
Logical Methods in Computer Science
Vol. 8(4:8)2012, pp. 1–33
www.lmcs-online.org

Submitted Oct. 14, 2011
Published Oct. 17, 2012

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR

NON-DETERMINISTIC TIMED AUTOMATA ∗

NATHALIE BERTRAND a, THIERRY JÉRON b, AMÉLIE STAINER c, AND MOEZ KRICHEN d

a,b Inria Rennes - Bretagne Atlantique, Rennes, France
e-mail address: {nathalie.bertrand, thierry.jeron}@inria.fr

c University of Rennes 1, Rennes, France
e-mail address: amelie.stainer@inria.fr

d University of Sfax, Tunisia
e-mail address: moez.krichen@redcad.org

Abstract. This article proposes novel off-line test generation techniques from non-deter-
ministic timed automata with inputs and outputs (TAIOs) in the formal framework of
the tioco conformance theory. In this context, a first problem is the determinization
of TAIOs, which is necessary to foresee next enabled actions after an observable trace,
but is in general impossible because not all timed automata are determinizable. This
problem is solved thanks to an approximate determinization using a game approach. The
algorithm performs an io-abstraction which preserves the tioco conformance relation and
thus guarantees the soundness of generated test cases. A second problem is the selection
of test cases from a TAIO specification. The selection here relies on a precise description
of timed behaviors to be tested which is carried out by expressive test purposes modeled
by a generalization of TAIOs. Finally, an algorithm is described which generates test cases
in the form of TAIOs equipped with verdicts, using a symbolic co-reachability analysis
guided by the test purpose. Properties of test cases are then analyzed with respect to the
precision of the approximate determinization: when determinization is exact, which is the
case on known determinizable classes, in addition to soundness, properties characterizing
the adequacy of test cases verdicts are also guaranteed.

Introduction

Conformance testing is the process of testing whether some implementation of a software
system behaves correctly with respect to its specification. In this testing framework, imple-
mentations are considered as black boxes, i.e. the source code is unknown, only their interface
with the environment is known and used to interact with the tester. In formal model-based

1998 ACM Subject Classification: D.2.4, D.2.5, D.4.7, F.1.1.
Key words and phrases: Conformance testing, timed automata, partial observability, urgency, approxi-

mate determinization, game, test purpose.
∗ This article is based on the material of the TACAS conference paper [5].

This work was partly funded by the French project TESTEC (ANR-07-TLOG-022).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(4:8)2012
c© N. Bertrand, T. Jéron, A. Stainer, and M. Krichen
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

conformance testing, models are used to describe testing artifacts (specifications, implemen-
tations, test cases, ...). Moreover, conformance is formally defined as a relation between
implementations and specifications which reflects what are the correct behaviors of the im-
plementation with respect to those of the specification. Defining such a relation requires the
hypothesis that the implementation behaves as a model. Test cases with verdicts, which will
be executed against the implementation in order to check conformance, are generated auto-
matically from the specification. Test generation algorithms should then ensure properties
relating verdicts of executions of test cases with the conformance relation (e.g. soundness),
thus improving the quality of testing compared to manual writing of test cases.

For timed systems, model-based conformance testing has already been explored in the
last decade, with different models and conformance relations (see e.g. [22] for a survey), and
various test generation algorithms (e.g. [8, 18, 21]). In this context, a very popular model
is timed automata with inputs and outputs (TAIOs), a variant of timed automata (TAs) [1],
in which the alphabet of observable actions is partitioned into inputs and outputs. We
consider here a very general model, partially observable and non-deterministic TAIOs with
invariants for the modeling of urgency. We resort to the tioco conformance relation de-
fined for TAIOs [17], which is equivalent to the rtioco relation [19]. This relation compares
the observable behaviors of timed systems, made of inputs, outputs and delays, restricting
attention to what happens after specification traces. Intuitively, an implementation con-
forms to a specification if after any observable trace of the specification, outputs and delays
observed on the implementation after this trace should be allowed by the specification.

One of the main difficulties encountered in test generation for those partially observable,
non-deterministic TAIOs is determinization. In fact determinization is required in order to
foresee the next enabled actions during execution, and thus to emit a correct verdict de-
pending on whether actions observed on the implementation are allowed by the specification
model after the current observable behavior. Unfortunately, TAs (and thus TAIOs) are not
determinizable in general [1]: the class of deterministic TAs is a strict subclass of TAs. Two
different approaches have been taken for test generation from timed models, which induce
different treatments of non-determinism.

• In off-line test generation test cases are first generated as timed automata (or timed se-
quences, or timed transition systems) and subsequently executed on the implementation.
One advantage is that test cases can be stored and further used e.g. for regression testing
and serve for documentation. However, due to the non-determinizability of TAIOs, the ap-
proach has often been limited to deterministic or determinizable TAIOs (see e.g. [15, 21]).
A notable exception is [18] where the problem is solved by the use of an over-approximate
determinization with fixed resources (number of clocks and maximal constant): a deter-
ministic automaton with those resources is built, which simulates the behaviors of the
non-deterministic one. Another one is [10] where winning strategies of timed games are
used as test cases.
• In on-line test generation, test cases are generated during their execution. After the

current observed trace, enabled actions after this trace are computed from the specification
model and, either an allowed input is sent to the implementation, or a received output
or an observed delay is checked. This technique can be applied to any TAIO, as possible
observable actions are computed only along the current finite execution (the set of possible
states of the specification model after a finite trace, and their enabled actions are finitely
representable and computable), thus avoiding a complete determinization. On-line test
generation is of particular interest to rapidly discover errors, can be applied to large and

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 3

non-deterministic systems, but may sometimes be impracticable due to a lack of reactivity
(the time needed to compute successor states on-line may sometimes be incompatible with
real-time constraints).

Our feeling is that off-line test generation from timed models did not receive much attention
because of the inherent difficulty of determinization. However, recent works on approximate
determinization of timed automata [18, 7] open the way to new research approaches and
results in this domain.

Contribution. In this paper, we propose to generate test cases off-line for the whole class
of non-deterministic TAIOs, in the formal context of the tioco conformance theory. The
determinization problem is tackled thanks to an approximate determinization with fixed
resources in the spirit of [18], using a game approach allowing to more closely simulate
the non-deterministic TAIO [7]. Our approximate determinization method is more precise
than [18] (see [7, 6] for details), preserves the richness of our model by dealing with partial
observability and urgency, and can be adapted to testing by a different treatment of inputs,
outputs and delays. Determinization is exact for known classes of determinizable TAIOs
(e.g. event-clock TAs, TAs with integer resets, strongly non-Zeno TAs) if resources are
sufficient. In the general case, determinization may over-approximate outputs and delays
and under-approximate inputs. More precisely, it produces a deterministic io-abstraction
of the TAIO for a particular io-refinement relation which generalizes the one of [9]. As a
consequence, if test cases are generated from the io-abstract deterministic TAIO and are
sound for this TAIO, they are guaranteed to be sound for the original (io-refined) non-
deterministic TAIO.

Behaviors of specifications to be tested are identified by means of test purposes. Test
purposes are often used in testing practice, and are particularly useful when one wants
to focus testing on particular behaviors, e.g. corresponding to requirements or suspected
behaviors of the implementation. In this paper they are defined as open timed automata
with inputs and outputs (OTAIOs), a model generalizing TAIOs, allowing to precisely target
some behaviors according to actions and clocks of the specification as well as proper clocks.
Then, in the same spirit as for the TGV tool in the untimed case [13], test selection is
performed by a construction relying on a co-reachability analysis. Produced test cases are
in the form of TAIOs, while most approaches generate less elaborated test cases in the form
of timed traces or trees. In addition to soundness, when determinization is exact, we also
prove an exhaustiveness property, and two other properties on the adequacy of test case
verdicts. To our knowledge, this whole work constitutes the most general and advanced
off-line test selection approach for TAIOs.

This article is a long version of [5]. In addition to the proofs of key properties, it also
contains much more details, explanations, illustrations by examples, complexity considera-
tions, and a new result on exhaustiveness of the test generation method.

Outline. The paper is structured as follows. In the next section we introduce the model
of OTAIOs, its semantics, some notations and operations on this model and the model of
TAIOs. Section 2 recalls the tioco conformance theory for TAIOs, including properties of
test cases relating conformance and verdicts, and introduces an io-refinement relation which
preserves tioco. Section 3 presents our game approach for the approximate determinization
compatible with the io-refinement. In Section 4 we detail the test selection mechanism using

4 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

test purposes and prove some properties on generated test cases. Section 5 discusses some
issues related to test case execution and test purposes and some related work.

1. A model of open timed automata with inputs/outputs

Timed automata (TAs) [1] is a usual model for time constrained systems. In the context of
model-based testing, TAs have been extended to timed automata with inputs and outputs
(TAIOs) whose sets of actions are partitioned into inputs, outputs and unobservable actions.
In this section, we further extend TAIOs by partitioning the set of clocks into proper
clocks (i.e., controlled by the automaton) and observed clocks (i.e, owned by some other
automaton). The resulting model of open timed automata with inputs/outputs (OTAIOs for
short), allows one to describe observer timed automata that can test clock values from other
automata. While the sub-model of TAIOs (with only proper clocks) is sufficient for most
testing artifacts (specifications, implementations, test cases) observed clocks of OTAIOs
will be useful to express test purposes whose aim is to focus on the timed behaviors of the
specification. Like in the seminal paper for TAs [1], we consider OTAIOs and TAIOs with
location invariants to model urgency.

1.1. Timed automata with inputs/outputs. We start by introducing notations and
useful definitions concerning TAIOs and OTAIOs.

Given X a finite set of clocks, a clock valuation is a mapping v : X → R≥0, where R≥0

is the set of non-negative real numbers. 0̄ stands for the valuation assigning 0 to all clocks.
If v is a valuation over X and t ∈ R≥0, then v + t denotes the valuation which assigns to
every clock x ∈ X the value v(x) + t. For X ′ ⊆ X we write v[X′←0] for the valuation equal
to v on X \ X ′ and assigning 0 to all clocks of X ′. Given M a non-negative integer, an
M -bounded guard (or simply guard) over X is a finite conjunction of constraints of the form
x ∼ c where x ∈ X, c ∈ [0,M] ∩ N and ∼∈ {<,≤,=,≥, >}. Given g a guard and v a
valuation, we write v |= g if v satisfies g. We sometimes abuse notations and write g for the
set of valuations satisfying g. Invariants are restricted cases of guards: given M ∈ N, an
M -bounded invariant over X is a finite conjunction of constraints of the form x � c where
x ∈ X, c ∈ [0,M] ∩ N and � ∈ {<,≤}. We denote by GM (X) (resp. IM (X)) the set of
M -bounded guards (resp. invariants) over X.

In the sequel, we write t for the disjoint union of sets, and use it, when appropriate,
to insist on the fact that sets are disjoint.

Definition 1.1 (OTAIO). An open timed automaton with inputs and outputs (OTAIO) is
a tuple A = (LA, `A0 ,Σ

A
? ,Σ

A
! ,Σ

A
τ , X

A
p , X

A
o ,M

A, IA, EA) such that:

• LA is a finite set of locations, with `A0 ∈ LA the initial location,
• ΣA? , ΣA! and ΣAτ are disjoint finite alphabets of input actions (noted a?, b?, . . .), output

actions (noted a!, b!, . . .), and internal actions (noted τ1, τ2, . . .). We note ΣAobs = ΣA? tΣA!
for the alphabet of observable actions, and ΣA = ΣA? t ΣA! t ΣAτ for the whole set of
actions.
• XAp and XAo are disjoint finite sets of proper clocks and observed clocks, respectively. We

note XA = XAp tXAo for the whole set of clocks.
• MA ∈ N is the maximal constant of A, and we will refer to (|XA|,MA) as the resources

of A,

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 5

• IA : LA → IMA(XA) is a mapping which labels each location with an M -bounded invari-
ant,

• EA ⊆ LA ×GMA(XA)× ΣA × 2X
A
p × LA is a finite set of edges where guards are defined

on XA, but resets are restricted to proper clocks in XAp .

One of the reasons for introducing the OTAIO model is to have a uniform model (syntax
and semantics) that will be next specialized for particular testing artifacts. In particular, an
OTAIO with an empty set of observed clocks XAo is a classical TAIO, and will be the model
for specifications, implementations and test cases. The partition of actions reflects their
roles in the testing context: the tester cannot observe internal actions, but controls inputs
and observes outputs (and delays). The set of clocks is also partitioned into proper clocks,
i.e. usual clocks controlled by the system itself through resets, as opposed to observed clocks
referring to proper clocks of another OTAIO (e.g. modeling the system’s environment).
These cannot be reset to avoid intrusiveness, but synchronization with them in guards and
invariants is allowed. This partition of clocks will be useful for test purposes which can
have, as observed clocks, some proper clocks of specifications, with the aim of selecting time
constrained behaviors of specifications to be tested.

`0

`1 `2 `3 `4

`5 `6 `7 `8

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 1: Specification A

Example 1.2. Figure 1 represents a TAIO for a specification A that will serve as a running
example in this paper. Its clocks are X = XAp = {x}, its maximal constant is MA = 2, it
has a single input ΣA? = {a}, a single output ΣA! = {b} and one internal action ΣAτ = {τ}.
Informally, its behavior is as follows. It may stay in the initial location `0 while x ≤ 1, and
at x = 1, has the choice, either to go to `1 with action τ , or go to `5 with action τ while
resetting x. In `1, it may receive a and move to `2 when x is between 1 and 2, and reset x.
In `2 it may stay while x ≤ 1 and, either send b and go to `3 at x = 0, or loop silently when
x = 1 while resetting x. This means that b can be sent at any integer delay after entering
`2. In `3 it may stay while x ≤ 1 and move to `4 when sending b. In `5, one can move to
`6 before x = 1 by receiving a and resetting x. Due to invariants x = 0 in `6 and `7, the
subsequent behavior consists in the immediate transmission of two b’s.

1.2. The semantics of OTAIOs. Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , X

A
o ,M

A, IA, EA) be
an OTAIO. The semantics of A is a timed transition system T A = (SA, sA0 ,Γ

A,→A) where

• SA = LA×RXA≥0 is the set of states i.e. pairs (`, v) consisting in a location and a valuation
of clocks;
• sA0 = (`A0 , 0) ∈ SA is the initial state;

6 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

• ΓA = R≥0 tEA× 2X
A
o is the set of transition labels consisting in either a delay δ or a pair

(e,X ′o) formed by an edge e ∈ E and a set X ′o ⊆ XAo of observed clocks;
• the transition relation →A⊆ SA × ΓA × SA is the smallest set of the following moves:

− Discrete moves: (`, v)
(e,X′o)−→A (`′, v′) whenever there exists e = (`, g, a,X ′p, `

′) ∈ EA such
that v |= g∧IA(`), X ′o ⊆ XAo is an arbitrary subset of observed clocks, v′ = v[X′ptX′o←0]

and v′ |= IA(`′). Note that X ′o is unconstrained as observed clocks are not controlled
by A but by a peer OTAIO.

− Time elapse: (`, v)
δ−→A (`, v + δ) for δ ∈ R≥0 if v + δ |= IA(`).

The semantics of OTAIOs generalizes the usual semantics of TAIOs. The difference lies in
the treatment of the additional observed clocks as the evolution of those clocks is controlled
by a peer OTAIO. The observed clocks evolve at the same speed as the proper clocks,
thus continuous moves are simply extended to proper and observed clocks. For discrete
moves however, resets of observed clocks are uncontrolled, thus all possible resets have to
be considered.

A partial run of A is a finite sequence of subsequent moves in (SA × ΓA)∗.SA. For

example ρ = s0
δ1−→A s′0

(e1,X1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk. The sum of delays in ρ is

noted time(ρ). A run is a partial run starting in sA0 . A state s is reachable if there exists a
run leading to s. A state s is co-reachable from a set S′ ⊆ SA if there is a partial run from
s to a state in S′. We note reach(A) the set of reachable states and coreach(A, S′) the set
of states co-reachable from S′.

A (partial) sequence is a projection of a (partial) run where states are forgotten, and
discrete transitions are abstracted to actions and proper resets which are grouped with
observed resets. As an example, the sequence corresponding to a run

ρ = s0
δ1−→A s′0

(e1,X1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk

is
µ = δ1.(a1, X

1
p tX1

o) · · · δk.(ak, Xk
p tXk

o)

where ei = (`i, gi, ai, X
i
p, `
′
i) for all i ∈ [1, k]. We then note s0

µ−→A sk. We write s0
µ−→A if

there exists sk such that s0
µ−→A sk. We note Seq(A) ⊆ (R≥0 t (ΣA × 2X

A
))∗ (respectively

pSeq(A)) the set of sequences (resp. partial sequences) of A. For a sequence µ, time(µ)
denotes the sum of delays in µ.

For a (partial) sequence µ ∈ pSeq(A), Trace(µ) ∈ (R≥0tΣAobs)
∗.R≥0 denotes the observ-

able behavior obtained by erasing internal actions and summing delays between observable
ones. It is defined inductively as follows:

• Trace(ε) = 0,
• Trace(δ1 . . . δk) = Σk

i=1δi,
• Trace(δ1 . . . δk.(τ,X

′).µ) = Trace((Σk
i=1δi).µ),

• Trace(δ1 . . . δk.(a,X
′).µ) = (Σk

i=1δi).a.T race(µ) if a ∈ ΣAobs.

For example Trace(1.(τ,X1).2.(a,X2).2.(τ,X3)) = 3.a.2 and Trace(1.(τ,X1).2.(a,X2)) =
3.a.0. When a trace ends by a 0-delay, we sometimes omit it and write e.g. 3.a for 3.a.0.

When concatenating two traces, the last delay of the first trace and the initial de-
lay of the second one must be added up as follows: if σ1 = δ1.a1. · · · an.δn+1 and σ2 =

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 7

δ′1.a
′
1. · · · a′m.δ′m+1 then σ1.σ2 = δ1.a1. · · · an.(δn+1 + δ′1).a′1. · · · a′m.δ′m+1. Concatenation al-

lows one to define the notion of prefix. Given a trace σ, σ1 is a prefix of σ if there exists
some σ2 with σ = σ1.σ2. Under this definition, 1.a.1 is a prefix of 1.a.2.b.

For a run ρ projecting onto a sequence µ, we also write Trace(ρ) for Trace(µ). The set
of traces of runs of A is denoted by Traces(A) ⊆ (R≥0 t ΣAobs)

∗.R≥0
1.

Two OTAIOs are said equivalent if they have the same sets of traces.
Let σ ∈ (R≥0 t ΣAobs)

∗.R≥0 be a trace, and s ∈ SA be a state,

• A after σ = {s ∈ SA | ∃µ ∈ Seq(A), sA0
µ−→A s∧ Trace(µ) = σ} denotes the set of states

where A can stay after observing the trace σ.

• elapse(s) = {t ∈ R≥0 | ∃µ ∈ (R≥0 t (ΣAτ × 2X
A

))∗, s
µ−→A ∧ time(µ) = t} is the set of

enabled delays in s with no observable action.

• out(s) = {a ∈ ΣA! | ∃X ⊆ XA, s
(a,X)−→A} ∪ elapse(s) (and in(s) = {a ∈ ΣA? | s

(a,X)−→A})
for the set of outputs and delays (respectively inputs) that can be observed from s. For
S′ ⊆ SA, out(S′) =

⋃
s∈S′ out(s) and in(S′) =

⋃
s∈S′ in(s).

Using these last definitions, we will later describe the set of possible outputs and delays
after the trace σ by out(A after σ).

Notice that all notions introduced for OTAIOs apply to the subclass of TAIOs.

1.3. Properties and operations. A TAIOA is deterministic (and called a DTAIO) when-
ever for any σ ∈ Traces(A),A after σ is a singleton2. A TAIO A is determinizable if there
exists an equivalent DTAIO. It is well-known that some timed automata are not determiniz-
able [1]; moreover, the determinizability of timed automata is an undecidable problem, even
with fixed resources [24, 12].

An OTAIO A is said complete if in every location `, IA(`) = true and for every action
a ∈ ΣA, the disjunction of all guards of transitions leaving ` and labeled by a is true. This

entails that Seq(A) ↓XAp = (R≥0 t (ΣA × 2X
A
o))∗, where ↓XAp is the projection that removes

resets of proper clocks in XAp . This means that A is universal for all the behaviors of its
environment.

An OTAIO A is input-complete in a state s ∈ reach(A), if in(s) = ΣA? . An OTAIO A
is input-complete if it is input-complete in all its reachable states.

An OTAIO A is non-blocking if ∀s ∈ reach(A), ∀t ∈ R≥0, ∃µ ∈ pSeq(A)∩ (R≥0t ((ΣA! t
ΣAτ)× 2X

A
))∗, time(µ) = t ∧ s µ→A. This means that it never blocks the evolution of time,

waiting for an input.
For modeling the behavior of composed systems, in particular for modeling the execution

of test cases on implementations, we introduce the classical parallel product. This operation
consists in the synchronization of two TAIOs on complementary observable actions (e.g. a!,
the emission of a and a? its reception) and induces the intersection of the sets of traces. It
is only defined for compatible TAIOs, i.e. Ai = (Li, `i0,Σ

i
?,Σ

i
!,Σ

i
τ , X

i
p,M

i, I i, Ei) for i = 1, 2
such that Σ1

! = Σ2
?, Σ1

? = Σ2
! , Σ1

τ ∩ Σ2
τ = ∅ and X1

p ∩X2
p = ∅.

1Notice that formally, a trace always ends with a delay, which can be 0. This technical detail is useful
later to define verdicts as soon as possible without waiting for a hypothetical next action.

2Determinism is only defined (and used in the sequel) for TAIOs. For OTAIOs, the right definition
would consider the projection of A after σ which forgets values of observed clocks, as these introduce
“environmental” non-determinism.

8 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

Definition 1.3 (Parallel product). The parallel product of two compatible TAIOs Ai =
(Li, `i0,Σ

i
?,Σ

i
!,Σ

i
τ , X

i
p,M

i, I i, Ei) i = 1, 2 is a TAIO A1‖A2 = (L, `0,Σ?,Σ!,Στ , Xp,M, I, E)
where:

• L = L1 × L2, `0 = (`10, `
2
0),

• Σ? = Σ1
?, Σ! = Σ1

! and Στ = Σ1
τ t Σ2

τ

• Xp = X1
p tX2

p

• M = max(M 1,M 2)
• ∀(`1, `2) ∈ L, I((`1, `2)) = I(`1) ∧ I(`2)
• E is the smallest relation such that:
− for a ∈ Σ1

? tΣ1
! , if (`1, g1, a,X ′1p , `

′1) ∈ E1 and (`2, g2, a,X ′2p , `
′2) ∈ E2 then ((`1, `2), g1 ∧

g2, a,X ′1p ∪ X ′2p , (`′1, `′2)) ∈ E, i.e. complementary actions synchronize, corresponding
to a communication;

− for τ1 ∈ Σ1
τ , `2 ∈ L2, if (`1, g1, τ1, X

′1
p , `
′1) ∈ E1 then ((`1, `2), g1, τ1, X

′1
p , (`

′1, `2)) ∈ E,
i.e. internal actions of A1 progress independently;

− for τ2 ∈ Σ2
τ , `1 ∈ L1, if (`2, g2, τ2, X

′2
p , `
′2) ∈ E2 then ((`1, `2), g2, τ2, X

′2
p , (`

1, `′2)) ∈ E,
i.e. internal actions of A2 progress independently.

By the definition of the transition relation E of A1‖A2, TAIOs synchronize exactly on
complementary observable actions and time, and evolve independently on internal actions.
As a consequence, the following equality on traces holds:

Traces(A1‖A2) = Traces(A1) ∩ Traces(A2) (1.1)

Notice that the definition is not absolutely symmetrical, as the direction (input/output)
of actions of the product is chosen with respect to A1. The technical reason is that, in the
execution of a test case on an implementation, we will need to keep the directions of actions
of the implementation.

y ≤ 1

y ≤ 1

A1

X1
p = {y}

y ≥ 1, a?, {y}

y ≥
1, c?

y ≤ 1, b!

x ≤ 1

A2

X2
p = {x}

x = 1, a!, {x}

x ≥ 1, b?

x ≥
1, c!

x ≤ 1

y ≤ 1

y ≤ 1

A = A1‖A2

Xp = {x, y}

y ≥ 1 ∧ x = 1, a?, {x, y}

y ≤ 1 ∧ x ≥ 1, b!

Figure 2: Example of a parallel product A = A1‖A2.

Example 1.4. The Figure 2 gives a very simple illustration of the parallel product. The
intersection of the sets of traces is clear. Indeed, the parallel product recognizes exactly all
prefixes of the trace 1.a.1.b.

We now define a product operation on OTAIOs which extends the classical product of
TAs, with a particular attention to observed clocks. This product is used later in the paper,
to model the action of a test purpose which observes the clocks of a specification.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 9

Definition 1.5 (Product). Let Ai = (Li, `i0,Σ?,Σ!,Στ , X
i
p, X

i
o,M

i, I i, Ei), i = 1, 2, be two
OTAIOs with same alphabets and disjoint sets of proper clocks (X1

p ∩ X2
p = ∅). Their

product is the OTAIO A1 ×A2 = (L, `0,Σ?,Σ!,Στ , Xp, Xo,M, I, E) where:

• L = L1 × L2;
• `0 = (`10, `

2
0);

• Xp = X1
p tX2

p, Xo = (X1
o ∪X2

o) \Xp;
• M = max(M 1,M 2);
• ∀(`1, `2) ∈ L, I((`1, `2)) = I1(`1) ∧ I2(`2);
• ((`1, `2), g1 ∧ g2, a,X ′1p tX ′2p , (`′1, `′2)) ∈ E if (`i, gi, a,X ′ip , `

′i) ∈ Ei, i=1,2.

Intuitively, A1 and A2 synchronize on both time and common actions (including internal
ones3). A2 may observe proper clocks of A1 using its observed clocks X1

p ∩ X2
o , and vice

versa. The set of proper clocks of A1 ×A2 is the union of proper clocks of A1 and A2, and
observed clocks of A1 × A2 are observed clocks of any OTAIO which are not proper. For
example, the OTAIO in Figure 13 represents the product of the TAIO A in Figure 1 and
the OTAIO T P of Figure 12.

A1

X1
p = {z}, X1

o = {x, y}

z = 1 ∧ y ≥ 1 ∧ x ≤ 1, a?, {z}

z ≤ 1 ∧ y ≥ 1 ∧ x = 2, b!

A2

X2
p = {x}, X2

o = {y, z}

x = 1, a?, {x}

y ≥ 1, b!

A = A1 ×A2

Xp = {x, z}, Xo = {y}

z = 1 ∧ y ≥ 1 ∧ x = 1, a?, {x, z}

z ≤ 1 ∧ y ≥ 1 ∧ x = 2, b!

Figure 3: Example of a product A = A1 ×A2.

Contrary to the parallel product, the set of traces of the product of two OTAIOs is not
the intersection of the sets of traces of these TAIOs, as illustrated by the following example.

Example 1.6. Figure 3 artificially illustrates the notion of product of two OTAIOs. One
can see that 1.a?.1.b! is a trace of A1 and A2 but is not a trace of A = A1 ×A2. Indeed, in
A1, 1.a?.1.b! is the trace of a sequence where x is not reset at the first action. Unfortunately,
the clock x is observed by A1 but is a proper clock of A2 which resets it at the first action.
As a consequence, 1.a?.1.b! cannot be a trace of the product A1 × A2. In fact, the second
edge in A can never be fired, since clocks z and x agree on their values and cannot be
simultaneously smaller than 1 and equal to 2.

On the other hand, sequences are more adapted to express the underlying operation.
To compare the sets of sequences of A1×A2 with the sets of sequences of its factors, we in-
troduce an operation that lifts the sets of clocks of factors to the set of clocks of the product:

for A1 defined on (X1
p, X

1
o), and X1

p ∩X2
p = ∅, A1↑(X2

p ,X
2
o) denotes an automaton identical

to A1 but defined on (X1
p, X

2
p ∪X1

o ∪X2
o \X1

p). The effect on the semantics is to duplicate

moves of A1 with unconstrained resets in (X2
p∪X2

o)\ (X1
p∪X1

o), so that A1↑(X2
p ,X

2
o) strongly

3Synchronizing internal actions allows for more precision in test selection. This justifies to have a set of
internal actions in the TAIO model.

10 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

bisimulates A1. The equivalence just consists in ignoring values of added clocks which do

not interfere in the guards. Similarly A2↑(X1
p ,X

1
o) is defined on (X2

p, X
1
p ∪ X2

o ∪ X1
o \ X2

p).

Both A1↑X2
p ,X

2
o and A2↑X1

p ,X
1
o have sequences in (R≥0t (ΣAτ × (X1

p ∪X2
p ∪X1

o ∪X2
o)))

∗. They
synchronize on both delays and common actions with their resets. The effect of the product
is to restrict the respective environments (observed clocks) by imposing the resets of the
peer TAIO. The sequences of the product are then characterized by

Seq(A1 ×A2) = Seq(A1↑(X2
p ,X

2
o)) ∩ Seq(A2↑(X1

p ,X
1
o)) (1.2)

meaning that the product of OTAIOs is the adequate operation for intersecting sets of
sequences.

An OTAIO equipped with a set of states F ⊆ SA can play the role of an acceptor. A
run is accepted in F if it ends in F . SeqF (A) denotes the set of sequences of accepted runs
and TracesF (A) the set of their traces. By abuse of notation, if L is a subset of locations
in LA, we note SeqL(A) for Seq

L×RXA
≥0

(A) and similarly for TracesL(A). Note that for the

product A1 ×A2, if F 1 and F 2 are subsets of states of A1 and A2 respectively, additionally
to (1.2), the following equality holds:

SeqF 1×F 2(A1 ×A2) = SeqF 1(A1↑(X2
p ,X

2
o)) ∩ SeqF 2(A2↑(X1

p ,X
1
o)). (1.3)

2. Conformance testing theory

In this section, we recall the conformance theory for timed automata based on the confor-
mance relation tioco [18] that formally defines the set of correct implementations of a given
TAIO specification. tioco is a natural extension of the ioco relation of Tretmans [23] to
timed systems. We then define test cases, formalize their executions, verdicts and expected
properties relating verdicts to conformance. Finally, we introduce a refinement relation
between TAIOs that preserves tioco, and will be useful in proving test case properties.

2.1. The tioco conformance theory. We consider that the specification is given as a
(possibly non-deterministic) TAIO A. The implementation is a black box, unknown except
for its alphabet of observable actions, which is the same as the one of A. As usual, in order
to formally reason about conformance, we assume that the implementation can be modeled
by an (unknown) TAIO. Formally:

Definition 2.1 (Implementation). Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, IA, EA) be a

specification TAIO. An implementation of A is an input-complete and non-blocking TAIO
I = (LI, `I0,Σ?,Σ!,Σ

I
τ , X

I
p , ∅,MI, II, EI) with same observable alphabet as A (ΣI? = ΣA?

and ΣI! = ΣA!). I(A) denotes the set of possible implementations of A.

The requirements that an implementation is input-complete and non-blocking will en-
sure that the execution of a test case on I does not block before verdicts are emitted.

Among the possible implementations in I(A), the conformance relation tioco (for timed
input-output conformance) [18] formally defines which ones conform to A, naturally extend-
ing the classical ioco relation of Tretmans [23] to timed systems:

Definition 2.2 (Conformance relation). Let A be a TAIO representing the specification
and I ∈ I(A) be an implementation of A. We say that I conforms to A and write
I tioco A if ∀σ ∈ Traces(A), out(I after σ) ⊆ out(A after σ).

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 11

Note that tioco is equivalent to the rtioco relation that was defined independently
in [19] (see [22]). Intuitively, I conforms to A if after any timed trace enabled in A, every
output or delay of I is specified in A. This means that I may accept more inputs than A,
but is authorized to send less outputs, or send them during a more restricted time interval.
The intuition is illustrated on the following simple example:

Example 2.3. Figure 4 represents a specification A and two possible implementations I1

and I2. Note that I1 and I2 should be input-complete, but for simplicity of figures, we omit
some inputs and consider that missing inputs loop to the current location. It is easy to see
that I1 conforms to A. Indeed, it accepts more inputs, which is allowed (after the trace ε, I1

can receive a and d while A only accepts a), and emits the output b during a more restricted
interval of time (out(I1 after a.2) = [0,∞) is included in out(A after a.2) = [0,∞)t{b}).
On the other hand I2 does not conform to A for two reasons: I2 may send a new output c
and may send b during a larger time interval (e.g. out(I2 after a.1) = [0,∞)t {b, c} is not
included in out(A after a.1) = [0,∞)).

A

a?, {x}

2 ≤ x ≤ 8, b!

{x}

I1

{x}

a?, {x}

4 ≤ x ≤ 5, b!

d?

I2

{x}

a?, {x}

1 ≤x ≤ 5, b! c!

Figure 4: Example of a specification A and two implementations I1 and I2.

In practice, conformance is checked by test cases run on implementations. In our setting,
we define test cases as deterministic TAIOs equipped with verdicts defined by a partition
of states.

Definition 2.4 (Test suite, test case). Given a specification TAIO A, a test suite is a set
of test cases, where a test case is a pair (T C,Verdicts) consisting of:

• a deterministic TAIO T C = (LT C, `T C0 ,ΣT C? ,ΣT C! , ∅, XT Cp , ∅,MT C, IT C, ET C),

• a partition Verdicts of the set of states ST C = None t Inconc t Pass t Fail. States
outside None are called verdict states.

We also require that

• ΣT C? = ΣA! and ΣT C! = ΣA? ,
• T C is non-blocking, (e.g. IT C(`) = true for all ` ∈ LT C),
• T C is input-complete in all None states, meaning that it is ready to receive any input

from the implementation before reaching a verdict.

In the following, for simplicity we will sometimes abuse notations and write T C instead
of (T C,Verdicts). Let us give some intuition about the different verdicts of test cases.
Fail states are those where the test case rejects an implementation. The intention is thus
to detect a non-conformance. Pass and Inconc states are linked to test purposes (see
Section 4): the intention is that Pass states should be those where no non-conformance
has been detected and the test purpose is satisfied, whereas Inconc states should be those

12 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

states where no non-conformance has been detected, but the test purpose cannot be satisfied
anymore. None states are all other states. We insist on the fact that those are intentional
characterizations of the verdicts. Properties of test cases defined later specify whether these
intentions are satisfied by test cases. We will see that it is not always the case for all
properties.

The execution of a test case T C ∈ Test(A) on an implementation I ∈ I(A) is modeled
by the parallel product I‖T C, which entails that Traces(I‖T C) = Traces(I) ∩ Traces(T C).
The facts that T C is input-complete (in None states) and non-blocking while I is input-
complete (in all states) and non-blocking ensure that no deadlock occurs before a verdict is
reached.

We say that the verdict of an execution of trace σ ∈ Traces(T C), noted Verdict(σ, T C),
is Pass, Fail, Inconc or None if T C after σ is included in the corresponding states set 4.
We write I fails T C if some execution σ of I‖T C leads T C to a Fail state, i.e. when
TracesFail(T C) ∩ Traces(I) 6= ∅, which means that there exists σ ∈ Traces(I) ∩ Traces(T C)
such that Verdict(σ, T C) = Fail. Notice that this is only a possibility to reach the Fail
verdict among the infinite set of executions of I‖T C. Hitting one of these executions is not
ensured both because of the lack of control of T C on I and of timing constraints imposed
by these executions.

We now introduce soundness, a crucial property ensured by our test generation method.
We also introduce exhaustiveness and strictness that will be ensured when determinization
is exact (see Section 4).

Definition 2.5 (Test suite soundness, exhaustiveness and strictness). A test suite T S for
A is:

• sound if ∀I ∈ I(A), ∀T C ∈ T S, I fails T C ⇒ ¬(I tioco A),
• exhaustive if ∀I ∈ I(A), ¬(I tioco A)⇒ ∃T C ∈ T S, I fails T C,
• strict if ∀I ∈ I(A),∀T C ∈ T S,¬(I‖T C tioco A)⇒ I fails T C.

Intuitively, soundness means that no conformant implementation can be rejected by the
test suite, i.e. any failure of a test case during its execution characterizes a non-conformance.
Conversely, exhaustiveness means that every non-conformant implementation may be re-
jected by the test suite. Remember that the definition of I fails T C indicates only a
possibility of reject. Finally, strictness means that non-conformance is detected once it oc-
curs. In fact, ¬(I‖T C tioco A) means that there is a trace common to T C and I which
does not conform to A. The universal quantification on I and T C implies that any such
trace will fail T C. In particular, this implies that failure will be detected as soon as it
occurs.

Example 2.6. Figure 5 represents a test suite composed of a single test case T C for the
specification A of the Figure 4. Indeed, T C is a TAIO which is input-complete in the None
states. T S is sound because the Fail states of T C are reached only when a conformance
error occurs, e.g. on trace 1.b. However, this test case can observe non-conformant traces
without detecting them, hence T S is not strict. For example, 1.a.1.b, 1.a.1.c and 1.a.9.c are
non-conformant traces that do not imply a Fail verdict. These traces are e.g. traces of I2

(Figure 4) which should allow to detect that ¬(I2 tiocoA).

4Note that TC being deterministic, T C after σ is a singleton.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 13

`1

`2

`PassT C

`Fail

`Inc

!a, {x}

x ≤ 8
?b, ?c

?b, ?c

x > 8
?b

x > 8
?c

None = {`1} × R≥0 ∪ {`2} × [0, 8]
Inconc = {`Inc, `2} × (8,∞)
Pass = {`Pass} × R≥0

Fail = {`Fail} × R≥0

T S = {T C}

Figure 5: Example of a sound but not strict test suite for the specification A (Figure 4).

2.2. Refinement preserving tioco. We introduce an io-refinement relation between two
TAIOs, a generalization to non-deterministic TAIOs of the io-refinement between DTAIOs
introduced in [9], itself a generalization of alternating simulation [2]. Informally A io-refines
B if A specifies more inputs and allows less outputs and delays. As a consequence, if A
and B are specifications, A is more restrictive than B with respect to conformance. We
thus prove that io-abstraction (the inverse relation) preserves tioco: if I conforms to A, it
also conforms to any io-abstraction B of A. This will ensure that soundness of test cases is
preserved by the approximate determinization defined in Section 3.

Definition 2.7. Let A and B be two TAIOs with same input and output alphabets, we say
that A io-refines B (or B io-abstracts A) and note A � B if

(i) ∀σ ∈ Traces(B), out(A after σ) ⊆ out(B after σ) and,

(ii) ∀σ ∈ Traces(A), in(B after σ) ⊆ in(A after σ).

As we will see below, � is a preorder relation. Moreover, as condition (ii) is always
satisfied if A is input-complete, for I ∈ I(A), I tioco A is equivalent to I � A. By
transitivity of �, it follows that io-refinement preserves conformance (see Proposition 2.9).

Lemma 2.8. The io-refinement � is a preorder relation.

Proof. The relation � is trivially reflexive and we prove that it is transitive.
Suppose that A � B and B � C. By definition of � we have:

∀σ ∈ Traces(B), out(A after σ) ⊆ out(B after σ) (1)

∀σ ∈ Traces(A), in(B after σ) ⊆ in(A after σ) (2) and

∀σ ∈ Traces(C), out(B after σ) ⊆ out(C after σ) (3)

∀σ ∈ Traces(B), in(C after σ) ⊆ in(B after σ) (4)

We want to prove that A � C thus that

∀σ ∈ Traces(C), out(A after σ) ⊆ out(C after σ) (5)

∀σ ∈ Traces(A), in(C after σ) ⊆ in(A after σ) (6)

In order to prove (5), let σ ∈ Traces(C), and examine the two cases:

• If σ ∈ Traces(B) ∩ Traces(C) then (1) and (3) imply out(A after σ) ⊆ out(B after σ)
and out(B after σ) ⊆ out(C after σ). Thus out(A after σ) ⊆ out(C after σ) and we
are done.

14 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

• If σ ∈ Traces(C)\Traces(B), there exist σ′, σ′′ ∈ (ΣobstR≥0)
∗ and a ∈ ΣobstR≥0 such that

σ = σ′.a.σ′′ with σ′ ∈ Traces(B) ∩ Traces(C) and σ′.a ∈ Traces(C) \ Traces(B). As B � C,
by (4) we get that a ∈ Σ! t R≥0. But as A � B, and σ′ ∈ Traces(B), the condition (1)
induces that out(A after σ′) ⊆ out(B after σ′), and then σ′.a ∈ Traces(C) \ Traces(A).
We deduce that out(A after σ′.a) = ∅, and thus out(A after σ) = ∅ ⊆ out(C after σ).

The proof of (6) is similar.

Proposition 2.9. If A � B then ∀I ∈ I(A) (= I(B)), I tioco A ⇒ I tioco B.

Proof. This proposition is a direct consequence of the transitivity of �. In fact when I is
input-complete, by definition ∀σ ∈ Traces(I), in(I after σ) = Σ?, thus condition (ii) of �
trivially holds: ∀σ ∈ Traces(I), in(A after σ) ⊆ in(I after σ). Thus I tiocoA (which is
defined by ∀σ ∈ Traces(A), out(I after σ) ⊆ out(A after σ)) is equivalent to I � A. Now
suppose A � B and I tiocoA then the transitivity of � gives I tiocoB.

A

Σ!

B

Σ!

a?

Σ!

Figure 6: Counter-example to converse of Proposition 2.9.

Remark: unfortunately, the converse of Proposition 2.9 is in general false, already in the
untimed case. This is illustrated in Figure 6. It is clear that the automaton A accepts all
implementations. B also accepts all implementations as, from the conformance point of view,
when a specification does not specify an input after a trace, this is equivalent to specifying
this input and then to accept the universal language on Σobs. Thus I tioco A ⇒ I tioco B.
However ¬(A � B) as in(B after ε) = {a} but in(A after ε) = ∅. Notice that this example
also works for the untimed case in the ioco conformance theory.

As a corollary of Proposition 2.9, we get that io-refinement preserves soundness of test
suites:

Corollary 2.10. If A � B then any sound test suite for B is also sound for A.

Proof. Let T S be a sound test suite for B. By definition, for any I ∈ I(B), for any
T C ∈ T S, I fails T C ⇒ ¬(I tioco B). As we have A � B, by Proposition 2.9, we obtain
¬(I tioco B) ⇒ ¬(I tioco A) which implies that for any I ∈ I(B), for any T C ∈ T S,
I fails T C ⇒ ¬(I tioco A). Thus T S is also sound for A.

In the sequel, this corollary will justify our methodology: from A a non-deterministic
TAIO, build a deterministic io-abstraction B of A, then any test case generated from B and
sound is also sound for A.

3. Approximate determinization preserving conformance

We recently proposed a game approach to determinize or provide a deterministic over-
approximation for TAs [7]. Determinization is exact on all known classes of determinizable
TAs (e.g. event-clock TAs, TAs with integer resets, strongly non-Zeno TAs) if resources
(number and clocks and maximum constant) are sufficient. This method can be adapted to

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 15

the context of testing for building a deterministic io-abstraction of a given TAIO. Thanks
to Proposition 2.9, the construction preserves tioco.

The approximate determinization uses the classical region5 construction [1]. As for
classical timed automata, the regions form a partition of valuations over a given set of clocks
which allows to make abstractions in order to decide properties such as the reachability of
a location. We note Reg(X,M) the set of regions over clocks X with maximal constant M .

A region r′ is a time-successor of a region r if ∃v ∈ r, ∃t ∈ R≥0, v + t ∈ r′. Given X a set of
clocks, a relation over X is a finite conjunction C of atomic constraints of the form x−y ∼ c
where x, y ∈ X, ∼∈ {<,=, >} and c ∈ N. When all constants c belong to [−M,M] for some
constant M ∈ N we denote by RelM (X) for the set of relations over X. Given a region r,
we write ←→r M for the smallest relation in RelM (X) containing r.

3.1. A game approach to determinize timed automata. The technique presented
in [7] applies first to TAs, i.e. the alphabet only consists of one kind of actions (say output
actions), and the invariants are all trivial. Given such a TA A over set of clocks XA, a
deterministic TA B with a new set of clocks XB is built, with Traces(A) = Traces(B) as
often as possible, or Traces(A) ⊆ Traces(B). Resources of B are fixed, and the goal is to
simulate the clocks of A by choosing the right resets in B. To this aim, letting k = |XB|,
a finite 2-player zero-sum turn-based safety game GA,(k,MB) = (VS ,VD, v0, δS t δD,Bad)
is built. The two players, Spoiler and Determinizator, alternate moves, the objective of
player Determinizator being to remain in a set of safe states where intuitively, for sure no
over-approximation has been performed. In this game, every strategy for Determinizator
yields a deterministic automaton B with Traces(A) ⊆ Traces(B), and every winning strategy
induces a deterministic TA B equivalent toA. It is well known that for safety games, winning
strategies can be chosen positional (i.e., only based on the current state) and computed in
linear time in the size of the arena (see e.g. [20]).

The game GA,(k,MB) = (VS ,VD, v0, δS t δD,Bad) is defined as follows:

• VS = 2
LA×Rel

max(MA,MB)(X
AtXB)×{⊥,>} × Reg(XB,MB) is the set of states of Spoiler. Each

state is a pair vS = (E , r) where r is a region over XB, and E is a finite set of configurations
of the form (`, C, b) where ` is a location of A, C is a relation over XA tXB with respect
to the maximal constant M = max(MA,MB), and b is a boolean marker (> or ⊥). A
state of Spoiler thus constitutes a state estimate of A, and the role of the marker b is to
indicate whether over-approximations possibly happened.
• VD = VS × (Σ × Reg(XB,MB)) is the set of states of Determinizator. Each state vD =

(vS , (a, r
′)) consists of a state of Spoiler, together with an action and a region over XB

which role is to remember the last move of Spoiler.
• v0 = ({(`0, C0, b0)}, {0}) ∈ VS , the initial state of the game, is a state of Spoiler consisting

of a single configuration with the initial location `0 of A, the simple relation C0 over
XA t XB: ∀x, y ∈ XA t XB, x − y = 0, a marker b0 = > (no over-approximation was
done so far), together with the null region over XB.

• δS ⊆ VS × (Σ×Reg(XB,MB))×VD and δD ⊆ VD × 2X
B ×VS are inductively defined from

v0 as follows:
− moves of Spoiler are pairs (a, r′) and the successor of a state vS = (E , r) ∈ VS by the

move (a, r′) is simply vD = ((E , r), (a, r′)), i.e. a copy of vS together with a challenge for

5Note that it could be adapted to zones with some loss in precision.

16 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

Determinizator consisting in an action a and a region r′ ∈ Reg(XB,MB), a time-successor
of r;

− moves of Determinizator are resets Y ⊆ XB and the successor of a state vD =
((E , r), (a, r′)) ∈ VD by the reset Y ⊆ XB, is the state of Spoiler (E ′, r′[Y←0]) ∈ VS
where E ′ = {Succe[(a, r′), Y](`, C, b) | (`, C, b) ∈ E} and

Succe[(a, r
′), Y](`, C, b) =

(`′, C ′, b′)

∣∣∣∣∣∣∣
∃` g,a,X−−−→ `′ ∈ E s.t. [r′ ∩ C]|XA ∩ g 6= ∅
C ′ =

←−−−−−−−−−−−−−−−→
(r′ ∩ C ∩ g)[X←0][Y←0]

M

b′ = b ∧ ([r′ ∩ C]|XA ⊆ g)

 .

In words, E ′ is the set of elementary successors of configurations in E by (a, r′) and
by resetting Y . An elementary successor of a configuration (`, C, b) by a transition

`
g,a,X−−−→ `′ exists only if the guard [r′∩C]|XA over XA induced by the guard r′ over XB

through the relation C intersects g. Intuitively, the transition is possible in ` according
to the state estimate (`, C) and the region r′. The resulting configuration (`′, C ′, b′) is
such that:
∗ `′ is the location reached by the transition;
∗ C ′ is the relation between clocks in XA and XB after the moves of the two players,

that is after satisfying the guard g in r′ ∩ C, resetting X ⊆ XA and Y ⊆ XB;
∗ b′ is a boolean set to > if both b = > and the induced guard [r′ ∩ C]|XA over XA

implies g. Intuitively, b′ becomes ⊥ when r′ encodes more values than g, thus an
over-approximation possibly happens.

Note that during the construction of δS and δD, the states of Determinizator whose
successors by δD have an empty set of configurations are removed, together with the
moves in δS leading to them. Indeed these moves have no counterpart in A.
• Bad = {(E , r) ∈ VS | ∀(`, C, b) ∈ E , b = ⊥}. Bad states Determinizator wants to avoid are

states where all configurations are marked ⊥, i.e. configurations where an approximation
possibly happened. Note that a single configuration marked > in a state is enough to
ensure that no over-approximation happened. Indeed, for any path in the game leading to
such a state, starting from a >-marked configuration, and taking elementary predecessors,
one can build backwards a sequence of configurations following this path. By definition
of the marker’s update, these configurations are all marked >, and the sequence thus
corresponds to real traces in the non-deterministic automaton.

Example 3.1. Figure 7 represents a simple non-deterministic timed automaton A. Let us

`0

`1

`2

`3

0 <
x <

1, a0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, b, {x}

x = 0, b

Figure 7: Non-deterministic timed automaton A.

explain how to construct the game GA,(1,1) for A with resources (1, 1), that is a single clock
y and maximal constant 1. We only detail part of the construction in Figure 8, but the
complete game can be found in [7].

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 17

`0, x− y = 0,> {0}
`0, 0 < x− y < 1,>

{0}`1, 0 < x− y < 1,>
`2, x− y = 0,>

`0, 0 < x− y < 1,⊥
(0,1)`1, 0 < x− y < 1,⊥

`2,−1 < x− y < 0,⊥

{y}
0 < y < 1, a 0 < y < 1, a{y}

∅

∅

{y}

Figure 8: Part of the game GA,(1,1).

As defined above, the initial state of the game is simply v0 = ({(`0, x−y = 0,>)}, {0}).
From v0, the only move of Spoiler compatible with behaviors of A is 0 < y < 1, a.

Corresponding transitions in A lead to locations `0, `1 and `2, and only in this last location
x has been reset. Each transition of A yields a configuration in the next state of Spoiler,
and assuming Determinizator chooses to reset y, the three different configurations are the
following:

• one with location `0, where x ∈ (0, 1) (no reset in A) and y = 0 (reset in GA,(1,1)),
• one with location `1, where x ∈ (0, 1) and y = 0,
• and one with location `2, where x = 0 (reset in A) and y = 0.

In the two first configurations, the new relation is
←−−−−−−−−−−→
(y = 0 < x < 1)1, that is 0 < x− y < 1,

and in the last configuration, the new relation is simply x − y = 0. As a consequence the
successor state is v1 = ({(`0, 0 < x−y < 1,>), (`1, 0 < x−y < 1,>), (`2, x−y = 0,>)}, {0}).
Note that all markers are > since the guard on y faithfully represented the ones on x.

From state v1, if Spoiler chooses the move 0 < y < 1, a, it is not obvious to which tran-
sitions in A this corresponds, and we thus explain in details how to compute the successor
state. First observe that the only configuration in v1 from which an a action is possible is
the first one, with location `0. In this configuration, the relation is 0 < x − y < 1. Let
us now explain what guard over x is induced by the relation C = 0 < x − y < 1 and
the region r′ = 0 < y < 1. Figure 9 illustrates this computation. The dotted area rep-

r′

C

r′ ∩ C

x

y

1 2

1

2

[r′ ∩ C]|{x}

Figure 9: Construction of the induced guard.

resents the set of the valuations over {x, y} satisfying the guard r′ = 0 < y < 1 and the
dashed area represents the relation C = 0 < x − y < 1. The induced guard [r′ ∩ C]|{x}
(i.e. the guard over x encoded by the guard r′ on y through the relation C) is then the

18 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

projection over clock x of the intersection of these two areas. In this example, the induced
guard is 0 < x < 2. Therefore, the transitions of A corresponding to the choice of Spoiler
0 < y < 1, a are as before the three ones originating in `0, but this time they are over-
approximated. Indeed, the induced guard [r′ ∩ C]|{x} is not included in the original guard
0 < x < 1 in A, i.e. a priori r′ encodes more values than g. As a consequence, all the
configurations in Spoiler’s successor state are marked ⊥. Last, let us detail how the new
relations are computed. Assuming Determinizator chooses not to reset y leads to state v2,
in which for the configuration with location `0, the relation is the smallest one containing
(0 < x− y < 1)∩ (0 < y < 1)∩ (0 < x < 1), namely 0 < x− y < 1. The relation for the last

configuration in v2 is
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(0 < x− y < 1) ∩ (0 < y < 1) ∩ (0 < x < 1)

)
[x←0]

1, which is same as
←−−−−−−−−−−→
(x = 0 < y < 1)1, namely −1 < x− y < 0.

As explained earlier, a strategy for Determinizator chooses in each state of VD a set
Y ⊆ XB of clocks to reset. With every strategy Π for Determinizator we associate the
TA B = Aut(Π) obtained by merging a transition of Spoiler with the transition chosen by
Determinizator just after. The following theorem links strategies of Determinizator with
deterministic over-approximations of the original traces language and enlightens the interest
of the game:

Theorem 3.2 ([7]). Let A be a TA, and k,MB ∈ N. For any strategy Π of Determinizator
in GA,(k,MB), B = Aut(Π) is a deterministic timed automaton over resources (k,MB) and

satisfies Traces(A) ⊆ Traces(B). Moreover, if Π is winning, then Traces(A) = Traces(B).

When there is no winning strategy, one can either try to increase resources (number
of clocks and/or maximal constant), or try to choose the best losing strategy, which is a
concern. Indeed, the language inclusion seems to be a good criterion to compare two losing
strategies, but it is not a total ordering. Alternatively, one can use the natural heuristics
which tends to lose as late as possible (see [6]). In particular, for a game with k clocks
and same maximal constant as the original timed automaton, there is a strategy which
ensures not to lose before k moves (of each players): by choosing to reset a new clock
at each of its moves, Determinizator ensures to perfectly encode all clocks of the original
timed automaton. Other alternatives would be to consider heuristics based on quantitative
measures over languages.

3.2. Extensions to TAIOs and adaptation to tioco. In the context of model-based
testing, the above-mentioned determinization technique must be adapted to TAIOs, as
detailed in [6], and summarized below. The model of TAIOs is an expressive model of timed
automata incorporating internal actions and invariants. Moreover, inputs and outputs must
be treated differently in order to build from a TAIO A a DTAIO B such that A � B, and
then to preserve tioco.

• Internal actions are naturally part of the specification model. They cannot be observed
during test executions and should thus be removed during determinization. In order to
do so, a closure by internal actions is performed for each state during the construction
of the game, that is, in each state, all the configurations reachable by internal actions
are added to the set of configurations. To this attempt, states of the game have to
be extended since internal actions might be enabled from a subset of time-successors of
the region associated with the state. Therefore, each configuration is associated with a

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 19

proper region which is a time-successor of the initial region of the state. The closure
by internal actions is effectively computed the same way as successors in the original
construction when Determinizator is not allowed to reset any clock. It is well known that
timed automata with silent transitions are strictly more expressive than standard timed
automata [4]. Therefore, our approximation can be coarse, but it performs as well as
possible with its available clock information.
• Invariants are classically used to model urgency in timed systems. Taking into account

urgency of outputs is quite important, indeed without the ability to express it, for in-
stance, any dummy system would conform to all specifications. Ignoring all invariants
in the approximation as done in [18] surely yields an io-abstraction: delays (considered
as outputs) are over-approximated. In order to be more precise, while preserving the
io-abstraction relation �, with each state of the game is associated the most restrictive
invariant containing invariants of all the configurations in the state. In the computation
of the successors, invariants are treated as guards and their validity is verified at both
ends of the transition. A state whose invariant is strictly over-approximated is treated as
unsafe in the game.
• Rather than over-approximating a given TAIO A, we aim here at building a DTAIO B

io-abstracting A (A � B). Successors by outputs are over-approximated as in the original
game, while successors by inputs must be under-approximated. The over-approximated
closure by silent transitions is not suitable to under-approximation. Therefore, states
of the game are extended to contain both over-approximated and under-approximated
closures. Thus, the unsafe successors by an input (where possibly an over-approximation
would occur), are not built.

Example 3.3. Figure 10 represents a non-deterministic timed automaton A′ that has
invariants and internal actions. It is a sub-automaton of the timed automaton we use in
the next section (see Figure 13) to illustrate the approximate determinization for our test
selection.

`0

`1 `2

`5 `6x ≤ 1

x ≤ 1

x = 0

x = 1, τ
1 < x < 2, a?, {x}

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x}

Figure 10: Non-deterministic timed automaton A′ (with invariants and internal actions).

Using this automaton A′, let us illustrate how the game construction is adapted to deal
with internal actions and invariants, by detailing part of the game GA′,(1,2) represented in
Figure 11.

A state of Spoiler in the game is a triple (S−, S+, (I, bI)) where S− (resp. S+) is
the under-approximated (resp. over-approximated) closure by unobservable actions of the
successors by some observable action, I is the invariant and bI is the marker which indicates
a risk of approximation of the invariant. The invariant and the marker of Spoiler’s states
are written below the states.

20 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

(`0, x− y = 0,>) {0}
(`1, x− y = 0,>) {1}
(`5, x− y = −1,>) {1}

(`6, x− y = 0,>) {0}

(`6, x− y = 0,>) {0}
(`2, x− y = 0,>) {0}
(`2, x− y = −1,>) {1}
(`2, x− y = −2,>) {2}
(`2, x− y < −2,⊥) (2,∞)

true,>

true,⊥

y = 0,>y = 1, a?
{y}

∅

1 < y < 2, a?
{y}

∅

Figure 11: Part of the game GA′,(1,2).

In the initial state of the game, (`0, x−y = 0,>, {0}) ∈ S− ⊆ S+. Moreover, an internal
action τ can be fired for x = 1 along two different edges, which add two configurations,
associated with the region y = 1 (because x − y = 0 in the first configuration). Deter-
minizator cannot reset y along an internal action, hence the relation for the configuration
with location `5 is x − y = −1. Note that the region y = 1 is associated with the two last
configurations in the initial state, reflecting that the internal action fired and thus the least
value for y is 1. Also in this case, the closure (by internal actions) is not approximated,
hence S− = S+. On the other hand, it may be surprising that the invariant of this initial
state is true whereas the invariant of the initial state of A′ is x ≤ 1. In fact, the invariant of
a state is the smallest invariant containing the union, over all its configurations, of induced
invariants. On this example, after an internal action from `0, delays are not constrained
anymore in `1 and `6 (invariants are true). Thus the invariant in the initial state of the
game is not approximated, so its marker is >.

From this initial state, Spoiler can choose the regions y = 1 or 1 < y < 2 together
with action a?. For y = 1, this can only happen from the configuration with location `5.
Indeed, the relation x − y = 0 and the guard y = 1 induce a guard x = 1 which is not
compatible with the outgoing edge from `1 in A′. The computation of the successor state,
e.g. when Determinizator chooses to reset y, is simple: no internal action is fireable and
the invariant in `6 is precisely expressed by y = 0. The situation is more complex when
Spoiler chooses the region 1 < y < 2: in this case there are two successors by the observable
action a? (leading to locations `6 and `2), and for the first one internal actions may follow.
We thus have to compute the closure by internal actions of the successor configuration by
observable action a?. Before computing the closure, and assuming that Determinizator
resets clock y, the successor state is composed of two configurations: (`2, x− y = 0,>) and
(`6, x− y = 0,>) together with region y = 0. Along the τ -loop on location `2, x is reset in
A′ whereas y cannot be reset in the game (because it is an internal action). Starting from
configuration (`2, x−y = 0,>, {0}) and performing once the internal action τ , the resulting
configuration is thus (`2, x − y = −1,>, {1}). This computation is iterated to obtain the
closure by internal actions, which in such a case, will depend on the maximal constant (here
2). Indeed, after (`2, x− y = −1,>, {1}), the next configuration is (`2, x− y = −2,>, {2})
and starting from (`2, x − y = −2,>, {2}) the effect of one internal action would yield to
(`2, x − y = −3,>, {3}). However, x − y = −3 cannot be expressed in Rel2({x, y}), so
it is approximated by the least relation of Rel2({x, y}) containing it, that is x − y < −2.
Similarly, region y = 3 is approximated by y > 2. As a consequence, the configuration

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 21

(`2, x − y = −3,>, {3}) is approximated by (`2, x − y < −2,⊥, (2,∞)) in S+. Note that
this latter configuration is in S+ \ S− and thus separated from configurations in S− by two
horizontal lines on Figure 11. Moreover, taking the union of all the invariants, we obtain
true as invariant for this state, but since it is approximated for the last configuration
(`2, x− y < −2,⊥, (2,∞)), its marker is ⊥.

All in all, these modifications allow to deal with the full TAIO model with invariants,
internal transitions and inputs/outputs. In particular, the treatment of invariants is con-
sistent with the io-abstraction: delays are considered as outputs, thus over-approximated.
Figure 14 represents a part of this game for the TAIO of Figure 13. The new game then
enjoys the following nice property:

Proposition 3.4 ([6]). Let A be a TAIO, and k,MB ∈ N. For any strategy Π of De-
terminizator in the game GA,(k,MB), B = Aut(Π) is a DTAIO over resources (k,MB) with

A � B. Moreover, if Π is winning, then Traces(A) = Traces(B).

In other words, the approximations produced by our method are deterministic io-
abstractions of the initial specification, hence the approximate determinization preserves
tioco (Proposition 2.9), and conversely, sound test cases of the approximate determiniza-
tion remain sound for the original specification (Corollary 2.10). Note that the proof of
proposition 3.4 in [6] considers a stronger refinement relation, thus implies the same result
for the present refinement relation. In comparison with our method, the algorithm proposed
in [18] always performs an over-approximation, and thus preserves tioco only if the specifi-
cation is input-complete; moreover all invariants are set to true in the resulting automata,
so the construction does not preserve urgency.

Complexity. The number of regions (resp. relations) over a set of clocks is exponential
in the number of clocks. Thus, the number of possible configurations in the game is at
most exponential in the cardinality of X t Y and linear in the number of locations in
A. As a consequence, the size of the game (i.e., number of states in the arena) is at
most doubly exponential in |X t Y | and exponential in |LA|. In particular this bound also
holds for the size of the generated deterministic TAIO, for every memoryless strategy of
Determinizator. The overall complexity of this io-abstracting determinization algorithm is
thus doubly exponential in the size of the instance (original TAIO and resources).

4. Off-line test case generation

In this section, we describe the off-line generation of test cases from timed automata speci-
fications and test purposes. We first define test purposes, their role in test generation and
their formalization as OTAIOs. We then detail the process of off-line test selection guided
by test purposes, which uses the approximate determinization just defined. We also prove
properties of generated test cases with respect to conformance and test purposes.

22 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

4.1. Test purposes. In testing practice, especially when test cases are generated manually,
each test case has a particular objective, informally described by a sentence called test
purpose. In formal test generation, test purposes should be formal models interpreted as
means to select behaviors to be tested, either focusing on usual behaviors, or on suspected
errors in implementations [13], thus typically reachability properties. They complement
other selection mechanisms such as coverage methods [26] which, contrary to test purposes,
are most often based on syntactical criteria rather than semantic aspects. Moreover, the
set of goals covering a given criterion (e.g. states, transitions, etc) may be translated into a
set of test purposes, each test purpose focusing on one such goal.

As test purposes are selectors of behaviors, a natural way to formalize them is to use a
logical formula characterizing a set of behaviors or an automaton accepting those behaviors.
In this work we choose to describe test purposes as OTAIOs equipped with accepting states.
The motivation is to use a model close to the specification model, easing the description
of targeted specification behaviors. The following definition formalizes test purposes, and
some alternatives are discussed in Section 5.

Definition 4.1 (Test purpose). LetA = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, IA, EA) be a TAIO

specification. A test purpose for A is a pair (T P,AcceptT P) where:

• T P = (LT P , `T P0 ,ΣA? ,Σ
A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , IT P , ET P) is a complete OTAIO (in par-

ticular IT P(`) = true for any ` ∈ LT P) with XT Po = XAp (T P observes proper clocks of
A) and XT Pp ∩XAp = ∅,
• AcceptT P ⊆ LT P is a subset of trap locations.

In the following, we will sometimes abuse notations and use T P instead of the pair
(T P,AcceptT P). During the test generation process, test purposes are synchronized with
the specification, and together with their Accept locations, they will play the role of accep-
tors of timed behaviors. They are non-intrusive in order not to constrain behaviors of the
specification. This explains why they are complete, thus allowing all actions in all locations,
and are not constrained by invariants. They observe behaviors of specifications by synchro-
nizing with their actions (inputs, outputs and internal actions) and their proper clocks (by
the definition of the product (Definition 1.5), observed clocks of T P are proper clocks of A,
which mean that T P does not reset those clocks). However, in order to add some flexibility
in the description of timed behaviors, they may have their own proper clocks.

`′0 `′1 `′2 `′3 Acc

`′4

x = 1, τ x < 1, a? b! b!

othw othw othw othw

ΣT P

ΣT P

Figure 12: Test purpose T P.

Example 4.2. Figure 12 represents a test purpose T P for the specification A of Figure 1.
This one has no proper clock and observes the unique clock x of A. It accepts sequences
where τ occurs at x = 1, followed by an input a at x < 1 (thus focusing on the lower
branch of A where x is reset), and two subsequent b’s. The label othw (for otherwise) on
a transition is an abbreviation for the complement of specified transitions leaving the same
location. For example in location `′1, othw stands for {(true, τ), (true, b!), (x ≥ 1, a?)}.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 23

4.2. Principle of test generation. Given a specification TAIO A and a test purpose
(T P,AcceptT P), the aim is to build a sound and, if possible strict test case (T C,Verdicts)
focusing on behaviors accepted by T P. As T P accepts sequences of A, but test cases
observe timed traces, the intention is that T C should deliver Pass verdicts on traces of
sequences of A accepted by T P in AcceptT P . This property is formalized by the following
definition:

Definition 4.3. A test suite T S for A and T P is said to be precise if for any test case T C
in T S, for any timed observation σ in Traces(T C), Verdict(σ, T C) = Pass if and only if

σ ∈ Traces(Seq(A↑(XT Pp ,XT Po)) ∩ SeqAcceptT P (T P)).

Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, IA, EA) be the specification TAIO, and T P =

(LT P , `T P0 ,ΣA? ,Σ
A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , IT P , ET P) be a test purpose for A, with its set

AcceptT P of accepting locations. The generation of a test case T C from A and T P proceeds
in several steps. First, sequences of A accepted by T P are identified by the computation of
the product P of those OTAIOs. Then a determinization step is necessary to characterize
conformant traces as well as traces of accepted sequences. Then the resulting determinis-
tic TAIO DP is transformed into a test case TAIO T C′ with verdicts assigned to states.
Finally, the test case T C is obtained by a selection step which tries to avoid some Inconc
verdicts. The different steps of the test generation process from A and T P are detailed in
the following paragraphs.

Computation of the product: First, the product P = A × T P is built (see Definition 1.5
for the definition of the product), associated with the set of marked locations AcceptP =
LA × AcceptT P . Let P = (LP , `P0 ,Σ

A
? ,Σ

A
! ,Σ

A
τ , X

P
p , X

P
o ,M

P , IP , EP). As XT Po = XAp , we get
XPo = ∅ and XPp = XAp tXT Pp , thus P is in fact a TAIO.

The effect of the product is to unfold A and to mark locations of the product by
AcceptP , so that sequences of A accepted by T P are identified. As T P is complete,

Seq(T P) ↓XT Pp
= (R≥0 × (ΣT P × 2X

T P
o))∗, thus, by the properties of the product (see equa-

tion 1.2), Seq(P) ↓XT Pp
= Seq(A) i.e. the sequences of the product after removing resets of

proper clocks of T P are the sequences of A. As a consequence Traces(P) = Traces(A),
which entails that P and A define the same sets of conformant implementations.

Considering accepted sequences of the product P, by equation 1.3 we get the equality

SeqAcceptP (P) = Seq(A↑(XT Pp ,XT Po))∩SeqAcceptT P (T P), which induces the desired characteri-

zation of accepted traces: TracesAcceptP (P) = Traces(Seq(A↑(XT Pp ,XT Po))∩ SeqAcceptT P (T P)).

Using the notation pref (T) for the set of prefixes of traces in a set of traces T , we note
RTraces(A, T P) = Traces(A) \ pref (TracesAcceptP (P)) for the set of traces of A which are
not prefixes of accepted traces of P. In the sequel, the principle of test selection will be to
try to select traces in TracesAcceptP (P) (and assign to them the Pass verdict) and to try to

avoid or at least detect (with an Inconc verdict) those traces in RTraces(A, T P), as these
traces cannot be prefixes of traces of sequences satisfying the test purpose.

Example 4.4. Figure 13 represents the product P for the specification A in Figure 1 and
the test purpose T P in Figure 12. As T P describes one branch of A, the product is very
simple in this case, e.g. intersection of guards are trivial. The only difference with A is the
tagging with AcceptP .

24 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

`0`
′
0

`1`
′
1 `2`

′
4 `3`

′
4 `4`

′
4

`5`
′
1 `6`

′
2 `7`

′
3 `8Acc

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 13: Product P = A× T P.

Approximate determinization of P into DP: We now want to transform P into a deter-
ministic TAIO DP such that P � DP, which by Proposition 2.9) will entail that im-
plementations conformant to P (thus to A) are still conformant to DP. If P is already
deterministic, we simply take DP = P. Otherwise, the approximate determinization of
Section 3 provides a solution. The user fixes some resources (k,MDP), then a determin-
istic io-abstraction DP of P with resources (k,MDP) is computed. By Proposition 3.4,
we thus get that DP io-abstracts P. DP is equipped with the set of marked locations
AcceptDP consisting of locations in LDP containing some configuration whose location is in
AcceptP . As a consequence traces of DP which are traces of sequences accepted by P in
AcceptP are accepted by DP in AcceptDP , formally Traces(DP) ∩ Traces(SeqAcceptP (P)) =

Traces(DP)∩TracesAcceptP (P) ⊆ TracesAcceptDP (DP). This means that extra accepted traces

may be added due to over-approximations, some traces may be lost (including accepted ones)
by under-approximations, but if the under-approximation preserves some traces that are ac-
cepted in P, these are still accepted in DP. If the determinization is exact (or P is already
deterministic), of course we get more precise relations between the traces and accepted traces
of P and DP, namely Traces(DP) = Traces(P) and TracesAcceptDP (DP) = TracesAcceptP (P).

Example 4.5. Figure 14 partially represents the game GP,(1,2) for the TAIO P of Figure 13

where, for readability reasons, some behaviors not co-reachable from AcceptDP (dotted green
states) are omitted. Notice that the construction of the initial part of the game was explained
in Example 3.3. A strategy Π for Determinizator is represented by bold arrows. Π is not
winning (the unsafe configuration, in gray, is unavoidable from the initial state), and in
fact an approximation is performed. DP, represented in Figure 15 is simply obtained from
GP,(1,2) and the strategy Π by merging transitions of Spoiler and those of Determinizator
in the strategy.

Generating T C′ from DP: The next step consists in building a test case (T C′,Verdicts)
from DP. The main point is the computation of verdicts. Pass verdicts are simply defined
from AcceptDP . Fail verdicts that should detect unexpected outputs and delays, rely on
a complementation. The difficult part is the computation of Inconc states which should
detect when AcceptDP is not reachable (or equivalently None states, those states where
AcceptDP is still reachable) and thus relies on an analysis of the co-reachability to locations
AcceptDP . Another interesting point is the treatment of invariants. First T C′ will have no
invariants (which ensures that it is non-blocking). Second, invariants in DP are shifted to
guards in T C′ and in the definition of Fail so that test cases check that the urgency specified
in A is satisfied by I.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 25

(`0`
′
0, x− y = 0,>) {0}

(`1`
′
1, x− y = 0,>) {1}

(`5`
′
1, x− y = −1,>) {1}

(`6`
′
2, x− y = 0,>) {0}

(`6`
′
2, x− y = 0,>) {0}

(`2`
′
4, x− y = 0,>) {0}

(`2`
′
4, x− y = −1,>) {1}

(`2`
′
4, x− y = −2,>) {2}

(`2`
′
4, x− y < −2,⊥) (2,∞)

(`7`
′
3, x− y = 0,>) {0}

(`3`
′
4, x− y = 0,>) {0}

(`8Acc, x− y = 0,>) {0}
(`4`

′
4, x− y = 0,>) {0}

(`7`
′
3, x− y = 0,>) {0}

(`8Acc, x− y = 0,>) {0}

true,>

true,⊥

true,>

true,>

y ≤ 1,>

y = 0,>

y = 0,>

(`6`
′
2, x− y = −1,>) {1}

(`7`
′
3, x− y = −1,>) {1}

(`8Acc, x− y = −1,>) {1}

y ≤ 1,>

true,>

y ≤ 1,>

(`4`
′
4, 0 < x− y < 1,>) {0}

(`4`
′
4, x− y = 0,>) (0, 1)

(`4`
′
4, x− y = 1,>) {0}

(`4`
′
4, x− y = 0,>) {1}

true,>

true,>

true,>

true,>

y = 1, a?
{y}

∅
1 <

y <
2, a?

{y}

∅

y
=

1,
b!

y
=

2,
b!

y
>

2
,b!

y
=

0, b!

y
=

0, b!

{y}

∅

{y}

∅

0 < y < 1, b!

y
=

1,
b!

y = 0, b!

y = 0, b!

{y}

{y}

∅

∅

y = 1, b!

y = 1, b!

{y}

{y}

∅

∅

{y}

∅

{y}

∅

Figure 14: Game GP,(1,2).

`”0

`”1

`′′11

`′′12

`′′13

`”2

`′′21

`′′22

Accept1

`”3 `”4

y ≤ 1

y = 0 y = 0

Accept2

y = 1, a?, {y}
y = 0, b!, {y} y = 0, b!, {y}

1 <
y <

2, a?
, {y}

y = 0, b!, {y} y = 0, b!, {y}

y = 1, b!

y = 2, b!

y > 2, b!
0 < y < 1,

b!, {y} y = 1, b!, {y}

Figure 15: Deterministic automaton DP = Aut(Π).

The test case constructed from DP = (LDP , `DP0 ,ΣDP? ,ΣDP! , ∅, XDPp , ∅,MDP , IDP , EDP)

and AcceptDP is the pair (T C′,Verdicts) where:

• T C′ = (LT C
′
, `T C

′
0 ,ΣT C

′
? ,ΣT C

′
! , ∅, XT C′p , ∅,MT C′ , IT C

′
, ET C

′
) is the TAIO such that:

− LT C
′

= LDP t {`Fail} where `Fail is a new location;
− `T C

′
0 = `DP0 is the initial location;

− ΣT C
′

? = ΣDP! = ΣA! and ΣT C
′

! = ΣDP? = ΣA? , i.e. input/output alphabets are mirrored in
order to reflect the opposite role of actions in the synchronization of T C′ and I;

26 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

− XT C
′

p = XDPp and XT C
′

o = XDPo = ∅;
− MT C′ = MDP ;
− IT C

′
(`) = true for any ` ∈ LT C′ ;

− ET C
′

= EDPI t E`Fail where

EDPI = {(`, g ∧ IDP(`), a,X ′, `′) | (`, g, a,X ′, `′) ∈ EDP} and

E`Fail
=

{
(`, ḡ ∧ IDP(`), a,XT C

′
p , `Fail)

∣∣∣∣ ` ∈ LDP , a ∈ ΣDP!
and ḡ = ¬

∨
(`,g,a,X′,`′)∈EDP g

}
• Verdicts is the partition of SDP defined as follows:
− Pass =

⋃
`∈AcceptDP ({`} × IDP(`)),

− None = coreach(DP,Pass) \Pass,

− Fail = {`Fail} × RXT C
′

≥0 t {(`,¬IDP(`))|` ∈ LDP};
− Inconc = SDP \ (Pass t Fail tNone),

The important points to understand in the construction of T C′ are the completion to Fail
and the computation of None, which, together with Pass, define Inconc by complemen-
tation.

For the completion to Fail, the idea is to detect unspecified outputs and delays with
respect to DP. Remember that outputs of DP are inputs of T C′. Moreover, authorized
delays in DP are defined by invariants, but remember that test cases have no invariants
(they are true in all locations). First, all states in (`,¬IDP(`)), ` ∈ LDP , i.e. states where the
invariant runs out, are put into Fail which reflects the counterpart in T C′ of the urgency
in DP. Then, in each location `, the invariant IDP(`) in DP is removed and shifted to
guards of all transitions leaving ` in T C′, as defined in EDPI . Second, in any location `,

for each input a ∈ ΣT C
′

? = ΣDP! , a transition leading to `Fail is added, labeled with a, and
whose guard is the conjunction of I(`) with the negation of the disjunction of all guards
of transitions labeled by a and leaving ` (thus true if no a-action leaves `), as defined in
E`Fail

. It is then easy to see that T C′ is input-complete in all states.
The computation of None is based on an analysis of the co-reachability to Pass.

None contains all states co-reachable from locations in Pass. Notice that the set of states
coreach(DP,Pass), and thus None, can be computed symbolically as usual in the region
graph of DP, or more efficiently using zones.

Example 4.6. Figure 16 represents the test case T C′ obtained from DP. For readability
reasons, we did not represent transitions in E`Fail , except the one leaving `”0. In fact these
are removed in the next selection phase as they are only fireable from states where a verdict
has already been issued. The rectangles attached to locations represent the verdicts in these
locations when clock y progresses between 0 and 2, and after 2: dotted green for Pass, black
for None, blue grid for Inconc and crosshatched red for Fail. For example, in `”2, the
verdict is initially None, becomes Inconc if no b is received immediately, and even Fail
if no b is received before one time unit. Notice that in order to reach a Pass verdict, one
should initially send a after one and strictly before two time units, and expect to receive
two consecutive b’s immediately after.

Selection of T C: So far, the construction of T C′ determines Verdicts, but does not perform
any selection of behaviors. A last step consists in trying to control the behavior of T C′ in
order to avoid Inconc states (thus stay in pref (TracesAcceptP (P))), because reaching Inconc

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 27

`”0

`”1

`′′11

`′′12

`′′13

`”2

`′′21

`′′22

Accept1

`Fail

`”3 `”4 Accept2

Fail = {`Fail} × R≥0 ∪ {`”3, `”4} × (0,∞) ∪ {`”2} × (1,∞)

Inconc = {`”0} × [2,∞) ∪ {`”2} × (0, 1] ∪ {`”1, `”11, `”12, `”13, `”21, `”22} × (0,∞)

Pass = {Accept1,Accept2} × R≥0

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 <
y <

2, a!
, {y}

y = 0, b?, {y} y = 0, b?, {y}

y = 1, b?

y = 2, b?

y > 2, b?
0 < y < 1,

b!, {y} y = 1, b!, {y}

Figure 16: Test case T C′ with verdicts

means that Pass is unreachable, thus T P cannot be satisfied anymore. To this aim, guards
of transitions of T C′ are refined in the final test case T C in two complementary ways.
First, transitions leaving a verdict state (Fail, Inconc or Pass) are useless, because the
test case execution stops when a verdict is issued. Thus for each transition, the guard is
intersected with the predicate characterizing the set of valuations associated with None
in the source location. This does not change the verdict of traces. Second, transitions
arriving in Inconc states and carrying outputs can be avoided (outputs are controlled by
the test case), thus for any transition labeled by an output, the guard is intersected with
the predicate characterizing None and Pass states in the target location (i.e. states that
are not in Inconc, as Fail cannot be reached by an output). The effect is to suppress
some traces leading to Inconc states. All in all, traces in T C are exactly those of T C′ that
traverse only None states (except for the last state), and do not end in Inconc with an
output. This selection does not impact on the properties of test suites (soundness, strictness,
precision and exhaustiveness) as will be seen later.

Example 4.7. Figure 17 represents the test case obtained after this selection phase. One
can notice that locations `”11, `”12, `”13 and `”21, `”22 have been removed since they can only
be reached from Inconc states, thus a verdict will have been emitted before reaching those
locations. The avoidance of Inconc verdicts by outputs cannot be observed on this example.
However, with a small modification of A consisting in adding initially the reception of an
a before one time unit, and not followed by two b’s but e.g. one c, the resulting transition
labeled with (0 ≤ y < 1, a!) in T C′ could be cut, producing the same T C.

Remark 4.8. Notice that in the example, falling into Inconc in `”0 could be avoided by
adding the invariant y < 2, with the effect of forcing to output a. More generally, invariants
can be added to locations by rendering outputs urgent in order to avoid Inconc, while
taking care of keeping test cases non-blocking, i.e. by ensuring that an output can be done
just before the invariant becomes false. More precisely, I(`) is the projection of None on
` if Inconc is reachable by letting time elapse and it preserves the non-blocking property,
true otherwise.

28 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

`”0

`”1 `”2 Accept1

`Fail

`”3 `”4 Accept2

Fail = {`Fail} × R≥0 ∪ {`”3, `”4} × (0,∞) ∪ {`”2} × (1,∞)

Inconc = {`”0} × [2,∞) ∪ {`”2} × (0, 1] ∪ {`”1} × (0,∞)

Pass = {Accept1,Accept2} × R≥0

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 <
y <

2, a!
, {y}

y = 0, b?, {y} y = 0, b?, {y}

Figure 17: Final test case T C after selection

Complexity. Let us discuss the complexity of the construction of T C from DP. Note that
the size of TAIO T C is linear in the size of DP but the difficulty lies in the computation
of Verdicts. Computing Pass is immediate. The set coreach(Pass) can be computed
in polynomial time (more precisely in O(|LDP |.|XDP |.|MDP |)). To explain this, observe
that guards in the TAIO DP are regions and with each location ` is associated an initial
region r` such that guards of transitions leaving ` are time successors of r`. Thus during
the computation of coreach(Pass), for each location `, one only needs to consider these
O(|XDP |.|MDP |) different regions in order to determine the latest time-successor rmax

` of
r` which is co-reachable from Pass. Then None states with location ` are exactly those
within regions that are time-predecessors of rmax

` . For the same reason (number of possible
guards outgoing a given location) E`Fail

can be computed in polynomial time. Last the Fail
verdicts in locations (except for `Fail) are computed in linear time by complementing the
invariants in DP. The test selection can be done by inspecting all transitions: a transition
is removed if either the source state is a verdict state, or it corresponds to an output action
and the successor are Inconc states. This last step thus only requires linear time. To
conclude, the overall complexity of construction of T C from DP is polynomial.

4.3. Test suite properties. We have presented the different steps for the generation of
a TAIO test case from a TAIO specification and an OTAIO test purpose. The following
results express their properties.

Theorem 4.9. Any test case T C built by the procedure is sound for A. Moreover, if DP is
an exact approximation of P (i.e.Traces(DP) = Traces(P)), the test case T C is also strict
and precise for A and T P.

The proof is detailed below, but we first give some intuition. As a preamble, notice
that, as explained in the paragraph on test selection, traces of T C′ are not affected by the
construction of T C. In particular, the transitions considered in the proof are identical in
T C and T C′. Soundness comes from the construction of E`Fail in T C and preservation of
soundness by the approximate determinization DP of P given by Corollary 2.10. When
DP is an exact determinization of P, DP and P have same traces, which also equal traces
of A since T P is complete. Strictness then comes from the fact that DP and A have the
same non-conformant traces, which are captured by the definition of E`Fail in T C. Precision
comes from TracesAcceptDP (DP) = TracesAcceptP (P) and from the definition of Pass.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 29

WhenDP is not exact however, there is a risk that some behaviors allowed inDP are not
in P, thus some non-conformant behaviors are not detected, even if they are executed by T C.
Similarly, some Pass verdicts may be produced for non-accepted or even non-conformant
behaviors. However, if a trace in TracesAcceptP (P) is present in T C and observed during
testing, a Pass verdict will be delivered. In other words, precision is not always satisfied,
but the “only if” direction of precision (Definition 4.3) is satisfied.

Proof. Soundness: To prove soundness, we need to show that for any I ∈ I(A), I fails T C
implies ¬(I tiocoA).

Assuming that I fails T C, there exists a trace σ ∈ Traces(I) ∩ TracesFail(T C). By
the construction of the set Fail in T C, there are two cases: either σ leads to a location
(`,¬(I(`)) in DP, or σ leads to a state with location `Fail. In the first case, σ = σ′.δ
where σ′ ∈ Traces(DP) and δ > 0 violates the invariant in the location of DP after σ′,
and in the second case, by the construction of E`Fail , σ = σ′.a where σ′ ∈ Traces(DP)
and a ∈ ΣDP! is unspecified in DP after σ′. In both cases, by definition, this means that
¬(I tiocoDP), which proves that T C is sound for DP. Now, as DP is an io-abstraction of
P (i.e. P � DP), by Corollary 2.10 this entails that T C is sound for P. Finally, we have
Traces(P) = Traces(A), which trivially implies that A � P, and thus that T C is also sound
for A.

Strictness: For strictness, in the case where DP is an exact approximation of P, we
need to prove that for any I ∈ I(A), ¬(I‖T C tiocoA) implies that I fails T C. Suppose
that ¬(I‖T C tiocoA). By definition, there exists σ ∈ Traces(A) and a ∈ out(I‖T C after σ)
such that a /∈ out(A after σ). Since DP is an exact approximation of P, we have the equali-
ties Traces(DP) = Traces(P) = Traces(A), thus σ ∈ Traces(DP) and a /∈ out(DP after σ).
By construction of Fail in T C, it follows that σ.a ∈ TracesFail(T C) which, together with
σ.a ∈ Traces(I), implies that I fails T C. Thus T C is strict.

Precision: To prove precision, in the case of exact determinization, we have to show
that for any trace σ, Verdict(σ, T C) = Pass ⇐⇒ σ ∈ Traces(SeqAcceptT P (T P) ∩ Seq(A)).

The definition of Pass =
⋃
`∈AcceptDP ({`} × IDP(`)) in T C implies that a Pass verdict

is produced for σ exactly when σ ∈ TracesAcceptDP (DP) which equals TracesAcceptP (P) =

Traces(SeqAcceptT P (T P) ∩ Seq(A)) when DP is exact.

Example 4.10. The test case T C of Figure 17 comes from an approximate determinization.
However, the approximation comes after reaching Inconc states. More precisely, in the gray
state of the game in Figure 14, the approximation starts in the time interval (2,∞). This
state corresponds to location `”1 in T C where the verdict is Inconc as soon as a non null
delay is observed. The test case is thus strict and precise, despite the over-approximation
in the determinization phase.

In the following, we prove an exhaustiveness property of our test generation method
when determinization is exact. For technical reasons, we need to restrict to a sub-class of
TAIOs defined below. We discuss this restriction later.

Definition 4.11. We say that an OTAIO A is repeatedly observable if from any state of

A, there is a future observable transition, i.e. ∀s ∈ SA, there exists µ such that s
µ−→ and

Trace(µ) /∈ R≥0.

Theorem 4.12 (Exhaustiveness). Let A be a repeatedly observable TAIO which can be
exactly determinized by our approach. Then the set of test cases that can be generated from
A by our method is exhaustive.

30 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

Proof. Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, IA, EA) be the TAIO specification, and I =

(LI, `I0,Σ
A
? ,Σ

A
! ,Σ

I
τ , X

I
p , ∅,MI, II, EI) any non-conformant implementation in I(A). The

idea is now to prove that from A and I, one can build a test purpose T P such that the test
case T C built from A and T P may detect this non-conformance, i.e. I fails T C.

By definition of ¬(I tioco A), there exists σ ∈ Traces(A) and a ∈ ΣA! t R≥0 such that
a ∈ out(I after σ) but a /∈ out(A after σ). Since A is repeatedly observable, there also
exists δ ∈ R≥0 and b ∈ ΣAobs such that σ.δ.b ∈ Traces(A).

As A can be determinized exactly by our approach, there must exist some resources
(k,M) and a strategy Π for Determinizator in the game GA,(k,M) such that Traces(Aut(Π)) =
Traces(A).

From the non-conformant implementation I, a test purpose (T P,AcceptT P) can be

built, with T P = (LT P , `T P0 ,ΣA? ,Σ
A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , IT P , ET P), XT Pp = XIp tXAut(Π)

and XT Po = ∅, and σ.δ.b ∈ TracesAcceptT P but none of its prefixes is in TracesAcceptT P . The

construction of T P relies on the region graph of I‖Aut(Π). First a TAIO T P ′ is built which
recognizes exactly the traces read along the path corresponding to σ in the region graph of
I‖Aut(Π), followed by a transition b with the guard corresponding to the one in Aut(Π).
In particular it recognizes the trace σ.δ.b. The test purpose (T P,AcceptT P) is then built
such that T P accepts in its states AcceptT P the traces of T P ′. Note that T P should be
complete for Σ, thus locations of T P ′ should be completed by adding loops without resets
for all actions in Στ , and adding, for all observable actions, transitions to a trap location
guarded with negations of their guards in T P ′.

Now consider our test generation method applied to T P and A. First P = A× T P is
built, and we consider the game GA,(k′,M ′) with k′ = k + |XT Pp | and M ′ = max(M,MT P).
One can then define a strategy Π′ composed of the strategy Π for the k first clocks, and
following the resets of T P (which is deterministic) for the other clocks corresponding to
those in XT Pp . The construction of (DP,AcceptDP) following the strategy Π′ thus ensures
that Traces(DP) = Traces(P) and TracesAcceptDP (DP) = TracesAcceptP (P).

Finally, let T C be the test case built from DP. Observe that T C after σ.δ.b ⊆ Pass,
but T C after σ.δ 6⊆ Pass. As a consequence, T C after σ ⊆ None. Moreover we have
a /∈ out(A after σ), hence σ.a ∈ TracesFail(T C) and as σ.a ∈ Traces(I), we can conclude
that I fails T C.

Discussion: The hypothesis that A is repeatedly observable is in fact not restrictive for a
TAIO that is determinizable by our approach. Indeed, such a TAIO can be transformed into
a repeatedly observable one with same conformant implementations, by first determinizing
it, and then completing it as follows. In all locations, a transition labeled by an input is
added, which goes to a trap state looping for all outputs, and is guarded by the negation
of the union of guards of transitions for this input in the deterministic automaton.

When A cannot be determinized exactly, the risk is that some non-conformance may
be undetectable. However, the theorem can be generalized to non-determinizable automata
with no resets on internal action. Indeed, in this case, in the game with resources (k,M),
where k is the length of the finite non-conformant trace σ.a, the strategy consisting in
resetting a new clock at each observable action allows to remain exact until the observation
of non-conformance (see remark after Theorem 3.2). The proof of theorem 4.12 can be
adapted using this strategy.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 31

5. Discussion and related work

Alternative definitions of test purposes. The definition of test purposes depends on
the semantic level at which behaviors to be tested are described (e.g. sequences, traces).
This induces a trade-off between the precision of the description of behaviors, and the
cost of producing test suites. In this work, test purposes recognize timed sequences of the
specification A, by a synchronization with actions and observed clocks. They also have
their own proper clocks for additional precision. The advantage is a fine tuning of selection.
The price to be paid is that, for each test purpose, the whole sequence of operations,
including determinization which may be costly, must be done. An alternative is to define
test purposes recognizing timed traces rather than timed sequences. In this case, selection
should be performed on a deterministic io-abstraction B of A obtained by an approximate
determinization of A. Then, test purposes should not refer to A’s clocks as these are lost
by the approximate determinization. Test purposes should then either observe B’s clocks,
and thus be defined after determinization, or use only proper clocks in order not to depend
on B, at the price of further restricting the expressive power of test purposes. In both
cases, test purposes should preferably be deterministic in order to avoid a supplementary
determinization after the product with B. The main advantage of these approaches is that
the specification is determinized only once, which reduces the cost of producing a test suite.
However, the expressive power of test purposes is reduced.

Test execution. Once test cases are selected, it remains to execute them on a real imple-
mentation. As a test case is a TAIO, and not a simple timed trace, a number of decisions
still need to be taken at each state of the test case: (1) whether to wait for a certain delay,
or to receive an input or to send an output (2) which output to send, in case there is a
choice. It is clear that different choices may lead to different behaviors and verdicts. Some
of these choices can be made either randomly (e.g. choosing a random time delay, choosing
between outputs, etc), or can be pre-established according to user-defined strategies. One
such policy is to apply a technique similar to the control approach of [10] whose goal is to
avoid RTraces(A, T P).

Moreover, the tester’s time observation capabilities are limited in practice: testers only
dispose of a finite-precision digital clock (a counter) and cannot distinguish among obser-
vations which elude their clock precision. Our framework may take this limitation into
account. In [18] assumptions on the tester’s digital clock are explicitly modeled as a special
TAIO called Tick, synchronized with the specification before test generation, then rely-
ing to the untimed case. We could imagine to use such a Tick automaton differently, by
synchronizing it with the resulting test case after generation.

Related work. As mentioned in the introduction, off-line test selection is in general re-
stricted to deterministic automata or known classes of determinizable timed automata. An
exception is the work of [18] which relies on an over-approximate determinization. Com-
pared to this work, our approximate determinization is more precise (it is exact in more
cases), it copes with outputs and inputs using over- and under-approximations, and pre-
serves urgency in test cases as much as possible. Another exception is the work of [10],
where the authors propose a game approach whose effect can be understood as a way to
completely avoid RTraces(A, T P), with the possible risk of missing some or even all traces

32 N. BERTRAND, T. JÉRON, A. STAINER, AND M. KRICHEN

in pref (TracesAcceptP (P)). Our selection, which allows to lose this game and produce an
Inconc verdict when this happens, is both more liberal and closer to usual practice.

In several related works [16, 11], test purposes are used for test case selection from
TAIOs. In all these works, test purposes only have proper clocks, thus cannot observe
clocks of the specification.

It should be noticed that selection by test purposes can be used for test selection with
respect to coverage criteria [26]. Those coverage criteria define a set of elements (generally
syntactic ones) to be covered (e.g. locations, transitions, branches, etc). Each element can
then be translated into a test purpose, the produced test suite covering the given criteria.

6. Conclusion

In this article, we presented a complete formalization and operations for the automatic off-
line generation of test cases from non-deterministic timed automata with inputs and outputs
(TAIOs). The model of TAIOs is general enough to take into account non-determinism,
partial observation and urgency. One main contribution is the ability to tackle any TAIO,
thanks to an original approximate determinization algorithm. Another main contribution
is the selection of test cases with expressive test purposes described as OTAIOs having
the ability to precisely select behaviors to be tested based on clocks and actions of the
specification as well as proper clocks. Test cases are generated as TAIOs using a symbolic
co-reachability analysis of the observable behaviors of the specification guided by the test
purpose.

A first perspective of this work is to implement the approach in a test generation tool.
Currently, the approximate determinization has been prototyped in Python thanks to a
binding of the UPPAAL DBM library [25]. Other perspectives could be to combine this
approach with the one of [14] for models with data, for the generation of test cases from
models with both time and data in the spirit of [3], but generalized to non-deterministic
models.

Acknowledgements: we would like to thank the reviewers for their constructive comments
that allowed us to improve this article.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994.

[2] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations. In 9th
International Conference on Concurrency Theory (CONCUR’98), volume 1466 of LNCS, pages 163–178,
1998.

[3] W. L. Andrade, P. Machado, T. Jéron, and H. Marchand. Abstracting time and data for conformance
testing of real-time systems. In 7th Workshop on Advances in Model Based Testing (A-MOST’11),
Berlin, Germany, March 2011.

[4] B. Bérard, P. Gastin, and A. Petit. On the power of non-observable actions in timed automata. In 13th
Annual Symposium on Theoretical Aspects of Computer Science (STACS’96), volume 1046 of LNCS,
pages 255–268, 1996.

[5] N. Bertrand, T. Jéron, A. Stainer, and M. Krichen. Off-line test selection with test purposes for non-
deterministic timed automata. In 17th International Conference on Tools and Algorithms for the Con-
struction And Analysis of Systems (TACAS’11), volume 6605 of LNCS, pages 96–111. Springer, 2011.
Extended version as INRIA report 7501, http://hal.inria.fr/inria-00550923.

OFF-LINE TEST SELECTION WITH TEST PURPOSES FOR NON-DET. TIMED AUTOMATA 33

[6] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen. A game approach to determinize timed automata.
Technical Report 7381, INRIA, september 2010, http://hal.inria.fr/inria-00524830.

[7] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen. A game approach to determinize timed automata. In
14th International Conference on Foundations of Software Science and Computation Structures (FOS-
SACS’11), volume 6604 of LNCS, pages 245–259. Springer, 2011.

[8] L. B. Briones and E. Brinksma. A test generation framework for quiescent real-time systems. In 4th
International Workshop on Formal Approaches to Software Testing (FATES’04), volume 3395 of LNCS,
pages 64–78. Springer, 2005.

[9] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O automata: a complete
specification theory for real-time systems. In 13th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC’10), pages 91–100. ACM Press, 2010.

[10] A. David, K. G. Larsen, S. Li, and B. Nielsen. Timed testing under partial observability. In 2nd In-
ternational Conference on Software Testing Verification and Validation (ICST’09), pages 61–70. IEEE
Computer Society, 2009.

[11] A. En-Nouaary and R. Dssouli. A guided method for testing timed input output automata. In 15th IFIP
International Conference on Testing of Communicating Systems (TestCom’03), volume 2644 of LNCS,
pages 211–225, 2003.

[12] O. Finkel. Undecidable problems about timed automata. In 4th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’06), volume 4202 of LNCS, pages 187–199, 2006.

[13] C. Jard and T. Jéron. TGV: theory, principles and algorithms. Software Tools for Technology Transfer,
7(4):297–315, 2005.

[14] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approximate anal-
ysis. In 11th Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’05), volume 3440 of LNCS, pages 349–364. Springer, April 2005.

[15] A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondeterministic real-time systems.
In Formal Approaches to Software Testing (FATES’03), volume 2931 of LNCS, pages 131–145, 2004.

[16] O. Koné, R. Castanet, and P. Laurencot. On the fly test generation for real time protocols. In 7th
International Conference on Computer Communications & Networks (IC3N’98), pages 378–387. IEEE,
1998.

[17] M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In 11th International
SPIN Workshop (SPIN’04), volume 2989 of LNCS, pages 109–126. Springer, 2004.

[18] M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal Methods in System
Design, 34(3):238–304, 2009.

[19] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems using Uppaal. In 4th
International Workshop on Formal Approaches to Software Testing (FATES’04), volume 3395 of LNCS,
pages 79–94. Springer, 2005.

[20] R. Mazala. Infinite games. In Automata, Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS, pages 23–42. Springer, 2002.

[21] B. Nielsen and A. Skou. Automated test generation from timed automata. Software Tools for Technology
Transfer, 5(1):59–77, 2003.

[22] J. Schmaltz and J. Tretmans. On conformance testing for timed systems. In 6th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS’08), volume 5215 of LNCS, pages 250–
264. Springer, 2008.

[23] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software - Concepts and
Tools, 17(3):103–120, 1996.

[24] S. Tripakis. Folk theorems on the determinization and minimization of timed automata. Information
Processing Letters, 99(6):222–226, 2006.

[25] UPPAAL DBM Library, http://people.cs.aau.dk/~adavid/UDBM/python.html.
[26] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM Computing

Surveys, 29(4):366–427, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://people.cs.aau.dk/~adavid/UDBM/python.html

	Introduction
	Contribution
	Outline

	1. A model of open timed automata with inputs/outputs
	1.1. Timed automata with inputs/outputs
	1.2. The semantics of OTAIOs
	1.3. Properties and operations

	2. Conformance testing theory
	2.1. The tioco conformance theory
	2.2. Refinement preserving tioco

	3. Approximate determinization preserving conformance
	3.1. A game approach to determinize timed automata
	3.2. Extensions to TAIOs and adaptation to tioco
	Complexity

	4. Off-line test case generation
	4.1. Test purposes
	4.2. Principle of test generation
	Complexity
	4.3. Test suite properties
	Discussion:

	5. Discussion and related work
	Alternative definitions of test purposes
	Test execution
	Related work

	6. Conclusion
	References

