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Abstract. Linearizability of concurrent data structures is usually proved by monolithic
simulation arguments relying on the identification of the so-called linearization points.
Regrettably, such proofs, whether manual or automatic, are often complicated and scale
poorly to advanced non-blocking concurrency patterns, such as helping and optimistic
updates.

In response, we propose a more modular way of checking linearizability of concurrent
queue algorithms that does not involve identifying linearization points. We reduce the
task of proving linearizability with respect to the queue specification to establishing four
basic properties, each of which can be proved independently by simpler arguments. As a
demonstration of our approach, we verify the Herlihy and Wing queue, an algorithm that
is challenging to verify by a simulation proof.

1. Introduction

Linearizability [10] is widely accepted as the standard correctness requirement for concur-
rent data structure implementations. It amounts to showing that each method provides
the illusion that it executes atomically at some point after its call and before its return.
Typically, what each method is expected to do (atomically) is given in terms of a sequential
specification. For instance, an unbounded queue must support the following two methods:
enqueue, which extends the queue by appending one element to its end, and dequeue, which
removes and returns the first element of the queue.

The standard way to prove that a concurrent queue implementation is linearizable is to
show that it is simulated by the idealised atomic queue implementation, which we take to be
the specification of the queue. For example, using forward simulation [15], we have to define
a relation S relating the state of the implementation to the state of the specification, and
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to show that (1) the initial states of the implementation and the specification are related
by S, and (2) starting from S-related implementation and specification states (σimpl, σspec),
if the implementation takes a step and goes to state σ′

impl, the specification can also take a

matching step (or stutter) and result in some state σ′
spec that is S-related to σ′

impl. The most
important part of these proofs is to decide which of the implementation steps are matched by
actual steps of the specification code and which by stuttering moves. For each method of the
implementation, the step during its execution that in the simulation proof is matched by the
atomic step of the corresponding method of the specification is known as the linearization
point. A well-established approach (e.g. [1, 2, 3, 4, 5, 14, 17, 18, 19]) is therefore to identify
these linearization points, which when performed by the implementation change the state
of the specification, and to then construct a suitable forward or backward simulation.

While for a number of concurrent algorithms, spotting the linearization points may be
straightforward (and has even been automated to some extent [19]), in general specifying the
linearization points can be very difficult. For instance, in implementations using a helping
mechanism, they can lie in code not syntactically belonging to the thread and operation in
question, and can even depend on future behavior. There are numerous examples in the
literature, where this is the case; to mention only a few concurrent queues: the Herlihy
and Wing queue [10], the optimistic queue [13], the elimination queue [16], the baskets
queue [11], the flat-combining queue [7].

The Herlihy and Wing Queue.

1: var q.back : int← 0
2: var q.items : array of val

← {NULL, NULL, . . .}

3: procedure enq(x : val)
4: 〈i← INC(q.back)〉 ⊲ E1

5: 〈q.items[i]← x〉 ⊲ E2

6: procedure deq() : val
7: while true do
8: 〈range← q.back − 1〉 ⊲ D1

9: for i = 0 to range do
10: 〈x← SWAP(q.items[i], NULL)〉 ⊲ D2

11: if x 6= NULL then return x

Figure 1: Herlihy and Wing queue [10].

In this paper, we focus on the Herlihy and Wing queue [10] (henceforth, HW queue for
short) that illustrates nicely the difficulties encountered when defining a simulation relation
based on linearization points. We recall the code of the queue as given in [10] in Figure 1.
The queue is represented as a pre-allocated unbounded array, q.items, initially filled with
NULLs, and a marker, q.back, pointing to the end of the used part of the array. Enqueuing
an element is done in two steps: the marker to the end of the array is incremented (E1),
thereby reserving a slot for storing the element, and then the element is stored at the
reserved slot (E2). Dequeue is more complex: it reads the marker (D1), and then searches
from the beginning of the array up to the marker to see if it contains a non-NULL element.
It removes and returns the first such element it finds (D2). If no element is found, dequeue
starts again afresh. Each of the four statements surrounded by 〈〉 brackets and annotated
by Ei or Di for i = 1, 2 is assumed to execute atomically.

We now show that verifying this algorithm by finding its linearization points is diffi-
cult. Consider the following execution fragment, where · denotes context switches between
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concurrent threads,

(t : E1) · (u : E1) · (v : D1,D2) · (u : E2) · (t : E2) · (w : D1)

which have threads t and u executing enqueue instances, v and w executing dequeue in-
stances. At the end of this fragment, v is ready to dequeue the element enqueued by u, and
w is ready to dequeue the element enqueued by t. In order to define a simulation relation
from this interleaving sequence to a valid sequential queue behavior, where operations hap-
pen in isolation, we have to choose the linearization points for the two completed enqueue
instances. The difficulty lies in the fact that no matter which statements are chosen as
the linearization points for the two enqueue instances, there is always an extension to the
fragment inconsistent with the particular choice of linearization points. For instance, if we
choose (t : E1) as the linearization point for t, then the extension

(v : D2, return) · (z : D1,D2, return)

requiring u’s element be enqueued before that of t’s, will be inconsistent. If, on the other
hand, we choose any statement which makes u linearize before t, then the extension

(w : D2, return) · (z : D1,D2,D2, return)

requiring the reverse order of enqueueing will be inconsistent. This shows not only that
finding the correct linearization points can be challenging, but also that the simulation
proofs will require to reason about the entire state of the system, as the local state of one
thread can affect the linearization of another.

Our Contribution. In our experience, this and similar tricks for reducing synchronization
among threads so as to achieve better performance, make concurrent algorithms extremely
difficult to reason about when one is constrained to establishing a simulation relation. How-
ever, if two methods overlap in time, then the only thing enforced by linearizability is that
their effects are observed in some and same order by all threads. For instance, in the ex-
ample given above, the simple answer for the particular ordering between the linearization
points of the enqueue instances of t and u, is that it does not matter! As long as enqueue
instances overlap, their values can be dequeued in any order.

Building on this observation, our contribution is to simplify linearizability proofs by
modularizing them. We reduce the task of proving linearizability to establishing four rel-
atively simple properties, each of which may be reasoned about independently. In (loose)
analogy to aspect-oriented programming, we are proposing “aspect-oriented” linearizability
proofs for concurrent queues, where each of these four properties will be proved indepen-
dently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:

(1) must not allow dequeuing an element that was never enqueued;
(2) must not allow the same element to be dequeued twice;
(3) must not allow elements to be dequeued out of order; and
(4) must correctly report whether the queue is empty or not.1

Although similar properties were already mentioned by Herlihy and Wing [10], we
for the first time prove that suitably formalized versions of these four properties are not
only necessary, but also sufficient, conditions for linearizability with respect to the queue
specification, at least for what we call purely-blocking implementations. This is a rather weak

1The HW queue trivially satisfies the fourth property as it never reports that the queue is empty.
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requirement satisfied by all non-blocking implementations, as well as by possibly blocking
implementations, such as HW deq() method, whose blocking executions do not modify the
global state.

Paper Outline. The rest of the paper is structured as follows: Section 2 recalls the def-
inition of linearizability in terms of execution histories. Section 3 develops an alternative
characterization of legal queue behaviors, which is useful for our proofs. Section 4 formal-
izes the aforementioned four properties, and proves that they are necessary and sufficient
conditions for proving linearizability of queues. Section 5 returns to the HW queue example
and presents a detailed manual proof of its correctness by checking each of the properties
separately. Section 6 shows how the checking of these four properties can be automated by
reducing them to non-termination of certain parametric programs. Section 7 explains how
we adapted Cave [19] to prove these parametric programs non-terminating for the case of
the HW queue. Finally, in Section 8 we discuss related work, and in Section 9 we conclude.

Differences from the Conference Paper. This article is an extended version of our
CONCUR’13 conference paper [8], containing all the proofs of the lemmas and theorems
mentioned in the paper. Since the conference, we have also implemented a checker for the
VRepet property, and have expanded the discussion of automation in Sections 6 and 7 to
cover the verification of VRepet.

2. Technical Background

In this section, we introduce common notations that will be used throughout the paper and
recall the definition of linearizability.

For any function f from A to B and A′ ⊆ A, let f(A′)
def
= {f(a) | a ∈ A′}. Given two

sequences x and y, let x · y denote their concatenation, and let x ∼perm y hold if one is a

permutation of the other. We use x〈i〉 to refer to the ith element in sequence x, and x〈i : j〉
to refer to the subsequence of x containing all elements from position i to j inclusive. We
write x|A for the subsequence of x containing only elements in the set A.

Behaviors. A data structure D is a pair (D,ΣD), whereD is the data domain and ΣD is the
method alphabet. An event of D is a quadruple (uid ,m, di, do), for a unique event identifier,
uid ∈ N, a method m ∈ ΣD, and data elements di, do ∈ D. Intuitively, (uid ,m, di, do)
denotes the application of method m with input argument di returning the output value
do. Throughout the paper, we will assume that the uid components of events are globally
unique. A duplicate-free sequence over events of D is called a behavior. The semantics of
data structure D is a set of behaviors, called legal behaviors.

The method alphabet ΣQ of a queue is the set {enq, deq}. We will take the data domain
to be the set of natural numbers, N, and a distinguished symbol NULL not in N. Events are
written as enquid (x), short for (uid , enq, x,⊥), and dequid (x), short for (uid , deq,⊥, x). For
consiceness, we will often also omit the uid superscripts. Events with enq are called enqueue
events, and those with deq are called dequeue events. We use Enq and Deq to denote all
enqueue and dequeue events, respectively.

We will use a labelled transition system, LTSQ, to define the queue semantics. The
states of LTSQ are sequences over N, the initial state is the empty sequence ε. There is a
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transition from q to q′ with action a, written q
a
−→ q′, if (i) a = enq(x) and q′ = q · x, or (ii)

a = deq(x) and q = x · q′, or (iii) a = deq(NULL) and q = q′ = ε.
A run of LTSQ is an alternating sequence q0l1q1 . . . lnqn of states and queue events such

that for all 1 ≤ i ≤ n, we have qi−1
li−→ qi. The trace of a run is the sequence l1 . . . ln of the

events occurring on the run. A queue behavior b is legal iff there is a run of LTSQ with trace
b. In what follows, we will consider only legal queue behaviors, and hence usually omit legal,
unless explicitly stated otherwise. Let Q denote the set of all (legal) queue behaviors.

Histories and Linearizability. Each event a = (uid ,m, di, do) generates two actions: the
invocation of a, written as inv(a), and the response of a, written as res(a). We will also
use muid

i (di) and muid
r (do) to denote the invocation and the response actions, respectively.

When a particular method m does not have an input (resp., output) parameter, we will
write muid

i (resp., muid
r ) for the corresponding invocation (resp., response) action. We will

also often omit the superscripts, when they are not important.
In this paper, a history of D is a sequence of invocation and response actions of D. We

will assume the existence of an implicit identifier in each history c that uniquely pairs each
invocation with its corresponding response action, if the latter also occurs in c. A history c
is well-formed if every response action occurs after its associated invocation action in c. We
will consider only well-formed histories. An event is completed in c, if both of its invocation
and response actions occur in c. An event is pending in c, if only its invocation occurs in c.
We define remPending(c) to be the sub-sequence of c where all pending events have been
removed. An event e precedes another event e′ in c, written e ≺c e′, if the response of e
occurs before the invocation of e′ in c. For event e, Before(e, c) denotes the set of all events
that precede e in c. Similarly, After(e, c) denotes the set of all events that are preceded by
e in c. Formally,

Before(e, c)
def
= {e′ | e′ ≺c e} and After(e, c)

def
= {e′ | e ≺c e

′} .

A set of events A is closed under ≺c iff whenever a ∈ A and b ≺c a, then b ∈ A.
History c is called complete if it does not have any pending events. For a possibly

incomplete history c, a completion of c, written ĉ, is a well-formed complete history such
that ĉ = remPending(c · c′) where c′ contains only response actions. Let Compl (c) denote
the set of all completions of c.

A history is called sequential if all invocations in it are immediately followed by their
matching responses, with the possible exception of the very last action which can only be the
invocation of a pending event. We identify complete sequential histories with behaviors of D
by mapping each consecutive pair of matching actions in the former to its event constructing
the latter. A sequential history s is a linearization of a history c, if there exists ĉ ∈ Compl (c)
such that ĉ ∼perm s and whenever e ≺ĉ e

′ we have e ≺s e
′.

Definition 2.1 (Linearizability [10]). A history c is linearizable with respect to a data
structure D if there exists a linearization of c that is a legal behavior of D. A set of histories
C is linearizable with respect to D if every c ∈ C is linearizable with respect to D.

An execution trace is a sequence of instruction labels coupled with thread identifiers
executing the instruction. For instance, (t : i) denotes the execution of instruction with the
unique label i by thread t. An instruction label is the entry point of method m, written
enter(m), if it is the label of the first instruction of m. Similarly, an instruction label is
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an exit point of m, written exit(m), if it is the label of an instruction that completes the
execution ofm. Each execution trace τ induces a history h(τ) which is obtained by replacing

each (t : enter(m)) with mtuid
i (di), each (t : exit(m)) with mtuid

r (do), and removing the
remaining symbols. We assume that states of an execution trace contain enough information
to deduce the values of di and do associated with each entry and exit point. To illustrate
this definition, consider the following execution trace from the introduction:

(t : E1)·(u : E1)·(v : D1,D2)·(u : E2)·(t : E2)·(w : D1)·(v : D2, return)·(z : D1,D2, return) .

The history corresponding to this trace is:

enqti(x) · enq
u
i (y) · deq

v
i · deq

w
i · deq

v
r(x) · deq

z
i · deq

z
r(y)

where we have used the thread identifiers without subscripts as unique event identifiers.
After completing the history with responses enqtr and enqur of the pending enqueues, and
removing the pending invocation deqwi , the history may be linearized as follows:

enqti(x) · enq
t
r · enq

u
i (y) · enq

u
r · deq

v
i · deq

v
r(x) · deq

z
i · deq

z
r(y)

and corresponds to the (legal) behavior enqt(x) · enqu(y) · deqv(x) · deqz(y). An execution
trace is complete if its induced history is complete. An implementation is identified with
the set of execution traces it generates. When clear from the context, we will refer to the
induced history of an execution trace as a history of the implementation.

3. Alternative Characterization of Legal Queue Behaviours

We start with some terminology. Let c be a history. Enq(c) denotes the set of all enqueue
events invoked (and not necessarily completed) in c. Similarly, Deq(c) denotes the set of all
dequeue events invoked in c. When c is a complete history, we define the value of an event
e, written Val c(e), to be the value enqueued or dequeued by that event.

We find it useful to express the semantics of queues in an alternative formulation.

Definition 3.1. A queue behavior b has a sequential witness if there is a total mapping
µseq from Deq(b) to Enq(b) ∪ {⊥} such that

(i) µseq(d) = e implies Valb(d) = Val b(e),
(ii) µseq(d) = ⊥ iff Val b(d) = NULL,
(iii) µseq(d) = µseq(d

′) 6= ⊥ implies d = d′,
(iv) µseq(d) = e implies e ≺b d,
(v) e ≺b µseq(d

′) implies µ−1
seq(e) ≺b d

′,

(vi) µseq(d) = ⊥ implies |{e ∈ Enq(b) | e ≺b d}| = |{d
′ ∈ Deq(b) | d′ ≺b d ∧ µseq(d

′) 6= ⊥}|.

To illustrate this definition, consider the following legal queue behavior:

b
def
= enqt(x) · enqu(y) · deqv(x) · deqz(y) · deqw(NULL)

We can pick µseq such that µseq(v) = t, µseq(z) = u and µseq(w) = ⊥. The constraints of
Definition 3.1 are satisfied because:

• t ≺b u implies µ−1
seq(t) = v ≺b z = µ−1

seq(u).

• |{e∈Enq(b) | e ≺b w}| = |{t, u}| = |{v, z}| = |{d
′ ∈Deq(b) | d′ ≺b w ∧ µseq(d

′) 6=⊥}|.
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To show that a behavior is legal iff it has a sequential witness, we need a number of
auxiliary definitions and lemmas.

We say that two queue behaviors b1 and b2 are observationally equivalent, written
b1 ≡obs b2, if the sequences of enqueue events and those of dequeue events agree in both
behaviors. Formally, b1 ≡obs b2 iff b1|Enq = b2|Enq and b1|Deq = b2|Deq.

We define a special subset of queue behaviors, the canonical subset Qc, in which each
enqueue event is immediately followed by its matching dequeue event, in case it exists.
Formally, the canonical queue behaviors are given by the following regular expression:

Qc
def
=

(
(deq(NULL))∗ ·

∑

x∈N enq(x) · deq(x)
)∗
· (deq(NULL))∗ ·

(∑

x∈N enq(x)
)∗

A run r of LTSQ is called canonical if the trace of r is canonical.
Note that every canonical behavior is legal. Consider a canonical behavior b ∈ Qc and

split it into b = b′ · enq(v1)enq(v2) . . . enq(vn) such that b′ does not end with an enq. This
behavior can be generated by the following run of the LTSQ.

(
(ǫ deq(NULL))∗ ǫ

∑

x∈N enq(x) x deq(x)
)∗

(ǫ deq(NULL))∗ ǫ
enq(v1)v1enq(v2)(v1v2) · · · (v1 . . . vn−1)enq(vn)(v1 . . . vn−1vn))

As the following result shows, canonical queue behaviors represent all legal behaviors,
up to observational equivalence.

Lemma 3.2. Let b ∈ Q be a legal queue behavior. Then there exists a canonical behavior
bc ∈ Qc such that b ≡obs bc.

Proof. By induction on the length of b. The base case, where b = ε trivially satisfies the
condition since ε ∈ Qc. Now assume the claim holds for b, and we have to prove it for b · a.
By the induction hypothesis, there is a canonical behavior bc ≡obs b. We observe that since
bc and b are legal and bc ≡obs b, their runs end in the same final state. Therefore, the fact
that b · a is legal implies that bc · a is also legal. We proceed by a case analysis of a.

• a = enq(x). Then bc · enq(x) is trivially also canonical.
• a = deq(NULL). We know that bc cannot end in an enqueue event, or else the queue would
not be empty. Therefore bc · deq(NULL) is canonical.
• a = deq(y), with y 6= NULL. We know that bc must be of the form b1c · enq(y) · b

2
c where b1c

does not end in a enqueue event and b2c contains only enqueue events. Then, we take the
behavior b1c · enq(y) · deq(y) · b

2
c , which is both canonical and observationally equivalent

to b · deq(y).

Moreover, canonical behaviors have a straightforward sequential witness.

Lemma 3.3. Every canonical behavior b ∈ Qc has a sequential witness µb.

Proof. Let b be a canonical behavior. We construct µb by mapping all deq(NULL) to ⊥,
and each deq(x) with x ∈ N to its immediate predecessor. By the definition of canonical
behavior, each deq(x) in b is immediately preceded by enq(x). Thus, the first four conditions
are trivially satisfied. If enq(y) ≺b enq(x) and deq(x) is in b, then by the definition of
canonical behavior, we must have

b = b1 · enq(y) · deq(y) · b2 · enq(x) · deq(x) · b3

for some sequences b1, b2, b3. This implies that condition (v) is satisfied. Finally, if b =
b1 · deq(NULL) · b2, consider the sequence b′1 obtained by projecting out all deq(NULL) events
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from b1. That is,

b′1
def
= b1|(Enq ∪ Deq \ {deq(NULL)})

Then, by the definition of canonical behavior, we have b′1 ∈
(∑

x∈N enq(x) · deq(x)
)∗
. In

other words, b′1 has an equal number of enq and deq symbols, such that by construction
µb(deq(x)) = enq(x) 6= ⊥. This implies that condition (vi) is satisfied.

Lemma 3.4. If b = b1 · deq(x) · b2 is a legal queue behavior, then enq(x) ≺b deq(x).

Proof. By the definition of LTSQ, deq(x) can happen at a state q if q = x · q′ for some
sequence q′. Again by definition, all runs of LTSQ reaching q must have a transition with
label enq(x); otherwise, x cannot occur in q. Since all legal behaviors have a corresponding
run, enq(x) ≺b deq(x) must hold.

Next, we show that observationally equivalent legal queue behaviors cannot reorder
their deq(NULL) events.

Lemma 3.5. If b and b′ are observationally equivalent legal queue behaviors, then b〈i〉 =
deq(NULL) iff b′〈i〉 = deq(NULL).

Proof. Since ≡obs is a symmetric relation, we prove only one direction. (⇒) Consider the
subsequences be = b〈1 : i − 1〉|Enq, bd = b〈1 : i − 1〉|Deq, and their duals b′e and b′d for b′.
Note that each enqueue event increases by one the length of the sequence representing the
state, each dequeue event decreases by one the length of the sequence representing the state,
and deq(NULL) can only happen when the length of the sequence is zero (q = ε). Then, the
number of enqueue events in be and the number of non-NULL dequeue events in bd must be
equal; let us call it k.

Assume first that bd is a proper prefix of b′d. This implies that b′e is a proper prefix of be.

The (|bd|+1)th symbol in b′d is deq(NULL) because b ≡obs b
′. Then, the number of non-NULL

dequeue events preceding this deq(NULL) is k, but the number of enqueue events preceding
it, contained in b′e, which is a proper prefix of be, is strictly less than k. This contradicts
the assumption that b′ is a legal queue behavior. The case where be is a proper prefix of b′e
follows a similar argument.

Now assume that b′d = bd and b′e = be. Further assume b′〈i〉 = enq(x) for some x ∈ N.
Because b ≡obs b′, the next dequeue event in b′ is necessarily deq(NULL). This, however,
contradicts that the fact that b′ is legal, because in a legal behavior deq(NULL) cannot
immediately follow an enqueue event. Therefore b′〈i〉 = deq(y) for some y and because
b ≡obs b

′, we have that y = NULL, as required.

Next, we show that given two observationally equivalent behaviors and a sequential
witness for the first behavior, we can build a sequential witness for the other.

Lemma 3.6. Let b ≡obs b′ and µb be a sequential witness for b. Then, there exists a
sequential witness for b′.

Proof. Let π denote a permutation from b to b′ such that deq(NULL) events are not shuffled.
That is, π(i) = j means that b〈i〉 = b′〈j〉 and whenever b〈i〉 = deq(NULL), we set π(i) = i
By the definition of obs-equivalence and Lemma 3.5, this permutation is well-defined. Note
that because b ≡obs b′, the ordering among dequeue events is preserved by π. That is,
if b〈i〉, b〈j〉 ∈ Deq and i < j, then π(i) < π(j). The same holds for the ordering among

enqueue events. We now pick the mapping µ(i)
def
= π(µb(π

−1(i))) and show that it is a
sequential witness for b′. Conditions (i) and (ii) are satisfied by construction. Condition
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(iii) is satisfied because π is a bijection. Condition (iv) is satisfied by Lemma 3.4 and by
the construction of µ. Condition (v) is satisfied by because π is a bijection and preserves
the ordering between dequeues and enqueues. Condition (vi) is satisfied by Lemma 3.5.

Lemma 3.7. Let b be a queue behavior with a sequential witness µ.

(1) Let d and e be dequeue and enqueue events such that µ(d) = e, and let b′ be the behavior
obtained after removing both d and e from b. Then, the restriction of µ to b′ is a
sequential witness for b′.

(2) Let d = deq(NULL), and b′ by obtained by removing d from b. Then, the restriction of
µ to b′ is a sequential witness for b′.

Proof. In both cases, let us denote the restriction of µ on b′ with µ′; we have to show that
µ′ satisfies the six conditions of a sequential witness.

(1) Since µ′ is a restriction, it satisfies conditions (i), (ii) and (iii). Observe that for
any two events e1 and e2 in b′, we have e1 ≺b e2 iff e1 ≺b′ e2. This implies that µ′ satisfies
conditions (iv) and (v). Finally, we have to show that there cannot be a dequeue event
d′ = deq(NULL) such that e ≺b d

′ ≺b d. Assume the contrary, then since the number of non-
NULL dequeue events and the number of enqueue events preceding d′ must be equal, there
must be a dequeue event dy = deq(y) whose matching ey = enq(y) comes after d′. This
implies that dy ≺b d

′ ≺b ey and µ(dy) = ey, contradicting condition (iii). Thus, condition
(vi) is also satisfied by µ′.

(2) As in the previous case, conditions (i) to (v) are satisfied by µ′. The condition
(vi) is satisfied because removing d′ does not affect the cardinality of either set; thus, if
d′ = deq(NULL) is in b′, then the number of enqueue events and non-NULL dequeue events
that precede d′ in b′ is the same as those that precede d′ in b.

Lemma 3.8. Let b be a queue behavior and let µ be a sequential witness for b. Then,
there exists a canonical behavior bc such that b ≡obs bc and for all i, b〈i〉 = deq(NULL) iff
bc〈i〉 = deq(NULL).

Proof. Let can(b, µ) denote the canonical behavior of b whose sequential witness is µ. We
will prove, by induction on the length of b, that can is a well-defined total function.

For the base, consider all sequences b of length 1 or less which have a sequential witness.

• If b = ε, then the empty mapping is the only sequential witness for b; by definition, b is
a canonical behavior. The second condition is vacuously satisfied.
• If b = deq(NULL), then µ which maps deq(NULL) to ⊥ is the only sequential witness for b;
by definition, b is a canonical behavior. Since bc = b, the second condition is satisfied.
• If b = enq(x) for some x ∈ N, then the empty mapping is the only sequential witness for
b; by definition, b is a canonical behavior. Since there is no deq(NULL) event, the second
condition is vacuously satisfied.

Observe that the sequence b = deq(x) of length 1 cannot have a sequential witness, because
any sequential witness has to map deq(x) to a matching enqueue which does not exist.

Assume that the claim holds for all sequences of length k or less. Let b be a sequence
of length k + 1 and µ be a sequential witness for b. Consider the two sub-sequences of
b, bd = b|Deq and be = b|Enq, with lengths nd and ne, respectively. Observe that b is an
interleaving of bd and be. In particular, b〈1〉 is either bd〈1〉 or be〈1〉. We will do a case
analysis on the possible values for d = bd〈1〉.

• d = deq(NULL). Then, we set bc = can(b, µ) = d · can(b′, µ′), with b′ obtained by removing
the first deq(NULL) from b (note that this is d) and µ′ obtained by restricting µ to b′. By
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Lemma 3.7, µ′ is a sequential witness for b′. By inductive hypothesis, b′c = can(b′, µ′) is
a canonical behavior observationally equivalent to b′. Since b′c is a canonical behavior, so
is bc = d · b′c = deq(NULL) · b′c. Since b′c ≡obs b′, we have bc|Deq = d · b′c|Deq = bd = b|Deq,
bc|Enq = be = b|Enq. Thus, bc ≡obs b. The second condition is satisfied, because both b
and bc have deq(NULL) in their first position and b′c preserves the positions of NULL-dequeue
events by inductive hypothesis.
• d = deq(x) for some x ∈ N. By the assumption that µ is a sequential witness for b
implies that there exists e = enq(x) such that µ(d) = e (conditions (i) and (ii)) and
d ≺b e (condition (iv)). Then, e = be〈1〉 = enq(x) must hold. Assume contrary, that is
be〈1〉 = enq(y) for some y 6= x. As noted above, b〈1〉 is either bd〈1〉 or be〈1〉. If the former,
then d ≺b e cannot hold since d is minimal with respect to ≺b, violating condition (iv)
which contradicts the assumption that µ is a sequential witness for b. If the latter, that is
e′ = b〈1〉 = be〈1〉 = enq(y), then e′ ≺b e, and either there is no d′ = deq(y) or if it exists,
d ≺b d

′, violating condition (v) which contradicts the assumption that µ is a sequential
witness for b. Thus, e = be〈1〉. We set bc = can(b, µ) = e · d · can(b′, µ′), with b′ obtained
by removing d and e from b and µ′ to be the restriction of µ on b′. By Lemma 3.7, µ′

is a sequential witness for b′. By inductive hypothesis, b′c = can(b′, µ′) is a canonical
behavior obs-equivalent to b′. Since b′c is a canonical behavior, so is bc = e · d · b′c =
enq(x) · deq(x) · b′c. Finally, since b′c ≡obs b

′, we have bc|Deq = d · b′c|Deq = bd = b|Deq and
bc|Enq = e · b′c|Enq = be = b|Enq. Thus, bc ≡obs b. By the proof of Lemma 3.7, we know
that for any d′ = deq(NULL) either both d and e precede it in b or neither does. Since d
is the first event in bd, the latter cannot happen; i.e. d ≺b d

′ and e ≺b d
′. This implies

that the position of d′ is the same in bc and e · d · b′c by the inductive hypothesis. Thus
the second condition is satisfied.

Lemma 3.9. Let bc be a canonical queue behavior. Let b be a queue behavior such that
b ≡obs bc, for every deq(x) in b there is enq(x) ≺b deq(x), and for every i, b〈i〉 = deq(NULL)
iff bc〈i〉 = deq(NULL). Then, b is legal.

Proof. We prove by induction on the length of b that b has a run in LTSQ. The base case
where b = ε is trivial. Assume that the claim holds for all sequences of length k or less.
Let b be a sequence of length k + 1. By the inductive hypothesis, there is a run r in LTSQ
with trace b〈1 : k〉. Let q denote the state reached after this run. It is enough to show that

there is a transition in LTSQ of the form q
b〈k+1〉
−−−−→ q′, for some q′. We do a case analysis on

b〈k + 1〉.

• b〈k + 1〉 = enq(x). Then the desired transition is q
enq(x)
−−−−→ q · x = q′.

• b〈k + 1〉 = deq(x) = d. By the assumption on b, e = enq(x) ≺b d. By observational
equivalence to bc, if d = (b|Deq \ {deq(NULL)})〈i〉 for some i, then e = b|Enq〈i〉. Together
they imply that there are exactly i−1 many non-NULL dequeue events and at least i many
enqueue events that precede d in b. This in turn implies that q must be of the form x · q′.

Then the desired transition is x · q′
deq(x)
−−−−→ q′.

• b〈k+1〉 = deq(NULL) = d. By the assumption on b and bc, we have bc〈k+1〉 = deq(NULL).
This implies that the number of enqueue events that occur in bc〈1 : k〉 is equal to the
number of non-NULL dequeue events in bc〈1 : k〉. Since b ≡obs bc, for any dequeue event
d′ we have d′ ≺bc d iff d′ ≺b d. These in turn imply that for any enqueue event e we

have e ≺bc d iff e ≺b d. Overall, we then have q = ε and ε
deq(NULL)
−−−−−−→ ε = q′ is the desired

transition.
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Theorem 3.10. A queue behavior b is legal iff b has a sequential witness.

Proof. (⇒) Let b be a legal queue behavior. By Lemma 3.2, there is a canonical behavior
bc such that bc ≡obs b. By Lemma 3.3, bc has a sequential witness. By Lemma 3.6, b has a
sequential witness.

(⇐) Let b be a queue behavior and µ be a sequential witness for b. By Lemma 3.8 and
Lemma 3.9, b is legal.

4. Conditions for Queue Linearizability

Generic Necessary and Sufficient Conditions. We start by reducing the problem
of checking linearizability of a given history, c, with respect to the queue specification to
finding a mapping from its dequeue events to its enqueue events satisfying certain conditions.
Intuitively, we map each dequeue event to the enqueue event whose value the dequeue
removed, or to nothing if the dequeue event returns NULL. We say that the mapping is safe
if it pairs each deq event with an enq event such that the value removed by the former
is inserted by the latter, implying that elements are inserted exactly once and removed at
most once. A safe mapping is ordered if it additionally respects the ordering of events in c.
Finally, an ordered mapping is a linearization witness if all NULL returning deq events see
at least one state where the queue is logically empty. Below, we formalize these notions.

Definition 4.1 (Safe Mapping). A total mapping Match from Deq(c) to Enq(c) ∪ {⊥} is
safe for complete history c if
(1) for all d ∈ Deq(c), if Match(d) 6= ⊥, then Val c(d) = Val c(Match(d));
(2) for all d ∈ Deq(c), Match(d) = ⊥ iff Val c(d) = NULL; and
(3) for all d, d′ ∈ Deq(c), if Match(d) = Match(d′) 6= ⊥, then d = d′.

Definition 4.2 (Ordered Mapping). A safe mapping Match for c is ordered if
(1) for all d ∈ Deq(c), we have d 6≺c Match(d); and
(2) for all e ∈ Enq(c) and d′ ∈ Deq(c), if e ≺c Match(d′), then there exists d ∈ Deq(c) such
that e = Match(d) and d′ 6≺c d.

Intuitively, the first condition states that an enqueue event cannot start after the com-
pletion of the dequeue event that removed the value inserted by the former. The second
condition states that if two enqueue events e and e′ are ordered such that e ≺c e

′ and the
value inserted by e′ is removed by some d′, then there must exist a dequeue event d removing
what e has inserted and d′ cannot complete before d starts.

Let c be a complete history and Match be ordered for c. Let d⊥ ∈ Deq(c) be a dequeue
event returning NULL; that is, Val c(d⊥) = NULL. Define Bad(c, d⊥) ⊆ Enq(c) as the smallest
set consisting of all enqueue events e in c such that either if the matching dequeue d for e
exists (i.e. Match(d) = e), then d is after d⊥, or there is another e′ in Bad(c, d⊥) which
precedes either e or the matching dequeue event d of e. Formally, the definition is given
inductively as follows:

Bad0(c, d⊥) = {e ∈ Enq(c) | d⊥ ≺c e ∨ ∀d ∈ Deq(c) .Match(d) = e⇒ d⊥ ≺c d}

Bad i+1(c, d⊥) = {e ∈ Enq(c) | ∃ei ∈ Bad i(c, d⊥) . ei ≺c e

∨ ∃d ∈ Deq(c) .Match(d) = e ∧ ei ≺c d}

with Bad(c, d⊥) = ∪i∈NBad i(c, d⊥).
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Intuitively, the set Bad(c, d⊥) contains all enqueue events after the completion of which
d⊥ cannot observe an empty queue. In other words, if e ∈ Bad(c, d⊥) and if e completes
before d⊥ does, then the state of the queue is guaranteed to be non-empty after e completes
until the completion of d⊥.

Definition 4.3 (Linearization Witness). An ordered mapping Match for c is a linearization
witness if for any d ∈ Deq(c) with Valc(d) = NULL, we have Bad(c, d) ∩ Before(c, d) = ∅.

In the proofs that follow, we sometimes use the following result to prove that a given
ordered mapping is a linearization witness.

Lemma 4.4. Let c be a complete history, Match be an ordered mapping for c and d⊥ ∈
Deq(c) be such that Match(d⊥) = ⊥. Then, Bad(c, d⊥) ∩ Before(c, d⊥) = ∅ iff there exist
subsets Dd⊥ ⊆ Deq(c) and Ed⊥ ⊆ Enq(c) such that (Dd⊥∪Ed⊥)∩After(c, d⊥) = ∅, Dd⊥∪Ed⊥

is closed under ≺c, and Before(c, d⊥) ∩ Enq(c) ⊆ Ed⊥ ⊆ Match(Dd⊥).

Proof.
(⇒) Assume that Bad(c, d⊥) ∩ Before(c, d⊥) = ∅. Set

Ed⊥

def
= {e ∈ Enq(c) | e /∈ (After(c, d⊥) ∪ Bad(c, d⊥))}

D′ def
= {d′ ∈ Deq(c) | ∃e ∈ Ed⊥ .Match(d′) = e}

Dd⊥

def
= D′ ∪ {d′ ∈ Deq(c) | Match(d′) = ⊥ ∧ ∃a ∈ Ed⊥ ∪D′. d′ ≺c a}

We have to show that Ed⊥ and Dd⊥ satisfy the three constraints.

• If e ∈ Ed⊥ , then it cannot be in After(c, d⊥) by construction. If d ∈ Dd⊥ , then either d
belongs to D′ or it is an event that precedes another event in Ed⊥ ∪D′. If d ∈ D′, then
by construction its matching e = Match(d) cannot be in Bad(c, d⊥). This implies that
d⊥ 6≺c d, hence d /∈ After(c, d⊥). If d /∈ D′, then it is in Dd⊥ and there is some d′ such
that d ≺c d

′ and d⊥ 6≺c d
′ which imply that d⊥ 6≺c d, hence d /∈ After(c, d⊥).

• Let a′ ∈ Ed⊥ ∪Dd⊥ and a ≺c a
′. We do case analysis on a.

– If a = d ∈ Deq(c) with Match(d) = ⊥, then by the construction of Dd⊥ , d ∈ Dd⊥ .
– If a = d ∈ Deq(c) with Match(d) 6= ⊥, then if there is e ∈ Ed⊥ such that Match(d) = e,

then d ∈ Dd⊥ . Assume that Match(d) = e /∈ Ed⊥ . This can happen when either
e ∈ After(c, d⊥) or e ∈ Bad(c, d⊥). If e is in After(c, d⊥), which by the assumption
that Match is ordered implies that d must complete after e starts (e 6≺c d must hold).
This in turn implies that a′, beginning after d completes must be in After(c, d⊥), which
contradicts the assumption that a′ ∈ Ed⊥ . If e is in Bad(c, d⊥), then there must exist
e′ ∈ Bad(c, d⊥) such that either e′ ≺c e or e′ ≺c d. Because Match is ordered, we
have d 6≺c e. Together with the assumption that d ≺c a′, these imply e′ ≺c a′. Now,
if a′ ∈ Enq(c), then a′ ∈ Bad(c, d⊥) which contradicts the assumption that a′ ∈ Ed⊥ .
If a′ ∈ Deq(c) with Match(a′) 6= ⊥, that e′ ∈ Bad(c, d⊥) and e′ ≺c a′ hold means
that Match(a′) ∈ Bad(c, d⊥) which in turn contradicts the assumption that a′ ∈ Dd⊥ .
Finally, if a′ ∈ Deq(c) with Match(a′) = ⊥, then because a′ ∈ Dd⊥ there is some
d′′ ∈ D′ such that a′ ≺c d

′′ which leads to the same contradiction as the previous case.
– If a = e ∈ Enq(c), a′ is either an enqueue event e′ or there is a dequeue event d′ such that

e ≺c d′ and Match(d′) 6= ⊥. For the latter claim, observe that either Match(a′) 6= ⊥
and we take d′ = a′ or Match(a′) = ⊥ and by definition of Dd⊥ there exists d′ such
that a′ ≺c d′ which by transitivity of ≺c implies e ≺c d′. If e /∈ Ed⊥ , then either
e ∈ Bad(c, d⊥) or e ∈ After(c, d⊥). If e ∈ Bad(c, d⊥) and e ≺c e′ hold, then e′ must
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also be in Bad(c, d⊥) contradicting the assumption that e′ ∈ Ed⊥ . If e ∈ Bad(c, d⊥) and
e ≺c d

′ hold, then Match(e′), which exists because Match is safe, must be in Bad(c, d⊥)
which contradicts the assumption that d′ ∈ Dd⊥ . If e ∈ After(c, d⊥), then e ≺c a′

implies that a′ ∈ After(c, d⊥) contradicting the assumption that a′ ∈ Ed⊥ ∪Dd⊥ .
Thus, we conclude that a ∈ Ed⊥ ∪Dd⊥ whenever a ≺c a

′ for some a′ ∈ Ed⊥ ∪Dd⊥ .
• Let e ∈ Before(c, d⊥) ∩ Enq(c). By the assumption that Bad(c, d⊥) ∩ Before(c, d⊥) = ∅,
e /∈ Bad(c, d⊥). Thus, by construction e ∈ Ed⊥ , establishing Before(c, d⊥)∩Enq(c) ⊆ Ed⊥ .
Since e /∈ Bad(c, d⊥), there exists d such that Match(d) = e and d ∈ D′, establishing
Ed⊥ ⊆ Match(D′) ⊆ Match(Dd⊥).

(⇐) Assume that there exist Dd⊥ ⊆ Deq(c) and Ed⊥ ⊆ Enq(c) such that all three conditions
are satisfied. We now show that the sets Bad(c, d⊥) and Before(c, d⊥) are disjoint. We show
by induction that there is no index i such that Bad i(c, d⊥) ∩ Before(c, d⊥) 6= ∅. If i = 0,
e ∈ Bad0(c, d⊥) implies that there does not exist d such that Match(d) = e and d⊥ 6≺c d.
By the assumption that Dd⊥ and After(c, d⊥) are disjoint, we have d /∈ Dd⊥ . But by the
assumption that Enq(c) ∩ Before(c, d⊥) ⊆ Ed⊥ , we must have e ∈ Ed⊥ . This contradicts
the assumption that Ed⊥ ⊆ Match(Dd⊥).

Assume that for all indices less than or equal to k, for some k > 0, the claim holds:
i ≤ k implies that Bad i(c, d⊥) and Before(c, d⊥) are disjoint. Consider the index k + 1.
Assume that there is e ∈ Badk+1(c, d⊥)∩Before(c, d⊥). Then there exists ek ∈ Badk(c, d⊥)
such that either ek ≺c e or there is d ∈ Deq(c) with Match(d) = e and ek ≺c d. The former
case, ek ≺c e, is not possible since that would imply that ek ∈ Before(c, d⊥) and contradict
that Badk(c, d⊥)∩Before(c, d⊥) = ∅. By the assumption that Ed⊥ ∪Dd⊥ is closed under ≺c,
d ∈ Dd⊥ and ek ≺c d, we must have ek ∈ Ed⊥ . By the assumption that Ed⊥ ⊆ Match(Dd⊥)
and ek ∈ Ed⊥ , there must be dk ∈ Dd⊥ such that Match(dk) = ek. But if ek ∈ Badk(c, d⊥)
and dk ∈ Dd⊥ , then there must be ek−1 ∈ Badk−1(c, d⊥) such that ek−1 ≺c ek or ek−1 ≺c dk.
Applying the same arguments as above, we arrive, after k iterations, to the conclusion that
there must be some e0 ∈ Bad0(c, d⊥) which is also in Ed⊥ . But by definition, d0 with
Match(d0) = e0 cannot be in Dd⊥ (if d0 exists, then d0 ∈ After(c, d⊥)). This contradicts
the assumption that Ed⊥ ⊆ Match(Dd⊥).

Definition 4.5. Let c be a complete history with a linearization witness Match. Call two
events a and a′ in c overlapping if neither a ≺c a

′ nor a′ ≺c a holds. We define a relation
≪c,Match over Enq(c). For two enqueue events e1 and e2, we have e1 ≪

1
c,Match

e2 if e1 6= e2
and one of the following holds:

(1) e1 ≺c e2.
(2) e1 and e2 are overlapping, there exists d1 such that Match(d1) = e1, but there does not

exist d2 such that Match(d2) = e2.
(3) e1 and e2 are overlapping, and there exist d1 and d2 such that Match(d1) = e1,

Match(d2) = e2, and d1 ≺c d2.
(4) e1 and e2 are overlapping, there exist d1, d2 such that Match(d1) = e1, Match(d2) = e2,

and there exists d ∈ Deq(c) such that Val c(d) = NULL, e1 /∈ Bad(c, d) and e2 ∈ Bad(c, d).

Let ≪c,Match , called the enq-order, denote the transitive closure of ≪1
c,Match

. We will drop
the subscripts when the history c and its linearization witness either are clear from the
context or do not matter.

Lemma 4.6. Let c be a complete history with linearization witness Match. Then, the
induced enq-order ≪c,Match is a partial order over Enq(c).
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Proof. We have to show that there does not exist a sequence e1, . . . , ek+1 of enqueue events
such that ei ≪

1 ei+1 for i ∈ [1, k] and ek+1 = e1. The proof is done by induction on k,
the number of enqueue events in the sequence. In the base case, we note that e1 ≪

1 e1 is
impossible by definition. Assume that there is no such sequence of length k or less. Consider
the sequence e1, . . . , ek+1. For convenience, we will use di to denote the dequeue event in c
such that Match(di) = ei. If no such dequeue event exists for ei, we will say that di does
not exist. We make the following observations about this sequence:

(1) If di does not exist, then di+1 cannot exist. Assume the contrary and that for some i, we
have ei ≪

1 ei+1, di does not exist and di+1 exists. By the definition of ≪1, ei ≪
1 ei+1

cannot be due to conditions 2-4, because they all require the existence of di. Then, we
must have ei ≺c ei+1. On the other hand, since Match is a linearization witness for c, by
condition 2 of ordered mapping, the existence of di+1 implies the existence of di, which
contradicts the assumption that di does not exist. Because the sequence represents a
cycle and ≺c is a partial order, all di exist.

(2) There cannot be two distinct pairs of events (ei, ei+1) and (ej , ej+1) such that ei ≺c ei+1

and ej ≺c ej+1 for some i < j. If there were, then we would have ei ≺c ej+1 or ej ≺c ei+1.
If ei ≺c ej+1, then e1 ≪

1 e2 . . . ≪
1 ei ≪

1 ej+1 ≪
1 . . . ≪1 ek+1 hold and this sequence

does not contain ei+1. If ej ≺c ei+1, then ei+1 ≪
1 . . . ≪1 ej ≪

1 ei+1 hold and this
sequence does not contain ei. Thus, both sequences have less than k + 1 events, which
contradict the inductive hypothesis.

We first show that none of the orderings in the cycle can be due to condition (4); i.e. there
is no i such that ei ≪

1 ei+1 because there is some d ∈ Deq(c) such that ei /∈ Bad(c, d)
and ei+1 ∈ Bad(c, d). We assume the contrary and, without loss of generality, assume that
e1 ≪

1 e2 is due to condition (4). Then, there is d ∈ Deq(c) such that e1 /∈ Bad(c, d) and
e2 ∈ Bad(c, d). Observe that for all other enqueue events ej in the sequence, ej /∈ Bad(c, d)
as otherwise, e1 ≪

1 ej which results in a shorter cycle contradicting the inductive hypothesis.
In particular, e3 /∈ Bad(c, d), but this immediately leads to e3 ≪

1 e2. This implies that
e2, e3, e2 is also a cycle. Thus, if any consecutive events in the cycle are ordered due to
condition (4), then k ≤ 2. Clearly e ≪1 e can never hold due to condition (4), leading to
the conclusion that if e1 ≪

1 e2 is due to condition (4), then k = 2.
Now, assume by contradiction that e1 ≪

1 e2 ≪
1 e1 exists and there is d such that

e1 /∈ Bad(c, d) and e2 ∈ Bad(c, d). Since e1 /∈ Bad(c, d), d1 exists. By the first observation
above, d2 also exists. So, e2 ≪

1 e1 cannot be due to condition (2). We do a case analysis
on the possible justifications for e2 ≪

1 e1.

• Assume that e2 ≺c e1 (condition (1)). By the assumption that e2 ∈ Bad(c, d), we have
e1 ∈ Bad(c, d), which contradicts the assumption that e1 /∈ Bad(c, d).
• Assume that e2 and e1 are overlapping and d2 ≺c d1 (condition (3)). Because e2 ∈
Bad(c, d), either d ≺c d2 or d ≺c e2 or there is an enqueue event e′ ∈ Bad(c, d) such that
either e′ ≺c e2 or e′ ≺c d2 holds. If d ≺c d2 holds, then by transitivity d ≺c d1 also holds.
If d ≺c e2 holds, then because d2 ≺c e2 cannot hold (Match is ordered), d ≺c d1 must
hold. If e′ ≺c e2 holds, then because d2 6≺c e2 holds (due to Match being ordered) we
must have e′ ≺c d1. Finally, if e

′ ≺c d2 holds, then by transitivity e′ ≺c d1 also holds. All
four cases contradict the assumption that e1 /∈ Bad(c, d).
• Assume that there exists d′ ∈ Deq(c) such that Match(d′) = ⊥, e2 /∈ Bad(c, d′) and
e1 ∈ Bad(c, d′) (condition (4)). We do a case analysis on the possible justifications of
e1 ∈ Bad(c, d′) and e2 ∈ Bad(c, d) holding:
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– d′ ≺c e1, and d ≺c e2. Then either d′ ≺c e2 or d ≺c e1 holds.
– d′ ≺c e1, and d ≺c d2. Then either d′ ≺c d2 or d ≺c e1 holds.
– d′ ≺c e1, and there is eb,d ∈ Bad(c, d) such that eb,d ≺c e2. Then either d′ ≺c e2 or

eb,d ≺c e1 holds.
– d′ ≺c e1, and there is eb,d ∈ Bad(c, d) such that eb,d ≺c d2. Then either d′ ≺c d2 or

eb,d ≺c e1 holds.
– d′ ≺c d1, and d ≺c e2. Then either d′ ≺c e2 or d ≺c d1 holds.
– d′ ≺c d1, and d ≺c d2. Then either d′ ≺c d2 or d ≺c d1 holds.
– d′ ≺c d1, and there is eb,d ∈ Bad(c, d) such that eb,d ≺c e2. Then either d′ ≺c e2 or

eb,d ≺c d1 holds.
– d′ ≺c d1, and there is eb,d ∈ Bad(c, d) such that eb,d ≺c d2. Then either d′ ≺c d2 or

eb,d ≺c d1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c e1, and d ≺c e2. Then either eb,d′ ≺c e2 or

d ≺c e1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c e1, and d ≺c d2. Then either eb,d′ ≺c d2 or

d ≺c e1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c e1, and there is eb,d ∈ Bad(c, d) such that

eb,d ≺c e2. Then either eb,d′ ≺c e2 or eb,d ≺c e1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c e1, and there is eb,d ∈ Bad(c, d) such that

eb,d ≺c d2. Then either eb,d′ ≺c d2 or eb,d ≺c e1.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c d1, and d ≺c e2. Then either eb,d′ ≺c e2 or

d ≺c d1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c d1, and d ≺c d2. Then either eb,d′ ≺c d2 or

d ≺c d1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c d1, and there is eb,d ∈ Bad(c, d) such that

eb,d ≺c e2. Then either eb,d′ ≺c e2 or eb,d ≺c d1 holds.
– There is eb,d′ ∈ Bad(c, d′) such that eb,d′ ≺c d1, and there is eb,d ∈ Bad(c, d) such that

eb,d ≺c d2. Then either eb,d′ ≺c d2 or eb,d ≺c d1.
In all cases the former implication contradicts e2 /∈ Bad(c, d′) and the latter implication
contradicts e1 /∈ Bad(c, d).

Thus, if e1, e2, . . . , ek+1 is a cycle in ≪1, none of the pairwise orderings can be due to
condition (4).

Now consider the case where all consecutive events are overlapping; that is, ei and ei+1

are overlapping for all i ∈ [1, k]. Then, by the definition of≪1 and the first observation, we
must have di ≺c di+1. But this would imply by the transitivity of ≺c that d1 ≺c dk+1 = d1
which is impossible due to ≺c being a partial order.

So, there must be exactly one pair ei and ei+1 of events ordered by ≺c. Without loss
of generality assume that e1 ≺c e2. By the second observation, e2 is overlapping with all
ei+1 for i ∈ [2, k]. In particular, e2 and ek+1 = e1 must be overlapping. That contradicts
the assumption that e1 ≺c e2. Thus no sequence of length k+1 can have a cycle in the ≪1

relation.

The main result of this section is stated below.

Theorem 4.7. A set of histories C is linearizable with respect to queue iff every c ∈ C has
a completion ĉ ∈ Compl (c) that has a linearization witness.
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Proof.
(⇒) If c ∈ C is linearizable with respect to queue, then there is a linearization s of c which
is a legal queue behavior. By Theorem 3.10, s has a sequential witness µseq. The mapping
µseq satisfies the conditions of a linearization witness since all ≺c orderings are preserved
in s. In particular, µseq is safe because conditions (i) to (iii) of sequential witness imply
conditions (1) to (3) of safe mapping. It is ordered because

• By condition (iv) of sequential witness, µseq(d) = e implies e ≺s d and definition of
linearizability implies that d 6≺c e, which is condition (1) of ordered mapping,
• Assume that there exist d′, e′, e such that e′ = µseq(d

′) and e ≺c e′. Then by definition
of linearization, e ≺s e′. By condition (v) of sequential witness, d = µ−1

seq(e) exists and
d ≺s d

′. By definition of linearization, this in turn implies that d′ 6≺c d, which is condition
of (2) of ordered mapping.

Assume d = deq(NULL) ∈ Deq(c). Define the sets Dd = {d′ ∈ Deq(s) | d′ ≺s d}, Ed = {e ∈
Enq(s) | e ≺s d}. Observe that (Dd ∪ Ed) ∩ After(d, c) = ∅ because for any a ∈ After(d, c),
by definition we have d ≺c a, which implies d ≺s a, which in turn implies a /∈ Dd ∪ Ed.
Assume there is e ∈ Before(d, c) ∩ Enq(c). Then by definition of linearization, e ≺s d. By
construction, Before(d, c) ∩ Enq(c) ⊆ Ed. Let i denote the position of d in s; i.e. s〈i〉 = d.
Because s is legal, it has an obs-equivalent canonical behavior, s′. By Lemma 3.8 s′〈i〉 = d.
By definition of canonical behavior, each enqueue event in s′〈1 : i − 1〉 has a matching
dequeue event in s′〈1 : i− 1〉. Since s and s′ are obs-equivalent, then each enqueue event in
s〈1 : i−1〉 has a matching dequeue event in s〈1 : i−1〉. Thus, Ed ⊆ Match(Dd), the inclusion
being proper in case Dd contains a NULL-dequeue event (distinct from d since d /∈ Dd). Thus,
Before(d, c) ∩ Enq(c) ⊆ Ed ⊆ Match(Dd). Since all conditions of linearization witness per
Lem. 4.4 are satisfied for Dd and Ed, µseq is a linearization witness.
(⇐) Let c be a complete history with a linearization witness Match. Let < denote a total
order extension of ≪. That is, < is a total order over Enq(c) such that whenever e ≪ e′,
we have e < e′. Let e∗ denote the <-maximal enqueue event over <. That is, for any
e ∈ Enq(c), we have e < e∗ whenever e 6= e∗.

In order to prove the if-direction (⇐), we will make use of < to construct a sequence s
with sequential witness µ. We actually prove a stronger property, which also requires that
if e < e′ in c then e ≺s e

′. By Theorem 3.10, the result follows.
The construction is given by induction on the number of (completed) events in c. In the

base case, there are no events and ε with empty mapping is the desired sequence. Assume
that the claim holds for all complete concurrent histories with k events or less. Let c be a
complete concurrent history with k + 1 events and Match be a linearization witness for c.
We first choose an event.

Call event a ∈ Enq(c)∪Deq(c) maximal (relative to <), if there is no event a′ such that
a ≺c a

′ and one of the following holds:

(1) a = e∗ ∈ Enq(c), there is no d∗ such that Match(d∗) = e∗.
(2) a = d ∈ Deq(c) with Match(d) 6= ⊥, there is no d′ such that Match(d) < Match(d′).
(3) a = d⊥ ∈ Deq(c) with Match(d⊥) = ⊥, and Bad(c, d⊥) = ∅.

Let c be a non-empty complete history and Match be its linearization witness. We first
show that there is at least one event in c that is maximal relative to <. First, observe
that if Enq(c) = ∅, then any d ∈ Deq(c) must return NULL; otherwise, Match cannot be
safe. Then, any d such that no d′ ∈ Deq(c) with d ≺c d′ exists is maximal. Since ≺c is a
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partial-order, such d must exist. If conversely we assume that Enq(c) 6= ∅ and Deq(c) is
empty, then e∗ is maximal.

Assume that Enq(c) and Deq(c) are non-empty. If e∗ is not maximal, it must be because
there is d∗ ∈ Deq(c) such that Match(d∗) = e∗. Then, by definition of < and the assumption
that e∗ is <-maximal, there cannot be d′ ∈ Deq(c) such that d∗ ≺c d

′ if Match(d′) 6= ⊥. So,
d∗ is not maximal only if there is d⊥ ∈ Deq(c), Match(d⊥) = ⊥ and d∗ ≺c d⊥. Furthermore,
the definition of≪1, that e∗ is <-maximal and d∗ exists imply that for all e′ ∈ Enq(c), there
is d′ ∈ Deq(c) such that Match(d′) = e′. In particular, this means that for d⊥ ∈ Deq(c) such
that no d′ ∈ Deq(c) with d⊥ ≺c d

′ exists and d∗ ≺c d⊥ with Bad(c, d⊥) = ∅, setting d⊥ as a
maximal element. Thus, the set of maximal events in any non-empty history is non-empty.

Let A denote the set of maximal elements relative to <. If A contains a dequeue event
d such that Match(d) = ⊥, then we choose d. Otherwise, if A contains a dequeue event d∗

such that Match(d∗) 6= ⊥, then we choose d∗. If neither condition holds, we choose e∗.
We now show that if c is a non-empty history with linearization witness Match, the his-

tory c′ obtained by removing the chosen event from c has Match ′, which is Match restricted
to the remaining events in c′, as a linearization witness. Before we do a case analysis on the
type of the chosen event, we make two observations. If c′ is obtained from c by removing
an event a and a mapping is safe for c, then it is also safe for c′ when restricted to the
Deq(c′). Second, removing a from c does not change the relative ordering among the re-
maining events. So b ≺c d holds iff b ≺c′ d holds. In particular, if a ∈ Deq(c) and a mapping
is ordered for c, then it is ordered for c′.

We have three cases to consider for the chosen event:

• The chosen event is d⊥ withMatch(d⊥) = ⊥. Let d
′ ∈ Deq(c) be such that Match(d′) = ⊥.

SinceMatch(d⊥) = ⊥, after removing d⊥ we have Enq(c′) = Enq(c) and thus Bad(c, d′) =
Bad(c′, d′). Additionally, Before(c, d′) is the same as Before(c′, d′) when both are re-
stricted to Enq(c) = Enq(c′). Then, we have

Before(c, d′) ∩ Bad(c, d′)

= Before(c, d′) ∩ Bad(c, d′) ∩ Enq(c) [Bad(c, d′) ⊆ Enq(c)]

= Before(c, d′) ∩ Bad(c, d′) ∩ Enq(c′) [Enq(c) = Enq(c′)]

= Before(c, d′) ∩ Bad(c′, d′) ∩ Enq(c′) [d⊥ /∈ Bad(c, d′)]

= Before(c′, d′) ∩ Bad(c′, d′) ∩ Enq(c′) [Before(c, d′) ∩ Enq(c) = Before(c′, d′) ∩ Enq(c′)]

= Before(c′, d′) ∩ Bad(c′, d′) [Bad(c′, d′) ⊆ Enq(c′)]

establishing that Before(c′, d′) ∩ Bad(c′, d′) = ∅. Thus, Match ′ is a linearization witness
for c′.
• The chosen event is d∗ ∈ Deq(c). Observe that Match(d∗) is the <-maximal enqueue
event e∗ relative to <. By the second observation above, Match ′ is ordered for c′. We
have to show that for any d⊥ ∈ Deq(c), Match ′(d⊥) = ⊥ is justified; that is, Bad(c′, d⊥)∩
Before(c′, d⊥) = ∅. By the assumption that Match is a linearization witness for c, we
have Bad(c, d⊥) ∩ Before(c, d⊥) = ∅. If d⊥ ≺c e

∗, then e∗ ∈ Bad(c′, d⊥) by definition. If
d⊥ ≺c d

∗, then e∗ ∈ Bad0(c, d⊥) and e∗ ∈ Bad0(c
′, d⊥), so Bad(c′, d⊥) = Bad(c, d⊥).

Then, the interesting case is when e∗ /∈ Bad(c, d). First observe that Bad(c, d) 6= ∅ iff
e∗ ∈ Bad(c, d). For the only-if (⇒) direction, assume that there is some e′ ∈ Bad(c, d). By
the definition of≪1, if e∗ /∈ Bad(c, d) then e∗ ≪1 e′ contradicting the <-maximality of e∗.
The if (⇐) direction is trivial. This implies that Bad(c, d) = ∅ because e∗ /∈ Bad(c, d⊥).
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If there are several such NULL-returning dequeues, choose d⊥ such that for any a ∈ Deq(c)
with d⊥ ≺c a implies Match(d) 6= ⊥. Intuitively, d⊥ is the <-maximal among dequeue
events returning NULL.

Now since d∗ was chosen, we know that there must be at least one a such that d⊥ ≺c a,
since otherwise d⊥ would have been chosen. By the assumption about d⊥, a /∈ Deq(c)
with Match(a) = ⊥. If a = e ∈ Enq(c), then e ∈ Bad(c, d⊥) contradicting the assumption
that Bad(c, d⊥) = ∅. So a = d ∈ Deq(c) with Match(d) 6= ⊥. But then Match(a), which
must exist because Match is safe, is in Bad(c, d⊥), again contradicting the assumption
that Bad(c, d⊥) = ∅. So, by contradiction we conclude that there is no such d⊥ for which
Bad(c, d⊥) = ∅ and Bad(c′, d⊥) 6= ∅ hold.
• The chosen event is e∗ ∈ Enq(c). By the assumption about the chosen event, d∗ does
not exist, so Deq(c) = Deq(c′) and Match ′ is safe because Match is safe. Because d∗ does
not exist, if d⊥ is such that Match(d⊥) = ⊥, then e∗ ∈ Bad(c, d⊥). Then, for every such
d⊥, Bad(c

′, d⊥) ⊆ Bad(c, d⊥), which means that Bad(c, d⊥) ∩ Before(c, d⊥) = ∅ implies
Bad(c, d⊥) ∩ Before(c′, d⊥). So, Match ′ is a linearization witness for c′.

Now, we know that Match ′ is a linearization witness for c′ which has exactly k events.
By the inductive hypothesis, c′ is linearizable with respect to queue. That is, there is a
linearization s′ of c′ which is a legal queue behavior. By Theorem 3.10, s′ has a sequential
witness µ′. We claim that s = s′ · a, where a is the chosen element in c as described above,
is a legal queue behavior. Additionally, we will also show that for any two enqueue events
e and e′ both in Enq(c), e < e′ implies e ≺s e

′.
Assume that the chosen element was a = d⊥ ∈ Deq(c) such that Match(d⊥) = ⊥. We

set µ = µ′[a 7→ ⊥]. Observe that by the assumption that d⊥ is a chosen element, we must
have Bad(c, d⊥) = ∅. This implies that for all e ∈ Enq(c), there is d ∈ Deq(c) such that
Match(d) = e; as otherwise, e would be in Bad(c, d⊥). Since all events of c′ are the same
as the events of s′, the sets {e ∈ Enq(c) | e ≺s d⊥} = Enq(c) and {d ∈ Deq(c) | d ≺s

d⊥ ∧ µ(d) 6= ⊥} have the same cardinality. These along with the inductive hypothesis that
µ′ is a sequential witness for s′ imply that all six conditions of a sequential witness are
satisfied for µ and s. Because the relative ordering of events in Enq(c) in s′ remains the
same in s, e ≺s′ e

′ implies e ≺s e
′, and by induction hypothesis this can happen only when

e < e′.
Assume that the chosen element was a = d∗ ∈ Deq(c) such that Match(d∗) = e∗. We

set µ = µ′[a 7→ e∗]. Because Match was safe for c, e∗ exists and µ is well-defined. By the
inductive hypothesis, e∗ is in s′ and hence e∗ ≺s d

∗. Again by the inductive hypothesis, for
any e ∈ Enq(c), we have e ≺s e

∗. Since d∗ is the last event in s, no event can follow d∗ in
s. In particular, there is no d′ ∈ Deq(c) such that d∗ ≺s d

′. These along with the inductive
hypothesis imply that µ is a sequential witness for s. Similar to the previous case, e ≺s′ e

′

implies e ≺s e
′ and by inductive hypothesis this can happen only when e < e′.

Assume that the chosen element was a = e∗. We take µ = µ′. Because e∗ is chosen, d∗

does not exist in c. Furthermore, since e∗ is the last event in s, no other event can follow e∗

in s. These observations along with the inductive hypothesis imply that µ is a sequential
witness for s. Observe also that e∗, being the last element in s, also satisfies the condition
that it should not precede any other enqueue event in s, satisfying the condition that e < e′

implies e ≺s e
′.
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Necessary and Sufficient Conditions for Complete Histories. We now focus on
complete histories, namely ones with no pending events. We observe that whether a history
is not linearizable can always be determined by examining the dequeued values. Let c be a
complete history. In order to simplify the technical presentation we assume that each value
is enqueued at most once.2 The possible violations in c are:

(VFresh): A dequeue event returns a value not previously inserted by any enqueue event.
Formally, there exists a value x 6= NULL such that deq(x) ∈ Deq(c) and either enq(x) /∈
Enq(c) or deq(x) ≺c enq(x).

(VRepet): Two dequeue events return the value inserted by the same enqueue event. For-
mally, there exist two dequeue events d, d′ ∈ Deq(c) such that Val c(d) = Valc(d

′) 6= NULL.
(VOrd): Two values are enqueued in a certain order, and a dequeue returns the later value

before any dequeue of the earlier value starts. Formally, there exist values x, y such that
enq(y) ≺c enq(x), deq(x) ∈ Deq(c), and either deq(y) /∈ Deq(c) or deq(x) ≺c deq(y).

(VWit): A dequeue event returning NULL even though the queue is never logically empty
during the execution of the dequeue event. Formally, let c = c0 · deqi(NULL) · cd ·
deqr(NULL)·c3, where c0, cd, c3 represent subsequences of c. Then for any choice of c1 and
c2 such that cd = c1 · c2, there exists an enq(x) ∈ Enq(c) completed in c0 ·deqi(NULL) · c1
and deqi(x) does not occur in c0 · deqi(NULL) · c1.

We have the following result which ties the above violation types to linearizable queues.

Proposition 4.8. A complete history c is linearizable with respect to queue iff it has none
of the VFresh, VRepet, VOrd, VWit violations.

Proof.
(⇒) If c is linearizable with respect to queue, then by Theorem 4.7, ĉ = c has a linearization
witness Match. We show by contradiction that none of the four violations can happen in c.

• Assume that c has VFresh. Then there exists a dequeue event d ∈ Deq(c) such that
Val c(d) 6= NULL and either e = Match(d) does not exist or d ≺c e = Match(d). That
e = Match(d) does not exist is impossible because by the second condition of safe mapping,
Match(d) 6= ⊥ and by the first condition of safe mapping Match(d) ∈ Enq(c). That
d ≺c e = Match holds is impossible because by the first condition of safe mapping,
d 6≺c Match(d) = e.
• Assume that c has VRepet. Then there exist d, d′ ∈ Deq(c) with Val c(d) = Valc(d

′) 6= ⊥.
This is impossible by the third condition of safe mapping.
• Assume that c has VOrd. Then there exist e, e′ ∈ Enq(c), d′ ∈ Deq(c) such that e ≺c e

′ =
Match(d′) and either d ∈ Deq(c) such that Match(d) = e does not exist or such a d exists
and d′ ≺c d. Both possibilities contradict the second condition of ordered mapping.
• Assume that c has VWit. Then c is of the form c0 · inv(d⊥) · cd · res(d⊥) · c3 such that
Match(d⊥) = ⊥, and for every possible partitioning of cd = c1 · c2, there is an enqueue
event e ∈ Enq(cp) with cp = c0 · inv(d⊥) · c1 such that e is completed in cp and there is
no dequeue event d, pending or completed, in cp such that Match(d) = e. First, observe
that by choosing c2 = ε (resulting in cp = c0 · inv(d⊥) · cd), we conclude that there is at
least one enqueue event e0 ∈ Enq(cp) whose matching dequeue event d0 is not in Enq(cp);
that is, d⊥ ≺c d0 if d0 ∈ Deq(c). This implies that e0 ∈ Bad(c, d⊥). Because Match is a
linearization witness for c, we must have Bad(c, d⊥) ∩ Before(c, d⊥) = ∅. In other words,

2In case there are multiple occurring values, this is akin to guessing the mapping Match ; it is enough
that at least one guess satisfies the criteria (absence of violations).
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all enqueue events e ∈ Bad(c, d⊥) must not belong to Before(c, d⊥). This implies that
if e ∈ Bad(c, d⊥) then res(e) must happen after inv(d⊥). Let e ∈ Bad(c, d⊥) be chosen
such that for any other e′ ∈ Bad(c, d⊥), res(e) occurs before res(e′) in c. Let cd = c1 · c2
with c2 = res(e) · c′2. By the assumption that there is a VWit violation for d⊥, there must
be an enqueue event e′ in cp = c0 · inv(d⊥) · c1 such that if there is d′ ∈ Deq(c) with
Match(d′) = e′, then d′ is neither completed nor pending in cp. This implies that inv(d′)
if it exists must occur after res(e). Because e is not completed in cp (it is completed in
cp · res(e)), e

′ 6= e. These two facts imply that either d′ /∈ Deq(c) or if d′ ∈ Deq(c) then
e ≺c d′ holds. But this implies that e′ ∈ Bad(c, d⊥). This contradicts the assumption
that res(e) is the first enqueue event in Bad(c, d⊥) to complete in c. Such an e does not
exist implies that there is at least one enqueue event eb in Bad(c, d⊥) which is completed
in c0, which implies that eb ∈ Before(c, d⊥). Finally, this contradicts the assumption that
Bad(c, d⊥) and Before(c, d⊥) are disjoint.

(⇐) Assume that there exists a complete history c in which none of the violations happen.
We will show that the mapping that pairs events enqueueing and dequeueing the same value
is a linearization witness for c.

Let Dv = {deq(x) ∈ Deq(c) | x 6= NULL} denote the set of all non-NULL returning
dequeue events of c. Similarly, let Dn = Deq(c) \Dv denote the set of all NULL returning
dequeue events of c. Let Mv be the mapping from Dv to Enq(c) such that Mv(d) = e iff
Val c(d) = Val c(e). Let Mn be such that all d ∈ Dn are mapped to ⊥. We claim that Match
defined as

Match(d)
def
=

{

Mv(d) if d ∈ Dv

⊥ if d ∈ Dn

is a linearization witness for c.
First, observe that Mv is a total mapping because c does not have VFresh. Furthermore,

because c does not contain VRepet, Match is a safe mapping by construction. Match satisfies
the first condition of an ordered mapping because c does not have VFresh. Match satisfies
the second condition of an ordered mapping because c does not have VOrd. Thus, Match is
also an ordered mapping.

Let d⊥ ∈ Dn be a NULL-returning dequeue event in c. We have to show that Before(c, d⊥)
and Bad(c, d⊥) are disjoint. Because c has no VWit violation, there must be a prefix
cp = c0 · inv(d⊥) · c1 of c such that if e is an enqueue event is completed in cp then its
matching dequeue event d (i.e. Match(d) = e) is either pending or completed in cp. In
other words, if res(e) occurs in cp, then so does inv(d). Let ej ∈ Bad(c, d⊥) be such that
ej ∈ Bad j(c, d⊥), for any ek ∈ Bad(c, d⊥) we have j ≤ k, and ej is completed in cp. If there
is no such ej , that is, if Bad(c, d⊥) is empty, then we are done. Otherwise, observe that
j 6= 0 because by the absence of VWit, there is dj such that Match(dj) = ej and d⊥ 6≺ dj;
in particular, inv(dj) occurs in cp. But j > 0 implies that there is ej−1 ∈ Bad j−1(c, d⊥)
such that either ej−1 ≺c ej or ej−1 ≺c dj . Both cases imply that ej−1 must be completed
in cp, contradicting the assumption that j was minimal. Thus, there are no enqueue events
in Bad(c, d⊥) which are completed in cp. Since Before(c, d⊥) is contained in the set of
completed events of cp, we conclude that Before(c, d⊥) and Bad(c, d⊥) are disjoint.

This concludes the proof that Match is a linearization witness for c.

We remark that none of the violations mentions the possibility of an element inserted
by an enqueue being lost forever. This is intentional, as such histories are ruled out by the
following proposition.
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Proposition 4.9. Given an infinite sequence of complete histories c1, c2, . . . not containing
any of the violations above, where for every i, ci is a prefix of ci+1, and the number of
dequeue events in ci is less than that of ci+1, if c1 contains an enqueue event enq(x), then
exists some cj containing deq(x).

Proof. We prove this by contradiction. If there is no deq(x) event, then enq(x) is always
in the queue, and so, from the absence of VWit violations, none of the dequeue events
following enq(x) can return NULL. Also, since dequeue events cannot return values that
were not previously enqueued VFresh and cannot return the same value multiple times
VRepet, and since the number of dequeue events is increasing, then there must also be new
enqueue events. However, only finitely many of those are not preceded by enq(x) which
completes in c1. This means that eventually one dequeue event has to return an element
inserted by enq(y) such that enq(x) ≺cj enq(y), which is VOrd.

For checking purposes, we find it useful to re-state the third violation as the following
equivalent proof obligation.

(POrd): For any enqueue events e1 and e2 with e1 ≺c e2 and Val c(e1) 6= Val c(e2), a dequeue
event d2 cannot return Valc(e2) if Val c(e1) is not removed in c or is removed by d1 with
d2 ≺c d1.

Thus, to check this property, it suffices to come up with an overapproximation of all those
executions satisfying the premise of POrd, and prove that such executions cannot end with
a dequeue event (in the sense that no other method is preceded by that dequeue event)
returning the value of e2.

Necessary and Sufficient Conditions for Purely-Blocking Queues. There is a sub-
tle complication in the statement of Theorem 4.7. The witness mapping is chosen relative
to some completion of the concurrent history under consideration. However, because im-
plementations may become blocked, such completions may actually never be reached. This
means that one cannot reason about the correctness of a queue implementation by consid-
ering only the reachable states of the implementation. What we would ideally like to do is
to claim that if the implementation violates linearizability, then there is a finite complete
induced history of the implementation which has no witness. In other words, if the im-
plementation contains an incomplete execution trace whose induced (incomplete) history
has no witness, then that execution trace is the prefix of a complete execution trace of the
implementation.

Let C be the set of all induced histories of a library implementation. We call the library
implementation completable iff for every history c ∈ C, we have Compl (c) ∩ C 6= ∅. For
completable implementations, it suffices to consider only complete execution traces.

Theorem 4.10. A completable queue implementation is linearizable iff all its complete
histories have none of the VFresh, VRepet, VOrd and VWit violations.

Proof.
(⇒) If some complete history has a violation, by Prop. 4.8, it has no linearization, contra-
dicting the assumption that the implementation is linearizable.
(⇐) Consider an arbitrary induced history c of the implementation. As the implementation
is completable, there exists a completion ĉ ∈ Compl (c) that is a valid induced history of
the implementation. From our assumptions, ĉ cannot have a violation, and so by Prop. 4.8,
ĉ has a linearization, and therefore so does c.
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Since it may not be obvious how to easily prove that an implementation is completable,
we introduce the stronger notion of purely-blocking implementations, that is straightforward
to check. We say that an implementation is purely-blocking when at any reachable state,
any pending method, if run in isolation will terminate or its entire execution does not
modify the global state. Formally, let τ = τ0 · (t : enter(m)) · τ1 be an execution trace
of the implementation in which m executed by t is pending, i.e. (t : exit(m)) does not
occur in τ1. The pending method m is called pure after τ if for any sequence τe in which
no action of m by t occurs and any sequence τm in which only actions of m by t occur,
τ · τe is an execution trace of the implementation iff τ · τm · τe is an execution trace of the
implementation. The execution trace τ is called obstruction-free for m if there is another
execution trace τ ′ = τ · τ2 · (t : exit(m)) of the implementation such that all actions in τ2
belong tom executed by t. Then, the implementation is purely-blocking if for each execution
trace τ of the implementation and pending method m in τ , either τ is obstruction-free for
m or m is pure after τ .

Proposition 4.11. Every purely-blocking implementation is completable.

Proof. Let τ be an execution trace of a purely-blocking implementation. We fix a total order
of pending methods, and consider them in that order. For a pending method m executed
by t, if running it in isolation terminates, then extend τ only with actions executed by t
until (t : exit(m)) occurs. Otherwise, the execution of m does not modify any global state
and so all actions executed by t beginning with the last occurrence of (t : enter(m)) can be
removed from the execution trace without affecting its realizability.

We remark that our new notion of purely-blocking is a strictly weaker requirement
than the standard non-blocking notions: obstruction-freedom, which requires all pending
methods to terminate when run in isolation, as well as the stronger notions of lock-freedom
and wait-freedom. (See [9] for an in depth exposition of these three notions.)

5. Manually Verifying the Herlihy-Wing Queue

Let us return to the HW queue presented in §1 and prove its correctness manually following
our aspect-oriented approach.

First, observe that HW queue is purely-blocking: enq() always terminates, and deq()
can update the global state only by reading x 6= NULL at E2, in which case it immediately
terminates. So from Prop. 4.11 and Theorem 4.10, it suffices to show that it does not have
any of the four violations. The last one, VWit, is trivial as the HW deq() never returns
NULL. So, we are left with three violations whose absence we have to verify: VFresh, VRepet,
and VOrd.

Intuitively, there are no VFresh violations because deq() can return only a value that
has been stored inside the q.items array. The only assignments to q.items are E1 and D2:
the former can only happen by an enq(x), which puts x into the array; the latter assigns
NULL.

Likewise, there are no VRepet violations because whenever in an arbitrary execution
trace two calls to deq() return the same x, then at least twice there was an element of the
q.items array holding the value x and was updated to NULL by the SWAP instruction at D2.
Therefore, at least two assignments of the form q.items[ ]← x happened; i.e. there were at
least two enq(x) events in the induced history.
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We move on to the more challenging third condition, VOrd. We actually consider its
equivalent reformulation, POrd. Fix a value v2 and consider an execution trace τ where
every method call enqueuing v2 is preceded by some method call enqueuing some different
value v1 and there are no deq() calls returning v1 (there may be arbitrarily many concurrent
enq() and deq() calls enqueuing or dequeuing other values). The goal is to show that in
this execution trace, no deq() return v2.

Let us suppose there is a dequeue d returning v2, and try to derive a contradiction. For
d to return v2, it must have read range ≥ i2 such that q.items[i2] = v2. So, d must have
read q.back at D1 after enq(v2) incremented it at E1.

Since, enq(v1) ≺h(τ) enq(v2), it follows that enq(v2) will have read a larger value of
q.back at E1 than enq(v1). So, in particular, once enq(v1) finishes, the following assertion
will hold:

∃i1 < q.back. q.items[i1] = v1 ∧ (∀j < i1. q.items[j] 6= v2) (∗)

Note that since, by assumption, v1 can never be dequeued, and any later enq(v2) can only
affect the q.items array at indexes larger than i1, (∗) is an invariant.

Given this invariant, however, it is impossible for d to return v2, as in its loop it will
necessarily first have encountered v1. Formally, to show this we use the following loop
invariant at the beginning of for loop

∃i1. i ≤ i1 < q.back ∧ q.items[i1] = v1 ∧ (∀j < i1. q.items[j] 6= v2)

and (∗) for the while loop. With these invariants, it is immediate that the swap at line D2

cannot read v2.

6. Checking the Conditions by Proving Program Divergence

In this section, we reduce proving the absence of VFresh, VRepet and VOrd violations to
proving that certain programs always diverge. Towards the end of the section, we also
discuss how the absence of VWit violations might be automatically checked for queue im-
plementations whose deq method may return NULL.

Our proof technique relies heavily on instrumenting the deq() function with a prophecy
variable ‘guessing’ the value that will be returned when calling it. That is, we construct a
method, deq(v), such that the set of execution traces of

⊔

x∈N∪{NULL} deq(x) is equal to the

set of execution traces of deq(), where ⊔ stands for (demonic) non-deterministic choice: the
set of traces of T ⊔T ′ is the union of the sets of traces of T and T ′. A simple construction is
to define deq(v) to behave exactly as deq() except that when deq() is about to return a value
other than v, we make deq(v) diverge. That is, we prepend an assume(x = v); statement
to every return x statement in deq(). In Section 7, we describe a better construction.

Proving Absence of VFresh Violations. Generally, it is completely straightforward to
prove the absence of VFresh violations. For example, it is sufficient for the queue implemen-
tation to be data independent [22].

This is because a data independent implementation cannot produce values ‘out of thin
air.’ In other words, if a dequeue returns a value, it must have read that value from memory,
and the only way for a value to get into memory is for an enqueue to be invoked with that
value passed as an argument. Therefore, no VFresh violations can occur in data independent
implementations.
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Proving Absence of VRepet Violations. To prove the absence of VRepet violations, we
use the following theorem.

Theorem 6.1. A completable queue implementation has no VRepet violations iff for all
values v and all n,m, k ∈ N such that 0 < n < m, the program

Prg(v, n,m, k)
def
= (

n times
︷ ︸︸ ︷

enq(v)‖ . . . ‖enq(v) ‖

m times
︷ ︸︸ ︷

deq(v)‖ . . . ‖deq(v) ‖

k times
︷ ︸︸ ︷

C ‖ . . . ‖C)

has no execution trace in which more than n deq(v) threads terminate, where

C
def
=

⊔

x 6=v

enq(x) ⊔
⊔

x 6=v

deq(x) .

Proof. (⇒) We argue by contradiction. Consider an execution trace τ of Prg(v, n,m, k)
where at least n + 1 of the deq(v) threads terminate. The induced history h(τ) cannot
have a safe matching because to satisfy condition (1) of Definition 4.1, each deq(v) must be
matched by some enq(v), and from the pigeonhole principle multiple deq(v) will have to be
matched with the same enq(v), thereby violating condition (3) of the Definition.

(⇐) Again, we argue by contradiction. Assume the queue implementation has an
execution trace τ such that h(τ) has a VRepet violation. For each value v, let nv be
the number of invoked enq(v) operations in τ and mv be the number of invoked deq(v)
operations. Then, since there is a VRepet violation, for some v there are at least nv + 1
completed deq(v) operations in τ . Finally, observe that τ can be generated by a run of
the program Prg(v, nv ,mv, k) (for some k) in which at least nv + 1 of the deq(v) threads
terminate.

In case the queue implementation is data independent [22], we can simplify the VRepet

check further. We say that a history is differentiated, if all the input arguments to invoca-
tions of the library’s methods are pairwise different. Given a renaming function on data
values, f : D → D, we write f(c) for applying the function to all the data values in the
history c. An implementation is data independent, if the set of histories it generates, H,
satisfies two properties: (1) for every c ∈ H, f(c) ∈ H; and (2) for every c ∈ H, there
exists a differentiated history c′ ∈ H such that c = f(c′). To ensure data independence, it
suffices to check that the implementation never performs any operations (such as testing
for equality) on the value domain.

For data-independent programs, we can reduce reasoning about any number (say n
and m where m > n) of enq(v) and deq(v) threads to a single enq(v) and multiple deq(v)
threads. To see why a data independence condition is necessary, consider the following
incorrect enq(v) and deq() implementations:

enq(v)
def
= atomic (if v ∈ Q then Q := Q·v·v else Q := Q·v)

deq()
def
= atomic (match Q with ǫ→ block | v ·Q′ → Q := Q′; return v)

Observe that for all m > 1, the program Prg(v, 1,m, 0) never terminates whereas the pro-
gram Prg(v, 2, 3, 0) has a terminating execution: the serial execution where both enqueues
take place before all the dequeues.

Theorem 6.2. A data-independent completable queue implementation has no VRepet vio-
lations iff for all values v, all m > 1 and all k ∈ N, the program Prg(v, 1,m) (as defined in
Theorem 6.1) has no execution in which more than one deq(v) threads terminate.
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Proof. By Theorem 6.1, it suffices to show that if for all v, m and k, Prg(v, 1,m, k) has
no execution trace with more than one terminating deq(v), then for all v, n, m and k, no
execution trace of the program Prg(v, n,m, k) can have more than n terminating deq(v)
threads. Now, as enq and deq do not perform any value-dependent operations, we can
replace the v being enqueued by distinct fresh vi values. Doing so will naturally affect
the return values of the dequeue operations that were returning v, but because of data
independence, nothing else. Hence, the program

n threads
︷ ︸︸ ︷

enq(v1) ‖ . . . ‖ enq(vn) ‖

m threads
︷ ︸︸ ︷

deq(r1) ‖ . . . ‖ deq(rm) ‖

k times
︷ ︸︸ ︷

C ‖ . . . ‖ C

must have an execution trace where at least n + 1 of the deq(ri) threads terminate with
ri ∈ {v1, . . . , vn} for 0 < i < m. So, by the pigeonhole principle, there exists some value vi
that gets dequeued multiple times, say m′. This, however, contradicts our assumption that
Prg(vi, 1,m

′,−) has at most one terminating deq(vi) thread.

Proving Absence of VOrd Violations. We move on to the POrd property, which as we
have seen in the manual proof of the HW queue, is often more complicated to prove. It
turns out that our automated technique for proving POrd also establishes absence of VFresh
violations as a side-effect. We reduce the problem of proving absence of VFresh and VOrd

violations to the problem of checking non-termination of non-deterministic programs with an
unbounded number of threads. The reduction exploits the instrumented deq(v) definition:
deq() cannot return a result x in an execution precisely if deq(x) cannot terminate in that
same execution.

Theorem 6.3. A completable queue implementation has no VFresh and VOrd violations iff
for all k ∈ N and for all v1 and v2 such that v1 6= v2, the deq(v2) thread does not terminate
in the program

Prg(k)
def
= b← false; (deq(v2) ‖ (enq(v1); b← true) ‖

k threads
︷ ︸︸ ︷

C ‖ . . . ‖C)

where

C
def
= (assume(b); enq(v2)) ⊔

⊔

x 6=v2

enq(x) ⊔
⊔

x 6=v1

deq(x) .

Proof. (⇒) We argue by contradiction. Consider an execution trace τ of Prg(k) in which
the deq(v2) thread terminates. If enq(v2) is not invoked in τ , then as there are no VFresh

violations, we know that no deq() in τ can return v2, contradicting our assumption that
deq(v2) terminates in τ . Otherwise, if enq(v2) is invoked in τ , then at some earlier point
assume(b) was executed, and since initially b was set to false, this means that b← true was
executed and therefore enq(v1) ≺h(τ) enq(v2). Consequently, from POrd, if there is deq() in
τ returns v2, there must be a deq() in τ that can be completed to return v1, contradicting
our assumption that deq(v2) terminates in τ .

(⇐) We have two properties to prove. For VFresh, it suffices to consider the restricted
parallel context that never enqueues v2. In this restricted context, deq(v2) does not termi-
nate, and so deq() cannot return v2. For VOrd, consider an execution trace in which every
enq(v2) happens after some enqueue of a different value, say enq(v1), and in which there
is no deq(v1). Such an execution trace can easily be produced by the unbounded parallel
composition of C, and so deq(v2) also does not terminate, as required.
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Showing Absence of VWit Violations. Here, we have to show that any dequeue event
cannot return NULL if it never goes through a state where the queue could be logically empty.
This in turn means that we have to express non-emptiness using only the actions of the
history (and not referring to the linearization point or the gluing invariant which relates the
concrete states of the implementation to the abstract states of the queue). For the following
let us fix a (complete) concurrent history c and a dequeue of interest d⊥ which returns NULL
and does not precede any other event in c.

Let c′ be some prefix of c and let e ∈ Enq(c′) be a completed enqueue event in c′. We will
call e alive after c′ if there is a matching dequeue event d in Deq(c), i.e. d = deq(Val c(e)),
then d is neither pending nor completed in c′. In other words, e is alive after c′ if its
matching dequeue d, if it exists, is not invoked in c′.

For the following, let di denote the dequeue event which removes the element inserted
by the enqueue event ei; that is, di = deq(Val c(ei)). A sequence e0e1 . . . en of enqueue
events in Enq(c) is covering for d⊥ in c if the following holds:

• e0 is alive at c′ where c′ is the maximal prefix of c in which inv(d⊥) does not occur.
• For all i ∈ [1, n], ei starts before d⊥ completes.
• For all i ∈ [1, n], we have ei ≺c di−1.
• en is alive at c.

Note that all di must exist by the third condition, with the only exception of dn, which
does not exist (the last condition). Then, the sequence is covering for d⊥ if d0 does not
start before d⊥ starts, and every enqueue event ei completes before the dequeue event di−1

starts. Intuitively, this means that at every state visited during the execution of d⊥, the
queue contains at least one element.

The property corresponding to the last violation (VWit) then becomes the following:

(PWit): A dequeue event d cannot return NULL if there is a covering for d.

Lemma 6.4. A (complete) concurrent history c has VWit iff it does not satisfy PWit.

Proof. (⇒) Let c have VWit. By Prop. 4.8, there is d⊥ ∈ Deq(c) such that Valc(d⊥) = NULL

and Bad(c, d⊥) ∩ Before(c, d⊥) 6= ∅. We construct a covering sequence e0 . . . en for d⊥ such
that for all 0 ≤ i < n the response of ei occurs before the response of ei+1, if ji and ji+1 are
minimal indices for which ei ∈ Bad ji(c, d⊥) and ei+1 ∈ Bad ji+1

(c, d⊥) hold, then ji+1 < ji,
and en ∈ Bad0(c, d⊥), and if e ∈ Badk(c, d⊥) with k < ji+1, then e 6≺c di.

(Base): By the assumption there is an enqueue event in Bad(c, d⊥)∩Before(c, d⊥). Set e0
an enqueue event in Bad j0(c, d⊥) such that for any other enqueue event e′ ∈ Badk(c, d⊥)∩
Before(c, d⊥), we have j0 ≤ k.

(Inductive): Let ei be in Bad ji(c, d⊥) with ji > 0. Let E′ be the set of all e′ ∈ Bad(c, d⊥)
such that either e′ ≺c ei or e′ ≺c di, where di is the matching dequeue event for ei.
Observe that E′ is non-empty. Choose ei+1 ∈ E′ to be an enqueue event with minimal
index in E′. That is, if ji+1 is the smallest index for which ei+1 ∈ Bad ji+1

(c, d⊥) holds,
then for any e′ ∈ E′, e′ ∈ Badk(c, d⊥) implies ji+1 ≤ k. Observe that ji+1 < ji. This
implies that by construction it cannot be the case that ei+1 ≺c di−1 since it would
contradict the assumption that ei was chosen as an enqueue event with minimal index
among those that precede di−1. But again by construction we have ei ≺c di−1 which
implies that the response event of ei+1 occurs after the response event of ei. This also
means that because ei+1 6≺c ei, we must have ei+1 ≺c di.
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procedure deq(v : val)
while true do

〈
range← q.back − 1

〉

for i = 0 to range do





〈
x← q.items[i];
assume(x = v ∧ x 6= NULL);
q.items[i]← NULL

〉

;

return x






⊔

〈
x← q.items[i];
assume(x = NULL);
q.items[i]← NULL

〉

Figure 2: The HW dequeue method instrumented with the prophecy variable v guessing its
return value, where ⊔ stands for non-deterministic choice.

Since the sequence of indices ji is strictly decreasing, to show that the construction termi-
nates with jn = 0, we only have to show that there is en ∈ Bad0(c, d⊥) completed before d⊥
is completed; i.e. the response of en occurs before the response of d⊥ in c. By the definition
of VWit, taking cp = c0 · inv(d⊥) · cd, we know that there must be at least one enqueue
event e in cp such that e is completed in cp and its matching dequeue is neither pending
nor completed in cp. But this immediately implies that e ∈ Bad0(c, d⊥) and e is completed
before d⊥ is completed.

(⇐) Let e0 . . . en be a covering sequence for d⊥. Then, en ∈ Bad(c, d⊥) because dn
if it exists is preceded by d⊥, i.e. d⊥ ≺c dn. Furthermore, for every i ∈ [1, n], since we
have ei ≺c di−1, all ei ∈ Bad(c, d⊥). Finally, e0 ∈ Before(c, d⊥). Thus, Bad(c, d⊥) and
Before(c, d⊥) are not disjoint if there is a covering for d⊥. By Prop. 4.8 this implies the
existence of VWit.

We will actually restate the same property in a simpler way by making the following obser-
vation.

Proposition 6.5. There is a covering for d⊥ in c iff at every prefix c′ of c such that d⊥ is
pending in c′, there is at least one alive enqueue event.

Then, we can alternatively state PWit as follows:

(PWit′): A dequeue event d cannot return NULL if for every prefix c′ at which d is pending
there exists an alive enqueue event.

Note that POrd can also be stated in terms of alive enqueue events.

(POrd′): For any enqueue events e1 and e2 with e1 ≺c e2 and Val c(e1) 6= Valc(e2), a dequeue
event cannot return Valc(e2) if e1 is alive at c.

7. Automation within Cave

To automate the linearizability proof of the HW queue, we have mildly adapted the im-
plementation of Cave [19], a sound but incomplete thread-modular concurrent program
verifier that can handle dynamically allocated linked list data structures and fine-grained
concurrency. The tool takes as its input a program consisting of some initialization code and
a number of concurrent methods, which are all executed in parallel an unbounded number
of times each. When successful, it produces a proof in RGSep that the program has no
memory errors and none of its assertions are violated at runtime. Internally, it performs
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RGSep action inference [20] with a rich shape-value abstract domain [18] that can remember
invariants indicating that value v1 is inside a linked list. Cave also has a way of proving
linearizability by a brute-force search for linearization points (see [19] for details), but this
is not applicable to the HW queue and therefore irrelevant for our purposes.

Overview of Action Inference. In brief, Cave’s action inference algorithm first deter-
mines the part of the heap-allocated memory that is private to a thread and the part that
is shared. The main heuristic employed in this decision is that newly allocated memory
cells are deemed to be private until they become reachable from some global variable, from
which point onwards they are deemed shared.

Next, the algorithm computes a binary relation R on program states overapproximating
the effects of all atomic statements of the program to the shared part of the heap. Syntac-
tically, it represents R as the union of a set of more primitive binary relations, which are
called actions. Moreover, it remembers which atomic program statements correspond to
which actions of the set. Thus, for example, if we want to compute an overapproximation
of a program C in a parallel context, C ′, we can run action inference on C‖C ′ and from the
total set of actions return only those corresponding to C.

As part of this overapproximation, any information about the program’s control flow is
lost except when the program explicitly records it in some global variable. This property
is common to most thread-modular reasoning techniques, and is necessary for scalability.
Thus, for instance, the programs C, C∗, and C‖C generate the same set of actions.

In the process of computing the set of actions, Cave proves that the program is memory
safe and does not violate any assertions in it. To do so, it constructs a proof in RGSep,
which is an adaptation of Jones’ rely-guarantee method suitable for pointer-manipulating
programs [12, 21]. To construct these proofs, it calculates via abstract interpretation an
invariant that holds after every atomic program statement. These invariants describe the
shapes of the heap allocated data structures (e.g., that there is a linked list from x to y
via the field next), and some very simple facts about the values stored in them (e.g., that
the sequences of values stored in two list segments are equal, or that the sequence of values
stored in one list segment is sorted).

Finally, we note that action inference is incremental. Typically, action inference is run
starting with an initial empty set of actions, to which set it adds any new actions it generates
until a fixpoint is reached. When, however, we want to verify C‖C ′ and we already know a
sound abstraction of C (under the assumption that C ′ can be run in parallel), it suffices to
perform action inference only on C ′ but starting with the set of actions of C ′ as the initial
set of actions. To this set, action inference will add any further actions C produces.

Summary of Changes. The modifications we had to perform to Cave were:

(1) To add code that instruments deq() methods with a prophecy argument guessing its
return value, thereby generating deq(v);

(2) To add some glue code that constructs the verification conditions of Theorems 6.2
and 6.3 and runs the underlying prover to verify them;

(3) To improve the abstraction function so that it can remember properties of the form
v2 /∈ X, which are needed to express the (∗) invariant of the proof in Section 5; and

(4) When checking the absence of VRepet violations, to instrument the inferred actions so
as to work around the fact that action inference abstracts over control flow information.



ASPECT-ORIENTED LINEARIZABILITY PROOFS 29

The first two changes are clearly tool-independent, the third item is very Cave-specific,
whereas the fourth item is fairly generic. The problem that we are working around here
is common to almost all thread-modular verification approaches, and our instrumentation
should work for other tools as well. To use a different tool from Cave, the tool must be
able to express invariants such as the aforementioned (∗) invariant.

As Cave does not support arrays (it only supports linked lists), we gave the tool a
linked-list version of the HW queue, for which it successfully verified that there are no
VFresh, VRepet, and VOrd violations. (As the HW deques never return NULL, the algorithm
also trivially has no VWit violations.)

Prophetic Instrumentation of Dequeues. In order to be able to use the theorems in
the previous section, we must first construct the method deq(v) that records the result of
the deq() function in its arguments which acts like a prophecy variable. In essence, the
deq(v) we construct must be such that the set of traces of

⊔

x∈N∪{NULL} deq(x) is equal to

the set of traces of deq(), where ⊔ stands for non-deterministic choice. Figure 2 shows the
resulting automatically-generated instrumented definition of deq(v) for the HW queue.

Our implementation of the instrumentation performs a sequence of simple rewrites, each
of which does not affect the set of traces produced:

return E  assume(v = E); return E

if B then C else C ′
 (assume(B);C) ⊔ (assume(¬B);C ′)

C; assume(B) assume(B);C provided fv(B) ⊆ Locals \ writes(C)

C; (C1 ⊔ C2)! (C;C1) ⊔ (C;C2)

(C1 ⊔ C2);C! (C1;C) ⊔ (C2;C)

In general, the goal of applying these rewrite rules is to bring the introduced assume(v = E)
statements as early as possible without unduly duplicating code.

Instrumentation for Checking Absence of VRepet Violations. Observe that the HW
queue implementation is data independent as the operations on the shared locations in
the enq and deq methods do not depend on the value of argument. Therefore, using
Theorem 6.2, we have to prove that in the context where only one enq(v) can happen in
parallel, deq(v) cannot terminate if another deq(v) has terminated.

One slight complication is that we cannot use RGSep action inference [19] directly
to prove this property because we have to keep track of the exact number of occurences
of particular shared memory operation (such as the enqueues of v). In rely-guarantee,
operations on shared variables are abstracted by actions, which typically do not contain
any control flow within them. Hence after the initial action generation, we have to augment
the shared state and the actions with auxiliary variables that (a) record the termination
of parallel deq(v) and (b) ensure that only one parallel enq(v) call is accounted for. Our
implementation therefore proceeds as follows:

(1) It infers an initial set of RGSep actions, R, by performing symbolic execution of the
enq and deq methods, and refine this set of actions to record information about the
arguments of enq() and the result of the deq() functions wherever possible. Let Renq

be the actions generated by enq method and Rdeq be those generated by deq.
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(2) For each action that is executed at most once by an enq(v) invocation, it generates a
fresh auxiliary variable, ei, and records that ei changes from 0 to 1 by performing that
action. Formally, we define:

E
def
= {(ℓ,A) ∈ Renq | ℓ occurs at most once on every path through enq}

R′ def
= {(ℓ,A ∧ eℓ = 0 ∧ e′ℓ = 1) | (ℓ,A) ∈ E} ∪ (Renq \ E) .

writing eℓ and e′ℓ for the freshly generated variables in the action’s pre- and post-states.
(The purpose of this instrumentation is to ensure that the E actions will not interfere
more than once with deq(v) below.)

(3) Record each action that must be performed by a completed deq(v) event using a fresh
auxiliary variable, di. Formally,

D
def
= {(ℓ,A) ∈ Rdeq | ℓ must occur on every path through deq}

R′′ def
= {(ℓ,A ∧ d′ℓ = 1) | (ℓ,A) ∈ D} ∪ (Rdeq \D) .

where d′ℓ are the freshly generated variables in the action’s post-state. (The purpose of
this instrumentation is to be able to detect whether a deq operation has terminated.)

(4) Running action inference with the following initial set of actions (the rely condition)

R′[v/arg ] ∪R′′[v/res ] ∪
⋃

v′ 6=v

(Renq[v
′/arg ] ∪Rdeq[v

′/res ]) ,

verify the Hoare triple

{e1 = . . .= en = d1 = . . .= dm=0} deq(v) {∃i. di = 0} .

The postcondition ensures that no other deq(v) has terminated, because if it had, it
must have set each di = 1.

8. Related Work

Linearizability was first introduced by Herlihy and Wing [10], who also presented the HW
queue as an example whose linearizability cannot be proved by a simple forward simulation
where each method performs its effects instantaneously at some point during its execution.
The problem is, as we have seen, that neither of E1 or E2 can be given as the (unique)
linearization point of enq events, because the way in which two concurrent enqueues are
ordered may depend on not-yet-completed concurrent deq events. In other words, one can-
not simply define a mapping from the concrete HW queue states to the queue specification
states. Nevertheless, Herlihy and Wing do not dismiss the linearization point technique
completely, as we do, but instead construct a proof where they map concrete states to
non-empty sets of specification states.

This mapping of concrete states to non-empty sets of abstract states is closely related
to the method of backward simulations, employed by a number of manual proof efforts [3,
5, 17], and which Schellhorn et al. [17] recently showed to be a complete proof method for
verifying linearizability. Similar to forward simulation proofs, backward simulation proofs,
are monolithic in the sense that they prove linearizability directly by one big proof. Sadly,
they are also not very intuitive and as a result often difficult to come up with. For instance,
although the definition of their backward simulation relation for the HW queue is four lines
long, Schellhorn et al. [17] devote two full pages to explain it.



ASPECT-ORIENTED LINEARIZABILITY PROOFS 31

As a result, most work on automatically verifying linearizability (e.g. [2, 18, 19, 1, 6])
and some manual verification efforts (e.g., [4, 3]) have relied on the simpler technique of
forward simulations, even though it is known to be incomplete. The programmer is typically
required to annotate each method with its linearization points and then the verifier uses
some kind of shape analysis that automatically constructs the simulation relation. This
approach seems to work well for simple concurrent algorithms such as the Treiber stack and
the Michael and Scott queues, where finding the linearization points may be automated
by brute-force search [19]. Most recently, with their technique based on (automatically)
rewriting implementations Dragoi et al. [6] have succeeded to extend this approach to some
implementations with helping. Similar to their precursors, however, their approach also
assumes the existence of static linearization points, i.e. instructions in the program code
that when executed invariably correspond to the linearization of one or more methods. Thus,
there are many implementations, as mentioned in the Introduction, that cannot be handled
by this approach.

Among this line of work, the most closely related one to this paper is the recent work
by Abdulla et al. [1], who verify linearizability of stack and queue algorithms using observer
automata that report specification violations such as our VOrd. Their approach, however,
still requires users to annotate methods with linearization points, because checker automata
are synchronized with the linearization points of the implementation.

To the best of our knowledge, there exist only two earlier published proofs of the
HW queue: (1) the original pencil-and-paper proof by Herlihy and Wing [10], and (2) a
mechanized backward simulation proof by Schellhorn et al. [17].

Both proofs are manually constructed. In comparison, our new proof is simpler, more
modular, and automatically generated. This is largely due to the fact that we have de-
composed the goal of proving linearizability into proving four simpler properties, which can
be proved independently. This may allow one to adapt the HW queue algorithm, e.g. by
checking emptiness of the queue and allowing deq to return NULL, and affecting only the
proof of absence of VWit violations without affecting the correctness arguments of the other
properties.

Our violation conditions are arguably closer to what programmers have in mind when
discussing concurrent data structures. Informal specifications written by programmers and
bug reports do not mention that some method is not linearizable, but rather things like
that values were dequeued in the wrong order.

9. Conclusion

We have presented a new method for checking linearizability of concurrent queues. Instead
of searching for the linearization points and doing a monolithic simulation proof, we verify
four simple properties whose conjunction is equivalent to linearizability with respect to the
atomic queue specification. By decomposing linearizability proofs in this way, we obtained
a simpler correctness proof of the Herlihy and Wing queue [10], and one which can be
produced automatically.

We believe that our new property-oriented approach to linearizability proofs will be
applicable to other kinds of concurrent shared data structures, such as stacks, sets, and
maps. The generalization, however, is not entirely straightforward. In the case of stacks,
the violations are similar to that of queues, but not exactly dual. The main difference
is that the ordering violation for stacks is similar to VWit and not to VOrd as one might
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expect. Similarly, the violations for set implementations are also not as simple as dropping
the ordering constraint. Instead, we need to count the number of successful insertions and
deletions to express what can go wrong. It remains to be seen, however, whether such
counting arguments can yield an automatic verification technique.
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