Logical Methods in Computer Science
Vol. 8(3:16)2012, pp. 1-29 Submitted Oct. 15, 2011
www.Imcs-online.org Published Sep. 14, 2012

CANONIZED REWRITING AND GROUND AC COMPLETION
MODULO SHOSTAK THEORIES : DESIGN AND IMPLEMENTATION

SYLVAIN CONCHON, EVELYNE CONTEJEAN, AND MOHAMED IGUERNELALA

LRI, Univ Paris-Sud, CNRS, Orsay F-91405, INRIA Saclay — Ile-de-France, ProVal, Orsay, F-91893
e-mail address: {Sylvain.Conchon, Evelyne.Contejean, Mohamed.Iguernelala}@lri.fr

ABSTRACT. AC-completion efficiently handles equality modulo associative and commuta-
tive function symbols. When the input is ground, the procedure terminates and provides a
decision algorithm for the word problem. In this paper, we present a modular extension of
ground AC-completion for deciding formulas in the combination of the theory of equality
with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint
Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular
way ground AC-completion with the canonizer and solver present for the theory X. This
integration rests on canonized rewriting, a new relation reminiscent to normalized rewrit-
ing, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and
terminating, and is implemented to extend the core of the ALT-ERGO theorem prover.

1. INTRODUCTION

The mechanization of mathematical proofs is a research domain that receives an increasing
interest among mathematicians and computer scientists. In particular, automated theorem
provers (ATP) are now used in several contexts (e.g. proof of programs, interactive provers)
to prove “simple” but overwhelming intermediate results. While more and more efficient,
ATP have difficulties to handle some mathematical operators, such as union and intersection
of sets, which satisfy the following associativity and commutativity (AC) axioms

VeVyVz. u(z,u(y,z) = wu(u(z,y),z) (A)
VeNy. u(z,y) = u(y,x) (C)

Indeed, the mere addition of AC axioms to a prover will usually glut it with plenty of useless
equalities which will strongly impact its performancesﬂ. In order to avoid this drawback,
built-in procedures have been designed to efficiently handle AC symbols. For instance,

1998 ACM Subject Classification: F.4.1, G.4.

Key words and phrases: decision procedure; associativity and commutativity; rewriting; AC-completion;
SMT solvers; Shostak’s algorithm.

Work partially supported by the French ANR project ANR-08-005 Decert.

lGiven a term t of the form u(cr,u(cz, . .., u(Cn, Cny1) - . .), the axiomatic approach may have to explicitly
handle the (2n)!/n! terms equivalent to ¢.

|IEm| LOGICAL METHODS ®© S. Conchon, E. Contejean, and M. Iguernelala
IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(3:16)2012 @ [Creative Commons

http://creativecommons.org/about/licenses

2 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

SMT-solvers incorporate dedicated decision procedures for some specific AC symbols such
as arithmetic or boolean operators. On the contrary, algorithms found in resolution-based
provers such as AC-completion allow a powerful generic treatment of user-defined AC sym-
bols.

Given a finite word problem A, s; = t; - s =t where the function symbols are either
uninterpreted or AC, AC-completion attempts to transform the conjunction A;.;s; = t;
into a finitely terminating, confluent term rewriting system R whose reductions preserve
identity. The rewriting system R serves as a decision procedure for validating s = ¢ modulo
AC: the equation holds if and only if the normal forms of s and ¢ w.r.t R are equal modulo
AC. Furthermore, when its input contains only ground equations, AC-completion terminates
and outputs a convergent rewriting system [Mar91].

Unfortunately, AC reasoning is only a part of the automated deduction problem, and
what we really need is to decide formulas combining AC symbols and other theories. For
instance, in practice, we are interested in deciding finite ground word problems which con-
tain a mixture of uninterpreted, interpreted and AC function symbols, as in the following
assertion

u(a,co —c1) =a A uler,ez) — f(b) =u(d,d) A

Fa=u(a,0),

d=c1+1 N ea=b A ulber) = f(ea) N ca=2%xc1+1
where u is an AC symbol, 4+, —, * and the numerals are from the theory of linear arithmetic,
f is an uninterpreted function symbol and the other symbols are uninterpreted constants.
A combination of AC reasoning with linear arithmetic and the free theory £ of equality is
necessary to prove this formula. Linear arithmetic is used to show that co — ¢y = ¢ + 1
so that (i) u(a,c; + 1) = a follows by congruence. Independently, e = b and d = ¢; + 1
imply (i) u(c1 + 1,¢1 +1) = 0 by congruence, linear arithmetic and commutativity of w.
AC reasoning can finally be used to conclude that (i) and (i7) imply that u(a,c; +1,¢1 +1)
is equal to both a and u(a,0).

There are two main methods for combining decision procedures for disjoint theories.
First, the Nelson-Oppen approach [NOT9] is based on a variable abstraction mechanism and
the exchange of equalities between shared variables. Second, the Shostak’s algorithm [Sho84]
extends a congruence closure procedure with theories equipped with canonizers and solvers,
i.e. procedures that compute canonical forms of terms and solve equations, respectively.
While ground AC-completion can be easily combined with other decision procedures by the
Nelson-Oppen method, it cannot be directly integrated in the Shostak’s framework since it
actually does not provide a solver for the AC theory.

In this paper, we investigate the integration of Shostak theories in ground AC-completion.
We first introduce a new notion of rewriting called canonized rewriting which adapts nor-
malized rewriting to cope with canonization. Then, we present a modular extension of
ground AC-completion for deciding formulas in the combination of the theory of equality
with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint
Shostak theory X. The main ideas of our integration are to substitute standard rewriting
by canonized rewriting, using a global canonizer for AC and X, and to replace the equation
orientation mechanism found in ground AC-completion with the solver for X.

AC-completion has been studied for a long time in the rewriting community [LB77,
PS81]. A generic framework for combining completion with a generic built-in equational
theory E has been proposed in |[JK86]. Normalized completion [Mar96] is designed to use a
modified rewriting relation when the theory F is equivalent to the union of the AC theory

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 3

and a convergent rewriting system S. In this setting, rewriting steps are only performed on
S-normalized terms. AC(X) can be seen as an adaptation of ground normalized completion
to efficiently handle the theory E when it is equivalent to the union of the AC theory and
a Shostak theory X. In particular, S-normalization is replaced by the application of the
canonizer of X. This modular integration of X allows us to reuse proof techniques of ground
AC-completion [Mar91] to show the correctness of AC(X).

Tiwari [Tiw09] efficiently combined equality and AC reasoning in the Nelson-Oppen
framework. Kapur [Kap97] used ground completion to demystify Shostak’s congruence
closure algorithm and Bachmair et al. [BTV03|] compared its strategy with other ones into
an abstract congruence closure framework. While the latter approach can also handle AC
symbols, none of these works formalized the integration of Shostak theories into (AC) ground
completion.

Outline. Section [recalls standard ground AC completion. Section [3]is devoted to
Shostak theories and global canonization. Section Ml presents the AC(X) algorithm and il-
lustrates its use through an example. The correctness of AC(X) is detailed in Section [El
In Section [6, we show that a simple preprocessing step allows us to use a partial multiset
ordering instead of a full AC-compatible reduction ordering. Experimental results are pre-
sented in Section[7l Using a simple example, we illustrate in Section [Blhow the instantiation
mechanism of ALT-ERGO has to be extended modulo AC in order to fully integrate AC(X)
as a core decision procedure for our SMT solver. Conclusion and future works are presented
in Section

2. GROUND AC-COMPLETION

In this section, we first briefly recall the usual notations and definitions of [BN9S8| [D.J90]
for term rewriting modulo AC. Then, we give the usual set of inference rules for ground
AC-completion procedure and we illustrate its use through an example.

Terms are built from a signature ¥ = X 40 W X¢ of AC and uninterpreted symbols, and
a set of variables X yielding the term algebra Tx(X). The range of letters a... f denotes
uninterpreted symbols, u denotes an AC function symbol, s, t, [, » denote terms, and x, ¥,
z denote variables. Viewing terms as trees, subterms within a term s are identified by their
positions. Given a position p, s|, denotes the subterm of s at position p, and s[r], the term
obtained by replacement of s|, by the term r. We will also use the notation s(p) to denote
the symbol at position p in the tree, and the root position is denoted by A. Given a subset
¥ of 3, a subterm t|, of ¢t is a X'-alien of ¢ if t(p) ¢ X’ and p is minimal w.r.t the prefix
word orderingd. We write Asy(t) the multiset of ¥'-aliens of ¢.

A substitution is a partial mapping from variables to terms. Substitutions are extended
to a total mapping from terms to terms in the usual way. We write to for the application of
a substitution o to a term t. A well-founded quasi-ordering [Der82] on terms is a reduction
quasi-ordering if s < ¢ implies so < to and [[s], < l[t],, for any substitution o, term [and
position p. A quasi-ordering =< defines an equivalence relation ~ as < N > and a partial
ordering < as <X N %#.

An equation is an unordered pair of terms, written s = t. The variables contained in
an equation, if any, are understood as being universally quantified. Given a set of equations
E, the equational theory of E, written =g, is the set of equations that can be obtained by

2Notice that according to this definition, a variable may be a X'-alien.

4 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

reflexivity, symmetry, transitivity, congruence and instances of equations in Ef. The word
problem for E consists in determining if, given two ground terms s and ¢, the equation s =~ ¢
is in =g, denoted by s =g t. The word problem for F is ground when E contains only
ground equations. An equational theory =g is said to be inconsistent when s =g t, for any
s and t.

A rewriting rule is an oriented equation, usually denoted by [— r. A term s rewrites to
a term t at position p by the rule [— r, denoted by s —>f _,, t, iff there exists a substitution
o such that s|, = lo and t = s[ro],. A rewriting system R is a set of rules. We write
s — g t whenever there exists a rule [— r of R such that s rewrites to ¢ by [— r at some
position. A normal form of a term s w.r.t to R is a term ¢ such that s —7% ¢ and ¢ cannot be
rewritten by R. The system R is said to be convergent whenever any term s has a unique
normal form, denoted s|g, and does not admit any infinite reduction. Completion [KB70]
aims at converting a set F of equations into a convergent rewriting system R such that the
sets =g and {s ~ t | s]r=tlr} coincide. Given a suitable reduction ordering on terms, it
has been proved that completion terminates when F is ground [Lan75].

Rewriting modulo AC. Let =4¢ be the equational theory obtained from the set:
AC = | {ulzy) ~uly,2), u(z,uly, 2)) ~ u(u(z,y),2) }.

uEX A
In general, given a set I of equations, it has been shown that no suitable reduction ordering
allows completion to produce a convergent rewriting system for FUAC. When F is ground,
an alternative consists in in-lining AC reasoning both in the notion of rewriting step and
in the completion procedure.

Rewriting modulo AC is directly related to the notion of matching modulo AC as
shown by the following example. Given a rule u(a, u(b, c))) — t, we would like the following
reductions to be possible:

(1) fule,u(b,a)),d) — f(t,d),

(2) u(a,u(c,u(d,b))) — ult,d).

Associativity and commutativity of u are needed in (1) for the subterm u(c, u(b, a)) to match
the term u(a, u(b, ¢)), and in (2) for the term u(a, u(c,u(d, b))) to be seen as u(u(a, u(b,c)),d),
so that the rule can be applied. More formally, this leads to the following definition.

Definition 2.1 (Ground rewriting modulo AC). A term s rewrites to a term ¢t modulo AC
at position p by the rule I — r, denoted by s _ﬂC\l _,, t, iff one of the following conditions
holds:

(1) slp =ac ! and t = s[r|,,

(2) 1(A) = v and there exists a term s’ such that s|, =ac u(l,s’) and t = s[u(r, s')],.

In order to produce a convergent rewriting system, ground AC-completion requires a
well-founded reduction quasi-ordering < total on ground terms with an underlying equiv-
alence relation which coincides with =4¢. Such an ordering will be called a total ground
AC-reduction ordering.

The inference rules for ground AC-completion are given in Figure[ll The rules describe
the evolution of the state of a procedure, represented as a configuration (E | R), where
FE is a set of ground equations and R a ground set of rewriting rules. The initial state is

3The equational theory of the free theory of equality £, defined by the empty set of equations, is simply
denoted =.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 5

(Eg | 0) where Ey is a given set of ground equations. Trivial removes an equation u ~ v
from E when v and v are equal modulo AC. Orient turns an equation into a rewriting rule
according to a given total ground AC-reduction ordering <. R is used to rewrite either
side of an equation (Simplify), and to reduce right hand side of rewriting rules (Compose).
Given a rule [— r, Collapse either reduces [at an inner position, or replaces [by a term
smaller than r. In both cases, the reduction of [to I’ may influence the orientation of the
rule I’ — r which is added to E as an equation in order to be re-oriented. Finally, Deduce
adds equational consequences of rewriting rules to E. For instance, if R contains two rules
of the form u(a,b) — s and u(a,c) — t, then the term u(a,u(b,c)) can either be reduced
to u(s,c) or to the term u(t,b). The equation u(s,c) ~ u(t,b), called critical pair, is thus
necessary for ensuring convergence of R. Critical pairs of a set of rules are computed by
the following function (a* stands for the maximal term w.r.t. size enjoying the assertion):

l—-reR I' 51 €eR }

— " ~ /
headCP(R) - { u(bar) ~ u(b 7T) Hau : l =.c u(au,b) VAN l/ =~ AC u(a”,b/)

FuU ~t}| R
TrivIAL< {S }‘ >s =ac t
(E|R)

. (EU{s~t}|R)
Or1ENT<E‘RU{S_>t}>t<s

. (FU{s~t}|R)
SimPLIFY > 5 —ac\R &'
)

(EU{s~t}|R
(E|RU{l—r}
(B RU{I =7}

ComPOSE) T —=Ac\R T

(E|RU{g—d, l—1}) I —=ac\g—al’
ColLAPSE 7 ‘
(EU{l'=r} | RU{g—d}) g=1lV (g=lNd=<T)
(E|R)
Deduce s ~ t € headCP(R)

(EU{s~t}|R)

Figure 1: Inference rules for ground AC-completion.

Example. To get a flavor of ground AC-completion, consider a modified version of the
assertion given in the introduction, where the arithmetic part has been removed (and un-
interpreted constant symbols renamed for the sake of simplicity)

u(ay,aq) = ay,ulas,ap) =~ ulas,as),as = a4, a6 = ag b a1 ~ u(ay,u(ag, as)).

The precedence a; <, - -+ <, ag <p u defines an AC-RPO ordering on terms [NR93] which
is suitable for ground AC-completion. The table in Figure [2] shows the application steps of
the rules given in Figure [Il from an initial configuration

({u(ar,aq) = a1,ulas, as) = u(as,as),as ~ as, a6 =~ az} |)

to a final configuration (@ | Ry), where Ry is the set of rewriting rules {1,3,5,7,10}. It
can be checked that a1 g, and u(ay, u(ag, ag))in are identical.

6 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

1 | u(aj,aq) > ag Ori u(ay,a4) = a3

2 | u(as,ag) — ulas,as) Ori u(as, ag) =~ u(as, as)
3 | ag — ay Ori a5 =~ a4

4 | u(as,ag) = u(aq,aq) Com 2 and 3

5 | ag — as Ori ag ~ ao

6 | u(as,az) =~ u(ay,ayq) Col 4 and 5

7 | u(ag,a4) — u(ag,az) Ori 6

8 | u(ay,as) =~ ular,u(as,az)) Ded from 1 and 7

9 | a1 =~ u(ar,ulas,az)) Sim 8 by 1

10| u(az,u(ag,az)) — a1 Ori9

Figure 2: Ground AC-completion example.

3. SHOSTAK THEORIES AND GLOBAL CANONIZATION

In this section, we recall the notions of canonizers and solvers underlying Shostak theories
and show how to obtain a global canonizer for the combination of the theories £ and AC
with an arbitrary signature disjoint Shostak theory X.

From now on, we assume given a theory X with a signature Yx. A canonizer for X
is a function cany that computes a unique normal form for every term such that s =x
t iff cany(s) = canx(t). A solver for X is a function solveyx that solves equations between
Yx-terms. Given an equation s = t, solvex(s & t) either returns a special value L when
s & tUX is inconsistent, or an equivalent substitution. A Shostak theory X is a theory with
a canonizer and a solver which fulfill some standard properties given for instance in [KC05]|.

Our combination technique is based on the integration of a Shostak theory X in ground
AC-completion. From now on, we assume that terms are built from a signature ¥ defined
as the union of the disjoint signatures ¥ 40, Yg and Yx. We also assume a total ground
AC-reduction ordering < defined on 75 (X) used later on for completion. The combination
mechanism requires defining both a global canonizer for the union of £, AC and X, and
a wrapper of solveyx to handle heterogeneous equations. These definitions make use of a
global one-to-one mapping « : 7y, — X (and its inverse mapping p) and are based on a
variable abstraction mechanism which computes the pure Yx-part [t] of a heterogeneous
term t as follows:

F(5D) when ¢ = f(5) and f € X,

a(t) otherwise.

11 =

The canonizer for AC defined in [Hul79] is based on flattening and sorting techniques which
simulate associativity and commutativity, respectively. For instance, the term u(u(u'(c,b),b), c)
is first flattened to u(u/(c,b),b,c) and then sorted] to get the term w(b,c,u/(c,b)). It has
been formally proved that this canonizer solves the word problem for AC [Con04]. However,

4For instance, using the AC-RPO ordering based on the precedence b <, ¢ <p .

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 7

this definition implies a modification of the signature ¥ o where arity of AC symbols be-
comes variadic. Using such canonizer would impact the definition of AC-rewriting given in
Section Bl In order to avoid such modification we shall define an equivalent canonizer that
builds degenerate trees instead of flattened terms. For instance, we would expect the normal
form of u(u(u'(c,b),b),c) to be u(b, u(c,u’(c,b))). Given a signature ¥ which contains ¥ 4¢
and any total ordering < on terms, we define canac by:

cangc(z) = when x € X,
cango(f (7)) = f(canac(?)) when f & X a0,
cango(u(ty,t2)) = u(sy,u(se,...,u(sp—1,8,)...))

where t; = canac(t;) for i € [1,2]

and {s1,...,s,} = A{u}(tll) U A{u}(té)
and s; I s;49 for i € [1,n — 1], when u € ¥ac.

We can easily show that cansc enjoys the standard properties required for a canonizer.
The proof that cansec solves the word problem for AC follows directly from the one given
in [Con04].

Using the technique described in [KCO05], we define our global canonizer can which
combines cany with can~ as follows:

can(z) = when z € X,
can(f (7)) = f(can(?)) when f € ¥¢,
can(u(s,t)) = canac(u(can(s),can(t))) when u € Yac,
can(f, (¥)) = canx(fy([can(?)]))p when f, € Xx.

Again, the proofs that can solves the word problem for the union £, AC and X and enjoys
the standard properties required for a canonizer are similar to those given in [KC05]. The
only difference is that cansc directly works on the signature ¥, which avoids the use of
a variable abstraction step when canonizing a mixed term of the form w(t1,t2) such that
U € XAC.

Using the same mappings «, p and the abstraction function, the wrapper solve can be

easily defined by:
1 if sol = =1
solve(s ~ f) = { if so vex([s] ~ [t]) ,
{zip—tip } if solvex([s] =~ [t]) = {z:i~t;}.
In order to ensure termination of AC(X), the global canonizer and the wrapper must be
compatible with the ordering < used by AC-completion, that is:
Lemma 3.1.
(1) Yt € Ty, can(t) <t,
(2) Vs,t € Ty, if solve(s ~t) =J{pi — vi} then v; < p;.
We can prove that the above properties hold when the theory X enjoys the following
local compatibility properties:
Axiom 3.2.

(1) vt € Ty, canx([t]) =< [t],
(2) Vs,t € Ty, if solvex([s] = [t]) = U{wzi = t;} then tip < xip.

8 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

To fulfill this axiom, AC-reduction ordering can be chosen as an AC-RPO order-
ing [NR93] based on a precedence relation <, such that ¥x <, ¥X¢ U X4c. From now
on, we assume that X is locally compatible with <.

Example. To solve the equation u(a,b) + a ~ 0, we use the abstraction
a={u(a,b) =z, a—y}

and call solveyx on x + y ~ 0. Since a < u(a,b), the only solution which fulfills the axiom
above is {z &~ —y}. We apply p and get the set {u(a,b) — —a} of rewriting rules.

4. GROUND AC-COMPLETION MODULO X

In this section, we present the AC(X) algorithm which extends the ground AC-completion
procedure given in Section 2 For that purpose, we first adapt the notion of ground AC-
rewriting to cope with canonizers. Then, we show how to refine the inference rules given in
Figure [1l to reason modulo the equational theory induced by a set E of ground equations
and the theories £, AC and X.

4.1. Canonized Rewriting. From the rewriting point of view, a canonizer behaves like a
convergent rewriting system: it gives an effective way of computing normal forms. Thus, a
natural way for integrating can in ground AC-completion is to extend normalized rewrit-
ing [Mar96].

Definition 4.1. Let can be a canonizer. A term s can-rewrites to a term t at position p
by the rule [— r, denoted by s W?—)T t, iff

5 _>€10\l—>r t/ and can(t') = t.

Example. Using the usual canonizer can 4 for linear arithmetic and the rule v : u(a,b) — a,
the term f(a + 2% u(b,a)) cang-rewrites to f(3 % a) by ~-, as follows:

fla+2xu(b,a)) —ac\y fla+2%*a)and cany(f(a+2%*a)) = f(3 *a).

Lemma 4.2. V s, t. s~ t = s =a0X~r - [

4.2. The AC(X) Algorithm. The first step of our combination technique consists in re-
placing the rewriting relation found in completion by canonized rewriting. This leads to the
rules of AC(X) given in FigureBl The state of the procedure is a pair {(E' | R) of equations
and rewriting rules. The initial configuration is { Ey | @) where Ej is supposed to be a set of
equations between canonized terms. Since AC(X)’s rules only involve canonized rewriting,
the algorithm maintains the invariant that terms occurring in £ and R are in canonical
forms. Trivial thus removes an equation u =~ v from FE when u and v are syntactically
equal. A new rule Bottom is used to detect inconsistent equations. Similarly to normalized
completion, integrating the global canonizer can in rewriting is not enough to fully extend
ground AC-completion with the theory X: in both cases the orientation mechanism has to
be adapted . Therefore, the second step consists in integrating the wrapper solve in the
Orient rule. The other rules are much similar to those of ground AC-completion except
that they use the relation ~~p instead of — 4c\g-

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 9

Eu{s=t}|R Eu{s=t}|R
TriviAL ({s AR s =t BotToMm < {s HER) solve(s,t) = L
(E|R) L

(EU{s~t}|R)
OriEnT solve(s,t) # L
(E'| RUsolve(s,t))

(BU{smt}|R) o e (EIRULI o))
(EU{s ~t}|R) (E|RU{l>7 1)

“~R ’f‘l

SimPLIFY

(E|RU{g—d, l—r}) L ogsqll
ColLAPSE 7 ‘
(FEU{l'=r} | RU{g—d}) g=1lV (g=INd=<T)
(E|R)
Deduce s ~ t € headCP(R)

(EU{s~it}|R)

Figure 3: Inference rules for ground AC-completion modulo X.

Example. We illustrate AC(X) on the example given in the introduction:

u(a,cg —c1) = a A uler,ez) — f(b) = u(d,d) A
drci+1ANey=bAulbe)r flea) Neam2xcp+1

The table given in Figure [shows the application of the rules of AC(X) on the example
when X is instantiated by linear arithmetic. We use an AC-RPO ordering based on the
precedence 1 <, 2 <, a <, b <, ¢1 <p 2 <p d <, e1 <p e2 <p f <, u. The procedure
terminates and produces a convergent rewriting system Ry = {3,5,9,10,11,13,16}. Using
Ry, we can check that a and u(a,0) can-rewrite to the same normal form.

Fa = u(a,0).

5. CORRECTNESS

In this section, we give detailed proofs for the correctness of AC(X). This property is
stated by the theorem below and its proof is based on three intermediate theorems, stating
respectively soundness, completeness and termination.

As usual, in order to enforce correctness, we cannot use any (unfair) strategy. We say
that a strategy is strongly fair when no possible application of an inference rule is infinitely
delayed and Orient is only applied over fully reduced terms.

Theorem 5.1. Given a set E of ground equations, the application of the rules of AC(X)
under a strongly fair strategy terminates and either produces 1 when EU AC UX is incon-
sistent, or yields a final configuration (O | R) such that:

Vs, t € Ts. s = t <= can(s), = can(t)3,.

E,AC,X
In the following, we shall consider a fixed run of the completion procedure
(Eg|0)—=(E | Ri)—=...=>{(Ey | Ry)—= (Epy1 | Rog1) — ...

starting from the initial configuration (Ey | 0). We denote Ry, (resp. Eoo) the set of all
encountered rules | J,, Ry, (resp. equations |, E,) and R, (resp. E,,) the set of persistent

rules U, ;> B (vesp. equations U, (;s,, £i)-

10 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

1 | ula,ca —c1) = a Ori u(a,co —c1) = a

2 | u(ey,es) = u(d,d) + f(b) Ori u(ey,e2) — f(b) =~ u(d, d)

3| d—ci+1 Orid~c +1

4 | u(er,e2) = uler +1,¢1 +1)+ f(b) Com 2 and 3

5| ea—b Oriey;~b

6 | u(byer) =u(cy+1,c1+1)+ f(b) Col 4 and 5

7 | u(byer) = ulcr +1,c1 + 1)+ f(b) Oriu(b,e1) =~ u(ci+1,c1+1)+ f(b)
8 | u(ci+1,e14+1)+ f(b) = f(b) Sim u(b,e1) ~ f(e2) by 5 and 7

9 | ulci+1l,c1+1)—0 Oriu(ci +1,¢1 4+ 1)+ f(b) = f(b)
10| u(b,e1) — f(b) Com 7 and 9

11| cg > 2x%cy +1 Orico~2xcy+1

12| uw(a,e1+1)=~a Col 1 and 11

13| u(a,c1+1) —a Oriu(a,c1+1)~a

14| u(0,a) ~ u(a a+1) Ded from 9 and 13

15| u(0,a) ~ Sim 14 by 13

16| u(0,a) — Ori 15

Figure 4: AC(X) on the running example.

The strongly fair strategy requirement implies in particular that headCP(R,) C F,
E, =0 and R, is inter-reduced, that is none of its rules can be collapsed or composed by
another one. Due to the assumptions made over canyx and <, the following valid properties
will be continuously used in the proofs:

Vt. can(t) < t,
Vs, t. s>t <= s =4ct,
Vs,t. s ~p .t =1 <s.

5.1. Soundness. The soundness property of AC(X) is ensured by the following invariant:

Theorem 5.2. For any configuration (E, | R,) reachable from (Ey | 0),
Vs, t, (S,t) eFE,UR, — s =AC,X,Eq t.

Proof. The invariant obviously holds for the initial configuration and is preserved by all
the inference rules. The rules Simplify, Compose, Collapse and Deduce preserve the
invariant since for any rule [— r, if | =40 x g, 7, for any term s rewritten by ~;_,, into t,
then s =40 x g, t. If Orient is used to turn an equation s ~ t into a set of rules {p; — v;},
by definition of solve, p; = x;p and v; = t;p, where solvex([s] = [t]) = {z: = t:} .
By soundness of solvex x; =x [q~[q ti- An equational proof of x; =x [q~[q ti can be
instantiated by p, yielding an equational proof p; =x s~¢ v;. Since by induction s =40 x g, t
holds, we get p; =ac x £, Vi-]

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 11

5.2. Completeness. Completeness is established in several steps using a variant of the
technique introduced by Bachmair et al. in [BDHS86| for proving completeness of completion.
This technique transforms a proof between two terms which is not under a suitable form
into a smaller one, and the smallest proofs are the desired ones.

The proofs we are considering are made of elementary steps, either equational steps,
with AC, X and F+, or rewriting steps, with R, and the additional (possibly infinite) rules

Rean = {t — can(t) | can(t) # t}.

Rewriting steps with R, can be either ~»p_ or — chE-
The measure of a proof is the multiset of the elementary measures of its elementary
steps. The measure of an elementary step is a 5-tuple of type

multiset(7n(X)) x Nx N x Tx(X) x To(X).
It takes into account the number of terms which are in a canonical form in an elementary
proof: the canonical weight of a term ¢, wean(t) is equal to 0 if can(t) =a¢ t and to 1
otherwise. Notice that if wean(t) = 1, then can(t) < t, and if wean(t) = 0, then can(t) ~ t.
The measure of an elementary step between ¢ and ¢, is defined as follows:

e When performed thanks to an equation, it is equal to ({t1,t2}, -, -, -, -).
e When performed thanks to a rule [— r € Ry, it is equal to

({1}, 1, wean (t1) + wean(t2),1,7) if Ty ~>iy b2 OF E1 =21 B2,
and to
({{t2}, 1, wcan(tl) + wcan(t2)7 lv T) if ¢ gty O 1y 4=y to.
In the case of a ~ step, the measure is actually ({¢;}, 1, wean(t;),1,7) since the reduct is

always in a canonical form.
e When performed thanks to a rule of R.., is equal to

({{tl]},o,wcan(tl) +wcan(t2),t1,t2) if t ~— Rean ta,
and to
({tz}},o,wcan(tl) —|—’wcan(t2),t2,t1) if t1 <R, to.
Elementary steps are compared lexicographically using the multiset extension of =< for the
first component, the usual ordering over natural numbers for the components 2 and 3, and
=< for last ones. Since =< is an AC-reduction ordering, the ordering defined over proofs is
well-founded.

The general methodology is to show that a proof which contains some unwanted ele-
mentary steps can be replaced by a proof with a strictly smaller measure. Since the ordering
over measures is well-founded, there exists a minimal proof, and such a minimal proof is of
the desired form.

Lemma 5.3. A proof containing an elementary step <—rg~t, where s =t € AC U X is
not minimal.

Proof. An elementary equational step using an equation s &~ t of AC' U X under the context
C[]p can be reduced: the subproof

Clslp <> Cltly

st

SHere,s —+r., t actually means s —AC\Ro, U and t = canac(t').

12 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

is replaced by

Clsly 2 can(C[s],) = can(Clt],) £ Clt.

The measure strictly decreases, since for the first subproof it is equal to

T Clslp, Cltlp}s - -~)}

and for the second one, it is equal to

(ACH - SO, (OB, - -, OV,

The rewrite steps —>g)c’;} only occur on a term which is not AC-equal to a canonical form

(which is denoted by the {0,1} exponent). The corresponding elementary measure occurs
in the global measure of the second subproof accordingly. L]

Lemma 5.4. A proof containing an elementary step +—>s~e, where s &= t € Eo, is not
menimal.

Proof. An elementary equational step using an equation s ~ t of E, under the context C[_],
can be reduced. Since FE,, is empty, there is a completion state where s = t disappears,
either by Simplify or Orient.

e If Simplify is used to reduce s into s’ by the rule [— r of Ry, the subproof
Clslp < Cltlp

is replaced by

Clslp j Cls'], <= Clt],.

s/t

l
The measure strictly decreases, since for the first subproof it is equal to

t{Clslp, Cltlp}s - -~ I}

and for the second one, it is equal to

{({{C[S]p}7 - =) —)7 ({{C[S/]p’ C[t]p}}v e i) —)}}7
and s = s
e If the rule Orient turns s &~ t into a set of rules 7 = {p; — v;}, by definition of solve
we have solvex([s] = [t]) = {z; = t;} (denoted as o) with p; = z;p and v; = ¢;p. Since
solvey is complete, [sJo =x [t]o. Consider a variable x of [s] or [¢],
- if x € {x;} then zpm = p;m = v; and zop = t;p = v;.
- if o & {x;} then xpm = zp (since zp & {p;}) and xop = xp (since zo = x).
In all cases, xpm = xop. The equational step using s &~ ¢ can be recovered as a compound
step using m and Rcan as follows:

Clsly = ClIslpl,—
Cllslonly = Cllsloply2 <Cllflopl, = ClIApr,
<-ClItlel, = Cltl.

The set of rules 7 belongs to Ry, and the measure of the new subproof is a multiset con-
taining only elements of the form ({C[s;],}, -, -, -,), where s; is a reduct of a subterm s or
t by an arbitrary number of steps of Ry, and Rcan. In any case, {C[s;], } < {C[s]p, C[t],}-
The new subproof is strictly smaller than the measure of the original subproof. L]

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 13

Lemma 5.5. A proof containing an elementary rewriting step truly of the form —pg_ or
—R., % not minimal.

Proof. Here, each elementary step s —»p__t is already a ~~p__ step if t = canyc(t) is in a
canonical form w.r.t can, or it can be replaced by

s~ can(t) «—t.
RCX) Rca.ﬂ

The measure of the first subproof is equal to

{({s} 1, wean(s) + wean(t), - -) },

and the measure of the second one is equal to

{({{8}7 17 wcan(s)7 - _)7 ({{t}}7 07 - _)}}7

with ¢t < s. Since wean(t) = 1, the measure strictly decreases.
The case s +—p_ t is symmetrical. L]

Lemma 5.6. A proof containing an elementary rewriting step of the form ~>;_,. or e~.._,
where | — 1 € Roo \ Ry is not minimal.

Proof. An elementary ~- step using a rule [— r of Ry, \ R, can be reduced. The rule [— r
disappears either by Compose or by Collapse.

e If Compose reduces r to ' = can(r[d]) by the rule g — d of R, the subproof
Cllp e can(C[r]p)

can be replaced by
Clllp ~, can(Clr']p) = can(Clr[d]],) o C[rlp.

l—r! d<—g

The identity can(C[r'],) = can(C[r[d]],) holds C[r'], and Clr[d]], are equal modulo Rcan,
that is AC U X, and such terms have the same canonical forms. The measure strictly
decreases, since for the first subproof it is equal to

fHCllp ¥ 1 wean (Cll]p), 1)},

and for the second one, it is equal to

fECU} 1, wean (Cllp), 1,7")), ({CIrIp 3, 0, - -)},
with 7/ < r < 1.
e If Collapse reduces [to I’ = can(l[d]) by the rule ¢ — d in Ry, the subproof

Clll, ljr can(Clr]p)

is replaced by
Cll]y ~ can(C[[d]],) = can(C[l'],) . C[l']p <— Clr]p — can(C[rp).

g_>d U'=r Rean

The measure strictly decreases, since for the first subproof it is equal to

fHCllp ¥, 1 wean (Cll]p), 1)},

and for the second one, it is equal to

{{Clllp}, 1, wean (Clllp), 9, d),
{HCW T} -~ - {CUBCI s - -~) (CIrlp ¥ - -)5 }-

14 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

The last three elements of the second multiset are strictly smaller than the element of the
first multiset, since I’ < [and 7 < [. The first element of the second multiset is strictly
smaller than the element of the first multiset, since either g < [, and the fourth component
decreases, or g ~ [and d < ¢. In this case, I’ = d < r. The first four components are
identical, and the last one decreases.

The case «~ is symmetrical. O
Lemma 5.7. A proof containing a peak s < p__ t —Rr.., S is not minimal.

Proof. All the terms s,t and s’ involved in the peak are equal modulo AC and X, hence

can(s) = can(s’). The subproof
8 < Rean t 7 Rewn s’

is replaced by
s —>%0’1}

The measure strictly decreases, since for the first subproof it is equal to
({1t} 0, wean (t) + wean(s), -), (£t} 0, Wean (t) + wean(s"), -)},
and for the second one, it is equal to

{(fs},0,wean(s), -)%, (£'}, 0, wean(s), -,)"V}

s and s’ are smaller than or equivalent to t (s,s’ < t), and the second component strictly
decreases, since can(s) and can(s’) are in a canonical form and ¢ is not. Il

can(s) = can(s') eﬁi} s

can

Lemma 5.8. A proof containing a peak s «~g_t ~>p, s is not minimal.

Proof. We make a case analysis over the positions of the reductions.
e In the parallel case, the subproof
s L t 4
r<l g—d

can be seen as

s = can(t[r]plglq) E t[rlplalq Z t[llplglq g—_);t[l]p[d]q a can(t[l],[d]y) = .

The above subproof can be replaced by
{0,1} {0,1}
s = can(t[r],[g]q) S tlrlplgly ~ can(t[r]pldly) o~ t[l]pld]q can(t[l]p[d],) = s’
can g—d r<Il Recan

The measure strictly decreases, since for the first subproof it is equal to

{({t}7 -7y _)7 ({t}7 - _)}}7

and for the second one, it is equal to

LA plalad - O, (Felrllgleds -,
({{tmp[d]q}v -y =y —)7 ({{t[l]p[d]q}}7 5oy o _){071}}}7

and both terms t[r],[g], and t[l],[d], are strictly smaller than t = t[l],[g],.

e If ¢ is a strict prefix of p, this means that [— r can be used to collapse the rule g — d,
which is impossible since the strategy is strongly fair, and the application of Collapse
cannot be infinitely delayed.

e The case where p is a strict prefix of ¢ is similar.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 15

e If p and ¢ are equal, this means that in both reductions, the extended rewriting has been
used (second case of definition [Z]). Otherwise, again, one rule could collapse the other.
This means that [and g have the same AC top function symbol u. When [and g do
not share a common subterm, the reasoning is similar to the parallel case. Otherwise, if
they share a common subterm, since the strategy is fair, the head critical pair between
[— r and g — d has been computed. Let a* the maximal common part between [and
g, l=,. u(a",b), and g =, u(a",b’). The critical pair is u(b',7) ~ u(b,d). The subterm
t|p, where both reductions occur is of the form u(a*, u(b, u(V',c))) (or u(a*,u(b, b)) if it
corresponds exactly to the critical pair).

The subproof can be replaced by

tlu(u(b, d),], — 5.

o /
5= E t[U(’U,(b 7T)7 C)]p u(b’,:“)—kiu)(b,d) Reon

The measure strictly decreases, since for the first subproof it is equal to

{({t}7 A) _)7 ({t}7 e _)}}7
and for the second one, it is equal to
{ (e luu®,r), Olp} - - -), ftlu(®’,), Olp, tu(u(d,), dp }, - - -),
{t[u(u(b7 d)? C]p}}v - = = —)}}7
and both t{u(u(’,r),c)], and t{u(u(b,d),c|, are strictly smaller than ¢. O

Lemma 5.9. A proof containing a peak s «~gt — g... s is not minimal.

The proof of this lemma is partly made by structural induction over ¢, and we need an
auxiliary result in order to study how behave a proof plugged under a context.

Definition 5.10. Given a context C[e],, and an elementary proof P, P plugged under
Cle],, denoted as C[P], is defined as follows:

(1) if P is an equational step s <>~y t, C[P], is Cls]p <riar Cltlp,

(2) if P is a rewriting step s — s, t, C[P], is C[s], —> 1 C[t]p,

(3) if P is a rewriting step s ~»_, t, C[P], is either

Clslp ~1—r can(Ct]p) <—%m Clt], if C[t], is not in a canonical form,

or
Cls]p ~+1—r can(C[t],) otherwise.

This definition is extended to a proof made of several steps, by plugging elementary
each step under the context. Notice that if a proof P relates two terms s and ¢, then C[P],
relates Cl[s], and C[t],.

Lemma 5.11. Let Py and Pa be two proofs which do not contain — g, nor <—pr_. If Pi
is strictly smaller than (resp. equivalent to) Pa, then C[Pi], is strictly smaller than (resp.
equivalent to) C[Pa],. Moreover if Py is a step s ~_, t, C[P1]p is strictly smaller than
Clslp ~1r Cltlp-

Proof. It is enough to show the wanted result for elementary steps. Let P; and P, be two
elementary steps such that P; is strictly smaller than Ps.

e If P, and P2 are — g, steps, they are of the form

Si—>ti

can

and the corresponding measures are ({s;}, 0, Wean(8;) + Wean(ti), Siy ti)-

16 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

- if 51 < s, then C[s1], < Clsa]p.

- if 81 ~ s9, and Wean(S1) + Wean(t1) < Wean($2) + Wean(t2). Since s1 ~ s9, by the AC-

totality of <, we know that s; =4¢ s2, hence wean($1) = Wean(s2). This means that
Wean(t1) = 0 and wean(t2) = 1. Hence t; =4¢ can(ty), t1 ~ can(ty) and ty #4¢ can(ts)
and can(ty) < to. Since s1 =4¢ s2, can(t1) = can(t2) holds, hence t; < to.
If we look at the plugged proofs, we have C[s1], >~ C[s2]p, Wean(C[s1]p) = Wean(C[s2]p),
Wean(Ct1]p) < Wean(Clta]p) = 1 and Ct1], < Cta]p. The measure is even on the first
component, and either strictly decreases on the second component, or weakly decreases
over the four first components, and strictly decreases over the last one. In all cases,
C[P1]p is strictly smaller than C[Ps],.

- if 81 ~ s9 and wWean(51) + Wean(t1) = Wean(S2) + Wean(t2), this means that ¢ < to.
The case Wean(t1) = Wean(t2) = 0 is impossible, since this would imply ¢; ~ can(t;) =
can(ty) ~ to. Hence wean(t1) = Wean(t2) = 1.

If we look at the plugged proofs, we have C[s1], >~ C[s2]p, Wean(C[s1]p) = Wean(C[s2]p),
Wean(Ct1]p) = Wean(Clt2]p) = 1 and Ct1], < Cta]p. The measure is even on the first
four components, and strictly decreases over the last one. C[P;], is strictly smaller than
C[Pa]p.

e if P; is a ~»-step, and Py is a — ., step, necessarily, the first component strictly decreases.

The measure of C[Py], is

{({{C[Sl]p}’ 1, wcan(c[sl]il))’ ll’ 7‘1), ({O[tl]p}7 0, - —){071}}’
and the measure of C[Ps], is ({C[s2]p},0, -, -, -), where t; < s1 < so. C[Py], is strictly
smaller than C[Py],.
e if P;isa — g, -step, and Py is a ~» step, necessarily, the first component weakly decreases
and the second component strictly decreases.
The measure of C[P1], is ({Cs1]p},0, -, -, -) which is strictly smaller than the measure

of C[sa]p ~1,—ry Cltalp, that is {({Cls2]p}, 1, Wean(C[s2]p), l2,2) } since s1 < so.
e if both P; and Py are ~~-steps, they are of the form

S~ tiu
liWT‘i

and the corresponding measures are ({s;}, 1, Wecan(si), li, 7). The measure of C[Py], is

{({Clsalp} L wean (Cls1p), by 1), (HO[01]p 1, 0, wean (Cltaly), Cltalp, can(Clta],) 1}

and the measure of C[s3]p ~+1,—r, Cltalp is ({C[s2]p}, 1, Wean (Cs2]p), l2, r2).
If 51 < s9, since t; < s1, C[Py], is strictly smaller than C|[s3], ~+1,—r, Clta]p.
Otherwise, s1 ~ s9 and $1 =4¢ s2. Hence wean(51) = Wean(s2) and the decrease occurs
on the last two components. Therefore

{({{C[Sl]p}}v L, wcan(c[sl]p)v 11,7’1), ({C[tl]p}}v 0, wcan(c[tl]p)v C[tl]lh Can(C[tl]p)){Ql}}}
is strictly smaller than
({0[82]10}’ 17 wcan(C[SQ]p)’ 12’ TQ)'

e When a step is an equational step, necessarily the decrease occurs on the first component.
Since < is compatible with plugging terms under a context, hence the wanted result. []

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 17

We can now come to the proof of Lemma

Proof. Let us denote by I — r the rule of R, and g — d the rule of R¢an; since [is in a
canonical form (invariant of the completion run), the reduction using g — d can only take
place at a position ¢ which is above or parallel to the position p of the reduction using
[— r. We prove by induction that there exists a proof between s and s’ which is strictly
smaller than the original peak.

e In the parallel case, the subproof
S L t—Ls s
r<l g—d

can be seen as

can(t[rlp[glq) <— tlrlplgly — tlllplglg — tll]p[dlq-

Rcan rel Rean
Notice that t[r],[g], and t[r],[d], are equal modulo AC,X, hence have the same canonical
form. The above subproof can be replaced by
can(t[r]plglq) = can(t[r]y[d]q) <R— t[rlpldlq <— t[l]p[d]q

r<Il

which is actually
s e~ 5.
rI1
The measure strictly decreases, since for the first subproof it is equal to

{{({t}7 17 17 l7 T)’ ({t}7 - —)}7

and for the second one, it is equal to

{({8/}7 17 wcan(s,)7 lv T)B’)
with s’ < t.

e In the prefix case, we first prove the wanted result when the position ¢ is equal to A. Now
we make an induction over p, in order the establish that there is a proof between s and
s', with a measure (weakly) smaller than s «~,. ;t, hence strictly smaller than the global
measure of the peak. If p = A, rewriting at top with a rule of R,, is impossible if it is not
an extended rewriting, since [is in a canonical form. In the extended case, the subproof
to be replaced has the form

can(u(r,l')) «~t N s,
r<l Rcan
where t =4¢ u(l,l'), and s = can(u(l,l")). By definition of can and since [is in a
canonical form and u is an AC symbol, s’ is AC-equal to u(l, can(l’)). The subproof can
be replaced by

can(u(r,l')) = can(u(r, can(l'))) T?_Nlu(l, can(l')) =ac ¢,

where the identity can(u(r,can(l’))) = can(u(r,l!’)) holds since u(r,can(l’)) and u(r,l’)
are equal modulo AC, X. The measure strictly decreases, since for the first subproof it is

equal to
f{t} 1 wean (), L,r), ({2}, - - - O},

and for the second one, it is equal to

s} L wean(s)), 1,m) },

S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

where s’ < t, or 8’ >~ t with wean(s") = Wean(t).
If p is of the form i - p/, ¢ is of the form f(t1,...,t;i—1,ti,ti+1,---,tn), and the proof to
be replaced

A
can(f(t1, ... tirlp, ..o stn)) o~ flt1, .o tillly, oo tn) — 8
r<I Rca.n
We may assume without loss of generality that t1,...,¢;,-1,t;11,...,t, are in a canonical

form, since
s' = can(t) = can(f(can(t1),...,can(t;_1), t;[l],, can(tit1) ..., can(t,)))
and
can(f(t1,....,ti[r]y, ..., tn)) = can(f(can(t1), ..., can(ti—1), t;[r]y, can(tit1)..., can(ty))).

We also denote as
so = f(t1,...,can(t;[r]y), ..., tn)
and
so = f(t1,...,can(t;[lly), ..., tn).
We know that can(t;[l],/) =< t;[l],, and we distinguish between two cases.
- If can(t;[l],y) < ti[l],y, then by induction hypothesis, there exists a proof P between
can(t;[r],) and can(t;[l],y) which is weakly smaller than

can(t;[r],) - tilllp-

The decreasing is actually strict since an equivalent proof should be in one step, and
the only possibility is a step of the form

can(t;[r],) - can(t;[l],).

However since can(t;[l],y) < t;[l],y and wean(ti[lly) = Wean(ti[l]y) cannot be not simul-
taneously true, such an equivalent step is not possible. Among all possible proofs P,
we pick up a minimal one. By the previous lemmas, P does not contains —pr_ steps,
hence f(t1,...,P,...,tp,) is strictly smaller than

can(sg) - t.

If we consider the proof P’

0,1 (1, Pyt 0,1
s{ }80 ()36{ }S/’

Rcan can

all its elementary steps are strictly smaller than ({¢},1,1,7,7). We have seen that this

is true for the middle part, and also for the left part ({so},0, 1, so,)%} and the right

part ({},0, 1, s, /)01,

P’ is a proof between s and s’ which is strictly smaller than s «~,.t.

- If can(t;[l],y) ~ ti[l]y, then by the AC-totality of =<, can(t[l],y) =ac til]y. Since

s’ = can(t), we know that s’ < ¢ and we make a case analysis:

« If s’ ~ t then s’ is actually canac(t) which is AC-equal to t. s’ contains ¢;[l],y as
a subterm and can be reduced with [— r to can(s'[t;[r],/]) which is AC-equal to
tti[r]y)i. Hence can(s'[t;[r],y]) = can(t[t;[r],];) = s and the proof

s e~ s
rl

is equivalent to, hence weakly smaller than s «~,.;t.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 19

x If s’ < t, then we can first see the peak as follows:
s eg’;} 80 et t =R, 8 = can(t).
We eagerly replace every occurrence of [by r in sg and s’, getting respectively s; and
s”. Then s; and s” are equal modulo AC and X, because any proof modulo AC and
X between t and s’ can be replayed by replacing the o-instances of AC and X used
originally by o’-instances where zo’ is xo where every occurrence of [is replaced by
r. We get the new proof

0,1 0,1 0,1
s %T} 50 li> 51 o1 can(sy) = can(s”) oLy can(t).
can —T

Rcan Rcan

Since s’ < t, all terms in the above proof are strictly smaller than ¢, hence the measure
of this proof is strictly smaller than ({t},1,1,1,7).
If the proof occurs under a context t[e],, we know that there is a proof P between
s = can(t[r]q,) and can(t) which is weakly smaller than ({t[l]s,r},1,1,1,7) (case
—R... at A). Hence

0,1
s <& can(t) ol g

can

is a proof between s and s’ which is weakly smaller than

{{({tmq-p’}7 17 17 lv T)7 ({{S,}}, 07 17 3,7 Can(t)){al}}}v
whereas the measure of the original peak is
Lty 1,1,07), ({t},0,2,¢,8)).
Since s’ < t, the measure of the new proof is strictly smaller than the measure of the

original peak. L]

Theorem 5.12. If s and t are two terms such that
s s 4,
ACX,Eo,Reo
then
Can(s)imz = Can(t)iRw‘
Proof. If s and s’ are equal modulo P ACX o Royr SO AT€ can(s) and can(s’). By the
above lemmas, a minimal proof between can(s) and can(s’) is necessary of the form
Can(s)(WRw U _>Rcan)*(MRwU <_Rcan)*can(s/)’
This sequence of steps can also be seen as
can(s) 2., (R Ren) (Ran “Ro)" < Re, can(s).
By definition — g, cannot follow a ~~p_-step, and can(s) and can(s’) cannot be reduced
by —R..., hence the wanted result. L]

20 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

5.3. Termination. The proof of termination partly reuses some facts used for the termi-
nation proof of AC-ground completion (based on Higman’s lemma), but also needs some
intermediate lemmas which are specific to our frameworkd. We shall prove that, under
a strongly fair strategy, R, is finite and obtained in a finite time (by cases on the head
function symbol of the rule’s left-hand side), and then we show that R, will clean up the
next configurations and the completion process eventually halts on (() | R,). In order to
make our case analysis on rules, and to prove the needed invariants, we define several sets
of terms (assuming without loss of generality that Ey = can(Ey)):

Ty = {t ’ dtg, e1,e9 € 7-2(.)(),61 ~ ey € By and tg = ei]p and tg W}}w t},
Tox =T U {fx(tl,. .. ,tn) ‘ fx € Yx and Vi, t; € T(]x},

T = {t ’ t € Tp and Vp,t’p S Tox},

Ty ={u(ty,...,ty) | 2<mnand u € ¥g¢ and Vi, t; € T1 }.

Ty is the set of all terms and subterms in the original problem as well as their reducts by
Rs. The set Tx moreover contains terms with X-aliens in 7. 17 is the set of terms that
can be introduced by X from terms of Ty (by solving or canonizing). T is a superset of the
terms built by critical pairs.

Lemma 5.13. Vv,t,s, veRwﬂTJZ/\teTi/\twﬁ,s = se€l;, fori,j=1,2.]

The proof is by structural induction over terms (for dealing with rewriting under a
context) and by case analysis over T; when rewriting at the top level. It uses the (quasi-
immediate) fact that To N7y C T7.

Lemma 5.14. For all accessible configuration (E, | R,), E,UR, CT2UT;.

The proof is by induction over n, and uses Lemma [5.13]
The first step of the termination proof is to show that R, N T? is finite (Lemma E.17).
It is specific to our framework, due to the presence of .

Lemma 5.15. Under a strongly fair strategy, if | — r, is created at step n in R, and
Il = rpy at step m in R, withn < m, then ry, is a reduct of r,, by ~>gr__.

Proof. The proof is by induction over the length of the derivation, and by case analysis over
the rule which has been applied.

e Orient applied on s = ¢ cannot create a new rule p — v with an already present left hand
side, because the strongly fair strategy implies that s and ¢ are fully reduced, and the
new left hand side p is a subterm of s or ¢.

e Simplify, Collapse and Deduce do not create a new rule.

e Compose obviously preserves the invariant.]

Corollary 5.16. Under a strongly fair strateqy, Roo is finitely branching.

Proof. If R is not finitely branching, there exist an infinite sequence of rules (I —),
where | — r, first appears in (E,, | R,,). Thanks to Lemma [5.15] since R, is included in
<, the sequence (1), is strictly decreasing w.r.t <. The well-foundedness of < contradicts
the infinity of (7). Il

6We assume that L is not encountered, otherwise, termination is obvious.
X may change the head function symbol of terms in an equational proof, which is not the case of AC in
standard ground AC-completion.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 21

Lemma 5.17. Under a strongly fair strategy, the set of rules in R, NT¢ is finite.

Proof. 1f | — r belongs to the set R, NT%, [is reduct of a term Iy in Ey by ~+x_. Since
~> g, 1s terminating (because it is included in <), and finitely branching (above corollary),
any term has finitely many reducts by ~»g_. In particular since Ey is finite, there are
finitely many possible left-hand side. Moreover since in R, two distinct rules have distinct
left-hand sides, R, N T is finite. (]

Here is the second step of the termination proof, finiteness of R, N7T%, which is mostly
the same as in the usual AC-ground completion:

Lemma 5.18. The set of persistent rules in R,, which are in T2 is finite.

Proof. The set R, NT: 22 can be divided into a finite union of sets, according to the top AC
function symbol of the left hand-side of the rules. We shall prove that for each u € ¥ ¢,
the corresponding subset is finite.

Let u be a fixed AC function symbol, and let u(ly,...,l,) — r be a rule of R, N T%.
By definition of T, and by the soundness of R, each I; is equal modulo ACX, E; to a
term 19 in Ey. Since I; is irreducible by R,, (otherwise the rule u(ly,...,l,) — r would have
collapsed), there is a rewriting proof I; M*Rwl?' Notice that two distinct rules in R, have
some distinct left-hand sides (otherwise one would have collapsed the other) (this implies in
particular that R, is finitely branching). Since ~» g is included in a well-founded ordering,
and is finitely branching any term has a finite number of reducts. Since Ej is finite, each [;
belongs to the finite set of reducts Red(Ey) of Ey by ~>g,. By Higman’s lemma, if there
is an infinite number of rules where the left-hand side is of the form wu(¢y,...,t,), there
exist two rules [— r and I’ — 7/, such that the multiset of arguments {l1,...,l,}} of [is
included in the multiset of arguments {l}, ...,/ } of I’. This would imply that the second
rule collapses by the first one, which contradicts its persistence. Hence the wanted result. []

When R, has been proven to be finite, we show that once it is obtained, R, will “clean
up” the configuration within a finite number of steps, hence the termination:

Theorem 5.19. Under a strongly fair strategy, AC(X) terminates.

Proof. When the strategy is strongly fair, R,, is finite. Moreover each rule in R, is obtained
within a finite number of steps. Once all persistent rules are present in the rules of the
configuration (E | R), the rule Orient always returns an empty set of rules. If the
measure of a configuration is the triple made of the number of remaining critical pairs to
generate, the multiset of terms in R (compared with <), and the number of equations on
E, it strictly decreases. L]

6. TERM ABSTRACTION AND MULTISET ORDERING

In this section, we show that a simple preprocessing step allows us to use a partial multiset
ordering instead of a full AC-compatible reduction ordering in the AC(X) algorithm. This
optimization is motivated by the fact that although AC-RPO orderings are suitable when
proving termination of completion procedures, they are not easily implementable in prac-
tice. Our preprocessing step is similar to the Extension inference rule found in Abstract
Congruence Closure [BTV03].

Let K be a set of constant symbols disjoint from ¥ and X and <x be a total rewrite
ordering on 7 (Xx U K). We define two sets of terms Ty and Tac as follows:

22 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

(fedy A

76) = f(vla"' ﬂ)n) arlty(f) =n A)
AL, v € T(Ex UK)

U € XAC A

Tac = w(vy, u(va, ..y u(vp—1,v5) . ..)) n>2 A

Nz vi € T(ExUK)

In order to enable the use of a multiset ordering as an input for AC(X), we have to

transform the original set of ground equations E to a simpler one containing only abstracted
equations.

Definition 6.1 (Abstracted equations). An equation s ~ t is said to be abstracted if one
of the following statements holds:

1. s, teT(ExUK),
2. se(TyUTac)andt € T(ExUK),
3. s, t€Tyc and s(A) =t(A).

The set of all abstracted equations is denoted by A.

Let m be an abstraction function from 7ac U 7y to K such that if 7(s) = m(¢) then
s =40 t. Given a set ED of ground equations, the term abstraction of E° consists in apply-
ing, as long as possible, the following inference rules starting from the initial configuration

(E°[0).

EFEdui{s~t!| FE
ADbsTRACT1 < {s b EA) s~ted
(E|EBaUu{s=~t})

(BUC@)]~1t | Ba) .
ADbSTRACT2 (EUCH ~t| E40 /() ~ k) Clf() =tg A

where,
L f(v) e (TpUTac)
2. k=n(f(9)

Propositions and [6.3] state, respectively, the termination and the correctness of the
abstraction process.

Proposition 6.2. The application of the rules Abstractl and Abstract2 terminates and
produces a configuration of the form (0 | E®), where E® C A.

Proof. The proof of termination is immediate using a decreasing measure. The size of a
configuration is equal to the total sum of the sizes of the terms in its first component. Here,
the size of a term is recursively defined in a standard way with 1 for the size of constants
in K, and 2 for the size of other constants.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 23

It remains to show that if a configuration is of the form (E | E4) and E # 0, at
least one rule applies. Let s &~ ¢ be an equation in E. If s =&t € A the Abstractl applies.
Otherwise, since s ~ t € A, by condition 1. of Definition 61l there is a minimal subterm
of s or t which does not belong to 7 (Xx U K). This term thus has a suitable form to fulfill
condition 1. in the rule Abstract2 which applies.]

Proposition 6.3. Let (E° | 0) —=* (0 | EY) be a fized run of the abstraction process.
For any terms s,t € T(X,0), we have:

5 =pox.act <= 8 =pex.AC .

Proof. The direction = is immediate for Abstractl. For Abstract2, it rests on the fact
that a step using C[f(7)] ~ ¢ can be replaced by two steps, the first one using f(¥) &~ k and
the second one using C[k| ~ t.

In order to prove <, we use the following invariant: if (E | E4) — (E' | E/y),
S =g E, X,AC 1 and s and ¢ do not contain any constant in K, then s =g g, x Ac t. This
is immediate when the rule Abstractl is applied. When Abstract2 replaces C[f(¥)] ~ t by
{f(¥) = k,C[k] ~ t}, we first replace every step using C[k] =~ t by a compound step using
C[k] =~ C[f(?)] followed by C[f(¥)] ~ t. Then all occurrences of k are replaced by f(?) in
intermediate terms, and the now useless steps using f(¢) ~ f(¥) (former f(¥) =~ k) are
removed. The transformed proof is now in =g g, x, Ac, and since neither s nor ¢ contain
constants in K, they are not affected by these transformations. L]

Now that we have shown how to abstract the initial set of equations F, we will define
the reduction ordering < that we will use in AC(X). We do not need this ordering to be total
on the terms in T (3x U K, () U7y U Tac. We only need a partial reduction ordering which
allows us to get well oriented rewriting rules from the abstracted equations. Let <}5¢* be
the multiset extension of <x. Our reduction ordering is defined by:

L. Vv € T(ExUK), v1 <x va = 1 < 02,

2. T(ExUK) =Ty,

3. T(ExUK) < Tac,

4. Vu(th),u(@) € Tac, {o1} <5 {oo} = w(®h) < u(ts).

After that, we have to show that AC(X) does not introduce non-abstracted equations when
collapsing rules, computing critical pairs, using canonized rewriting, and solving equations.
Hence, the following lemma:

Lemma 6.4. For any configuration (E;° | Ry,) reachable from (E® | 0), we have:
V(s,t) € (Ey°URy), scte A

Proof. The lemma obviously holds for the initial state. For the induction step, we can
easily show that the abstracted form of equations is preserved by canonized rewriting wrt
an abstracted rule, hence so as when applying the inference rules Simplify, Compose and
Collapse. Concerning Deduce, we notice by inspecting the definition of headCP, that when
Il — rand ' — 7’ are abstracted oriented equations, so is the resulting critical pair. The
only subtle case is Orient, in particular when solving an equation s ~ ¢, with s € T (XxUK)
and t € Tp U Tac. Due to the definition of < and to the fact that the solver has to fulfill
the ordering constraints stated in Axiom [B.2] the solution of s ~ t has to be t — s. []

24 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

Finally, we notice that < is a suitable ordering for the AC(X) completion procedure
since on the equations in A, it coincides with the AC-RPO ordering based on a precedence
=<p such that Xx <, K <, Yeg UX4c.

7. EXPERIMENTAL RESULTS

We implemented the AC(X) algorithm as well as a preprocessing step that enables the use
of a partial multiset reduction ordering (see Section [6]). As described in Section [the state
of the procedure is a pair (F' | R) of equations and rules. We apply the following strategy
for processing an equality u ~ v € E:

Sim* (Tri | Bot | (Ori (Com Col Ded)")).

First, u ~ v is simplified as much as possible by Simplify. Then, if it is not proven to be
trivially solved by Trivial or unsolvable by Bottom, it is solved by Orient. Each resulting
rule is added to R and then used to Compose and Collapse the other rules of R. Critical
pairs are then computed by Deduce.

We benchmark AC(X) and compare its performances with our own SMT solver ALT-
Erco [CCO8| and some state-of-the-art solvers (Z3 v2.8, CVC3 v2.2, SIMPLIFY v1.5.4).
All measures are obtained on a laptop running Linux equipped with a 2.58 GHz dual-core
Intel processor and with 4Gb main memory. Provers are given a time limit of five minutes
for each test and memory limitation is managed by the system. The results are given in
seconds; we write TO for timeout and oM for out of memory.

Our test suite is made of crafted ground formulas which are valid in the combination
of the theory of linear arithmetic LA, the free theory of equality £ and a small part of the
theory of sets defined by the symbols U, C, the singleton constructor {-}, and the following
axioms:

s Assoc: Vz,y,z. zU(yUz)=(xUy)Uz
N Commut : Ve,y. axUy~yUcz

SubTrans: Vr,y,z. zCy ANyCz = zCz
SubSuper: Vr,y,z. xCy = xCyUz
SubUnion: Vz,y,z. xzCy = xzUzCyUz

SubRefi : Ve. zCx

The theories £ and LA are built-in for all SMT solvers we use for our experiments. However,
contrarily to AC(X) which also natively handles associativity and commutativity, SMT
solvers use a generic mechanism for instantiating the axioms Sy to reason modulo the
AC properties of U.

In order to get the most accurate information about AC(X), we first benchmark a stand-
alone version of our algorithm on ground formulas that can be proved without Sc. In a
second step, we consider ground formulas that are only provable with some axioms in Sc.
Since these axioms are not directly handled by AC(X), we benchmark a modified version
of ALT-ERGO (to benefit from its instantiation mechanism) with AC(X) as its core decision
procedure.

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 25

In the following, we use the standard mathematical notation Ule a; for the terms of

the form a; U (ag U (---Uag))---) and we write U?Zl a;; b for terms of the form a; U (ag U
(---U(aqUb)))---).

7.1. Benchmark of a stand-alone AC(X). We consider two categories of formulas. The
first category C is of the form

d -1 1 1
/\221({6} VUi, af) =P = /\2:1 /\Z:p+1 Uiza @736 = Uj—g af; b7,
G

and the second category C5 is of the form
d -1
N1 ({tp = PFU Ui ay) ~ b A Nozitp H1m 1 = G.

Notice that n is the number of hypothesis equations and d is the maximal depth of AC
terms.

Proving the validity of C4-formulas only requires the theory £ and the AC properties
of the union symbol. These formulas are directly provable by AC(()) and the results for this
instance are given in the first column of the table in Figure[Bl In order to prove Cq-formulas
with SMT solvers, the axioms in Sy have to be put in their context. The last four columns
of the table contain the results for ALT-ERGO, Z3, CVC3 and SIMPLIFY.

n, d AC(0) AvLr-ERGO | Z3 CVCs3 SIMPLIFY
3,3 0.01 0.19 0.22 0.40 0.18
3,6 0.01 32.2 oM 132 oM
3, 12 0.01 TO oM oM oM
6, 3 0.01 11.2 1.10 13.2 2.20
6, 6 0.02 TO oM oM oM
6, 12 0.02 TO oM oM oM
12, 3 0.16 TO 5.64 242 11.5
12, 6 0.24 TO oM oM oM
12, 12 0.44 TO oM OM OM

Figure 5: The results for category Cf.

In order to prove the validity of Cs-formulas, the theory £, the AC properties of U
and the theory of linear arithmetic LA are required. These ground formulas are directly
provable by AC(LA) and the results are given in the first column of the table in Figure [Gl
Similarly to category C, the last four columns of the table contain the results for the SMT
solvers we considered. Again, the axioms Sy have to be provided in the context, whereas
linear arithmetic is directly handled by the built-in decision procedures of these provers.

26 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

n, d AC(LA) ArLT-ERGO | Z3 CV(C3 SIMPLIFY
3,3 0.01 1.10 0.03 0.11 0.19
3,6 0.01 TO 3.67 4.21 oM
3, 12 0.01 TO oM oM oM
6, 3 0.02 149 0.10 2.26 2.22
6, 6 0.02 TO 17.7 99.3 OM
6, 12 0.04 TO oM oM oM
12, 3 0.27 TO 0.35 44.5 11.2
12, 6 0.40 TO 76.7 TO oM
12, 12 0.72 TO oM oM oM

Figure 6: The results for category Cs.

7.2. Benchmark of ALT-ERGO with X. We now analyze the performances of AC(X)
when it is used as the core decision procedure of ALT-ERGO. For that, we consider a third
category Cs of formulas of the form

A UL {et = AU {e+ e} m P hem0 = Al C (WP U{eh}) U {e}.

Proving the validity of Cs-formulas requires the theory &£, the AC properties of U, the
theory of linear arithmetic LA and additionally some axioms in Sc. We thus only provide
the axioms Sc in the context of the modified version of ALT-ERGO, whereas all the axioms
in Sc and Sy are given in the context of the other SMT solvers. The results of this category
are given in Figure [7

n, d Arr-Erco | ALT-ERGO | Z3 Ccv(C3 SIMPLIFY
with AC(LA)
3,3 0.02 3.16 0.09 10.2 OM
3,6 0.04 TO 60.6 OM OM
3, 12 0.12 TO oM oM oM
6, 3 0.07 188 0.18 179 OM
6, 6 0.12 TO TO oM oM
6, 12 0.66 TO OM OM OM
12, 3 0.20 TO 0.58 OM OM
12, 6 0.43 TO TO OM OM
12, 12 1.90 TO OM OM OM

Figure 7: The results for category Cs.

7.3. Benchmarks analysis. The results in Figures [and [6] show that, contrary to the
axiomatic approach, built-in AC reasoning is little sensitive to the depth d of terms: given
a fixed number n of equations, the running time is proportional to d. However, we notice a
slowdown when n increases. This is due to the fact that AC(X) has to process a quadratic

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 27

number of critical pairs generated from the equations in the hypothesis. From Figure [7,
we remark that ALT-ERGO with AC(X) performs better than the other provers. The main
reason is that its instantiation mechanism is not spoiled by the huge number of intermediate
terms the other provers generate when they instantiate the AC axioms.

8. INSTANTIATION ISSUES

Although AC(X) is effective on ground formulas, its integration as the core decision proce-

dure of ALT-ERGO suffers from a bad interaction between the built-in treatment of AC and

the axiom instantiation mechanism of ALT-ERGO which is roughly done as follows:

e each axiom of the form Vz. F(Z) provided in the context comes with a pattern P (also
called trigger) which consists of a set of subterms of F that covers z,

e the solver maintains a set G of known terms extracted syntactically from the ground
literals that occur during its proof search,

e (G is partitioned into a set of equivalence classes according to the ground equalities cur-
rently known by the solver,

e new ground formulas Fo are generated by matching P against G modulo the equivalence
classes.

Let us show how this mechanism is used to prove the following ground formula:

(F1) (e~dUa N bCd AN cxaUd) = bUaCe.
For that, we only need to use the SubUnion axiom (defined in Section [7]):

SubUnion : Ve,y,z. 2 Cy = xUzCyUz.
Let us assume that the pattern for this axiom is the term z Uz C y U z. This pattern is
matched against the term b U a C ¢ by looking for a substitution ¢ such that
(rUzCyUz)o=bUaCc
modulo the set of equivalence classes
{{e,dUa,aud,c}, {a}, {b}, {d}, {DUa}, {bCd}, {bUa Cc}}.

Such a substitution exists and maps = to b, z to a and ¥y to d since the term c is in the same
class as d U a. The proof of F; follows from the ground instance b Cd = bUa C dUa of
SubUnion.

Let us now explain the limitation of the interaction between AC(X) and the instantiation
mechanism. The hypothesis e &~ d U a is useless (from a logical point of view) to prove
bUa C c. Hence, the following formula F5 is equivalent to Fj:

(Fy) bCd AN c=aUd) = bUaCec.

However, the cooperation of ALT-ERGO and AC(X) fails to prove Fy. The reason is that,
since the term d U a does not syntactically occur in F5, the equivalence classes are just

{{oud,c}, {a}, {0}, {d}, {bUa}, {bCd}, {bUaC c}}

and the matching algorithm fails to match x Uz C y U 2z against bU a C c.

28 S. CONCHON, E. CONTEJEAN, AND M. IGUERNELALA

9. CONCLUSION

We have presented a new algorithm AC(X) which efficiently combines, in the ground case,
the AC theory with a Shostak theory X and the free theory of equality. Our combination
consists in a tight embedding of the canonizer and the solver for X in ground AC-completion.
The integration of the canonizer relies on a new rewriting relation, reminiscent to normalized
rewriting, which interleaves canonization and rewriting rules. We proved the soundness of
AC(X) by reusing standard proof techniques. Completeness is established thanks to a proofs’
reduction argument, and termination follows the lines of the proof of ground AC-completion
where the finitely branching result is adapted to account for the theory X. We showed how
a simple preprocessing step allows us to get rid of a full AC-compatible reduction ordering,
and to simply use a partial multiset extension of a non necessarily AC-compatible ordering.

AC(X) has been implemented in the ALT-ERGO theorem prover. The first experiments
are very promising and show that a built-in treatment of AC, in the combination of the free
theory of equality and a Shostak theory, is more efficient than an axiomatic approach for
reasoning modulo AC.

As illustrated in Section[8, the main concern for using AC(X) as a core decision procedure
in ALT-ERGO is that it does not saturate equivalent classes of ground known terms modulo
AC. A naive (and incomplete) solution to this issue would consist in adding, for each known
ground AC-term ¢, a few number of AC equivalent terms (for instance by bounding the
length of the AC equational proof between them). We rather plan to investigate a more
elaborate solution which would consist in extending the pattern-matching algorithm of
ALT-ERGO to exploit both ground equalities and properties of AC symbols. We also plan
to extend AC(X) to handle the AC theory with unit or idempotence. This will be a first step
towards a decision procedure for a substantial part of the finite sets theory. Another future
work is the extension of AC(X) with a user defined first order rewriting system. This could
be achieved by applying our combination technique to normalized rewriting and normalized
completion [Mar96].

ACKNOWLEDGMENT

We thank Konstantin Korovin for the discussion about the ordering used in our imple-
mentation, which leads us to write Section [l We also thank the anonymous referees of
LPAR-17, TACAS’11 and the LMCS journal for their remarks which helped us to improve
this paper.

REFERENCES

[BDHS86] Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Orderings for equational proofs. In Proc. 1st
IEEE Symp. Logic in Computer Science, Cambridge, Mass., pages 346-357, June 1986.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[BTVO03] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal of Automated
Reasoning, 31(2):129-168, 2003.

[CCO08] Sylvain Conchon and Evelyne Contejean. The Alt-Ergo automatic theorem prover.
http://alt-ergo.lri.fr/, 2008. APP deposit under the number IDDN FR 001 110026 000 S
P 2010 000 1000.

http://alt-ergo.lri.fr/

CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES 29

[Con04] Evelyne Contejean. A certified AC matching algorithm. In Vincent van Oostrom, editor, 15th
International Conference on Rewriting Techniques and Applications, volume 3091 of Lecture Notes
in Computer Science, pages 70-84, Aachen, Germany, June 2004. Springer.

[Der82] Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science,
17(3):279-301, March 1982.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243-320. North-Holland, 1990.

[Hul79] J.-M. Hullot. Associative commutative pattern matching. In Proc. 6th IJCAI (Vol. I), Tokyo, pages
406-412, August 1979.

[JK86] Jean-Pierre Jouannaud and Héléne Kirchner. Completion of a set of rules modulo a set of equations.
SIAM Journal on Computing, 15(4), November 1986.

[Kap97] Deepak Kapur. Shostak’s congruence closure as completion. In H. Comon, editor, Proceedings of the
8th International Conference on Rewriting Techniques and Applications, volume 1232. Springer-
Verlag, 1997.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press, 1970.

[KC05] Sava Krsti¢ and Sylvain Conchon. Canonization for disjoint unions of theories. Information and
Computation, 199(1-2):87-106, May 2005.

[Lan75] Dallas S. Lankford. Canonical inference. Memo ATP-32, University of Texas at Austin, March
1975.

[LB77] Dallas S. Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with
permutative axioms: Complete sets of permutative reductions. Research Report Memo ATP-37,
Department of Mathematics and Computer Science, University of Texas, Austin, Texas, USA,
August 1977.

[Mar91] Claude Marché. On ground AC-completion. In Ronald. V. Book, editor, /th International Confer-
ence on Rewriting Techniques and Applications, volume 488 of Lecture Notes in Computer Science,
Como, Italy, April 1991. Springer.

[Mar96] Claude Marché. Normalized rewriting: an alternative to rewriting modulo a set of equations.
Journal of Symbolic Computation, 21(3):253-288, 1996.

[NOT9] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. on
Programming, Languages and Systems, 1(2):245-257, October 1979.

[NR93] Robert Nieuwenhuis and Albert Rubio. A precedence-based total AC-compatible ordering. In
Claude Kirchner, editor, Proc. 5th Rewriting Techniques and Applications, Monitréal, LNCS 690.
Springer, June 1993.

[PS81] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational theories.
Journal of the ACM, 28(2):233-264, April 1981.

[Sho84] R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31:1-12, 1984.

[Tiw09] Ashish Tiwari. Combining equational reasoning. In Silvio Ghilardi and Roberto Sebastiani, editors,
FroCos, volume 5749 of Lecture Notes in Computer Science, pages 68-83, Trento, Italy, September
2009. Springer.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Ground AC-Completion
	3. Shostak Theories and Global Canonization
	4. Ground AC-Completion Modulo
	4.1. Canonized Rewriting
	4.2. The Algorithm

	5. Correctness
	5.1. Soundness
	5.2. Completeness
	5.3. Termination

	6. Term Abstraction and Multiset Ordering
	7. Experimental Results
	7.1. Benchmark of a stand-alone
	7.2. Benchmark of Alt-Ergo with
	7.3. Benchmarks analysis

	8. Instantiation Issues
	9. Conclusion
	Acknowledgment
	References

