Logical Methods in Computer Science
Vol. 6 (3:5) 2010, pp. 1-39 Submitted Jun. 1, 2010
www.Imcs-online.org Published Aug. 17, 2010

POSITIVE SUPERCOMPILATION
FOR A HIGHER-ORDER CALL-BY-VALUE LANGUAGE
PETER A. JONSSON AND JOHAN NORDLANDER

Lulea University of Technology, Department of Computer Science and Electrical Engineering
e-mail address: {pj,nordland}Qcsee.ltu.se

ABSTRACT. Previous deforestation and supercompilation algorithms may introduce acci-
dental termination when applied to call-by-value programs. This hides looping bugs from
the programmer, and changes the behavior of a program depending on whether it is op-
timized or not. We present a supercompilation algorithm for a higher-order call-by-value
language and prove that the algorithm both terminates and preserves termination proper-
ties. This algorithm utilizes strictness information to decide whether to substitute or not
and compares favorably with previous call-by-name transformations.

1. INTRODUCTION

Intermediate data structures such as lists allow functional programmers to write clear
and concise programs, but carry a cost at run-time since additional heap cells need to be
both allocated and garbage collected. Both deforestation [57] and supercompilation [47] are
automatic program transformations which remove many of these intermediate structures.
In a call-by-value context these transformations are unsound, however, as they might hide
infinite recursion from the programmer. Consider the program

(A\z.y) (facz).

This program could loop, if the value of z is negative. Applying Wadler’s deforestation
algorithm to the program will result in y, which is sound under call-by-name or call-by-
need. Under call-by-value the non-termination in the original program has been removed,
and hence the meaning of the program has been altered by the transformation.

This is unfortunate since removing intermediate structures in a call-by-value language is
perhaps even more important than in a lazy language since the entire intermediate structure
has to remain in memory during the computation.

Ohori and Sasano [35] saw this need and presented a very elegant algorithm for call-
by-value languages that removes intermediate structures. Their algorithm sacrifices some
transformational power for algorithmic simplicity. In this article we explore a different
part of the design space: a more powerful transformation at the cost of some algorithmic
complexity. The outcome is a meaning-preserving supercompiler for pure call-by-value

1998 ACM Subject Classification: D.3.4, D.3.2.
Key words and phrases: supercompilation, deforestation, call-by-value.

|E | LOGICAL METHODS © P.A.Jonsson
IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:5) 2010 © Creative Commons

http://creativecommons.org/about/licenses

2 P. A. JONSSON

languages in general, together measurements from an implementation in a compiler for
Timber [34], a pure call-by-value language.

Our current work is a necessary first step towards supercompiling impure call-by-value
languages, of which there are many available today. Well-known examples are OCaml [25],
Standard ML [29] and F# [49]. Considering that F# is currently being turned into a
product, it is quite likely that strict functional languages will be even more popular in the
future.

One might think that our result should be easy to obtain by modifying a call-by-name
algorithm to simply delay beta reduction until every function argument has been specialized
to a value. However, it turns out that this strategy misses even simple opportunities to
remove intermediate structures. That is, eager specialization of function arguments risks
destroying fold opportunities that might otherwise appear, something which may prohibit
complexity improvements to the resulting program.

The novelty of our supercompilation algorithm is that it concentrates all call-by-value
dependencies to a single rule that relies on the result from a separate strictness analysis for
correct behavior. In effect, our transformation delays transformation of function arguments
past inlining, much like a call-by-name scheme does, although only as far as allowed by
call-by-value semantics. The result is an algorithm that is able to improve a wide range
of illustrative examples like the existing algorithms do, but without the risk of introducing
artificial termination.

The specific contributions of our work are:

e We provide an algorithm for positive supercompilation including folding, for a strict and
pure higher-order functional language (Section H).

e We prove that the algorithm terminates and preserves the semantics of the program
(Section [Hl).

e We show preliminary benchmarks from an implementation in the Timber compiler (Sec-
tion [6]).

We start out with some examples in Section [to give the reader an intuitive feel of
how the algorithm behaves. Our language of study is defined in Section [3] right before the
technical contributions are presented.

This article is an extended and improved version of a paper presented at POPL 2009 [20].
As well as clarifying a number of the examples and proofs, we give an improved formulation
of Dgpp() presented in Section B and make a small change to how let-expressions are
handled by the driving algorithm.

2. EXAMPLES

Wadler [57] uses the example append (append xs ys) zs and shows that his deforestation
algorithm transforms the program so that it saves one traversal of the first list, thereby
reducing the complexity from 2|xzs| + |ys| to |zs| + |ys|.

If we naively change Wadler’s algorithm to call-by-value semantics by eagerly attempt-
ing to transform arguments before attacking the body, we do not achieve this improvement.
The definition for append is:

append xs ys = case zs of
= ys
(2 :xs") — 2’ : append xs' ys

POSITIVE SUPERCOMPILATION 3

and we give an example of a hypothetical call-by-value variant of Wadler’s deforestation
algorithm that attacks arguments first:

append (append zs' ys') zs’

Inlining the body of the inner append and then pushing down the outer call into
each branch gives

case 1s’ of
[| — append ys' zs'
(z : xs) — append (z : append zs ys') zs’

Transformation of the first branch will create a new function h; that is isomorphic
to append, and call it. The second branch contains an embedding of the initial
expression and blindly transforming it will lead to non-termination of the transfor-
mation algorithm. One must therefore split this expression in two parts: the subex-
pression z : append xs ys' which we call hy, and the outer expression append z zs’
where z is fresh. Continuing with z : append zs ys’ and inlining append gives

z : case zs of
0 — ys
(z':xs’) — 2’ : append xs' ys'

The second branch contains a renaming of the expression we named hy, so we
simply replace it with a call to hy. Moving back to append z zs’ we notice that this
expression is a renaming of the one called hy, so we replace it with the call hy z zs’

Assembling the pieces gives us the final result:

letrec hy zs ys = case zs of
0 — ys
(2 :xs') — 2/ :hy s’ ys
ho z xs ys = x : case xs of
[l — ys
(2 :xs') — hg o' x5 ys
in case zs’ of
| — hys 2z
(z:1x8) — hy (hg x xs ys') 2
Notice that the intermediate structure from the input program is still there after the trans-
formation, and the complexity is still 2|zs| + |ys|! This can be compared to how the same
example is transformed by Wadler’s algorithm as shown in Figure [Il The reason our hy-
pothetical call-by-value algorithm failed to improve the program is that it had to split
expressions too early during the transformation, thereby preventing fold opportunities that
occur in a call-by-name setting.
However, changing the call-by-value algorithm to do the exact opposite — that is,
carefully delaying the transformation of arguments to a function past the inlining of its
body, but only as far as strictness allows — actually leads to the same result that Wadler

4 P. A. JONSSON

append (append xs' ys') zs'
Naming the first expression h; and inlining both occurrences of append gives

case (case zs’ of
= s’
(21 : zs1) — m : append zs; ys') of
| — 2
(z:28) — x: append s zs'

Pushing down the outer case-expression into both branches of the inner one
and reducing the resulting case-expression of a known constructor leads to

case zs’ of
| — case ys’ of
| — 2¢
(z:1x8) — x: append xs zs'
(21 : 2s1) — 1 : append (append xsy ys') zs'

Transform each branch separately. Transformation of the second branch in
the first branch will create a new function hy that is isomorphic to append,
and the second branch of the outer case is a renaming of our initial expression
called hy. Assembling all pieces yields the following result:

letrec hy zs ys zs = case zs of
[— case ysof
[| = zs
(v :ys") — v :hgys' zs
(2 :xs') — 2’ hy s’ ys zs
ho xs ys = case zs of
0 — ys
(2/:as’) — ' hy s’ ys

/

in hy zs’ ys' zs’

Figure 1: Wadler’s algorithm transforming append (append xs’ ys’) zs’

obtains with append (append zs ys) zs. This is a key observation for obtaining deforestation
under call-by-value without altering the semantics, and our transformation exploits it.
Except for the fundamental reliance on strictness analysis, which is necessary to pre-
serve semantics, our transformation shares many of its rules with Wadler’s algorithm. The
transformation that is commonly referred to as case-of-case is crucial for our transforma-
tion, just like it is for a call-by-name algorithm. The case-of-case transformation is useful
when a case-expression appears in the head of another case-expression, in which case the
outer case context is duplicated and pushed into all branches of the inner case-expression.
Our transformation also contains rules that correspond to ordinary evaluation which elim-
inate case-expressions that have a known constructor in their head or adds two primitive
numbers. The mechanism that ensures termination basically looks for “similar” terms to

POSITIVE SUPERCOMPILATION 5

ones that have already been transformed, and if a similar term is encountered, the trans-
formation will stop and split the term into smaller terms that are transformed separately.
The remaining rules of our transformation simply shifts focus to the proper subexpression
and ensures that the algorithm does not get stuck.

We claim that our transformation compares favorably with previous call-by-name trans-
formations, and we now proceed with demonstrating the transformation on some common
examples. The results of the transformation on these examples are identical to the results
of Wadler’s algorithm [57].

This does not hold in general, a counter-example is the transformation of the expres-
sion zip (map f zs) (map g ys) where Wadler’s algorithm will eliminate both intermediate
structures and our transformation will only eliminate the first intermediate structure.

Our first example is transformation of sum (map square ys), where the referenced func-
tions are defined as:

square T = T x T
map [rs = case zs of

0 — ys

(z:xs) = fx:mapfas
sum xs = case zs of

] —0

(z:x5) - = + sumxs

We start our transformation by allocating a new fresh function name hg to the expression
sum (map square ys), inlining the body of sum and substituting map square ys into the body
of sum:

case map square ys of
] — 0
(' :zs') — 2’ + sum zs’
After inlining map and substituting the arguments into the body the result becomes:

case (case ys of
=1
(2 : zs') — (square z') : map square zs') of
] — 0
(z':2s") — 2’ + sum xs’
We duplicate the outer case in each of the inner case branches, using the expression
in the branches as head of that case-expression. Continuing the transformation on each
branch with ordinary reduction steps yields:

case ys of
Nl —0
(z': xzs") — square ' + sum (map square zs’)
At this point we inline the body of the first square occurrence and observe that the
second parameter to (+) is similar to the expression we started with and therefore we
replace it with hg zs’. The result of our transformation is hg ys, with hg defined as:

ho ys = case ys of
Y Y
[— 0
(2 :2s’) — 2/ xa’ + hoas'

6 P. A. JONSSON

This new function only traverses its input once, and no intermediate structures are
created. If the expression sum (map square zs) or a renaming of it is detected elsewhere in
the input, a call to hy will be inserted instead.

The work by Ohori and Sasano [35] cannot fuse two successive applications of the same
function, nor mutually recursive functions. We show in the next two examples that our
transformation can handle these cases. We need the following new function definitions:

mapsq s = case zs of

=1

(2 :xs’) — (' *2') : mapsq xs'
f s = case s of

=1

(' 22’y — (2%2): guxs
g xs = case zs of

=1

(2 cas’) — (Bxa'): fas
Transforming mapsq (mapsq zs) will inline the outer mapsq, substitute the argument

in the function body and inline the inner call to mapsgq:

case (case zs of
=1
(2 s zs') — (2’ x2') : mapsq zs") of
=1
(z':xs") — (2" *2") : mapsq xs’
As previously, we duplicate the outer case in each of the inner case branches, using the
expression in the branches as head of that case-expression. Continuing the transformation
on each branch by ordinary reduction steps yields:

case zs of
0 =1
(z':xs') — (2' x 2’ x 2’ x2') : mapsq (mapsq xs')
Here we encounter a similar expression to what we started with, and create a new
function h;. The final result of our transformation is hy xs, with the new residual function
hy1 that only traverses its input once defined as:

hy zs = case xs of
=1
(2 :2s’) — (' xa'x 2’ x2'): hy s’
For an example of transforming mutually recursive functions, consider the transforma-
tion of sum (f zs). Inlining the body of sum, substituting its arguments in the function
body and inlining the body of f yields:

case (case zs of
=1
(z':2s') — (2%a'): guas’) of
] —0
(' :zs') — 2’ + sum zs’
We now move down the outer case into each branch, and perform reductions until we end
up with:

POSITIVE SUPERCOMPILATION 7

case s of
[— 0
(2 1 2s’) — (2x2') + sum (g zs’)

We notice that unlike in previous examples, sum (g zs’) is not similar to what we
started transforming and we can therefore continue the transformation. For space reasons,
we focus on the transformation of the rightmost expression in the last branch, sum (g zs’),
while keeping the functions already seen in mind. We inline the body of sum, perform the
substitution of its arguments and inline the body of g¢:

case (case xs’ of
=1
(" :as") — (Bxa"): fxs")of
] — 0
(' :2s’) — 2/ + sum s’
We now move down the outer case into each branch, and perform reductions:

case zs’ of
] — 0
(2" :2s") — (3x2") + sum (f zs")
We notice a familiar expression in sum (f zs”), and fold when reaching it. Combining
the fragments together gives a new function hs:

ho xs = case zs of
] —0
(z/:2s') — (2% 1') + case zs’ of
] =0
(" :2s") — (3x2") + hg xs”
The new function hy consumes a list and returns a number, so our algorithm has
eliminated the intermediate list between f and sum.
Kort [22] studied a ray-tracer written in Haskell, and identified a critical function in
the innermost loop of a matrix multiplication, called vecDot:

vecDot xs ys = sum (zip With (x) zs ys)
This is simplified by our positive supercompiler to:

vecDot xs ys = hy zs ys
h1 xs ys = case zs of
(z' : zs') — case ys of
(v :ys') — o' ¢ + b as’ ys'
-—0
-—0

The intermediate list between sum and zip With is transformed away, and the complexity
is reduced from 2|xs| + |ys| to |zs| + |ys| (since this is matrix multiplication |zs| = |ys|).

8 P. A. JONSSON

Expressions

e,f == n|lax|g]| fel| e | ke]| e dey | caseeof {p; — e}
| letz= fine | letrecg =vine

D n= n | kT
Values
v n= n | Aze | kU

Figure 2: The language

fo(x) = {=}

fo(n) =0

fulg) =0

fu(ke) = fu(@)

fo(Az.e) = fu(e)\{z}

fu(fe) = fu(f) U fu(e)

fu(letz = ein f) = fu(e) U (fu(f)\{z})
fu(letrec g = vin f) = fo(v) U fu(f)
fu(caseeof {p; — e;}) = fu(e) U (UJ(fv(e;)\fu(pi)))
fu(er @ e2) = fu(er) U fu(e2)

Figure 3: Free variables of an expression

3. LANGUAGE

Our language of study is a strict, higher-order functional language with let-bindings
and case-expressions. Its syntax for expressions, values and patterns is shown in Figure 2

Here we let variables and constructor symbols be denoted by z and k, respectively. The
constructor symbols k range over a set K and we also assume that there is a separate set G
of recursively defined function symbols, ranged over by g¢. In what follows we will assume
that the meaning of such symbols is given by a recursive map G mapping symbols g to their
defined value.

The language contains integer values n and arithmetic operations @, although these
meta-variables can preferably be understood as ranging over primitive values in general and
arbitrary operations on these. We let + denote the semantic meaning of ®.

A list of expressions e; ... e, is abbreviated as €, and a list of variables =1 ...z, as T.

We denote the free variables of an expression e by fu(e), as defined in Figure 3l Along
the same lines we denote the function names in an expression e as fn(e), defined in Figure [l

We encode letrec as an application containing fiz, where fiz is defined as

fiz = Mf.f (An.fix fn)
Definition 3.1. Letrec is defined as:
def

letrech = \T.eine’ = (Ah.e') (\y.fiz (A\h.)T.€)y)

POSITIVE SUPERCOMPILATION 9

fn(z) = 0

fn(n) =0

fnlg) = {9}

fn(ke) = fn(€)

fn(Ax.e) = fn(e)

fn(fe) = fn(f) U fn(e)
fn(let z = ein f) = fn(e) U fn(f)
fn(letrec g = vin f) = (fn(v) U fn(f)\{g}
fn(caseeof {p; — e;}) = fn(e) U (U(fnlei))
fn(er & e2) = fn(e1) U fn(ez)

Figure 4: Function names of an expression

Reduction contexts

E = 0O e| Aze)E | kE| EDe | nDE | case £ of {p; — ¢;} | letx =& ine

Evaluation relation

E(g) = E(v), if (g,v) €G (Global)
E((Az.e)v) = E([v/xe) (App)
E(letz =vine) = E([v/z]e) (Let)
E(casekvof {k;T; — e;})—~ E([U/Tjlej), if k=Fk; (KCase)
E(casenof {n;, —e;}) — E(ej),if n=n,; (NCase)
5(711 @ ng) — 5(71 if n =mn1+4+n9 (Arith)

Figure 5: Reduction semantics

By defining letrec as syntactic sugar for other primitives we introduce an implicit re-
quirement that the right hand side of letrec expressions must not contain any free variables
except h. This is not a limitation since functions that contain free variables can be lambda
lifted [17] to the top level.

A program is an expression with no free variables and all function names defined in G.
The intended operational semantics is given in Figure [l where [€/T]e’ is the capture-free
substitution of expressions € for variables T in ¢€’.

A reduction context £ is a term containing a single hole, O, which indicates the next
expression to be reduced. The expression £(e) is the term obtained by replacing the hole
in & with e. £ denotes a list of terms with just a single hole, evaluated from left to right.

If a variable appears no more than once in a term, that term is said to be linear with
respect to that variable. Like Wadler [57], we extend the definition slightly for linear case-
expressions: no variable may appear in both the head and a branch, although a variable
may appear in more than one branch. For example, the definition of append is linear is
linear with respect to ys, although ys appears in both branches.

10 P. A. JONSSON

4. HIGHER ORDER POSITIVE SUPERCOMPILATION

It is time to make the intuition developed in Section 2l more formal. Our supercompiler
is defined as a set of rewrite rules that pattern-match on expressions. This algorithm is called
the driving algorithm, and is defined in Figure [l Three additional parameters appear as
subscripts to the rewrite rules: a driving context R, the set of global function definitions
G and a memoization list p. The memoization list holds information about expressions
already traversed and is explained more in detail in Section Il The driving context R is
smaller than &£, and is defined as follows:

R:u=0| Re | caseRof {p; > e} | Rbe | edR

Interestingly, this definition coincides with the evaluation contexts for a call-by-name lan-
guage. The reason our transformation still preserves a call-by-value semantics is that beta
reduction (rule R9) results in a let-binding, whose further specialization in rule R13 depends
on whether the body expression f is strict in the bound variable z or not.

Our let-rule (R13) might change the order of computations, but since non-termination
is commutative this does not matter in practice. Supercompiling impure languages requires
stronger conditions for the let-rule, since expressions might contain effects other than non-
termination. The difficulty of supercompiling an impure language is to find sufficient con-
ditions that preserve soundness while still allowing the maximum amount of reordering of

expressions.
In principle, an expression e is strict with regards to a variable x if evaluation of e
eventually requires the value of x; in other words, if e — ... — £(x). Such information

is not computable in general, although call-by-value semantics allows for reasonably tight
approximations. One such approximation is given in Figure [[l where the strict variables of
an expression e are defined as all free variables of e except those that only appear under a
lambda or not inside all branches of a case.

There is an ordering between the driving rules; i.e., all rules must be tried in the order
they appear. Rule R10 is the default fallback case for applications and rule R19 is the
default fallback case for case expressions. These rules extend the driving context R and
zoom in on the next expression to be driven. The program is turned “inside-out” by moving
the surrounding context R into all branches of the case-expression through rules R15 and
R18. Rule R13 has a similar mechanism for let-expressions. Notice how the context is
moved out of the recursive call in rule R5, whereas rule R7 recursively applies the driving
algorithm to the full new term R(n), forcing a re-traversal of the new term in search for for
further reduction opportunities. Rule R12 is only allowed to match if the variable y is not
freshly generated by the splitting mechanism described in the next section. Meta-variable
a in rules R8 and R18 stands for an “annoying” expression; i.e., an expression that would
be further reducible were it not for a free variable getting in the way. The grammar for
annoying expressions is:

a = z |n®a|a®dn|ada | ae

Some expressions should be handled differently depending on context. If a constructor
application appears in an empty context, there is not much we can do but to drive the
argument expressions (rule R4). On the other hand - if the application occurs at the head
of a case-expression, we may choose a branch on basis of the constructor and leave the
arguments unevaluated in the hope of finding fold opportunities further down the syntax
tree (rule R16).

POSITIVE SUPERCOMPILATION

Dln]r,c,p
D[z]r,c,p
Dlglr,c.p
D[[ké]]D,G,p
'D[[xé]]R,G,p
'D[[)\E.e]]g,g,p
D[[nl ® ng]]R,G,p
D[[el @ 62]]727G7p

D[(Az.f)e]r.c.p

D[[e EIHR,G,p

Dlletz = nin f]r q,p
Dlletxz = yin f]r,c,p
Dlletz = ein f]r g,

Dlletrec g = vine]r,q,,
D[casex of {p; = e;}|r.c,p
Dlcase kjeof {k; T; — ei}]r.c.p
D[casen; of {n; — e;}|r,c,p
Dlcasea of {p; — €i}|r,c,p
Dlcasee of {p; — ei}[r,c,p

D[[GHR,G,p

Dapp(g)Kva

kD[e]o,c.p

Rz D[el.)

(AZ.D[e]n,c,p)

D[R(n)]o,c,p, where n = ny + no

'D[[el]]g,g,p D D[[eg]]g G,ps ifeg®ey=a

Dle2]r(e;eny,c,ps if 1 =nor e =a

Dle1]r(mees),a,p> Otherwise

D[[letf = Einf]]R’G’p

D[[e]]R(D e'),G,p

D[R([n/x]f)]p.c.0

D[R(ly/x|f)]n,a,p, if y not freshly generated

D[R(le/x]f)]o,a,p if © € strict(f) and
x € linear(f)

let x = Dle]n, ¢, mD[R(f)]n,a,p, otherwise

D[R{e)]n,c,p, where G = G U(g,v)

case z of {p; — D[[p;/x|R{ei)]n,c,p}

D[R(letZ; = €ine;)]o.q,p

DIR(e)o.c

case Dla]oy 6.y of {pi — DIR(e)]o. 6}

DHEHR(C&SGD0f{Pi—>6i}>,G,p

R{e)

Figure 6: Driving algorithm

strict(x) ={z}

strict(n) =0

strict(g) =0

strict(k€) = strict(e)

strict(Az.e) =0

strict(f e) = strict(f) U strict(e)

strict(let z = ein f) = strict(e) U (strict(f)\{z})
strict(letrecg = vin f) = strict(f)

strict(case e of {p; — ¢€;})= strict(e) U (((strict(e;)\fu(p;)))
strict(eq @ eg) = strict(e1) U strict(ez)

Figure 7: The strict variables of an expression

The argumentation is analogous for lambda abstractions:

NN AN AN N N SN
j=oli=sliovli=vlisvli=vilouiiov)
O ~J O Ui W N =
N’ S e e e e N

if there is a surrounding

application context we perform a beta reduction, otherwise we proceed by driving the

abstraction itself.

Notice that the primitive operations ranged over by @& cannot be unfolded and trans-
formed like ordinary functions can. If the arguments of a primitive operation are annoying,

our transformation will simply leave the primitive operation in place (rule RS).

12 P. A. JONSSON

Dapp(g)R,G,p = h=T if El(hv 61)6/).0’61 = R<g> (1)
where T = o(fu(eq))

Dapp(9)r,Gp = R{g) if 3(h,e1)€p.e1 IR(g) and R{g) Jey (2)

Dapp(g)R,G,p = [D[[f]]D,G,p/y]D[[fg]]D,G,p if El(hy 61)60-61 < R<g> (3)

where (f97 [.9) = split(R<g>, e1)
Dapp(9)r,G.p = [DPlf]o,cp/UIDPfglo,c,p if der € e.ex SR(g)
letrech = A\T.cinh® if h € fn(e)
e otherwise
where (g,v) € G,
e =D[RW)]g,c
p'=pU(h,R(g)),
h fresh,
T = fo(R(g)),
(f97 f)g) = splzt(R(g), 61)

Figure 8: Driving of applications

—~N o~
LN
LIRS
—

If we had a perfect strictness analysis and could decide whether an arbitrary expression
will terminate or not, the only difference in results between our transformation and a call-
by-name counterpart would be for the non-terminating cases. In practice, we have to settle
for an approximation, such as the simple analysis defined in Figure [l One might speculate
whether the transformations thus missed will have adverse effects on the usefulness of our
transformation in practice. We believe we have seen clear indications that this is not the
case, and that the crucial factor is the ability to inline function bodies irrespective of whether
arguments are values or not.

Our transformation always inlines functions unless the algorithm detects a risk of non-
termination. Supero [30, Sec. 3.2] has a more advanced inlining strategy.

4.1. Application Rule. In the driving algorithm rule R3 refers to Dy, (), defined in Fig-
ure 8 Dgpp() can be inlined in the definition of the driving algorithm, it is merely given
a separate name to improve the clarity of the presentation. Figure [l contains some new
notation: we use o for a variable to variable substitution and = for syntactic equivalence
of expressions.

Care needs to be taken to ensure that recursive functions are not inlined forever. The
driving algorithm keeps track of previously seen function applications in the memoization
list p, which also associates a unique function name to each such expression. Whenever an
expression that is equivalent up to renaming of variables to a previous application, a call
to the associated function symbol is inserted instead. This is not sufficient to guarantee
termination of the algorithm, but the mechanism is crucial for the complexity improvements
mentioned in Section

To ensure termination, we use the homeomorphic embedding relation < to define a
predicate called “the whistle”. When the predicate holds for an expression we say that
the whistle blows on that expression. The intuition is that when e < f, f contains all
subexpressions of e, possibly embedded in other expressions. For any infinite sequence
€g,e1, ... there must exist an ¢ and a j such that i« < j and e; < e;. This condition is
sufficient to ensure termination.

POSITIVE SUPERCOMPILATION 13

e f tg 91 92
e g Just e T le/x] [Just e/x]
Right e g Right (e, €') Right z le/z] [(e,€)/x]
facy < fac(y — 1) facz w/zl [y —1)/x]

Figure 9: Examples of the homeomorphic embedding and the msg

In order to define the homeomorphic embedding we need a definition of uniform terms
analogous to the one defined by Sgrensen and Gliick [45]. We slightly adjust their version
to fit our language.

Definition 4.1 (Uniform terms). Let s range over the set G U K U {caseof, let, letrec,
primop, lambda, apply}, and let caseof(e),let(€),letrec(7,e), primop(€),lambda(e),
and apply(€) denote a case, let, recursive let, primitive operation, lambda abstraction or
application for all subexpressions €, e and U. The set of terms T is the smallest set of arity
respecting symbol applications s(e).

Definition 4.2 (Homeomorphic embedding). Define < as the smallest relation on 7" satis-
fying:
e < f; for some i e1 < fi,...,en < fr

- e<s(fiy--oy fn) s(ery .. yen) <s(fi,..oy fn)

Whenever the whistle blows, our transformation splits the input expression into strictly
smaller terms that are driven separately in the empty context. This might expose new
folding opportunities, and allows the algorithm to remove intermediate structures in subex-
pressions. The design follows the positive supercompilation algorithm outlined by Sgrensen
[44], except that we need to reassemble the transformed subexpressions into a term of the
original form instead of pulling them out as let-definitions, in order to preserve strictness.
Our transformation is also more complicated because we perform the program extraction
immediately, rather than constructing a large tree of terms and extracting the program in
a separate pass.

Splitting expressions is rather intricate, and two mechanisms are needed; the first is the
most specific generalization (msg).

Definition 4.3 (Most specific generalization).

e An instance of a term e is a term of the form fe for some substitution 6.

e A generalization of two terms e and fis a triple (4, 61,62), where 61,6, are substitutions
such that 61t, = e and Oat, = f.

o A most specific generalization (msg) of two terms e and fis a generalization (t4,6;,62)
such that for every other generalization (t},07,05) of e and fit holds that ¢, is an instance
of .

For background information and an algorithm to compute most specific generalizations,
see Lassez et al. [23]. Figure [0 contains examples of the homeomorphic embedding and the
msg.

The most specific generalization is not always sufficient to split expressions. For ex-
pressions differing already in their roots, msg will return just a variable and substitutions
equal to the input terms on that variable. If this happens we need to split expressions in a
different way. We therefore define our function split using two alternatives; one that applies

14 P. A. JONSSON

when there is a non-trivial most specific generalization, and one that just splits along the
spine of the first term in the other case.

Definition 4.4 (Split). For ¢t € T we define split(t;,t2) by:
split(s(er),s'(€2)) = (tg,rng(61), dom(6,)) if s=+¢
= (s(x),e1,7) otherwise
with (tg,01,02) = msg(s(€1),s'(e2)) and T fresh.

Alternatives 2 and 4a of Dgp,() is for upwards generalization, and alternative 3 is
for downwards generalization. This is exemplified below. All the examples of how our
transformation works in Section 2leventually terminate through a combination of alternative
1 and alternative 4b of Dy ().

The second alternative of Dy, () in combination with 4a is useful when transforming
function calls that have the same parameter appearing twice, for example append zs zs as
shown in Figure [I0l

The third alternative is used when terms are “growing” in some sense. An example
of reverse with an accumulating parameter is shown in Figure [[1 assuming the standard
definition of reverse.

5. CORRECTNESS

The problem with using previous deforestation and supercompilation algorithms in a
call-by-value context is that they might change the termination properties of programs. In
this section we prove that our supercompiler both terminates itself, and preserves program
termination behavior for all input.

5.1. Termination. In order to prove that the algorithm terminates we show that each
recursive application of D[] in the right-hand sides of Figure [6] and [§ has a strictly smaller
weight than the left-hand side.

The weight of an expression is one plus the sum of the weight of its subexpressions,
where variables, primitive numbers and function names have weight two. The weight of a
fresh variable not in the initial input is one.

Definition 5.1. The weight of a variable z in the initial input, a primitive number n, and
a function name g is 2. The weight of a fresh variable not in the initial input is 1. The
weight of any composite expression (n > 1) is [s(e1,...,e,)| =1+ > 1 |eil.

Definition 5.2. Let S be a set with a relation <. Then (S5,<) is a quasi-order if < is
reflexive and transitive.

Definition 5.3. Let (5, <) be a quasi-order. (S, <) is a well-quasi-order if, for every infinite
sequence s, s1,... € S, there exist ¢ < j such that s; < s;

The following lemma tells us that the set of finite sequences over a well-quasi-ordered
set is well-quasi-ordered, with one proof by Nash-Williams [32]:

Lemma 5.4 (Higman’s lemma). If a set S is well-quasi-ordered, then the set S* of finite
sequences over S is well-quasi-ordered.

POSITIVE SUPERCOMPILATION 15

Dlappend xs xs] (*)

(By rule 4 of Dy, (), put (ho, append zs zs) in p and transform according
to the rules of the algorithm)

= case s of
| — as
(z': zs') — D[a'] : D[append zs’ xs]

(Focus on D[append zs’ zs] and recall that p contains append zs xs
so alternative 2 of Dy, () is triggered and the transformation returns
append zs' xs. This returns all the way up to the start (*) and the trans-
formation continues there through alternative 4a)

= Dlappend xs xs]
(Generalize the expression with append zs’ zs)

= [D[zs]/z, D[as]/y] Dlappend z y]

= [ws/z, zs/y] case x of

=y
(z': zs") — D[] : D[append zs’ y]

= |[ws/z, zs/y] case x of

=y
(' :as’) = 2’ thyuas'y

= letrec hy s ys = case zs of
[l — ys
(z':as") — ' : by as’ ys
in hy zs xs

Figure 10: Example of upwards generalization

The weight of the entire transformation is a triple that contains the maximum length
of the memoization list p denoted by N, the weight of the term being transformed and the
weight of the current term in focus. That such an N exists follows from Kruskal’s Tree
Theorem [§] and the homeomorphic embedding relation being a well-quasi-order.

Theorem 5.5 (Kruskal’s Tree Theorem). If S is a finite set of function symbols, then any
infinite sequence t1,ta,... of terms from the set S contains two terms t; and t; with i < j
such that t; I t;.

Proof (Similar to Dershowitz [§]). Collapse all integers to a single 0-ary constructor, and
all variables to a different O-ary constructor.

Suppose the theorem were false. Let the infinite sequence ¢ = tq,to,... of terms be
a minimal counterexample, measured by the size of the ¢;. By the minimality hypothesis,

16

P. A. JONSSON

Dlrev zs [|]

(By rule 4 of Dgpp(), put (ho, rev 2s []) in p and transform the program
according to the rules of the algorithm)

case zs of

IRdl

(z':zs") — Dlrevas’ (' :[])]

(Focus on the second branch and recall that p contains rev zs || so alter-
native 3 of Dy, () is triggered and the expression is generalized)

Dfrev as' (" : [])]

(Generalize the expression with rev as [])
[DI(z" -)]/ 2s]Dlrev zs" 2s]

[(2" : [})/2s]D[rev as" zs]

(Put (h1, rev zs’ zs) in p and transform according to the rules of the
algorithm)

[(z" : [])/2s]letrec by zs ys = case zs of
[l — ys
(z':xs’) — hyas’ (2 : ys)
inh as’ (')

letrec hy zs ys = case xs of

] — ys

(z':xs’) — by as’ (2" : ys)
inhy zs' (2 : [])

(Putting the two parts together)

case zs of
0 —1
(z': zs") — letrec hy zs ys = case zs of
[l —ys
(z':2s") — hxs’ (2 : ys)
in by xs’ (2 :[])

Figure 11: Example of downwards generalization

POSITIVE SUPERCOMPILATION 17

the set of proper subterms of the ¢; must be well-quasi-ordered, or else there would be a

smaller counterexample ¢1,%9,...,%t_1,S1,S9,..., for some [such that s; is a subterm of t;
and all sg,... are subterms of one of ¢;,t;11,.... (None of t1,t9,...,¢;_1 can embed any of
51,52, ..., since that would mean that ¢; also is embedded in some ¢;,7 <1 < j).

Since the set S of function symbols is well-quasi-ordered by >, there must exist an infi-
nite subsequence T of ¢, the root (outermost) symbols of which constitute a quasi-ascending
chain under <. (Any infinite sequence of elements of a well-quasi-ordered set must contain
an infinite chain of quasi-ascending elements). Since the set of proper subterms is well-
quasi-ordered, it follows by Lemma [5.4] that the set of finite sequences consisting of the
immediate subterms of the elements in 7 is also well-quasi-ordered. But then there would
have to be an embedding in t itself, in which case it would not be a counterexample.]

We will show that each step of the driving algorithm will reduce the weight of what is
being transformed. The constant N in the weight is the maximum length of the sequence
of terms that are not related to each other by the homeomorphic embedding.

Corollary 5.6. Any infinite sequence ti,ta,... € T contains two termst; and t; withi < j
such that t; < t;.

Corollary 5.7. There is a mazimum N such that t1,te,...,tny € T* contains no terms t;
and t; with ¢ < j and t; ;.

We define the weight of driving a term as:

Definition 5.8. The weight of a call to the driving algorithm is |De]r,qc, = (N —
ol [RCe)], lel)

Tuples must be ordered for us to tell whether the weight of a term actually decreases
from driving it. We use the standard lexical order between tuples.

Definition 5.9. The order between two tuples (ny,n2,n3) and (mq, mo, mg) is:

(n1,m2,n3) < (m1,ma,m3) if ng <my
(n1,n2,n3) < (my,mg,ms) if ny =my and ny < mo
(n1,n2,n3) < (my,mg,ms) if ny =mq, nyg = my and ng < mg

We also need to show that the memoization list p only contains elements that were in
the initial input program:

Lemma 5.10. The second component of the memoization list p, can only contain terms
from the set T.

Proof. Integers and fresh variables are equal, up to <, to the already existing integers and
variables. Our only concern are the rules that introduce new terms that are not in 7. The
new function names h are the only new terms introduced by the algorithm. By inspection
of the rules it is clear that only rule R3 introduces such new terms. Inspection of the RHS
of Dapp(), 6,

1: No recursive application in the RHS.

2: No recursive application in the RHS.

3: No new terms are created and the memoization list p is not extended.
4a: No new terms are created and the memoization list p is not extended.
4b: The newly created term h T is kept outside of the recursive call of the driving algorithm.

The memoization list p, is extended with terms from 7.

18 P. A. JONSSON

4c: No new terms are created, and the memoization list p, is extended with terms from 7.

O

With these definitions in place, we can formulate a lemma that claims the weight is
decreasing in each step of our transformation.

Lemma 5.11. For each rule D[e]r,q,p, = e1 in Figure[6 and Figure [8 and each recursive
application D€'l ¢ in e, |Dle'r, q,p| < |Plelr,a.pl

Lemma 5.12 (Totality). For all expressions R{e), D[e]r,a,p is matched by a unique rule
in Figure[d

Theorem 5.13 (Termination). The driving algorithm D[] terminates for all inputs.

Proof. The weight of the transformation is defined because of Kruskal’s Tree Theorem and
the fact that the homeomorphic embedding is a well-quasi-order. Lemma [5.10] guarantees
that the memoization list p only contains terms from the initial input. By Lemma [E.11] the
weight of the transformation decreases for each step and by Lemma we know that each
recursive application will match a rule.

Since < is well-founded over triples of natural numbers the system will eventually
terminate. []

5.2. Total Correctness. The problem with previous deforestation and supercompilation
algorithms in a call-by-value context is that they might change termination properties of
programs. We prove that our supercompiler does not change what the program computes,
nor does it alter whether a program terminates or not.

Sands [39] shows how a transformation can change the semantics in rather subtle ways —
consider the function

frz =1z 4+ 42

It is clear that f 0 = 42 (where = is semantic equivalence with respect to the current
definition). Using this equality and replacing 42 in the function body with f 0 yields:

fz =24+ f0

This function will compute something entirely different than the original definition of
f. We need some tools to ensure that the meaning of the original program is preserved and
we therefore introduce the standard notions of operational approximation and equivalence.
A general context C which is an expression with zero or more holes in the place of some
subexpressions is used, and we say that an expression Cl[e] is closed if there are no free
variables in it.
Definition 5.14 (Operational Approximation and Equivalence).

e ¢ operationally approximates €', eC ¢/, if for all contexts C' such that Cle], C[e/] are

closed, if evaluation of Cle] terminates then so does evaluation of C[e'].
e ¢ is operationally equivalent to €/, e 2 ¢/, if eC e’ and €' Ce

The correctness of deforestation in a call-by-name setting has previously been shown
by Sands [39] using his improvement theory. We use Sands’s definitions for improvement
and strong improvement:

Definition 5.15 (Improvement, Strong Improvement).

POSITIVE SUPERCOMPILATION 19

e ¢ is improved by €/, e B> ¢, if for all contexts C' such that Cle], Cle'] are closed, if
computation of Cle] terminates using n function calls, then computation of C[€] also
terminates, and uses no more than n function calls.

e ¢ is strongly improved by €, e >, ¢/, iff e > €/ and e = ¢'.

Note that improvement, >, is not the same as the homeomorphic embedding, <, defined
previously.

We use e —* v to denote that e evaluates to v using k function calls (and any other
reduction rule as many times as it needs) and e’ —=F v/ to denote that e’ evaluates to v’
with at most k function calls and using any other reduction rule as many times as needed.

To state the Improvement Theorem we view a transformation as the introduction of
some new functions from a given set of definitions. We let {g;};c; be a set of functions
indexed by some set I, where each function has a fixed arity «; and are given by some
definitions

{gi = Ax1.. . 2o, € }ier
and let {e}};cr be a set of expressions such that for each i € I, fu(e}) C {x;...24,}. The
following results relate to the transformation of the functions g; using the expressions e/:
let {h;}icr be a set of new functions given by the definitions

{hi = [h/GIN1 .. To, €} Yict

Theorem 5.16 (Sands Improvement theorem). If ¢ = e and e > C|g] then g > h where
h = C[h].

Theorem 5.17 (Cost-equivalence theorem). If e; I> e; foralli € I, then g; <> h;, 1 € 1.

We need a standard partial correctness result [39] associated with unfold-fold transfor-
mations

Theorem 5.18 (Partial Correctness). If e; = ¢, for alli € I then h; Cg;, i € I.
which we combine with Theorem [5.16] to get total correctness for a transformation:

Corollary 5.19. If we have e; > €, for alli € I, then g; > h;, i € I.

Improvement theory in a call-by-value setting requires Sands operational metatheory
for functional languages [41], where the improvement theory is a simple corollary over the
well-founded resource structure (N, 0,+,>). For simplicity of presentation we instantiate
Sands’s theorems to our language. We use = to denote expressions equal up to renaming
of bound variables and borrow a set of improvement laws that will be useful for our proof:

Lemma 5.20 (Sands [40]). Improvement laws
1) Ife > € then Cle] &> Cle].

) Ife=¢ thenel €.

) Ifer>¢€ and ¢’ > €” then e > €”

) If e € thenel> €.
)

Ife> ¢ theneC €.

(

(2
(3
(4
(5

It is sometimes convenient to show that two expressions are related by showing that

what they evaluate to is related.

Lemma 5.21 (Sands [39]). If e; =" €] and ex —" €}, then (¢) <> e, < e > ey).

20 P. A. JONSSON

We need to show strong improvement in order to prove total correctness. Since strong
improvement is improvement in one direction and operational approximation in the other
direction, a set of approximation laws that correspond to the improvement laws in Lemma
is necessary.

Lemma 5.22. Approximation laws
(1) If ege€ then Cle] 2Cle].

(2) Ife=¢ thenee€.

(3) Ifede and ¢’ J¢e” then e J¢€”
(4) If e € then eJe€'.

Combining Lemma[5.20land Lemma[5.22]gives us the final tools we need to prove strong
improvement:

Lemma 5.23. Strong Improvement laws
(1) If e >4 € then Cle] >4 C[€].

(2) Ife=¢€ thenel>ze.

(3) Ife>s € and € >g " then e >, €’
(4) If e € then e > €.

If two expressions are improvements of each other, they are considered cost equivalent.
Cost equivalence also implies strong improvement, which will be useful in many parts of
our proof of total correctness for our supercompiler.

Definition 5.24 (Cost equivalence). The expressions e and €’ are cost equivalent, e <> ¢’
iffe>e and e > e

A local form of the improvement theorem which deals with local expression-level recur-
sion expressed with a fixed-point combinator or with a letrec definition is necessary. This
is analogous to the work by Sands [39], with slight modifications for call-by-value.

We need to relate local recursion expressed using fiz and the recursive definitions which
the improvement theorem is defined for. This is solved by a technical lemma that relates
the cost of terms on a certain form to their recursive counterparts.

Theorem 5.25. For all expressions e, if A\g.e is closed, then fix (Ag.e) <> h, where h is
a new function defined by h = [An.hn/gle.

Proof (Similar to Sands [39]). Define a helper function h™ = [An.fizx (Ag.e)n/gle. Since
fiz (Ag.e) =t (Vf.f On.fixz fn)) (M\g.e) = (Ag.e) (An.fiz (A\g.e)n) = [Mn.fiz (Ag.e)n/gle
and h™ =1 [An.fiz (Ag.e) n/gle it follows by Lemma 2T that fix (Ag.e) <> h~. Since cost
equivalence is a congruence relation we have that [An.h™ n/gle <> [An.fiz (Ag.e)n/gle,

and so by Theorem B.17, we have a cost-equivalent transformation from A~ to h, where
h = [h/h~][An.h~ n/gle = [An.hn/gle. O

We state some simple properties that will be useful for proving our local improvement
theorem

Theorem 5.26. Consequences of the letrec definition
i): letrech = A\T.eine’ <> [An.fiz (\h.A\T.€) n/hle’
ii): letrec h = A\T.ein h <> An.fix (Ah.AT.e)n

iii): letrech = \T.cine’ <> [letrec h = A\T.ein h/hle’

POSITIVE SUPERCOMPILATION 21

Proof. For i), expand the definition of letrec in the LHS, (Ah.¢') (An.fiz (Ah.AT.e)n) and
evaluate it one step to [An.fiz (Ah.AT.e) n/hle’. This is syntactically equivalent to the RHS,
hence cost equivalent. For ii), set ¢’ = h and perform the substitution from i). For iii), use
the RHS of ii) in the substitution and notice it is equivalent to i). Il

This allows us to state the local version of the improvement theorem:

Theorem 5.27 (Local improvement theorem). If variables h and T include all the free
variables of both ey and e, then if

letrec h = A\T.egineg B>, letrec h = AZ.egineq
then for all expressions e

letrec h = A\T.egine > letrec h = A\T.ejine

Proof. Define a new function g = [An.gn/h]A\T.eg. By Proposition[5.251g <> fiz (Ah.AT.¢ep).
Use this, the congruence properties, and the properties listed in Proposition to trans-
form the premise of the theorem:
letrec h = A\T.egineg B>, letrec h = AZ.egineq
[An.fix (AR.AT.eg) n/hley = [An. fix (A AT.eq) n/hleq
AT.[An. fiz (AR.AT.eg) n/hleg g AT.[An. fix (Ah.AT.ep) n/hle;
[An.fix (AR.AT.eg) n/h|AT.eq >4 [An. fix (AR.AT.ep) n/h|AT.eq
[An.gn/h]A\T.eg >4 [An.gn/h]\T.e;

So by Corollary[5.19}, g > ¢’ where ¢ = [¢'/g][An.gn/h]AT.e; = [An.gn/h]A\T.e;. Hence
by Proposition 525 ¢" I fix (Ah.AT.eq). Adding it all together yields fiz (Ah.AT.eq) <>
g >s ¢ <> fix (A.AT.eq). From the transitivity and congruence properties of improvement
we can deduce that An.fiz (Ah.AT.eg) =5 An.fix (Ah.AT.e1). By Proposition we get
letrec h = A\ZT.epin h >, letrec h = AT.ej in h, which can be further expanded by congruency
properties of improvement to [letrec h = A\T.epinh/hle >4 [letrec h = AT.ej in h/h]e. Using
Proposition one more time yields letrec h = A\T.egine > letrec h = AT.ej ine, which
proves our theorem.]

This allows us to state the total correctness theorem for our transformation:

Theorem 5.28 (Total Correctness). Let R{e) be an expression, G a recursive map, and p
an environment such that

e the range of p contains only closed expressions, and
e fu(R{e)) Ndom(p) =0, and
then R(e) &> p(Dlelr,a.p)-

The proof is in Appendix [A.1]to Appendix [A. 201

22 P. A. JONSSON

6. BENCHMARKS

In this section we provide measurements on a set of common examples from the litera-
ture on deforestation and perform a detailed analysis for each example. We show that our
positive supercompiler removes intermediate structures and can improve the performance
by an order of magnitude for certain benchmarks. The supercompiler was implemented as a
pass in the Timber compiler [34]. Timber is a pure functional call-by-value language which
is very close to the language we describe in Section [3, and for the scope of this article it
can be thought of as a strict variant of Haskell. We have left out the full details of the
instrumentation of the run-time system but it is available in a separate report [19].

All measurements were performed on an idle machine running in an zterm terminal
environment. Each test was run 10 consecutive times and the best result was selected
because the programs are deterministic and the best result must appear under the minimum
of other activity. The number of allocations and the total allocation sizes remained constant
over all runs.

Raw data for the time and size measurements before and after supercompilation are
shown in Table[I] and allocation measures in Table2l Compilation times are shown in Table
Bl The time column is the number of clock ticks obtained from the RDTSC instruction
available on Intel/AMD processors, and the binary size is in bytes. The total number of
allocations and the total memory size in bytes allocated by the program are displayed in
their respective column. The compilation times are measured in seconds and times from
left to right are for producing an object file, producing an executable binary, and the
corresponding operations with supercompilation turned on.

Binary sizes are slightly increased by the supercompiler, but all run-times are faster.
The main reason for the performance improvement is the removal of intermediate structures,
reducing the number of memory allocations. Compilation times are increased by 10-15%
when enabling the supercompiler.

The supercompiled results on these particular benchmarks are identical to the results
reported in previous work for call-by-name languages by Wadler [57] and Sgrensen et al.
[47]. We do not provide any execution-time comparisons with these, though, since for
identical intermediate representations after supercompilation, such measurements would
only illustrate differences caused by back-end implementation techniques.

The work on Supero by Mitchell and Runciman [30] shows that there remain open
problems when supercompiling large Haskell programs. These problems are mainly related
to speed, both of the compiler and of the transformed program. When profiling Supero,
Mitchell and Runciman found that a majority of the time was spent on their homeomorphic
embedding test. Our transformation performs the corresponding test on a smaller part of
the abstract syntax tree, so there is reason to believe that this will result in less time spent
on testing homeomorphic embedding even on large programs for our transformation. The
complexity of the homeomorphic embedding relation has been investigated by Narendran
and Stillman [31], and they give an algorithm of complexity O(size(e) x size(f)) for deciding
whether e < f. We expect essentially the same problems that Mitchell and Runciman
observed to appear in a call-by-value context as well, and intend to investigate them now
that we have a theoretical foundation for our transformation.

POSITIVE SUPERCOMPILATION 23

Time Binary size
Benchmark Before After Before After
Double Append 105,844,704 89,820,912 89,484 90,800
Factorial 21,552 21,024 88,968 88,968
Flip a Tree 2,131,188 237,168 95,452 104,704
Sum of Squares of a Tree 276,102,012 28,737,648 95,452 104,912
Kort’s Raytracer 12,050,880 7,969,224 91,968 91,460

Table 1: Time and size measurements

Allocations Alloc Size
Benchmark Before After Before After
Double Append 270,035 180,032 2,160,280 1,440,256
Factorial 9 9 68 68
Flip a Tree 20,504 57 180,480 620
Sum of Squares of a Tree 4,194,338 91 29,360,496 908
Kort’s Raytracer 60,021 17 320,144 124

Table 2: Allocation measurements

Not Supercompiled Supercompiled

Benchmark -C —make -¢-S —make -S
Double Append 0.183 0.300 0.202 0.319
Factorial 0.095 0.213 0.097 0.216
Flip a Tree 0.211 0.223 0.230 0.347
Sum of Squares of a Tree 0.214 0.332 0.234 0.349
Kort’s Raytracer 0.239 0.359 0.278 0.399

Table 3: Compilation times

6.1. Double Append. As previously seen, supercompiling the appending of three lists
saves one traversal over the first list. This is an example by Wadler [57], and the intermediate
structure is fused away by our supercompiler. The program is:

append xs ys = case xs of
[l — ys
(z':2s") — 2’ : (append xs’ ys)
main s ys zs = append (append xs ys) zs
Supercompiling this program gives the same result that we obtained manually in Section

h1 xs1 ys1 zs; = case xs; of
[[— case ys; of
| — 21
(y1:ys1) — v1 = (ho ysy 251)
(2] :wsy) — o : (hy ws] ys1 2s1)
ho xs9 ySo = case sy of
| — yso
(2 : wsh) — a2 (he wsh yso)
main xs ys zs =hy 18 ys zs

24 P. A. JONSSON

In this measurement, three strings of 9000 characters each were appended to each other
into a 27 000 character string. As can be seen in Table 2l the number of allocations goes
down as one iteration over the first string is avoided. The binary size increases 1316 bytes,
on a binary of roughly 90k.

6.2. Factorial. There are no intermediate lists created in a standard implementation of
a factorial function, so any performance improvements must come from inlining or static
reductions.

fac0 =1

facn =n x fac (n — 1)

main =show (fac 3)
The program is transformed to:

h0o =1
hn =n=xh(n —1)

main =show (3 * h 2)

One recursion and a couple of reductions are eliminated, thereby slightly reducing the
run-time. The allocations remain the same and the final binary size remains unchanged.

6.3. Flip a Tree. Flipping a tree is another example by Wadler [57], and just like Wadler
we perform a double flip (thus restoring the original tree) before printing the total sum of
all leaves.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

sumtr (Leaf a) = a
sumtr (Branch lr) = sumtr | + sumtrr

flip (Leaf x) = Leaf x
flip (Branch I r) = Branch (flip r) (flip 1)

main zs = let ys = (flip (flip xs)) in show (sumtr ys)
This is transformed into:

ht = casetof
Leaf d — d
Branch lr — (hl) + (hr)

main s = show (case xs of
Leaf d — d
Branch lr — (hl) + (h1))

A binary tree of depth 12 was used in the measurement. The function h is isomorphic
to sumtr in the input program, and the double flip has been eliminated. Both the total
number of allocations and the total size of allocations is reduced. The run-time is reduced
by an order of magnitude. The binary size increases by about 10%, though.

POSITIVE SUPERCOMPILATION 25

6.4. Sum of Squares of a Tree. Computing the sum of the squares of the data members
of a tree is the final example by Wadler [57].

data Tree a = Leaf a | Branch (Tree a) (Tree a)

square :: Int — Int
square r = T * T

sumtr (Leaf) = z
sumtr (Branch I r) = sumtr l + sumtrr

squaretr (Leaf x) = Leaf (square x)
squaretr (Branch 1 r) = Branch (squaretr 1) (squaretr r)

main s = show (sumtr (squaretr xs))
This is transformed to:

ht = caset of
Leaf d — d * d
Branch lr — (hl) + (hr)

main s = show (case xs of
Leaf d — d * d
Branch lr — (hl) + (hr)

Almost all allocations are removed by our supercompiler, but the binary size is increased
by nearly 10%. The run-time is improved by an order of magnitude.

6.5. Kort’s Raytracer. The inner loop of a raytracer [22] written in Haskell is extracted
and transformed.

zipWith f (z = xs) (y 1 ys) = (fzy): zipWith f xs ys

zipWith -~ =[]

sum :: [Int] — Int
sum[] = 0
sum (z :xs) = x + sum xs

main xs ys = sum (zip With (x) xs ys)
The transformed result is:

h zs ys = case zs of
(z': zs') — case ys of
(v rys') = (2" = y) + (has'ys)
-—=0
-—=0

main s ys = h xs ys

The total run-time, the number of allocations, the total size of allocations and the
binary size all decrease.

26 P. A. JONSSON

7. RELATED WORK

There is much literature concerning algorithms that remove intermediate structures
in functional programs. However, most of these works are in the the context of call-by-
name or call-by-need languages, which makes the task of supercompilation a different, yet
difficult, problem. We therefore start our survey of related work with one call-by-value
transformation and then look at the related transformations from a call-by-name or call-
by-need perspective.

7.1. Lightweight Fusion. Ohori’s and Sasano’s Lightweight Fusion [35] works by pro-
moting functions through the fix-point operator and guarantees termination by limiting
inlining to at most once per function. They implement their transformation in a compiler
for a variant of Standard ML and present some benchmarks. The algorithm is proven cor-
rect for a call-by-name language. It is explicitly mentioned that their goal is to extend the
transformation to work for an impure call-by-value functional language.

Comparing lightweight fusion to our positive supercompiler is somewhat difficult, the
algorithms themselves are not very similar. Comparing results of the algorithms is more
straightforward — the restriction to only inline functions once makes lightweight fusion un-
able to handle successive applications of the same function or mutually recursive functions,
something the positive supercompiler handles gracefully.

Despite the early stage of their work, Ohori and Sasano are proposing an interesting
approach that appears quite powerful.

7.2. Deforestation. Deforestation was pioneered by Wadler [57] for a first order language
more than fifteen years ago. The function macros supported by the initial deforestation
algorithm were not capable of fully emulating higher-order functions.

Marlow and Wadler |27] addressed the first-order restriction in a subsequent article [27].
This work was refined in Marlow’s [1995] dissertation, where he also related deforestation to
the cut-elimination principle of logic. Chin [5] has also generalised Wadler’s deforestation
to higher-order functional programs by using syntactic properties to decide which terms
that can be fused.

Both Hamilton [14] and Marlow [28] have proven that their deforestation algorithms
terminate. More recent work by Hamilton [15] extends deforestation with a treeless form
that is easy to recognise and handles a wide range of functions, giving more transparency
for the programmer.

Alimarine and Smetsers [2] have improved the producer and consumer analyses in Chin’s
[1994] algorithm to be based on semantics rather than syntax. They show that their algo-
rithm can remove much of the overhead introduced by generic programming [16].

While these works are algorithmically rather close to ours due to the close relationship
between deforestation and positive supercompilation, it supposes either a call-by-name or
call-by-need context, and is thus not applicable to the kind of languages we target.

7.3. Supercompilation. Closely related to deforestation is supercompilation |52, 53, |54,
55). Supercompilation both removes intermediate structures and achieves partial evaluation,
as well as some other optimisations. In partial evaluation terminology, the decision of when
to inline is taken online. The initial studies on supercompilation were for the functional

POSITIVE SUPERCOMPILATION 27

language Refal [56]. The supercompiler Scp4 [33] is implemented in Refal and is the most
well-known implementation from this line of work.

The positive supercompiler [47] is a variant which only propagates positive information
such as inferred equalities between terms. The propagation is done by unification and
the work highlights how similar deforestation and positive supercompilation really are.
Narrowing-driven partial evaluation |3, [1] is the functional logic programming equivalent of
positive supercompilation but formulated as a term rewriting system. Their approach also
deals with non-determinism from backtracking, which makes the corresponding algorithms
more complicated.

Strengthening the information propagation mechanism to propagate not only positive,
but also negative information, yields perfect supercompilation [42,143]. Negative information
is the opposite of positive information, namely inequalities. These inequalities can be used
to prune case-expression branches known not to be applicable, for example.

More recently, Mitchell and Runciman [30] have worked on supercompiling Haskell.
They report run-time reductions of up to 55% when their supercompiler is used in conjunc-
tion with GHC.

Supercompilation has seen applications beyond program optimization: verification of
cache coherence protocols [26] and proving term equivalence [21] are two examples. We
do not believe that our supercompiler is useful for these applications since it is inherently
weaker than the corresponding supercompiler with call-by-name semantics.

The positive supercompiler by Sgrensen et al. [47] is the immediate ancestor of our
work, although we have extended it to a higher-order language and converted it to work
correctly for call-by-value languages.

7.4. Generalized Partial Computation. GPC [9, [50] uses a theorem prover to extract
additional properties about the program being specialized. Among these properties are the
logical structure of a program, axioms for abstract data types, and algebraic properties of
primitive functions.

The theorem prover is applied whenever a test is encountered, in order to determine
which subset of the execution branches can actually be taken. Information about the
predicate that was tested is propagated along the branches that are left in the resulting
program. The reason GPC is such a powerful transformation is because it assumes the
unlimited power of a theorem prover.

Futamura et al. [10] have applied GPC in a call-by-value setting in a system called WS-
DFU (Waseda Simplify-Distribute-Fold-Unfold), and report many successful experiments
where optimal or near optimal residual programs are produced. It is unclear whether WS-
DFU preserves termination behavior or if it is a call-by-name transformation applied to a
call-by-value language.

We note that the rules for the first order language presented by Takano [50] are very
similar to the positive supercompiler, but the requirement for a theorem prover might
exclude the technique as a candidate for automatic compiler optimisations. The lack of
termination guarantees for the transformation might be another obstacle. Considering the
similarities between GPC and positive supercompilation it should be straightforward to
convert GPC to a call-by-value setting.

28 P. A. JONSSON

7.5. Other Transformations. Considering the vast amount of research conducted on pro-
gram transformations in general, we only briefly survey other related transformations.

7.5.1. Partial FEvaluation. Partial evaluation [18] is another instance of Burstall and Dar-
lington’s [1977] informal class of fold /unfold transformations.

If partial evaluation is performed offline, the process is guided by program annotations
that tell when to fold, unfold, instantiate and define functions. Binding-Time Analysis
(BTA) is a program analysis that annotates operations in the input program based on
whether they are statically known or not.

Partial evaluation does not remove intermediate structures, something we deem neces-
sary to enable the programmer to write programs in the clear and concise listful style. Both
deforestation and supercompilation simulate call-by-name evaluation in the transformer,
whereas partial evaluation simulates call-by-value. It is suggested by Sgrensen et al. [46]
that this might affect the strength of the transformation.

7.5.2. Short Cut Fusion. Short cut deforestation [12, 13] takes a different approach to de-
forestation, sacrificing some generality by only working on lists.

The idea is that the constructors Nil and Cons can be replaced by a foldr consumer,
and a special function build is used to enable the transformation to recognize the producer

and enforce a type requirement. Lists using build/foldr can easily be removed with the
foldr/build rule:

foldr f ¢ (build g) = g f ¢

It is the responsibility of the programmer or compiler writer to make sure list-traversing
functions are written using build and foldr, thereby cluttering the code with information for
the optimiser and making it harder to read and understand for humans.

Gill implemented and measured short cut deforestation in GHC using the nofib bench-
mark suite [37]. Around a dozen benchmarks improved by more than 5%, the average was
3% and only one example got noticeably worse, by 1%. Heap allocations were reduced, by
half in one particular case.

The main argument for short cut deforestation is its simplicity on the compiler side
compared to full-blown deforestation. GHC currently contains a variant of the short cut
deforestation implemented using rewrite rules [38].

Takano and Meijer [51] generalized short cut deforestation to work for any algebraic
datatype through the acid rain theorem. Ghani and Johann [11] have also generalized
the foldr/build rule to a fold/superbuild rule that can eliminate intermediate structures of
inductive types without disturbing the contexts in which they are situated.

Launchbury and Sheard [24] worked on automatically transforming programs into suit-
able form for shortcut deforestation. Onoue et al. [36] showed an implementation of the
acid rain theorem for Gofer where they could automatically transform recursive functions
into a form suitable for shortcut fusion.

Chitil [6] used type-inference to transform the producer of lists into the abstracted form
required by short cut deforestation. Given a type-inference algorithm which infers the most
general type, Chitil is able to determine the list constructors that need to be replaced in
one pass.

From the principal type property of the type inference algorithm Chitil was also able to
deduce completeness of the list abstraction algorithm. This completeness guarantees that

POSITIVE SUPERCOMPILATION 29

if a list can be abstracted from a producer by abstracting its list constructors, then the list
abstraction algorithm will do so.

The implications of the completeness of the list abstraction algorithm is that a foldr
consumer can be fused with nearly any producer. One reason list constructors might not
be abstractable from a producer is that they do not occur in the producer expression but
in the definition of a function which is called by the producer. A worker/wrapper scheme
proposed by Chitil ensures that these list constructors are moved to the producer in order
to make list abstraction possible.

The completeness property and the fact that the programmer does not have to write
any special code, in combination with the promising results from measurements, suggest
that short cut deforestation based on type-inference is a practical optimisation.

Takano and Meijer |51] noted that the foldr/build rule for short cut deforestation has
a dual. This is the destroy/unfoldr rule used in Zip Fusion [48], which has some interesting
properties: it can remove all argument lists from a function which consumes more than one
list. The method described by Svenningsson removes all intermediate lists in zip [1..n] [1..n],
addressing one of the main criticisms against the foldr/build rule. The technique can also
remove intermediate lists from functions which consume their lists using accumulating pa-
rameters, which is usually a problematic case. The destroy/unfoldr rule is defined as:

destroy g (unfoldr psi e) = g psi e

The Zip Fusion method is simple, and can be implemented in the same way as short
cut deforestation. It still suffers from the drawback that the programmer or compiler writer
has to make sure the list traversing functions are written using destroy and unfoldr.

In more recent work Coutts et al. [7] have extended these techniques to work on func-
tions that handle nested lists, list comprehensions and filter-like functions.

8. CONCLUSIONS

We have presented a positive supercompiler for a higher-order call-by-value language
and proven it correct with respect to call-by-value semantics. The adjustments required to
preserve the termination properties of call-by-value evaluation are new and work well for
many examples in the literature intended to show the usefulness of call-by-name transfor-
mations.

8.1. Future Work. We believe that the linearity restriction of rule R14 is not necessary
for the soundness of our transformation, but have not yet found a way to prove this. This is
a natural topic for future work, as is an investigation of whether the concept of an inlining
budget may be used to control the balance between supercompilation benefits and code size.

More work could be done on the strictness analysis component of our supercompiler.
We do not intend to focus on that subject, though; instead we hope that the modular
dependency on strictness analysis will allow our supercompiler to readily take advantage of
general improvements in the area.

The supercompiler described in this article can be said to supersede several of the
standard transformations commonly implemented by optimizing compilers, such as copy
propagation, constant folding and basic inlining. We conjecture that this range could be
extended to include transformations like common subexpression elimination as well, by

30 P. A. JONSSON

means of moderately small algorithm changes. An investigation of the scope for such gen-
eralizations is an important area of future research.

ACKNOWLEDGEMENTS

The authors would like to thank Simon Marlow, Duncan Coutts and Neil Mitchell for
valuable discussions. Thorsten Altenkirch contributed insights about non-termination. We
would also like to thank Viktor Leijon and the anonymous referees for POPL’09 for providing
useful comments that helped improve the presentation and contents, and Germéan Vidal for
explaining narrowing-driven partial evaluation to us.

REFERENCES

[1] E. Albert and G. Vidal. The narrowing-driven approach to functional logic program
specialization. New Generation Comput, 20(1):3-26, 2001.

[2] A. Alimarine and S. Smetsers. Improved fusion for optimizing generics. In Manuel V.
Hermenegildo and Daniel Cabeza, editors, Practical Aspects of Declarative Languages,
7th International Symposium, PADL 2005, Long Beach, CA, USA, January 10-11,
2005, Proceedings, volume 3350 of Lecture Notes in Computer Science, pages 203—-218.
Springer, 2005. ISBN 3-540-24362-3.

[3] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Pro-
grams. ACM Transactions on Programming Languages and Systems, 20(4):768-844,
1998.

[4] R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, January 1977.

[5] W-N. Chin. Safe fusion of functional expressions II: Further improvements. J. Funct.
Program, 4(4):515-555, 1994.

[6] O. Chitil. Type-Inference Based Deforestation of Functional Programs. PhD thesis,
RWTH Aachen, October 2000.

[7] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists to streams to
nothing at all. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, pages 315-326, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-815-2.

[8] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1):
69-115, 1987.

[9] Y. Futamura and K. Nogi. Generalized partial computation. In D. Bjgrner, A.P.
Ershov, and N.D. Jones, editors, Partial Fvaluation and Mized Computation, pages
133-151. Amsterdam: North-Holland, 1988.

[10] Y. Futamura, Z. Konishi, and R. Gliick. Program transformation system based on
generalized partial computation. New Gen. Comput., 20(1):75-99, 2002. ISSN 0288-
3635.

[11] N. Ghani and P. Johann. Short cut fusion of recursive programs with computational
effects. In P. Achten, P. Koopman, and M. T. Morazan, editors, Draft Proceedings of
The Ninth Symposium on Trends in Functional Programming (TFP), number ICIS—
R08007, 2008.

POSITIVE SUPERCOMPILATION 31

[12] A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation. In Func-
tional Programming Languages and Computer Architecture, Copenhagen, Denmark,
1993, 1993.

[13] A.J. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, Univ.
of Glasgow, January 1996.

[14] G. W. Hamilton. Higher order deforestation. In PLILP ’96: Proceedings of the 8th
International Symposium on Programming Languages: Implementations, Logics, and
Programs, pages 213-227, London, UK, 1996. Springer-Verlag. ISBN 3-540-61756-6.

[15] G. W. Hamilton. Higher order deforestation. Fundam. Informaticae, 69(1-2):39-61,
2006.

[16] R. Hinze. Generic Programs and Proofs. Habilitationsschrift, Bonn University, 2000.

[17] T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In FPCA,
pages 190-203, 1985.

[18] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Englewood Cliffs, NJ: Prentice Hall, 1993. ISBN 0-13-020249-5.

[19] P. A. Jonsson. Positive supercompilation for a higher-order call-by-value language.
Licentiate thesis, Lulea University of Technology, Sweden, Jun 2008.

[20] P. A. Jonsson and J. Nordlander. Positive supercompilation for a higher-order call-by-
value language. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2009.

[21] I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms by
means of supercompilation. In PSI '09: Proceedings of the Seventh International Andrei
Ershov Memorial Conference, 2009.

[22] J. Kort. Deforestation of a raytracer. Master’s thesis, University of Amsterdam, 1996.

[23] J-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In Jack Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 587—625. Morgan
Kaufmann, 1988.

[24] J. Launchbury and T. Sheard. Warm fusion: Deriving build-cata’s from recursive
definitions. In FPCA, pages 314-323, 1995.

[25] X. Leroy. = The Objective Caml system: Documentation and user’s manual,
2008. With D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. Available from
http://caml.inria.fr (1996-2008).

[26] A. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing (experiments
with the SCP4 supercompiler). Programming and Computer Software, 33(1):14-23,
2007.

[27] S. Marlow and P. Wadler. Deforestation for higher-order functions. In John Launchbury
and Patrick M. Sansom, editors, Functional Programming, Workshops in Computing,
pages 154-165. Springer, 1992. ISBN 3-540-19820-2.

[28] S. D. Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis, De-
partment of Computing Science, University of Glasgow, April 27 1995.

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML,
Revised edition. MIT Press, 1997.

[30] N. Mitchell and C. Runciman. A supercompiler for core Haskell. In O. Chitil et al.,
editor, Selected Papers from the Proceedings of IFL 2007, volume 5083 of Lecture Notes
i Computer Science, pages 147-164. Springer-Verlag, 2008.

[31] P. Narendran and J. Stillman. On the Complexity of Homeomorphic Embeddings.
Technical Report 87-8, Computer Science Department, State Univeristy of New York

http://caml.inria.fr

32 P. A. JONSSON

at Albany, March 1987.

[32] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the
Cambridge Philosophical Society, 59(4):833-835, October 1963.

[33] A. P. Nemytykh. The supercompiler SCP4: General structure. In Manfred Broy and
Alexandre V. Zamulin, editors, Perspectives of Systems Informatics, 5th International
Andrei Ershov Memorial Conference, PSI 2003, Akademgorodok, Novosibirsk, Russia,
July 9-12, 2003, Revised Papers, volume 2890 of LNCS, pages 162—-170. Springer, 2003.
ISBN 3-540-20813-5.

[34] J. Nordlander, M. Carlsson, A. Gill, P. Lindgren, and B. von Sydow. The Timber home
page, 2008. URL http://www.timber-lang.org.

[35] A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion. In POPL ’07:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 143-154, New York, NY, USA, 2007. ACM. ISBN
1-59593-575-4.

[36] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system HYLO.
In R. S. Bird and L. G. L. T. Meertens, editors, Algorithmic Languages and Calculi,
IFIP TC2 WG2.1 International Workshop on Algorithmic Languages and Calculi, 17-
22 February 1997, Alsace, France, volume 95 of IFIP Conference Proceedings, pages
76-106. Chapman & Hall, 1997. ISBN 0-412-82050-1.

[37] W. Partain. The nofib benchmark suite of Haskell programs. In John Launchbury and
Patrick M. Sansom, editors, Functional Programming, Workshops in Computing, pages
195-202. Springer, 1992. ISBN 3-540-19820-2.

[38] S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting as
a practical optimisation technique in GHC. In Ralf Hinze, editor, Proceedings of the
2001 ACM SIGPLAN Haskell Workshop (HW’2001), 2nd September 2001, Firenze,
Italy., Electronic Notes in Theoretical Computer Science, Vol 59. Utrecht University,
September 28 2001. UU-CS-2001-23.

[39] D. Sands. Proving the correctness of recursion-based automatic program transforma-
tions. Theoretical Computer Science, 167(1-2):193-233, 30 October 1996.

[40] D. Sands. Total correctness by local improvement in the transformation of functional
programs. ACM Transactions on Programming Languages and Systems, 18(2):175-234,
March 1996.

[41] D. Sands. From SOS rules to proof principles: An operational metatheory for functional
languages. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM Press, January 1997.

[42] J. P. Secher. Perfect supercompilation. Technical Report DIKU-TR~99/1, Department
of Computer Science (DIKU), University of Copenhagen, February 1999.

[43] J.P. Secher and M.H. Sgrensen. On perfect supercompilation. In D. Bjgrner, M. Broy,
and A. Zamulin, editors, Proceedings of Perspectives of System Informatics, volume
1755 of Lecture Notes in Computer Science, pages 113-127. Springer-Verlag, 2000.

[44] ML.H. Sgrensen. Convergence of program transformers in the metric space of trees. Sci.
Comput. Program, 37(1-3):163-205, 2000.

[45] M.H. Sgrensen and R. Gliick. An algorithm of generalization in positive supercom-
pilation. In J.W. Lloyd, editor, International Logic Programming Symposium, pages
465-479. Cambridge, MA: MIT Press, 1995.

http://www.timber-lang.org

POSITIVE SUPERCOMPILATION 33

[46] M.H. Sgrensen, R. Gliick, and N.D. Jones. Towards unifying partial evaluation, de-
forestation, supercompilation, and GPC. In D. Sannella, editor, Programming Lan-
guages and Systems — ESOP’94. 5th European Symposium on Programming, Edin-
burgh, U.K., April 1994 (Lecture Notes in Computer Science, vol. 788), pages 485-500.
Berlin: Springer-Verlag, 1994.

[47) M.H. Sgrensen, R. Gliick, and N.D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811-838, 1996.

[48] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. In
ICFP, pages 124-132, 2002.

[49] D. Syme. The F# programming language, June 2008. URL
http://research.microsoft.com/fsharp.

[50] A. Takano. Generalized partial computation for a lazy functional language. In Par-
tial FEvaluation and Semantics-Based Program Manipulation, New Haven, Connecticut
(Sigplan Notices, vol. 26, no. 9, September 1991), pages 1-11. New York: ACM, 1991.

[51] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In FPCA, pages
306—-313, 1995.

[52] V.F. Turchin. A supercompiler system based on the language Refal. SIGPLAN Notices,
14(2):46-54, February 1979.

[63] V.F. Turchin. Semantic definitions in Refal and automatic production of compilers. In
N.D. Jones, editor, Semantics-Directed Compiler Generation, Aarhus, Denmark (Lec-
ture Notes in Computer Science, vol. 94), pages 441-474. Berlin: Springer-Verlag, 1980.

[54] V.F. Turchin. Program transformation by supercompilation. In H. Ganzinger and N.D.
Jones, editors, Programs as Data Objects, Copenhagen, Denmark, 1985 (Lecture Notes
in Computer Science, vol. 217), pages 257-281. Berlin: Springer-Verlag, 1986.

[65] V.F. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, 8(3):292-325, July 1986.

[56] V.F. Turchin. Refal-5, Programming Guide & Reference Manual. Holyoke, MA: New
England Publishing Co., 1989.

[57] P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Com-
puter Science, 73(2):231-248, June 1990. ISSN 0304-3975.

APPENDIX A. PROOFS

We borrow a couple of technical lemmas from Sands [39], and adapt the proofs to be
valid under call-by-value:

Lemma A.1 (Sands, p. 24). For all expressions e and value substitutions 6 such that
h ¢ dom(0), if eg —"' ey then

letrec h = AT.ejin [f(ep)/z]e B> letrec h = AT.eq1in [h6(T)/z]e
Proof. Expanding both sides according to the definition of letrec yields:
(Ah.[0(eo)/z]e) (An.fiz (ARAT.e1)n) <> (Ah.[hO(T)/z]e) (An. fix (ARAT.e1) n)
and evaluating both sides one step — gives:
[An.fix (Ah.AT.e1) n/h][0(eg)/z]e I [An. fix (Ah.AT.e1)n/h][hO(T)/z]e
From this we can see that it is sufficient to prove:
[An.fiz (AL AT.e1) n/hl0eq <> [An.fiz (A AT.e1) n/h)hO(T)

http://research.microsoft.com/fsharp

34 P. A. JONSSON

The substitution 6 can safely be moved out since h ¢ dom(0):
[An.fix (Ah.AT.e1) n/h)fey <> [An.fiz (AR.NT.e1) n/h|O(hT)

Performing evaluation steps on both sides yield:

[An.fix (AR AT.e1) n/h|0ey I>[An.fiz (Ah.AT.e1)n/hlO(hT)

[An.fiz (ARAT.e1) n/hlfey I>[An. fiz (ARAT.e1) n/h|0((An.fiz (AR.AT.e1)n) T)

[An.fiz (ARAT.e1) n/hlfey I>[An. fiz (ARAT.e1) n/h|0(fix (Ah.AT.€1)T)

[An.fiz (ARAT.e1) n/hl0er <>[An. fiz (AR AT.e1) n/hlO((Af.f (An.fiz fn)) (AR.AT.e1)T)
[An.fiz (ARAT.e1) n/hlfe; I>[An. fixz (ARAT.e1) n/h|0(ARAT.e1) (An.fiz (Ah.AT.€1)n)T)
[An.fiz (\RAT.e1) n/h)fe; A>[An. fiz (A\RAT.e1) n/h)0((\T.e1) T)

[An.fix (Ah.AT.e1) n/h|0e; A>T /Z][An. fiz (Ah.AT.e1) n/h]feq

[An. fiz (Ah.XT.e1) n/hlfe; A>[An. fiz (AR.AT.e1) n/h]fe;

The LHS and the RHS are cost equivalent, so by Lemma [B.21] the initial expressions are
cost equivalent.]

Lemma A.2 (Sands, p. 25). ¢ (D[R(v)]g,¢,p) <> letrec h = A\Z.R(v) in p(D[R(v)]o,¢,p)

Proof (Similar to Sands [39]). By inspection of the rules for D[], all free occurrences of h
in D[R(v)]g,q, must occur in sub-expressions of the form hZ. Suppose there are k such
occurrences, which we can write as 01hT ... 0 hT, where the 0; are just renamings of the
variables Z. So D[R(v)]g,¢, can be written as [01hT ... 0,hT /2 ... z;]€/, where €’ contains
no free occurrences of h. Then (substitution associates to the right):

A (DIRW)]o.cp) (AT R(9)/Mp(D[R(v)]a.¢.pr)

<> (MNER(g)/Rlp([01hT ... 04hT /21 ... 2]€)
<> p([1R{g) ... OkR{g)/21 - .- zx]€")
<> (by Lemma [AT])
letrech = \T.R(ve)inp([01hT...0khT/21 ... 2)€)
= letrech = AT.R(v) in p(D[R(v)]q,c,p") O]

Lemma A.3. R{letx =ein f) >;letz = ein R(f)

Proof. Notice that R(let 2 = Oin f) is a redex, and assume e —* v. The LHS evaluates in k
steps R{letz = ein f) —* R(let x = vin f) — R([v/x]f), and the RHS evaluates in k steps
letz = einR(f) =¥ letx = vinR(f) — [v/2]R(f). Since contexts do not bind variables
these two terms are equivalent and by Lemma [5.21] the initial terms are cost equivalent. []

Lemma A.4. R(letrecg = vine) >g letrec g = vin R (e)

Proof. Translate both sides by the definition of letrec into R{(Ag.e) (An.fiz (Ag.v)n)) >g
(Ag.R{e)) (An.fix (Ag.v)n). Notice that R(O) is a redex. The LHS evaluates in 0 steps
to R{(Ag.e) (An.fiz (Ag.v)n)) — R{[An.fix (Ag.v)n/gle) and the RHS evaluates in 0 steps
to (Ag.R{e)) (An.fix (Ag.v)n) — [An.fix (Ag.v)n/g|R(e). Since our contexts do not bind
variables these two terms are equivalent and by Lemma [B.21] the initial terms are cost
equivalent. L]

POSITIVE SUPERCOMPILATION 35

Lemma A.5. R{casecof {p; — e;}) > caseeof {p; — R{e;)}

Proof. Notice that R{case O of {p; — ¢;}) is a redex, and assume e —* n;. The LHS

evaluates in k steps R{casecof {p; — ¢;}) —* R(casen;of {p; — e;}) — R(e;), and the
RHS evaluates in k steps caseeof {p; — R(e;)} —" casen;of {p; = R{e;)}R(f) — R{e;).
Since these two terms are equivalent the initial terms are cost equivalent by Lemma [5.271 []

We set out to prove the main theorem about total correctness:
Theorem A.6 (Total Correctness). Let R(e) be an expression, and p an environment such

that

e the range of p contains only closed expressions, and
o fu(R{e)) Ndom(p) =0, and

then R(e) &> p(Dlelr,a.p)-

We reason by induction on the structure of expressions, and since the algorithm is total
(Lemma [5.12)) this coincides with inspection of each rule.

A.1. R1. We have that p(D[n]r,c,) = p(R(n)), and the conditions of the proposition
ensure that fu(R(n)) Ndom(p) = 0, so p(R(n)) = R(n) This is syntactically equivalent to
the input, and we conclude R(n) >, p(D[n]r,c.p)-

A.2. R2. We have that p(D[z]r,c,) = p(R(z)), and the conditions of the proposition
ensure that fu(R(z)) Ndom(p) = 0, so p(R(x)) = R(x) This is syntactically equivalent to
the input, and we conclude R(z) > p(D[z]r,c,p)-

A.3. R3.

A3.1. Case: (1).
Suppose Jh.p(h) = A\Z.R(g) and hence that D[R(g)]n,c,, = hT.

The conditions of the proposition ensure that Z N dom(p) = 0, so p(P[R(9)]o,c,p) =

p(hT) = (A\T.R{g))T. However, R(g) and (AT.R(g))T are cost equivalent, which implies
strong improvement, and we conclude R(g) >s p(P[R(9)]o,c,p)

A3.2. Case: (2).
Suppose 3(h,t) € p.t <R(g) and that R(g) < t, hence D[R(g)]n,c,, = R{9)-

The term on the RHS is discarded and replaced with a new term higher up in the tree,
so it does not matter what the term is.

A3.3. Case: (3).

36 P. A. JONSSON

Suppose 3(h,t) € p.t I R(g) and hence that D[R(g)]o,c.p = [PIf]o.c.0/T D felo,c.p-

We have p(D[g]r,c,0) = p([PIflo,c.0/TPlfelo,c.0) = [P(Dlflo,c.0) /Tp(Plfgloc.p)-
By the induction hypothesis, f >4 p(D[f]o,q,p) and fq > p(D[f4]o,q,p) and by congruence
properties of strong improvement (Lemma [B5.23t1) R(g) &5 p(D[g]r,c,p)-

A.3.4. Case: (4a). Analogous to the previous case.

A.3.5. Case: (4b).
If D[R(9)]n,a,p = p(letrec h = XT.D[R(v)]q,¢, inhT).
where p' = p U (h, \T.R{g)) and h ¢ (T U dom(p)). We need to show that:

R(g) >, p(letrec h = A\T.D[R(v)]q,q,, in hT)
Since h,Z ¢ dom(p) we have that p(letrech = AXZ.D[R(v)]g ¢, inhZ) = letrech =
XZ.p(D[R(v)]|g,¢,p) InhZ.
R is a reduction context, hence R(g) —! R(v). By Lemma [AT]we have that letrec h =
AZ.R(v)inR(ge) <> letrech = AT.R(v)inhZ. Since h ¢ fuo(R(g)) this simplifies to
R(g) <> letrec h = \T.R(v) in hT. It is necessary and sufficient to prove that

letrec h = A\Z.R(v) in h @ > letrec h = XZ.p(D[R(v)]|q.¢,p) inhT
By Theorem it is sufficient to show:

letrec h = AT.R(v) in R(v) >,
letrec h = A\Z.R(v) in p(D[R(v)]o,c,p)
By Lemma and letrec h = AT.R(v) in R(v) <> R(v), this is equivalent to showing that

R(v) 25 ¢ (D[R(W)]o,c.pr)
Which follows from the induction hypothesis, since it is a shorter transformation.

A.3.6. Case: (4c). We have that p(D[glr,c,) = p(P[R(v)]o,q,p)- By the induction hy-
pothesis R{(v) &5 p(D[R{v)]g.¢,p), and since R{g) —! R{(v) it follows from Lemma [5.23t4
that R{g) &5 p(Dlglr.c.p)-

A.4. R4. We have that p(D[k€]n,c,) = p(kD[€]n,q,p), and the conditions of the propo-
sition ensure that fu(k€) N dom(p) =0, so p(kD[€]q,a.,p) = k p(D[€]n,a,p). By the induc-
tion hypothesis, € >, p(D[€]q,¢,), and by congruence properties of strong improvement
(Lemma 5.231) ke >, p(D[ke]q,q,p)-

A.5. R5. We have that p(D[ze]r,c,) = p(R{zD[€e]n,c,)), and the conditions of the
proposition ensure that fu(R(ze))Ndom(p) = 0, so p(R{z P[eln,c,p)) = R{z p(D[E]n,c,p))-
By the induction hypothesis, € >, p(D[e]q,q,p), and by congruence properties of strong
improvement (Lemma [5.23t1) R(ze) > p(D[re]r,c,p)-

POSITIVE SUPERCOMPILATION 37

A.6. R6. We have that p(D[A\Z.e]q.¢,p) = p(AT.D[e]n,c,p), and the conditions of the
proposition ensure that fu(AZ.e) N dom(p) = 0, so p(AT.D[e]n,q,p) = AT.-p(DPle]q,a,p)-
By the induction hypothesis, e >, p(D[e]n,q,p), and by congruence properties of strong
improvement (Lemma [5.23t1) A\Z.e B¢ p(D[AZ.€]q,q,p)-

A.7. R7. We have that p(D[n1 ® n2]r,q,p) = p(P[R(n)]o,a,p)- By the induction hypoth-
esis, R(n) >, p(D[R(n)]n,c,p), and since R(n1 @ ng) — R(n) it follows from Lemma [5.23t4
that R<Tl1 ® n2> >s p(D[[m S¥ ng]]R,G,p).

AS8. RS.

a) e; @ ez = a: We have that p(D[e; @ e2]r,¢,p) = p(Dlei]n,q,p ® DPle2]o,q,p), by the given
conditions fu(R(e1 ® e)) Ndom(p) =0, so p(R(D[ei1]q,c,p ® Ple2lo,c,p) =
R(p(Dlei1]n,c,p) ® p(Ple2]n,c,p))- By the induction hypothesis ey >4 p(D[ei]q,q,p) and
ea >, p(Dlez2]n,q,p), and by congruence properties of strong improvement (Lemmal[5.23t1)
R<€1 ® €2> >s p(D[[el ® 62]]7@7G7p).

b) e1 = n or e; = a: We have p(D[e1 @ e2]r,c,0) = p(Ple2]r(e;em),c,p) and Rier © ez) B
p(Dle2lr(een),a,p) follows from the induction hypothesis.

c) otherwise: We have that p(Dle1 @ e2]r,c,p) = p(DPle1]r@aes),¢,p) and Rier © e2) B
p(Dle1lrnmes),a,p) follows from the induction hypothesis.

A9. R9. We have that p(D[(\Z.f)€]r,q,p) = p(D[R(letZ =¢€in f)]5,c,). Evaluating
the input term yields: R{(A\Z.f)e€) —" R{(\Z.f)T) — R([v/Z]f), and evaluating the input
to the recursive call yields: R(letZ =ein f) —" R(letT =vin f) — R([v/Z]f). These
two resulting terms are syntactically equivalent, and therefore cost equivalent. By Lemma
[£.27] their ancestor terms are cost equivalent, R{(AZ.f)e) I> R(letZ =ein f), and cost
equivalence implies strong improvement. By the induction hypothesis R(letZ = €in f) >,

p(D[R(letT =€in f)]q,¢,p), and therefore R((AZT.f)€) >, p(D[(A\Z.f)e]r,a,p)-

A.10. R10. We have p(Deelr,c,p) = p(Plelrigey,a,p) and Riee’) B p(Dlelrqery,a,p)
follows from the induction hypothesis.

A.11. R11. We have that p(D[letx = nin f]r ¢ ,) = p(D[R(n/x]f)]o,c,p). By the in-
duction hypothesis R([n/x]f) >s p(D[R([n/z|f)]o,q,p), and since R(letz =nin f) —
R([n/x]f) it follows from Lemma[5.234 that R(let x = nin f) >, p(D[letx = nin f]r, c,,)-

A.12. R12. We have that p(D[letz = yin f]r c,) = p(D[R([y/z]f)]n,c,p)- By the in-
duction hypothesis R([y/z|f) s p(D[R(ly/x]f)]o,c,p), and since R(letz = yin f) <J>
R([y/x]f) it follows that R(letx = yin f) >, p(D[letx = yin f]r.q,p)-

A.13. R13.

38 P. A. JONSSON

A13.1. Case: x € strict(f). We have p(Dletz = ein f]r ¢,) = p(D[R(le/z]f)]o,c,p)-
Evaluating the input term yields R(letz = ein f) —" R(letx = vin f) — R([v/z]f) —*
E(v), and evaluating the input to the recursive call yields: R([e/z]f) —* E(e) —" E(v).
These two resulting terms are syntactically equivalent, and therefore cost equivalent. By
Lemma [5.2]] their ancestor terms are cost equivalent, R(let x = ein f) I> R([e/x]f), and
cost equivalence implies strong improvement. By the induction hypothesis R([e/z]f) >
p(D[R([e/x]|f)]n,a,p), and therefore R(let z = ein f) >, p(D[let x = ein f]r a,p).

A.13.2. Case: otherwise. We have that p(D[letz = ein f]r ¢ ,) =

p(letz = Dle]n,q,,inD[R(f)]n,c,p), and the conditions of the proposition ensure that
fo(R{let z = ein f)) Ndom(p) = 0, so p(let x = D[e]q ¢, n D[R(f)]o,c,p) =

letz = p(Dle]n,q,p)inp(D[R(f)]o,c,p)- By the induction hypothesis e >4 p(D[e]q,a,p)
and R(f) s p(D[R(f)]o,c,p)- By Lemma [A.3] the input is strongly improved by let z =
einR(f), and therefore R(letz = ein f) >, p(D[letx = ein f]r.¢,p)-

A.14. R14. We have that p(D[letrecg = vine|r,g,) = p(letrecg = vinD[R(e)]n,c,p),
and the conditions of the proposition ensure that fu(R(letrecg = vine)) N dom(p) = 0,
so p(letrecg = vinD[R(e)]|q,¢,,) = letrecg = vinp(D[R(e)]|q,¢,p).- By the induction
hypothesis R(e) >, p(D[R(e)]n,c,p). By Lemma [A4] the input is strongly improved by
letrec g = vinR(e), and therefore R(letrec g = vine) >, p(D[letrecg = vine[r q).

A.15. R15. We have p(D[casexof {p; — €;}[r,q,») = p(casexof {p; — D[R{e;)]n,c,p});
and the conditions of the proposition ensure that fu(R(casex of {p; — e;})) N dom(p) = 0,
so p(case z of {p; = D[R(ei)]q,a,p}) = casex of {p; = p(D[R(es)]n,c,0)}- By the induction
hypothesis R(e;) > p(D[R(ei)]o,c,p). Using Lemma [A.5] the input is strongly improved
by case z of {p; — R(e;)}, and therefore R(case x of {p; — ¢;}) >

p(D[case zof {p; — e;}[r,c,p)-

A.16. R16. We have p(D[casekjeof {p; = e;}|r.c,p) = p(D[R(letT; =€ine;)]n,c,p)-
Evaluating the input term yields R(case kjeof {p; — e;}) —" R(casek;vof {p; = e;}) —
R([v/T;le;), and evaluating the input to the recursive call yields R(letZ; = €ine;) —"
R(letT; =vine;) — R([U/Z;]e;). These two resulting terms are syntactically equivalent,
and therefore cost equivalent. By Lemma [5.2]] their ancestor terms are cost equivalent,
R(casek;eof {p; — ¢;}) JI> R(letT; =eine;), and cost equivalence implies strong im-
provement. According to the induction hypothesis R(let T; = €ine;) >,

p(D[R(letT; = eine;)]|q ¢,p), and therefore R(casekjeof {p; — e;}) >

p(Dcase k;jeof {p; — e;i}|r,q,p)-

A.17. R17. We have that p(D[casen;of {p; — e;}]) ¢, = p(D[R{e;)]n,c,p)- By the in-
duction hypothesis R{e;) &5 p(P[R{e;j)]n,c,p), and since R{casen;of{p; — e;}) — R(e;)
it follows from Lemma [5.:23t4 that R(casen;of {p; = e;}) >,

p(Dcasen; of {p; — ei}|r,c.p)-

POSITIVE SUPERCOMPILATION 39

A.18. R18. We have that p(D[caseaof {p; = €;}[r.c,p) =

p(case Da]q,q,p of {pi = D[R(ei)]|n,c,p}), and the conditions of the proposition ensure that
fu(R(case aof {p; — e;})) N dom(p) = B, so p(case D[a]q,q,p0of {pi = D[R{ei)]n,a,p}) =
case p(Dla]q,q,p) of {pi = p(DP[R(ei)]o,c,p)}- By the induction hypothesis a >,
p(Dlalq,c,p) and Rie;) s p(D[R(ei)]n,a,p) and by Lemma the input is strongly
improved by case a of {p; — R{e;)}, and therefore R(case aof {p; — e;}) >
p(D[caseaof {p; — e;}]r,c,p)-

A.19. R19. We have that p(D[caseeof {p; — e;}|r.q,p) = p(D[[e]]’R(CaSGDOf{pi—wi}),G,p)
and R(caseeof {p; — ¢;}) >, p(D[[e]]R<case\]0f (pisei}),G,p) follows from the induction hy-
pothesis.

A.20. R20. We have that p(D[e]r,q,,) = p(R(e)), and the conditions of the proposition
ensure that fo(R(e)) N dom(p) = 0, so p(R(e)) = R(e) This is syntactically equivalent to
the input, and we conclude R{e) > p(D[e]r,ac,p)-

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Examples
	3. Language
	4. Higher Order Positive Supercompilation
	4.1. Application Rule

	5. Correctness
	5.1. Termination
	5.2. Total Correctness

	6. Benchmarks
	6.1. Double Append
	6.2. Factorial
	6.3. Flip a Tree
	6.4. Sum of Squares of a Tree
	6.5. Kort's Raytracer

	7. Related Work
	7.1. Lightweight Fusion
	7.2. Deforestation
	7.3. Supercompilation
	7.4. Generalized Partial Computation
	7.5. Other Transformations

	8. Conclusions
	8.1. Future Work

	Acknowledgements
	References
	Appendix A. Proofs
	A.1. R1
	A.2. R2
	A.3. R3
	A.4. R4
	A.5. R5
	A.6. R6
	A.7. R7
	A.8. R8
	A.9. R9
	A.10. R10
	A.11. R11
	A.12. R12
	A.13. R13
	A.14. R14
	A.15. R15
	A.16. R16
	A.17. R17
	A.18. R18
	A.19. R19
	A.20. R20

