Note
that if x 6∈ Vk+1 we are done. Thus, we can assume without loss of generality that x ∈ Vk+1.
Let us introduce yλ = x+λm where λ ∈ N. Since M is a monoid that contains x and m we
deduce that yλ ∈ M . Assume by contradiction that yλ ∈ Vk+1 for λ 6= 0. Since x and yλ

are both in Vk+1, and Vk+1 is a vector space, we deduce from m = 1
λ
(yλ−x) that m ∈ Vk+1.

We get a contradiction with m 6∈ Vk+1. Thus yλ ∈
⋃k

j=1 Vj for every λ ∈ N>0. Hence there

exists j ∈ {1, . . . , k} such that yλ ∈ Vj for infinitely many λ ∈ N>0. In particular there

exists λ < λ′ in N>0 such that yλ,y
′
λ ∈ Vj . As Vj is a vector space, from x =

λyλ′−λ′yλ

λ′−λ
we

deduce that x ∈ Vj . We have proved that M ⊆
⋃k

j=1 Vj. From the induction hypothesis, we

deduce that there exists j ∈ {1, . . . , k} such that M ⊆ Vj . We have proved the property by
induction.

Now, we can prove the following results.

Lemma 7.3. We have dim(V ) = rank(V ) for every vector space V .
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Proof. Since V ⊆ 0 + V we get dim(V ) ≤ rank(V ). Conversely, there exists a sequence
(V1, . . . , Vk) of vector spaces Vj ⊆ Qn and a sequence (a1, . . . ,ak) of vectors aj ∈ Qn such

that V ⊆
⋃k

j=1(aj + Vj) and rank(Vj) ≤ dim(V ). As V is a vector space and in particular
a monoid, Lemma 7.2 shows that there exists j such that V ⊆ aj + Vj and aj ∈ Vj. From
aj +Vj = Vj we deduce that V ⊆ Vj. In particular rank(V ) ≤ rank(Vj) and we have proved
the other relation rank(V ) ≤ dim(V ).

Proposition 7.4. We have dim(M) = rank(V ) where V is the vector space generated by a
monoid M .

Proof. Since M ⊆ V we get dim(M) ≤ rank(V ). Conversely, there exists a sequence a
sequence (V1, . . . , Vk) of vector spaces Vj ⊆ Qn and a sequence (a1, . . . ,ak) of vectors aj ∈ Qn

such that M ⊆
⋃k

j=1(aj + Vj) and rank(Vj) ≤ dim(M). From Lemma 7.2 there exists j
such that aj ∈ Vj and M ⊆ aj + Vj. As aj ∈ Vj we get aj + Vj = Vj. We deduce that
M ⊆ Vj . By minimality of the vector space generated by M , we deduce that V ⊆ Vj . In
particular, rank(V ) ≤ rank(Vj). Since rank(Vj) ≤ dim(M) we deduce the other relation
rank(V ) ≤ dim(M).

As expected, the dimension of a pseudo-linear set is equal to the dimension of every
linearization.

Lemma 7.5. We have dim(X) = dim(L) for every linearization L of a pseudo-linear set
X ⊆ Zn.

Proof. There exists b ∈ Zn and a linearizator M for X such that L = b + M . From
X ⊆ L we deduce that dim(X) ≤ dim(L). Let us prove the converse. Let us consider an
interior vector a ∈ I(M). Since M is finitely generated, there exists a finite set P such that
M = P ∗. Observe that R = {a}∪ (a+P ) is a finite subset of I(M). As X is pseudo-linear,
there exists x ∈ X such that x + R∗ ⊆ X. Note that the vector space generated by R

is equal to the vector space generated by P . Thus, from Proposition 7.4 we deduce that
dim(R∗) = dim(P ∗). As dim(x + R∗) = dim(R∗) and dim(b + P ∗) = dim(P ∗) we deduce
that dim(x+R∗) = dim(L). Since x+R∗ ⊆ X we deduce that dim(L) ≤ dim(X).

7.2. Pseudo-linear sets with empty intersections. In this section we prove that lin-
earizations L1, L2 of two pseudo-linear sets X1,X2 with an empty intersection X1 ∩X2 = ∅
satisfy the strict inequality dim(L1 ∩ L2) < dim(X1 ∪X2). Note that even if X1 ∩X2 = ∅,
the intersection L1 ∩L2 may be non empty since L1, L2 are over-approximations of X1,X2.

Example 7.6. Let us consider the pseudo-linear set X described in Example 4.3 and a
linearization L = {x ∈ Z2 | 0 ≤ x[2] ≤ x[1]} of X. We also consider the linear set
X ′ = (8, 2) + {(1, 0), (3,−1)}∗ . Sets X and X ′ are depicted together in Figure 7. Note that
L′ = X ′ is a linearization of the linear set X ′. Notice that X ∩ X ′ = ∅. The set L ∩ L′

is depicted in gray in Figure 7. Observe that L ∩ L′ = {(8, 2), (11, 1), (14, 0)} + {(1, 0)}∗.
Therefore 1 = dim(L ∩ L′) < dim(X ∪X ′) = 2.

We first introduce the class of groups. A group of Qn is a set Z ⊆ Qn such that 0 ∈ Z,
Z + Z ⊆ Z and −Z ⊆ Z. Observe that for every X ⊆ Qn, the set G = X∗ − X∗ is
the minimal group that contains X with respect to the inclusion. This group is said to be
generated by X. Let us consider the group G = M −M generated by a monoid M and
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x[1] = 2x[2]

x[1] = x[2]

Figure 7: Two pseudo-linear sets with an empty intersection.

a ∈ Zn. Observe that a ∈ I(M) if and only if for every g ∈ G there exists an integer N ≥ 1
such that g +Na ∈M .

Lemma 7.7. For every vector v ∈ V where V is the vector space generated by a group G,
there exists an integer d ≥ 1 such that dv ∈ G.

Proof. As v ∈ V , either v = 0 or v can be decomposed into a finite sum v =
∑k

i=1 λigi
with k ≥ 1, λi ∈ Q and gi ∈ G. The case v = 0 is immediate with d = 1 and the second
case is obtained by considering an integer d ≥ 1 such that dλi ∈ Z for every i.

Lemma 7.8 ([3]). For every finite sets P1, P2 ⊆ Zn there exists a finite set P ⊆ Zn such
that P ∗

1 ∩ P
∗
2 = P ∗. Moreover, for every b1,b2 ∈ Zn, there exists a finite set B ⊆ Zn such

that (b1 + P ∗
1 ) ∩ (b2 + P ∗

2 ) = B + (P ∗
1 ∩ P

∗
2 ).

Proof. Let us consider an enumeration pi,1, . . . ,pi,ki of the ki ≥ 0 vectors in Pi where
i ∈ {1, 2}. If k1 = 0 or if k2 = 0 then P ∗

1 = {0} or P ∗
2 = {0} and the lemma is immediate.

Thus, we can assume that k1, k2 ≥ 1.

Let us consider the set X of vectors (λ1, λ2) ∈ Nk1×Nk2 such that b1+
∑k1

j=1 λ1[j]p1,j =

b2 +
∑k2

j=1 λ2[j]p2,j . Let us also consider the set X0 of vectors (λ1, λ2) ∈ Nk1 × Nk2 such

that
∑k1

j=1 λ1[j]p1,j =
∑k2

j=1 λ2[j]p2,j . Observe that X = Z +X0 where Z is the finite set

Z = min(X) and X0 = Z∗
0 where Z0 is the finite set Z0 = min(X0\{0}).

Let us denote by B the finite set of vectors b ∈ Zn such that there exists (λ1, λ2) ∈ Z

satisfying b1+
∑k1

j=1 λ1[j]p1,j = b = b2+
∑k2

j=1 λ2[j]p2,j . Let us also denote by P the finite

set of vectors p ∈ Zn such that there exists (λ1, λ2) ∈ Z0 satisfying
∑k1

j=1 λ1[j]p1,j = p =
∑k2

j=1 λ2[j]p2,j . Remark that (b1 + P ∗
1 ) ∩ (b2 + P ∗

2 ) = B + P ∗ and P ∗
1 ∩ P

∗
2 = P ∗.

We say that two linear sets L1, L2 have a non-degenerate intersection if dim(L1) =
dim(L1 ∩ L2) = dim(L2).

Lemma 7.9. Let L1 = b1+M1 and L2 = b2+M2 be two linear sets with a non-degenerate
intersection. There exist finite sets R1 ⊆ I(M1) and R2 ⊆ I(M2) such that (x1 + R∗

1) ∩
(x2 +R∗

2) 6= ∅ for every (x1,x2) ∈ (L1, L2).

Proof. As M1,M2 are finitely generated, there exists some finite sets P1, P2 ⊆ Zn such that
M1 = P ∗

1 and M2 = P ∗
2 . From Lemma 7.8 there exists a finite set P ⊆ Zn and a finite set

B ⊆ Zn such that P ∗
1 ∩ P

∗
2 = P ∗ and L1 ∩ L2 = B + P ∗. Note that B = ∅ is not possible

since in this case dim(L1 ∩ L2) = −∞. Thus there exists a vector b ∈ B.

Let us denote by V1, V, V2 the vector spaces generated respectively by P1, P, P2 and let
us prove that V1 = V = V2. Proposition 7.4 shows that dim(L1) = rank(V1), dim(L1 ∩
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L2) = rank(V ) and dim(L2) = rank(V2). From dim(L1 ∩ L2) = dim(L1) we deduce that
rank(V ) = rank(V1). Moreover as P ∗ ⊆ P ∗

1 we deduce that V ⊆ V1. The inclusion V ⊆ V1
and the relation rank(V ) = rank(V1) prove together that V = V1. Symmetrically we deduce
that V = V2.

We denote by G1, G,G2 the groups generated respectively by P1, P, P2. Note that the
vector spaces generated by G1, G,G2 are equal to V1, V, V2.

Let a be an interior vector of P ∗ and let us prove that a ∈ I(P ∗
1 )∩I(P

∗
2 ). Let j ∈ {1, 2}.

Note that a ∈ P ∗ ⊆ P ∗
j . Let p ∈ I(P ∗

j ). Since −p ∈ V and V is the vector space generated
by G, Lemma 7.7 shows that there exists an integer d ≥ 1 such that −dp ∈ G. From
a ∈ I(P ∗) we deduce that there exists N ≥ 1 such that −dp + Na ∈ P ∗. From P ∗ ⊆ P ∗

j

we deduce that a ∈ 1
N
(dp+ P ∗

j ). From p ∈ I(P ∗
j ) and Lemma 4.2 we get a ∈ I(P ∗

j ).

We define R1 and R2 by Rj = {a} ∪ (a + Pj) for j ∈ {1, 2}. Since a ∈ I(P ∗
j ), Lemma

4.2 shows that Rj ⊆ I(P
∗
j ). Let us consider x1 ∈ L1 and x2 ∈ L2 and let us prove that

(x1 +R∗
1) ∩ (x2 +R∗

2) 6= ∅.

From b,xj ∈ bj + P ∗
j we deduce that xj − b ∈ Gj . As the group generated by Rj is

equal to Gj , there exists rj , r
′
j ∈ R

∗
j such that xj + rj = b+ r′j.

As V is the vector space generated by G1 and r′2 ∈ R
∗
2 ⊆ V2 = V , Lemma 7.7 shows that

there exists an integer d1 ≥ 1 such that d1r
′
2 ∈ G1. As a ∈ I(P ∗

1 ), there exists an integer
N1 ≥ 1 such that d1r

′
2+N1a ∈ P

∗
1 . As P ∗

1 ⊆ R
∗
1−Na, we deduce that there exists an integer

N ′
1 ≥ 0 such that d1r

′
2 + (N1 + N ′

1)a ∈ R
∗
1. We denote this vector by r′′1. Symmetrically,

there exist some integers d2 ≥ 1, N2 ≥ 1 and N ′
2 ≥ 0 such that the vector d2r

′
1+(N2+N

′
2)a

denoted by r′′2 is in R∗
2. We get:

x1 + r1 + (d2 − 1)r′1 + r′′1 + (N2 +N ′
2)a = b+ d2r

′
1 + d1r

′
2 + (N1 +N ′

1 +N2 +N ′
2)a

x2 + r2 + (d1 − 1)r′2 + r′′2 + (N1 +N ′
1)a = b+ d1r

′
2 + d2r

′
1 + (N2 +N ′

2 +N1 +N ′
1)a

We have proved that these vectors are equal. Therefore (x1 +R∗
1) ∩ (x2 +R∗

2) 6= ∅.

Proposition 7.10. Let L1, L2 be linearizations of pseudo-linear sets X1,X2 ⊆ Zn with an
empty intersection X1 ∩X2 = ∅. We have:

dim(L1 ∩ L2) < dim(X1 ∪X2)

Proof. Let us consider linearizations L1, L2 of two pseudo-linear sets X1,X2 such that
dim(L1 ∩ L2) ≥ dim(X1 ∪X2) and let us prove that X1 ∩X2 6= ∅. Lemma 7.5 shows that
dim(X1) = dim(L1) and dim(X2) = dim(L2). By monotonicity of the dimension function,
we deduce that dim(L1) = dim(L1∩L2) = dim(L2). Thus L1 and L2 have a non-degenerate
intersection. As L1, L2 are two linear sets, there exists b1,b2 ∈ Zn and two finitely gener-
ated monoids M1,M2 such that L1 = b1 +M1 and L2 = b2 +M2. Lemma 7.9 shows that
there exist finite sets R1 ⊆ I(M1) and R2 ⊆ I(M2) such that (x1 +R∗

1)∩ (x2 +R∗
2) 6= ∅ for

every (x1,x2) ∈ (L1, L2). As L1, L2 are linearizations of the pseudo-linear sets X1,X2 there
exists (x1,x2) ∈ (X1,X2) such that x1+R

∗
1 ⊆ X1 and x2+R

∗
2 ⊆ X2. As (x1,x2) ∈ (L1, L2)

we deduce that (x1 +R∗
1) ∩ (x2 +R∗

2) 6= ∅. We have proved that X1 ∩X2 6= ∅.
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8. Presburger Complete Separators

The VAS reachability problem can be reformulated by introducing the definition of separa-
tors. A pair (S, S′) of configuration sets is called a separator for a VAS V if S × S′ has an

empty intersection with the reachability binary relation
∗
−→V . The set D = Nn\(S ∪ S′) is

called the (free) domain of (S, S′). A separator with an empty domain is said to be complete.
We extend the inclusion relation over separators by (S0, S

′
0) ⊆ (S, S′) if S0 ⊆ S and S′

0 ⊆ S
′.

Complete separators can be characterized by introducing the forward and backward
invariants. Let us consider the following sets for every pair (S, S′) of configurations sets and
for every a ∈ Σ:

postaV(S) = {s
′ ∈ Nn | ∃s ∈ S s

a
−→V s′}

preaV(S
′) = {s ∈ Nn | ∃s′ ∈ S′ s

a
−→V s′}

A set S ⊆ Nn is called a forward invariant if postaV(S) ⊆ S for every a ∈ Σ. A set S′ ⊆ Nn

is called a backward invariant if preaV(S
′) ⊆ S′ for every a ∈ Σ. Note that a pair (S, S′) of

configuration sets is a complete separator if and only if (S, S′) is a partition of Nn, S is a
forward invariant and S′ is a backward invariant.

In this section we prove that Presburger separators are included in Presburger com-
plete separators. In general (post∗V(S),pre

∗
V(S

′)) is a separator that is neither complete nor
Presburger (see Example 2.4). That means, this separator must be over-approximated by
another one.

Remark 8.1. In the sequel, we often use the fact that a pair (S, S′) of subsets of Nn is a
separator if and only if post∗V(S)∩ pre

∗
V(S

′) = ∅ if and only if post∗V(S)∩S
′ = ∅ if and only

if S ∩ pre∗V(S
′) = ∅.

Lemma 8.2. Let (S0, S
′
0) be a Presburger separator with a non-empty domain D0. There

exists a Presburger separator (S, S′) with a domain D such that S0 ⊆ S, S′
0 ⊆ S′, and such

that:
dim(D) < dim(D0)

Proof. We first define a set S′ that over-approximates S′
0 and such that (S0, S

′) is a separator.
As S0 is semi-linear, Theorem 6.4 shows that post∗V(S0) is a Petri set. As D0 is semi-linear,
we deduce that post∗V(S0) ∩D0 is equal to a finite union of pseudo-linear sets X1, . . . ,Xk.
Let us consider some linearizations L1, . . . , Lk of these pseudo-linear sets and let us define
the following Presburger set S′.

S′ = S′
0 ∪ (D0\(

k
⋃

j=1

Lj))

We observe that post∗V(S0)∩S
′ = ∅ since post∗V(S0)∩S

′
0 = ∅ and post∗V(S0)∩D0 ⊆

⋃k
j=1Lj .

We have proved that S′ contains S′
0 and (S0, S

′) is a separator.

Now we define symmetrically a set S that over-approximates S0 and such that (S, S′)
is a separator. As S′ is semi-linear, Theorem 6.4 shows that pre∗V(S

′) is a Petri set. As D0

is semi-linear we deduce that D0 ∩ pre∗V(S
′) is equal to a finite union of pseudo-linear sets



20 J. LEROUX

X ′
1, . . . ,X

′
k′ . Let us consider some linearizations L′

1, . . . , L
′
k′ of these pseudo-linear sets and

let us define the following Presburger set S.

S = S0 ∪ (D0\(
k′
⋃

j′=1

L′
j′))

Once again, note that S ∩ pre∗V(S
′) = ∅. Thus S contains S0 and (S, S′) is a separator.

Let D be the domain of the separator (S, S′). From D0 = Nn\(S0 ∪ S
′
0), we get the

following equality:

D = D0 ∩









⋃

1≤j≤k
1≤j′≤k′

(Lj ∩ L
′
j′)









From Xj ,X
′
j′ ⊆ D0 we get dim(Xj ∪X

′
j′) ≤ dim(D0). As Xj ⊆ post∗V(S0) ⊆ post∗V(S) and

X ′
j′ ⊆ pre∗V(S

′) and (S, S′) is a separator, we deduce that Xj and X ′
j′ are two pseudo-linear

sets with an empty intersection. Proposition 7.10 provides dim(Lj ∩ L
′
j′) < dim(Xj ∪X

′
j′).

We deduce dim(D) < dim(D0).

An induction over the dimension of the domain D of a Presburger separator provides
the following Theorem 8.3 thanks to Lemma 8.2.

Theorem 8.3. Presburger separators are included in Presburger complete separators.

As ({s}, {s′}) is a Presburger separator if (s, s′) 6∈
∗
−→V , the previous theorem shows that

there exists a Presburger complete separator (S, S′) that contains ({s}, {s′}. By considering
I = S, the following Corollary 8.4 is proved.

Corollary 8.4. Let (s, s′) be a pair of configurations of a VAS V. We have (s, s′) 6∈
∗
−→V if

and only if there exists a Presburger formula denoting a forward invariant I such that s ∈ I
and s′ 6∈ I.

9. Conclusion

Thanks to the classical KLMST decomposition we have proved that the Parikh Images of
languages recognized by VASs are semi-pseudo-linear. As an application, we have proved
that for every pair (s, s′) of configurations in the complement of the reachability relation
there exists a Presburger formula ψ(x) denoting a forward invariant I such that s ∈ I and
s′ 6∈ I. We deduce that the following algorithm decides the reachability problem.

1 Reachability( s , V , s′ )
2 k ← 0
3 repeat forever

4 for each word σ ∈ Σk

5 if s
σ
−→V s′

6 return ‘‘reachable ’’
7 for each Presburger formula ψ(x) of length k
8 if ψ(s) and ¬ψ(s′) are true and
9 ψ(x) ∧ y = x+ δ(a) ∧ ¬ψ(y) unsat ∀a ∈ Σ
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10 return ‘‘unreachable’’
11 k ← k + 1

The correctness is immediate and the termination is guaranteed by Corollary 8.4. This al-
gorithm is the very first one that does not require the classical KLMST decomposition for
its implementation. Even though the termination proof is based on the KLMST decompo-
sition, the complexity of the algorithm does not depend on this decomposition. In fact, the

complexity depends on the minimal size of a word σ ∈ Σ∗ such that s
σ
−→V s′ if s

∗
−→V s′,

and the minimal size of a Presburger formula ψ(x) denoting a forward invariant I such that
s ∈ I and s′ 6∈ I otherwise. We left as an open question the problem of computing lower
and upper bounds for these sizes. Note that the VAS exhibiting a large (Ackermann size)
but finite reachability set given in [8] does not directly provide an Ackerman lower-bound
for these sizes since inductive separators can over-approximate reachability sets.

We also left as an open question the problem of adapting the Counter Example Guided
Abstraction Refinement approach [1] to obtain an algorithm for the VAS reachability problem
with termination guarantee. In practice, such an algorithm should be more efficient than
the previously given enumeration-based algorithm.
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Appendix A. Proofs of Proposition 3.6

An MRGS is said to be original-perfect if it satisfies the large solution condition and its
marked reachability graphs satisfy the input and output loop conditions.

Even if the proof of the following lemma is immediate by induction over the length of
w,w′, it is central in the KLMST decomposition.

Lemma A.1 (Continuity).

• For every x
w
−→V there exists an integer c ≥ 0 such that y

w
−→V for every extended config-

uration y satisfying y[i] ≥ c if x[i] = ⊤ and y[i] = x[i] otherwise for every i.

• For every
w′

−→V x′ there exists an integer c′ ≥ 0 such that
w′

−→V y′ for every extended
configuration y′ satisfying y′[i] ≥ c′ if x′[i] = ⊤ and y′[i] = x′[i] otherwise for every i.

Lemma A.2. Perfect MRGSs are original-perfect.

Proof. Let us consider a perfect MRGS U . Notice that U satisfies the large solution condition
since from every accepted sequence (sj , πj, s

′
j)j we deduce a solution (sj , ||πj ||, s

′
j)c. Since

the input loop condition and the output loop condition are symmetrical, we just prove that
the marked reachability graphMj satisfies the input loop condition. We consider an integer
c ∈ N satisfying c >mj [i] for every i such that mj [i] < xj [i]. Since U is perfect, there exists

an accepted sequence (sj , πj , s
′
j)0≤j≤k, a prefix xj

wj
−→V xj of πj , an extended configuration

rj such that sj
wj
−→V rj and such that rj [i] ≥ c for every i such that xj [i] = ⊤. Since sj✂mj

we deduce that sj ≤mj. As sj
wj
−→V rj and sj ≤mj there exists an extended configuration

yj such that mj

wj
−→V yj. Let us prove that yj [i] >mj [i] for every i such that mj[i] < xj [i].

Let i be such an integer. Since mj ✂ xj and mj [i] < xj [i] we deduce that mj [i] ∈ N and
xj [i] = ⊤. From xj[i] = ⊤ we deduce that rj [i] ≥ c. From mj [i] ∈ N we deduce that
sj [i] = mj[i]. Thus yj [i] = rj[i] ≥ c > sj[i] = mj [i]. Lemma 3.3 shows that Mj satisfies
the input loop condition.

Now, let us consider an original-perfect MRGS U and let us prove that U is perfect.
Since Mj satisfies the input and output loop conditions, Lemma 3.3 and Lemma 3.4 show
that:

• there exist a cycle θj = (xj

wj
−→Gj

xj) and an extended configuration yj satisfying both

mj

wj
−→V yj and yj [i] >mj[i] for every i such that mj [i] < xj [i],

• there exist a cycle θ′j = (x′
j

w′
j
−→Gj

x′
j) and an extended configuration y′

j satisfying both

y′
j

w′
j
−→V m′

j and y′
j [i] >m′

j[i] for every i such that m′
j [i] < x′

j [i].

The proof that U is perfect is obtained by first exhibiting a solution ξ with components in
N of the characteristic system and a solution ξ0 with components in N of the homogeneous
characteristic system satisfying some particular properties. These two solutions ξ and ξ0 are
respectively defined in Lemma A.3 and Lemma A.4.

Lemma A.3. There exists a solution ξ = (sj , µj , s
′
j)j of the characteristic system such that

for every j:

• sj is a configuration satisfying sj
wj
−→V ,
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• µj is the Parikh image of a path πj = (xj

σj
−→Gj

x′
j),

• s′j is a configuration satisfying
w′

j
−→V s′j .

Proof. As mj

wj
−→V , Lemma A.1 shows that there exists an integer c ≥ 0 such that sj

wj
−→V

for every configuration sj satisfying sj [i] ≥ c if mj [i] = ⊤ and sj [i] = mj [i] otherwise for

every i. Symmetrically, as
w′

j
−→V m′

j , Lemma A.1 shows that there exists an integer c′ ≥ 0

such that
w′

j
−→V s′j for every configuration s′j satisfying s′j [i] ≥ c

′ if m′
j [i] = ⊤ and s′j [i] = m′

j[i]
otherwise for every i. Since U satisfies the large solution condition there exists a solution
ξ = (sj , µj , s

′
j)j with components in N of the characteristic system such that sj and s′j

satisfies the previous conditions and such that µj(t) ≥ 1 for every t ∈ Tj . As Gj is strongly

connected, Euler’s Lemma shows that µj is the Parikh image of a path πj = (xj

σj
−→Gj

x′
j).

Lemma A.4. There exists a solution ξ0 = (s0,j , µ0,j, s
′
0,j) of the homogeneous characteristic

system such that for every j:

• the value s0,j[i] is strictly positive if mj [i] = ⊤ and it is equal to 0 otherwise for every i,
• the value (s0,j + δ(wj))[i] is strictly positive if xj[i] = ⊤ and it is equal to 0 otherwise for

every i,

• µ0,j − (||θj || + ||θ
′
j ||) is the Parikh image of a cycle π0,j = (xj

σ0,j
−−→Gj

xj) and |π0,j|t > 0
for every t ∈ Tj,
• the value (s′0,j − δ(w

′
j))[i] is strictly positive if x′

j[i] = ⊤ and it is equal to 0 otherwise for
every i, and
• the value s′0,j[i] is strictly positive if m′

j [i] = ⊤ and it is equal to 0 otherwise for every i.

Proof. As U satisfies the large solution condition, Lemma 3.5 shows that there exists a
solution ξ0 = (s0,j , µ0,j , s

′
0,j)j with components in Q of the homogeneous characteristic

system satisfying the additional constraints s0,j [i] > 0 if mj [i] = ⊤, s′0,j [i] > 0 if m′
j [i] = ⊤,

and µ0,j(t) > 0 for every t ∈ Tj. By multiplying ξ0 by a positive integer, we can assume that
ξ0 is a solution with components in Z satisfying the additional constraints. We are going to
prove that there exists a positive integer c ≥ 1 such that cξ0 satisfies the lemma.

First of all, observe that for every c ≥ 1 and for every j:

• the value cs0,j [i] is strictly positive if mj[i] = ⊤ and it is equal to 0 otherwise for every i,
• the value cs′0,j [i] is strictly positive if m′

j[i] = ⊤ and it is equal to 0 otherwise for every i.

Let us consider 1 ≤ i ≤ n. Let us prove that there exists a positive integer ci ≥ 1 such that
for every c ≥ ci the value (cs0,j + δ(wj))[i] is strictly positive if xj [i] = ⊤ and it is equal to 0
otherwise. Note that mj [i]✂xj [i] thus either mj[i] = xj [i] ∈ N, or (mj [i],xj [i]) ∈ N×{⊤},
or mj [i] = xj [i] = ⊤. We separate the proof following these three cases. Let us first
consider the case mj[i] = xj [i] ∈ N. As mj[i] ∈ N and ξ0 is a solution of the homogeneous
characteristic system, we get s0,j [i] = 0. The cycle θj shows that xj + δ(wj) = xj. From
xj [i] ∈ N we deduce that δ(wj)[i] = 0. In particular (cs0,j + δ(wj))[i] = 0 and we have
proved the case mj [i] = xj [i] ∈ N by considering ci = 1. Let us consider the second case
(mj [i],xj [i]) ∈ N × {⊤}. As mj[i] ∈ N we deduce that s0,j[i] = 0. Since mj [i] < xj [i] the
condition satisfied by the loop θj shows that yj[i] > mj [i]. As yj [i] = mj[i] + δ(wj)[i], we
deduce that δ(wj)[i] > 0. In particular for every c ≥ 1 we have (cs0,j + δ(wj))[i] > 0 and we
have proved the case (mj [i],xj [i]) ∈ N× {⊤} by considering ci = 1. Finally, let us consider
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the case mj [i] = xj [i] = ⊤. As mj[i] = ⊤ we deduce that s0,j[i] > 0 in particular there
exists an integer ci ≥ 1 large enough such that (cs0,j + δ(wj))[i] > 0 for every c ≥ ci. We
have proved the three cases.

Symmetrically, for every 1 ≤ i ≤ n, there exists an integer c′i ≥ 0 such that for every
c ≥ c′i the value (cs′0,j−δ(w

′
j))[i] is strictly positive if x′

j [i] = ⊤ and it is equal to 0 otherwise.

Finally, as µ0,j(t) > 0 for every t ∈ Tj and for every 0 ≤ j ≤ k, we deduce that there
exists an integer c ≥ 1 large enough such that cµ0,j(t) > |θj|t+ |θj′ |t for every t ∈ Tj and for
every 0 ≤ j ≤ k. Naturally, we can also assume that c ≥ ci and c ≥ c′i for every 1 ≤ i ≤ n.
Let us replace ξ0 by cξ0. As µ0,j(t)−|θj|t+ |θj′|t > 0 for every t ∈ Tj , Euler’s Lemma shows

that µ0,j − (||θj ||+ ||θ
′
j ||) is the Parikh image of a cycle π0,j = (xj

σ0,j
−−→Gj

xj).

Let us fix notations satisfying both Lemma A.3 and Lemma A.4. We now provide
technical lemmas that prove together that U is perfect.

Lemma A.5. For every c ≥ 0 we have:

sj + cs0,j
wc

j
−→V sj + c(s0,j + δ(wj))

s′j + c(s′0,j − δ(w
′
j))

(w′
j)

c

−−−→V s′j + cs′0,j

Proof. Since the two relations are symmetrical, we just prove the first one. The choice of

ξ satisfying Lemma A.3 shows that sj
wj
−→V . Let us consider c ∈ N and let us prove by

induction over c′ that for every 0 ≤ c′ ≤ c we have:

sj + cs0,j
wc′

j
−−→V sj + (c− c′)s0,j + c′(s0,j + δ(wj))

Naturally, the case c′ = 0 is immediate. The induction is obtained just by observing that

s0,j ≥ 0, s0,j + δ(wj) ≥ 0 and sj
wj
−→V .

Lemma A.6. There exists c0 ≥ 0 such that for every c ≥ c0:

sj + c(s0,j + δ(wj))
σc
0,j
−−→V sj + c(s′0,j − δ(w

′
j))

Proof. Since there exists a path in Gj from xj to x′
j we deduce that xj [i] = ⊤ if and only if

x′
j [i] = ⊤. We denote by uj the vector in {0, 1}n satisfying uj [i] = 1 if xj [i] = ⊤ = x′

j [i] and

satisfying uj[i] = 0 otherwise. From the choice of ξ0 satisfying Lemma A.4, we observe that

s0,j+δ(wj) ≥ uj and s′0,j−δ(w
′
j) ≥ uj. Note that limc→+∞(sj+cuj) = xj . As xj

σ0,j
−−→Gj

xj ,

Lemma A.1 proves that there exists an integer c0 ≥ 0 such that sj + c0uj

σ0,j
−−→V . Now, let

us consider an integer c ≥ c0. Let us prove by induction over c′ that for every 0 ≤ c′ ≤ c,
we have:

sj + c(s0,j + δ(wj))

σc′

0,j
−−→V

sj + (c− c′)(s0,j + δ(wj)) + c′(s′0,j − δ(w
′
j))

Naturally, the case c′ = 0 is immediate. Assume the previous relation holds for an integer
c′ such that 0 ≤ c′ < c and let us consider c′′ = c′ + 1. From s0,j + δ(wj) ≥ uj and
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s′0,j− δ(w
′
j) ≥ uj we deduce that (c− c′)(s0,j + δ(wj))+ c

′(s′0,j − δ(w
′
j)) ≥ cuj ≥ c0uj . Thus,

the induction directly comes from sj+c0uj

σ0,j
−−→V and s0,j+δ(wj)+δ(σ0,j)+δ(w

′
j) = s′0,j .

Lemma A.7. There exists c′ ≥ 0 such that for every c ≥ c′:

sj + c(s′0,j − δ(w
′
j))

σj
−→V s′j + c(s′0,j − δ(w

′
j))

Proof. As limc→+∞(s′j+c(s
′
0,j−δ(w

′
j))) = x′

j and xj

σj
−→Gj

x′
j , Lemma A.1 proves that there

exists c′ ≥ 0 such that
σj
−→V (s′j + c(s′0,j − δ(w

′
j))) for every c ≥ c′. Since sj + δ(σj) = s′j we

are done.

Now, let us consider an integer c ≥ 0 satisfying c ≥ c0 and c ≥ c′ where c0 and c′ are
respectively defined by Lemma A.6 and Lemma A.7. For each 0 ≤ j ≤ k, we consider the
following path:

πj,c = (xj

wc
j
−→Gj

xj

σc
0,jσj

−−−−→Gj
x′
j

(w′
j)

c

−−−→Gj
x′
j)

We have proved that (sj + cs0,j , πj,c, s
′
j + cs′0,j)j is an accepted sequence for U . Thus U is

perfect.
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