
Logical Methods in Computer Science
Vol. 10(4:4)2014, pp. 1–39
www.lmcs-online.org

Submitted Mar. 29, 2014
Published Dec. 3, 2014

THE POWER OF PRIORITY CHANNEL SYSTEMS ∗

CHRISTOPH HAASE, SYLVAIN SCHMITZ, AND PHILIPPE SCHNOEBELEN

LSV, ENS Cachan & CNRS & INRIA, France
e-mail address: {haase,schmitz,phs}@lsv.ens-cachan.fr

Abstract. We introduce Priority Channel Systems, a new natural class of channel systems
where messages carry a numeric priority and where higher-priority messages can supersede
lower-priority messages preceding them in the fifo communication buffers. The decidability
of safety and inevitability properties is shown via the introduction of a priority embedding,
a well-quasi-ordering that has not previously been used in well-structured systems. We
then show how Priority Channel Systems can compute fast-growing functions and prove
that the aforementioned verification problems are Fε0 -complete.

1. Introduction

Channel systems are a family of distributed models where concurrent agents communicate
via usually unbounded fifo communication buffers called “channels.” An agent of a channel
system is modeled by a finite-state controller, and when taking a transition an agent can
read messages from the channel or write into it. These models have turned out to be
well-suited for the formal specification and algorithmic analysis of communication protocols
and concurrent programs [Pac87, BG99, BH99, CF05, Mus10]. They are also a fundamental
model of computation, closely related to Post’s tag systems. In all generality, channel
systems are a Turing powerful model, which implies that most of their decision problems
are undecidable.

A particularly interesting decidable and widely studied class of channel systems are the
so-called lossy channel systems (LCSs), where channels are unreliable and may lose messages,
see e.g. [CFP96, AJ96, BMO+12]. For LCSs, several important behavioral properties such
as safety or inevitability are decidable. This is because, due to the lossy behavior of their
channels, these systems are well-structured : transitions are monotonic with respect to a
decidable well-quasi-ordering of the configuration space [AČJT00, FS01, SS13]. Beyond their
applications in verification, LCSs have turned out to be an important automata-theoretic
tool for decidability or hardness in areas like Timed Automata, Metric Temporal Logic,

2012 ACM CCS: [Theory of computation]: Models of computation; Semantics and reasoning.
Key words and phrases: Well quasi order; well-structured transition systems; fast-growing complexity.
∗ An extended abstract of this work first appeared in the proceedings of the 24th International Conference

on Concurrency Theory (Concur’13) [HSS13].
Work partially funded by the ReacHard project ANR 11 BS02 001 01.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:4)2014
c© C. Haase, S. Schmitz, and Ph. Schnoebelen
CC© Creative Commons

http://creativecommons.org/about/licenses

2 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

modal logics, e.g. [ADOW05, Kur06, OW07, LW08]. Moreover, they are also a fundamental
model of computation capturing the Fωω -complexity level in the fast-growing complexity
hierarchy [Sch13], see [CS08, SS11].

Lossy channel systems do not provide an adequate way to model systems or protocols
that treat messages discriminatingly according to some specified rule set. An example is the
prioritization of messages, which is central to ensuring quality of service (QoS) properties
in networking architectures, and is usually implemented by allowing for tagging messages
with some relative priority. For instance, the Differentiated Services (DiffServ) architecture
described in RFC 2475 [BBC+98], which enables QoS on modern IP networks, allows for a
field specifying the relative priority of an IP packet with respect to a finite set of priorities,
and network links may decide to arbitrarily drop IP packets of lower priority in favor of
higher priority packets once the network congestion reaches a critical point. Another example
of a similar priority-based policy arises in the context of ATM networks, where priorities
are expressed via a single Cell Loss Priority bit in order to allow for giving preference (by
dropping low-priority packages) to audio or video over less time-critical data [LB92].

Inspired by the aforementioned types of protocols, in this paper we introduce priority
channel systems (PCSs), a family of channel systems where each message is equipped with a
priority level, and where higher-priority messages can supersede lower-priority messages by
dropping them. Priority channel systems rely on the prioritized superseding ordering, a novel
ordering that generalizes Higman’s subword ordering and has not been considered before
in the area of well-structured systems. It is however closely related to the gap-embedding
considered in [SS85]. Showing it to be a well-quasi-ordering entails, among others, showing
the decidability of safety and termination for PCSs. We complement our decidability results
by showing that these problems become undecidable for channel systems that build upon
more restrictive priority mechanisms, supporting the design choices made for our model.

1.1. Structure of this Paper. This paper can roughly be divided into two parts. In the
first part, we define priority channel systems, explore this new model and analyze its power
in complexity-theoretical terms. Beginning in Section 6, the second part relates priority
channel systems in the broadest sense to related models or mathematical objects found in
the literature.

In more detail, in Section 2 we provide an at-a-glance introduction to a simplified model
of priority channel systems. This allows us to discuss on a high level the ideas behind our
model, the main theorems, and the main algorithmic problems that we consider in this
paper. We outline the decidability of fundamental decision problems via the framework of
well-structured systems. Section 3 is then devoted to proving well-quasi-ordering properties
of the prioritized superseding ordering which underlies priority channel systems. To this end,
we characterize the superseding ordering via priority embeddings, which is an analogue and
can in fact be seen as a generalization of Higman’s subword embedding. Using techniques
from [SS11, SS85], we show in Section 4 an Fε0 upper bound on the complexity of PCS
verification, far higher than the Fωω -complete complexity known for LCSs. We then prove
in Section 5 a matching lower bound and this is the main technical result for PCSs of this
paper: building upon techniques developed for less powerful models [CS08, Sch10b, HSS12],
we show how PCSs can robustly simulate the computation of the fast growing functions Fα
and their inverses for all ordinals α up to ε0. This gives a precise measure of the expressive
power of PCSs.

THE POWER OF PRIORITY CHANNEL SYSTEMS 3

In the second part of the paper, we first show in Section 6 that other natural choices of
models of channel systems with priority mechanisms different from ours lead to undecidability
of verification problems. We then turn to lossy channel systems and show in Section 7
that, although PCSs are not an extension of LCSs, they can very easily simulate LCS
computations. In fact, we show how higher-order LCS models, which generalize the dynamic
LCS from [AAC12], also embed into PCSs; this uses a more involved encoding of higher-order
configurations and rules. Applications of the priority embedding to other well-quasi-ordered
data structures such as depth-bounded trees found in the literature are subsequently discussed
in Section 8.

2. Priority Channel Systems

In this section, we formally introduce Priority Channel Systems and give an overview about
the decision problems we consider in this paper.

Definition 2.1. For every d ∈ N, the level-d priority alphabet is Σd
def
= {0, 1, . . . , d}. A

level-d priority channel system (d-PCS) is a tuple S = (Σd, Ch, Q,∆), where Σd is as above,
Ch = {c1, . . . , cm} is a set of m channel names, Q = {q1, q2, . . .} is a finite set of control
states, and ∆ ⊆ Q× Ch× {!, ?} × Σd ×Q is a set of transition rules.

p q
c ! 1

c ? 3
c ! 0 c ! 3 0 3 0 0c :

Figure 1. A simple single-channel 3-PCS.

For the sake of a simplified introduction to PCSs in this section, the alphabet of a PCS
abstracts away from actual message contents and only consists of natural numbers that
indicate the priority of a message, where d is a message of highest and 0 of lowest priority,
respectively. A treatment of more general alphabets is deferred to Section 3. The simple
alphabet introduced here is however sufficient in order to show the lower bounds in Section 5.
Moreover, from our definition it follows that Priority Channel Systems consist of a single
process, which is sufficient for our purposes in this paper, since systems made of several
concurrent components can be represented by a single process obtained as an asynchronous
product of the components.

Figure 1 depicts a 3-PCS with a single channel and control states p and q. (A possible
configuration of the channel is depicted alongside.) Informally speaking, when in control
state q the PCS in Figure 1 can non-deterministically loop while writing the alphabet symbol
“3” to the channel (to its right end), or switch to control state q if “3” can be read from the
channel (from its left end). The key feature of PCSs is that messages with higher priority
can erase messages with lower priority, cf. the formal semantics given next.

2.1. Semantics. The operational semantics of a PCS S = (Σd, Ch, Q,∆) is given in terms of

a transition system. We let ConfS
def
= Q× (Σ∗d)

m be the set of all configurations of S, denoted
C,D, . . . in the following. A configuration C = (q, x1, . . . , xm) records an instantaneous
control state q ∈ Q and the contents of the m channels, i.e., sequences of messages from Σd.

4 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

A sequence x ∈ Σ∗d has the form x = a1 · · · a` and we let |x| = `. Concatenation is denoted
multiplicatively, with ε denoting the empty sequence.

The labeled transition relation between configurations, denoted C
δ−→ C ′, is generated

by the rules in ∆ = {δ1, . . . , δk}. From a technical perspective, it is convenient to define two
such transition relations, denoted −→rel and −→#.

2.1.1. Reliable Semantics. We start with −→rel that corresponds to “reliable” steps, or more
correctly steps with no superseding of lower-priority messages. As is standard, for a reading

rule of the form δ = (q, ci?a, q
′) ∈ ∆, there is a step C

δ−→rel C
′ if C = (q, x1, . . . , xm) and

C ′ = (q′, y1, . . . , ym) for some x1, y1, . . . , xm, ym such that xi = a yi and xj = yj for all j 6= i,

while for a writing rule δ = (q, ci!a, q
′) ∈ ∆, there is a step C

δ−→rel C
′ if yi = xi a and xj = yj

for all j 6= i. These reliable steps correspond to the behavior of queue automata, or (reliable)
channel systems, a Turing-powerful computation model [BZ83].

2.1.2. Internal-Superseding. The actual behavior of PCSs is obtained by extending reliable

steps with internal superseding steps, denoted C
ci#k−−→# C ′, which can be performed at any

time in an uncontrolled manner. Formally, for two words x, y ∈ Σ∗d and k > 0 in N, we write

x
#k−→# y

def⇔
(1) x can be decomposed as a1 · · · a` with ` > k;
(2) ak ≤ ak+1; and
(3) y = a1 · · · ak−1 ak+1 · · · a`.
In other words, the kth message in x is superseded by its immediate successor ak+1, with

the condition that ak is not of higher priority. We write x −→# y when x
#k−→# y for some k,

and use x←−# y when y −→# x. The transitive reflexive closure
∗←−# is called the superseding

ordering and is denoted by ≤#. Put differently, −→# is a rewrite relation over Σ∗d defined by
the following string rewriting system (see [BJW82]):

{a a′ → a′ | 0 ≤ a ≤ a′ ≤ d} . (2.1)

This is extended to steps between configurations by C
ci#k−−→# C ′ def⇔ C = (q, x1, . . . , xm),

C ′ = (q′, y1, . . . , ym), q = q′, xi
#k−→# yi, and xj = yj for j 6= i. Furthermore, every reliable

step is a valid step: for any rule δ, C
δ−→# C ′ if C

δ−→rel C
′, giving rise to a second transition

system associated with S: S#
def
= (ConfS ,−→#).

Example 2.2. The following is a valid path in the transition system induced by the PCS
from Figure 1:

(p, 0 3 0 0)
!1−→# (q, 0 3 0 0 1)

#3−→# (q, 0 3 0 1)
#1−→# (q, 3 0 1)

#2−→# (q, 3 1) .

Here, underlining is used to show which symbol, if any, is superseded in the next step.

Remark 2.3 (Lossy Channel Systems). Priority channel systems and lossy channel systems
are unreliable in the sense that uncontrolled rewrites may occur inside the channels. In the
case of LCSs, arbitrary message losses can take place. The semantics of the two classes
of systems thus differ quite a bit, however PCSs are easily seen to be able to encode LCS
computations (by interspersing channel contents with a higher-priority symbol; see Section 7
and in particular Figure 10).

THE POWER OF PRIORITY CHANNEL SYSTEMS 5

2.1.3. Write-Superseding Semantics. The internal-superseding semantics allows superseding
to occur at any time and anywhere in the channel. Another possible scenario considers
communications going through relays, network switches, or buffers, which handle incoming
traffic with a so-called write-superseding policy, where writes immediately supersede (i.e.,
erase) the congested messages in front of them. We develop this aspect here and prove the
two semantics to be essentially equivalent.

Let S = (Σd, Ch, Q,∆) be a d-PCS. We define a new transition relation, denoted −→w,

between the configurations of S, giving rise to a transition system Sw
def
= (ConfS ,−→w).

The relation −→w is a variant of −→# obtained by modifying the semantics of writing rules.
Formally, for δ = (q, ci!a, q

′) ∈ ∆, and for two configurations C = (q, x1, . . . , xm) and

C ′ = (q, y1, . . . , ym), there is a step C
δ−→w C ′ if xj = yj for all j 6= i and yi = z a for a

factorization xi = z z′ of xi where z′ ∈ Σ∗a, i.e., where z′ only contains messages from the
level-a priority subalphabet. In other words, after ci!a, the channel will contain a sequence
yi obtained from xi by appending a in a way that may drop (erase) any number of suffix
messages with priority ≤ a, hence the “z′ ∈ Σ∗a” requirement. The semantics of reading

rules is unchanged so that C
δ−→rel C

′ implies C
δ−→w C ′.

Example 2.4. The PCS from Figure 1 has the following write-superseding run:

(p, 0 3 0 0)
!1−→w (q, 0 3 1)

!3−→w (q, 0 3)
!3−→w (q, 0 3 3)

!3−→w (q, 3)
?3−→w (p, ε)

where in every configuration we underline the messages that will be superseded in the next
step (and where, for simplicity, we do not write the full rule δ on the steps). Observe that

(p, 0 3 0 0) 6 ∗−→w (q, 3 1), to be contrasted with the internal-superseding run (p, 0 3 0 0)
∗−→#

(q, 3 1) in Example 2.2. Under write-superseding, the occurrence of 3 that is initially in the
channel is not allowed to erase the 0 in front of it.

Compared to our standard PCS semantics, the write-superseding semantics adopts a
localized viewpoint where the protocol managing priority levels and handling congestions
resides at the sender’s end, and is not distributed all along the channels.

In the rest of this subsection, we show that the write-superseding is essentially equivalent
to the standard semantics, see Proposition 2.5. A consequence is that one can freely choose
to adopt either S# or Sw as their favorite operational semantics for priority channel systems.
In practice, we find it simpler to design and prove the correctness of some PCS—as we will
in Sections 5 and 7—when assuming the write-superseding semantics since it is less liberal
and easier to control. And we find it simpler to develop the formal theory of PCSs when
assuming the internal-superseding semantics since it is finer-grained.

Proposition 2.5. Let C0 = (q, ε, . . . , ε) be a configuration with empty channels, and Cf be

any configuration. Then C0
+−→w Cf if, and only if, C0

+−→# Cf .

The proof is organized in the three Lemmata 2.7–2.9 below.

Remark 2.6. Observe that the requirement of empty channels for C0 in Proposition 2.5
cannot be lifted, as illustrated with Example 2.4. However, using standard coding tricks
(e.g., storing initial channel contents in control states), one can reduce a reachability or
termination problem starting from an arbitrary initial configuration to the same question
starting from an empty-channel C0, and show its decidability by combining Proposition 2.5
and Theorem 2.13.

6 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Lemma 2.7 (From Sw to S#). If Sw has a run C
+−→w D then S# has a run C

+−→# D.

Proof. We show that −→w is contained in
+−→#, assuming for the sake of simplicity that S

has only one channel.

A writing step (p, x)
!a−→w (q, y) with x = z b1 · · · bj and y = z a in Sw can be simulated in

S# with (p, x)
!a−→# (q, z b1 · · · bj a)

#`−→# (q, z b1 bj−1)
#`−1−−→# · · ·

#k+1−−−→# (q, z a), where ` = |x|
and k = |z|. Reading steps simply coincide in Sw and S#.

In the other direction, one can translate runs in S# to runs in Sw as stated by following
lemma.

Lemma 2.8 (From S# to Sw). If S# has a run C
∗−→# D then Sw has a run C ′ ∗−→w D for

some C ′ ≤# C. In particular, if the channels are empty in C, then necessarily C ′ = C and

C
∗−→w D.

Proof. Again we assume that S has only one channel.

Write the run C
∗−→# D under the form C0 −→# C1 −→# · · · −→# Cn and rearrange its

steps so that superseding occurs greedily. This relies on Lemma 2.9 stated next without
proof.

Repeatedly applying Lemma 2.9 to transform C0
∗−→# Cn as long as possible is bound to

terminate (with each commutation, superseding steps are shifted to the left of reliable steps,

or the sum
∑

i ki of superseding positions in steps Ci−1
#ki−→# Ci increases strictly while

being bounded by O(n2) for a length-n run). One eventually obtains a new run C0
∗−→# Cn

with same starting and final configurations, and where all the superseding steps occur (at
the beginning of the run or) just after a write in normalized sequences of the form

C = (q, x)
!a−→#

#`−→#
#`−1−−→#

#`−2−−→# · · ·
#`−r−−→# C ′ , (2.2)

where furthermore ` = |x|. In this case, Sw has a step C
!a−→w C ′.

Greedily shifting superseding steps to the left may move some of them at the start of the
run instead of after a write: these steps are translated into C ≥# C ′ in Lemma 2.8. Finally,
the steps that are not in normalized sequences are reading steps which exist unchanged in
Sw.

Lemma 2.9 (Commuting #-steps).

(1) If C1
?a−→# C2

#k−→# C3 then there is a configuration C ′2 s.t. C1
#k+1−−−→# C ′2

?a−→# C ′′.

(2) If C1 = (q, x)
!a−→# C2

#k−→# C3 with k < |x|, then there is a configuration C ′2 s.t.

C1
#k−→# C ′2

!a−→# C3.

(3) If C1 = (q, x)
#k1−→# C2

#k2−→# C3 with k1 ≤ k2 then there is a configuration C ′2 s.t.

C1
#k2+1−−−→# C ′2

#k1−→# C ′′.

2.2. Priority Channel Systems are Well-Structured. Our main result regarding the
verification of PCSs is that they are well-structured systems, which entails the decidability of
standard decision problems via the generic decidability results from [AČJT00, FS01, SS13].
Let us first recall the definitions of well-quasi-orders and well-structured systems.

THE POWER OF PRIORITY CHANNEL SYSTEMS 7

Definition 2.10 (wqo). Let (A,≤A) be a quasi order. Then (A,≤A) is a well-quasi-order
(wqo) if for any infinite sequence x0, x1, x2, . . . over A there exists two indices i < j such
that xi ≤A xj .

A simple example of a wqo is any finite set Σ with equality (Σ,=), thanks to the
pigeonhole principle. More generally, complex wqos can be build from simpler ones by
algebraic operations [SS12]. Let (A1,≤A1) and (A2,≤A2) be wqos:

• Their disjoint sum A1 +A2
def
= {〈x, i〉 | i ∈ {1, 2} and x ∈ Ai} is well-quasi-ordered by the

sum ordering ≤+ defined by 〈x, i〉 ≤+ 〈y, j〉 def⇔ i = j and x ≤Ai y.

• Their Cartesian product A1 ×A2
def
= {〈x, y〉 | x ∈ A1 and y ∈ A2} is well-quasi-ordered by

the product ordering ≤× defined by 〈x, y〉 ≤× 〈x′, y′〉 def⇔ x ≤A1 x
′ and y ≤A2 y

′. This is
also known as Dickson’s Lemma.
• The Kleene star A∗1, i.e., the set of finite sequences over A1 is well-quasi-ordered by the

substring embedding relation ≤∗ defined by x ≤∗ y def⇔ x = a1 · · · a`, y = y0 b1 y1 · · · y` b` y`+1

for some ai, bi in A, some yi in A∗, and such that ai ≤A1 bi for every 1 ≤ i ≤ `. This is
known as Higman’s Lemma, and is instrumental in the study of lossy channel systems (cf.
Section 6).

Definition 2.11 (WSTS). A well-structured (transition) system (WSTS) is a tuple S =
(A,−→,≤A) with −→ ⊆ A×A such that

(1) (A,≤A) is a wqo; and
(2) −→ is compatible with respect to ≤A, i.e., if x −→ y and x ≤A x′ then there is some y′

such that x′ ∗−→ y′ and y ≤A y′.
A WSTS enjoys a stronger stuttering compatibility if the second condition is altered to

require x′ +−→ y′, see [FS01, Definition 4.4]. Let S = (Σd, Ch, Q,∆) be a PCS, we define

the following order on configurations of S: C ≤# D
def⇔ C is some (p, y1, . . . , ym) and D

is (p, x1, . . . , xm) with xi ≤# yi for all i = 1, . . . ,m. Equivalently, C ≤# D if C can be
obtained from D by internal superseding steps.

Theorem 2.12 (PCSs are WSTSs). For any PCS S, S# = (ConfS ,−→#,≤#), i.e., the
transition system S# with configurations ordered by ≤#, is a well-structured system with
stuttering compatibility.

Proof. We have to show that the two conditions required in Definition 2.11 hold. Proving
that (ConfS ,≤#) is a well-quasi-ordering is the topic of Section 3 and will be established in
a more general setting in Theorem 3.6.

Checking stuttering compatibility is trivial with the ≤# ordering. Indeed, assume that
C ≤# C ′ and that C −→# D is a step from the “smaller” configuration. Then in particular

C ′ ∗−→# C by definition of −→#, so that clearly C ′ +−→# D and C ′ can simulate any step from
C.

A consequence of the well-structuredness of PCSs is the decidability of several natural
verification problems. In this paper we focus on “Reachability,” aka “Safety” when we
want to check that a configuration is not reachable: given a PCS, an initial configuration

C0, and a recursive set of configurations G ⊆ ConfS , does C0
∗−→# D for some D ∈ G?

Another decision problem is “Inevitability,” i.e. to decide whether all maximal runs from C0

eventually visit G, which includes “Termination” as a special case.

8 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Theorem 2.13. Reachability and Inevitability are decidable for PCSs.

Proof (Sketch). In order to apply the generic WSTS algorithms from [FS01], we have to prove
that the order ≤# is decidable, and that the set of immediate successors of a configuration
and the minimal immediate predecessors of an upward-closed set are computable.

Deciding the ordering ≤# between configurations is in NLogSpace; the proof of this
fact is the purpose of Remark 3.7. Moreover, the operational semantics is finitely branching
and effective, i.e., one can compute the immediate successors of a configuration and the
minimal immediate predecessors of an upward-closed set.

We note that Reachability and Coverability coincide (even for zero-length runs when

C0 has empty channels) since
+−→# coincides with ≥# ◦ +−→#, and that the answer to a

Reachability question only depends on the (finitely many) minimal elements of G. One can
even compute Pre∗(G) for G given, e.g., as a regular subset of ConfS .

For Inevitability, the algorithms in [AČJT00, FS01] assume that G is downward-closed

but, in our case where
+−→# and ≥# ◦ +−→# coincide, decidability can be shown for arbitrary

(recursive) G, as in [Sch10a, Theorem 4.4].

3. Priority Embedding

In this section we establish that the superseding ordering ≤# on words enjoys the well-
quasi-ordering properties we require for reasoning about PCSs. In order to keep our results
generic, as already stated at the beginning of Section 2, we establish those properties over
an alphabet that is more general than the one introduced in Definition 2.1. Instead of
allowing for messages consisting merely of priorities, we allow for messages over an arbitrary
well-quasi-ordering to be tagged with priority numbers. This is in line with the algebraic
operations on wqos presented at the beginning of Section 2.2.

Definition 3.1 (Generalized Priority Alphabet). Let d ∈ N be a priority level and let

(Γ,≤Γ) be a well-quasi-order, a generalized level-d priority alphabet over Γ is Σd,Γ
def
= {(a,w) |

0 ≤ a ≤ d,w ∈ Γ}.
Subsequently, we call Σd,Γ a generalized priority alphabet for brevity. In analogy to the

internal superseding steps in Section 2.1, we define the generalized priority relation −→#,Γ

over finite strings in Σ∗d,Γ via a string rewriting system with the following two families of
rule schemata:

{(a,w)(a′, w′) −→#,Γ (a′, w′) | a ≤ a′, w ∈ Γ} , (3.1)

{(a,w) −→#,Γ (a,w′) | w′ ≤Γ w} . (3.2)

Informally speaking, the first line states that a string can be rewritten if some higher-priority
message supersedes a lower priority message, and the second that any message can be
rewritten to a message that is below in the wqo (Γ,≤Γ).

We define ≤#,Γ
def
=

∗←−#, i.e., ≤#,Γ is the reflexive transitive closure of the inverse of
−→#,Γ. The main purpose of this section is to prove that (Σ∗d,Γ,≤#,Γ) is a well-quasi-ordering,
cf. Definition 2.11. To this end, we will first establish a characterization of ≤#,Γ via an
embedding relation and subsequently prove that the obtained priority embeddings yield a
well-quasi-ordering.

THE POWER OF PRIORITY CHANNEL SYSTEMS 9

Before we continue, let us remark that the priority alphabet in Definition 2.1 and the
relation −→# from Section 2.1 are obtained by considering (Γ,=) for some singleton set
Γ. Whenever we drop the index Γ, we implicitly refer to this well-quasi-ordering. Letting
Γ be a finite set of messages represented as strings and ≤Γ the identity relation yields a
generalized priority alphabet where a priority can be assigned to each message. Such an
alphabet underlies for instance the well-quasi-ordering that we will later use for showing
that planar planted trees are well-quasi-ordered under minors, cf. Section 8.2. Another
example is Γ = Σ∗ for some finite alphabet Σ and where ≤Γ is the substring embedding,
which allows for representing unbounded messages on a lossy channel which are tagged with
a priority level. Finally, we wish to mention that for a generalized priority alphabet Σd,Γ, if
we wish to apply Σd,Γ in a PCSs, for Theorem 2.13 to hold, (Γ,≤Γ) has to fulfill the same
properties: ≤Γ should be decidable, and the set of immediate successors of a configuration
and the minimal immediate predecessors of an upward-closed set should be computable.

3.1. Embedding with Priorities. We define here an embedding relation between finite
strings over a generalized priority alphabet Σ∗d,Γ. We are inspired in this by a coarser gap

embedding relation defined by Schütte and Simpson [SS85], who use it to derive a “natural”
formal statement undecidable in Peano arithmetic—the totality of the function Hε0 defined
later in Section 4 is another well-known example of such a statement. Besides refining the
gap embedding relation to match the superseding ordering, we also extend it to handle an
underlying wqo (Γ,≤Γ).

Given x, y ∈ Σ∗d,Γ, we define the generalized priority embedding vp,Γ by

x vp,Γ y
def⇔





x is some (a1, v1) · · · (a`, v`)
y is some y1 (a1, w1) y2 (a2, w2) · · · y` (a`, w`)
such that ∀i = 1, . . . , ` : yi ∈ Σ∗ai,Γ and vi ≤Γ wi .

For example, in the singleton case, 201 vp 22011 but 120 6vp 10210, since factoring 10210
as z11z22z30 would require z3 = 1 6∈ Σ∗0. If x vp y then x is a subword of y and x can be
obtained from y by removing factors of messages with priority not above the first preserved
message to the right of the factor. Observe that vp,Γ is similar (but not equivalent) to the
Higman subword embedding for d = 0. From the definition above, we get the following
properties which we will implicitly use subsequently:

ε vp,Γ y iff y = ε , (3.3)

x1 vp,Γ y1, x2 vp,Γ y2 imply x1 x2 vp,Γ y1 y2 , (3.4)

x1 x2 vp,Γ y implies ∃y1 wp,Γ x1 : ∃y2 wp,Γ x2 : y = y1 y2 , (3.5)

v ≤Γ w implies ∀0 ≤ a ≤ d : ∀z ∈ Σ∗a,Γ : (a, v) vp,Γ z(a,w) . (3.6)

Lemma 3.2. Let Σd,Γ be a generalized priority alphabet. Then (Σ∗d,Γ,vp,Γ) is a quasi-
ordering.

Proof. We have to show that (Σ∗d,Γ,vp,Γ) is reflexive and transitive. Reflexivity is obvious
from the definition of vp,Γ. Regarding transitivity, let x, y, z ∈ Σ∗d,Γ be such that x vp,Γ

y vp,Γ z and write x = (a1, u1) · · · (a`, u`). Since x vp,Γ y, by definition we can write y =
y1(a1, v1) · · · y`(a`, v`), where ui ≤Γ vi and each yi = (b1,i, v1,i) · · · (bmi,i, vmi,i) ∈ Σ∗ai,Γ for all

1 ≤ i ≤ `. Consequently, since y vp,Γ z, we can decompose z as z = z1(a1, w1) · · · z`(a`, w`),

10 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

where each zi is of the form

zi = z1,i(b1,i, w1,i) · · · zmi,i(bmi,i, wmi,i)z′i.
Since each (bj,i, wj,i) ∈ Σ∗ai,Γ, by definition of vp,Γ we have zi ∈ Σ∗ai,Γ, hence the above
decomposition of z in particular yields x vp,Γ z.

The generalized priority embedding acts as a relational counterpart to the more opera-
tional generalized superseding ordering. In fact ≤#,Γ and vp,Γ coincide, as shown by the
next lemma.

Lemma 3.3. For any x, y ∈ Σ∗d,Γ, x≤#,Γ y if, and only if, x vp,Γ y.

Proof. In the following, write x as x = (a1, v1) · · · (ak, vk).
Suppose x ≤#,Γ y, i.e., y

∗−→#,Γ x. We show x vp,Γ y by induction on the number of
superseding steps. The base case where no superseding occurs entails x = y and we rely on

the reflexivity of vp,Γ. For the induction step, let y −→#,Γ z such that z
∗−→#,Γ x. By the

induction hypothesis, x vp,Γ z, i.e., z can be factored as z = z1(a1, w1) · · · zk(ak, wk) such
that zi ∈ Σ∗ai,Γ and vi ≤Γ wi for all 1 ≤ i ≤ k. We do a case distinction on which rewriting
rule is applied in order to obtain y −→#,Γ z:

• If y −→#,Γ z via (3.1) then y is obtained from z by replacing some zj = zj,1 · · · zj,`j
with z′j = zj,1 · · · zj,i−1(b, w)zj,i · · · zj,`j for some 1 ≤ i ≤ `j + 1, 1 ≤ j ≤ k and

(b, w) such that in particular b ≤ aj , and hence z′j ∈ Σ∗aj ,Γ. Thus y factors as y =

z1(a1, w1) · · · z′j(aj , wj) · · · zk(ak, wk), which allows us to conclude that x vp,Γ y.

• If y −→#,Γ z via (3.2), y is obtained by replacing some (a,w) occurring in z with (a,w′)
for some w′ ≥Γ w. By transitivity of ≤Γ, x vp,Γ y follows immediately.

Conversely, assume x vp,Γ y: then y factors as y = y1(a1, w1) · · · yk(ak, wk). Since for
every (a,w) occurring in some yi we have a ≤ ai, by repeatedly applying (3.1) we have
y −→∗#,Γ z = (a1, w1) · · · (ak, wk). Moreover, vi ≤Γ wi for all 1 ≤ i ≤ k, and thus by repeated

application of (3.2) we get z −→∗#,Γ x, as required.

3.2. Priority Embedding is a Well-Quasi-Ordering. The purpose of this section is to
prove that vp,Γ is a well-quasi-ordering. By application of Lemma 3.3, this entails that ≤#,Γ

is a well-quasi-ordering as well. We rely for this on the algebraic operations presented in
Section 2.2, and on a classical tool from wqo theory, namely order reflections:

Definition 3.4 (Order Reflection). Let (A,≤A) and (B,≤B) be two quasi-orders. An order
reflection is a mapping r:A→ B such that r(x) ≤B r(y) implies x ≤A y.

The following is folklore (and easy to see):

Fact 3.5. Let (A,≤A) and (B,≤B) be two quasi-orders and r be an order reflection A→ B.
If (B,≤B) is a wqo, then (A,≤A) is a wqo.

In the following, we define the height of a sequence x ∈ Σ∗d,Γ, written h(x), as being

the highest priority occurring in x. By convention, we let h(ε)
def
= −1. Thus, x ∈ Σ∗h,Γ if

and only if h ≥ h(x), and we further let Σ−1,Γ
def
= ∅. Any x ∈ Σ∗d,Γ has a unique canonical

factorization x = x0(h, v1)x1 · · ·xm−1(h, vm)xm where m is the number of occurrences of
h = h(x) in x and where the m+ 1 residuals x0, x1, . . . , xm are in Σ∗h−1,Γ.

THE POWER OF PRIORITY CHANNEL SYSTEMS 11

Theorem 3.6. Let Σd,Γ be a generalized priority alphabet. Then (Σ∗d,Γ,vp,Γ) is a well-quasi-
ordering.

Proof. We proceed by induction on d. For the base case d = −1, i.e. for the empty priority
alphabet, (Σ∗−1,Γ,vp,Γ) = ({ε},=) is a wqo.

For the induction step, a word x ∈ Σ∗d,Γ is either in Σ∗d−1,Γ, or it has height h(x) = d
and then the canonical height factoring lets us write x under the form

x = x0(d, v1)x1 · · ·xm−1(d, vm)xm (3.7)

with residuals xi ∈ Σ∗d−1,Γ for all 0 ≤ i ≤ m. By the induction hypothesis, (Σ∗d−1,Γ,vp,Γ) is
a well-quasi-ordering. We exhibit an order reflection r: Σ∗d,Γ → Θd,Γ, where

Θd,Γ
def
= Σ∗d−1,Γ + Σ∗d−1,Γ × (({d} × Γ)× Σd−1,Γ)∗ × ({d} × Γ)× Σ∗d−1,Γ. (3.8)

Since Θd,Γ is obtained from the well-quasi-orders (Σ∗d−1,Γ,vp,Γ), (Γ,≤Γ), and ({d},=) by
disjoint sum, Cartesian product, and substring embedding, Fact 3.5 will allow us to conclude
that (Σ∗d,Γ,vp,Γ) is a well-quasi-order. To this end, for x and m as above, if m > 0 we define

r(x)
def
=
(
x0,
[
((d, v1), x1) · · · ((d, vm−1), xm−1)

]
, (d, vm), xm

)
, (3.9)

and r(x)
def
= x0 = x if m = 0. We need to verify that, whenever r(x) 4 r(y) with respect

to the ordering 4 associated with Θd,Γ by the algebraic operations, then x vp,Γ y. This is
obvious when both r(x) = x and r(y) = y are in Σ∗d−1,Γ. Otherwise, let r(x) be as in (3.9)
and write

r(y) =
(
y0,
[
((d,w1), y1) · · · ((d,wn−1), yn−1)

]
, (d,wn), yn

)
.

Since r(x) 4 r(y), from the product ordering we obtain

x0 vp,Γ y0 , (3.10)

vm ≤Γ wn, and xm vp,Γ yn, while from the subword ordering we obtain the existence of
indices 1 ≤ i1, . . . , im−1 < n such that vj ≤Γ wij and xj vp,Γ yij for all 0 < j < m. Setting

i0
def
= 0 and im

def
= n, observe that by (3.4) and (3.6),

(d, vj)xj vp,Γ (d,wij−1+1)yij−1+1 · · · yij−1(d,wij)yij (3.11)

for all 0 < j ≤ m, which together with (3.10) and (3.4) implies x vp,Γ y as desired.

Remark 3.7. Theorem 3.6 and Lemma 3.3 prove that ≤# is a wqo on configurations of
PCSs, as we assumed in Section 2.2. There we also assumed that ≤# is decidable. We
can now see that it is in NLogSpace, since, in view of Lemma 3.3, one can check whether
x ≤# y by reading x and y simultaneously while guessing nondeterministically a factorization
z1a1 · · · z`a` of y, and checking that zi ∈ Σ∗ai .

12 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

4. Fast-Growing Upper Bounds

The verification of infinite-state systems, and WSTSs in particular, often turns out to require
astronomic computational resources expressed as subrecursive functions [LW70, FW98] of
the input size. We show in this section how to bound the complexity of the algorithms
presented in Section 2.2 and classify the Reachability and Inevitability problems for PCSs
using fast-growing complexity classes [Sch13].

To this end, we first provide the necessary background on subrecursive functions in
Section 4.1. The heart of the upper bound proof is a specialized Length Function Theorem
for (Σ∗d,Γ,vp,Γ), obtained in Section 4.2 by instrumenting the proof of Theorem 3.6 and

applying the generic Length Function Theorem from [SS11]. This allows us to derive Fε0

upper bounds and new combinatorial algorithms for PCS verification in Section 4.3.

4.1. Subrecursive Hierarchies. Throughout this paper, we use ordinal terms inductively
defined by the following grammar

(Ω 3) α, β, γ ::= 0 | ωα | α+ β

where addition is associative, with 0 as the neutral element (the empty sum). Such a term

α =
∑k

i=0 ω
αi is 0 if k = 0, otherwise a successor if αk = 0 and a limit otherwise. We often

write 1 as short-hand for ω0, and ω for ω1. The symbol λ is reserved for limit ordinal terms.
We can associate a set-theoretic ordinal o(α) with each term α by interpreting +

as the direct sum operator and ω as N; this gives rise to a well-founded quasi-ordering

α < β
def⇔ o(α) < o(β). A term α =

∑k
i=1 ω

αi is in Cantor normal form (CNF) if
α1 ≥ α2 ≥ · · · ≥ αk and each αi is itself in CNF for i = 1, . . . , k. Terms in CNF and set-
theoretic ordinals below ε0 are in bijection; it will however be convenient later in Section 5
to consider terms that are not in CNF.

With any limit term λ, we associate a fundamental sequence of terms (λn)n∈N:

(γ + ωβ+1)n
def
= γ + ωβ · n = γ +

n︷ ︸︸ ︷
ωβ + · · ·+ ωβ , (γ + ωλ

′
)n

def
= γ + ωλ

′
n .

(4.1)

This yields λ0 < λ1 < · · · < λ for any λ, with furthermore λ = limn∈N λn. For instance,
ωn = n, (ωω)n = ωn, etc. Note that λn is in CNF when λ is.

We need to add a term ε0 to Ω to represent the set-theoretic ε0, i.e., the smallest
solution of x = ωx. We take this term to be a limit term as well; we define the fundamental

sequence for ε0 by (ε0)n
def
= Ωn, where for n ∈ N, we use Ωn as short-hand notation for the

ordinal ωω
···ω
}
n stacked ω’s, i.e., for Ω0

def
= 1 and Ωn+1

def
= ωΩn .

4.1.1. Inner Recursion Hierarchies. Our main subrecursive hierarchy is the Hardy hierarchy.
Given a monotone expansive unary function h:N→ N, it is defined as an ordinal-indexed
hierarchy of unary functions (hα:N→ N)α through

h0(n)
def
= n , hα+1(n)

def
= hα

(
h(n)

)
, hλ(n)

def
= hλn(n) . (4.2)

Observe that h1 is simply h, and more generally hα is the αth iterate of h, using diagonal-
ization to treat limit ordinals.

A case of particular interest is to choose the successor function H(n)
def
= n + 1 for

h. Then the fast growing hierarchy (Fα)α can be defined by Fα
def
= Hωα , resulting in

THE POWER OF PRIORITY CHANNEL SYSTEMS 13

F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn(n) = 2n, F2(n) = Hω2
(n) = 2nn being

exponential, F3 = Hω3
being non-elementary, Fω = Hωω being an Ackermannian function,

Fωk a k-Ackermannian function, and Fε0 = Hε0 ◦H a function whose totality is not provable
in Peano arithmetic [FW98].

4.1.2. Fast-Growing Complexity Classes. Our intention is to establish the “Fε0 completeness”
of verification problems on PCSs. In order to make this statement more precise, we define
the class Fε0 as a specific instance of the fast-growing complexity classes defined for α ≥ 3
by [Sch13]

Fα
def
=

⋃

p∈⋃β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃

c<ω

FDTime(F cα(n)) , (4.3)

where the class of functions Fα as defined above is the αth level of the extended Grzegorczyk
hierarchy [LW70] when α ≥ 2.

The latter hierarchy of function classes (Fα)α is well-established [LW70, FW98]. The
class Fα is the set of functions computable in time F cα, a finite iterate of Fα. In particular,
F2 is the set of elementary functions,

⋃
α<ω Fα the set of primitive-recursive functions, while⋃

α<ε0
Fα is exactly the set of ordinal-recursive (aka “provably recursive”) functions [FW98].

The complexity classes (Fα)α are more recent [Sch13]: Fα is the set of decision problems
that can be solved in time Fα ◦ p for some p in

⋃
β<α Fβ. Each Fα is naturally equipped

with
⋃
β<α Fβ as classes of reductions. For instance, F2 is the set of elementary functions,

and F3 the class of problems whose complexity is bounded by a tower of exponentials of
height given by some elementary function of the input.1

4.2. The Length of Controlled Bad Sequences. A finite or infinite sequence x0, x1, . . .
over a quasi-order (A,≤A) is called bad if, for all indices i < j, xi 6≤A xj . Definition 2.10
can thus be restated by saying that (A,≤A) is a wqo if and only if every bad sequence over
A is finite. In order to bound the complexity of the algorithms from Theorem 2.13, we wish
to bound the lengths of bad sequences over the wqo (ConfS ,≤#). More precisely, the main
issue here is to bound the length of bad sequences over (Σ∗d,vp); we actually work in the
more general case of (Σ∗d,Γ,vp,Γ).

4.2.1. Controlled Sequences. We employ to this end the framework and results of [SS11].
The first observation is that bad sequences over (Σ∗d,vp) can be of arbitrary length: for
every N > 0, the sequence

1, 0N , 0N−1, . . . , 0

is indeed a bad sequence of length N + 1 over (Σ∗1,vp). Thankfully, what we are looking for
are not general bounds over all the bad sequences, but over the kind of sequences that arise
in the algorithms of Theorem 2.13: in particular, the bounds can take into account how fast
the lengths of the strings in the sequence can grow. Define a normed wqo as a wqo (A,≤A)
further equipped with a norm |.|A:A→ N. As a sanity condition, we ask for

A≤n
def
= {x ∈ A | |x|A ≤ n} (4.4)

1Note that, at such high complexities, the usual distinctions between deterministic vs. nondeterministic,
or time-bounded vs. space-bounded computations become irrelevant.

14 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

to be finite for each n.
The wqos introduced in Section 2.2 can be normed for instance by

|a|Σ def
= 0 , |〈x, i〉|A1+A2

def
= |x|Ai ,

|〈x, y〉|A1×A2

def
= max(|x|A1 , |y|A2) , |x1 · · ·x`|A∗1

def
= max

1≤i≤`
(`, |xi|A1) ,

where (Σ,=) denotes a finite set with equality. For (Σ∗d,Γ,vp,Γ), we choose similarly

|(a1, w1) · · · (a`, w`)|Σ∗d,Γ
def
= max

1≤i≤`
(`, |wi|Γ) , (4.5)

where we assume (Γ,≤Γ) to be normed by |.|Γ. By the definition above, this simplifies to

|(a1, w1) · · · (a`, w`)|Σ∗d,Γ = ` (4.6)

when Γ is finite.
Let g:N→ N be a strictly monotone function (hereafter called a control function), and n

be a non-negative integer. A sequence x0, x1, . . . over (A,≤A, |.|A) is (g, n)-controlled if, for
all i, |xi|A ≤ gi(n), the ith iterate of g on n. Note in particular that this entails |x0|A ≤ n.
Given an algorithm that relies on (A,≤A) being a wqo for its termination, i.e., on the fact
that bad sequences over (A,≤A) are finite, the intuition is that g should bound how fast
the norm of the elements in our bad sequences can grow, and n should bound the norm of
the initial element. As shown in [SS11], for a given g and n, bad (g, n)-controlled sequences
over (A,≤A, |.|A) have a maximal length denoted LA,g(n).

4.2.2. Normed Reflections. The Length Function Theorem in [SS11] provides suitable sub-
recursive upper bounds on the function LA,g when A is constructed using the elementary
wqo algebra that allows disjoint unions, Cartesian products and Kleene star to be used over
finite sets. We are going to exploit these bounds together with the order reflection employed
in the proof of Theorem 3.6 to obtain a bound on LΣ∗d,Γ,g.

A reflection r:A→ B between two normed wqos (A,≤A, |.|A) and (B,≤B, |.|B) is normed
if |r(x)|B ≤ |x|A for all x in A. We write “A ↪→ B” if there exists such a normed reflection
from A to B. Observe that, if x0, x1, . . . is a (g, n)-controlled bad sequence over A, then
r(x0), r(x1), . . . is also a (g, n)-controlled bad sequence, this time over B. Thus A ↪→ B
implies LA,g ≤ LB,g, i.e., LA,g(m) ≤ LB,g(m) for all m ∈ N.

One can check, using induction on d, that the reflection r: Σ∗d,Γ → Θd,Γ used in the proof

of Theorem 3.6 is normed. If x is in Σ∗d−1,Γ, then r(x) = x itself with |x|Σ∗d,Γ = |r(x)|Θd,Γ .

Otherwise, let x be factorized as in (3.7); r(x) is given in (3.9). Then on the one hand

|x|Σ∗d,Γ = max
0≤j<k≤m

(
m+

m∑

i=0

|xi|, |vk|Γ, |xj |Σ∗d−1,Γ

)
, (4.7)

while on the other hand

|r(x)|Θd,Γ = max
(
|x0|Σ∗d−1,Γ

, max
1≤i≤m−1

(m− 1, |vi|Γ, |xi|Σ∗d−1,Γ
), |wm|Γ, |xm|Σ∗d−1,Γ

)
, (4.8)

which indeed satisfy

|x|Σ∗d,Γ ≥ |r(x)|Θd,Γ , (4.9)

THE POWER OF PRIORITY CHANNEL SYSTEMS 15

thanks to the ind. hyp. Therefore Σ∗d,Γ ↪→ Θd,Γ for all d,Γ. Define now

Θ′−1,Γ
def
= 1 Θ′d,Γ

def
= Θ′d−1,Γ + Θ′d−1,Γ × (Γ×Θ′d−1,Γ)∗ × Γ×Θ′d−1,Γ , (4.10)

where 1 denotes the singleton set. Since ↪→ is a precongruence for the elementary algebraic
operations [SS11, Proposition 3.5], we deduce that Σ∗d,Γ ↪→ Θ′d,Γ and thus

LΣ∗d,Γ,g ≤ LΘ′d,Γ,g
(4.11)

for all normed wqos Γ, all d, and all control functions g. Assuming (Γ,≤Γ, |.|Γ) to be
elementary, then each Θ′d,Γ is also elementary, i.e. we are going to be able to apply the
Length Function Theorem to it and derive an upper bound for LΘ′d,Γ,g

, and thereby for

LΣ∗d,Γ,g.

4.2.3. Maximal Order Types. The version of the Length Function Theorem we wish to
apply requires the computation of the maximal order type of Θ′d,Γ. This is a measure

of the complexity of a wqo (A,≤A) defined in [dJP77] as the maximal order type of its
linearizations: a linearization ≺ of ≤A is a total linear ordering over A that contains ≤A \ ≥A
as a subrelation. Any such linearization of a wqo is well-founded and thus isomorphic to
an ordinal, called its order type, and the maximal order type of (A,≤A) is therefore the
maximal such ordinal.

De Jongh and Parikh [dJP77] provide formulæ to compute the maximal order types
of elementary wqos based on their algebraic decompositions as disjoint sums, Cartesian
products, and Kleene star—using respectively the sum ordering, the product ordering, and
the subword embedding ordering—:

o(A+B) = o(A)⊕ o(B) ,

o(A×B) = o(A)⊗ o(B) ,

o(A∗) =

{
ωω

o(A)−1
if A is finite,

ωω
o(A)

otherwise.

Here, the ⊕ and ⊗ operations are the natural sum and natural product on ordinals, defined
for ordinals in CNF in ε0 by

m∑

i=1

ωβi ⊕
n∑

j=1

ωβ
′
j

def
=

m+n∑

k=1

ωγk ,
m∑

i=1

ωβi ⊗
n∑

j=1

ωβ
′
j

def
=

m⊕

i=1

n⊕

j=1

ωβi⊕β
′
j , (4.12)

where γ1 ≥ · · · ≥ γm+n is a reordering of β1, . . . , βm, β
′
1, . . . , β

′
n.

Schütte and Simpson [SS85] compute the exact maximal order type of a wqo related to
(Σ∗d,vp). Here we are content with the maximal order type of Θ′d,Γ (which also provides an

upper bound on o(Σ∗d,Γ)). By (4.11) and [SS11, Proposition 5.2], we obtain:2

Proposition 4.1 (Length Function Theorem for Σ∗d,Γ). Let d ∈ N and assume Γ is an
elementary wqo and g is a control function. Then there exists a polynomial p independent of

d,Γ, g such that LΣ∗d,Γ, g ≤ (p ◦ g)o(Θ
′
d,Γ).

2To be precise, [SS11, Proposition 5.2] only provides bounds for exponential wqos—where there are no
nested applications of the Kleene star operation—but it can be generalized to elementary wqos.

16 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

4.2.4. Finite Alphabets and Successor Control. Proposition 4.1 is more general than useful for
deriving upper bounds on PCSs verification. Even if we use a generalized priority alphabet
in our PCSs, by allowing read and write rules to manipulate pairs in Σd,Γ instead of only
priorities in Σd, we can safely assume that the underlying alphabet Γ is finite and part of the

input, with maximal order type o(Γ) = |Γ|. Similarly, the successor function H(x)
def
= x+ 1

can be chosen for the control function g, thus p ◦ g in Proposition 4.1 is simply a polynomial.
We can furthermore simplify the ordinal index in Proposition 4.1. First note that

o(Θ′d,Γ) < (Ω2(d+1)+1)|Γ| (4.13)

for all d in N, where (Ω2(d+1)+1)|Γ| = ω···
ω|Γ|
}

2(d+ 1) stacked ω’s. Second, an ordinal term
α in CNF can be written as α = ωα1 · c1 + · · · + ωαm · cm for α > α1 > · · · > αm
and 0 < c1, . . . , cm < ω. We define then inductively its maximum coefficient N(α) as
max(N(α1), . . . , N(αm), c1, . . . , cm). Observe that for all d in N,

N(o(Θ′d,Γ)) ≤ |Γ| . (4.14)

The following simplified statement then holds:

Corollary 4.2. Let d ∈ N and Γ be a finite non-empty alphabet. Then there exists a
polynomial h independent of d,Γ such that LΣ∗d,Γ,H(n) ≤ hΩ2(d+1)+1(n) for all n ≥ |Γ|.

Proof. By Proposition 4.1 it suffices to show that ho(Θ
′
d,Γ)(n) ≤ hΩ2(d+1)+1(n) for all n ≥

|Γ| > 0. We show instead ho(Θ
′
d,Γ)(n) ≤ h(Ω2(d+1)+1)|Γ|(n) since it allows to conclude. By

monotonicity of the Hardy functions in the ordinal index for the pointwise ordering—see
[FW98, Theorem 2.21.2] or [SS12, Lemma A.10]—it suffices to show that o(Θ′d,Γ) �|Γ|(
Ω2(d+1)+1

)
|Γ| using the notation of [SS12], which is entailed by (4.13–4.14) and [SS12,

Lemma A.5].

4.3. Complexity Upper Bounds. Now that we are armed with a Length Function Theo-
rem for (Σ∗d,Γ,vp,Γ), we can prove an upper bound for PCS verification:

Theorem 4.3 (Complexity of PCS Verification). Reachability and Inevitability of PCSs are
in Fε0.

Let us explain the steps towards an upper bound for Termination in some detail; the
results for Reachability and Inevitability are similar but more involved—see [SS12, SS13]
for generic complexity arguments for WSTSs.

A Finite Witness. Observe that, if an execution C0 −→# C1 −→# C2 −→# · · · of the transition
system S# satisfies Ci ≤# Cj for some indices i < j, then because S# is a WSTS, we can
simulate the steps performed in this sequence after Ci but starting from Cj and build an
infinite run. Conversely, if the system does not terminate, i.e. if there is an infinite execution
C0 −→# C1 −→# C2 −→# · · · , then because of the wqo we will eventually find i < j such that
Ci ≤# Cj . Therefore, the system is non-terminating if and only if there is a finite witness of

the form C0
∗−→# Ci

+−→# Cj with Ci ≤# Cj .

THE POWER OF PRIORITY CHANNEL SYSTEMS 17

Controlled Witnesses. Another observation is that the size of successive configurations
cannot grow arbitrarily along runs; in fact, the length of the channels contents can only
grow by one symbol at a time using a write transition. This means that if we define
|C = (q, x1, . . . , xm)| =

∑m
j=1 |xj |, then in an execution C0 −→# C1 −→# C2 −→# · · · ,

|Ci| ≤ |C0|+ i = H i(|C0|), i.e. any execution is controlled by the successor function H.

Applying the Length Function Theorem. Corollary 4.2 yields an hΩ2(d+1)+1(|C0|+ |Γ|) up-
per bound on the length of bad (H, |C0|)-controlled sequences over (Σ∗d,Γ,vp,Γ) for some
polynomial h. It can be lifted to bound the maximal length of a witness in S#, when

considering instead the ordinal oS
def
= (Ω2(d+1)+1)m · |Q|. Setting |S| = |∆|+ |Q|+d+m+ |Γ|,

we see that this length is less than Hε0 (p(|S|+ |C0|)) < Fε0 (p(|S|+ |C0|)) for some fixed
ordinal-recursive function p.

A Combinatorial Algorithm. Since the functions (hα)α are elementary constructive [Sch13,
Theorem 5.1], the above discussion yields a non-deterministic algorithm in Fε0 for Termina-
tion: compute L = hoS (|C0|+ |Γ|) and look for an execution of length L+ 1 in S#. If one
exists, it is necessarily a witness for nontermination; otherwise, the system is guaranteed to
terminate from C0.

We call this a combinatorial algorithm, as it relies on the combinatorial analysis provided
by the Length Function Theorem to derive an upper bound on the size of a finite witness
for the property at hand—here Termination, but the same kind of techniques can be used
for Reachability and Inevitability.

5. Hardy Computations by PCSs

In this section we show how PCSs can weakly compute the Hardy functions Hα and their
inverses for all ordinals α below Ω, which is the key ingredient for Theorem 5.8 below stating
our hardness result. For this, we develop in Section 5.1 encodings s(α) ∈ Σ∗d for ordinals
α ∈ Ωd and show how PCSs can compute with these codes, e.g. build the code for λn from
the code of a limit λ. This is used in Section 5.3 to design PCSs that weakly compute Hα

and (Hα)−1 in the sense of Definition 5.5 below.

5.1. Encoding Ordinals. Our encoding of ordinal terms as strings in Σ∗d employs strings
of a particular form. For 0 ≤ a ≤ d, we use the following equation to define the language
Ca ⊆ Σ∗d of codes:

Ca
def
= ε+ CaCa−1a , C−1

def
= ε . (5.1)

Let C = C−1 + C0 + · · · + Cd. Each Ca (and then C itself) is a regular language, with
Ca = (Ca−1a)∗; for instance, C0 = 0∗.

18 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

5.1.1. Decompositions. A code x is either the empty word ε, or belongs to a unique Ca. If
x ∈ Ca is not empty, it has a unique factorization x = yza according to (5.1) with y ∈ Ca
and z ∈ Ca−1. Recall that h(x) denotes the height function, thus a non-empty x = a1 · · · a`
is a code if and only if a` = h(x) and ai+1− ai ≤ 1 for all i < ` (we say that x has no jumps :
priorities only increase smoothly along codes, but they can decrease sharply). For instance,
02 is not a code (it has a jump), but 001122 and 01223400123334 are codes.

The factor z ∈ Ca−1 in x = yza can be developed further, as long as z 6= ε: a non-empty
code x ∈ Cd has a unique factorization as x = yd yd−1 . . . ya a

ad with yi ∈ Ci for i = a, . . . , d,
and where for 0 ≤ a ≤ b, we write aab for the staircase word a(a+ 1) · · · (b− 1)b, letting
aab = ε when a > b. We call this the decomposition of x. Note that the value of a is
obtained by looking for the maximal suffix of x that is a staircase word. For example,
x = 23312340121234 ∈ C4 is a code and decomposes as

x =

y4︷ ︸︸ ︷
2331234

y3︷︸︸︷
ε

y2︷︸︸︷
012

y1︷︸︸︷
ε

1a4︷︸︸︷
1234 .

5.1.2. Ordinal Encoding. With a code x ∈ C, we associate an ordinal term η(x) given by

η(ε)
def
= 0 , η(yza)

def
= η(y) + ωη(z) , (5.2)

where x = yza is the factorization according to (5.1) of x ∈ Ca \ {ε}. For example,
η(a) = ω0 = 1 for all a ∈ Σd, η(012) = η(234) = ωω, and more generally η(aab) = Ωb−a.
One sees that η(x) < Ωa+1 when x ∈ Ca.

This decoding function η:C → Ωd+1 is onto (or surjective) but it is not bijective.
However, it is a bijection between Ca and Ωa+1 for any a ≤ d. Its converse is the level-a
encoding function sa: Ωa+1 → Ca, defined with

sa

(p∑

i=1

γi

)
def
= sa(γ1) · · · sa(γp) , sa(ω

α)
def
= sa−1(α) a . (5.3)

Thus sa(0) = ε and, for example,

s5(1) = 5 , s5(3) = 555 , s5(ω) = 45 ,

s5(ω3) = 4445 , s5(ωω) = 345 , s5(ωω
ω
) = 2345 ,

s5(ω3 + ω2) = 4445445 , s5(ω · 3) = 454545 .

We may omit the subscript when a = d, e.g. writing s(1) = d.

5.1.3. Successors and Limits. Let x = yd yd−1 . . . ya a
ad be the decomposition of x ∈ Cd\{ε}.

By (5.2), x encodes a successor ordinal η(x) = β + 1 if and only if a = d, i.e., if x ends with
two d’s (or has length 1). Since then β = η(yd . . . ya), one obtains the “predecessor of x” by
removing the final d.

If a < d, x encodes a limit λ. Combining (4.1) and (5.2), one obtains the encoding (x)n
of λn with

(x)n = yd yd−1 . . . ya+1

(
ya(a+ 1)

)n
(a+ 2)ad . (5.4)

For instance, with d = 5, decomposing x = 333345 = s(ωω
4
) gives a = 3, x = y5y4y33a5, with

y3 = 333 and y5 = y4 = ε. Then (x)n = (3334)n5, agreeing with, e.g. s(ωω
3·2) = 333433345.

THE POWER OF PRIORITY CHANNEL SYSTEMS 19

5.2. Robustness. A crucial property of our ordinal encoding is robustness, i.e. that x vp x
′

should reflect the corresponding relation Hη(x)(n) ≤ Hη(x′)(n) on Hardy computations.

Proposition 5.1 (Robustness). Let a ≥ 0 and x vp x′ be two strings in Ca. Then,

Hη(x)(n) ≤ Hη(x′)(n′) for all n ≤ n′ in N.

The proof of Proposition 5.1 requires delving in some of the theory of subrecursive functions,
and is postponed until Section 5.2.3.

5.2.1. Properties of the Hardy Hierarchy. We first list some useful properties of Hardy
computations (see [FW98] or [SS12, App. A] for details). The first fact is that each Hardy
function is expansive and monotone in its argument n:

Fact 5.2 (Expansiveness and Monotonicity). For all α, α′ in Ω and n > 0,m in N,

n ≤ Hα(n) , (5.5)

n ≤ m implies Hα(n) ≤ Hα(m) . (5.6)

However, the Hardy functions are not monotone in the ordinal parameter: Hn+1(n) =
2n+ 1 > 2n = Hn(n) = Hω(n), though n+ 1 < ω. We will introduce an ordering on ordinal
terms in Section 5.2.2 that ensures monotonicity of the Hardy functions.

Another handful fact is that we can decompose Hardy computations:

Fact 5.3. For all α, γ in Ω, and n in N,

Hγ+α(n) = Hγ(Hα(n)) . (5.7)

Note that (5.7) holds for all ordinal terms, and not only for those α, γ such that γ + α is in
CNF—this is a virtue of working with terms rather than set-theoretic ordinals.

5.2.2. Ordinal Embedding. We introduce a partial ordering vo on ordinal terms, called
embedding, and which corresponds to a strict tree embedding on the structure of ordinal

terms. Formally, it is defined inductively by α vo β def⇔ α = ωα1+· · ·+ωαp , β = ωβ1+· · ·+ωβm ,
and there exist 1 ≤ i1 < i2 < . . . < ip ≤ m such that α1 vo βi1 ∧ · · · ∧ αp vo βip . Note
that 0 vo α for all α, that 1 vo α for all α > 0. In general, α 6vo ωα and λn 6vo λ. Ordinal
embedding is congruent for addition and ω-exponentiation of terms:

α vo α′ and β vo β′ imply α+ β vo α′ + β′ , (5.8)

α vo α′ implies ωα vo ωα
′
, (5.9)

and could in fact be defined alternatively by the axiom 0 vo α and the two deduction rules
(5.8) and (5.9).

We list a few useful consequences of the definition of vo:
α vo γ + ωβ implies α vo γ, or α = γ′ + ωβ

′
with γ′ vo γ and β′ vo β , (5.10)

n ≤ m implies λn vo λm , (5.11)

α vo λ implies α vo λn, or α is a limit and αn vo λn . (5.12)

Proof of (5.10). Intuitively, there are two cases when we consider α vo α′ = γ + ωβ : either
the ωβ summand of α′ is in the range of the embedding or not. If it is not, then already
α vo γ. If it is, then α must be some γ′ + ωβ

′
and ωβ

′ vo ωβ, which implies in turn
β′ vo β.

20 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Proof of (5.11). By induction on λ: indeed if λ = γ + ωβ+1 then λm = γ + ωβ ·m, which

is λn + ωβ · (m− n). If λ = γ + ωλ
′
, the ind. hyp. gives λ′n vo λ′m, hence λn = γ + ωλ

′
n vo

γ + ωλ
′
m = λm.

Proof of (5.12). By induction on λ. We can write λ as some γ + ωβ with β > 0 so that
λn = γ + (ωβ)n. If α vo γ, then α vo λn trivially. If α = γ′ + 1 is a successor, 1 vo (ωβ)n
and again α vo λn. There remains the case where α = γ′ + ωβ

′
is a limit (i.e. β′ > 0) with

γ′ vo γ and β′ vo β. If β is a limit, then by ind. hyp. either β′ vo βn and hence α vo λn, or
β′ is a limit and β′n vo βn, hence αn vo λn. Finally, if β = δ + 1 is a successor, then either
β′ vo δ so that α vo γ + ωδ vo γ + ωδ · n = λn, otherwise by (5.10), β′ is a successor δ′ + 1

with δ′ vo δ, and then (ωβ
′
)n = ωδ

′ · n vo ωδ · n = (ωβ)n, hence αn vo λn.

Proposition 5.4 (Monotonicity). For all α, α′ in Ω and n in N,

α vo α′ implies Hα(n) ≤ Hα′(n) .

Proof. Let us proceed by induction on a proof of α vo α′, based on the deduction rules (5.8)

and (5.9). For the base case, 0 vo α′ implies H0(n) = n ≤ Hα′(n) by expansiveness.
For the inductive step with (5.8), if α vo α′ and β vo β′, then

Hα+β(n) = Hα
(
Hβ(n)

)
by (5.7)

≤ Hα
(
Hβ′(n)

)
by ind. hyp. and (5.6)

≤ Hα′(Hβ′(n)
)

by ind. hyp.

= Hα′+β′(n) . by (5.7)

For the inductive step with (5.9), if α vo α′, then we show Hωα(n) ≤ Hωα
′
(n) by

induction on α′:
• If α′ = 0, then α = 0 and we are done.
• If α′ = β′+1 is a successor, then by (5.10) either α vo β′, or α = β+1 with β vo β′. In the

first case, Hωα(n) ≤ Hωβ
′
(n) ≤ Hωβ

′
(H(n)) = Hωα

′
(n) by ind. hyp. and expansiveness.

In the second case, we see by induction on i ∈ N that
(
Hωβ

)i
(n) ≤

(
Hωβ

′)i
(n) (5.13)

for all i and n thanks to the ind. hyp. Thus

Hωβ+1
(n) =

(
Hωβ

)n
(n) ≤

(
Hωβ

′)n
(n) = Hωβ

′+1
(n)

for all n, and we are done.
• If α′ = λ′ is a limit, then by (5.12) either α vo λ′n or α is a limit λ and λn vo λ′n. In

the first case Hωα(n) ≤ Hωλn (n) by ind. hyp.; in the second case Hωλ(n) = Hωλn (n) ≤
Hωλ

′
n (n) = Hωλ

′
(n) using the ind. hyp.

THE POWER OF PRIORITY CHANNEL SYSTEMS 21

o : 3 3 4 5 4 5 $ the ordinal term ωω2
+ ωω

c : 0 0 0 0 $ the counter value 4

t : $ the temporary storage

Figure 2. Channels for Hardy computations.

5.2.3. Robustness. We are now in position to prove Proposition 5.1:

Proof of Proposition 5.1. We prove that η(x) vo η(x′) by induction on x and conclude using
Proposition 5.4 and Eq. (5.6). If x = ε, η(x) = 0 vo η(x′). Otherwise we can decompose x
as yza according to (5.1) with y ∈ Ca and z ∈ Ca−1. By (3.5), x′ = y′z′a with y vp y

′ and
za vp z

′a. Observe that y′ and z′ are in Ca, and writing z′a = z′1a · · · z′ma for the canonical
decomposition of z′—where necessarily each z′j is in Ca−1—, then z vp z

′
1 as there is no

other way of disposing of the other occurrences of a in z′.
By ind. hyp., η(y) vo η(y′) and η(z) vo η(z′1). Then, because η(x) = η(y) + ωη(z) and

η(x′) = η(y′) + ωη(z′1) + · · ·+ ωη(z′m), we see by (5.8) and (5.9) that η(x) vo η(x′).

5.3. Robust Hardy Computations in PCSs. Our goal is to implement in a PCS the

canonical Hardy steps, denoted with
H−→, and specified by the following two rewrite rules on

pairs in Ω× N:

(α+ 1, n)
H−→ (α, n+ 1) for successors, (5.14)

(λ, n)
H−→ (λn, n) for limits. (5.15)

A Hardy computation for Hα(n) is a sequence of rewrites (α, n) = (α0, n0)
H−→ (α1, n1)

H−→
· · · H−→ (α`, n`). Note that (5.14–5.15) provide a rewriting view of the definition of Hardy
functions in (4.2). Thus Hαi(ni) remains constant throughout the computation, and if
α` = 0 then n` = Hα(n), in which case we call the computation complete.

We do not implement canonical Hardy steps as PCSs, but construct instead weak
computers, which might return lower values. Our PCSs for weak Hardy computations use
three channels (see Figure 2), storing (codes for) a pair α, n on channels o (for “ordinal”)
and c (for “counter”), and employ an extra channel, t, for “temporary” storage. Instead of
Σd, we use Σd+1 with d+ 1 used as a position marker and written $ for clarity: each channel
always contains a single occurrence of $.

Definition 5.5. A weak Hardy computer for Ωd+1 is a (d + 1)-PCS S with channels
Ch = {o, c, t} and two distinguished states pbeg and pend such that:

if (pbeg, x$, y$, z$)
∗−→# (pend, u, v, w) then x ∈ Cd, y ∈ 0+, z = ε, u, v, w ∈ Σ∗d$,

(safety)

if (pbeg, s(α)$, 0n$, $)
∗−→# (pend, s(β)$, 0m$, $) then Hα(n) ≥ Hβ(m) . (robustness)

Furthermore S is complete if for any α < Ωd+1 and n > 0,

(pbeg, s(α)$, 0n$, $)
∗−→# (pend, $, 0

m$, $) where m
def
= Hα(n) (complete)

22 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

and it is inv-complete if

(pbeg, $, 0
m$, $)

∗−→# (pend, s(α)$, 0n$, $) . (inv-complete)

Lemma 5.6 (PCSs weakly compute Hardy functions). For every d ∈ N, there exists a
weak Hardy computer Sd for Ωd+1 that is complete, and a weak S−1

d that is inv-complete.

Furthermore Sd and S−1
d can be generated uniformly in DSpace(log d).

We design a complete weak Hardy computer for Lemma 5.6 by assembling several
components. The weak Hardy computer Sd is actually composed of two components Sd,+1

and Sd,λ in charge respectively of applying the successor (5.14) and limit (5.15) steps, and

similarly S−1
d is composed of two components S−1

d,+1 and S−1
d,λ in charge of reversing those

steps.

5.3.1. Successor Steps. We start with “canonical successor steps”, as per (5.14). They are
implemented by Sd,+1, the PCS depicted in Figure 3. When working on codes, replacing
s(α+ 1) by s(α) simply means removing the final d (see Section 5.1.3), but when the strings
are in fifo channels this requires reading the whole contents of a channel and writing them
back, relying on the $ end-marker.

p q r
o ?! x ∈ Cd o ? d o ?! $

c ?! 0

c ! 0 c ?! $

Figure 3. Sd,+1, a PCS for Hardy steps (α+ 1, n)
H−→ (α, n+ 1).

Remark 5.7 (Notational/graphical conventions). The label edge “q
c?!0−→q” in Figure 3, with

c ?! 0 as label, is shorthand notation for “q
c?0−→◦c!0−→q”, letting the intermediary state remain

implicit. We also use meta-rules like “p
o ?!x∈Cd−−−−−→◦” above to denote a subsystem tasked with

reading and writing back a string x over o while checking that it belongs to Cd; since Cd is
a regular language, such subsystems are directly obtained from DFAs for Cd.

We first analyze the behavior of Sd,+1 when superseding of low-priority messages does
not occur, i.e., we first consider its “reliable” semantics. In this case, starting Sd,+1 in state
p performs the step given in (5.14) for successor ordinals. More precisely, Sd,+1 guarantees

(p, s(α+ 1)$, 0n$, $)
∗−→rel (r, u, v, w) iff u = s(α)$ ∧ v = 0n+1$ ∧ w = $. (5.16)

Note that (5.16) refers to “
∗−→rel”, with no superseding.

Observe that Sd,+1 has to non-deterministically guess where the end of s(α) occurs
before reading d$ in channel o, and will deadlock if it guesses incorrectly. We often rely on
this kind of non-deterministic programming to reduce the size of the PCSs we build. Finally,
we observe that if x does not end with dd (and is not just d), i.e., if η(x) is not a successor
ordinal, then Sd,+1 will certainly deadlock.

We now consider S−1
d,+1, the PCS depicted in Figure 4 that implements the inverse

canonical steps (α, n + 1)
H−1

−−→ (α + 1, n). Implementing such steps on codes is an easy
string-rewriting task since s(α+ 1) = s(α)d, however our PCS must again read the whole

THE POWER OF PRIORITY CHANNEL SYSTEMS 23

p r
c ? 0 c ?! 0n$ o ?! x ∈ Cd o ! d o ?! $

Figure 4. S−1
d,+1, a PCS for inverse Hardy steps (α, n+ 1)

H−1

−−→ (α+ 1, n).

contents of its channels, write them back with only minor modifications while fulfilling
the safety requirement of Definition 5.5. When considering the reliable behavior, S−1

d,+1
guarantees

(p, x$, y$, $)
∗−→rel (r, u, v, w) iff x ∈ Cd,∃n : y = 0n+1, u = s(η(x)+1)$, v = 0n$, and w = $.

(5.17)
Consider now the behavior of Sd,+1 and S−1

d,+1 when superseding may occur. Note that a

run (p, x$, y$, z$)
∗−→w (r, . . .) from p to r is a single-pass run: it reads the whole contents of

channels o and c once, and writes some new contents. This feature assumes that we start
with a single $ at the end of each channel, as expected by Sd,+1. For such single-pass runs,
the PCS behavior with superseding semantics can be derived from the reliable behavior: for

single-pass runs, C
∗−→w D if and only if C

∗−→rel D
′ ≥# D for some D′.

Combined with (5.16), the above remark entails robustness for Sd,+1: there is an

execution (p, s(α+ 1)$, 0n$, $)
∗−→w (r, s(β)$, 0n

′
$, $) if and only if s(β) ≤# s(α) and 0n

′
$ ≤#

0n+1$, i.e., n′ ≤ n+ 1. With Proposition 5.1, we deduce Hβ(n′) ≤ Hα(n).
The same reasoning applies to S−1

d,+1 since this PCS also performs single-pass runs from

p to r, hence (p, s(α)$, 0n$, $)
∗−→w (r, s(β)$, 0n

′
$, $) if and only if s(β) ≤# s(α + 1) and

n′ ≤ n− 1. Thus Hβ(n′) ≤ Hα(n).

5.3.2. Limit Steps. Our next component is Sd,λ, see Figure 5, which implements the canonical
Hardy steps for limits from (5.15). The construction follows (5.4): Sd,λ,a reads (and
writes back) the contents of channel o; guessing non-deterministically the decomposition
yd . . . ya+1yaa(a+ 1)ad of s(λ), it writes back yd . . . ya+1 and copies ya on the temporary t

with a+ 1 appended. Then, a loop around state qa copies 0n from and back to c. Every
time one 0 is transferred, the whole contents of t, initialized with ya(a+ 1), is copied to o.
When the loop has been visited n times, Sd,λ,a empties t and resumes the transfer of s(λ)

by copying the final (a+ 2)ad.
For clarity, Sd,λ,a as given in Figure 5 assumes that a is fixed. The actual Sd,λ component

guesses non-deterministically what is the value of a for the s(λ) code on o and gives the
control to Sd,λ,a accordingly.

As far as reliable steps are considered, Sd,λ guarantees

(p, s(α)$, 0n$, $)
∗−→rel (r, u, v, w) iff α ∈ Lim, u = s(αn)$, v = 0n$, and w = $. (5.18)

24 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

pa

qa

ra

o ?! yd · · · ya+1 ∈ Cd · · ·Ca+1

o ? ya ∈ Ca ; t ! ya

o ? a(a+ 1) ; t ! (a+ 1)

t ?! $ c ?! $

t ?u

t ?! $

o ?! (a+ 2)ad$

c ?! 0
t ?! u$; o !u

Figure 5. Sd,λ,a, a PCS for Hardy steps (λ, n)
H−→ (λn, n).

If superseding is allowed, a run (pa, s(α)$, 0n$, $)
∗−→w (ra, u, v, w) has the form

(pa, s(α)$, 0n$, $)
∗−→w C0 = (qa, (a+ 2)ad$x0, 0

n$, z0$)
∗−→w C1 = (qa, (a+ 2)ad$x1, 0

n−1$v1, z1$)

...
∗−→w Cn = (qa, (a+ 2)ad$xn, vn, zn)
∗−→w (ra, x

′
n$, v′n$, $)

where Ci = (qa, (a+ 2)ad$xi, 0
n−ivi, zi) occurs when state qa is visited for the ith time.

Since the run is single-pass on c, we know that vi ≤# 0i for all i = 0, . . . , n. Since it is
single-pass on o, we deduce that x0 ≤# yd . . . ya+1, then xi+1 ≤# xizi for all i, and finally

x′n ≤# xn(a+ 2)ad, with also z0 ≤# ya(a + 1). Finally, zi+1 ≤# zi since each subrun

Ci
∗−→w Ci+1 is single-pass on t.
All this yields x′n ≤# s(λn) and v′n ≤# 0n. Hence Sd,λ is safe and robust: there is an

execution (p, s(α)$, 0n$, $)
∗−→w (r, s(β), 0n

′
$, $) if and only if α ∈ Lim, s(β) ≤# s(αn) and

n′ ≤ n, entailing Hβ(n′) ≤ Hα(n).

There remains to consider S−1
d,λ, the PCS component that implements inverse Hardy

steps for limits, see Figure 6. For given a < d, S−1
d,λ,a assumes that channel o contains

s(λn) = yd . . . ya+1[ya(a + 1)]n(a+ 2)ad, guesses the position of the first ya(a + 1) factor,
and checks that it indeed occurs n times if c contains 0n. This check uses copies z1, z2, . . .
of ya(a + 1) temporarily stored on t. Then S−1

d,λ writes back s(λ) = yd . . . ya+1za
ad on o,

where z(a+ 1) = zn. The reader should be easily convinced that, as far as one considers
reliable steps, S−1

d,λ guarantees

(p, s(α)$, 0n$, $)
∗−→rel (r, u, v, w) iff ∃λ ∈ Lim : α = λn, u = s(λ)$, v = 0n$, and w = $.

(5.19)

THE POWER OF PRIORITY CHANNEL SYSTEMS 25

pa

qa

ra

o ?! yd · · · ya+1 ∈ Cd · · ·Ca+1

o ? ya ∈ Ca ; t ! ya

o ? (a+ 1) ; t ! (a+ 1)

t ?! $ c ?! 0 $

t ?u (a+ 1) ;
o !u a (a+ 1)

t ?! $

o ?! (a+ 2)ad$

c ?! 0
t ?! u$; o ?u

Figure 6. S−1
d,λ,a, a PCS for inverse Hardy steps (λn, n)

H−1

−−→ (λ, n).

simulate
M with

budget B

q0 Sd p0 ph S−1
d

qh

o ! 0ad$
c ! 0n$
t ! $

o ? 0ad$
c ? 0n$
t ? $

Ωd, n
H−→# · · · H−→# 0, B 0, B′ H-1

−→# · · · H
-1

−→# α, n′

Figure 7. Schematics for Theorem 5.8.

When superseding is taken into account, a run from p to r in S−1
d,λ has the form

(p, s(α)$, 0n$, $)
∗−→w C1

∗−→w C2
∗−→w · · ·Cn ∗−→w (r, u, v, w) where, for i = 1, . . . , n, Ci is the

ith configuration that visits state qa. Necessarily, Ci is some (qa, xi$x, 0
n−i0vi, zi). The

first visit to qa has x ≤# yd . . . ya+1, z1 ≤# ya(a+ 1) and v1 = ε, the following ones ensure

xi = zixi+1, zi+1 ≤# zi and vi+1 ≤# vi0. Concluding the run requires xn = (a+ 2)ad.

Finally v ≤# 0n$, s(β) = yd . . . ya+1(a+ 1)z1 . . . zn−1(a+ 2)ad and u ≤# yd . . . ya+1za
ad for

z(a+ 1) = zn ≤# zn−1 ≤# · · · z2 ≤# z1 ≤# ya(a+ 1). Thus u = s(β)$ and v = 0n
′
$ imply

s(β) ≤# s(λ) for some λ with s(λn) ≤# s(α), yielding Hβ(n′) ≤ Hλ(n) = Hλn(n) ≤ Hα(n).

5.4. Wrapping It Up. With the above weak Hardy computers, we have the essential
gadgets required for our reductions. The wrapping-up is exactly as in [HSS12, Sch10b] (with
a different encoding and a different machine model) and will only be sketched.

Theorem 5.8 (Verifying PCSs is Hard). Reachability and Termination of PCSs are Fε0-
hard.

Proof. We exhibit a LogSpace reduction from the halting problem of a Turing machine M
working in Fε0 space to the Reachability problem in a PCS. We assume wlog. M to start in
a state p0 with an empty tape and to have a single halting state ph that can only be reached
after clearing the tape.

26 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Figure 7 depicts schematically the PCS S we construct for the reduction. Let n
def
= |M |

and d
def
= n+ 1. A run in S from the initial configuration to the final one goes through three

stages:

(1) The first stage robustly computes Fε0(|M |) = HΩd(n) by first writing s(Ωd)$, i.e. 0ad$,
on o, 0n$ on c, and $ on t, then by using Sd to perform forward Hardy steps; thus upon
reaching state p0, o and t contain $ and c encodes a budget B ≤ Fε0(|M |).

(2) The central component simulates M over c where the symbols 0 act as blanks—this is
easily done by cycling through the channel contents to simulate the moves of the head
of M on its tape. Due to superseding steps, the outcome upon reaching ph is that c

contains B′ ≤ B symbols 0.
(3) The last stage robustly computes (Fε0)−1(B′) by running S−1

d to perform backward
Hardy steps. This leads to o containing the encoding of some ordinal α and c of some n′,
but we empty these channels and check that α = Ωd and n′ = n before entering state qh.

Because HΩd(n) ≥ B ≥ B′ ≥ Hα(n′) = HΩd(n), all the inequalities are actually equalities,
and the simulation of M in stage 2 has necessarily employed reliable steps. Hence, M halts
if and only if (qh, ε, ε, ε) is reachable from (q0, ε, ε, ε) in S.

The case of (non-)Termination is similar, but employs a time budget in a separate
channel in addition to the space budget, in order to make sure that the simulation of M
terminates in all cases, and leads to a state qh that is the only one from which an infinite
run can start in S.

6. Alternative Semantics

In this section we consider variant models for channel systems with priorities or losses and
compare them with our PLCS model. The aim is to better understand the consequences, or
lack thereof, of our choices.

We first consider strict-superseding systems, where messages may only supersede mes-
sages of strictly lower priority, and overtaking systems, where higher priority messages may
move ahead of lower priority messages instead of erasing them. For completeness, we also
discuss systems based on priority queues, where overtaking of lower priority messages is
mandatory.

6.1. Strict-Superseding and Overtaking. In this section, we discuss two alternative
operational semantics for PCSs that may seem more natural than our standard S#.

Strict-Superseding Semantics: Here, a high-priority message may only supersede mes-
sages having strictly lower priority. Formally, we replace the internal-superseding relation

C
#k−→# C ′ with a new superseding relation, denoted C

#k−→� C ′, and based on

x
#k−→� y def⇔ x = a1 · · · a` ∧ y = a1 · · · ak−1 · ak+1 · · · a` ∧ ak < ak+1 .

Equivalently, we replace the rewrite rules from Eq. (2.1) with
{
a a′ → a′

∣∣ 0 ≤ a < a′ ≤ d
}

.

Overtaking semantics: Here, a high-priority message may move ahead of a low-priority

message but this does not erase the low-priority message. Formally, we replace C
#k−→# C ′

with C
#k−→ot C

′, based on

x
#k−→ot y

def⇔ x = a1 · · · ak ak+1 · · · a` ∧ y = a1 · · · ak+1 ak · · · a` ∧ ak < ak+1 .

THE POWER OF PRIORITY CHANNEL SYSTEMS 27

p1 p2 p3

S :

c!ai c′?ai′ p1 p2 p3

S′ :

c!i c!$ c′?i′ c′?$

Figure 8. Simulating reliable channels (left) with “strict-superseding” or
“overtaking” PCSs (right).

In rewriting terms, −→ot is defined by the rules
{
aa′ → a′ a

∣∣ 0 ≤ a < a′ ≤ d
}

.

These two mechanisms drop fewer messages than our internal-superseding semantics. They
may however be inadequate in case of network congestion, for instance they offer no solutions
if all the messages in the congested buffers have the same priority. In any case, we show
below that verification is undecidable for these two variant semantics (one can simulate
Turing-powerful reliable channel systems with PCS under strict-superseding or overtaking
semantics), which explains our choice of internal-superseding semantics.

Theorem 6.1. Reachability and Termination are undecidable for PCSs under both the
strict-superseding and overtaking semantics.

Proof. We reduce from the reachability problem for channel systems with reliable channels
which is known to be undecidable [BZ83]. A system S with reliable channels uses a finite
(un-prioritized) alphabet Σ = {a0, . . . , ap−1} and is equipped with m channels c1, . . . , cm.
We simulate S with a PCS S′ with strict superseding semantics having the same m channels
and using the Σd priority alphabet with d = p. We use d ∈ Σd as a separator, denoted $
for clarity, while the other priorities i ∈ {0, . . . , p − 1} represent the original messages ai.

A string w = ai1 · · · ain ∈ Σ∗ is encoded as w̃
def
= i1 $ · · · in $ ∈ Σ∗d. The actual reduction is

obtained by equipping S′ with transition rules that simulate the rules of S as illustrated in
Figure 8. In essence, where S would write ai, S

′ will write i followed by $, i.e., ãi, and S′

will read i′ · $ where S would read ai′ .
With the strict superseding policy, the only superseding that can occur is to have $ erase

a preceding i < $. This results in a channel containing two or possibly more consecutive
$ symbols, a pattern that will never vanish in this simulation and that eventually forbids
reading on the involved channel. In particular, any run of S′ that reaches a final configuration
Cend = (qend, ε, . . . , ε) has not used any strict superseding and thus corresponds to a run of
the reliable channel system S. The same reduction works for Termination.

With the overtaking semantics, only $ can overtake “original” messages of S in w̃.
However, such an overtake results in having two consecutive $ symbols on the channel, a
pattern that can never disappear. Behind the $$ block, two lower messages 0 ≤ i, j < d may
occur consecutively and be open to overtaking but this will not derail the simulation since
S′ cannot read beyond $$.

6.2. Channels as Priority Queues. For the sake of completeness, let us mention channel
systems where channels behave as priority queues. Here, reading from a channel will always
read a message having highest priority among the contents of the channel. This can be
seen as an extreme version of the overtaking semantics, where overtaking is mandatory.
Such a model is not relevant for our purposes since it is not meant to handle congested

28 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

communication links: instead, it uses priorities as a way of choosing in which order messages
should be processed.

Let us mention that finite-state communicating systems with priority queues can easily
simulate Minsky machines by using a queue for each counter and two priorities: high-priority
messages encode the counter value in unary, while a low-priority message can only be read
in case of a zero-valued counter. They are hence Turing-powerful.

The most relevant case however is that of a single communication bus where many
processes can read and write. Because only one queue is available—and still assuming a
singleton alphabet for message contents—it is easy to see that priority queues systems are
equivalent to Minsky counter machines restricted to nested zero-tests. Recall that for a
machine with m counters c1, . . . , cm, nested zero-tests are tests of the form “(c1 = 0 ∧ c2 =
0 ∧ · · · ∧ ci = 0)?”, i.e., one can only test the ith counter for emptiness when already the
previous counters are empty. While Minsky counter machines with arbitrary zero-tests are
Turing-powerful, they are equivalent to Petri nets when zero-tests are forbidden. Minsky
machines with nested zero-tests are an intermediary model for which reachability is known
to be decidable, see [Rei08] and [Bon13, Chapter 5].

7. Higher-Order Lossy Channel Systems

In this section, we introduce higher-order lossy channel systems, aka HOLCSs, a family
of models that extend lossy channel systems. While a higher-order pushdown automaton
has a stack of stacks of . . . of stacks [Aho69], a HOLCS has lossy channels inside lossy
channels inside . . . inside lossy channels. (In this setting, the “dynamic” lossy channel
systems from [AAC12] are a special case of 2LCSs, or second-order LCSs.) HOLCSs are well-
structured, see Theorem 7.1, hence enjoy the usual decidability results from well-structured
systems theory.

Our main result is that PCSs can simulate HOLCSs, see Theorem 7.7. On the one
hand, this underlines the expressive power and naturalness of PCSs, in particular since the
reductions we provide are quite straight-forward. On the other hand, we immediately obtain
undecidability results: problems like boundedness or repeated control-state reachability are
undecidable for PCSs since they already are for (first-order) LCSs (see [May03, Sch10a]).

7.1. Syntax. Formally, and given k ∈ N, a kth-order LCS S = (k,Σ, Ch, Q,∆) has first-
order, second-order, . . . , up to kth-order, channels. We assume for simplicity that S has,
for all n = 1, . . . , k, the same number m of nth-order channels, denoted cn,1, . . . , cn,m.
Standardly, S uses a finite (un-prioritized) alphabet Σ = {a1, . . . , ap}. Write Σ∗1 for the

set of finite sequences of messages (usually written just Σ∗), and Σ∗(n+1) for the set of

finite sequences of elements from Σ∗n. We further order each Σ∗(n+1) with ≤∗(n+1), i.e.,

the sequence extension of (Σ∗n,≤∗n), equating (Σ∗0,≤∗0) with (Σ,=). Precisely, given two

sequences x = x1 . . . x` and y = y1 . . . ym in Σ∗(n+1), we let

x1 . . . x` ≤∗(n+1) y1 . . . ym
def⇔ ∃1 ≤ i1 < i2 < · · · < i` ≤ m : x1 ≤∗n yi1 ∧ · · · ∧ x` ≤∗n yi`

Using Higman’s Lemma and induction over n, one sees that (Σ∗n,≤∗n) is a well-quasi-order
for any n.

THE POWER OF PRIORITY CHANNEL SYSTEMS 29

a2 a1

(a1 a2)

[
(a3) (a1 a1) ()

] [
()
]

a2 a1

(a3) (a1 a1) ()

[
()
]

a2 a1

(a3) (a1 a1) () (a2 a1)

[
()
]

a2

() (a1 a1)

[]

c1 :

c2 :

c3 :

c2?c3−−→ c2!c1−−→ lo−→

Figure 9. Reading, writing, and losing in HOLCSs.

At any given time, the contents of a nth-order channel is a sequence w ∈ Σ∗n, so that a
configuration of S has the form C = (q, x1,1, . . . , x1,m, . . . , xk,1, . . . , xk,m) with q a control
state and xn,i ∈ Σ∗n for all 1 ≤ n ≤ k and 1 ≤ i ≤ m. These configurations are ordered by

(q, x1,1, . . . , xk,m) 4ho (q′, y1,1, . . . , yk,m)
def⇔ q = q′ ∧ ∀n, i : xn,i ≤∗n yn,i .

This ordering of configurations is a wqo since, for each n = 1, . . . , k, (Σ∗n,≤∗n) is.

7.2. Semantics. A HOLCS S as above has a reliable transition C
δ−→ C ′ between configura-

tions C = (q, . . . , xi,n . . .) and C ′ = (q′, . . . , yi,n, . . .) if δ = (q, op, q′) is a rule moving control
from q to q′ and if the channel contents are modified according to the operation carried by
δ, as we now define. There are four cases:

op = c1,i!a: for some a ∈ Σ and 1 ≤ i ≤ m: then y1,i = x1,i ·a while yj,n = xj,n when n > 1
or j 6= i, i.e., one writes a message to a 1st-order channel as in standard channel systems;

op = c1,i?a: then one reads a message from a 1st-order channel, i.e., x1,i = a · y1,i while
the other channels are untouched;

op = cn+1,i!cn,j: for some 1 ≤ n < k: then one appends a copy of the whole contents of
cn,j (a nth-order channel) to cn+1,i, where it becomes the last element of the higher-order
sequence. Formally, yn+1,i = xn+1,i · xn,j and the other channels are untouched;

op = cn,i?cn+1,j: then one moves the first element of the higher-order sequence currently
in cn+1,j to cn,i where it becomes the whole contents (the previous contents is erased).
Formally, if u ∈ Σ∗n is the first element of xn+1,j , then yn,i = u, u · yn+1,j = xn+1,j , and
the other channels are untouched.

In addition, all steps C −→ C ′ for C ′ ≺ho C, called losing steps, are allowed. This states that
at any time the system may lose individual messages, sequences of messages, sequences of
sequences of . . . of messages, anywhere inside the channels.

Figure 9 illustrates the behavior of higher-order channels under reads, writes and losses
(control states omitted).

Theorem 7.1. HOLCSs equipped with 4ho are well-structured.

Proof. The ordering C 4ho C
′ entails C ′ ∗−→ C (via losing steps).

7.3. Simulation by PCSs. Let us consider a kth order LCS S with Σ = {a1, . . . , ap} and
k ·m channels. We assume that m = 1 in order to simplify our constructions and proofs but
they extend directly to the more expressive cases where m > 1.

We simulate S with a d-PCS S̃ having k channels and d
def
= p+ k − 1. In Σd, the lower

priorities 0, . . . , p− 1 will be denoted a1, . . . , ap since they directly encode the messages from

30 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

q1 q2
c1 ! ai

q3 q4
c1 ? aj

q1

q3

q2

q4

c1 ! ai c1 ! $1

c1 ? $1 c1 ? aj

δ1:

δ2:

a3 a1 a4 $1 a3 $1 a1 $1 a4 $1c1 : c1 :

...
...S : S̃ :

Figure 10. Simulation of HOLCS S with PCS S̃: first-order rules.

Σ, while the higher priorities p, . . . , p+ k − 1 will be denoted $1, . . . , $k since they are used
as separators.

7.3.1. Encoding Configurations. A configuration C = (q, x1, . . . , xk) of S is encoded as

C̃
def
= (q, bx1c1, . . . , bxkck), where, for n = 1, . . . , k, bxcn denotes the nth-level encoding of a

nth-level sequence x = u1u2 · · ·u` ∈ Σ∗n. Encodings are defined with

bai1ai2 · · · ai`c1
def
= $1ai1$1ai2$1 · · · ai`$1 ,

bu1u2 · · ·u`cn+1
def
= $n+1bu1cn$n+1bu2cn$n+1 · · · bu`cn$n+1 .

Note that bεcn = $n and differs from ε ∈ Σ∗d. For n = 1, . . . , k, we let En
def
= {bxcn | x ∈ Σ∗n}

denote the set of all n-level encodings. These are regular languages that are captured by the
following regular expressions:

E1
def
= $1 ·

(
(a1 + · · ·+ ap) · $1

)∗
, En+1

def
= $n+1 ·

(
En · $n+1

)∗
.

With this encoding, (Σ∗n,≤∗n) and (En,≤#) are isomorphic:

Lemma 7.2. For any x, y ∈ Σ∗n, x ≤∗n y if, and only if, bxcn ≤# bycn.

Proof Idea. By induction on n. For the “⇐” direction it is easier to rely on priority
embedding, i.e., prove that bxcn vp bycn implies x ≤∗n y and apply Lemma 3.3.

7.3.2. Encoding First-Order Rules. We may now complete the definition of S̃ by describing

its rules, with the goal of simulating the operational semantics of S while working on C̃
and on encodings of sequences from some Σ∗n. This is easy for 1st-order rules that operate

on c1 only: where S writes ai, S̃ writes ai · $1. Where it reads aj , S̃ reads $1 · aj . This is
illustrated in Figure 10.

THE POWER OF PRIORITY CHANNEL SYSTEMS 31

q1 q2
cn+1!cn

q3 q4
cn?cn+1

q1 q2
cn ! $n+1 cn ? $n+1 cn+1 ! $n+1

cn ?u ∈ En ;

cn !u ; cn+1 !u

q3 q4
cn+1 ? $n+1

cn ! $n+1 cn ? $n+1

cn+1 ?u ∈ En ; cn !u

δ3:

δ4:

×

×

w1w2

v1 v2 v3

$n+1 bw1cn $n+1 bw2cn $n+1

bv1 v2 v3cn

cn+1 :

cn :

cn+1 :

cn :

...

...

...

...S : S̃ :

Figure 11. Simulation of HOLCS S with PCS S̃: higher-order rules.

7.3.3. Encoding Higher-Order Rules. Higher-order rules of the form q1
cn+1!cn−−−−→ q2 are sim-

ulated in S̃ as we illustrate in case δ3 of Figure 11. Here S̃ uses a loop, abbreviated as

× cn?u;cn!u;cn+1!u−−−−−−−−−−→ ×, to append a copy of cn’s contents to cn+1. This uses a high-priority
$n+1 to mark the end of cn’s contents and ensure that all of it has been read (and written
back). Note that the loop checks that u is in En, i.e., is a well-formed encoding, which is
done by following a DFA for En. When the transfer is completed, a $n+1 must be appended
to cn+1 to ensure consistency.

Simulating rules of the form q3
cn?cn+1−−−−→ q4 follows the same logic (see Figure 11): S̃

reads the first n-level encoding in cn+1, checking that is is well-formed (with “u ∈ En”) and
writes it to cn. Simultaneously, the previous contents of cn is emptied by writing a $n+1

and reading it.

7.3.4. Correctness. The correctness of this simulation is captured by the next two proposi-
tions.

Proposition 7.3. If S has a run C
∗−→ C ′, then S̃ has a run C̃

∗−→ C̃ ′.

Proof Idea. On the one hand, S̃ has been designed so that its behavior without any supersed-
ing directly mimics on encodings the effect of the reliable steps C −→ C ′. Then lossy steps in

S are simulated by superseding since, thanks to Lemma 7.2, C <ho C
′ entails C̃ ≥# C̃ ′.

There is an exact reciprocal to Proposition 7.3:

Proposition 7.4. If S̃ has a run C̃
∗−→ C̃ ′ then S has a run C

∗−→ C ′.

The correctness proof is harder in this direction since the steps of S̃ are finer-grained

than the steps of S. Note that a configuration D = (q, w1, . . . , wk) of S̃ is not necessarily

the encoding C̃ of a configuration of S: if q is not an original state of S (i.e., is one of the
unnamed states depicted on the right-hand side of Figure 10 or Figure 11) then D is not a

C̃. Furthermore, if q is an original state, it is possible that some wn does not belong to En.
With these difficulties in mind, we say that D ∈ Conf

S̃
is safe if every wn ends with a $n

(and contains no $n′ for n′ > n), and that D is a stable configuration if q is an original state.

32 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

We rely on the write-superseding semantics (see Section 2.1.3) for a better control on the

form of the runs. We say that a write-superseding run D0 −→w D1 −→w · · · −→w Dr in S̃ is a
macro-step if D0 and Dr are the only stable configurations it visits (in essence, a macro-step

just follows the rules introduced in S̃ to simulate a single rule of S using write-superseding
semantics). We are now ready for the following lemmata.

Lemma 7.5. Let D
+−→w D′ be any macro-step in S̃. If D is safe then D′ is safe too.

Proof. Since the last message in a channel cannot be superseded, a cn whose contents is safe
remains safe if one does not read its final $n, or one appends some safe contents. We now

consider all four cases for the macro-step D
+−→w D′.

δ1: using rules of the form q1
c1!ai−−→c1!$1−−→ q2, it writes a safe ai · $1 in c1 (and does not read

from the other channels).

δ2: reading with some q3
c1?$1−−→c1?aj−−→ q4, the read $1 cannot be the final one in c1.

δ3: using a macro-step that simulates q1
cn+1!cn−−−−→ q2, the last write to cn is a safe u ∈ En, and

the last write to cn+1 is $n+1.

δ4: using a macro-step that simulates q3
cn?cn+1−−−−→ q4, the last write to cn is a safe u ∈ En,

which is also the last read from cn+1, implying that the final $n+1 in cn+1 cannot have
been read.

Lemma 7.6. If D is safe and D
+−→w C̃ ′ is a write-superseding macro-step in S̃, then there

is a C ∈ ConfS such that D ≥# C̃ and C
+−→ C ′ in S.

Proof. Write D = (q, w1, . . . , wk) and C̃ ′ = (q′, v1, . . . , vk). For each n = 1, . . . , k, we know
that wn is some w′n$n (since D is safe) and that vn is some byncn. We now consider four

cases for the macro-step D
+−→w C̃:

δ1: it uses some q = q1
c1!ai−−→c1!$1−−→ q2 = q′. From the definition of −→w (see Section 2.1.3) we

deduce that v1 = x · $1 where x is a prefix of w′1 · $1 · ai while wn = vn for n > 1. Since

v1 ∈ E1, either v1 = w1 · ai · $1 and we take C̃ = D, or v1 is a safe prefix of w1, in which
case we take C = (q, y1, . . . , yn).

δ2: it uses some q = q3
c1?$1−−→c1?aj−−→ q4 = q′ with no writing. The write-superseding semantics

entails w1 = $1 · aj · v1. Here w1 = baj · y1c1 and we take C̃ = D.
δ3: the macro-step writes a $n+1 to cn and reads it back, so that u = wn and we deduce

that wn ∈ En and is some bxcn. Furthermore vn is u perhaps after some superseding
and one obtains x ≥∗n yn from u ≥# vn.

On cn+1 the macro-step writes u · $n+1 and we reason as in case δ1: if write-
superseding erases the $n+1 that closes wn+1 then vn+1 ≤# wn+1 and we set C =
(q, . . . , yn−1, x, yn+1, . . .), otherwise vn+1 = wn+1 · bx′cn$n+1 with bx′cn ≤# u, we know
that wn+1 is some bxn+1cn+1 and we may set C = (q, . . . , yn−1, x, xn+1, . . .).

δ4: On cn+1 the macro-step just reads $n+1 · u, where u ∈ En is some bxcn. Necessarily wn
is bx · yn+1cn+1. On cn, one writes $n+1 · u and reads $n+1. Necessarily yn ≤# u, hence
yn 4ho x. Taking C = (q, . . . , yn−1, ε, x · yn+1, yn+2, . . .) works.

We can now conclude our correctness proof.

Proof of Proposition 7.4. Assume C̃
∗−→ C̃ ′. We first apply Lemma 2.8 and deduce the

existence of a write-superseding run D0
+−→w C̃ ′ for some D0 ≤# C̃. Let us single out the

THE POWER OF PRIORITY CHANNEL SYSTEMS 33

stable configurations along this run and write it under the form D0
+−→w D1

+−→w · · ·Dr−1
+−→w

Dr = C̃ ′, i.e., as a sequence of r macro-steps.

We now reason by induction on r. If r = 0, then D0 = C̃ ′ and C̃ ≥# C̃ ′, implying

C <ho C
′ by Lemma 7.2 so that S has C

∗−→ C ′ via lossy steps.

If r > 0, we first observe that D0 is safe (since C̃ is) hence D1, . . . , Dr too by Lemma 7.5.

Using Lemma 7.6 on Dr−1
+−→w C̃ ′ implies that there is some C ′′ ∈ ConfS with Dr−1 ≥# C̃ ′′

and C ′′ +−→ C ′. On the other hand, the run C̃
∗−→ D0

+−→w Dr−1
∗−→ C̃ ′′ can be transformed

into r − 1 macro-steps. We can thus apply the ind. hyp. and deduce that C
∗−→ C ′′ in S,

We may now state formally the main theorem of this section.

Theorem 7.7. There is a LogSpace reduction that transforms reachability problems on
kth-order HOLCSs to reachability problems on PCSs of level d = k + 1.

Proof Sketch. The above ideas use p+ k priority levels. One can tighten these simulations
to use fewer priorities and complete the proof of Theorem 7.7 by encoding the messages
a0, . . . , ap−1 as fixed length binary strings over {0, 1} followed by a $1 separator. Then the
prioritized alphabet {0, 1, $1, . . . , $k} with k + 2 priority levels suffices.

In particular {0, 1, $} is enough for LCSs. In the case of weak LCSs where the set of
messages is linearly ordered (say a0 < a1 < · · · < ap−1) and where, in addition to message
losses, any message can be replaced by a lower message inside the channels, we can further
tighten this to {0, $} with a unary encoding of message ai as 0i$.

Remark 7.8. The simulation of HOLCSs by PCSs is quite straightforward. We believe
that a reduction from PCS reachability to HOLCS reachability must exist (on complexity-
theoretical grounds) but we do not have at the moment any suggestion for a simple encoding
of PCSs in HOLCSs.

8. Applications of the Priority Embedding to Trees

In this section we show how tree orderings can be reflected into sequences over a priority
alphabet. This illustrates the “power” of priority embeddings, and yields as a byproduct
a proof that strong tree embeddings form a wqo. The consequence will be that PCSs can
perform operations on encodings of trees in a robust way, i.e., such that superseding steps
respect the tree ordering. This was already the key insight

• in Section 5 when we encoded ordinals, seen as terms, into sequences over Σ∗d, and
• in Section 7 when we encoded nested sequences over Σn∗, which can be seen as terms of

bounded depth, also into sequences over Σ∗d.
We generalize these ideas here, and allow in particular for labeled trees. More precisely, we
show

(1) in Section 8.1 that priority embeddings reflect the so-called strong tree-embedding ordering
on trees of bounded depth, and

(2) in Section 8.2 that they reflect the immersion ordering used by Gupta [Gup92] to
compute the maximal order type of the tree minor ordering.

These two tree orderings are already known to be wqos—with a maximal order type ε0 that
matches that of priority embeddings. The point of the section is thus rather to show how to
encode trees robustly in priority strings, and thus how to manipulate trees robustly in PCSs.

34 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Remark 8.1 (Kruskal’s Tree Theorem). The reader is likely to be already acquainted with
the homeomorphic embedding ordering used in Kruskal’s Tree Theorem. The strong tree
embedding refines this ordering but is restricted to trees of bounded depth (it is not a wqo on
general trees), while the tree minor ordering is coarser than the homeomorphic embedding
ordering. Here, we wish to explicitly emphasize that reflections in priority embeddings do
not provide a new proof of Kruskal’s Tree Theorem. In fact, such a proof cannot exist
since the maximal order type for homeomorphic embeddings is considerably larger than
ε0 [RW93].

8.1. Reflecting Bounded Depth Trees. Recall Fact 3.5 about order reflections: if B
reflects A and (B,≤B) is a wqo, then (A,≤A) is necessarily a wqo. Our goal is to show
that (Σd,Γ,vp,Γ) reflects Γ-labeled trees of depth at most d + 1 endowed with the strong
tree-embedding relation.

Given an alphabet Γ, we note T (Γ) for the set of finite, ordered, unranked labeled trees
(aka variadic terms) over Γ. Let d be a depth in N. We work here with the set Td(Γ) of trees

of depth at most d over Γ. Formally, Td(Γ) is defined by induction over d by T0(Γ)
def
= ∅, and

for d > 0, Td(Γ) is the smallest set containing Td−1(Γ) and such that, if t1, . . . , tn are trees
in Td−1(Γ) and f is in Γ, then the tree f(t1 · · · tn) obtained by adding an f -labeled root over
them is in Td(Γ). When n = 0 we write f rather than f(). Figure 12 presents two labeled
trees of depth 3.

r

f

a

g

b

r

g

a

t1: t2:

Figure 12. Two trees in T3({a, b, f, g, r}).

It will be convenient in the following to use the extension operation “@” on trees, which
is defined for n ≥ 0 by

f(t1 · · · tn) @ t
def
= f(t1 · · · tnt) ; (8.1)

in particular, f @ t = f(t). For instance, t1 in Figure 12 can be decomposed as r@ (f @ a) @
(g @ b).

In case where Γ is a singleton, we denote by “•” its only element and write Td for
Td({•}). For instance, T1 = {•} contains a single tree.

8.1.1. Strong Tree Embeddings. Assume that (Γ,≤Γ) is a wqo, and that we have already
defined a well-quasi-ordering vT on trees of maximal depth d—note that as a base case,
since T0(Γ) is empty, it is vacuously well-quasi-ordered by the empty relation. We can lift it

into a wqo (Td+1(Γ),vT) on trees of maximal depth d+ 1 by f(t1 · · · tn) vT f ′(t′1 · · · t′m)
def⇔

f ≤Γ f
′ and t1 · · · tn vT∗ t′1 · · · t′m, i.e., by considering a product between (Γ,≤Γ) and the

sequence embedding ordering on tree sequences (Td(Γ)∗,vT∗): by Dickson’s Lemma and
Higman’s Lemma, this defines a wqo on trees for every finite d, which we call the strong tree
embedding. Put differently t vT t′ if t it can be obtained from t′ by deleting whole subtrees
and/or decrementing node labels.

THE POWER OF PRIORITY CHANNEL SYSTEMS 35

Strong tree embeddings refine the homeomorphic tree embeddings used in Kruskal’s
Tree Theorem; in general they do not give rise to a wqo, but in the case of bounded depth
trees they do. The two trees t1 and t2 in Figure 12 are not related by any homeomorphic
tree embedding, and thus neither by strong tree embedding. The tree t2 homeomorphically
embeds into t3 = r(g(g(a))), but does not strongly embed into t3.

Observe that vT is a precongruence for @:

t1 vT t′1 and t2 vT t′2 imply t1 @ t2 vT t′1 @ t′2 , (8.2)

t vT t@ t′ . (8.3)

8.1.2. Encoding Trees as Strings. It is easy to encode trees into finite sequences. For instance,
drawing inspiration from the ordinal encodings employed in Section 5, one might be tempted
to encode the two trees in Figure 12 by

s2(t1) = (0, a)(1, f)(0, b)(1, g)(2, r) (8.4)

s2(t2) = (0, a)(1, g)(2, r) (8.5)

as the result of an inductive encoding sd(w(t1 · · · tn))
def
= sd−1(t1) · · · sd−1(tn) ·(d,w). Observe

however that we wish our encoding to be an order reflection (cf. Section 3.2), which is
not the case with sd: we see that s2(t2) vp,Γ s2(t1), although t2 6vT t1. Over a singleton
alphabet however, sd is an order reflection from Td+1 to Σ∗d.

Here we present a more redundant encoding, apt to handle arbitrary alphabets. We
encode trees of bounded depth using the mapping d.ed:Td+1(Γ)→ Σ∗d,Γ defined by induction
on d by

dw(t1 · · · tn)ed def
=

{
(d,w) if n = 0 ,

dt1ed−1 · (d,w) · · · dtned−1 · (d,w) otherwise.
(8.6)

For instance, if we fix d = 2, the trees in Figure 12 are encoded as

dt1e2 = (0, a)(1, f)(2, r)(0, b)(1, g)(2, r) , (8.7)

dt2e2 = (0, a)(1, g)(2, r) . (8.8)

This satisfies dt2e2 6vp,Γ dt1e2 as desired.

8.1.3. Proper Words. Not every string in Σ∗d,Γ is the encoding of a tree according to d.ed:
for 0 ≤ a ≤ d, we let

P−1,Γ
def
= ∅ , Pa,Γ

def
=
⋃

w∈Γ

(
Pa−1,Γ · {(a,w)}

)∗ · (Pa−1,Γ ∪ {ε}) · {(a,w)} (8.9)

be the set of proper encodings of height a. Then P
def
=
⋃
a≤d Pa,Γ is the set of proper words

in Σ∗d,Γ. A proper word x belongs to a unique Pa,Γ with a = h(x), where h(x) is the height

of x, and has then a canonical factorization of the form x = x1(a,w) · · ·xm(a,w) with every
xj in Pa−1,Γ and w in Γ.

36 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

Given a depth d, we see that d.ed is a bijection between Td+1(Γ) and Pd,Γ, with inverse
τ :Pd,Γ → Td+1(Γ)∗ defined using canonical decompositions by

τ(x = x1(h(x), w) · · ·xm(h(x), w))
def
= w(τ(x1) · · · τ(xm)) (8.10)

= w @ τ(x1) @ · · ·@ τ(xm) . (8.11)

Proposition 8.2. The map d.ed is an order reflection from (T ∗d+1,vT∗) to (Σ∗d,vp).

Proof. Let x and x′ be two proper words in Pd,Γ with x vp,Γ x
′; we show by induction on x

that τ(x) vT τ(x′). We consider the canonical factorizations x = x1(d,w) · · ·xm(d,w) and
x′ = x′1(d,w′) · · ·x′n(d,w′) for m,n ≥ 0, xj , x

′
j in Pd−1,Γ for all j, and w,w′ in Γ.

By definition of the generalized priority embedding, the m pairs (d,w) occurring in
x must be mapped to some pairs (d,w′) occurring in x′ with w ≤Γ w

′. Hence there exist
1 ≤ i1, . . . , im ≤ n such that xj vp,Γ x

′
ij

. Therefore,

τ(x) = w @ τ(x1) @ · · ·@ τ(xm) by (8.11)

vT w′ @ τ(x1) @ · · ·@ τ(xm) by (8.2) since w ≤Γ w
′

vT w′ @ τ(x′i1) @ · · ·@ τ(x′im) by (8.2) and ind. hyp. on xj vp,Γ x
′
ij

vT w′ @ τ(x′1) @ · · ·@ τ(x′n) by (8.3)

= τ(x′) by (8.11) .

Note that Proposition 8.2 provides an alternative proof of the fact that (Td(Γ),vT) is a wqo,
thanks to Theorem 3.6 and Fact 3.5.

8.2. Relationship to Tree Minors. As a further application of the priority embedding,
we demonstrate that we also subsume another wqo on trees, the tree minor ordering, by
using the techniques of [Gup92] to encode trees into generalized prioritized alphabets. The
tree minor ordering is coarser than the homeomorphic embedding, but the upside is that
trees of unbounded depth can be encoded into strings.

The trees considered in [Gup92] are unlabeled finite rooted trees with an ordering on
the children of every internal vertex, called planar planted trees therein, i.e. trees from

T
def
= T ({•}). Figure 13 illustrates two such trees. The ordering on the children in particular

implies that, for instance, the tree •(•(•), •) is not equivalent to the tree •(•, •(•)). Gupta
gives in [Gup92] a constructive proof that planar planted trees are well-quasi-ordered under
minors. Recall that t1 is a minor of t2 if t1 can be obtained from t2 by a series of edge
contractions, e.g. in Figure 13, the left-hand tree is a minor of the right-hand one. Note
that, however, the two trees are incomparable for the previously considered homeomorphic
embeddings.

Figure 13. Two trees in T2.

Gupta provides in [Gup92] an effective linearization lin:T → ⋃
d≥0 Σ∗d,Γ which associates

with every tree t a word lin(t) over the generalized prioritized alphabet Σd,Γ, where d is

THE POWER OF PRIORITY CHANNEL SYSTEMS 37

dubbed the width of t—which is at most its number of vertices—and (Γ,=) is a finite
alphabet with Γ = {0, 1, 2, 3}. Gupta continues by defining a so-called immersion ordering
vI on Σ∗d,Γ for any fixed d ∈ N as follows: given x = (a1, w1)(a2, w2) · · · (ak, wk) ∈ Σ∗d,Γ and
y ∈ Σ∗d,Γ, x vI y if y can be factored as y = y0y1 · · · ykyk+1 such that

yi ∈ (Σd,Γ \ Σd−ai−1,Γ)∗ · (ai, wi) · (Σd,Γ \ Σd−ai−1,Γ)∗, 1 ≤ i ≤ k.
The crucial relationship between trees in T , lin and vI is established in [Gup92, Theorem 4.1]:
given planar planted trees t1, t2 ∈ T , whenever lin(t1) vI lin(t2) then t1 is a minor of t2. By
showing that vI is a well-quasi-ordering, Gupta concludes that planar planted trees are
well-quasi-ordered under minors.

The immersion ordering vI is closely related to our generalized priority ordering. In fact,
it is easily seen that vp,Γ can be viewed as a sub-structure of vI . Define an automorphism
κ : Σd,Γ → Σd,Γ as

κ(a,w)
def
= (d− a,w)

which canonically extends to words over Σ∗d,Γ. Now x vp,Γ y in particular implies κ(x) vI
κ(y). Thus, our Theorem 3.6 yields as a corollary another proof that the immersion ordering
vI is a wqo.

Corollary 8.3. The immersion ordering vI is a well-quasi-ordering.

8.3. Further Applications. As stated in the introduction to this section, our main interest
in strong tree embeddings is in connection with structural orderings of ordinals; see Section 5.
Bounded depth trees are also used in the verification of infinite-state systems as a means to
obtain decidability results, in particular for tree pattern rewriting systems [GMSZ08] in XML
processing, and, using elimination trees [OdMN12], for bounded-depth graphs used e.g. in the
verification of ad-hoc networks [DSZ10], the π-calculus [Mey08], programs [BKWZ13], and
protocols [KS14]. These applications consider labeled trees, which motivate the generalized
priority alphabets and embedding defined in Section 3.

The exact complexity of verification problems in the aforementioned models is currently
unknown [GMSZ08, DSZ10, Mey08, BKWZ13, KS14]. Our encoding suggests they might
be Fε0-complete. We hope to see PCS Reachability employed as a “master” problem for
Fε0 , like LCS Reachability for Fωω , which is used in reductions instead of more difficult
proofs based on Turing machines and Hardy computations.

9. Concluding Remarks

We introduced Priority Channel Systems, a natural model for protocols and programs with
differentiated, prioritized asynchronous communications, and showed how they give rise to
well-structured systems with decidable model-checking problems.

We showed that Reachability and Termination for PCSs are Fε0-complete, and we
expect our techniques to be transferable to other models, e.g. models based on wqos on
bounded-depth trees or graphs, whose complexity has not been analyzed [GMSZ08, DSZ10,
Mey08, BKWZ13, KS14]. This is part of our current research agenda on complexity for
well-structured systems [SS12].

In spite of their enormous worst-case complexity, we expect PCSs to be amenable
to regular model checking techniques à la [AJ96, BG99]. This requires investigating the

38 C. HAASE, S. SCHMITZ, AND PH. SCHNOEBELEN

algorithmics of upward- and downward-closed sets of configurations wrt. the priority ordering.
These sets, which are always regular, seem promising since vp shares some good properties
with the better-known subword ordering, e.g. the upward- or downward-closure of a sequence
x ∈ Σ∗d can be represented by a deterministic finite automaton with |x| states.

Acknowledgments

We thank Lev Beklemishev who drew our attention to [SS85] and the reviewers for their
helpful suggestions.

References

[AAC12] P. A. Abdulla, M. F. Atig, and J. Cederberg. Timed lossy channel systems. In FST&TCS 2012,
volume 18 of Leibniz International Proceedings in Informatics, pages 374–386. Leibniz-Zentrum
für Informatik, 2012.

[AČJT00] P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1–2):109–127, 2000.

[ADOW05] P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. In ICALP 2005, volume 3580 of Lecture Notes in
Computer Science, pages 1089–1101. Springer, 2005.

[Aho69] A. V. Aho. Nested stack automata. Journal of the ACM, 16(3):383–406, 1969.
[AJ96] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and

Computation, 127(2):91–101, 1996.
[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for

differentiated services. RFC 2475, December 1998.
[BG99] B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infinite

state spaces using QDDs. Formal Methods in System Design, 14(3):237–255, 1999.
[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems with

nonregular sets of configurations. Theoretical Computer Science, 221(1–2):211–250, 1999.
[BJW82] R. V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theoretical Computer Science,

19:231–251, 1982.
[BKWZ13] K. Bansal, E. Koskinen, T. Wies, and D. Zufferey. Structural counter abstraction. In TACAS

2013, volume 7795 of Lecture Notes in Computer Science, pages 62–77. Springer, 2013.
[BMO+12] P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and J. Worrell. On termination and

invariance for faulty channel machines. Formal Aspects of Computing, 24(4–6):595–607, 2012.
[Bon13] R. Bonnet. Theory of Well-Structured Transition Systems and Extended Vector-Addition Systems.

Thèse de doctorat, ENS Cachan, France, 2013.
[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,

30(2):323–342, 1983.
[CF05] G. Cécé and A. Finkel. Verification of programs with half-duplex communication. Information

and Computation, 202(2):166–190, 2005.
[CFP96] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than

perfect channels. Information and Computation, 124(1):20–31, 1996.
[CS08] P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems.

In LICS 2008, pages 205–216. IEEE Press, 2008.
[dJP77] D. H. J. de Jongh and R. Parikh. Well-partial orderings and hierarchies. Indagationes Mathemat-

icae, 39(3):195–207, 1977.
[DSZ10] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In

Concur 2010, volume 6269 of Lecture Notes in Computer Science, pages 313–327. Springer, 2010.
[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical

Computer Science, 256(1–2):63–92, 2001.
[FW98] M. Fairtlough and S. S. Wainer. Hierarchies of provably recursive functions. In S. Buss, editor,

Handbook of Proof Theory, chapter III, pages 149–207. Elsevier, 1998.

THE POWER OF PRIORITY CHANNEL SYSTEMS 39

[GMSZ08] B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree pattern rewriting systems. In ATVA
2008, volume 5311 of Lecture Notes in Computer Science, pages 332–346. Springer, 2008.

[Gup92] A. Gupta. A constructive proof that trees are well-quasi-ordered under minors. In LFCS 1992,
volume 620 of Lecture Notes in Computer Science, pages 174–185. Springer, 1992.

[HSS12] S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive complexity of timed-arc Petri
nets, data nets, and other enriched nets. In LICS 2012, pages 355–364. IEEE Press, 2012.

[HSS13] C. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. In Concur 2013,
volume 8052 of Lecture Notes in Computer Science, pages 319–333. Springer, 2013.

[KS14] B. König and J. Stückrath. A general framework for well-structured graph transformation systems.
In Concur 2014, volume 8704 of Lecture Notes in Computer Science, pages 467–481. Springer,
2014.

[Kur06] A. Kurucz. Combining modal logics. In Handbook of Modal Logics, chapter 15, pages 869–926.
Elsevier, 2006.

[LB92] J.-Y. Le Boudec. The Asynchronous Transfer Mode: a tutorial. Computer Networks and ISDN
Systems, 24(4):279–309, 1992.

[LW70] M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archiv für Mathematische
Logik und Grundlagenforschung, 13:39–51, 1970.

[LW08] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Transactions on Computational
Logic, 9(2), 2008.

[May03] R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science,
297(1–3):337–354, 2003.

[Mey08] R. Meyer. On boundedness in depth in the π-calculus. In IFIP TCS 2008, volume 273 of IFIP,
pages 477–489. Springer, 2008.

[Mus10] A. Muscholl. Analysis of communicating automata. In LATA 2010, volume 6031 of Lecture Notes
in Computer Science, pages 50–57. Springer, 2010.

[OdMN12] P. Ossona de Mendez and J. Nešetřil. Sparsity, chapter 6: Bounded height trees and tree-depth,
pages 115–144. Springer, 2012.

[OW07] J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal Logic over
finite words. Logical Methods in Computer Science, 3(1):1–27, 2007.

[Pac87] J. K. Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In PSTV ’87, pages 207–219. North-Holland, 1987.

[Rei08] K. Reinhardt. Reachability in Petri nets with inhibitor arcs. In RP 2008, volume 223 of Electronic
Notes in Theoretical Computer Science, pages 239–264. Elsevier, 2008.

[RW93] M. Rathjen and A. Weiermann. Proof-theoretic investigations on Kruskal’s Theorem. Annals of
Pure and Applied Logic, 60(1):49–88, 1993.

[Sch10a] Ph. Schnoebelen. Lossy counter machines decidability cheat sheet. In RP 2010, volume 6227 of
Lecture Notes in Computer Science, pages 51–75. Springer, 2010.

[Sch10b] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets.
In MFCS 2010, volume 6281 of Lecture Notes in Computer Science, pages 616–628. Springer,
2010.

[Sch13] S. Schmitz. Complexity hierarchies beyond Elementary. Preprint, December 2013. arXiv:1312.5686
[cs.CC].

[SS85] K. Schütte and S. G. Simpson. Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche
Folgen von natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung,
25(1):75–89, 1985.

[SS11] S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s Lemma. In
ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 441–452. Springer, 2011.

[SS12] S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of WQO theory. Lecture notes, 2012.
cel.archives-ouvertes.fr:cel-00727025.

[SS13] S. Schmitz and Ph. Schnoebelen. The power of well-structured systems. In Concur 2013, volume
8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013. Invited talk.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://arxiv.org/abs/1312.5686
http://arxiv.org/abs/1312.5686
http://cel.archives-ouvertes.fr/cel-00727025

	1. Introduction
	1.1. Structure of this Paper

	2. Priority Channel Systems
	2.1. Semantics
	2.2. Priority Channel Systems are Well-Structured

	3. Priority Embedding
	3.1. Embedding with Priorities
	3.2. Priority Embedding is a Well-Quasi-Ordering

	4. Fast-Growing Upper Bounds
	4.1. Subrecursive Hierarchies
	4.2. The Length of Controlled Bad Sequences
	4.3. Complexity Upper Bounds

	5. Hardy Computations by PCSs
	5.1. Encoding Ordinals
	5.2. Robustness
	5.3. Robust Hardy Computations in PCSs
	5.4. Wrapping It Up

	6. Alternative Semantics
	6.1. Strict-Superseding and Overtaking
	6.2. Channels as Priority Queues

	7. Higher-Order Lossy Channel Systems
	7.1. Syntax
	7.2. Semantics
	7.3. Simulation by PCSs

	8. Applications of the Priority Embedding to Trees
	8.1. Reflecting Bounded Depth Trees
	8.2. Relationship to Tree Minors
	8.3. Further Applications

	9. Concluding Remarks
	Acknowledgments
	References

