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Abstract. We investigate the problem of type isomorphisms in the presence of higher-
order references. We first introduce a finitary programming language with sum types and
higher-order references, for which we build a fully abstract games model following the
work of Abramsky, Honda and McCusker. Solving an open problem by Laurent, we show
that two finitely branching arenas are isomorphic if and only if they are geometrically
the same, up to renaming of moves (Laurent’s forest isomorphism). We deduce from this
an equational theory characterizing isomorphisms of types in our language. We show
however that Laurent’s conjecture does not hold on infinitely branching arenas, yielding
new non-trivial type isomorphisms in a variant of our language with natural numbers.

1. Introduction

During the development of denotational semantics of programming languages, there was
a crucial interest in defining models of computation satisfying particular type equations.
For instance, a model of the untyped λ-calculus can be obtained by isolating a reflexive
object (that is, an object D such that D ' DD) in a cartesian closed category. In the
80s, some people started to consider the dual problem of finding these equations that must
hold in every model of a given language: they were coined type isomorphisms by Bruce and
Longo. In [8], they exploited a theorem by Dezani [9] giving a syntactic characterization
of invertible terms in the untyped λ-calculus to prove that that the only isomorphisms of
types present in simply typed λ-calculus with respect to βη equality are those induced by
the equation A → (B → C) ' B → (A → C). Later this was extended to handle such
things as products [7], polymorphism [8], possibly with unit types [10], or sums [12].

The interest in type isomorphisms grew significantly when their practical impact was
realized. In [26], Rittri proposed to search functions in software libraries using their type
modulo isomorphism as a key. He also considered the possibilities offered by matching and
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unification of types modulo isomorphisms [27]. A whole line of research has also been dedi-
cated to the study of type isomorphisms and their use for search tools in richer type systems
(such as dependent types [5]), along with studies about the automatic generation of the cor-
responding coercions [4]. Such tools were implemented for several programming languages,
let us mention the command line tool camlsearch written by Vouillon for CamlLight. The
interested reader may refer to the nice survey by Di Cosmo [11].

It is worth noting that even though these tools are written for powerful programming
languages featuring complex computational effects such as higher-order references or excep-
tions, they rely on the theory of isomorphisms in weaker (purely functional) languages, such
as the second-order λ-calculus with pairs and unit types for camlsearch. Clearly, all type
isomorphisms in λ-calculus are still valid in the presence of computational effects (indeed,
the operational semantics are compatible with βη). What is less clear is whether those
effects allow the definition of new isomorphisms. However, it seems that syntactic methods
deriving from Dezani’s theorem on invertible terms in λ-calculus cannot be extended to
complex computational effects. The base setting itself is completely different: there is no
longer a canonical notion of normal form, the natural equality between terms is no longer
convertibility but observational equivalence, so new methods are required.

In [20], Laurent introduced the idea of applying game semantics to the study of type
isomorphisms (although one should mention the precursor characterization of isomorphisms
by Berry and Curien [6] in the category of concrete data structures and sequential algo-
rithms). Exploiting his earlier work on game semantics for polarized linear logic [19], he
found the theory of isomorphisms for LLP from which he deduced (by translations) the iso-
morphisms for the call-by-name and call-by-value λµ-calculus. The core of his analysis is the
observation that isomorphisms between arenas A and B in the category Inn [14] of arenas
and innocent strategies are in one-to-one correspondence with forest isomorphisms between
A and B, so in particular two arenas are isomorphic if and only if their representations as
forests are identical up to the renaming of vertices.

From the point of view of computational effects this looks promising, since game se-
mantics are known to accommodate several computational effects such as control operators
[17], ground type [2] or higher-order references [1] or even concurrency [18] in one single
framework. Moreover, Laurent pointed out in [20] that the main part of his result, namely
the fact that each Inn-isomorphism induces a forest isomorphism, does not really depend
on the innocence hypothesis but only on the weaker visibility condition. As a consequence,
his method for characterizing isomorphisms still applies to programming languages such
as Idealized Algol whose terms can be interpreted as visible strategies [2]. Laurent raised
the question whether his result could be proved without the visibility condition, therefore
yielding a characterization of isomorphisms in a programming language whose terms have
access to higher-order references and hence get interpreted as non-visible strategies [1].

The contributions of this paper are the following: (1) We extend the full abstraction
result in [1] in order to deal with sum types and the empty type, (2) We give a new and syn-
thetic reformulation of Laurent’s tools to approach game-theoretically the problem of type
isomorphisms, (3) We prove Laurent’s conjecture in the case of finitely branching arenas,
allowing us to characterize all type isomorphisms in a finitary (integers-free) programming
language L+ with higher-order references by the theory E presented1 in Figure 1, (4) We
show however a counter-example to the conjecture when dealing with infinitely branching

1The absence of the equation A → (B → C) ' B → (A → C) mentioned in the introduction may
seem strange, but is standard in call-by-value [20] due to the restriction of the η-rule on values. Because
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A×B 'E B ×A
A× (B × C) 'E (A×B)× C

1×A 'E A

A+B 'E B +A

A+ (B + C) 'E (A+B) + C

0 +A 'E A

A× (B + C) 'E A×B +A× C
(A+B)→ C 'E (A→ C)× (B → C)

0→ A 'E 1

A→ 0 'E 1

var[A] 'E (A→ 1)× (1→ A)

Figure 1: Isomorphisms in L+

arenas, and the counter-example yields a non-trivial type isomorphism in a variant of L+

with natural numbers. So Laurent’s conjecture, in the general case, is false.
In Section 2 we introduce the finitary language L+ with sums, unit types and higher-

order references, on which we define isomorphisms of types. In Section 3, we build a fully
abstract games model for L+, drawing inspiration from [1]. Then we turn to the problem
of isomorphisms of types. In Section 4 we first give an analysis of isomorphisms in several
subcategories of the games model, reproving and extending Laurent’s theorem. Finally, we
apply all of this in Section 5 to give a characterization of isomorphisms of types in L+ and
to obtain new non-trivial isomorphisms in a variant of L+ with natural numbers.

2. Isomorphisms of types in L+

2.1. The language L+.

2.1.1. Syntax. We introduce here a finitary variant L+ of the programming language L with
higher-order references modeled by Abramsky, Honda and McCusker in [1]: it essentially
differs from L in the fact that the type for natural numbers has been removed. On the
other hand a sum type has been added, allowing to define all polynomial data types. The
terms and types of L+ are defined as follows.

A ::= 0 | 1 | A+A | A×A | A→ A | var[A]

M ::= x | λx.M | M M | 〈M,M〉 | π1 M | π2 M | ()

| ι1 M | ι2 M | δ(M,x1 ·N1, x2 ·N2)

| newA | M := M | !M | mkvar M M

of call-by-value, we also have that 1 is not terminal, so we don’t have A → 1 ' 1; instead we have the
isomorphism A→ 0 ' 1 up to observational equivalence.
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Γ ` () : 1

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
Γ `M : A×B

Γ ` π1 M : A

Γ `M : A×B

Γ ` π2 M : B

Γ `M : A

Γ ` ι1M : A+B

Γ `M : B

Γ ` ι2M : A+B

Γ `M : A+B Γ, x1 : A ` N1 : C Γ, x2 : B ` N2 : C

Γ ` δ(M,x1 ·N1, x2 ·N2) : C

Γ, x : A ` x : A

Γ `M : A→ B Γ ` N : A

Γ `MN : B

Γ, x : A `M : B

Γ ` λx.M : A→ B

Γ ` newA : var[A]
Γ `M : var[A]

Γ `!M : A

Γ `M : var[A] Γ ` N : A

Γ `M := N : 1

Γ `M : A→ 1 Γ ` N : 1→ A

Γ ` mkvar M N : var[A]

Figure 2: Typing rules for L+

The type annotation on new will often be omitted, whenever it is irrelevant or obvious
from the context. The typing rules for L+ are standard, and summarized in Figure 2.
Note that in the presence of the empty type, a term constructor is generally included as an
elimination rule for 0, along with its typing rule. We skip it here because it is definable : as
we will see, higher-order references can be used to build an inhabitant ⊥A : A for all types
A.

2.1.2. Operational semantics. This language is equipped with a standard big-step call-by-
value operational semantics. To define it, we temporarily extend the syntax of terms with
identifiers for locations, denoted by l. Then, values are formed as follows:

V ::= () | λx.M | πi V | 〈V, V 〉 | l | ιi V | mkvar V V

The operational semantics of L+ are then given as an inductively generated relation
(L, s) M ⇓ (L′, s′) V , where L is a (functional) set of location-type pairs, and s is a partial
map from locations in L to values of the corresponding type, with free locations in L. By
abuse of notation, we will write l ∈ L if (l, A) ∈ L for some type A. The rules are given in
Figure 3. Note that as usual, some store annotations are omitted when the rule considered
does not affect the store. For example,

M ⇓ V M ′ ⇓ V ′

M ′′ ⇓ V ′′

is an abbreviation for:

(L, s) M ⇓ (L′, s′) V (L′, s′) M ′ ⇓ (L′′, s′′) V ′

(L, s) M ′′ ⇓ (L′′, s′′) V ′′
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V ⇓ V
M ⇓ 〈V1, V2〉

π1 M ⇓ V1

M ⇓ 〈V1, V2〉

π2 M ⇓ V2

M1 ⇓ V1 M2 ⇓ V2

〈M1,M2〉 ⇓ 〈V1, V2〉

M ⇓ ι1V1 M1[V1/x1] ⇓ V2

δ(M,x1 ·M1, x2 ·M2) ⇓ V2

M ⇓ ι2V1 M2[V1/x2] ⇓ V2

δ(M,x1 ·M1, x2 ·M2) ⇓ V2

M ⇓ V

ι1M ⇓ ι1V

M ⇓ V

ι2M ⇓ ι2V
M ⇓ λx.M ′ N ⇓ V1 M ′[V1/x] ⇓ V2

M N ⇓ V2

M1 ⇓ V1 M2 ⇓ V2

mkvar M1 M2 ⇓ mkvar V1 V2

(l 6∈ L)
(L, s) newA ⇓ (L ∪ {l : A}, s) l

(L, s) M ⇓ (L′, s′) l (L′, s′) N ⇓ (L′′, s′′) V

(L, s) M := N ⇓ (L′′, s′′ ∪ {l 7→ V }) ()

(L, s) M ⇓ (L′, s′) l s′(l) = V

(L, s) !M ⇓ (L′, s′) V

M ⇓ mkvar V1 V2 N ⇓ V V1 V ⇓ ()

M := N ⇓ ()

M ⇓ mkvar V1 V2 V2 () ⇓ V

!M ⇓ V

Figure 3: Big-step operational semantics of L+.

For a closed term M without free locations, we write M ⇓ to indicate that (∅, ∅) M ⇓
(L, s) V for some L, s and V (and M ⇑ to indicate that there are no such L, s and V ).
Observational equivalence M ∼= N between terms M and N is then defined as usual, by
requiring that for all contexts C[−] such that C[M ] and C[N ] are closed and contain no
free location, C[M ] ⇓ iff C[N ] ⇓. The corresponding equivalence relation is written ∼=.

2.1.3. Syntactic extensions. In this core language, one can define all the constructs of a basic
imperative programming language. For instance if C1 has type 1, sequential composition
C1;C2 is given by:

(λx : 1. C2) C1

This works only because the evaluation of L+ is call-by-value. Likewise, a variable declara-
tion new x : A in N (where M has type A) can be obtained by

(λx : var[A]. N) newA

and its initialized variant new x = M in N as expected. As usual with general references
one can define a fixed point combinator YA→B by

λf : (A→ B)→ (A→ B).
new y : A→ B in

y := λa : A. f !y a;
!y

This can be easily applied to implement a while loop. We can also use it to build an
inhabitant ⊥A : A for any type A, for example by ⊥A = Y1→A(λx.x)().

Sum types can also be used to define datatypes. For instance, we define bool = 1 + 1.
It is easy to check that the usual combinators for bool can be defined using injections and
elimination of sums and that they behave in the same way w.r.t. the operational semantics.
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2.2. Isomorphisms of types. We are now ready to define the notion of isomorphism of
types in L+.

Definition 2.1. If A and B are two types of L+, we say that A and B are isomorphic,
denoted by A 'L+ B, if and only if there are two terms x : A ` M : B and y : B ` N : A
such that:

(x : A ` (λy.N)M) ∼= idA

(y : B ` (λx.M)N) ∼= idB

where idA = x : A ` x : A.

This notion of isomorphism relies on the following notion of composition: if x : A `
M : B and y : B ` N : C, we define N ◦M = x : A ` (λy.N) M : C. Although we do not
need it formally, let us note in passing that this composition is associative and behaves well
with respect to identities (up to observational equivalence). This can be proved directly,
although reasoning on call-by-value βη-reductions does not suffice — one needs a more
powerful tool such as logical relations. That this composition induces a category will also
follow directly from full abstraction since this composition coincides with composition in
the games model.

2.2.1. Isomorphisms and bad variables. The mkvar construct allows to combine arbitrary
“write” and “read” methods, forming terms of type var[A] not behaving as reference cells:
those are called bad variables. We chose to include bad variables in the language we consider
for two reasons. Firstly, the games models that allow bad variables are notably simpler than
those which do not [24], for which our methods do not directly apply. Secondly, the impact
of allowing bad variables on our result will be reduced by the following proposition:

Proposition 2.2. Let L′+ denote the variant of L+ without mkvar. Then, if A and B are
var-free types, we have A 'L+ B if and only if A 'L′+ B.

Proof. Clearly, if A 'L′+ B we must have A 'L+ B as well. Conversely if A 'L+ B, there

are terms x : A ` M : B and y : B ` N : A possibly making use of bad variables, such
that M ◦N ∼= idB and N ◦M ∼= idA. Then, the use of bad variables in M and N can be
eliminated.

To see how, we consider an extension L′′+ of L+ where we add a type constructor gvar
for good variables, so that L′′+ has both types var for bad variables and gvar for good
variables. The term constructors for gvar are written newg, !gM , M :=g N and obey the
same rules as the corresponding constructors for var; there is no mkvarg. Then, there is
translation (−)t from L′′+ to itself, eliminating all uses of mkvar. Let us write only the
non-trivial cases:

(var[A])t = gvar[A] + (A→ 1)× (1→ A)

newt = ι1newg

lt = ι1l

(!M)t = δ(M t, x1·!gx1, x2 · π2 x2 ())

(M := N)t = δ(M t, x1 · x1 :=g N
t, x2 · π1 x2 N

t)

(mkvar M N)t = ι2〈M t, N t〉
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In all the other cases, the translation simply goes through the term without changing
it. Likewise if (L, s) is a store, (L, s)t is obtained by pointwise application of (−)t. It
is straightforward to prove by induction that if (L, s) M ⇓ (L′, s′) V , then (L, s)t M t ⇓
(L′, s′)t V t. The converse is also true and easily provable by induction, with the slightly
stronger induction hypothesis that if (L, s)tM t ⇓ (L1, s1) V1 then there exists a store (L0, s0)
and a value V0 in L′′+ such that (L1, s1) = (L0, s0)t, V1 = V t

0 and (L, s) M ⇓ (L0, s0) V0.
In particular if M is closed, M ⇓ iff M t ⇓. This translation is extended to contexts in the
straightforward way, with []t = [], such that we always have (C[M ])t = Ct[M t]. Note that
since (−)t does not affect gvar it is idempotent, i.e. t ◦ t = t.

Since L+ is a sublanguage of L′′+, there is an obvious translation i of the former to
the latter. Likewise, there is a translation j from L′′+ to L+ merging the two types for
references. Overall, j ◦ t ◦ i is a translation from L+ to itself whose effect is to eliminate
uses of mkvar, of course modifying types as a consequence. Note as well that j ◦ i is the
identity translation. Putting all of these together, if M is a closed term of L+, we have:

C[M ] ⇓ ⇔ (C[M ])t◦i ⇓
⇔ Ct◦i[M t◦i] ⇓
⇔ Ct◦i[M t◦t◦i] ⇓
⇔ Ci[M t◦i] ⇓
⇔ C[M j◦t◦i] ⇓

Therefore, if M ∼= N , we have M j◦t◦i ∼= N j◦t◦i. But if M and N are composable, it is
straightforward to check that (N ◦M)j◦t◦i = N j◦t◦i ◦M j◦t◦i. Similarly, we have xj◦t◦i = x
for any variable x. From this it follows that if M,N give a type isomorphism between A
and B, then M j◦t◦i, N j◦t◦i give a mkvar-free type isomorphism between Aj◦t◦i and Bj◦t◦i.
But if A and B are var-free, we have Aj◦t◦i = A and Bj◦t◦i = B, so we have a mkvar-free
isomorphism between A and B, thus an isomorphism in L′+.

2.2.2. On isomorphisms without bad variables. In L′+, when are var[A] and var[B] isomor-
phic? Without bad variables, there is in general no canonical way to transform a variable of
type A into a variable of type B. It is easy to see that dereferencing M : var[A], applying
the isomorphism between A and B and storing the result in a new reference of type B
will not yield an isomorphism because even if the language does not come with a variable
equality test, it can be defined on non-trivial types. The handling of good variables with
names in [25] suggests that to get back the original name when going back and forth be-
tween var[A] and var[B] one has no choice but to simply forward it, which is only possible
when A and B are syntactically equal. Therefore we expect that a general treatment of
isomorphisms with good general references would have to treat variable types as atoms,
that you can move around but never look inside. We leave that open for future work.

3. The games model

We now describe the fully abstract games model of L+, which closely follows [1] and extends
it with sums and the empty type.
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3.1. The basic category. Our games have two players: Player (P) and Opponent (O).

3.1.1. Arenas. Valid plays between O and P are generated by directed graphs called arenas,
which are abstract representations of types. An arena is a tuple A = 〈MA, λA, IA,`A〉
where

• MA is a set of moves,
• λA : MA → {O,P}×{Q,A} is a labeling function which indicates whether a move is by

Opponent or Player, and whether it is a Question or Answer. We write

{O,P} × {Q,A} = {OQ,OA,PQ,PA}
λA = 〈λOPA , λAQA 〉

The function λA denotes λA with the O/P part reversed. A move a ∈ MA is a O-move
(resp. P -move) if λOPA (a) = O (resp. λOPA (a) = P ).

• IA ⊆ λA−1({OQ}) is a set of initial moves
• `A⊆ M2

A is a relation called enabling, which satisfies that if a `A b, then λOPA (a) 6=
λOPA (b), and if λQAA (b) = A then λQAA (a) = Q.

Additionally, all the arenas we consider will be finitely branching (for all a ∈ MA, the
set {m ∈MA | a `A m} is finite). This is crucial, since our main result relies on a counting
argument.

3.1.2. Constructions on arenas. In what follows, if S1 and S2 are two sets, S1 + S2 will
denote their disjoint union defined as {(1, x) | x ∈ S1} ∪ {(2, x) | x ∈ S2}. The n-ary
variant of this operation will be written

∐
i∈I Si. Whenever convenient, if f : S1 → T and

g : S2 → T are functions, we will write [f, g] : S1 + S2 → T for their co-pairing, i.e. the
function applying f on elements of S1 and g on elements of S2.

We define the arrow arena A⇒ B and the binary product A×B:

MA⇒B = MA +MB

λA⇒B = [λA, λB]

IA⇒B = {(2, i) | i ∈ IB}
`A⇒B = {((1,m), (1, n)) | m `A n} ∪ {((2,m), (2, n)) | m `B n}

∪{((2, i1), (1, i2)) | (i1, i2) ∈ IB × IA}

MA×B = MA +MB

λA×B = [λA, λB]

IA×B = IA + IB

`A×B = {((1,m), (1, n)) | m `A n} ∪ {((2,m), (2, n)) | m `B n}
Another construction of central importance in the model is the lifted sum, giving rise

to a weak coproduct in Gam. If (Ai)i∈I is a finite family of arenas, we define:
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MΣi∈IAi = {q}+ {ai | i ∈ I}+
∐
i∈I

MAi

λΣi∈IAi = (1, q) 7→ OQ

(2, ai) 7→ PA

(3, (i,m)) 7→ λAi(m)

IΣi∈IAi = {(1, q)}
`Σi∈IAi = {((1, q), (2, ai)) | i ∈ I} ∪

{((2, ai), (3, (i,m))) | i ∈ I & m ∈ IAi} ∪
{((3, (i,m)), (3, (i, n))) | m `Ai n}

It is obvious that these constructions preserve the fact of being finitely branching. The
0-ary product (the empty arena) is denoted by 1, and will be terminal in our category.

3.1.3. Plays. If A is an arena, a justified sequence over A is a sequence of moves in MA

together with justification pointers: for each non-initial move b, there is a pointer to an
earlier move a such that a `A b. In this case, we say that a justifies b. The transitive
closure of the justification relation is called hereditary justification. The relation v will
denote the prefix ordering on justified sequences. By s vP t, we mean that s is a P -ending
prefix of t. If s is a sequence, then |s| will denote its length. Moreover if i ≤ |s|, si will
denote the i-th move in s. A justified sequence s over A is a legal play if it is:

• Alternating: If s′ab v s, then λOPA (a) 6= λOPA (b).
• Well-bracketed: a question q is answered by a later answer a if q justifies a. A justified

sequence s is well-bracketed if each answer is justified by the last unanswered question,
that is, the pending question.

The set of all legal plays on A is denoted by LA. We will also be interested in the set L′A
of well-bracketed but not necessarily alternating justified sequences on A, called pre-legal
plays.

3.1.4. Strategies, composition. A strategy σ on an arena A (denoted σ : A) is a non-empty
set of P -ending legal plays on A satisfying prefix-closure, i.e. that for all sab ∈ σ, we have
s ∈ σ and determinism, i.e. that if sab, sac ∈ σ, then b = c. As usual, strategies form a
category which has arenas as objects, and strategies σ : A ⇒ B as morphisms from A to
B. If σ : A⇒ B and τ : B ⇒ C are strategies, their composition σ; τ : A⇒ C is defined as
usual by first defining the set of interactions u ∈ I(A,B,C) of plays u ∈ L(A⇒B)⇒C such
that u � A,B ∈ LA⇒B, u � B,C ∈ LB⇒C and u � A,C ∈ LA⇒C (where s � A,B is the usual
restriction operation essentially taking the subsequence of s in MA and MB, along with the
possible natural reassignment of justification pointers). The parallel interaction of σ and
τ is then the set σ||τ = {u ∈ I(A,B,C) | u � A,B ∈ σ∧u � B,C ∈ τ}, and the composition
of σ and τ is obtained by the hiding operation, i.e. σ; τ = {u � A,C | u ∈ σ||τ}. It is
known (e.g. [21]) that composition is associative. It admits copycat strategies as identities:
idA = {s ∈ LA1⇒A2 | ∀s′ vP s, s′ � A1 = s′ � A2}.

If s ∈ LA, the current thread of s, denoted dse, is the subsequence of s consisting of
all moves hereditarily justified by the same initial move as the last move of s. All strategies
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we are interested in will be single-threaded, i.e. they only depend on the current thread.
Formally, σ : A is single-threaded if

• For all sab ∈ σ, b points in dsae,
• For all sab, t ∈ σ such that ta ∈ LA and dsae = dtae, we have tab ∈ σ.

It is straightforward to prove that single-threaded strategies are stable under composition
and that idA is single-threaded. Hence, there is a category Gam of arenas and single-
threaded strategies. The category Gam will be the base setting for our analysis. Given
arenas A and B, the arena A×B defines a cartesian product of A and B and the construction
A⇒ B extends to a right adjoint A×− a A⇒ −, hence Gam is cartesian closed and is a
model of simply typed λ-calculus.

3.1.5. Views, classes of strategies. In this paper, we are mainly interested in the properties
of single-threaded strategies. However, to give a complete account of the context it seems
necessary to mention several classes of strategies of interest in this setting. The most
important one is certainly the class of innocent strategies, both for historical reasons and
because it is at the core of the frequent definability results – and thus of the full abstraction
results – in game semantics. Its definition relies on the notion of P -view, defined as usual
by induction on plays as follows.

psiq = i if i ∈ IA
psaq = psqa if λOPA (a) = P

ps1as2bq = ps1qab if λOPA (b) = O and a justifies b

A strategy σ : A is then said to be visible if it always points inside its P -view, that is, for
all sab ∈ σ the justifier of b appears in psaq. The strategy σ is innocent if it is visible, and
if its behaviour only depends on the information contained in its P -view. More formally,
whenever sab, t ∈ σ such that ta ∈ LA and psaq = ptaq, we must also have tab ∈ σ. Both
visibility and innocence are stable under composition [14, 2], thus let us denote by Vis the
category of arenas and visible single-threaded strategies and by Inn the category of arenas
and innocent strategies. Both categories inherit the cartesian closed structure of Gam, but
strategies in Inn are actually nothing but an abstract representation of (η-long β-normal)
λ-terms and form a fully complete model of simply-typed λ-calculus. Strategies in Vis have
more freedom, they correspond in fact to programs with first-order store [2].

3.2. The model of L+. We now show how to turn Gam into a model of L+.

3.2.1. Call-by-value and the Famf construction. The three categories Gam, Vis and Inn
are categories of negative games (in which Opponent always plays first), and these are known
to model call-by-name computation whereas L+ is call-by-value. We could have modeled
it using positive games, following the lines of [13]. Instead, we follow [1] and model L+ in
the free completion Fam(Gam) of Gam with respect to coproducts. This will allow us to
first characterize isomorphisms in Gam (result which could be applied to a call-by-name
language with state) then deduce from it the isomorphisms in Fam(Gam). In fact we will
consider the completion Famf(Gam) of Gam with respect to finite coproducts, since L+

has only finite types.
The objects of Famf(Gam) are finite families (Ai)i∈I of arenas. A map from (Ai)i∈I to

(Bj)j∈J is given by a function f : I → J together with a family of strategies (σi)i∈I where
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for all i ∈ I, σi : Ai → Bf(i). When I is a singleton, we will write the family (A)i∈I simply
as {A}. Given families A = (Ai)i∈I and B = (Bj)j∈J , their disjoint sum is the family
A+B = (Xi)i∈I+J where X(1,i) = Ai, and X(2,j) = Bj . Likewise, we define:

A×B = (Ai ×Bj)(i,j)∈I×J

A⇒ B = (Πi∈I(Ai ⇒ Bf(i)))f∈JI

With these definitions, Famf(Gam) inherits a cartesian closed structure from Gam. It
also has coproducts given by disjoint sum of families, let us write ι1 : A → A + B and
ι2 : B → A+B the injections. As in any bicartesian closed category the product distributes
over the sum, let us write dΓ,A,B : Γ × (A + B) → Γ × A + Γ × B for the distributivity
law. By an abuse of notation we keep using 1 for the terminal object of Famf(Gam), that
is the singleton family containing the empty arena, we write !A : A → 1 for the terminal
projection. The category Famf(Gam) also has an initial object given by the empty family,
we denote it by 0.

3.2.2. Strong monad. Moreover, the weak coproducts in Gam give rise to a strong monad
T on Famf(Gam). Its image of a family (Ai)i∈I is given by:

TA = {Σi∈IAi}
The unit ηA of the monad is the family of strategies ini : Ai → Σi∈IAi (the injections
for the weak coproduct structure of Σi∈IAi) which responds to the initial Opponent move
by playing ai (unless i = 0), then plays as copycat. The lifting f∗ : Γ × TA → TB of
a morphism f : Γ × A → TB is given by the copairing operation of the weak coproduct,
and the distributivity law of the product over it. Using this lifting operation, there are two
natural ways to define a double strength dst,dst′ : TA× TB → T (A×B): dst interrogates
first TA, whereas dst′ interrogates first TB. The fact that dst and dst′ are distinct means
that T is not commutative, and the choice of preferring one or the other parallels the design
choice between left-to-right and right-to-left evaluation of a pair in a call-by-value language.
Since in L+ we have adopted left-to-right evaluation, we prefer dst over dst′.

Most of the structure of L+ (with the exception of memory cells) can be interpreted in
Famf(Gam) following the standard interpretation of a call-by-value language in a cartesian
category with a strong monad and Kleisli exponentials [23]: A term x1 : A1, . . . , xn : An `
M : B is interpreted as a morphism JMK : Πi≤nJAiK → T JBK, (where the n-ary product
and its projections πi is obtained trivially by iteration of the binary product). Details are
displayed in Figure 4.

3.2.3. Interpretation of memory cells. Of course we also need to give an interpretation for
var[A], along with morphisms for the read and write operations of the reference cell. Once
again, we follow the lines of [1] and consider the type var[A] as the product of its read
and write methods, hence we set Jvar[A]K = (JAK⇒ T1)× T JAK. The interpretation relies
on the definition of a morphism 1 → Jvar[A]K, that is, if JAK = {Ai | i ∈ I}, a strategy
cell : (Πi∈I(Ai ⇒ 1⊥)×Σi∈IAi)⊥, where A⊥ = T{A} is the lift operation. Apart from the
initial protocol due to the lift, the strategy cell works by associating each read request with
the latest write request and playing copycat between them. A more detailed description is
given in [1], and an algebraic definition is obtained in [22]. Using cell we can complete the
interpretation of L+ in Famf(Gam)T , as displayed in Figure 5. The fact that cell behaves
correctly is expressed by the following lemma:
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JΓ ` xi : AiK = πi; η : Πi≤nJAiK→ T JAiK
JΓ ` λx.M : A→ BK = Λ(JΓ, x : A `M : BK); η : JΓK→ T (JAK→ T JBK)

JΓ `M NK = 〈JΓ `M : A→ BK, JN : AK〉; dst; ev∗ : JΓK→ T JBK
JΓ ` () : 1K = !JΓK; η : JΓK→ T1

JΓ ` 〈M,N〉 : A×BK = 〈JΓ `M : AK, JΓ ` N : BK〉; dst

JΓ ` πi M : AK = JΓ `M : A×BK;Tπi

JΓ ` ιi M : A+BK = JΓ `M : AK;T (ιi)

JΓ ` δ(M,x1 ·M1, x2 ·M2)K = 〈id, JMK〉; (d; [JM1K, JM2K])∗

Figure 4: Interpretation of the pure fragment of L+

JΓ `M := N : 1K = 〈JΓ `M : var[A]K, JΓ ` N : AK〉; dst; (π1 × JAK; ev)∗ : JΓK→ T J1K
JΓ `!M : AK = JΓ `M : var[A]K;π∗2 : JΓK→ T JAK

JΓ ` mkvar M N : var[A]K = 〈JΓ `M : A→ 1K, JΓ ` N : 1→ AK〉; dst : JΓK→ T Jvar[A]K

Figure 5: Interpretation of variables

JΓ ` new x : A, y : B in MK = JΓ ` new y : B, x : A in MK
JΓ, x : var[A] ` new y : B in x := V ;MK = JΓ, x : var[A] ` x := V ; new y : B in MK

JΓ ` new x : A, y : B in x := V1; y := V2;MK = JΓ ` new x : A, y : B in y := V2;x := V1;MK
JΓ ` new x : A in x := V1;x := V2;MK = JΓ ` new x : A in x := V2;MK

JΓ ` new x : A in x := V ; !xK = JΓ ` new x : A in x := V ;V K

Figure 6: Equations concerning assignments and allocations

Lemma 3.1. The equations in Figure 6 hold whenever the terms concerned are well-typed.

Proof. As in [1], the presence of sums does not affect the proof.

3.3. Full abstraction for L+.

3.3.1. Soundness and adequacy. If we have a store (L, s) and a term l1 : var[A1], . . . , ln :
var[An] ` M : A where the lis appear in L with type Ai, we write new L, s in M as a
shortcut for new l1 : A1, . . . , ln : An in l1 := s(l1); . . . ln := s(ln);M . Note that the order in
which variables are introduced and assigned values does not matter, because of Lemma 3.1.

Proposition 3.2 (Soundness). If we have (L, s)M ⇓ (L′, s′)V , then for any suitably typed
term N we have Jnew L, s in (λx.N) MK = Jnew L′, s′ in (λx.N) V K.

Proof. This is proved by induction on the derivation of (L, s) M ⇓ (L′, s′) V , using standard
facts about bicartesian closed categories and strong monads, along with the equations of
Lemma 3.1.



ISOMORPHISMS OF TYPES IN THE PRESENCE OF HIGHER-ORDER REFERENCES 13

The next step is to extend the adequacy result of [1] with sums, i.e. that for any
closed term M , if JMK 6= ⊥ then M converges. We do that by exploiting the retraction
A+BCbool×A×B. Consider the language L of [1]. We define a translation of L+ into L
by defining (A+B)t = bool×At×Bt, 0t = 1, and (−)t preserves all the other constructors.
To extend the translation to terms, one must first note that in L every type has a value,
let us fix a value VA for every type A. Let us define the translation on terms, for the only
non-trivial cases:

(Γ ` ι1M : A+B)t = Γt ` 〈true,M t, VBt〉 : (A+B)t

(Γ ` ι2M : A+B)t = Γt ` 〈false, VAt ,M t〉 : (A+B)t

(Γ ` δ(M,x1 ·N1, x2 ·N2) : C)t = Γt ` if π1 M
t then (λx1.N

t
1) (π2 M

t)

else (λx2.N
t
2) (π3 M

t) : Ct

The translation extends immediately to stores. It is then a straightforward induction to
prove that if (L, s)t M t ⇓ (L1, s1) V1, then there exists a value V0 and a store (L0, s0) in
L+ such that V1 = V t

0 , (L1, s1) = (L0, s0)t and (L, s) M ⇓ (L0, s0) V0. Therefore if M t ⇓,
M ⇓ as well. Let us define an embedding of arena φ : A ↪→ B as an injective function
φ : MA → MB preserving and reflecting initial moves, enabling and labelling. Likewise,
there is an embedding from a family (Ai)i∈I to (Bj)j∈J if there is an injective f : I → J
and for all i ∈ I an embedding φi : Ai ↪→ Bf(i).

For every type A and sequent Γ ` A we build an embedding φA : JAK ↪→ JAtK. We
detail the only non-trivial case, i.e. the definition of φA+B. Note that if A is a type in L
and JAK = (Ai)i∈I , then the choice of a value ` VA : A fixes a particular i0 ∈ I (such that
J` VA : AK responds ai0 to the Opponent initial move). Then, φA+B is defined from the
function:

f : I + J → (I × J) + (I × J)

(1, i) 7→ (1, (i, j0))

(2, j) 7→ (2, (i0, j))

along with the canonical embeddings of Ai into Ai × Bj0 and of Bj into Ai0 × Bj . This
embedding φ : A ↪→ B can also be applied move-by-move to plays, hence to strategies.
Then, we can prove by induction that for any term Γ `M : A, we have φΓ`A(JMK) ⊆ JM tK.
It follows that if JMK 6= ⊥, we have JM tK = φΓ`A(JMK) 6= ⊥ as well. Thus by the adequacy
result in [1], M t ⇓. Therefore, M ⇓. We have proved:

Lemma 3.3 (Adequacy). For any well typed term M , if JMK 6= ⊥ then M ⇓.

3.3.2. Definability and full abstraction. In order to get full abstraction, the main missing
ingredient is definability for compact (finite) strategies. In turn, this relies on the following
factorization result:

Proposition 3.4. For any arena A and any finite (as a set of plays) thread-independent
strategy σ : 1⇒ TA, there exist natural numbers k1, k2 and an innocent strategy with finite
view function τ : (var[T1])k1 × var[boolk2 ]⇒ TA such that:

〈cellT1, . . . , cellT1, cellboolk2 〉; τ = σ

Where Ak is an iterated binary product and 〈σ1, . . . , σk+3〉 = 〈〈σ1, . . . , σk+2〉, σk+3〉.
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Proof. The main factorization result of [1] gives a natural number k1 and a thread-indepen-
dent finite visible strategy τ1 : (var[T1])k1 ⇒ TA such that 〈cellT1, . . . , cellT1〉; τ1 = σ.
The factorization theorem of [2] then allows to factorize τ1 as cellnat; τ2, where τ2 is an
innocent strategy with finite view functions. But we have no interpretation for nat in our
model, since all arenas are supposed finitely branching! Fortunately this is not a problem:
the proof works by exploiting an injective function code : τ1 → N, encoding plays in τ1 as
natural numbers and storing them in the reference cell. However τ1 is finite, so for some
k2 ∈ N there is an encoding of τ1 in Bk2 , where B = {t, f}. Exploiting this encoding as in
[2] yields the required factorization.

Proposition 3.5 (Definability). Let A be a type of L+, and σ : 1⇒ T JAK a finite strategy.
Then there is a well-typed term `M : A of L+ such that JMK = σ.

Proof. By the above factorization result, we have two natural numbers k1, k2 and an in-
nocent strategy τ : (var[T1])k1 × var[boolk2 ] ⇒ TA with finite view function such that
σ = 〈cellT1, . . . , cellT1, cellboolk2 〉; τ . However, recall that var[A] is just a shortcut for
(A ⇒ T1) × TA. Therefore we can apply the definability result for innocent strategies of
[3] (the generalization of this result in the presence of the empty type is straightforward),
which gives a term:

x1, . . . , xk1 : ((1→ 1)→ 1)× (1→ 1→ 1), y : ((boolk2 → 1)× (1→ boolk2)) ` N : A

With the use of bad variables, this gives x1, . . . , xk1 : var[1 → 1], y : var[boolk2 ] ` N ′ : A
such that JN ′K = τ2. Putting this together, we get M = new x1, . . . , xk1 : 1 → 1, new y :
boolk2 ∈ N ′ with `M : A, such that JMK = σ.

Given this we can now build the fully abstract model in a standard way, as follows. If A
is an arena, then the complete plays on A are the plays s ∈ LA such that all questions in
s have been answered. We write σ ∼= τ the fact that σ, τ : A have the same complete plays.
This equivalence extends to Famf(Gam)T : if A and B are families and σ, τ : A → TB
are morphisms Famf(Gam)T , we write σ ∼= τ iff for every component i of A, σi ∼= τi.
It is straightforward to check that all the morphism constructions in Famf(Gam) and
Famf(Gam)T preserve ∼=, so Famf(Gam)T / ∼= is also a model of L+. This does not change
the interpretation, so we still have soundness and adequacy. Putting all of this together:

Theorem 3.6 (Full abstraction). The model is fully abstract, i.e. for all M and N of the
same type, we have M ∼= N ⇐⇒ JMK ∼= JNK.

Proof. ⇒. Suppose M ∼= N . We can assume without loss of generality that M and N
are closed, since ∼= is a congruence (hence stable under λ-abstraction), so ` M,N : A.
Suppose JMK and JNK do not have the same complete plays, e.g. s ∈ JMK but s 6∈ JNK.
Then, qsa ∈ LJAK⇒T1 where q and a are respectively the question and answer in T1. Viewing
α = qsa as a strategy, we have by definability a term x : A `Mα : 1, such that JMαK = α. By
construction, we have JMK; JMαK 6= ⊥ and JNK; JMαK = ⊥, but JMK; JMαK = J(λx.Mα)MK
(and similarly for N), thus by adequacy (λx.Mα)M ⇓ and (λx.Mα)N ⇑, which is absurd.
Therefore JMK ∼= JNK.
⇐. Suppose JMK ∼= JNK, and take a context C such that C[M ] is closed and C[M ] ⇓. By
soundness, JC[M ]K 6= ⊥. Since JMK and JNK have the same complete plays, by immediate
induction on C we have JC[N ]K 6= ⊥ as well. By adequacy, we have C[N ] ⇓ and M ∼= N .
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4. Isomorphisms in Gam

We are now going to extend Laurent’s tools [20] to characterize isomorphisms of types for
L+. We will first reformulate Laurent’s work in the visible and innocent cases, then extend
it to characterize isomorphisms in Gam.

4.1. Isomorphisms and zig-zag strategies. We first recall Laurent’s notion of zig-zag
play.

Definition 4.1. Let s ∈ LA⇒B be a legal play. It is zig-zag if

(1) Each P -move following an O-move in A (resp. in B) is in B (resp. in A),
(2) A P -move in A immediately follows an initial O-move in B if and only if it is justified

by it,
(3) The (not necessarily legal) sequences s � A and s � B have the same pointers, i.e. for

all indices i, j with (s � A)i and (s � A)j defined, (s � A)i points to (s � A)j iff (s � B)i
points to (s � B)j .

If s only satisfies the first two conditions, then it is pre-zig-zag.

By extension, we will say that a strategy σ is pre-zig-zag (resp. zig-zag) if all its
plays are so. The core of Laurent’s theorem is then that all isomorphisms in Vis are zig-zag
strategies. His proof does rely on visibility, however it only gets involved to prove that the
condition 3 of zig-zag plays is satisfied. The first half of his argument does not use visibility
and actually proves that all isomorphisms in Gam are pre-zig-zag. Here, being mainly
interested in Gam, we make this explicit. We need first the following lemma.

Lemma 4.2 (Dual pre-zig-zag play). Let s ∈ LA⇒B be a pre-zig-zag play, then there exists
an unique pre-zig-zag s ∈ LB⇒A such that s � A = s � A and s � B = s � B.

Proof. We define s by induction on s; ε = ε, and sab = sba. We keep the same pointers,
except for the case where a move a in A was justified by an initial move b in B. Then
because of the pre-zig-zag condition on s, a is necessarily an initial move in A and is set
as the new justifier of b in s. There is no other possible s, since the restrictions on A and
B are constrained by the hypotheses and their interleaving is forced by the alternation and
the pre-zig-zag conditions on s.

Lemma 4.3. If σ : A ⇒ B, τ : B ⇒ A form an isomorphism in Gam, then they are
pre-zig-zag and for all s, s ∈ σ ⇔ s ∈ τ .

Proof. Consider an isomorphism σ : A ⇒ B, τ : B ⇒ A in Gam. We will prove by
induction on even k ∈ N that all plays of σ, τ whose length is less than k are pre-zig-zag,
and that moreover {s | s ∈ σ ∧ |s| ≤ k} = {s ∈ τ | |s| ≤ k}.

If k = 0, this is trivial. Otherwise, suppose this is true up to k ∈ N, and consider
sab ∈ σ of length k+ 2; let us first prove condition (1). Without loss of generality, suppose
a ∈ MA. Since s � B = s � B, by a straightforward zipping argument we can build an
interaction u ∈ I(A1, B,A2) such that u � A1, B = s and u � B,A2 = s, moreover since σ, τ
form an isomorphism we must have u � A1, A2 ∈ idA. Now, we necessarily have b ∈ MB,
otherwise u could be extended to uab ∈ σ||τ with uab � A1, A2 = (u � A1, A2)ab which is
not a play of the identity, contradiction. Hence sab satisfies condition 1 of pre-zig-zag plays.

To see why it satisfies condition 2, take sba ∈ σ with b in B and a in A. If b is
initial in B, then a necessarily points to it since σ is single-threaded. Reciprocally, suppose
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a points to an initial move in B earlier than b. Then we have s ∈ τ , and by the same
zipping argument as above we have an unique u ∈ I(B1, A,B2) such that u � B1, A = s and
u � A,B2 = s. Since σ, τ form an isomorphism we also have u � B1, B2 ∈ idB. Let us now
extend u to u′ = ub2ab1 in the unique way such that u′ � A,B2 = sba and u′ � B1, A ∈ τ .
Note that we are sure that b1 is a move on B1 since sab1 is a play of τ of length k + 2 and
we already know that these satisfy the condition 1 of pre-zig-zag plays. But we also have
u′ � B1, B2 ∈ idB, hence b2 points in s as b1 points in s. This means that we have sab ∈ τ ,
such that a is initial and b points in s, impossible since τ is single-threaded. Hence sba
satisfies condition 2 of pre-zig-zag plays.

We have proved that sab is pre-zig-zag, so sab is defined. By induction hypothesis
s ∈ τ and the same reasoning as above shows that it extends to sab ∈ τ . The argument is
symmetric, hence {s | s ∈ σ ∧ |s| ≤ k + 2} = {s ∈ τ | |s| ≤ k + 2}.

For the sake of completeness, let us include Laurent’s argument which proves that
isomorphisms in Vis are zig-zag.

Lemma 4.4. If σ : A ⇒ B, τ : B ⇒ A form an isomorphism in Vis, then σ and τ are
zig-zag strategies.

Proof. We already know that σ and τ are pre-zig-zag strategies. We show by induction on
n ∈ N that for all s ∈ σ, if |s| ≤ n then s � A and s � B have the same pointers. Take now
s ∈ σ, and sab ∈ σ, suppose w.l.o.g. that a ∈ MA. Suppose a points to (s � A)i, then b
points to (s � B)i. Indeed, it cannot point to (s � B)j with j > i since that would break
visibility for σ. But if it points to (s � B)j with j < i we use the same reasoning on the

dual pre-zig-zag play sab and get a contradiction with the fact that τ is visible.

Let us denote by Gami, Visi and Inni the groupoids of arenas and isomorphisms on
the respective categories. In the next sections, we use these facts to give more combinatorial
representations of Gami, Visi and Inni.

4.2. Notions of game morphisms. Laurent’s isomorphism theorem works by relating
isomorphisms in Gam with isomorphisms in a simpler category which has arenas as objects
and forest morphisms, i.e. maps on moves that preserve initiality and enabling. Relaxing
the visibility conditions requires us to also consider relaxed notions of game morphisms,
that we present here.

In what follows we will make use of the prefix functions ip and jp on justified se-
quences, defined by ip(ε) = ε and ip(sa) = s, and jp(si) = ε if i does not have a pointer,
jp(s1as2b) = s1a if b points to a.

Definition 4.5. Let A be an arena. A path on A is a play s ∈ LA such that except for
the initial move, every move in s points to the previous move. Formally, for all s′ab v s,
a justifies b in s. Let PA denote the set of paths on A. A path morphism from A to B
is a function φ : PA → PB such that ip ◦ φ = φ ◦ ip and which preserves Q/A labeling: for

all sa ∈ PA with φ(sa) = φ(s)b, we have λQAA (a) = λQAB (b). There is a category Path of
arenas and path morphisms.

This category Path comes with its own notion of isomorphisms of arenas. Note that
whenever A is a forest, this is exactly Laurent’s notion of forest isomorphism. We now
introduce two weaker notions of morphisms for arenas. In what follows, let us call a legal
play on A with only one initial move a thread on A, and denote the set of threads on A
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by TA. Likewise, let us call a pre-legal play with one initial move a pre-legal thread and let
us denote these by T ′A.

Definition 4.6. Let A, B be arenas, and let φ : T ′A → T ′B We say that φ is a sequential
morphism from A to B if ip ◦ φ = φ ◦ ip, and if it preserves Q/A labeling, i.e. for

all φ(sa) = φ(s)b we have λQAA (a) = λQAB (b). We say that it is a justified morphism
if, additionally, jp ◦ φ = φ ◦ jp. There are two categories Seq of arenas and sequential
morphisms and Jus of arenas and justified morphisms.

The condition on sequential morphisms amounts to the fact that they preserve play
extension, i.e. for all pre-legal threads sa ∈ T ′A, φ(sa) must be an immediate extension
of φ(s). In other words, a sequential morphism preserves the forest structure of the set of
pre-legal threads given by the prefix ordering. However it does not have to preserve pointers
: it could for instance send a play ◦ • ◦ • to ◦ • ◦ • , where occurrences of ◦
and • are respectively Opponent and Player moves. These weak forms of morphisms will
play an important role in the subsequent development as they have a close relationship
to isomorphisms in Gam. Justified morphisms are those sequential morphisms which ad-
ditionally preserve pointers: those will appear to be in relationship with isomorphisms in
Vis.

As above, we will denote by Seqi, Jusi and Pathi the groupoids of invertible maps in
Seq, Jus and Path. These groupoids will soon appear to be identical to Gami, Visi and
Inni. To prove this, we need the following lemma.

Lemma 4.7. Let s ∈ T ′A, and σ : A ⇒ B an isomorphism in Gam. There is then an
unique play s′ ∈ σ such that s′ � A = s.

Proof. Remark first that if σ : A⇒ B and τ : B ⇒ A are inverses then they are both total,
i.e. for all s ∈ σ and sa ∈ LA⇒B there must be b such that sab ∈ σ, assuming it is not the
case easily leads to a contradiction. We now prove the lemma by induction on s. If s = ε,
this is trivial. Otherwise, suppose sa ∈ T ′A and we have by induction hypothesis s′ ∈ σ such
that s′ � A = s. If a is a P -move in A (hence an O-move in A ⇒ B), there is an unique b
such that s′ab ∈ σ, and we do have s′ab � A = sa. If a is an O-move in A (hence a P -move
in A ⇒ B), then let τ : B ⇒ A be the inverse of σ, since s′ ∈ σ we have s′ ∈ τ . Being
part of an isomorphism τ is total, hence there is b such that s′ab ∈ τ . We deduce from
this that s′ba ∈ σ, and we have s′ba � A = sa as needed. This choice is unique: if there is
another play t ∈ σ such that t � A = sa, then t = t′b′a (since t is zig-zag). By induction
hypothesis we have t′ = s′, thus s′b′a ∈ σ. From this we deduce that s′ab′ ∈ τ , so b = b′ by
determinism of τ .

Proposition 4.8. If C ' D means that two groupoids C and D are isomorphic, then we
have:

Gami ' Seqi
Visi ' Jusi

Proof. Let us first define a functor F : Gami → Seqi. It is defined as the identity on
arenas. Let σ : A ⇒ B be an isomorphism, and let s ∈ T ′A then we define φσ(s) = s′ � B,
where s′ is the unique play on A⇒ B which existence is ensured by the lemma above. The
function φσ commutes with ip since σ is a pre-zig-zag strategy. To any question it cannot
associate an answer, as that would immediately break well-bracketing on σ. But to any



18 P. CLAIRAMBAULT

answer it cannot associate a question, as that would immediately break well-bracketing on
σ−1. Then we define F (σ) = φσ. It is obvious that F preserves identities and composition2.

Reciprocally, suppose φ : A → B is a sequential isomorphism. We mimic the usual
definition of the identity by setting G(φ) = {s ∈ LA⇒B | ∀s′ vP s, φ(s′ � A) = s′ � B}
(We apply φ on plays whereas it is normally only defined on threads, however it can be
canonically extended to plays, so this is not ambiguous). It is obvious that this construction
is functorial, and that it is inverse to F .

We have now an isomorphism Gami ' Seqi which restricts naturally to Visi and Jusi.
Indeed if σ : A ⇒ B is a visible isomorphism, it is a zig-zag strategy therefore s ∈ T ′A and
φσ(s) have the same pointers, which means that jp ◦ φσ = φσ ◦ jp. Reciprocally if φσ is a
justified morphism, all s ∈ σ must be such that s � A and s � B have the same pointers,
therefore σ, being pre-zig-zag, always points in its P -view.

4.3. Innocent and visible case. In this section, we use the framework described above
to recall Laurent’s results. We have proved above that isomorphisms in Vis correspond to
isomorphisms in Jus, which we are now going to compare with isomorphisms in Path.

Lemma 4.9. There is a full functor H : Visi → Pathi.

Proof. We have built in the above section a full and faithful functor (actually an isomor-
phism) F : Visi → Jusi. From a visible isomorphism σ : A⇒ B we set H(σ) = F (σ) � PA,
where f � E′ restricts a function f : E → F to a subset E′ ⊆ E of its domain. The image
of a path by F (σ) is always a path since it is a justified morphism, hence H(σ) : PA → PB.

To see why H is full, suppose we have a path morphism φ : PA → PB. Then φ admits
a canonical extension φ∗ : T ′A → T ′B. To define φ∗(s) we reason by induction on s, and set
φ∗(ε) = ε and φ∗(sa) = φ∗(s)a′, where a′ is the last move of φ(pa), pa being the path of
a in s. The move a′ keeps the same pointer as a. It is clear that this defines as needed a
justified morphism φ∗ such that H(φ∗) = φ.

This ensures that arenas A and B are isomorphic in Vis if and only if they are iso-
morphic in Path, i.e. they are geometrically the same. Let us mention that as Laurent
proved, this correspondence is one-to-one in the innocent case: one can prove that there is
only one innocent zig-zag strategy corresponding to a particular path isomorphism, hence
H restricts to an isomorphism of groupoids H ′ : Inni → Pathi.

Example 4.10. Note that H itself is not faithful: we can exploit non-innocence to build
non-uniform isomorphisms, i.e. isomorphisms which change their underlying path isomor-
phism as the interaction progresses. For an example, consider the arena

A =

q

q1 q2 a

a a

which is the interpretation of (bool→ 1)→ 1 in call-by-value and of 1× 1→ 1 in call-by-
name. Consider now the strategy i : A⇒ A which behaves as follows. It starts by playing
as the identity on A. The first time Opponent plays q1 or q2 on the left hand side, it simply
copies it. Starting from the second time Opponent plays q1 or q2 though, it swaps them. An

2In fact, this construction can be seen as a particular case of Hyland and Schalk’s faithful functor from
games to relations [15], where the relation happens to be functional.
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Figure 7: A play of the non-trivial involution i on A
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Figure 8: Relations between all groupoids of isomorphisms

example play of i is given in Figure 7. Although it is not the identity, i is its own inverse.
Its image by H only takes into account the first behaviour or i, thus is the same as for idA:
the identity path morphism on A. From this strategy we can extract the following term
f : B `M : B of L+, where B = (bool→ 1)→ 1.

new r := true in

λg.f(λb.if !r then r := false; g b else g (not b))

Although M is not the identity it is an involution on B, i.e. we have (λf.M)(Mx) ∼=L+

x. Such non-trivial involutions cannot be defined using only purely functional behaviour.

We give in Figure 8 a summary of all the groupoids of isomorphisms encountered so far,
along with their relations. Following it, the question of finding the isomorphisms in Gam
boils down to the definition of an arrow from Seqi to Pathi in this diagram, which is what
we will attempt in the next two subsections.

4.4. Non-visible isomorphisms by counting. We have seen above that we can build a
full functor Visi → Pathi, which allows to characterize isomorphic arenas in Vis. However,
this construction relies heavily on visibility. We now investigate how to get rid of it and
prove that two arenas A and B are isomorphic in Gam if and only if they are isomorphic
in Path. In this subsection, we will describe for pedagogical reasons an intuitive approach
to the proof, which relies on counting. However this approach suffers from some defects,
hence the full proof (described in the next subsection) will follow slightly different lines.
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If a ∈MA, let us call its arity the quantity ar(a) = |{m ∈MA | a `A m}|. On pre-legal
threads s ∈ T ′A we define:

Q(s) =

|s|∑
i=1

ar(si)

If s ∈ T ′A, Q(s) is also the number of ways s can be extended to some sa (let us recall here
that as a member of T ′A, s need not be alternating): the choice of a justifier si plus a move
enabled by si. These definitions allow to express the following observation. If σ : A⇒ B is
an isomorphism (thus a pre-zig-zag strategy) and s ∈ σ, then Q(s � A) = Q(s � B), because
σ being an isomorphism, it must associate each possible extension of s � A to an unique
extension of s � B. But this also means that if sab ∈ σ we have Q(s � A) + ar(a) = Q((s �
A)a) = Q((s � B)b) = Q(s � B) + ar(b), hence ar(a) = ar(b). Thus to each move a, σ must
associate a move with the same arity. This is a step in the right direction, but we would
like a deeper connection between a and b.

If a ∈ MA, we will use the notation Ja = {m ∈ MA | a `A m}. Let us define by
induction on k the notion of a k-isomorphism between a ∈ MA and b ∈ MB. For any
a ∈ MA and b ∈ MB there is automatically a 0-isomorphism ia,b. A (k + 1)-isomorphism
from a to b is the data of an isomorphism f : Ja → Jb along with, for all m ∈ Ja, a k-
isomorphism fm : m → f(m). We use the notation m 'k n to denote the fact that there
is a k-isomorphism from m to n. In other words, we have m 'k n if the tree of paths of
length at most k starting form m is tree-isomorphic to the tree of paths of length at most k
starting from n. If k1 ≤ k2, f1 is a k1-isomorphism and f2 is a k2-isomorphism, we say that
f1 is a prefix of f2 if they agree up to depth k1. Note that in particular we have m '1 n
if and only if ar(m) = ar(n), so m 'k n is indeed a generalization of ar(m) = ar(n). By
induction on k, one can then prove that σ must always associate to each move m a move
n such that m 'k n : to prove it for k + 1, just apply the counting argument above on
'k-equivalence classes. From all these k-isomorphisms, one can then deduce the existence
of a path isomorphism between A and B.

This counting argument has several unsatisfying aspects, which are caused by the im-
plicit use of the following lemma.

Lemma 4.11 (Slicing of bijections). Suppose E = E1 +E2 and F = F1 +F2 are finite sets,
and that f : E → F and g : E1 → F1 are bijections. Then there is a bijection f\g : E2 → F2.

This lemma is obviously true by cardinality reasons. However this proof is, compu-
tationally speaking, “almost non-effective”, in the sense that the isomorphism it produces
implicitly depends on the choice of a total ordering for E and F . A consequence of that is
that from any isomorphism in Gam we will extract an isomorphism in Path, but we cannot
hope its choice to be canonical, for any reasonable meaning of “canonical”. Even worse, the
witness isomorphisms given by this proof for 'k and 'k+1 need not agree together. This
implies that for infinitely deep arenas, one requires König’s lemma to actually build a path
isomorphism from a game isomorphism. This means that we cannot deduce from the proof
above an algorithm to extract path isomorphisms.

4.5. Extraction of a path isomorphism. To obtain a more computationally meaningful
extraction of a path iso from a game iso, we must replace the proof of Lemma 4.11 by
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Figure 9: Slicing of isomorphisms.

something else than counting. As formalized in the following proof, the idea is to remark
that given the data of Lemma 4.11, starting from x ∈ E2, the sequence

x0 = f(x)

xn+1 = f ◦ g−1(xn)

must eventually reach F2, as illustrated in Figure 9, yielding a bijection between E2 and
F2 (this corresponds to the construction of a trace [16] on the category of finite sets and
permutations).

Proposition 4.12. If φ : A → B is a sequential play isomorphism, then for all sa ∈ T ′A
with φ(sa) = φ(s)b, there is a family (hks,sa)k∈N such that for all k, hks,sa is a k-isomorphism

from a to b. This family is coherent, in the following sense: if k1 ≤ k2, hk1
s,sa is a prefix of

hk2
s,sa.

Proof. We will use the following notations. If s ∈ T ′A, Es will be the set of atomic extensions
of s, that is of plays sa ∈ T ′A, and Fs will be the set of atomic extensions of φ(s). For all
plays sa ∈ T ′A, although strictly speaking Es is not a subset of Esa, we have the following
decomposition:

Esa = Es + Ja
Indeed, a move extending sa can either point to some si or to a. Note also that for any s,
φ : sa 7→ φ(s)b induces an isomorphism fs : a 7→ b from Es to Fs.

For all s ∈ T ′A and sa ∈ Es, we follow the reasoning illustrated in Figure 9 and consider
a bipartite directed graph Gs,sa defined as follows: its set of vertices is V = Esa + Fsa
and its set of edges is E = {(x, fsa(x)) | x ∈ Esa} + {(y, f−1

s (y)) | y ∈ Fs}. This graph
is “deterministic”, in the sense that the outwards degree of each vertex is at most one,
moreover the only vertices whose outwards degree is 0 are those of Jb (where b = fs(a),
so Fsa = Fs + Jb). Moreover Gs,sa must be acyclic, since fs and fsa are isomorphisms.
Thus from any vertex in Ja, there is an unique path in G leading to a vertex in Jb; this
induces an isomorphism gs,sa : Ja → Jb. For each pair (m, gs,sa(m)) we also keep track of
the corresponding path pms,sa = (m, fsa(m), f−1

s (fsa(m)), . . . , gs,sa(m)).
It is now time to build the k-isomorphisms, by induction on k. For k = 0 this is obvious.

For fixed k+ 1 ≥ 1, by induction hypothesis there is for each sa ∈ T ′A with φ(sa) = φ(s)b a

k-isomorphism hks,sa from a to b. In particular, for fixed sa ∈ T ′A, consider the graph Gs,sa.

Each of its edges of the form (x, fsa(x)) are now labeled by the k-isomorphism hksa,x and all

its edges of the form (y, f−1
s (y)) are labeled by (hk

s,f−1
s (y)

)−1. For each pair (m, gs,sa(m)) we

can now compose the labels along the path pms,sa and get a k-isomorphism im : m→ gs,sa(m).
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We then define hk+1
s,sa = (gs,sa, (im)m∈Ja) which is as needed a (k + 1)-isomorphism from a

to b.
Note finally that if k1 ≤ k2, hk1

s,sa is a prefix of hk2
s,sa. This is proved by simultaneous

induction on k1 and k2. If k1 = 0 this is obvious. Otherwise, it relies on the fact that
the graph Gs,sa does not depend on k. Hence hk1+1

s,sa = (gs,sa, (im)m∈Ja) and hk2+1
s,sa =

(gs,sa, (jm)m∈Ja), and each im has be obtained from k1-isomorphisms in the same way as
jm has been obtained from k2-isomorphisms, so it immediately boils down to the induction
hypothesis.

Theorem 4.13. Two finitely branching arenas A and B are Gam-isomorphic if and only
if they are Path-isomorphic.

Proof. Consider an isomorphism σ : A ⇒ B in Gam. Restricted on plays with only two
moves, it gives an isomorphism f : IA → IB. By the previous proposition, there is for
each i ∈ IA and for each k ∈ N a k-isomorphism hkε,i : i → f(i). Additionally, all these
k-isomorphisms are compatible with each other, so they converge to an ω-isomorphism
hε,i : i → f(i). The iso f together with hε,i for all i define a path isomorphism from A to
B.

For each pair of arenas A,B, we have a function KA,B : Gami(A,B) → Pathi(A,B).
Unfortunately, this function fails to be a functor. Indeed, the construction is based on the
more explicit proof of Lemma 4.11 illustrated in Figure 9, which is not functorial; one can
easily find sets E = E1 +E2, F = F1 + F2, G = G1 +G2 along with bijections f1 : E → F ,
f2 : E1 → F1, g1 : F → G and g2 : F1 → G1 such that (f \ f ′); (g \ g′) 6= (f ; g) \ (f ′; g′), and
extract from this a counter-example for the functoriality of KA,B. However, K is a natural
transformation:

Proposition 4.14. The family KA,B : Gami(A,B) → Pathi(A,B) is natural in A and
B, where both Gami(−,−) and Pathi(−,−) are seen as bifunctors from Pathopi ×Pathi
to Set (using implicitly the faithful functor from Pathi to Gami of Figure 8).

Proof. The naturality conditions expresses invariance of KA,B under renaming of moves in A
andB, as composing with Path-isomorphisms or Gam-isomorphisms generated from Path-
isomorphisms only rename moves. The proof proceeds by showing that all k-isomorphisms
hks,sa on which the definition of K relies are invariant under renaming of moves, by induction
on k, then on s.

5. Syntactic isomorphisms

5.1. Application to L+. Our isomorphism theorem most naturally applies to Gam (so to
call-by-name languages), but L+ is modeled in Famf(Gam)T , so we have to check how our
result extends to this. Let us first relate isomorphisms in Famf(Gam)T and isomorphisms
in Gam. We start by recalling some terminology: an arena A is pointed if it has only one
initial move. A strategy σ : A → B where A and B are pointed is strict if it responds to
the initial move in B with the initial move in A, which it never plays again. Pointed arenas
and strict maps form a subcategory Gam⊥ of Gam. As such, our characterisation of the
isomorphisms in Gam will apply just as well on Gam⊥.
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Lemma 5.1. If A and B are isomorphic in Famf(Gam)T / ∼=, then TA and TB are iso-
morphic in Gam/ ∼=.

Proof. It is well-known that there is a full and faithful functor from Famf(Gam)T to Gam⊥,
mapping A to TA and f : A → TB to f∗ : TA → TB (assimilating the singleton family
TA with the arena it contains). This functor preserves and reflects ∼=, so isomorphisms in
Famf(Gam)T / ∼= correspond to isomorphisms in Gam⊥/ ∼=. They are then transfered to
Gam/ ∼= since it contains Gam⊥/ ∼= as a subcategory.

Because of the presence of the empty type, isomorphisms in Gam do not exactly
correspond to isomorphisms in Gam⊥: unanswerable moves (as in J1→ 0K) do not appear
in complete plays, so σ ∼= idA can do anything as soon as one of those has been played.
If A is an arena such that all questions in A are answerable (i.e. for all q ∈ MA such
that λQA(q) = Q, there is a ∈ MA such that q `A a and λQA(a) = A), we say that A is
complete. If A is any arena, trim(A) is the trimmed version of A, where we have removed
the unanswerable moves along with all the moves hereditarily justified by them. Note that
for all arena A, trim(A) is always complete. This operation can also be applied to strategies
by setting trim(σ) as the set of plays in σ which do not contain unanswerable moves.

We handle the mismatch between isomorphisms in Gam and Gam/ ∼= as follows:

Lemma 5.2. For any arenas A and B, σ : A → B and τ : B → A form a Gam/ ∼=-
isomorphism iff trim(σ) : trim(A) → trim(B) and trim(τ) : trim(B) → trim(A) form a
Gam-isomorphism.

Proof. Let us first note that if σ : A→ B and τ : B → C and s ∈ σ; τ is complete, then the
witness u ∈ σ ‖ τ must be complete as well, otherwise that would break well-bracketing.
As a consequence, u contains no unanswerable move. Hence if σ and τ form a Gam/ ∼=-
isomorphism, we still have trim(σ); trim(τ) ∼= idtrim(A) and trim(τ); trim(σ) ∼= idtrim(B),
since no unanswerable moves can arise in an interaction between σ and τ giving rise to a
complete play. We turn now to the proof of the equivalence.
⇒. Take s ∈ idtrim(A). It is straightforward to see that s can be completed, i.e. there
is s′ ∈ idtrim(A) such that s v s′ and s′ is complete (Opponent only plays answers, he
always can because trim(A) is complete, the number of unanswered questions decreases
strictly). Therefore, s′ ∈ trim(σ); trim(τ), hence s ∈ trim(σ); trim(τ) as well, so idtrim(A) ⊆
trim(σ); trim(τ). But idtrim(A) is total and both strategies are deterministic, therefore this
inclusion must be an equality. The same reasoning show that trim(τ); trim(σ) = idtrim(B)

as well, so trim(σ) and trim(τ) form a Gam-isomorphism.
⇐. If trim(σ) and trim(τ) form a Gam-isomorphism, take a complete s ∈ σ; τ . As we
have proved above, the witness u for s does not contain any unanswerable move, hence
s ∈ trim(σ); trim(τ) = idtrim(A) ⊆ idA. Conversely if s ∈ idA is complete, then necessarily
s ∈ idtrim(A) as well. Thus, s ∈ trim(σ); trim(τ). But we have seen above that by necessity
the witness u ∈ trim(σ) ‖ trim(τ) is complete as well and as such cannot contain any
unanswerable move, so s ∈ σ; τ and σ; τ ∼= idA.

The results above allow to prove that isomorphisms in L+ yield Gam-isomorphisms,
hence Path-isomorphism by an application of Theorem 4.13. It remains to show that types
that give rise to Path-isomorphic arenas are characterized by the equational theory E . For
this purpose, it will be convenient to start by putting types in canonical form, as described
below.
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Lemma 5.3 (Canonical form). Any type of L+ has a representative (up to E) generated by
T in, with |I| ≥ 2.

T ::= 0 | 1 | S | P | A
S ::= Σi∈IL

P ::= Πi∈IA

A ::= L⇒ R

L ::= A | P | 1
R ::= A | P | S | 1

Proof. First eliminate all occurrences of var using the last equation of E . We make the
rest of E into a rewriting system by directing the equations from left to right, removing
those for commutativity, adding an expansion (A + B) × C  A × C + B × C, and right
cancellation of units. It is then straightforward to prove that the following measure strictly
decreases with each reduction: |0| = |1| = 1, |A + B| = |A| + 2|B|, |A × B| = (|A| + 1)|B|
and |A → B| = (|B| + 1)|A|. It is then a simple induction to find a derivation tree from T
for types that are normal forms for this reduction.

Lemma 5.4. Let us extend trim to families by setting trim((Ai)i∈I) = (trim(Ai))i∈I . For
any type B in canonical form, we have trim(JBK) = JBK. Moreover, we have the following
equivalences:

(1) B = 0 iff JBK = 0,
(2) B = 1 iff JBK = 1,
(3) B is generated by S iff JBK has at least two members,
(4) B is generated by P iff JBK = {B′} where B′ has at least two initial moves,
(5) B is generated by A iff JBK = {B′} where B′ has exactly one initial move.

Proof. Straightforward.

Proposition 5.5. If trim(T JAK) and trim(T JBK) are Path-isomorphic, then A 'E B.

Proof. First, note that trim(T JAK) = 1 if JAK is the empty family and T (trim(Ai)) otherwise.
We reason by simultaneous induction on A and B, that we both suppose in canonical form.
By Lemma 5.4 and the remark above, this means that we get rid of trim and suppose T JAK
and T JBK to be Path-isomorphic. Clearly, JAK and JBK must be in the same case of Lemma
5.4 (otherwise it is easily checked that they cannot be isomorphic). If it is case (1) (resp.
(2)), then both A and B have 0 (resp. 1) as canonical form and A 'E B.

If it is case (3), then A = Σi∈IAi and B = Σj∈JBj , with JAK = (JAiK)i∈I and JBK =
(JBjK)j∈J . The Path-isomorphism between T JAK and T JBK yields a bijection f : I → J
and for all i ∈ I a Path-isomorphism φi : JAiK → JBf(i)K. By induction hypothesis, this
means that for all i ∈ I we have Ai 'E Bf(i). By repeated uses of commutativity and
associativity of +, we conclude that A 'E B.

If it is case (4), then A = Πi∈IAi and B = Πj∈JBj . Then JAK = {Πi∈IAi} and
JBK = {Πj∈JBj}. Then, the Path-isomorphism between T JAK and T JBK yields a Path-
isomorphism between Πi∈IAi and Πj∈JBj . In turn, this yields a bijection f : I → J , and for
each i ∈ I a Path-isomorphism between Ai and Bf(i). By induction hypothesis, this means
that for all i ∈ I we have Ai 'E Bf(i), therefore A 'E B by repeated uses of associativity
and commutativity for ×.
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If it is case (5), then A = A1 → A2 and B = B1 → B2. Both A1 and B1 are generated
by L, so they must consist of singleton families {A′1} and {B′1}. Then, JAK = {A′1 ⇒ T JA2K}
and JBK = {B′1 ⇒ T JB2K}, and the Path-isomorphism between T JAK and T JBK yields a
Path-isomorphism φ between A′1 ⇒ T JA2K and B′1 ⇒ T JB2K. Since φ preserves Q/A
labelling, it decomposes into Path-isomorphisms φ1 : A′1 → B′1 and φ2 : T JA2K → T JB2K.
By induction hypothesis this implies that A1 'E B1 and A2 'E B2, thus A 'E B.

Putting all of these together:

Theorem 5.6. For any types A,B of L+, we have the following equivalence:

A 'L+ B ⇔ A 'E B
Proof. Suppose we have a (syntactic) isomorphism x : A ` M : B and y : B ` N : A. It
then easy to check that JN ◦MK = JMK; JNK, when the former composition is syntactic
composition and the latter composition in Famf(Gam)T . Likewise, we have Jx : A ` x :
AK = idJAK (identity in Famf(Gam)T ). By full abstraction, we have JMK; JNK ∼= idJAK
and JNK; JMK ∼= idJBK, so we have a Famf(Gam)T / ∼=-isomorphism between JAK and JBK.
By Lemma 5.1, this means that T JAK and T JBK are Gam/ ∼=-isomorphic. By Lemma
5.2, trim(T JAK) and trim(T JBK) are Gam-isomorphic. By Theorem 4.13, they are Path-
isomorphic. By Proposition 5.5, this implies that A 'E B.

Conversely, it is straightforward to check that all equations in E between A and B give
rise to Path-isomorphisms between trim(T JAK) and trim(T JBK). By Laurent’s theorem
(the isomorphism of groupoids H ′ : Inni → Pathi, see Section 4.3), there is an innocent
isomorphism σ : trim(T JAK) → trim(T JBK), τ : trim(T JBK) → trim(T JAK), note that σ
and τ have finite view functions. We also have σ : T JAK → T JBK and τ : T JBK → T JAK,
although they might not form an isomorphism anymore. However, they do form a Gam/ ∼=-
isomorphism by Lemma 5.2. By construction they are strict, so they come from morphisms
σ′ : JAK → T JBK and τ ′ : JBK → T JAK forming an isomorphism in Famf(Gam)T / ∼=. By
innocent definability, there are x : A ` M : B and y : B ` N : A such that JMK = σ′ and
JNK = τ ′. By full abstraction, M and N must form a syntactic isomorphism of types.

5.2. Isomorphisms in the presence of nat. Consider the programming language L
from [1], obtained from L+ by replacing sums by bool and nat, along with the associ-
ated combinators. As proved in [1], this language has a fully abstract interpretation in
Fam(Gam∞)T , where Gam∞ is the category of not necessarily finitely branching arenas,
and single-threaded strategies.

As suggested by the importance of counting in the proof, the presence of nat makes it
possible to build new isomorphisms by playing Hilbert’s hotel. Of course there are obvious
new isomorphisms, such as nat ' nat + nat or nat ' nat × nat, which are realizable by
purely functional terms. What is less obvious is that in the presence of higher-order state,
one can define new isomorphisms which did not exist in the purely functional fragment of
L. In this section, we will detail as much as possible one of those new isomorphisms, then
mention a few others.

Our main example will be an isomorphism between nat → nat → 1 and nat → 1.
Although this seems to follow from nat× nat ' nat, this is not the case since curryfication
is in general not a valid isomorphism in a call-by-value language. As a consequence of
Laurent’s theorem, no purely functional isomorphism can exist between these two types
because their corresponding arenas are not tree-isomorphic.
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Figure 10: Non-trivially isomorphic arenas in Gam∞

Proposition 5.7. There is an isomorphism in Fam(Gam∞)T between Jnat → nat → 1K
and Jnat→ 1K.

Proof. By definition of the interpretation of types, this boils down to an isomorphism in
Gam∞ between the two arenas T Jnat→ nat→ 1K and T Jnat→ 1K represented in Figure
10. Informally, the left-to-right isomorphism can be described as follows:

As long as no b has been played, it behaves as the identity. The first time a b is played,
Player copies it on the right side. One can then check that the play has N + N possible
extensions on the left hand side, whereas it only has N extensions on the right hand side.
Therefore, Player has to fix a bijection φ : N+N→ N and play accordingly. In general if n
occurrences of b have been played, there are nN qis available on the left hand side and still
N on the right hand side, therefore Player has to follow a bijection φn : nN→ N.

Thus there is in fact an infinity of different isomorphisms between T Jnat→ nat→ 1K
and T Jnat→ 1K, one for each family (φn)n∈N of bijections between nN and N.

We note that the strategy from nat→ 1 to nat→ nat→ 1 is visible, so this also gives
an example of a morphism in Vis which is not invertible in Vis but becomes invertible in
Gam. These strategies are not compact so the definability theorem does not apply, however
we can nonetheless manually extract corresponding programs from them. We display them
in Figure 11, where we suppose that a family of bijections φn : nN → N has already been
defined. Unfortunately, these terms are too complex to hope for a reasonably-sized direct
proof that their interpretations give the strategies described above or even that they form
an isomorphism. This kind of difficulty emphasizes the need for new algebraic methods to
manipulate and prove properties of imperative higher-order programs.

It seems difficult to characterize exactly the new isomorphisms that natural numbers
allow to define. One can prove that the types (nat → 1) → (nat → 1) → 1 and (nat →
1) → (1 → 1) → 1 are isomorphic, showing that isomorphisms are non-local. Even worse,
replacing any occurrence of 1 by bool in the types above yields non-isomorphic types.
Likewise, nat→ nat→ bool and nat→ bool are not isomorphic.

It is also interesting to note that composing nat→ nat→ 1 ' nat→ 1 with nat×nat '
nat provides an isomorphism nat→ nat→ 1 ' nat× nat→ 1, even though curryfication
is not a valid isomorphism in general. However one should keep in mind that the terms
realizing this isomorphism have nothing in common with curryfication, as they have to use
higher-order references in a non-trivial way. In particular, it seems unlikely that they can



ISOMORPHISMS OF TYPES IN THE PRESENCE OF HIGHER-ORDER REFERENCES 27

f : nat→ nat→ 1 `
new count := 0, func := ⊥ in

λn. let (p, q) = φ−1
!count+1(n) in

if p = 0 then

let x = f q in
count := !count + 1;
let c = !count in

func := (let g = !func in

(λn. if n = c then x
else g n))

else !func p q

f : nat→ 1 `
new count := 0 in

λn. f (φ!count+1(0, n));
count := !count + 1;
let c = !count in

λp. f (φ!count+1(c, p))

Figure 11: Type isomorphism in L between nat→ nat→ 1 and nat→ 1.

be used for modularity purposes, putting some limits to the idea that isomorphisms of types
always provide the good notion of equivalence on which programmers should rely.

6. Conclusion

We solved Laurent’s conjecture and characterized the isomorphisms of types in L+. Sur-
prisingly, we realized that the combination of higher-order references, natural numbers and
call-by-value allowed to define new non-trivial type isomorphisms. Note however that if
well-bracketing is satisfied, the proof of our core game-theoretic theorem adapts directly
to arenas where all moves only enable a finite number of questions, but an arbitrary num-
bers of answers. As a consequence, there are no non-trivial isomorphisms (i.e. not already
present in the λ-calculus) in the call-by-name variant of L, although we can define one using
call/cc.

Note that despite the seemingly restricted power of L+, our theorem does apply to all
real-life programming languages that have a bounded type of integer, such as bool32 or
bool64: in this setting, no non-trivial isomorphism can exist. However unbounded natural
numbers can be defined using recursive types, so the isomorphism above can be implemented
in a call-by-value programming language with recursive types and general references, such
as Ocaml.

Acknowledgments. We would like to thank Guy McCusker and Nikos Tzevelekos for
stimulating discussions about the new non-trivial isomorphisms.
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