Logical Methods in Computer Science
Vol. 9(1:14)2013, pp. 1-38 Submitted Jul. 2, 2010
www.Imcs-online.org Published Mar. 28, 2013

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH
INDUCTIVE AND COINDUCTIVE TYPES *
DAISUKE KIMURA AND MAKOTO TATSUTA

National Institute of Informatics, 2-1-2 Hitotsubashi kyo 101-8430, Japan
e-mail address{kmr, tatsuta@nii.ac.jp

AsstrAcT. This paper extends the dual calculus with inductive typelscainductive types. The paper
first introduces a non-deterministic dual calculus withuciive and coinductive types. Besides the
same duality of the original dual calculus, it has the dyaiftinductive and coinductive types, that is,
the duality of terms and coterms for inductive and coindegctypes, and the duality of their reduction
rules. Its strong normalization is also proved, which ismby translating it into a second-order dual
calculus. The strong normalization of the second-ordet calaulus is proved by translating it into
the second-order symmetric lambda calculus. This paparitii@duces a call-by-value system and a
call-by-name system of the dual calculus with inductive esiciductive types, and shows the duality
of call-by-value and call-by-name, their Church-Rossaperties, and their strong normalization.
Their strong normalization is proved by translating therto ithe non-deterministic dual calculus
with inductive and coinductive types.

1. INTRODUCTION

Dual CalculusDC given by Wadler[[2[7] 28] is a type system which correspondthéoclassical
sequent calculus LK (see, for examplé, [7]). It representaputation induced by cut elimination
in LK by using its expressions and their reduction. The dwdtwdus has two nice properties:
computation in classical logic, and duality.

The computation of classical logic has been intensiveldistly for example,[2,]4,18. 9, 20,
[21,[23,27/28]. They all studied the Curry-Howard corresfgmte between classical logic and
functional programming languages with sophisticated robstructures like catgthrow and first-
class continuations. This correspondence is an extenditineoCurry-Howard correspondence
between intuitionistic logic and the typadcalculus, which is well established.

The classical sequent calculus LK has nice duality. We haviewelution that maps conjunc-
tion and disjunction to each other, and maps the left and rigles of conjunction to the right
and left rules of disjunction and vice versa. This involatican be extended to the cut elimination
procedure for LK.

The systenDC inherits the duality of the classical sequent calculus Lkar&bver, its proof
terms called terms, coterms, and statements also havdydsatice they correspond to proofs in

2012 ACM CCS:[Theory of computation]: Models of computation—Computability—Lambda calculus.
Key words and phrasesCurry-Howard isomorphism, Classical logic, Dual Calculusiuctive definitions, Coinduc-
tive definitions.
* The conference version of this paper has appearéd n [13].

|E5|LOGICAL METHODS © D. Kimura and M. Tatsuta
IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:14)2013 © [Creative Commons

http://creativecommons.org/about/licenses

2 D. KIMURA AND M. TATSUTA

LK. This implies that its reduction relation can have dyadiince the reduction relation is induced
by the cut elimination procedure in LK. In this framework, dli&r gave the call-by-value and call-
by-name strategies ibC, and showed the duality of thein [27]. He also showed that guattonal
correspondence betwe®d and Parigot'stu-calculus [19], and showed the duality between call-
by-value and call-by-name of thig-calculus using the duality of the dual calculus|[28]. Sitien,
the dual calculus has been actively studied [26[12, 13].

Inductive definitions are important in both mathematicgidcand computer science. Inductive
definitions strengthen expressiveness of logical systémngxample, See [3]). They are central in
programming and program verification [22,] 18] 14] for hamgllrecursive data structures such as
lists and trees, and specification of recursive programsndDative definitions are also important
since they can represent streams, infinite trees, and baiony for example, in[24].

This paper presents Dual Calculd&uy with inductive types and coinductive types. Our cal-
culus extends the duality @fC to inductive types and coinductive types. The involutiorDtis
extended so that it maps inductive types and coinductivestyp each other. It also maps the left
and right rules of inductive types to the right and left rubdésoinductive types and vice versa. Be-
cause of the duality of the proof rules, we will have cut efiation procedure that keeps the duality
of inductive types and coinductive types. This induces thedity of the reduction relations of proof
terms for inductive types and coinductive types.

Our main results are: (1) the duality between inductive $ygoed coinductive types with reduc-
tion, (2) strong normalization inCuv, (3) strong normalization in the second-order Dual Calsulu
DC2, (4) the duality between the call-by-value and call-byae@Cuv, and (5) the Church-Rosser
property and strong normalization of the call-by-value aali-by-namedCuv.

We will show strong normalization @fCuv. In order for proving the strong normalization, we
will first show the strong normalization of the second-orBeral CalculusDC2 given by [26] by
interpreting it in second-order symmetric lambda-calsuiven in [21]. Then strong normalization
of DCuv is proved by interpreting it iDC2 by using second-order coding of inductive and coinductive
types.

We first introduce the systebCuv that does not have reduction strategies, since it is degigne
by the Curry-Howard correspondence for a standard cut iditiin procedure in LK. The system
can discuss non-deterministic aspects of computatiorassdal logic, since the execution of pro-
grams inDCuv is non-deterministic. It also works as a base framework tbeovariants oDCuv
with specific reduction strategies such as call-by-valuk aatl-by-name that will be given later.

The duality between call-by-value and call-by-name is ftgjgested by Filinski[5]. The dual
calculus gives a clear explanation for this duality by ugimglogical duality of classical logic. We
will show the duality of call-by-value and call-by-name hetdual calculus extended with inductive
types and coinductive types. We extend the call-by-valiand the call-by-namecC given in [27]
with inductive types and coinductive types, and introdingestystem§BV DCuv andCBN DCuv. They
are obtained frondCuv by restricting its non-deterministic reduction to the dajlvalue or call-by-
name strategies, and also by adding some strategy-spexifiction rules. In the same way as![27],
we show the duality of call-by-value and call-by-name in th&l calculus with inductive types
and coinductive types. We will show the Church-Rosser ptgpees well as strong normalization
for CBV DCuv andCBN DCuv. The strong normalization will be shown by translatitByv DCuv and
CBN DCuv into DCuv.

In [1], the duality between inductive types and coinductiyges in linear logic is studied. Our
systenDCuv shows the duality in ordinary sequent calculus LK.

Momigliano and Tiu[[16/"117] discussed an intuitionistic seqt calculus with inductive def-
initions and coinductive definitions and showed its cut @letion theorem. Our systeDdCuv is

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 3

a classical system and our strong normalization shows thelicoination theorem of the classical
sequent calculus. Our cut elimination procedure is notetlas an intuitionistic fragment because
it keeps the duality and we have the corresponding proofthde manipulates a succedent if we
have some proof rule that manipulates an antecedent. Somwetcdirectly compare our method
and their method.

In category theory, inductive definitions are representgdniiial algebras and coinductive
definitions are represented by final coalgebras [6], and theility in category theory is known.
Our systenDCuy enables us to show the duality in a clear syntactic way bygusitype system.

Several papers for dual calculus investigated the duafigomputation. Wadler showed the
duality between values and continuations, and the duaditwéen call-by-value computation and
call-by-name computation by using the explicit dualityDaf [27,[28]. The first author of this pa-
per showed the duality between the call-by-name fixed pgierator and the call-by-value loop
operator by extendinpC [11]]. The first author also showed the duality of reductiotwaen call-
by-value computation and call-by-name computatioigrcalculus by usin@C [12] to answer the
open question presented in Wadler's invited talk at RTA2[X#], which asked whether the dual-
ity between call-by-value and call-by-name in his equatigstems would be refined in reduction
systems. Tzevelekos [26] investigated the dual calcukengin [27]. He assumed some additional
conditions on reductions, and showed both Church-Rossgeply and strong normalization hold
under his conditions. He also investigated the relatignbbiweerdC and the symmetrig-calculus
by Barbanera and Berardil[2]. A second-order extensidnCa$ also considered in [26].

The systemuj in [4] is a system with implication and subtraction, and diss duality. Their
calculus with negation, conjunction, and disjunction iBechuziaVa™ and the correspondence be-
tween it and the dual calculus is discussed In [9].

A semantical approach to the duality between call-by-valne call-by-name was studied by
Selinger[[23]. He gave a categorical semantics offjixealculus, and explained the duality by using
the categorical duality. This approach is extended to ttadityuoetween the fixed point operator
and the loop operator by Kakutahi [10].

Section 2 gives a definition @fC and states its duality. Section 3 introdu®&% and shows
its duality. Section 4 gives examples. In section 5, we 9i¥2 and show its strong normalization.
Section 6 proves strong normalization ftuv. Section 7 introduceSBV DCuv andCBN DCuv and
shows their Church-Rosser properties and strong norntializa

2. Tue DuaL CarLcurus DC

This section defines Dual CalculD€ and states its duality. This system is obtained from theralg
Dual Calculus given in[27] by removing reduction strategie reduction rules. This system gives
us a base framework for several variants of dual calculi.

Definition 2.1 (Types and Expressions D). Let X, Y, Z,... range over type variable®\, B, ...
range over types, The symbolsy, z . .. range over variables, amgg, v, . .. range over covariables.
We assume an involutior-§’ between variables and covariables, which satisfles xanda” = a.
An expression (denoted WY, E, . ..) is either a term (denoted W, N, ...), a coterm (denoted by
K,L,...), or a statement (denoted ByT,...). We define them as follows:

Types A= X|AANA|AVA]|-A

Expressions D == M | K|S,

Terms M = X| (M, M)|(M)inl | (M)inr | [K]not | (S).«,
Coterms = a|[K K] | £st[K] | snd[K] | not(M) | x.(S),

K :
Statements S = MeK.

4 D. KIMURA AND M. TATSUTA

The term §).a binds the covariable in S. The cotermx.(S) binds the variable<in S. We write
FV(D) for the set of free variables iB. We also writeFCV(D) for the set of free covariables in
D. We will use_[_/_] for substitution. For example, the substituti8hiM/x] denotes the statement
obtained fromS by replacingx by M.

The typeA A B denotes a conjunctior v B denotes a disjunction, artéA denotes a negation.
A variable means an ordinary variable. A covariable mearmufiput port and gets some value after
computation. A term represents an ordinary computatiorckvbecomes a value or puts values at
output ports after computation. The tekil, N) means a pair. The termi#)inl and(M)inr
mean the left injection and the right injection to a disjcsnim, respectively. WherK[not gets
its input, it gives the input t& and compute&. The term §).« is an abstraction 08 by «a. It
computesS and its value is the value at the output p@rtA coterm represents continuation which
puts values at output ports after computation when it getsgut. The cotermK, L] gets an input
of a disjoint sum. If the input i$M)inl, it givesM to K and compute&. If the input is(M)inr,
it gives M to L and compute&. The cotermfst[K] gets an input of a pair. If the input i3V, N),
then it givesM to K and compute&. The cotermsnd[K] also gets an input of a pair. If the input is
(M, N), then it givesN to K and compute&. The coternnot(M) gets a continuation as its input.
It gives M to the continuation and computes the continuation. TheeokdS) is an abstraction of
S by x. If it gets an input, it puts the input iR and compute$. The statemeni ¢ K means the
computation oK with the inputM that may put values at output ports.

A typing judgment (denoted by) of DC takes either the forl + A | M : A, the formK : A |
I' - A, orthe formI’ | S + A, wherel’ denotes a context; : Ay, ..., X, : A, that is a set of variable
declarations, and denotes a cocontext; : By, ...,am : Bnthat is a set of covariable declarations.
We will call M, K, andS a principal expression in those judgments. The domain (@fenoted by
dom({)) is the set of variables«y, ..., X} if TisS X : Aq,..., X, : An. The domain ofA (denoted by
dom(A)) is the set of covariablegry, ..., am} if Aisay : B1,...,am: Bm.

We intuitively explain the typing judgments. There can deeotways of intuitive explanation,
for example,[[26]. In order to give an intuitive idea in gemlewe assume an evaluation strategy
for expressions, and a notion of values for the strategy.ekkample, when we take call-by-name,
the values will be canonical form, and the computation wallldzy evaluation. The focuss used
only for denoting which part contains a term, a coterm, oagestent in a judgment, and when we
think the corresponding sequent in ordinary sequent azcwe will erase it. The typing judgment
X1 DAL ..., % Ankay i By,...,am : Bn| M : Ameans that when eact) has a value of type
A, andM is computed, theMM returns a value of typd or someq; gets a value of typ®&;. The
judgmentK : Al Xy : Aq,.... % An ka1 By, ...,am: By means that when eachhas a value of
type A;, an input of typeA is given toK, andK is computed, then somg gets a value of typ®;.
The judgmentx; : A1,..., X% : AnlSFai: By, ...,am: Bymeans that when eachhas a value of
type A; andS is computed, then somg gets a value of typ8;. We sometimes use the symbg}
instead of the symbal that appears in a judgment in order to explicitly show it is@gment oDC.
That is, we writel" kpc A | M: A for the judgment + A|M: A. Similarly, we writeK: A[T tpc A
andI'| S kpc A.

The typing rules are given in Figué 1. If we erase terms,romge statements, and the symbol
|, the system becomes logically equivalent to a fragmentadsital sequent calculus LK, whose
definition is given in, for examplel_[7].

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 5

F,x:AFAlx:A(AXR) a:AIFFA,a:A(AXL)
T+ AFI |(_|V|A>|i|:1/|l:ip:\°\V g (VRL fst[E] ::':li E|Ar —a LD
Ik AFI |(_l\/IA>|iI:1/|r::i\\/ B (VR) snd[E] ::i\l/l: EIAF FA (nL2)

'k i I: ['Iil]zo'_tA: -A (=R) notI;h:I;A: |—|MAII'“A|— A =)

I'rA| ?/I| :MA. KKF: AAIF FA (cu)

Figure 1: Typing rules oDC

Definition 2.2 (Reduction) The reduction relatior—pc is defined as the compatible closure of the
following reduction rules:

(BA1) (M,N)e fst[K] —pc M e K,
(BA2) (M,N) e snd[K] —pc NeK,
(BvV1) (M)inle[K,L] —pc MeK,
(Bv2) (M)inre[K,L] —pc MelL,
(8-) [K]not enot{M) —pc M e K,
(BR) (S).a ® K —pc S[K/a],

(BL) M e x(S) —pc S[M/X],

MR (Mea).a —pc M,

(L) x(xeK) —nc K,

wherex anda are fresh infL) and @R), respectively.

The rules gR) and (L) are necessary to get the results of computation of termsatedms
from computation of statements inside them. We do not ireclirgs-rules for logical connectives
that are given in[28], since these break the confluence profi call-by-value and call-by-name
systems, which we will study in Section 7. In order to studyaaebframework, we first consider a
non-deterministic rewriting system that does not commditoer the call-by-name or call-by-value
theory.

The systenDC we consider first is obtained from the original dual calcuixen in [27] by
omitting evaluation strategies, dropping-fules that provide strong evaluation under call-by-ealu
and call-by-name strategies, and replaciylg) @nd ¢R)-expansion rules by;() and (7R)-reduction
rules.

The role of ¢gL) and @R)-reduction rules are to simplify logical proofs withoutastging any
proof structure. In the last section, we also give the cali<alue and call-by-name variantsi€uy.
The role of these rules become clearer in that section sh@edre necessary to obtain a value as
the result of a computation under some strategy.

6 D. KIMURA AND M. TATSUTA

The type of an expression is preserved by reduction.

Proposition 2.3(Subject reduction ddC). The following claims hold.
(1) T +pc A[M: Aand M—spc N, thenI +pc A|N: A holds.

(2) If K: AIT rpc A and K—spc L, then L A|T +pc A holds.

(3) fT'|Stpc Aand S—pc T, then'| T rpc A holds.

This proposition is shown by induction on reduction using fibllowing substitution lemma.

Lemma 2.4(Substitution lemma)The following claims hold.

(1) Supposd” pc A|N: Alis derivable. Then we have the following.
(1a) If I, x: Arpc A| M: B, thenl +pc A| M[N/X]: B,
(Ab) if K: B|T, x: Atpc A, then KN/X]: B|T rpc A, and
(Ac) if T, x: A S kpc A, thenI' | S[N/X] +pc A.

(2) Suppose LA|T kpc A is derivable. Then we have the following.
(2a) If T +pc A, a: A|M: B, thenl" +pc A| M[L/a]: B,
(2b) it K: B|T tpc A, a: A, then HL/a]: B|T rpc A, and
(2¢) ifT'|S tpc A, a: A, thenl'| S[L/a] tpc A.

Proof. The claims (1a),(1b), and (1c) are shown simultaneoushn@iydtion onM, K, andS. The
claims (2a),(2b), and (2c) are also shown simultaneousiyndhyction onM, K, andS.]

The following duality transformation extends the dualitytihe sequent calculus LK to terms,
coterms, and statements.

Definition 2.5 (Duality Transformation) The duality transformation—)° from DC into itself is
defined for types and expressions as follows:

(X=X (=A°=-(A°, (AAB)°=(A°V(B)°, (AVB)°=(A)°A(B),

(¥)° =X, (@) =«

(M, N))* = [(M)°, (N)°], ([K,L])° = ((K)*, (L)*),

((M)inl)® = £st[(M)°], (£st[K])® = ((K)*)inl,

((M)inr)® = snd[(M)°], (snd[K])® = ((K)*)inr,

([Klnot)® = not((K)°), (not(M))° = [(M)°]not,

((S).0)° = .((S)), (x(8))° = ((8)°).x,

(M e K)° = (K)° o (M)°.
Note that a type and a statement are mapped to themselvesmAaie a coterm are mapped to
each other.

We also define transformation for judgments. I'lfis X;: Ag,..., %1: An, then (0)° is de-
fined as &1)°: (A)°,....,(%n)°: (An)°. If Ais az: By,...,am: Bm, then A)° is defined as
(@1)°: (B1)°,...,(am)°: (Bm)°. The judgment{ + A|M: A)°is defined asN)°: (A)° | (A)° + (I)°.
The judgmentK: A|T + A)° is defined asA)° + (I)° | (K)° : (A)°. The judgmentI(| S + A)° is
defined as4)° | (S)° + (I)°.

We also define transformation for inference rule names &nsl (AXR° = (AxL), (AxL)°
(AXR), (VR1)° = (AL1), (AL1)° = (VR1), (AR)° = (VL), (VL)° = (AR), (VL2)’ = (AR2), (VR2)° =
(AL2), (-L)° = (-R), (=R)° = (=L), (IR)° = (IL), (IL)° = (IR), and Cut)° = (Cut).

This duality transformation preserves substitution aft®and coterms.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 7

Lemma 2.6. The following claims hold.

(1) (BIM/X)°® = (D)°[(M)°/X].

(2) (DIK/a])® = (D)°[(K)*/a’].

Proof. The claims (1) and (2) are shown by induction@nWe treat the first case of (1): the case

of Disx. (X[M/X])° = (M)° = X[(M)°/X] = (X)°[(M)°/X]. The other cases are straightforwardly

proved by the induction hypothesis. []
This duality transformation is shown to preserve typing eettliction, and to be an involution.

This transformation is a homomorphism for this system indéese that it preserves typing and

reduction. An important feature @& is its duality by this transformation. A term is dual to a
coterm by this homomorphism.

Proposition 2.7 (Duality of DC). The followings hold.

(1) If J is derived from 4,...,J, (n = 1 or 2) by an inference rule R, thefd)° is derived from
(Jn)°, ..., (J1)° by the inference ruléR)°.

(2) D —pc E implies(D)° —pc (E)°.

(3) (A)°) =A, ((D)°)° =D, and((J)°)° = J hold.

Proof. The claim (1) is proved by case analysis of the inferencesrulde claim (2) is proved by

induction on the generation ef->pc using Lemmd 216. The claim (3) is proved by induction on
types and expressions. []

Remark 2.8. The (-)° transformation maps dual reduction rules to each othett i$h&dD —ypc E
is the reduction rulesB(\1), (BA2), (BV1), (BV2), (6-), (BR), (BL), (7R), and ¢L), then O)° —pc
(E)° is the reduction ruleg3/1), (BV2), (BA1), (BA2), (B-), (BL), (BR), (nL), and @R), respectively.

Implication > can be defined by: andV in the same way as [27].

Definition 2.9. We write A > Bfor =AvB. We also writeix.M for ({([X.((M)inrey)]not)inley).y.
We also writeN@K for [not({N), K].

The constructor @ simulates the applicatiorinalculus together witl. The following holds
from the definition.
Proposition 2.10. The following typing inference rules and reduction rule degivable.
ILx:A-rA|M:B FT'rAIM:A K:B|T+A
: R L
rrajlxm:Ase R M@K ASBITra D

(B2) AXM e (N@K) —pc M[N/X] e K

3. Tue Duar CarLcurus DCuv witH INDUCTIVE AND COINDUCTIVE TYPES

In this section, we presedCuv, which is an extension dfC with inductive types and coinductive
types. We first extend the definition of typesDi#f to inductive typeg:X.A and coinductive types
vyX.A, and then extend expressions and reduction.

In Sectiorb, we will introduce the second-order systsd. The systendCuyv is worth to be
studied as well aBC2, sinceDCuv is within a first-order logic.

We first define types, their positive type variables, and thegative type variables. A positive
type variable in a type does not occur negatively in the typthé usual sense. A negative type
variable in a type does not occur positively in the type.

8 D. KIMURA AND M. TATSUTA

Definition 3.1. The set of type variables is written ByVars. We define the types ®Cuv (denoted
by A, B, ...) and the set Po4] of positive type variablem the typeA and the set Negy) of negative
type variablesn the typeA as follows:

A= XIAANAJAVA|-A|uXA]vXA
whereuX.A andvX.A are defined when the type varial¥das in Posf).

Pos) = TyVars,

Neg(X) = TyVars \ {X},

Pos@; A Ap) = Pos@1 v Ay) = Pos@q) N Pos@y),
Neg(A1 A A2) = Neg(As v Az) = Neg(Aq) N Neg(A),
Pos(-B) = Neg(B),

Neg(-B) = PosB),

Posf:X.B) = PosgX.B) = Pos@) U {X},

NeguX.B) = Neg(X.B) = NegB) U {X}.

The typesuX.AandvX A bind X in A.

When we think standard semantics of the propositional legib inductive and coinductive
definitions,uX.A andvX.A are interpreted by the least fixed point and the greatest fized of the
monotone functiorP respectively, wher is the function which maps a setto the setA[U/X].
Letu beuX.Aandy bevX A. They will have the following properties: (&u/X] € u, (b) AIB/X] C
B impliesu € B, (c) v € Alv/X], and (d)B ¢ A[B/X] implies B C v. Based on this meaning, we
will introduce terms, coterms, and their reduction for iaotike and coinductive types in the same
way as [15].

Definition 3.2. The terms, coterms, and statement®@iv are defined as follows:

M = X|{(M,M)|(M)inl | (M)inr | [K]not | (S).a | in** M) | coitrf(M, M),
K := a|[K, K] | fst[K] | snd[K] | not(M) | x.(S) | out’*A[K] | itr [K, K],
S = MeK.

The termitr [K, L] bindsa in K. The cotermcoitri(M, N) bindsxin M.

The expressiongn**A(M)y anditrf[K, L] are the expressions for inductive types. The con-
structorin*A maps a term of typ&[uX.A/X] to that ofuX.A. The cotermitr2[K, L] is an iterator
having an input of type:X.A whereL is a postprocessor after iteration. When it gets the input of
type uX.A, first a value of typeA[uX.A/X] is computed according to the input, next a value of type
A[B/X] is computed by recursive invocation of the iterator, thas given toK andK is computed
to get a value of typd, and finally the value is given tb andL is computed. Duallyput”*A[K]
and coitri(M, Ny are defined for coinductive types. The construetat”*A maps a coterm of
type vX.Ato that of A[vX.A/X]. When the coternout”*A[K] gets the input of typeX.A, first the
input is transformed into a value of tyggvX A/X], then the value is given t&, and finallyK is
computed. The termoitr2(M, N) is a coiterator of type’X.A. It transformsN of type B into a
value ofvX A according toM. Type annotations will be necessary for defining reductides:.

Definition 3.3. The typing rules obCuv are defined by those ofC and the following rules:

K:AB/X]ITFAa:B L:B|ITFA
itrB[K, L] : uX AT+ A

CFAIM: AluX.A/X]
[FAlin™*AM) : uX A

WR) (ul)

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 9

K : ADXA/X] T F A
out”*A[K] : vXA|T + A

ILx:BrFA|M:AB/X] THA|N:B
L'k AlcoitrB(M,Ny: vXA

L) OR)

We sometimes use the symbagl,,, instead of the symbal in a judgment in order to explicitly
show it is a judgment abCuv. That is, we writel +pc,, A | M: Afor the judgment F A [M: A,
Similarly, we writeK: A|T tpc,y A @andl'['S Fpeyy A.
The systendCuyv satisfies the following basic lemmas.
Lemma 3.4(Weakening lemma diCuv). LetI' CT” andA € A’. Then
(1) if T kpcuy A M: Alis provable, thed” rpey,, A”|M: Aholds,
(2) if K: A|T Fpcyy A is provable, therK: A|T” +pcy, A’ holds, and
(3) if T'|'S tpcuy A is provable, thed” | S +pc,, A’ holds.

Proof. They are shown simultaneously by inductiondnK, andS.]

Lemma 3.5. Letl” C I"and A’ C A. Then the following claims hold iDCuv.

(1) f FV(M) € dom(I”) and FCMM) € dom(A’), thenl' - A|M: AimpliesI” + A’ | M: A.
(2) If FV(K) € domI”) and FCMK) c don(A’), then K: A|T + A implies K: A|T” + A’.
(3) If FV(S) € dom(I”) and FC\US) C dom(A’), thenI' | S + A impliesT” | S + A’.

Proof. They are shown simultaneously by inductiondnK, andS.]

Lemma 3.6(Substitution lemma ddCuv). The following claims hold.
(1) Supposé Fpcyy AIN: Alis derivable. Then the following hold.
(1a) If I', x: Arpeyy A M: B, thenl +pe,y A| M[N/X]: B,
(1b) if K: BT, X: Akpcuy A, then KKN/X]: BIT kpcyy A, and
(Lc) if T', x: A['S bpeyy A, thenI' | SIN/X] Fpcuy A.
(2) Suppose LA|T +pcy,, A is derivable. Then the following hold.
(2a) If T kpeyy A a2 A|M: B, thenl +pc,y Al M[L/a]: B,
(2b) if K: BT Fpeuy A, @ A, then L/a]: BIT Fpcuy A, and
(2¢) if T[S Fpcuy At A, thenI' | S[L/a] Fpeyy A.
Proof. The claims (1a), (1b), and (1c) are shown simultaneousiybdydtion onM, K, andS. The
claims (2a), (2b), and (2c) are also shown simultaneousindhyction onM, K, andS.]

The duality transformation can be extended frb@to DCuyv.
Definition 3.7 (Duality Transformation) The duality transformation for types, terms, coterms,

statements, and inference rule name®@iv is defined by those ddC and the following equa-
tions:

WXA)P = vX(A)°, (VXA) = uX.(A).
(I AM))” = out A [(M)°],

(outh.A[K])o — inyX.(A)°<(K)o>’

1 trA[K, L])° = coitr® (K)°, (L)°),

(coitr(M, NY)° = itr®™ [(M)°, (N)°].

uR)® = (vL), (vL)° = (uR), (uL)® = (vR), (vR)® = (uL).

The above duality transformation is well-defined.

10 D. KIMURA AND M. TATSUTA

Lemma 3.8. The typgA)° is defined, andPos@) = Pos(Q)°) andNeg(®) = Neg((A)°) hold.

Proof. These claims are shown by induction An We consider the cases pK.B andvX.B. The
other cases are straightforwardly proved by the inductiygpothesis.

The case ofiX.B: Suppose thagiX.Bis defined. Then we haveis in PosB). By the induction
hypothesis, B)° is defined andX occurs positively in B)°. ThereforevX.(B)° is defined, and we
have Pog(X.B) = Pos¢X.(B)°) and Neg(X.B) = Neg(X.(B)°) by the induction hypothesis.

The case ofX.B can be shown in the similar way to the case:®{B. []

This duality transformation alternates free variables fiad covariables that occur in terms
and coterms. Let/ be a set of variables, ar@ be a set of covariables. Then a set of covariables
(V)° is defined by(X' | x € V}. A set of variables)° is also defined by’ | a € C}.

Lemma 3.9. Let D be an expression ®Cuv. Then F\{((D)°) = (FCV(D))° and FCM(D)°) =
(FV(D))° hold.

Proof. The claims are shown by induction @n]
This duality transformation preserves substitution oetyerms, and coterms.

Lemma 3.10. Let A and B be types, D be an expression, M be a term, and K beearcofDCuy.
Then the following hold.

(1) (AIB/X])° = (A)°[(B)°/X].

(2) (DIM/X)°® = (D)°[(M)°/X].

(3) (DIK/a])® = (D)°[(K)*/a’].

Proof. The claim (1) is shown by induction o& The claims (2) and (3) are shown by induction on
D. L]

The extended duality transformation preserves typing,isad involution inDCuyv.

Proposition 3.11. The following claims hold.

(1) If J is derived from 4,...,J, (n = 1 or 2) by an inference rule R, thefd)° is derived from
(Jn)°, ..., (J1)° by the inference ruléR)°.

(2) (A)°)° = A, ((D)°)° =D, and((J)°)° = J hold for any type A, expression D, and judgment J of
DCuv.

Proof. The claim (1) is shown by case analysis of the inference mfl@uy using Lemma-3.10
(2). The claim (2) is shown by induction on types and expogssi]

Our reduction rules for inductive and coinductive typed b defined so that they correspond
to cut elimination procedures in the classical sequentutacLK extended with inductive defini-
tions and coinductive definitions. In the following proofdigs, we will writeu, v, and A[B] for
uX.A, vX.A, andA[B/X] respectively. In the logical system, when the cut formglam inductive
type, the cut elimination procedure reduces the proof

AB,T+A,B BT*rA
TrA
B2 cuy

T+ A A

I'rApu (ut)

®R)

A
to the proof

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 11

AB,T+A,B BIrAB

FFANM uwIlFAB (ub) AB],T+A,B
— = a7 (WK (mong
'+ A, B, Ay Alul,T+A,B :
(Cut) :
I'tAB B.T+A cup
I'rA

We can intuitively understand the rulj¢ng as follows: u + B implies A[u] + A[B], so we have
Alu] + B by combining it withA[B] + B. This rule will be formally shown in Lemma3114 (2a).
This reduction changes the cut formula franto A[u]. We do not have to count the cut formuba
since that cut is auxiliary. When the cut formula is a coirtthectype, the cut elimination procedure
reduces a proof in a dual way to the above reduction.

When we have a functionx.M from A to B and the variableX is in PosC) we can define
the function fromC[A/X] to C[B/X] by extendingAx.M. We will usemonoABx w{N} so that this
function maps to monoﬁgx w{Z). We will defmemonoﬁgx w{N} by induction on the measufi€]|x

for a typeC and a type variablX, which is defined by induction o@ as follows: IfX is not free in
A, then||Allx = 0. In the other cases, we assume that s@neecurs inA and we define

IXlIx = 1,
IAA Bllx = [IAV Blix = lIAllx + [IBllx + 1,
I=Allx = [IAllx + 1,

lYAlx = IIVY.Allx = [Allx + [|Aly + 1.

Note that ifX is not free inB and we haveX # Y, then|| Allx = || A[B/ Y] |Ix.

The numbet]Al|x will also be used for evaluating the suzemfnoff w{N} by usingM, N,
andC (see Lemmasl2). If we replacdld|x + ||Ally + 1 by ||Allx + 1 in the definition of||u Y. Allx
and|[vY.Al|x, it would not work for this purpose.

Definition 3.12. Assume a type variabl¥ and typesA, B, C are given anK is not free inA andB.
For a variablex and termsM andN, we define the termonoﬁgxM{ } by induction on||C||x as
follows:

monoﬁ;éxM N} = (N e x.(M e a)).a,
monoAB «mi{N} =N (X does not occur i€),

monoﬁ%/;DM{N} = (monoﬁ;g’m {(N o fst[a]).a}, monoABX,\,| {(N e snd[g]).8}),

monoﬁ%VxDM{N = (N @ [y:((monoy5 [y} }inl). Z ((monoyp (2)inr ¢).,

monoABxM {N}=[z(N e not(monoé%xM Z}))]not,

monof\féYxCM {(N}=(Ne tr“YC[B/X][Z(1n“YC[B/X](monoﬁ;g’[“xhc[B/x]m{ z}yea), B]).B,

monoﬁ"éYxCM{N} = coitry Al (monof\;g’[;Y,\'ﬂc[A/ XM (z o out” M X[a]).a), N).

For a covariabler and cotermsK andL, we also define

X.C _ X.(C)° o1\o
monOABa’ K } = (mono(B)o’(A)o’a/.(K)o{(L) }) .

Note that||uY.C|lx > [IC[uY.C[B/X]/Y]llx and|»Y.C|lx > |IC[vY.C[A/X]/Y]llx hold sinceX is
not free inuY.C[B/X] and vY.C[A/X]. We cannot replac€[uY.C[B/X]/Y] by C in the defini-

tion of monoﬁ;’éYCM{ N} because of the type annotation for. For readability, we sometimes write

monoA B, X{M N} and monoﬁ;gﬂ{K, L} for monoA B.x wiN} andmonoAB «lL}, respectively.

12 D. KIMURA AND M. TATSUTA

The paper([[17] studied an intuitionistic logical systemhastrictly-positive inductive defini-
tions, and on the other hand we study a classical logicaésystith positive inductive definitions.
Our cut elimination for inductive types is the same as theirgl on the other hand our cut elimi-
nation for coinductive types is filerent from theirs. They can avoid the usenoho. However, we
cannot straightforwardly compare our method and their ogtkince our system is strictly larger
than their system.

Our method works only for classical logic and does not workafio intuitionistic logic. This
is because our cut elimination procedure keeps the dualdlyvee have the corresponding proof
rule that manipulates a succedent if we have some proof nalemanipulates an antecedent. In
particular, we define the operatapno for coterms as the dual of the operatmno for terms.
Roughly speaking, in the proof of the next lemma, when we ghevproperties afiono for negation
by using the derivation

ArB
A, -Br
“Br A,

we need the following derivation in order to show the properof its dual:

BrA
I—A,—|B
-A+ -B

which uses a non-intuitionistic sequent.

Lemma 3.13. The following claims hold.

(1a) FV(monox§ \{M,N}) € (FV(M)\ {x}) U FV(N).

(1b) FCV(monoX$ (M. N}) € FCV(M) U FCV(N).

(2a) FV(monoX$ (K, L}) € FV(K) U FV(L).

(2b) FCV(mono§ (K. L}) € (FCV(K) \ {a}) U FCV(L).

Proof. The claims (1a) and (1b) are shown by induction||@||x. The claims (2a) and (2b) are
shown by using (1a), (2b), and Lemmal3.9. L]
Lemma 3.14. Assume X is iffosC) andNeg(@). Then the following hold:

(la)I,x: ArA|M:Bandl'+ A| N: C[A] impliesT" + A | monoﬁ;‘é’X.M{N}: (8],

(1b) T,x: BF A|M: Aandl'+ A|N: D[A] impliesT - A |monoxg ., ,{N}: D[B],

(2a) K: A|T + A, a: Band L: C[B]|T + Aimpliesmonoyy ((L}: C[A][T A,

(2b) K: BIT A a: Aand L: D[B] T+ A, impliesmonoxg , . {L}: C[A] T A,

where GA] and O A] are abbreviations of (A/X] and DA/ X], respectively.

Proof. The claims (1a) and (1b) are shown simultaneously by indaoabin||C||x and||D||x. The
claims (2a) and (2b) are shown by using (1a), (1b), and PiopoB.11.]

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 13

The following proposition is obtained as a special case ®fthove lemma.
Proposition 3.15. Assume X is iffosC). The following are derivable:

IXx:A+rA|M:B K:A|lTFA,e: B
T,z: C[A] + A | monox§ | \,(2 : C[B] monoyg . «{B): C[AlIT + A,B: C[B]

Definition 3.16. We define the one-step reduction relatierp,, of DCuv as the compatible closure
of the reduction rules diC and the following reduction rules:

(Bu) in*C(M) e itri[K, L] — ey (M e mono*™ XCA {itrf[K,B], KD.a oL,
Bv) c01trX<M N) e out”*C[K] —pcuy N @ x(monog wc c01trX<M 2, M} e K).

This system has subject reduction.

Proposition 3.17(Subject reduction ddCuv). The following claims hold.
(1) T Fpeyy AIM: Aand M—pcyy N, thenl kpe,y AIN: A holds.

(2) If K: A|T tpcuy A and K—speyy L, then L AT pcy,y A holds.

(3) f T[S kpcyy A and S—peyy T, thenl' | T kpeyy A holds.

Proof. They are shown simultaneously by induction on the generatie—pc,,, using Lemma3J4,
[3.5,[3.6, and3.14. We consider the casegpaf and (v).

Case of Bu). Assumel | in**C(M) e itr[K, L] + A is derivable irbCuv. We useu andC[A]
as abbreviations giX.C andC[A/X], respectively. The last rule of the derivation must Bauf)
rule. Thenl + A | in**¢(M): D anditr[K,L]: D|T r A are derivable for some typ®. Since
the last rules of these derivations must pR)(and (L), we obtainD is uX.C, and the derivations
of ' + A| M: C[u], the judgmentk: C[A] |IT + A,a: B, andL: A| '+ A, a: B. Hence we have
itrf[K,B]: u|T F A,B: Aby (AxL) and L) rules, and themono*$ Aﬁ 1trA[K Bl, K}: Clu] IT +

A, a: Ais derivable by Lemmia3.14. Therefore we hajé¢M omonoﬂ’ g {itr[K, 8], K)).aeL + A
by using (R), (Cut) rules.

The case offv) is shown similarly to the case g8g).

The other cases are straightforwardly proved by the indadiypothesis. []

The duality transformation-)° preserves reduction.

Theorem 3.18(Duality of DCuv). D —pcy,, E implies(D)° —pcuy (E)° for any expressions D
and E.

Proof. This is proved by induction on the generation-e$pc,,.]

Proposition 3.19. If D —p¢,, E is the ruleggu) and (Bv), then(D)° —pcyy (E)° is (Bv) and (Bu)
respectively.

We have shown the duality of inductive types and coinductjymes. Propositiof 3.11 and
Theoren 3. 18 show that the duality transformation is a hoorptric involution. The description
of a type can be defined as the set of the type itself, its tatmspterms, and their reduction. The
duality transformation maps the description of an indectiye and that of a coinductive type to
each other. That is, we have the following. (1) Definifiod S8hows that the inductive typeX. Ais
mapped to the coinductive type.(A)°, the term constructed hiya for the inductive type is mapped
to the coterm constructed loyt for the coinductive type, and the coterm constructed tayfor the
inductive type is mapped to the term constructeadbi/tr for the coinductive type. (2) Proposition
[3:19 shows that the cut elimination procedure of the ingiadipe is mapped to the cut elimination
procedure of the coinductive type. (3) the coinductive tigoenapped to the inductive type in a
similar way to (1) and (2).

14 D. KIMURA AND M. TATSUTA

Remark 3.20. We cannot define our typing system by using
K:CIA/X]ITFAa: A ,
A 4l 5 Wb)
itr[K, Bl uXCIT +AB: A
instead of the typing ruleu(). If we used fL’), the set of terms would not be closed under sub-

stitution, becausétr[K, L] would not have typing rules for it and hence it would not beart,
though it is obtained fromtr[K, 8] by substitutingL for 3.

4. EXAMPLES
In this section we show some examples of inductive and caindutypes inDCuv. Let Xg be a
distinguished type variable. We use the following abbrtémes:
T = -Xo V Xo, L =-XoAXo, and x=AXX
The typeNat of natural numbers can be represented by:
Nat = uX.(T Vv X),
0 = in"™*((x)inl),
succ({M) = in"®*((M)inr),

where 0 is the zero andsucc is the successor. We can proler A | 0: Nat. We can also
provel’ + A | succ(M): Nat from I’ + A | M: Nat. The n-th natural numbemn-is rep-
resented bysucc(succ(...succ(®)...)) (n times of succ). We will write M[_/X]"(N) for
M[M[...[M[N/X]/X].../X]/X] (ntimes ofM). We define a cotermitr®[F, N, K] of type Nat by
itrB[[y.(N e), x.(F o (x@a))], K], wherey is not free inN, the termF has typeB > B, andN and
K are of typeB. When the coternitrB[F, N, K] getsi as its input, it computes-time iterations
of applying the functiorF to N, and passes the outputko This reducesis ItrB[ix.M, N, K] to
M[_/X]"(N) K.

The typeList(A) of lists of elements of typd is represented by:

List(A) = uX.(T VvV (A A X)),
nil = in*stA((x)inl),
M :: NI = intst®(((M, NIy)inr).

The termnil is the empty list and (::) is the list constructor. Duv, the judgment +
A | nil: List(A) is provable. The judgmert + A | M :: NI: List(A) is also provable from
C'rA|M:Aandl'+ A|NI: List(A).

We note that the above examples can be considered underlithg-ealue setting (sectionl 7)

if we restrict terms in the above examples to values.
We can also define the tyseaream(A) of streams of elements of tygeby:

Stream(A) = vX.(A A X),
cons(M, NS = coitry S A (7, (x), (m2(X) o outStrea™A[a]).a), (M, NS),
hd[K] = out3t e[£5¢[K]],
t1[L] = outStre@™A)[snd[L]],

wheren1(M) is the first projection oM defined by M e fst[a]).a, andr(M) is the second pro-
jection of M defined by M e snd[a]).a. The termcons(M, Ns) constructs a new stream from a

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 15

given elemenM and a given streaNs The cotermhd[K] receives the first element from a given
stream and gives it t&. The cotermt1[L] removes the first element from a given stream and gives
the resulting stream th. We can provd + A | cons(M,Ns): Stream(A) fromI' + A| M: Aand
'+ A|Ns: Stream(A). We can also provad[K]: Stream(A) [T + A fromK: A|T + A. We can
also provet1[L]: Stream(A) |I'+ AfromL: Stream(A) | I + A. This reducegons({M, Ns)ehd[K]
to M e K. We also reduceons(M, Ns) e t1™[hd[K]] to Nse t1"[hd[K]], where t1"[hd[K]] is
defined byt1[t1[...t1[hd[K]]...]] (ntimes oftl). Hence the coterm1"[hd[K]] receives the
n-th element of a given stream and gives itko Let M be a term of typeA. The stream of infi-
nite number ofM is represented byoitr, ((M, X), x), wherex is a fresh variable. We will write
stream(M) for coitry ((M, X), x). Indeed, the statemestream(M) e t1"[hd[K]] is reduced toM
for anyn. This means that anyth element oktream(M) is M.

We note that this stream example can be considered undealtHgyename setting (sectidd 7)
if we restrict coterms in the above example to covalues.

Proposition 4.1. Nat is dual toStream(_L), that is, (Nat)° = Stream(L), (0)° = hd[(*)°], and
(succ{M))° = t1[(M)°] hold.

If Stream(L) is considered under the call-by-name setting ¥andis considered under the call-
by-value setting, then the duality of the above propositian be understood as follows. The type
means the singleton sgt}. The typel means the type of a program that returns some answer after
computation with the input since L is equivalent to-T. The typeNat means the infinite disjoint
SUMT+ T+ T+.... The typeStream(_L) means the infinite cartesian produck 1L x 1 x.... Since
aterm inStream(Ll) is equivalent to a coterm iKat, when the term gets some natural number and
is computed, it returns some answer. When the term gets theahaumbem] sinceri’is = in the
nthTinT+T+...,theterminthe-th Lin L x L x...is given the input and it is computed to
give some answer.

Here we can also consider examples that include non-detistini choices. LetM and N
be terms of same type be a fresh variableg andgs be fresh covariables. We define the non-
deterministic choicéM | N) by

(MIN)=((Mea)pex(Nea))a,

wherea andg are fresh covariables. This term has bggh)(and 3r)-redexes. It is reduced to
M if the (Br)-redex is chosen, and is reducedNoif the (8.)-redex is chosen. ThugM | N)
can be considered as a non-deterministic choice of elher N. This non-deterministic choice
(M| N) is forced to choos& under the call-by-value strategy, and is forced to chdbsmder the
call-by-name strategy.

An example of non-deterministic computation is the listiti®n function. This function gets a
list as its input data, and non-deterministically choosesarbitrary place in the list. Then it returns
a new list that is obtained by inserting a given element aptaee.

Let M be a term of typed, andK’ be a coterm of typ&ist(A) A List(A). Then we define
insy[K’] of type List(A) by

inSM[K,] _ itrl;iSt(A)/\LiSt(A)[[L]_(Cl’), Lg(a)], K,],

Li(a) = X.({(M :: nil,nil) e @),

Lao(@) = z(({m1(2) 2 mam2(2), m1(2) = mama(D) | M 1 ma(D) &2 mam2(2), m1(2) 2 mama(2))) @ @)
wherex occurs inLs(«) is a fresh variable of typa, andz occurs inLy(«) is a fresh variable of
type A A (List(A) A List(A)). ThenifNlis alist andNI’ is a list obtained by insertinlyl in some
place ofNI, then the statemem| e insy[K’] can be reduced tONI’, NIy ¢ K. We can show this
by induction on the length dfll. If Nlisnil, thenNl' is M :: nil. The statememil e insy[K’]

16 D. KIMURA AND M. TATSUTA

is reduced tqM :: nil,nil) e K’. If Nlis N :: Nlo, thenNI" is eitherN :: NIj or M 2 N :: Nlo,
whereNIj is an inserted list obtained froMly. The statementN :: Nlp) e insy[K’] is reduced to
(N, (Nlpeinsm[y]).¥)eL2(a)).ceK’. Then this statement is reduced ¢dI{(Nlo, NIj)) e Lo(a)).cce
K’ by the induction hypothesis. We hayé\ :: NI', NI) | (M :: N :: Nlo, NI)) ¢ K’. Hence we can
obtain{M :: N :: Nlg, NI) e K" or (M :: N :: Nlg, NI) e K.
Let K be a coterm of typeist(A). Here we define
inserty[K] = insy[£st[K]].

Then the statemem| e inserty[K] is reduced taNI” e K for any inserted lisNI” obtained from
NI.

5. Tue Seconp-OrpER DuaL Carcurus DC2

We consider the second-order extensda2 of DC given by Tzevelekos [26]. He showed the basic
properties oDC2, such as the substitution lemma and subject reductiorhdtitormal discussion,
he also mentioned that his translation fr@@ into the symmetrict-calculus can be extended to
the second-order case. In this section, we give a formalitefirof the second-order translation
from DC2 into the second-order symmetrecalculus, and show the strong normalizatiord02 by
using this translation. For this purpose we will use thergjroormalization result of the second-
order symmetricl-calculus given in[[21].

Definition 5.1. An expression is defined to be strongly normalizing if theoesinot exist any
infinite reduction sequence starting from the expression.

First, we define a second-order extenddd? of DC.
Definition 5.2 (DC2). The types, terms, coterms, and statemen@fare defined by:

Types A:=X|AAA|AVA|-A|VXA|IXA,

Terms M = X[(M, M) | (M)inl | (M)inr | [K]not | (S).a | (M)a | (M)e,
Coterms K :=« | [K,K] | £st[K] | snd[K] | not(M) | X.(S) | a[K] | e[K],
Statements S := M o K.

The typing rules and reduction rules (denoted-bypc2) of DC2 are defined by extending the rules
of DC with the following rules:
FT'crA|M: A
R
I'rAl(M)a:VYZA (VR
' A|M: AB/X] K:A|TFA
I'FA[(M)e:IXA e[K]: AZA|IT+ A
BY) (M)aea[K] —pcz MeK,
(63) (M)eee[K] —pcz M e K,

whereZ is not free inl" andA in (YR) and @L). We write— ., to denote the transitive closure of

K:AB/X]IT+A
a[K]: YXA|TF A

(VL)

(AR AL)

—DC2-

We have the new constructoasand e, which are trivial witnesses for the quantifiers at the
level of expressions, so that the system has subject reductVe choose oubC2 so that it does
not contain type information in expressions, since our psepis to show strong normalization of
the second-order dual calculus, and in general the strongalization of the system with type
information is implied by the strong normalization of thesm without type information.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 17

We sometimes use the symbgt, instead of the symbal that appears in a judgment in order
to explicitly show it is a judgment obC2. That is, we writel” +pc; A | M: A for the judgment
't A|M: A Similarly, we writeK: A|T rpcz A andIl' | S kpeo A.

We writeI'[B/X] for x1: C1[B/X], ..., %n: Co[B/X]if Tis X1: Cy,..., X,: Cy. We also write
A[B/X]] for a1: D1[B/X],...,am: Dm[B/X]if Aisay: D1,...,a@m: Dp.

Lemma 5.3. The following claims hold.

(1) T rpc2 A|M: A, thenI'[B/X] Fpc2 A[B/X] | M: A[B/X] holds.
(2) IfK: AIT kpc2 A, then Kt A[T[B/X] kpc2 A[B/X] holds.

(3) If T[S kpc2 A, thenI'[B/X] | S +pc2 A[B/X] holds.

Proof. They are shown simultaneously by induction on expressions. []

The basic lemmas fdC andDCuy are also shown iDC2. We use Lemm@a$H.3 to show weak-
ening lemma.

Lemma 5.4(Weakening lemma)LetI’ C I” andA C A’. Then the following hold iDC2.
Q) f'+ A|M: Ais provable, thed” + A’| M: A holds.

(2) If K: AT + Ais provable, then KA|T” + A’ holds.

(3) IfI'| S+ Ais provable, thed” | S + A’ holds.

Proof. They are shown simultaneously by inductionMnK, andS. We use Lemma5l3 when we
show the cases ¢M)a ande[K]. We consider these cases.

The case ofM)a. Assumel’ C I, A € A/, andl’ + A | (M)a: A is derivable. Since the last
rule of the derivation must bé/R), we haveA is YX.B for someB, the variableX is not free inl*
andA, andl’ + A | M: Bis derivable. Then we havde+ A | M: B[Z/X] for a fresh type variabl&
by using Lemma3’]3. By the induction hypothesis+ A’ | M: B[Z/X] holds. Therefore we obtain
I’ + A [{M)a: YZ.(B[Z/X]) by (VR) rule, sinceZ is not free in[” andA’.

The case o&[K] is shown similar to the case oM)a.

The other cases are straightforwardly proved by the indndtypothesis. []

Lemma5.5. LetI” c T"andA’ € A. Then the following hold iDC2.

(1) If FV(M) € domI”) and FCMM) C don(A’), thenl' + A|M: A impliesI” + A’ | M: A.
(2) If FV(K) € domI”) and FCMK) c don(A’), then K: A|T + A implies K: A|T” + A’.
(3) If FV(S) € domI”) and FCMUS) € dom(A’), thenl' | S+ A impliesT” | S+ A".

Proof. They are shown simultaneously by inductionMnK, andS. []

Lemma 5.6(Substitution lemma)The following claims hold.
(1) Supposé” +pc2 A|N: Ais derivable. Then the following hold.
(1a) If T, x: Arpce A M: B, thenl kpcp A| M[N/X]: B.
(1b) If K: B|T, x: Atrpca A, then KKN/X]: B|T kpc2 A.
(c) IfF T, x: A|S kpe2 A, thenI' | S[N/X] tpc2 A.
(2) Suppose LA|T rpeo A is derivable. Then the following hold.
(2a) If T kpc2 A, : A| M: B, thenl" +pcx A|M[L/a]: B.
(2b) If K: B|T kpc2 A, a: A, then KL/a]: BT kpc2 A.
(2¢) fT'|S kpe2 A, @ A, thenl' | S[L/a] Fpc2 A.
Proof. The claims (1a),(1b), and (1c) are shown simultaneoushn@iydtion onM, K, andS. The
claims (2a),(2b), and (2c) are also shown simultaneousiyndhyction onM, K, andS. []

18 D. KIMURA AND M. TATSUTA

This system has subject reduction.

Proposition 5.7 (Subject reduction dC2). The following claims hold.
(1) HT rpe2 A|M: Aand M—peo N, thenl Fpep A|N: A holds.

(2) IfK: AIT rpep A and K—peo L, then L AT peo A holds.

(3) FT'|Stpcx A and S—spep T, thenl' | T Fpcz A holds.

Proof. They are shown simultaneously by induction on the generatfe—pc, using Lemma’]3,
54,55, and5]6. We show the cases@f)(and (3).

The case of Y). Supposd” | (M)a e a[K] + A is derivable. Thed" + A | (M)a: C and
a[K]: C|T + A are derivable for some typge. Since the last rules of these derivation must\g) (
and /L), we haveC is YX.A for someA, X is not free in both" andA, andI' - A | M: A and
K: A[B/X]|T + A are derivable for somB. Then we can obtaifi + A| M: A[B/X] by Lemmd5.3B.
Thereforel'| M e K A can be derived byQuit) rule.

The case off3) is shown similar to the case @#Y).

The other cases are straightforwardly proved by the indadiypothesis. []

Remark 5.8. The trivial withessesa ande are necessary for the subject reduction. If we did not
have these constructors, the subject reduction wouldifaile chose the followingY{R’) and L")
instead of YR) and /L),

TFAIM:A K:AB/X]ITFA
TrA|IM:VZA K:VXAITFA

then the following would be a counter-example: we would Hayéx e fst[a]).a e 3 + A wherell
isx: XAY, the sequenca isB: YZ.X, andZ # X, Y, but would not havé' | xe £st[A] + A, though
(xe fst[a]).a e Bis reduced tox e £st[A].

In A-calculus the constructaris not necessary for subject reduction while the construets
necessary for it[25]. In our system, sinée@ndd are dual, the constructaris also needed.

(VR) (VL)

The duality transformation can be extended frb@to DC2.

Definition 5.9 (Duality Transformation) The duality transformation for types, expressions, and
inference rule names oIC2 is defined by those afC and the following equations:

(YX.A)° = AX.(A)°, AXA)° = VX.(A)°,

(M)a)° =e[(M)°], (e[K])® = ((K))a,

(M)e)* =a[(M)°]], (a[K])® = ((K))e,

(YR)° = (AL), AL)° = (VR), (YL)° = (AR), (AR)° = (VYL).

This duality transformation preserves substitution oefyerms, and coterms.

Lemma 5.10. Let A and B be types, D be an expression, M be a term, and K beeentafDC2.
Then the following hold.

(1) (AIB/X])° = (A)°[(B)°/X].

(2) (BIM/X)° = (D)°[(M)°/X].

(3) (DIK/a])® = (D)°[(K)*/a’].

Proof. The claim (1) is shown by induction o& The claims (2) and (3) are shown by induction on
D. L]

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 19

The extended duality transformation preserves typing addation. It is an involution idC2.

Proposition 5.11(Duality of DC2). The following claims hold.

(1) If Jis derived from 4,...,J, (n = 1 or 2) by an inference rule R, thefd)° is derived from
(Jn)°, ..., (J1)° by the inference ruléR)°.

(2) D —pc2 E implies(D)° —pc2 (E)°.

(3) (A)°)° =A, ((D)°)° =D, and((J)°)° = J hold.

Proof. The claim (1) is proved by case analysis of the inferencesrafedC2. The claim (2) is
proved by induction of the generation ef>pco> using Lemmd 5.70. The claim (3) is proved by
induction on types and expressions. []

Next we give a definition of the second-order symmeifricalculusS12. The symmetricl-
calculus is introduced by Barbanera and Berardi [2] as aiclalsextension of th@-calculus. The
strong normalization of its second-order extensi@ is proved by Parigot[21] using the reducibil-
ity method. The particular system we consider here is ameida of Parigot's system with two
additional rulesqf; andn). As discussed in ibid., Parigot’s proof works with this iaat without
problem.

Definition 5.12(S12). We define the second-order symmetticalculusS12. The types o812 are
either the special type or m-types (denoted by, o, .. .) given by:
ti=X | Xt | rxt|t+7 | VX7 | X1
whereX, Y, ... range over type variables. The typ&X.r and3X.7 bind X in 7. The negation«)*
of 7 is defined by:
(X)*+ = X+, XH)*r =X
(Txo)t =@+ (), (@T+o)t=@"*%x(0),
(YX.1)*t = AX (1), AX1)*t = VX(7)*.
The symbolx,y, ..., a,,...range over variables. The termsi#2, denoted by, u, . . ., are defined
by
to= x| injq(t) | injo(t) | 4Lty | t=t | Axt | a(t) | e(t).
The one-step reduction relatiehg2 of S12 is defined as the compatible closure of the fol-
lowing rules:

Br) (AXt) * U — g2 tlu/X], B) ux (Ax.t) — g2 tlu/X],

(Bx+1) (t1,t2) * inj1(U) —si2ty * U,
(Bx+2) (t1,t2) * injo(U) —si2 t2 * U,
(Bva) a(t) x e(u) — g2 t* U,
(mr) Ay.(y*t) —si2 t,

wherey is not free int in (1) and ;).

(Bix1) injy(u) = (t1,t2) —s2 U* g,
(B+x2) injo(u) = (t1,t2) — sz U* o,
Bay) e(u) x a(t) — g Ux*t,
(m) Ay.(txy) —si2t,

20 D. KIMURA AND M. TATSUTA

A typing context (denoted bly, A) is a finite set and of the formy : 71,..., Xa: 7n. A judgment
of 12 takes either the forfirt: rorI'+t: L. The typing rules o612 are defined as follows:
[LX:7trt:L Frt: ()t Tru:t
_ —————— (abs
F,x:rrx:r(AX) Fr/lx.t:(r)L() Frtxu: L
Frtog _ 'rt:r I'ru:o
['+injit) i1+ 712 (+')(i=1,2) Fr'e{t,wy:rxo ()
Frt:r) I'+t:7[o/X] B
I'ra(t): VX1 (X'is not free inl) I'ke(t):IXT
Theorem 5.13(Strong normalization 0812 [21]). Every typable term is strongly normalizing in
12,

(app)

We will give a reduction-preserving and type-preservirangtation fromDC2 into S12. Our
translation is a second-order extension of the transldtiom DC into the symmetrici-calculus
given by Tzevelekos [26].

Definition 5.14. Let A be a type obC2. The type A)' of S12 is defined as follows:

(X)" = X, (AAB)" = (A x(B)', (AvB)'=(A)+(B),

(=A)" = (AN, (VXA = VX (AT, @AXA" = AX.(A).
Let D be an expression @®iC2. The term D)™ of S12 is defined by:

(9" =x (@ =«

((S).2)" = Aa.(S)", (x(9))" = ax.(S)",

(M)a)" = a((M)"), (M)e)" = e((M)"),

(e[KD)" = a((K)"), (a[K]D)" = e((K)"),

((M)inl)" = inj;((M)"), (£st[K])" = inj;((K)"),

((M)inr)" = inj,((M)"), (snd[K])" = injp((K)"),

(M, N))T = (M)", (N)T), (K. LD" = (K), (L)),

([Klnot)" = ax.(x* (K)?), (not(M))" = (M)T,

(M e K)" = (M) x (K).
We define the translation oK[not by usingn-expansion, so that all reductionsDA2 are strictly
simulated inS12.

(D" and (A)")* are defined asq: (A1), ..., % (A" ander: (BN, ..., am: (Bm)')*
respectively ifl" is X1: A1,...,%n: An, andA is ag: Ba,...,am: By For a judgment] of DC2,
the judgment J)' of S12 is defined as follows: The judgment (- A | M: A)T is defined
as O, (AN + (M): (A)'. The judgmentK: A | T + A)' is defined asI)’, (A)")* *
(K)": ((A))*. The judgmentI{ | S + A)T is defined asI{), (A))* + (S): L.

This translation preserves provability and one-step reéchs.

Proposition 5.15. The following claims hold.
(1) If J is provable inDC2, then(J) is provable in 32.
(2) D —p2 E implies(D)" — g2 (E)'.

Proof. The claim (1) is shown by induction on the proofbfThe claim (2) is shown by induction
on the definition of—pc;. L]

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 21

We can obtain strong normalization@€2 from the above proposition.

Theorem 5.16(Strong normalization abC2). Every typable expression is strongly normalizing in
DC2.

Proof. Assume there is an infinite reduction sequence
D = Do —pc2 D1 —pc2 - .-
starting fromD. From Propositiofi 5.15, the expressi@){ is typable inS12, and
(D)f —s2 (D) —si2 -
is an infinite reduction sequence. This contradicts The@dA. []

Remark 5.17. Tzevelekos[[26] also gave a back translatienP(from the symmetrici-calculus
into DC. As noted in his paper (Section 3, Note 3.5), this transtatiannot extend to the second-
order case since it does not preserve typing judgments fstegial quantification. This is because
the translation €)P does not preserve type substitutiorA[B/X])P # (A)P[(B)P/X]. The same
argument applies to ours.

6. SrronG NormALIzATION OF DCuv

In this section, we prove strong normalizationDiti.v. We will give a translation fromdCuv into
DC2 that is based on the second-order encoding of inductivecamdiuctive types. Our proof of
strong normalization will be done by showing the fact thag-astep reduction iDCuv is translated
to one or more steps reductiondA?2.

We use the following degree of expressionDGuy for defining the second-order coding of
inductive and coinductive types.

When we try to prove some properties of expressions by immlucin expressions, that induc-
tion sometimes does not work, since the expression contains, 5 ,,(N} that is defined by using
induction on||C||x. In order for solving this, we will introduce the pair of thersmation of|C||x
and the size of an expression as a measure.

Definition 6.1. Let D be an expression iCuv. The numbei|D]| is defined by:

lIXIl = llall = O,
KM, NYI| = [[lcoi tri(M, Ny|| = max([M]l, IN])),
IM o K[| = max(|M]|, [IK]),

K, LTIl = i trfK, L1l = max(/IK]J, [ILI),
I(S).all = IX.(S)Il = [ISI,

[KMYinl|| = [{MYinr]l = [[not(M)|| = IM]I,

[XA = (IM]] + [[Allx + 1,

I£st[K]ll = [Isnd[K]l = [[K]not|l = [IK]|,
llout”™ A[K]Il = [IKI| + [|Allx + 1.

22 D. KIMURA AND M. TATSUTA

The numbelD] is defined by:
IX = lel =0,
KM, N)| = [coitri(M,N)| = [M| +|N| + 1,
M e K|=|M|+|K|+1,
K, LI = 1itrf[K L] = K] + 1L+ 1,
I(S).al = IX.(S) =S + 1,
[(M)inl| = KM)inr| = [not(M)| = [in*AM)| = [M| + 1,
|£st[K]| = |snd[K]| = [[K]not| = Jout”*A[K]| = K| + 1.
The degreeleg(D) of the expressiol is defined as the paifiD||,|D|). We also define the order of
the degrees by the lexicographic order.

The numbeiD| is the number of constructors in the expressian The numbeli|D|| is the
maximum summation of{|||x + 1) for in"*A(M) and out”*A[K] in paths inD. For example,
deg(in* " XVX((([x.((X)inr e y)]not)inl e y).y)) = (4,7). We have|E|| < ||D|| and|E| < |D| when
the expressiolk is a proper subexpression Bf The degree satisfies the following properties.
Lemma 6.2. The following claims hold.

(1) DI = I(D)°ll and|D| = |(D)°| hold.

(2) IImono?é;é,x{M, N}H| < [[M]] + [IN]| + [|Allx holds.

(3) deg(in**A(M)) > deg(mono;(XA.A’m{ X.(y e (x@a)),£}) holds.

Proof. The claims of (1) are shown by induction @ The claim (2) is shown by induction on
[|Allx. The claim (3) is proved by using (2).]

We present the second-order encodingDiony. We will write A(X, @).S for AX.((S).«). Then
(A% @).S) e (N@K) is reduced t&S[N/X][K/a].

Definition 6.3 (Translation(—) from DCuv into DC2). Let A be a type oDCuv. The typeA of DC2 is
defined as follows:

X=X, AAB=AAB, -A=-A, AVB=AVB,

uXA=YX(A>X)>X), vXA=3IX(=(-AAX)AX),
whereo is defined in Definitiof 2]9. For an expressiprof DCuv, the expressio® of DC2 is defined
by induction ondeg(D) as follows. For the expressiomsof the same degree, we first defiDefor
D such thaD is not of the formout”*A[K] or coitri(M, N), and we next defin® for D such that
D is of the formout”*A[K] or coitri(M, N).

X=X a=a,
(S)-a =(S).a, x(S) = x(S),
(M.N) = (M, N), [K. L] = [K, 1],
(Myinl = (M)inl, fst[K] = £st[K],
(Myinr = (M)inr, snd[K] = snd[K],

[K]not = [K]not, not(M) = not(M),

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 23

MeK=MeK,
1trA[K, L] = a[(A(x a).(x e K))@L],
out’¥A[K] = (i *A(K)°))",
A XAMY = (Y, B).(Y @ (@QIXA] » Ruly, Y1)y @B)))a,
coitrf(M, Ny = (itr® [(M)°, (N)°])°,

whereQy[X.A] is defined asly.A(z 8).(Zomonto‘Axa{ X.(y o (x@a)),B}), andRu (N, K} is defined
as (A(x @).(x » a[N@c])) @ (M@K). .

We also define the translation ofJudgments The corftegtdefined asy: Aq, ..., X,: Agif T
iSX1: A ..., % A, The cocontext is defined ag1: By, ..., am: Bmif Aisa;: Bl, e, @m: Bm.
The judgment + A|M: Ais defined a¥” + A | M: A. The judgment: A|T + A is defined as
K: A|T r A. Thejudgment'|S + A is defined a§' | S r A.

The next lemma shows that this translation commutes wijh (
Lemma 6.4. (A)° = (A)°, (D)° = (D)°, and(J)° = (J)° hold.

Proof. The claim forAis proved by induction o.

The claim forD is proved by induction o®. The cases afn**A(M), out”*A[K], i tr’[K, L],
and coitri(M, N) are shown by the definition of the translation and the dealitf DCuy and
DC2. The case ofin**A(M) is shown as follows: i**AMY)° = (GEn*AV(((M)°)°))°
out (A°[(M)] = (@(En**AM))°. We can show the casesut’A[K], itri[K,L], and
coitrf(M, N) similarly. The other cases are straightforwardly provedhsyinduction hypothe-
sis.

The claim forJ is proved by using the claims férandD.]

The translatior(-) preserves substitution.
Lemma 6.5. A[B/X] = A[B/X], D[N/X] = D[N/x], andD[L/a] = D[L/«] hold.
Proof. The first claim is shown by induction oA. The second and the third claims are shown
simultaneously by induction otieg(D). For the expressiond of the same degree, we first show
the claims forD such thaD is not of the formout”XA[K] or coitr (M, N), and we next show the
claims forD such thaD is of the formout**A[K] or coitri(M, N).

We consider the cases of*A(M), itr[K, L], out’*A[K] and coitri(M, N). The other

cases are straightforwardly proved by the induction hygsith

The second claim of the caga“XA(M) is shown in the following way. By the induction
hypothesis, we havmono/’ffkm{ x.(y e (X@«)),B}[N/X] = monto‘Axa{ x.(y o (x@a)),8}[N/X]
since deg(monoﬁfMa{ x(y o (x@)),B8}) < deg(in**AM)) by Lemmal[GR (3). By
Lemmal[3.1IB (2a)mono/>ffkma{ X.(y e (x@a)),B}[N/X] = mono;)z(XAAYa x.(y e (x@a)),B8}. Hence
we have Q/[X.A])IN/X] = Qy[X.A]. By the induction hypothesis, we ha®uly,y}[N/X] =
Rmnyq LY, v} sincedeg(M) < deg(in*(M)). Thereforein**(M)[N/x] is equal to A(y,5).(y e
((QIXADIN/X o (Rmty,yDIN/X]).y@B)))a. Then it is equal to{ A(y,B).(y o ((Qv[XA] e
RmN/ 1Y ¥1y@B)) da. The last term is equal tdn**(M))[N/X] by the definition of(-).

24 D. KIMURA AND M. TATSUTA

The second claim of the casetrf[K,L] is shown in the following way. The coterm
itrf[K, L][N/X] is equal toa[(A(y,@).(y ¢ K[N/X]))@L[N/x]]. By the induction hypothesis,
it is equal t(ﬂ(A®Y, @).(y » K[N/X]) J@L[N/X]]. Hence it is equal tditrf[K,L])[N/x] by the
definition of (-).

The second claim of the casat’*A[K] is shown in the following way. SincgK|| = ||[(K)°||
and|K| = |(K)°| by Lemma[6.R2 (1), we havdeg(out”™ A[K]) = deg(in*®’((K)°)). Hence
i XA (KIN/X))°) = int*A°(K)°)[(N)°/x] holds by Lemmd_3.10, since the third claim for
inXA((K)°y is already shown before this case. Then we can obtain the @é&ithis case as
follows: L

(utXAIKDINAG = (GO (KINAD)) = (GO (R[NP /xD)° =
(A A(K)°))°[(N)°)°/X] = out A[K][((N)°)°/x] = out”™A[K][N/X].

The third claim of this case is shown similarly.

The second and third claims of the casa‘trﬁ(M, N) is shown in the similar way to the case
of out”*A[K].]

Note that the second and third claims of the above lemma tdo@proved straightforwardly
by induction onD. For example, for proving the case f***(M) in the second claim, we need

induction hypothesis fanono}fj(A_Ama{ x.(y e (X@a)), 8} but it is not a subterm afn**A(M).

The next proposition says the translatier) preserves provability.

Proposition 6.6. If J is provable inDCuv, thenJ is provable irDC2.

Proof. This is shown by induction on the degree of the principal egpion inJ. We show the cases
of in**AM), out”*A[K], itri[K, L], andcoitri(M, N).

The case ofi tr[K, L] is shown by the induction hypothesis and Lemimd 6.5. Thescake
coitr(M, Ny andout”*A[K] are shown by the induction hypothesis and the dualitiezCpi and
DC2.

We prove the case ofn*(M). We write u, A[B], and A[C] as abbreviations ofiX.A,
A[B/X], and A[C/X] respectively. This case is shown by the following thregste@) we show
RmiY,y): @ > Y) > Al o AIY] I T,y: AIY] o Y + A,y: AlY] is derivable, whereRu{y, y} is
(A(x, @).(x » a[y@c])) @(M@y). Next, (b) we show + | Qy[XA]: (u oY) o Alr] > AY]
is derivable, wher@y[X.A] is Ay.A(z[).(z e monoif‘A’m{ X.(y e (x@a)),B}). Finally, (c) we can
easily showl A |in“(M): u from (a) and (b).

The claim (a) is shown in the following way. Suppdse A | in“(M): u is derivable. Then
we have the derivation df + A | M: A[u]. By the induction hypothesis and Lemial6.5, we obtain
[+ A|M: A[z]. Then we have a derivation @y: A[] > A[Y] T F A,y: A[Y] by (> L) rule.
On the other hand, we can shgwA[Y] o Y + | A(x a).(x e a[y@c]): @ > Y. Then we have
Rwiy, v} (@ oY) > Ala] > AY]IT,y: A[lY] D YA, y: AlY].

The claim (b) is shown as follows. We can shmmnoﬁ@a{ X.(y o (X@)),B}: Alu] |y: u D
Y + B: AlY] in DCuv by using Lemmd_3.14, the judgmemrt(y ¢ (x@a)): p | y:u D Y F
a: Y,B: AlY], andB: Alu] |y: 1 o Y + B: A[Y]. By Lemma[6.2 (3), we havéeg(in*A(M)) >
deg(mono’y { x.(y » (x@0)), 8}). Hencemono’y (x.(y ¢ (x@a)), B} Al ly: oY rpB: AlY]is
derivable by induction hypothesis and Lemmd 6.5. Theref@®btain + | Qy[X.A]: (u > Y) >
Alp] o ALY].

The other cases are straightforwardly proved by the indadiypothesis. []

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 25

The translatior(—) maps one-step reduction to one or more steps of reduction.

Proposition 6.7. For expressions D and E @Cuv, the relation D—c,, E impliesD —; ., E.

DC2
Proof. First we show the claim withouiB() nor (8v) by induction on—pc,,, with Lemmal6.b.
Next, by using this and Lemnia 6.5, we show the claim of thippsition by induction or—npcy,.
We consider cases according to the reduction rule.

The case of fu) is shown as follows: Suppose we haig*(M) e itrZ[K,L]. This is
equal to(A(y,8).(y e ((Qv[X.A] Ruiy.¥}).y@B)))a e a[(A(x.a).(x e K))@L]. It is reduced to
(A1 B).(y » (Qv[X.A] ® Rmiy, 7}).y@B))) ® ((A(x.a).(x e K))@L), and then we havel(x.a).(X
K)) o ((Qy[X.A] e Rp{A(x.).(xe K), v}).y@L) by more than one step reduction. Singg.a).(xe K)
equalsix.((x e K).e), we have Qy[XA] ® Rm{A(x.a).(x e K),¥}).y e K).a o L by (8 0). This is
reduced to @y[X.A] e Ry {A(x.c).(xe K),K}).c e L by (BR). HereRu{A(x.a).(xe K), K} is equal to
(/l(y,,b’) (ye itrB[K,g)@(M@K)). Hence we can redu@y[X.A] e Ry{l(x.a).(x e K),K}to M e
mono* Y {itrB[K, 8], K} by using Lemm&®]5 and the first claim. Therefore the preWouistained

expression @y[X.AleRw{A(x. a/) (xeK), K}).aweL is reduced toMomono}fX’fA’m {itrB[K, 8], K}).ae

L. This is equal tqM e mono* XA,Y,B {itrB[K, B, K}).a o L.
The case ofgv) is shown by using the duality of3¢) and Bu), the duality ofDC2, and

Lemmd6.4.
Other cases are shown straightforwardly.]

Finally, we complete a proof of strong normalizationDafuv.

Theorem 6.8(Strong normalization diCuv). Every typable expression b€uv is strongly normal-
izing.
Proof. Assume thaD is typable inDCuy and there is an infinite reduction sequence
D —pcwy D1 —pepy - - -
starting fromD. ThenD is typable inDC2 by Propositiofi 66 and

D1 —7

D —¢ DC2 + -

DC2

is an infinite reduction sequence starting frBnby Propositioh 6J7. This contradicts Theorem 5.16.
L]

7. THE CALL-BY-VALUE AND CALL-BY-NAME DCuv

The motivation for introducing the dual calculus [n[27] wasshow the duality between call-
by-value and call-by-name. In this section, we follow thistivation. That is, we will extend
the duality to inductive and coinductive types by introgcithe call-by-value and call-by-name
variants ofDCuv. These variants also satisfy the important properties asatrong normalization
and the Church-Rosser property.

We recall the definition of the call-by-value and call-bysr@DC. The call-by-value and call-
by-name dual calculus use the notion of values and covaluesy are defined as follows.

26 D. KIMURA AND M. TATSUTA

Definition 7.1 (Values and covalues afC [27]). The values (denoted by,W,...) and covalues
(denoted byP, Q, .. .) of DC are defined by the following grammar:

V= x|V V) [(V)inl | (V)inr | [K]not,
P:=a|[P,P]| £fst[P] | snd[P] | not(M),

whereM is a term an is a coterm oDC.

The types, expressions, and typing rules of the call-byevaind call-by-nampC are the same
as them oDC. The call-by-value reduction relation D€ is defined as follows.

Definition 7.2 (Call-by-value reduction rules ®C). The call-by-value reduction relatioa- . of
DC is defined from the following rules.

Br)y (VW) e £5t[K] —F. Ve K,

(BA2y (V, W) e snd[K] —]. W eK,

(BV1)y (V)inle[K,L] —Y. VeK,

(Bv2)y (Wyinre[K,L] —V Wel,

(B-)v [K]not enot(M) —;. MeK,

(BRY, (S).as K —Y S[K/al.

(BL Ve x(S) —yp. S[V/A,

(gAl)V <M, N) _>¥c (M i X-(<X’ N) e (Y)).Cl’,
(sh2v (VM) —p. (Mo x((V,X) e).,
(sVi)y (Myinl —] . (Me x.((X)inl e a)).a,
(cVa)y (Myinr —] (Me x.((X)inr e a)).a,
MRy M —] (Mea).a, and

L)y K —jc x(xeK),

whereM is not a value, ana anda in (¢A1)v, (cA2)v, (Vi)v, (sV2)v, (nL)y and R); are fresh.
An example of use of-rules is
((S).@)inl —Y. ((S).a @ x.((X)inl e B)).8 —>¥. (S[x.((X)inl e B)/a]) B.

This system is obtained from the call-by-value dual calsgiven in [27] by removing the implica-
tion.

We note that the original system (n]27] includes implicattgpes, values for implication, and
a call-by-values-rule for implication. However, as mentioned In [27], an iioation A > B can be
defined as-(A A =B) under call-by-value. Hence each value for implication lbameplaced a value
in terms of other connectives, and the reduction rule foricagon can be simulated by the other
B-rules.

The rules A1)y, (sA2)v, (sV1)y, and gVy)y are the separated forms of the rulg ¢iven in
[27], and our rules are equivalent to his rule. However, veggarthis separated form since this form
is easy to add@-rules for inductive and coinductive types later.

The symbol+ used in gL); and @R)y meansp-expansion rules. When we extend call-by-
value and call-by-name calculi with inductive and coindrectypes later in this section, we will
use the reductionR) and L) instead of the above expansiofRj{ and L)y for the following
reasons. IN[27]y-rules requires side conditions to avoid infinite reducseguence: “expansions
(nL) and @R) should be applied only to a teri or cotermK that is not the immediate subject
of a cut”. However, two problems still remain abagexpansion rules. One problem is that a
value becomes non-value by theexpansion: For example, a valuds expanded to a non-value
(x e @).a by 7R)}-rule. The second problem is that infinite reduction seqesmccur withg-rule:
For example(x)inl e 3 is reduced td(x e @).a)inl e B by (R){. Since & e).« is not a value,

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 27

it can be reduced to X(e @).a e y.((y)inl e ¥)).y ¢ B by (¢V1)y. Then, we haveéx)inl e 5 again
by (BL), and BR),-rules. Tzevelekos [26] assumed additional conditiong-empansion rules, and
showed strong normalization and the Church-Rosser piepeot the call-by-value and call-by-
nameDC under his conditions. However, his approach does not shivdrst problem. One simple
solution for the both problems is to replageexpansion by;-reduction. For this reason, we will
adoptn-reduction in our call-by-value and call-by-name systems.

The dual calculus considered in [28] hasules for conjunction, disjunction, and negation.
These rules could be defined naturally because the syst&8]iwps based on equations. However,
we cannot define thesgrules naively in the call-by-value and call-by-name rdaucsystems of
DC since these rules break the Church-Rosser property: Thbycablue Vv)-rule defined in[[28]
is [x.((x)inl e K),y.((y)inr e K)] = K, whereK has typeA v B. Suppose that we add\()-
reduction rule k;.((x1)inleK), X.((x2)inreK)] —J . K to the call-by-valudC. Then the statement
[X1.((X1)inl e y.(Z e @)), Xo.((X2)inr e y.(z ® @))] has two normal formsx;.(z e a), xo.(z e)] and
y.(ze). Suppose that we adg\()-expansion rulé —y_ [X1.((X1)inl e K), X2.((x2)inr e K)] to
the call-by-valuedC. The statemerntey.(ze @) (the variablez and the covariable have typeX,
and the variableg andy have typeAv B) is reduced t@e a by (3.)-rule. The statementey.(ze)
is also expanded t® e [X;.({X1)inl e y.(Z e @)), Xo.({X2)inr e y.(Z e @))] by (Vv)-rule, and then it
is reduced tax e [X;.(Z e @), X2.(z @ @)] by (BL),-rule. These two results are never confluent since
the first onez e @ cannot produce a coterm of the forig, [L], and the bracket] in the second one
X e [X1.(ze @), Xo.(ze)] cannot be eliminated.

The call-by-name reduction relation b€ is defined as follows.

Definition 7.3 (Call-by-name reduction rules o). The call-by-name reduction relatior-. of
DC is defined from the following rules.

(BAn (M,N) e fst[P] —]. M
(BA2)n (M, N) e snd[P] —"_ N
(BVi)n (M)inle[P,Q] —I M
(BV2)n (M)inre[P,Q] —I. M
(B-)n [K]not enot(M) —].
(BR)n (S).a e P —p. S[P/a],
(BLn M ex(S) —. S[M/X],
(cADn Est[K] —p x.((x e fst[a]).a e K),
(cA2n snd[K] —p. X.((x e snd[a]).a e K),
(cVin [K L] —fc x((x e [a,L]).a e K),
(cVo)n [PK] —pc X((X o [P a]).c e K),
Ry M —D.(Mea)a, and

ML)y K —c x(xeK),

where% is not a covalue, andanda in (¢A1)n, (§A2)n, (§V1)n, (sV2)n, (L)} and @R);, are fresh.

This system is obtained from the call-by-name dual calcgiuen in [27] by removing the
implication.

As mentioned in[[2[7], an implicatioA > B can be defined asA v B under call-by-name.
Hence, covalues for implication, and a call-by-name rddactules for implication given in the
original system can be replaced in terms of other connextive

The call-by-value reduction and the call-by-name reductice dual strategies .

28 D. KIMURA AND M. TATSUTA

Proposition 7.4 (Duality between call-by-value and call-by-nameDa [27]). Let D and E be
expressions diC. Then, D—]. E iff (D)° —. (E)°, where(-)° is the duality transformation
defined in the section 2.

Now we will introduce the call-by-value and call-by-nameigsats ofDCuv. We first consider
a call-by-value restriction abCuv (calledweak call-by-valuebCuv) which is given by simply re-
stricting the reduction rules ®@Cuyv. This restricted system satisfies both strong normalinadicd
the Church-Rosser properties. However, this system ieratieak since it lacks the-rules. The
call-by-valueDCuv (denoted byCBV DCuv) is obtained by adding the-rules to the weak call-by-
valueDCuv. The weak call-by-nam&Cuv and the call-by-nam@Cuv (denoted byCBN DCuv) are
also considered. The call-by-naméuv is the dual system of the call-by-valD€uy.

We first define the notion of values and covalueBGpyv.

Definition 7.5 (Values and covalues @Cuv). The values (denoted by, W, ...) and the covalues
(denoted byP, Q, . ..) of DCuv are defined by the following grammar:

V= x| (V,V) [{(V)inl [(V)inr | [K]not | in**A(V) | coitri(M,V),
P:=a|[P,P]| fst[P] | snd[P] | not(M) | out”*A[P] | itri[K, P],
whereM is a term and is a coterm oDCuv.

The set of values dCuv is a subset of terms @Cuv. The set of covalues @fCuv is a subset
of coterms oDCuv. Note that the above definition is a straightforward extmsif the definition of
values and covalues iC.

The set of values and covalues are closed under substitotigalues and covalues, respec-
tively.

Lemma 7.6. Let V and W be values, and P and Q be covaluexCp#. The following claims hold.
(1) V[W/X] is a value oDCuv.
(2) P[Q/a] is a covalue oDCuv.

Proof. They are straightforwardly proved by induction @randP. []

The types, expressions, and typing rules of the weak callahye and the weak call-by-name
DCuv are the same as themtuyv. The reduction relation of the weak call-by-vaeuy is given
as follows.

Definition 7.7 (Reduction rules of the weak call-by-valD€uy). The reduction relatior— ,cgy
of the weak call-by-valu®Cuyv is defined as the compatible closure of the reduction ries)(,
BA2v, BV1vs (BV2)v, (B-)v, (BR)y, (BL)y, and the following reduction rules:

Bu)y i V) e itrf[K, L] —ucay (V o monozfxc_a ag! itr K, 6], K).ae L,

Bv)y coitrﬁ(M, V) e out’*C[K] —yucpv V @ X.(monoﬁfx_c’z{ coitrﬁ(M, 2), M} e K),

MRy (M e a).a —yepy M,

(ML) Xx.(X e K) —ucpy K,

wherex anda are fresh ingL), and (7R)y, respectively.
The reduction relation of the weak call-by-nad@uv is given as follows.

Definition 7.8 (Reduction rules of the weak call-by-naréuv). The reduction relation—s ,cgy
of the weak call-by-namdCuv is defined as the compatible closure of the reduction riies)f,
(BA2)n, BV1)n, (BV2)n, (B—)n, (BRI, (BL)n, and the following reduction rules:

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 29

Bu)n in*C(M) e itr[K, P] —ycex (M omono XCA& {itr[K. 8], KN.a e P,
(BV)n c01trA(M N) o out”*C[P] —ycey M @ X. (monoj, XCZ{ conrﬁ‘(M,z}, M}eP),
(MR (M e @).c —ycan M,
(ML)n X (x e K) —ycan K,
wherex anda are fresh inqL), and gR),, respectively.
The weak call-by-value reduction and the weak call-by-nagdeiction are dual strategies.

Proposition 7.9 (Duality between weak call-by-value and weak call-by-nameCuv). Let D and
E be expressions @fCuv. Then, D—ycy E iff (D)° —ucey (E)°, where(-)° is the duality
transformation oDCuv defined in the section 3.

The rules 8-)y, (BR)v, (7L)y, and gR), are the same ag<), (BR), (7L), and gR)-rules ofDCuv,
respectively. The rulesBf1)y, (BA2)v, (BV1)v, (BV2)y, (BL)v, (Bu)y, and Bv), are just restrictions
of the rules BA1), (BA2), (BV1), (BV2), (BL), (Bu), and Bv), respectively. The situation of the
call-by-name case is similar to the call-by-value case. ddemwe can easily obtain the following
proposition.

Proposition 7.10. Let D and E be expressions ii@uv. Then the following claims hold.
(1) |f D —>wCBV E, then D_>DC/1V E.
(2) |f D —wCBN E, then D_>DC/1V E.

From the above proposition and the strong normalizationtre§DCuyv (Theoreni 6.B), we have
the strong normalization of the weak call-by-value and tleakvcall-by-name reduction relations.

Proposition 7.11(Strong normalization of the weak CBV and CBi{uv). We have the following.
(1) Every typable expression is strongly normalizing in the kvegll-by-valueDCuyv.
(2) Every typable expression is strongly normalizing in the kvesll-by-namedCuy.

The reduction relations—,cgy and — gy Of DCuv satisfy the Church-Rosser property. We
first recall the definition of the Church-Rosser property.

Definition 7.12 (Church-Rosser property)l_et A be a set and» be a reduction relation oA. We
write b « a — cif botha —» banda — c hold. We also writdo — a « cif bothb —» aandc — a
hold.

(1) The reduction relation» satisfies the diamond property if, for alb,c € A, the relation
b < a — cimplies that there existd € A such thab —» d « c.

(2) The reduction relatior> satisfies the Church-Rosser propertyif satisfies the diamond prop-
erty, where—* is the reflexive transitive closure e#.

From now on, we concentrate to show the Church-Rosser gyoper—,czy. The Church-
Rosser property of—,czy can be obtained from the result ety and the duality (Proposi-
tion[Z.9). In order to show the Church-Rosser property-ef,cgy, we will use the parallel reduction
technique. The definition of the parallel reduction relati® given as follows.

Definition 7.13 (Parallel reduction of the weak call-by-valDéuy). The parallel reduction relation
(denoted by=) of the weak call-by-valu®Cuyv is defined inductively from the following rules.

X = xanda = « for any variablex and covariabler.

(M,N) = (M’,Ny if M= M andN = N'.

[K,L] = [K, L] ifK=K andL=L'".

(M)inl = (M’)inl, (M)inr = (M’)inr, and not(M) = not(M’) if M = M’.

30 D. KIMURA AND M. TATSUTA

fst[K] = fst[K’], snd[K] = snd[K’], and K]not = [K’]not if K= K.

i *AMY = inf*AMYy if M= M.

out”*A[K] = out’*A[K’] if K= K.

coitrf(M,N) = coitrf(M’,N’) if M = M’andN = N’.

itrf[K, L] = itrf)[K’,l'] if K=K andL = L'

MeK= M eK’' if M= M andK = K.

(S).a = ().a andx.(S) = x(S") fS=9".

Mex.(S)= S'[V/X] f M=VandS=S'.

(S).aeK = S'[K'/a] if K=K andS=S'.

(M,Nye fst[K] = VeK’' if M=V, N=W,andK = K’.

(M,Nyesnd[K] = WeK’ if M=V,N=W,andK = K’.

(M)inle[K,L] > VeK’ ifM=V,K=K.

(M)inle[K,L] Vel ifM=V,L=L".

[K]lnot enot(M) = M’ e K’ if M = M’ andK = K’.

int* (M) o itr[K, L] = (V omono;(fc’Aﬁ{ itr[K, B, K’ D.ael’ if M=V, K=K/,
andL = L’.

coitri(M,N) e out’*C[K] = V e x.(monoyS, . {coitri(M’,2), M’} e K’) if M = M’,
N =V, andK = K’. S

(Mea)a= M if M= M anda is not free inM.

X.(xe K) = K’ if K= K’ andx s not free inK.

The parallel reduction of the weak call-by-valDéuy satisfies the following basic properties.

Lemma 7.14. Let M be a term, V and Vbe values, K and Kbe coterms, and D and '[be

expressions diCuv. Then the following hold.

(1) Suppose B= E. If Dis aterm, then E is also a term. If D is a coterm, then Eléoa coterm.
If D is a statement, then E is also a statement. If D is a valhen £ is also a value.

(2) D= D.
(3) f M =V and D= D’, then OM/X] = D’[V/X].
(4) If K = K’ and D= D’, then OK/a] = D'[K’/a].

Proof. The claim (1) is shown by induction on the definition ef. The claim (2) is shown by
induction onD.

The claim (3) is shown by induction o = D’ with Lemma[Z.6. We show the case that
No e v.(Tg) = T1[W/y] is derived fromNg = W and Ty = T1. By the induction hypothesis, we
haveNo[M/x] = W[V/X] and To[M/X] = T1[V/X]. By LemmaZ.6W[V/X] is a value. Hence we
have (No e y.(To))[M/X] = (No[M/X]) e y.(To[M/X]) = Ta[V/X[W[V/X]/y] = T1[W/Y][V/X]. The
other cases are straightforwardly proved by the inductiygothesis.

The claim (4) is shown by induction db = D’.]

Lemma 7.15. Let D and D be expressions @Cuv. Then the following claims hold.
(l) If D —>wCBV E, then D= E.

(2) If D = E, then D— ., E.
(3) The parallel reduction relatior> satisfies the diamond property, that is, if the relation &

D = D> holds, then there exists E such that & E < D».

Proof. The claim (1) is shown by induction on the definition-eb,cgy. The claim (2) is shown by
induction on the definition of.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 31

The claim (3) is shown by induction dd. We show the case thBtis the shape of).a e x.(T),
D1 is S’[L/a], and D, is T’[V/X] with the conditionsS = S, T = T’, xT = L,and §).a = V.
Recall that a critical pair imCuy occurs in this shape. This case is most important to seehisat t
critical pair is avoided in the weak call-by-valD€uy .

From the definition of the parallel reduction arg).¢x = V, we haveS = M e o, M = V, and
a is not free inM. Then, fromM e @ = S = S’, we have the following two cases: & = M’ e &
andM = M’ for someM’, or (ii) M = (Sp).3, S’ = So’[a/B], andSg = Sy’ for someSy andSy'.
From the conditiox.(T) = L, we also have the following two cases: {a) x e K, xis not free
in K, andK = L for someK andL, or (b)L = x.(T”) andT = T’ for someT”.

The case of (). We hav@; = (S')[L/a] = (M’ea)[L/a] = M’eL. By the induction hypothesis
andV & M = M’, there exists a ter'/ such thatv = W < M’. From Lemma 7.14 (1 is a
value. We then consider the subcases (a) and (b).

The subcase of (a). From the conditikn= L andT = xe K, we have keL) & T = T’. By
the induction hypothesis, there exists a staterfiestich that xe L) = T < T’. Hence we have
D; = (xe L)[M’/X] = T[W/X] & T’'[V/X = D, from M’ = W < V and Lemm&7.34 (3).

The subcase of (b). By the induction hypothesis @and= T = T”, there existsT such
thatT’ = T < T”. Hence we hav®, = T’[V/X] = T[W/X] by Lemma 714 (3) ant = W.
We also haveD; = M’ o L = M’ o x(T”) = T[W/X] from M’ = W andT” = T. Therefore
D; = T[W/X] & D, holds.

The case of (ii). We first claim that, for alg/andV, if (S).a = V, then there is som®l such
thatS = M e a, M = V, anda is not free inM. This claim is easily obtained from the definition
of the parallel reduction. In this case, we hawve= M = (Sp).8 = (So’).,5. By the induction
hypothesis and Lemnia7]14 (1), there is a vaisuch thalV = W < (Sy’).3. Then, there exists
aN such thatSy’ = N e 3, N = W, andg is not free inN from the above claim. Hence we have
Dy = S’[L/a] = So'[a/B][L/a] = So’[L/B] = (NeB)[L/B] = N e L. We then consider the subcases
(@) and (b).

The subcase of (a). By the induction hypothesis, thereseaistatement such that e L) =
T < T’. Hence we hav®; = (x e L)[N/X] = T[W/X] & T’[V/X] = D, from N = W < V and
LemmdZ.1# (3).

The subcase of (b). By the induction hypothesis @and= T = T”, there existsT such
thatT’ = T < T”. Hence we hav®, = T’[V/X] = T[W/X] by LemmaZ-1# (3) ant/ = W.
We also haveD; = NeL = Ne x(T”) = T[W/x] from N = W andT” = T. Therefore
D; = T[W/X] < D, holds.

The other cases are also proved by the induction hypothesis. []

From Lemma 7.1l5, we can obtain the Church-Rosser propettyeofeak call-by-valu®Cuv.

Proposition 7.16. The reduction relations— ,cgy and— ,cgy Of DCuvpy Satisfy the Church-Rosser
property.

Proof. We first show the Church-Rosser property eb,cgy. Suppose thaD — D’ and

wCBV
D —* ___ D” hold. We will show that there exists sorfesuch thaD’ —* ... E andD” —*

wCBV wCBV wCBV
E. We haveD = Dop —wcev Do1 —wcav ... —weav Don = D" andD —ycgy D10 —wcay
.. —ywcgv Dim = D” for somen,m > 0. By Lemmd7.I5 (1)P = Dg; = ... = Dgn = D’ and
D = D}, = ... = D], = D” hold. By the diamond property &b, there existDj,1;+1) such
that Djj+1) = Dir1)j+1) & D(+1)j foreach 0<i <n-1and 0< j < m- 1. Hence we have
D’ =Dgn = D1n = ... = DmnandD” = D = Dy = ... = Dmn. By Lemmd Z.1b (2), we can

* ’ * 144 *
replace= by — ;. Therefore, we hav®’ —; .. DmpandD” — o Dmn.

32 D. KIMURA AND M. TATSUTA

The Church-Rosser property ef,cgy is shown by the former result and the duality between
—wcay and—scgy (Propositior 7.9). H

We will next define the call-by-value and the call-by-nabtg v, which we callCBV DCuv and
CBN DCuv. The types, expressions, and typing ruleS®¥f DCuy andCBN DCuv are the same as them
of DCuv.

The reduction relation o€BV DCuv is obtained by adding-rules to the weak call-by-value
DCuv.

Definition 7.17 (Reduction relation of£BV DCuv). The reduction relatior—cgy of CBV DCuv is
defined by the compatible closure of the reduction rules®ftbhak call-by-valu®Cuv and A1)y,
(sA2)v, (sV1)v, (sV2)v, and the following reduction rules:

(su)y i EM) — ey (Mo x(in**C(x) » a)).,
(sv)v coitr)'?‘(M, M) —cgy (M e X.(coitr)'f‘(M, X) e).,
whereM is not a value obCuv, and the variablecand the covariable in (¢u)y, (sv)y are fresh.

We sometimes writed], to mean A1)y, (BA2)v, (BV1)v, (BV2)v, (B-)v, By, (Bv)v, (BL)y, Or
(BR),-rule. We write), to mean gL), or (yL),-rule. We also write £), to mean {A1)y, (cA2)v,

eV, (§Va)v, (sv, or (sv)y-rule.
The reduction relation of BN DCuv is obtained by adding-rules to the weak call-by-name

DCuv.

Definition 7.18 (Reduction relation ofBN DCuv). The reduction relation—cgy Of CBN DCuv is
defined by the compatible closure of the reduction rules®fitbak call-by-nam&Cuy and EA1)n,
(sA2)ns (sV1)n, (sV2)n, and the following reduction rules:

(stn itr{?[K,?ﬂ — ey X.((X o itr?[K, a]).a e K),

(V) out™ (K] —can X.((x ® out™C[a]).cr o K),

whereX is not a covalue abCuv, and the variablecand the covariable in (su)n, (sv)n are fresh.

From the above definitiongBV DCuv includes the weak call-by-valueCuy, and CBN DCuv
includes the weak call-by-nand€uy. That is, the following lemma holds.

Lemma 7.19. Let D and E be expressionstuv. Then, the following claims hold.
(l) If D —>wCBV E, then D—)CBV E.
(2) |f D —wCBN E, then D—)CBN E.

The call-by-valuedCuv is dual to the call-by-nameCuyv.

Proposition 7.20(Duality between call-by-value and call-by-nameDituv). Let D and E be ex-
pressions obCuv. Then, D— ¢y E iff (D)° —cey (E)°, where(-)° is the duality transformation
of DCuv defined in the section 3.

The call-by-value and call-by-nant&uy satisfy both the Church-Rosser and strong normal-
ization properties. We will concentrate to show these prigee of CBV DCuv. The proof will be
performed by giving a transformation fro@8vV DCuv into the weak call-by-valu®Cuv. The trans-
formation ¢)® given as follows.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 33

Definition 7.21. Let D be a expression @Cuv. The expression¥)® of DCuv is defined inductively
as follows.
(¥® =X
(VL W)® = ((V)®, (W)®),
(VL AN)® = ((N)® e y.({(V)°.y) ® @),
(M W))® = (M)® o X.((X, (W)®) & @)).c,
(M AN)® = ((M)® o X((N)® o y.((x y) » B) B o).,
((V)inl)® = ((V)®)inl,
((M)inl)® = (M)® e x.((X)inl e a)).a,
(V)inr)® = ((V)®)inr,
((M)inr)® = (M)® e x.((X)inr e a)).a,
([K]not)® = [(K)®]not,
(1 AM))® = (M) @ x (1 A(x) o).,
(1 XAV))® = i A(V)®),
(coitrM, V))® = coitrM{(M)®, (V)®),
(coitrM{M, N))® = (N)® e y.(coitr{(M)®,y) e a)).a,
((S)-@)® = ((S)®)-«,
(@)° = a,
([K,LD® = [(K)®, (L)®],
(£st[K])® = £st[(K)®],
(snd[K])® = snd[(K)®],
(not(M))® = not((M)®),
(Outh.A[K])® — OutVX'A[(K)®],
(1trp[K, L])® = itr){(K)®, (L)°],
(x.(9))® = x((S)®), and
(M ¢ K)® = (M)® o (K)®,
whereV andW are valuesM and N are not values, and vy, «, 8 are fresh.

We need the redundant definition @i\, N'))® for a technical reason, and it is necessary in
order to show Propositidn 7.25.
The transformation<)® preserves typing.

Proposition 7.22. Let M be a term, K be a coterm, and S be a statemedCo#. The following
claims hold.

(1) f T rpcuy A | M 2 Alis provable, thed Fpeyy A | (M)® 2 A holds.
(2) If K : A|T Fpcuy A is provable, therfK)® : A|T Fpcyy A holds.
(3) If I'| S Fpcuy A s provable, thed” | (S)® Fpcyy A holds.

Proof. They are shown simultaneously by inductionMnK, andS. []
The transformation)® satisfies the following basic properties.

Lemma 7.23. Let V be a value, M and N be terms, D be an expressi@g@f. Then the following
claims hold.

(1) M is avalue jf (M)?® is a value.
(2a) (M)®, (N)®) —r gy ((M, N))®.
(2b) ((M)®)inl —} o (M)inl)®, and((M)®)inr —7 .. (
(2¢) inA(M)®) — ey (XA,

(M)inr)®.

34 D. KIMURA AND M. TATSUTA

(2d) c01trZ A(MY®, (N)®) —cpy (coitr(M, N))®.
(3a) monoBCX {(M)®, (N)®} — oy (monoBCX {M, N})®.
(3b) monoBCa {(K)®, (L)®} — gy (monoBCa {K, L})®.
(4) D —¢y (D)°.
Proof. The claim (1) is shown by the definition ofY®. The claims (2a), (2b), (2c), and (2d) are

shown by (1) and;-rules. The claims (3a) and (3b) are shown by induction@jix using (2a),
(2b), (2c), and (2d). The claim (4) is shown by induction®n]

The transformation<)® preserves substitution of a value for a variable, and of aroofor a
covariable.

Lemma 7.24. (D[V/X])® = (D)®[(V)®/x] and (D[K/a])® = (D)®[(K)®/a].

Proof. The former claim is shown by induction @using Lemm&<Z7.23 (1). The latter one is shown
by induction onD.]

The transformation<)® translates one step reduction-ef cgy into zero or more steps reduc-
tion of — ,cgy.

Proposition 7.25. D — gy E implies(D)® — ., (E)®. In particular, if D —cgy E by (8)y or
(n)v, then(D)® —* .. (E)® holds.

Proof. The claim is shown by induction on the definition-efscgy. We show the cases gfl).,
(Br)v, and €A1)y.

The case offL), is proved by LemmB&7.24. We have ¢ x.(S))® = (V)® e X.((S)®) —ucav
(S)®[(V)®/x]. By LemmaZ.2%, the last statement &Y/ X])®.

The case of fu)y is proved by Lemm& 7.23 (3b). We havin{*C(V) e itr[K,L])® =
in*(V)®) o 1trf[(K)®, (L)°] —ucey ((V)® @ monoce , L itrfl(K)®, B, (K)®). o (L)® =
((V)® ® mono’se o (itrA[K BN, (K)®).a e (L)®. By Lemmal7Z.2B (3b), the last statement is
reduced to (‘(/)® o (mono*% scc.asl {itrf[K,B], K })®). e (L)® by —* ... Therefore this statement is
((V @ mono* XCA,B itrf[K, A, K)).a o L)®.

The case of A1)y is proved by the definition of {)®. We consider the subcase of
M,N)Y —cgv Mex.((X, Nyea)).a, whereM andN are not values. Hence we ha¥é, N'))® =
(M) e x (M) ey.((xy) oB)Boa)).r = (M)® e X.((% NP ea)).cr = (Mo X (X, N) o))"
The other subcase of 1)y for (N, V) with a non-valueV is shown in the similar way.

The other cases are also shown by the induction hypothesis. []

wCBV*

Then we can show the Church-Rosser property-etgy and— czy.

Theorem 7.26. The reduction relations—cgy 0f CBV DCuv and — gy 0f CBN DCuv satisfy the
Church-Rosser property.

Proof. We first show the Church-Rosser property-e#cgy.

Assume thaD —>CBV D" andD —¢,, D” hold. By Propositioh 7.25, we hav®f® — ..
(D")® and O)® —; 5y (D)°. By the Church-Rosser property ef>,czy, there exist€ such that
(D')® —: 4y E and (D”)® — sy E- Therefore by Lemm-.9 (1) and LemmaT.23 (4), we
haveD” — g, (D')® — gy EandD” —ggy (D7)® —gg, E.

The Church-Rosser property efcgy is shown by the former result and the duality between
—cay and—scpy (PropZ.20). L]

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 35

We will prove strong normalization afBV DCuv and CBN DCuv. This property is shown by
using the strong normalization result of the weak call-bBjue and the weak call-by-nand&€uy
(Propositior 7. 111).

We define the following rank of expressionsbi@uv. This rank is used to show that there is no
infinite sequence af-rules.

Definition 7.27. Let D be an expression ibCuv. The rankr(D) of D is defined by:
r(x) =r(a) =0,
r([Klnot) = r(fst[K]) = r(snd[K]) = r(out”*A[K]) = r(K),
r((K,L]) = rGitr K, L]) = r(K) +r(L),
r(not(M)) = r(M),
r(M,NY) =r(M) +r(N) + 2,
(M, V)) = r((V, M) = r(M) +r(V) +1,
r(V,W)) =r(V) +r(W),
r((Myinl) = r((Myinr) = r(in*AM)) = r(M) + 1,
r((V)inl) = r((V)inr) = r(in"**~V)) = r(V),
r(coitri(M, N)) = r(M) + r(N) + 1,
r(coitrf(M,V)) = r(M) +r(V),
r(x.(S)) =r((S).a) =r(S), and
r(M e K) =r(M) + r(K),

whereV andW are values, and1 and N are not values.

The rankr (D) counts the number of redexes gi\Q)y, (cA2)v, (V)v, (§V2)v, (st)v, and §v),-
rules. We writeD —, E whenD is reduced td by one stepd),-reduction.

Lemma 7.28. Let D and E be expressionsfuv. Then, the following claims hold.

(1) If D —, E, then (D) > r(E).

(2) There is no infinite sequence @f,-reduction.

Proof. The claim (1) is shown by induction dd. The claim (2) is shown by (1). []
We then show strong normalization €8V DCuv andCBN DCuv.

Theorem 7.29(Strong normalization ofBV DCuv andCBN DCuv). The following claims hold.

(1) Every typable expression is strongly normalizingCBY DCuv.
(2) Every typable expression is strongly normalizingCBN DCuv.

Proof. We first show the call-by-value case. Assume i typable inDCuy and there is an infinite
reduction sequence

D —>CBV Dl —>CBV - . -
starting fromD. Then D)? is typable by Proposition 7.22, and we have
(D)® — ey (P1)® —gy -

by Propositiol 7.25. From the strong normalization resiihe weak call-by-valu®Cuv (Proposi-
tion[Z.11), there is somBy such that

(DW)® = (Dxs1)® = ...
By the latter part of Propositidn 7.5, we have the followinfinite sequence of),-reduction:

Dk —¢ Dis1 —¢, - ---

36 D. KIMURA AND M. TATSUTA

This contradicts Lemma 7Z.28 (2).
The call-by-name case is proved by strong normalizatiotB&fDCuv and the duality between
CBV DCuv andCBN DCuv (Propositior 7.20).]

8. CoNCLUSION

We have introduced the non-deterministic systnv by extending the dual calculus given in[27]
with inductive types and coinductive types. Besides theesduality of the original dual calculus,
we have shown the duality of inductive and coinductive tyfmsgiving the involution that maps
terms and coterms for inductive types to coterms and ternt®iofiuctive types respectively and
vice versa, and maps their reduction rules to each other. a¥e proved its strong normalization
by translating it into the second-order dual calcuiag.

The second-order dual calculD§2 also have been introduced. Its strong normalization have
been shown by translating it into the second-order symmistnibda calculus.

We have finally introduced the call-by-value syst€BV DCuv and the call-by-name system
CBN DCuv of the dual calculus with inductive and coinductive types Néve shown the duality of
call-by-value and call-by-name with inductive and cointikectypes, their Church-Rosser property,
and their strong normalization. Their strong normalizatimve been shown by translating them
into DCuv.

The first author introduced the call-by-value and call-layae dual calculi with recursive
types [11, section 4.2]. In these systems, a recursive tyaeX.A can be defined for any type
A. If we assume thatec X.A can be defined only if ever}{ positively occurs inA, then we can
define two provability-preserving transformations frone ttiual calculi with recursive types into
DCuv. The one translates a recursive type to an inductive typeflanother translates a recursive
type to a coinductive type. We could not straightforwardipw that these transformations preserve
reductions (or equations) since some additional rules ssehrules for connectives seem to be
required. This problem would be future work.

The duality of call-by-value and call-by-name.n-calculus is shown by using the dual calculi
in [28]. Since our system&BV DCuv and CBN DCuv are extensions of his dual calculi, we could
show the duality of call-by-value and call-by-namedim-calculus with inductive and coinductive
definitions, by using our systen@®V DCuv andCBN DCuyv. It would be future work.

A reduction-based duality between call-by-value and bgihame in thelu-calculi was pre-
sented in[[12], by refining Wadler's result [28]. Extendirng tresult given in[[12] with inductive
and coinductive types would be future work.

Our systems use the iteration for inductive types. An extensf the iteration to primitive
recursion would be future work.

A CPS translation from the dual calculustealculus was given i [27]. Extending this CPS
translation to the systems with inductive and coinductjyees would be future work.

ACKNOWLEDGMENT

We would like to thank Professor Philip Wadler for discussi@nd suggestions. We would also
like to thank Dr. Alwen Tiu, and Professor Dieter Spreen fisicdssions. We would also like to
thank anonymous referees for valuable comments.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIV E AND COINDUCTIVE TYPES 37

REFERENCES

[1] D.Baelde. Least and greatest fixed points in linear lo§&M Transactions on Computational Logis (1): Article
2,2012.

[2] F. Barbanera and S. Berardi. A symmetric lambda calciduslassical program extractiomformation and Com-
putation 125 (2): 103-117, 1996.

[3] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. legtahductive definitions and subsystems of analysis:
Recent proof-theoretical studidsecture Notes in Mathematic897, Springer, 1981.

[4] P.-L. Curien and H. Herbelin. The duality of computatidm Proceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming (ICFE33—-243, 2000.

[5] A. Filinski. Declarative continuations and categotidaality. Master’s thesisComputer Science Department, Uni-
versity of Copenhagen, DIKU Report/84, 1989.

[6] H. Geuvers. Inductive and coinductive types with itematand recursion. I#Proceedings of the 1992 workshop on
Types for Proofs and Programs (TYPES33-207, 1992.

[7] J-Y. Girard.Proof theory and logical complexitBibliopolis, 1987.
[8] T.G. Griffin. A formulae-as-types notion of control. Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languagég-58, 1990.
[9] H. Herbelin. C'est maintenant qu’on calcule au coeur diul@ité Hablitiation a deriger les recherches, L'Ungit®
Paris 11, 2005.
[10] Y. Kakutani. Duality between call-by-name recursiardaall-by-value iteration. l#roceedings of the 16th Inter-
national Workshop on Computer Science Logic, CiSécture Notes in Computer Science 2471: 506-521, 2002.

[11] D. Kimura. Call-by-value is dual to call-by-name, extied. InProceedings of Programming Languages and Sys-
tems, 5th Asian Symposium (APLAS)ecture Notes in Computer Science, 4807: 415430, 2007.

[12] D. Kimura. Duality between call-by-value reductiomglecall-by-name reductiont?SJ Journalh8(4): 1721-1757,
2007.

[13] D. Kimura and M. Tatsuta. Dual calculus with inductivedecoinductive types. I®roceedings of 20th International
Conference on Rewriting Techniques and Applications (RTAgtture Notes in Computer Science, 5595: 224-238,
2009.

[14] R. McDowell and D. Miller. Cut-elimination for a logic ith definitions and inductionTheoretical Computer Sci-
ence 232 (1-2): 91-119, 2000.

[15] N. P. Mendler. Inductive types and type constrainthiatecond-order lambda calculdsinals of Pure and Applied
Logic, 51 (1-2): 159-172, 1991.

[16] A. Momigliano and A. Tiu. Induction and co-induction sequent calculuslypes for Proofs and Programs Interna-
tional Workshop (TYPES), Revised Selected Pafeagsture Notes in Computer Science, 3085: 293-308, 2004.

[17] A. Tiu and Momigliano. Cut elimination for a logic witmduction and co-induction. manuscript, available at
arxiv.org, 2010.

[18] Nordstrom, B., Petersson, K. and Smith, J.M. Programgnm Martin-Ldf’s type theory. Oxford University Press,
1990.

[19] M. Parigot.Au-calculus: an algorithmic interpretation of classicalumat deduction. IrProceedings of International
Conference on Logic Programming and Automated Deductié?AR), Lecture Notes in Computer Science, 624:
190-201, 1992.

[20] M. Parigot. Strong normalization for second order sieal natural deduction. ldournal of Symbolic Logic62(4):
1461-1479, 1997.

[21] M. Parigot. Strong normalization of second order syririndambda-calculus. IProceedings of Foundations of
Software Technology and Theoretical Computer Scieheeture Notes in Computer Science, 1974: 442—-453,
2000.

[22] C. Paulin-Mohring. Inductive definitions in the systddoq — Rules and properties. IRroceedings of Typed
Lambda Calculi and Applications (TLCAlL.ecture Notes in Computer Science, 664: 328-345, 1993.

[23] P. Selinger. Control categories and duality: on thegatical semantics of the lambda-mu calculMathematical
Structures in Computer Scien@97-260, 2001.

[24] M. Tatsuta. Realizability interpretation of coindivet definitions and program synthesis with streaiffseoretical
Computer Sciengd 22(1-2): 119-136, 1994.

38 D. KIMURA AND M. TATSUTA

[25] M. Tatsuta. Simple saturated sets for disjunction awbad-order existential quantification. Rroceedings of 8th

International Conference on Typed Lambda Calculi and Aapions (TLCA) Lecture Notes in Computer Science,
4583: 366—380, 2007.

[26] N. Tzevelekos. Investigations on the dual calculliseoretical Computer Sciencg60: 289—-326, 2006.

[27] P. Wadler. Call-by-value is dual to call-by-name.Pnoceedings of International Conference on Functional Pro
gramming (ICFP)189-201, 2003.

[28] P.Wadler. Call-by-value is dual to call-by-name, eeled, InProceedings of Rewriting Techniques and Applications
(RTA), Lecture Notes in Computer Science, 3467: 185-203, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Dual Calculus
	3. The Dual Calculus with Inductive and Coinductive Types
	4. Examples
	5. The Second-Order Dual Calculus
	6. Strong Normalization
	7. The call-by-value and call-by-name Dual Calculus with inductive and coinductive types
	8. Conclusion
	Acknowledgment
	References

