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Abstract. This paper extends the dual calculus with inductive types and coinductive types. The paper
first introduces a non-deterministic dual calculus with inductive and coinductive types. Besides the
same duality of the original dual calculus, it has the duality of inductive and coinductive types, that is,
the duality of terms and coterms for inductive and coinductive types, and the duality of their reduction
rules. Its strong normalization is also proved, which is shown by translating it into a second-order dual
calculus. The strong normalization of the second-order dual calculus is proved by translating it into
the second-order symmetric lambda calculus. This paper then introduces a call-by-value system and a
call-by-name system of the dual calculus with inductive andcoinductive types, and shows the duality
of call-by-value and call-by-name, their Church-Rosser properties, and their strong normalization.
Their strong normalization is proved by translating them into the non-deterministic dual calculus
with inductive and coinductive types.

1. Introduction

Dual CalculusDC given by Wadler [27, 28] is a type system which corresponds tothe classical
sequent calculus LK (see, for example, [7]). It represents computation induced by cut elimination
in LK by using its expressions and their reduction. The dual calculus has two nice properties:
computation in classical logic, and duality.

The computation of classical logic has been intensively studied, for example, [2, 4, 8, 9, 20,
21, 23, 27, 28]. They all studied the Curry-Howard correspondence between classical logic and
functional programming languages with sophisticated control structures like catch/throw and first-
class continuations. This correspondence is an extension of the Curry-Howard correspondence
between intuitionistic logic and the typedλ-calculus, which is well established.

The classical sequent calculus LK has nice duality. We have an involution that maps conjunc-
tion and disjunction to each other, and maps the left and right rules of conjunction to the right
and left rules of disjunction and vice versa. This involution can be extended to the cut elimination
procedure for LK.

The systemDC inherits the duality of the classical sequent calculus LK. Moreover, its proof
terms called terms, coterms, and statements also have duality, since they correspond to proofs in
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LK. This implies that its reduction relation can have duality since the reduction relation is induced
by the cut elimination procedure in LK. In this framework, Wadler gave the call-by-value and call-
by-name strategies inDC, and showed the duality of them [27]. He also showed that the equational
correspondence betweenDC and Parigot’sλµ-calculus [19], and showed the duality between call-
by-value and call-by-name of theλµ-calculus using the duality of the dual calculus [28]. Sincethen,
the dual calculus has been actively studied [26, 12, 13].

Inductive definitions are important in both mathematical logic and computer science. Inductive
definitions strengthen expressiveness of logical systems (for example, See [3]). They are central in
programming and program verification [22, 18, 14] for handling recursive data structures such as
lists and trees, and specification of recursive programs. Coinductive definitions are also important
since they can represent streams, infinite trees, and bisimulation, for example, in [24].

This paper presents Dual CalculusDCµν with inductive types and coinductive types. Our cal-
culus extends the duality ofDC to inductive types and coinductive types. The involution inDC is
extended so that it maps inductive types and coinductive types to each other. It also maps the left
and right rules of inductive types to the right and left rulesof coinductive types and vice versa. Be-
cause of the duality of the proof rules, we will have cut elimination procedure that keeps the duality
of inductive types and coinductive types. This induces the duality of the reduction relations of proof
terms for inductive types and coinductive types.

Our main results are: (1) the duality between inductive types and coinductive types with reduc-
tion, (2) strong normalization inDCµν, (3) strong normalization in the second-order Dual Calculus
DC2, (4) the duality between the call-by-value and call-by-name DCµν, and (5) the Church-Rosser
property and strong normalization of the call-by-value andcall-by-nameDCµν.

We will show strong normalization ofDCµν. In order for proving the strong normalization, we
will first show the strong normalization of the second-orderDual CalculusDC2 given by [26] by
interpreting it in second-order symmetric lambda-calculus given in [21]. Then strong normalization
of DCµν is proved by interpreting it inDC2 by using second-order coding of inductive and coinductive
types.

We first introduce the systemDCµν that does not have reduction strategies, since it is designed
by the Curry-Howard correspondence for a standard cut elimination procedure in LK. The system
can discuss non-deterministic aspects of computation in classical logic, since the execution of pro-
grams inDCµν is non-deterministic. It also works as a base framework for other variants ofDCµν
with specific reduction strategies such as call-by-value and call-by-name that will be given later.

The duality between call-by-value and call-by-name is firstsuggested by Filinski [5]. The dual
calculus gives a clear explanation for this duality by usingthe logical duality of classical logic. We
will show the duality of call-by-value and call-by-name in the dual calculus extended with inductive
types and coinductive types. We extend the call-by-valueDC and the call-by-nameDC given in [27]
with inductive types and coinductive types, and introduce the systemsCBV DCµν andCBN DCµν. They
are obtained fromDCµν by restricting its non-deterministic reduction to the call-by-value or call-by-
name strategies, and also by adding some strategy-specific reduction rules. In the same way as [27],
we show the duality of call-by-value and call-by-name in thedual calculus with inductive types
and coinductive types. We will show the Church-Rosser property as well as strong normalization
for CBV DCµν andCBN DCµν. The strong normalization will be shown by translatingCBV DCµν and
CBN DCµν into DCµν.

In [1], the duality between inductive types and coinductivetypes in linear logic is studied. Our
systemDCµν shows the duality in ordinary sequent calculus LK.

Momigliano and Tiu [16, 17] discussed an intuitionistic sequent calculus with inductive def-
initions and coinductive definitions and showed its cut elimination theorem. Our systemDCµν is
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a classical system and our strong normalization shows the cut elimination theorem of the classical
sequent calculus. Our cut elimination procedure is not closed in an intuitionistic fragment because
it keeps the duality and we have the corresponding proof rulethat manipulates a succedent if we
have some proof rule that manipulates an antecedent. So we cannot directly compare our method
and their method.

In category theory, inductive definitions are represented by initial algebras and coinductive
definitions are represented by final coalgebras [6], and their duality in category theory is known.
Our systemDCµν enables us to show the duality in a clear syntactic way by using a type system.

Several papers for dual calculus investigated the duality of computation. Wadler showed the
duality between values and continuations, and the duality between call-by-value computation and
call-by-name computation by using the explicit duality ofDC [27, 28]. The first author of this pa-
per showed the duality between the call-by-name fixed point operator and the call-by-value loop
operator by extendingDC [11]. The first author also showed the duality of reduction between call-
by-value computation and call-by-name computation inλµ-calculus by usingDC [12] to answer the
open question presented in Wadler’s invited talk at RTA2005[28], which asked whether the dual-
ity between call-by-value and call-by-name in his equationsystems would be refined in reduction
systems. Tzevelekos [26] investigated the dual calculus given in [27]. He assumed some additional
conditions on reductions, and showed both Church-Rosser property and strong normalization hold
under his conditions. He also investigated the relationship betweenDC and the symmetricλ-calculus
by Barbanera and Berardi [2]. A second-order extension ofDC is also considered in [26].

The system ¯µµ̃ in [4] is a system with implication and subtraction, and alsohas duality. Their
calculus with negation, conjunction, and disjunction is called µµ̃∧a∨a¬ and the correspondence be-
tween it and the dual calculus is discussed in [9].

A semantical approach to the duality between call-by-valueand call-by-name was studied by
Selinger [23]. He gave a categorical semantics of theλµ-calculus, and explained the duality by using
the categorical duality. This approach is extended to the duality between the fixed point operator
and the loop operator by Kakutani [10].

Section 2 gives a definition ofDC and states its duality. Section 3 introducesDCµν and shows
its duality. Section 4 gives examples. In section 5, we giveDC2 and show its strong normalization.
Section 6 proves strong normalization forDCµν. Section 7 introducesCBV DCµν andCBN DCµν and
shows their Church-Rosser properties and strong normalization.

2. The Dual Calculus DC

This section defines Dual CalculusDC and states its duality. This system is obtained from the original
Dual Calculus given in [27] by removing reduction strategies in reduction rules. This system gives
us a base framework for several variants of dual calculi.

Definition 2.1 (Types and Expressions ofDC). Let X,Y,Z, . . . range over type variables,A, B, . . .
range over types, The symbolsx, y, z, . . . range over variables, andα, β, γ, . . . range over covariables.
We assume an involution (−)′ between variables and covariables, which satisfiesx′′ = x andα′′ = α.
An expression (denoted byD,E, . . .) is either a term (denoted byM,N, . . .), a coterm (denoted by
K, L, . . .), or a statement (denoted byS,T, . . .). We define them as follows:

Types A F X | A∧ A | A∨ A | ¬A,
Expressions D F M | K | S,
Terms M F x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α,
Coterms K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S),
Statements S F M • K.



4 D. KIMURA AND M. TATSUTA

The term (S).α binds the covariableα in S. The cotermx.(S) binds the variablex in S. We write
FV(D) for the set of free variables inD. We also writeFCV(D) for the set of free covariables in
D. We will use [ / ] for substitution. For example, the substitutionS[M/x] denotes the statement
obtained fromS by replacingx by M.

The typeA∧ B denotes a conjunction,A∨ B denotes a disjunction, and¬A denotes a negation.
A variable means an ordinary variable. A covariable means anoutput port and gets some value after
computation. A term represents an ordinary computation which becomes a value or puts values at
output ports after computation. The term〈M,N〉 means a pair. The terms〈M〉inl and 〈M〉inr
mean the left injection and the right injection to a disjointsum, respectively. When [K]not gets
its input, it gives the input toK and computesK. The term (S).α is an abstraction ofS by α. It
computesS and its value is the value at the output portα. A coterm represents continuation which
puts values at output ports after computation when it gets its input. The coterm [K, L] gets an input
of a disjoint sum. If the input is〈M〉inl, it gives M to K and computesK. If the input is〈M〉inr,
it gives M to L and computesL. The cotermfst[K] gets an input of a pair. If the input is〈M,N〉,
then it givesM to K and computesK. The cotermsnd[K] also gets an input of a pair. If the input is
〈M,N〉, then it givesN to K and computesK. The cotermnot〈M〉 gets a continuation as its input.
It gives M to the continuation and computes the continuation. The coterm x.(S) is an abstraction of
S by x. If it gets an input, it puts the input inx and computesS. The statementM • K means the
computation ofK with the inputM that may put values at output ports.

A typing judgment (denoted byJ) of DC takes either the formΓ ⊢ ∆ M : A, the formK : A
Γ ⊢ ∆, or the formΓ S ⊢ ∆, whereΓ denotes a contextx1 : A1, . . . , xn : An that is a set of variable
declarations, and∆ denotes a cocontextα1 : B1, . . . , αm : Bm that is a set of covariable declarations.
We will call M, K, andS a principal expression in those judgments. The domain ofΓ (denoted by
dom(Γ)) is the set of variables{x1, . . . , xn} if Γ is x1 : A1, . . . , xn : An. The domain of∆ (denoted by
dom(∆)) is the set of covariables{α1, . . . , αm} if ∆ is α1 : B1, . . . , αm : Bm.

We intuitively explain the typing judgments. There can be other ways of intuitive explanation,
for example, [26]. In order to give an intuitive idea in general, we assume an evaluation strategy
for expressions, and a notion of values for the strategy. Forexample, when we take call-by-name,
the values will be canonical form, and the computation will be lazy evaluation. The focus| is used
only for denoting which part contains a term, a coterm, or a statement in a judgment, and when we
think the corresponding sequent in ordinary sequent calculus, we will erase it. The typing judgment
x1 : A1, . . . , xn : An ⊢ α1 : B1, . . . , αm : Bm M : A means that when eachxi has a value of type
Ai, andM is computed, thenM returns a value of typeA or someαi gets a value of typeBi. The
judgmentK : A x1 : A1, . . . , xn : An ⊢ α1 : B1, . . . , αm : Bm means that when eachxi has a value of
typeAi , an input of typeA is given toK, andK is computed, then someαi gets a value of typeBi.
The judgmentx1 : A1, . . . , xn : An S ⊢ α1 : B1, . . . , αm : Bm means that when eachxi has a value of
typeAi andS is computed, then someαi gets a value of typeBi. We sometimes use the symbol⊢DC
instead of the symbol⊢ that appears in a judgment in order to explicitly show it is a judgment ofDC.
That is, we writeΓ ⊢DC ∆ M : A for the judgmentΓ ⊢ ∆ M : A. Similarly, we writeK : A Γ ⊢DC ∆
andΓ S ⊢DC ∆.

The typing rules are given in Figure 1. If we erase terms, coterms, statements, and the symbol
|, the system becomes logically equivalent to a fragment of classical sequent calculus LK, whose
definition is given in, for example, [7].
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Γ, x : A ⊢ ∆ x : A
(AxR)

α : A Γ ⊢ ∆, α : A
(AxL)

Γ ⊢ ∆ M : A Γ ⊢ ∆ N : B
Γ ⊢ ∆ 〈M,N〉 : A∧ B

(∧R)
K : A Γ ⊢ ∆ L : B Γ ⊢ ∆

[K, L] : A∨ B Γ ⊢ ∆
(∨L)

Γ ⊢ ∆ M : A
Γ ⊢ ∆ 〈M〉inl : A∨ B

(∨R1)
K : A Γ ⊢ ∆

fst[K] : A∧ B Γ ⊢ ∆
(∧L1)

Γ ⊢ ∆ M : B
Γ ⊢ ∆ 〈M〉inr : A∨ B

(∨R2)
K : B Γ ⊢ ∆

snd[K] : A∧ B Γ ⊢ ∆
(∧L2)

K : A Γ ⊢ ∆
Γ ⊢ ∆ [K]not : ¬A

(¬R)
Γ ⊢ ∆ M : A

not〈M〉 : ¬A Γ ⊢ ∆
(¬L)

Γ S ⊢ ∆, α : A
Γ ⊢ ∆ (S).α : A

(IR)
Γ, x : A S ⊢ ∆
x.(S) : A Γ ⊢ ∆

(IL)

Γ ⊢ ∆ M : A K : A Γ ⊢ ∆
Γ M • K ⊢ ∆

(Cut)

Figure 1: Typing rules ofDC

Definition 2.2 (Reduction). The reduction relation−→DC is defined as the compatible closure of the
following reduction rules:

(β∧1) 〈M,N〉 • fst[K] −→DC M • K,
(β∧2) 〈M,N〉 • snd[K] −→DC N • K,
(β∨1) 〈M〉inl • [K, L] −→DC M • K,
(β∨2) 〈M〉inr • [K, L] −→DC M • L,
(β¬) [K]not • not〈M〉 −→DC M • K,
(βR) (S).α • K −→DC S[K/α],
(βL) M • x.(S) −→DC S[M/x],
(ηR) (M • α).α −→DC M,
(ηL) x.(x • K) −→DC K,

wherex andα are fresh in (ηL) and (ηR), respectively.

The rules (ηR) and (ηL) are necessary to get the results of computation of terms andcoterms
from computation of statements inside them. We do not include theη-rules for logical connectives
that are given in [28], since these break the confluence property for call-by-value and call-by-name
systems, which we will study in Section 7. In order to study a base framework, we first consider a
non-deterministic rewriting system that does not commit toeither the call-by-name or call-by-value
theory.

The systemDC we consider first is obtained from the original dual calculusgiven in [27] by
omitting evaluation strategies, dropping (ς)-rules that provide strong evaluation under call-by-value
and call-by-name strategies, and replacing (ηL) and (ηR)-expansion rules by (ηL) and (ηR)-reduction
rules.

The role of (ηL) and (ηR)-reduction rules are to simplify logical proofs without changing any
proof structure. In the last section, we also give the call-by-value and call-by-name variants ofDCµν.
The role of these rules become clearer in that section since they are necessary to obtain a value as
the result of a computation under some strategy.
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The type of an expression is preserved by reduction.

Proposition 2.3(Subject reduction ofDC). The following claims hold.

(1) If Γ ⊢DC ∆ M : A and M−→DC N, thenΓ ⊢DC ∆ N : A holds.
(2) If K : A Γ ⊢DC ∆ and K−→DC L, then L: A Γ ⊢DC ∆ holds.
(3) If Γ S ⊢DC ∆ and S−→DC T, thenΓ T ⊢DC ∆ holds.

This proposition is shown by induction on reduction using the following substitution lemma.

Lemma 2.4(Substitution lemma). The following claims hold.

(1) SupposeΓ ⊢DC ∆ N : A is derivable. Then we have the following.
(1a) If Γ, x: A ⊢DC ∆ M : B, thenΓ ⊢DC ∆ M[N/x] : B,
(1b) if K : B Γ, x: A ⊢DC ∆, then K[N/x] : B Γ ⊢DC ∆, and
(1c) if Γ, x: A S ⊢DC ∆, thenΓ S[N/x] ⊢DC ∆.

(2) Suppose L: A Γ ⊢DC ∆ is derivable. Then we have the following.
(2a) If Γ ⊢DC ∆, α : A M : B, thenΓ ⊢DC ∆ M[L/α] : B,
(2b) if K : B Γ ⊢DC ∆, α : A, then K[L/α] : B Γ ⊢DC ∆, and
(2c) if Γ S ⊢DC ∆, α : A, thenΓ S[L/α] ⊢DC ∆.

Proof. The claims (1a),(1b), and (1c) are shown simultaneously by induction onM, K, andS. The
claims (2a),(2b), and (2c) are also shown simultaneously byinduction onM, K, andS.

The following duality transformation extends the duality in the sequent calculus LK to terms,
coterms, and statements.

Definition 2.5 (Duality Transformation). The duality transformation (−)◦ from DC into itself is
defined for types and expressions as follows:

(X)◦ = X, (¬A)◦ = ¬(A)◦, (A∧ B)◦ = (A)◦ ∨ (B)◦, (A∨ B)◦ = (A)◦ ∧ (B)◦,
(x)◦ = x′, (α)◦ = α′,
(〈M,N〉)◦ = [(M)◦, (N)◦], ([K, L])◦ = 〈(K)◦, (L)◦〉,
(〈M〉inl)◦ = fst[(M)◦], (fst[K])◦ = 〈(K)◦〉inl,
(〈M〉inr)◦ = snd[(M)◦], (snd[K])◦ = 〈(K)◦〉inr,
([K]not)◦ = not〈(K)◦〉, (not〈M〉)◦ = [(M)◦]not,
((S).α)◦ = α′.((S)◦), (x.(S))◦ = ((S)◦).x′,
(M • K)◦ = (K)◦ • (M)◦.

Note that a type and a statement are mapped to themselves. A term and a coterm are mapped to
each other.

We also define transformation for judgments. IfΓ is x1 : A1, . . . , xn : An, then (Γ)◦ is de-
fined as (x1)◦ : (A1)◦, . . . , (xn)◦ : (An)◦. If ∆ is α1 : B1, . . . , αm: Bm, then (∆)◦ is defined as
(α1)◦ : (B1)◦, . . . , (αm)◦ : (Bm)◦. The judgment (Γ ⊢ ∆ M : A)◦ is defined as (M)◦ : (A)◦ (∆)◦ ⊢ (Γ)◦.
The judgment (K : A Γ ⊢ ∆)◦ is defined as (∆)◦ ⊢ (Γ)◦ (K)◦ : (A)◦. The judgment (Γ S ⊢ ∆)◦ is
defined as (∆)◦ (S)◦ ⊢ (Γ)◦.

We also define transformation for inference rule names as follows: (AxR)◦ = (AxL), (AxL)◦ =
(AxR), (∨R1)◦ = (∧L1), (∧L1)◦ = (∨R1), (∧R)◦ = (∨L), (∨L)◦ = (∧R), (∨L2)◦ = (∧R2), (∨R2)◦ =
(∧L2), (¬L)◦ = (¬R), (¬R)◦ = (¬L), (IR)◦ = (IL), (IL)◦ = (IR), and (Cut)◦ = (Cut).

This duality transformation preserves substitution of terms and coterms.
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Lemma 2.6. The following claims hold.

(1) (D[M/x])◦ = (D)◦[(M)◦/x′].
(2) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claims (1) and (2) are shown by induction onD. We treat the first case of (1): the case
of D is x. (x[M/x])◦ = (M)◦ = x′[(M)◦/x′] = (x)◦[(M)◦/x′]. The other cases are straightforwardly
proved by the induction hypothesis.

This duality transformation is shown to preserve typing andreduction, and to be an involution.
This transformation is a homomorphism for this system in thesense that it preserves typing and
reduction. An important feature ofDC is its duality by this transformation. A term is dual to a
coterm by this homomorphism.

Proposition 2.7(Duality of DC). The followings hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then(J)◦ is derived from
(Jn)◦, . . . , (J1)◦ by the inference rule(R)◦.

(2) D −→DC E implies(D)◦ −→DC (E)◦.
(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and((J)◦)◦ = J hold.

Proof. The claim (1) is proved by case analysis of the inference rules. The claim (2) is proved by
induction on the generation of−→DC using Lemma 2.6. The claim (3) is proved by induction on
types and expressions.

Remark 2.8. The (−)◦ transformation maps dual reduction rules to each other. That is, if D −→DC E
is the reduction rules (β∧1), (β∧2), (β∨1), (β∨2), (β¬), (βR), (βL), (ηR), and (ηL), then (D)◦ −→DC
(E)◦ is the reduction rules (β∨1), (β∨2), (β∧1), (β∧2), (β¬), (βL), (βR), (ηL), and (ηR), respectively.

Implication⊃ can be defined by¬ and∨ in the same way as [27].

Definition 2.9. We writeA ⊃ B for ¬A∨B. We also writeλx.M for (〈[x.(〈M〉inr•γ)]not〉inl•γ).γ.
We also writeN@K for [not〈N〉,K].

The constructor @ simulates the application inλ-calculus together with•. The following holds
from the definition.

Proposition 2.10. The following typing inference rules and reduction rule arederivable.

Γ, x : A ⊢ ∆ M : B
Γ ⊢ ∆ λx.M : A ⊃ B

(⊃ R)
Γ ⊢ ∆ M : A K : B Γ ⊢ ∆

M@K : A ⊃ B Γ ⊢ ∆
(⊃ L)

(β ⊃) λx.M • (N@K) −→DC M[N/x] • K

3. The Dual Calculus DCµν with Inductive and Coinductive Types

In this section, we presentDCµν, which is an extension ofDC with inductive types and coinductive
types. We first extend the definition of types ofDC to inductive typesµX.A and coinductive types
νX.A, and then extend expressions and reduction.

In Section 5, we will introduce the second-order systemDC2. The systemDCµν is worth to be
studied as well asDC2, sinceDCµν is within a first-order logic.

We first define types, their positive type variables, and their negative type variables. A positive
type variable in a type does not occur negatively in the type in the usual sense. A negative type
variable in a type does not occur positively in the type.
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Definition 3.1. The set of type variables is written byTyVars. We define the types ofDCµν (denoted
by A, B, . . .) and the set Pos(A) of positive type variablesin the typeA and the set Neg(A) of negative
type variablesin the typeA as follows:

A F X | A∧ A | A∨ A | ¬A | µX.A | νX.A

whereµX.A andνX.A are defined when the type variableX is in Pos(A).

Pos(X) = TyVars,
Neg(X) = TyVars \ {X},
Pos(A1 ∧ A2) = Pos(A1 ∨ A2) = Pos(A1) ∩ Pos(A2),
Neg(A1 ∧ A2) = Neg(A1 ∨ A2) = Neg(A1) ∩ Neg(A2),
Pos(¬B) = Neg(B),
Neg(¬B) = Pos(B),
Pos(µX.B) = Pos(νX.B) = Pos(B) ∪ {X},
Neg(µX.B) = Neg(νX.B) = Neg(B) ∪ {X}.

The typesµX.A andνX.A bind X in A.

When we think standard semantics of the propositional logicwith inductive and coinductive
definitions,µX.A andνX.A are interpreted by the least fixed point and the greatest fixedpoint of the
monotone functionP respectively, whereP is the function which maps a setU to the setA[U/X].
Letµ beµX.Aandν beνX.A. They will have the following properties: (a)A[µ/X] ⊆ µ, (b) A[B/X] ⊆
B impliesµ ⊆ B, (c) ν ⊆ A[ν/X], and (d)B ⊆ A[B/X] implies B ⊆ ν. Based on this meaning, we
will introduce terms, coterms, and their reduction for inductive and coinductive types in the same
way as [15].

Definition 3.2. The terms, coterms, and statements ofDCµν are defined as follows:

M F x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α | inµX.A〈M〉 | coitrA
x〈M,M〉,

K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S) | outνX.A[K] | itrA
α[K,K],

S F M • K.

The termitrA
α[K, L] bindsα in K. The cotermcoitrA

x〈M,N〉 bindsx in M.

The expressionsinµX.A〈M〉 anditrA
α [K, L] are the expressions for inductive types. The con-

structorinµX.A maps a term of typeA[µX.A/X] to that ofµX.A. The cotermitrB
α[K, L] is an iterator

having an input of typeµX.A whereL is a postprocessor after iteration. When it gets the input of
typeµX.A, first a value of typeA[µX.A/X] is computed according to the input, next a value of type
A[B/X] is computed by recursive invocation of the iterator, then it is given toK andK is computed
to get a value of typeB, and finally the value is given toL andL is computed. Dually,outνX.A[K]
andcoitrA

x〈M,N〉 are defined for coinductive types. The constructoroutνX.A maps a coterm of
typeνX.A to that ofA[νX.A/X]. When the cotermoutνX.A[K] gets the input of typeνX.A, first the
input is transformed into a value of typeA[νX.A/X], then the value is given toK, and finallyK is
computed. The termcoitrB

x 〈M,N〉 is a coiterator of typeνX.A. It transformsN of type B into a
value ofνX.A according toM. Type annotations will be necessary for defining reduction rules.

Definition 3.3. The typing rules ofDCµν are defined by those ofDC and the following rules:

Γ ⊢ ∆ M : A[µX.A/X]

Γ ⊢ ∆ inµX.A〈M〉 : µX.A
(µR)

K : A[B/X] Γ ⊢ ∆, α : B L : B Γ ⊢ ∆

itrB
α [K, L] : µX.A Γ ⊢ ∆

(µL)
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K : A[νX.A/X] Γ ⊢ ∆

outνX.A[K] : νX.A Γ ⊢ ∆
(νL)

Γ, x : B ⊢ ∆ M : A[B/X] Γ ⊢ ∆ N : B

Γ ⊢ ∆ coitrB
x〈M,N〉 : νX.A

(νR)

We sometimes use the symbol⊢DCµν instead of the symbol⊢ in a judgment in order to explicitly
show it is a judgment ofDCµν. That is, we writeΓ ⊢DCµν ∆ M : A for the judgmentΓ ⊢ ∆ M : A.
Similarly, we writeK : A Γ ⊢DCµν ∆ andΓ S ⊢DCµν ∆.

The systemDCµν satisfies the following basic lemmas.

Lemma 3.4(Weakening lemma ofDCµν). Let Γ ⊆ Γ′ and∆ ⊆ ∆′. Then

(1) if Γ ⊢DCµν ∆ M : A is provable, thenΓ′ ⊢DCµν ∆′ M : A holds,
(2) if K : A Γ ⊢DCµν ∆ is provable, thenK : A Γ′ ⊢DCµν ∆′ holds, and
(3) if Γ S ⊢DCµν ∆ is provable, thenΓ′ S ⊢DCµν ∆′ holds.

Proof. They are shown simultaneously by induction onM, K, andS.

Lemma 3.5. LetΓ′ ⊆ Γ and∆′ ⊆ ∆. Then the following claims hold inDCµν.

(1) If FV(M) ⊆ dom(Γ′) and FCV(M) ⊆ dom(∆′), thenΓ ⊢ ∆ M : A impliesΓ′ ⊢ ∆′ M : A.
(2) If FV(K) ⊆ dom(Γ′) and FCV(K) ⊆ dom(∆′), then K: A Γ ⊢ ∆ implies K: A Γ′ ⊢ ∆′.
(3) If FV(S) ⊆ dom(Γ′) and FCV(S) ⊆ dom(∆′), thenΓ | S ⊢ ∆ impliesΓ′ | S ⊢ ∆′.

Proof. They are shown simultaneously by induction onM, K, andS.

Lemma 3.6(Substitution lemma ofDCµν). The following claims hold.

(1) SupposeΓ ⊢DCµν ∆ N : A is derivable. Then the following hold.
(1a) If Γ, x: A ⊢DCµν ∆ M : B, thenΓ ⊢DCµν ∆ M[N/x] : B,
(1b) if K : B Γ, x: A ⊢DCµν ∆, then K[N/x] : B Γ ⊢DCµν ∆, and
(1c) if Γ, x: A S ⊢DCµν ∆, thenΓ S[N/x] ⊢DCµν ∆.

(2) Suppose L: A Γ ⊢DCµν ∆ is derivable. Then the following hold.
(2a) If Γ ⊢DCµν ∆, α : A M : B, thenΓ ⊢DCµν ∆ M[L/α] : B,
(2b) if K : B Γ ⊢DCµν ∆, α : A, then K[L/α] : B Γ ⊢DCµν ∆, and
(2c) if Γ S ⊢DCµν ∆, α : A, thenΓ S[L/α] ⊢DCµν ∆.

Proof. The claims (1a), (1b), and (1c) are shown simultaneously by induction onM, K, andS. The
claims (2a), (2b), and (2c) are also shown simultaneously byinduction onM, K, andS.

The duality transformation can be extended fromDC to DCµν.

Definition 3.7 (Duality Transformation). The duality transformation for types, terms, coterms,
statements, and inference rule names ofDCµν is defined by those ofDC and the following equa-
tions:

(µX.A)◦ = νX.(A)◦, (νX.A)◦ = µX.(A)◦.

(inµX.A〈M〉)◦ = outνX.(A)◦[(M)◦],
(outνX.A[K])◦ = inµX.(A)◦〈(K)◦〉,
(itrA

α [K, L])◦ = coitr(A)◦

α′
〈(K)◦, (L)◦〉,

(coitrA
x〈M,N〉)

◦ = itr
(A)◦

x′ [(M)◦, (N)◦].

(µR)◦ = (νL), (νL)◦ = (µR), (µL)◦ = (νR), (νR)◦ = (µL).

The above duality transformation is well-defined.
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Lemma 3.8. The type(A)◦ is defined, andPos(A) = Pos((A)◦) andNeg(A) = Neg((A)◦) hold.

Proof. These claims are shown by induction onA. We consider the cases ofµX.B andνX.B. The
other cases are straightforwardly proved by the induction hypothesis.

The case ofµX.B: Suppose thatµX.B is defined. Then we haveX is in Pos(B). By the induction
hypothesis, (B)◦ is defined andX occurs positively in (B)◦. ThereforeνX.(B)◦ is defined, and we
have Pos(µX.B) = Pos(νX.(B)◦) and Neg(µX.B) = Neg(νX.(B)◦) by the induction hypothesis.

The case ofνX.B can be shown in the similar way to the case ofµX.B.

This duality transformation alternates free variables andfree covariables that occur in terms
and coterms. LetV be a set of variables, andC be a set of covariables. Then a set of covariables
(V)◦ is defined by{x′ | x ∈ V}. A set of variables (C)◦ is also defined by{α′ | α ∈ C}.

Lemma 3.9. Let D be an expression ofDCµν. Then FV((D)◦) = (FCV(D))◦ and FCV((D)◦) =
(FV(D))◦ hold.

Proof. The claims are shown by induction onD.

This duality transformation preserves substitution of types, terms, and coterms.

Lemma 3.10. Let A and B be types, D be an expression, M be a term, and K be a coterm ofDCµν.
Then the following hold.

(1) (A[B/X])◦ = (A)◦[(B)◦/X].
(2) (D[M/x])◦ = (D)◦[(M)◦/x′].
(3) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claim (1) is shown by induction onA. The claims (2) and (3) are shown by induction on
D.

The extended duality transformation preserves typing, andis an involution inDCµν.

Proposition 3.11. The following claims hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then(J)◦ is derived from
(Jn)◦, . . . , (J1)◦ by the inference rule(R)◦.

(2) ((A)◦)◦ = A, ((D)◦)◦ = D, and((J)◦)◦ = J hold for any type A, expression D, and judgment J of
DCµν.

Proof. The claim (1) is shown by case analysis of the inference rulesof DCµν using Lemma 3.10
(1). The claim (2) is shown by induction on types and expressions.

Our reduction rules for inductive and coinductive types will be defined so that they correspond
to cut elimination procedures in the classical sequent calculus LK extended with inductive defini-
tions and coinductive definitions. In the following proof figures, we will writeµ, ν, andA[B] for
µX.A, νX.A, andA[B/X] respectively. In the logical system, when the cut formula is an inductive
type, the cut elimination procedure reduces the proof

....
Γ ⊢ ∆,A[µ]
Γ ⊢ ∆, µ

(µR)

....
A[B], Γ ⊢ ∆, B

....
B, Γ ⊢ ∆

µ, Γ ⊢ ∆
(µL)

Γ ⊢ ∆
(Cut)

to the proof
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....
Γ ⊢ ∆,A[µ]
Γ ⊢ ∆, B,A[µ]

(Wk)

....
A[B], Γ ⊢ ∆, B B, Γ ⊢ ∆, B

µ, Γ ⊢ ∆, B
(µL)

....
A[B], Γ ⊢ ∆, B

A[µ], Γ ⊢ ∆, B
(mono)

Γ ⊢ ∆, B
(Cut)

....
B, Γ ⊢ ∆

Γ ⊢ ∆
(Cut)

We can intuitively understand the rule (mono) as follows:µ ⊢ B implies A[µ] ⊢ A[B], so we have
A[µ] ⊢ B by combining it withA[B] ⊢ B. This rule will be formally shown in Lemma 3.14 (2a).
This reduction changes the cut formula fromµ to A[µ]. We do not have to count the cut formulaB,
since that cut is auxiliary. When the cut formula is a coinductive type, the cut elimination procedure
reduces a proof in a dual way to the above reduction.

When we have a functionλx.M from A to B and the variableX is in Pos(C), we can define
the function fromC[A/X] to C[B/X] by extendingλx.M. We will usemonoX.C

A,B,x.M{N} so that this
function mapsz to monoX.C

A,B,x.M{z}. We will definemonoX.C
A,B,x.M{N} by induction on the measure||C||X

for a typeC and a type variableX, which is defined by induction onC as follows: IfX is not free in
A, then||A||X = 0. In the other cases, we assume that someX occurs inA and we define

||X||X = 1,
||A∧ B||X = ||A∨ B||X = ||A||X + ||B||X + 1,
||¬A||X = ||A||X + 1,
||µY.A||X = ||νY.A||X = ||A||X + ||A||Y + 1.

Note that ifX is not free inB and we haveX , Y, then‖A‖X = ‖A[B/Y] ‖X.
The number||A||X will also be used for evaluating the size ofmonoX.C

A,B,x.M{N} by usingM, N,
andC (see Lemma 6.2). If we replaced||A||X + ||A||Y + 1 by ||A||X + 1 in the definition of||µY.A||X
and||νY.A||X, it would not work for this purpose.

Definition 3.12. Assume a type variableX and typesA, B,C are given andX is not free inA andB.
For a variablex and termsM andN, we define the termmonoX.C

A,B,x.M{N} by induction on‖C ‖X as
follows:

monoX.X
A,B,x.M{N} = (N • x.(M • α)).α,

monoX.C
A,B,x.M{N} = N (X does not occur inC),

monoX.C∧D
A,B,x.M{N} = 〈 mono

X.C
A,B,x.M{(N • fst[α]).α}, mono

X.D
A,B,x.M{(N • snd[β]).β} 〉,

monoX.C∨D
A,B,x.M{N} = (N • [ y.(〈monoX.C

A,B,x.M{y} 〉inl • γ), z.(〈mono
X.D
A,B,x.M{z} 〉inr • γ) ]).γ,

monoX.¬C
A,B,x.M{N} = [ z.(N • not〈 monoX.C

B,A,x.M{z} 〉 ) ]not,

mono
X.µY.C
A,B,x.M{N} = ( N • itrµY.C[B/X]

α [ z.( inµY.C[B/X]〈 mono
X.C[µY.C[B/X]/Y]
A,B,x.M { z} 〉 • α ), β ] ).β,

monoX.νY.C
A,B,x.M{N} = coitr

νY.C[A/X]
z 〈 mono

X.C[νY.C[A/X]/Y]
A,B,x.M { (z• outνY.C[A/X][α]).α }, N 〉.

For a covariableα and cotermsK andL, we also define

monoX.C
A,B,α.K{L} = (monoX.(C)◦

(B)◦,(A)◦,α′.(K)◦{(L)◦})◦.

Note that ||µY.C||X > ||C[µY.C[B/X]/Y]||X and ||νY.C||X > ||C[νY.C[A/X]/Y]||X hold sinceX is
not free inµY.C[B/X] and νY.C[A/X]. We cannot replaceC[µY.C[B/X]/Y] by C in the defini-
tion of monoX.µY.C

A,B,x.M{N} because of the type annotation forin. For readability, we sometimes write
monoX.C

A,B,x{M,N} and monoX.C
A,B,α{K, L} for monoX.C

A,B,x.M{N} andmonoX.C
A,B,α.K{L}, respectively.
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The paper [17] studied an intuitionistic logical system with strictly-positive inductive defini-
tions, and on the other hand we study a classical logical system with positive inductive definitions.
Our cut elimination for inductive types is the same as theirs, and on the other hand our cut elimi-
nation for coinductive types is different from theirs. They can avoid the use ofmono. However, we
cannot straightforwardly compare our method and their method, since our system is strictly larger
than their system.

Our method works only for classical logic and does not work for an intuitionistic logic. This
is because our cut elimination procedure keeps the duality and we have the corresponding proof
rule that manipulates a succedent if we have some proof rule that manipulates an antecedent. In
particular, we define the operatormono for coterms as the dual of the operatormono for terms.
Roughly speaking, in the proof of the next lemma, when we showthe properties ofmono for negation
by using the derivation

A ⊢ B
A,¬B ⊢
¬B ⊢ ¬A,

we need the following derivation in order to show the properties of its dual:
B ⊢ A
⊢ A,¬B
¬A ⊢ ¬B

which uses a non-intuitionistic sequent.

Lemma 3.13. The following claims hold.

(1a) FV(monoX.C
A,B,x{M,N}) ⊆ (FV(M) \ {x}) ∪ FV(N).

(1b) FCV(monoX.C
A,B,x{M,N}) ⊆ FCV(M) ∪ FCV(N).

(2a) FV(monoX.C
A,B,α{K, L}) ⊆ FV(K) ∪ FV(L).

(2b) FCV(monoX.C
A,B,α{K, L}) ⊆ (FCV(K) \ {α}) ∪ FCV(L).

Proof. The claims (1a) and (1b) are shown by induction on‖C ‖X. The claims (2a) and (2b) are
shown by using (1a), (2b), and Lemma 3.9.

Lemma 3.14. Assume X is inPos(C) andNeg(D). Then the following hold:

(1a) Γ, x: A ⊢ ∆ | M : B andΓ ⊢ ∆ | N : C[A] impliesΓ ⊢ ∆ | monoX.C
A,B,x.M{N} : C[B],

(1b) Γ, x: B ⊢ ∆ M : A andΓ ⊢ ∆ N : D[A] impliesΓ ⊢ ∆ monoX.D
A,B,x.M{N} : D[B],

(2a) K : A Γ ⊢ ∆, α : B and L: C[B] Γ ⊢ ∆ impliesmonoX.C
A,B,α.K{L} : C[A] Γ ⊢ ∆,

(2b) K : B Γ ⊢ ∆, α : A and L: D[B] Γ ⊢ ∆, impliesmonoX.D
A,B,α.K{L} : C[A] Γ ⊢ ∆,

where C[A] and D[A] are abbreviations of C[A/X] and D[A/X], respectively.

Proof. The claims (1a) and (1b) are shown simultaneously by induction on ||C||X and ||D||X. The
claims (2a) and (2b) are shown by using (1a), (1b), and Proposition 3.11.
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The following proposition is obtained as a special case of the above lemma.

Proposition 3.15. Assume X is inPos(C). The following are derivable:

Γ, x : A ⊢ ∆ | M : B

Γ, z : C[A] ⊢ ∆ | monoX.C
A,B,x.M{z} : C[B]

K : A Γ ⊢ ∆, α : B

monoX.C
A,B,α.K{β} : C[A] Γ ⊢ ∆, β : C[B]

Definition 3.16. We define the one-step reduction relation−→DCµν of DCµν as the compatible closure
of the reduction rules ofDC and the following reduction rules:

(βµ) inµX.C〈M〉 • itrA
α[K, L] −→DCµν (M • monoX.C

µX.C,A,β{ itr
A
α[K, β], K }).α • L,

(βν) coitrA
x〈M,N〉 • out

νX.C[K] −→DCµν N • x.(monoX.C
A,νX.C,z{ coitr

A
x 〈M, z〉, M } • K).

This system has subject reduction.

Proposition 3.17(Subject reduction ofDCµν). The following claims hold.

(1) If Γ ⊢DCµν ∆ M : A and M−→DCµν N, thenΓ ⊢DCµν ∆ N : A holds.
(2) If K : A Γ ⊢DCµν ∆ and K−→DCµν L, then L: A Γ ⊢DCµν ∆ holds.
(3) If Γ S ⊢DCµν ∆ and S−→DCµν T, thenΓ T ⊢DCµν ∆ holds.

Proof. They are shown simultaneously by induction on the generation of−→DCµν using Lemma 3.4,
3.5, 3.6, and 3.14. We consider the cases of (βµ) and (βν).

Case of (βµ). AssumeΓ inµX.C〈M〉 • itrA
α [K, L] ⊢ ∆ is derivable inDCµν. We useµ andC[A]

as abbreviations ofµX.C andC[A/X], respectively. The last rule of the derivation must be (Cut)
rule. ThenΓ ⊢ ∆ inµX.C〈M〉 : D anditrA

α [K, L] : D Γ ⊢ ∆ are derivable for some typeD. Since
the last rules of these derivations must be (µR) and (µL), we obtainD is µX.C, and the derivations
of Γ ⊢ ∆ M : C[µ], the judgmentK : C[A] Γ ⊢ ∆, α : B, andL : A Γ ⊢ ∆, α : B. Hence we have
itrA

α [K, β] : µ Γ ⊢ ∆, β : A by (AxL) and (µL) rules, and thenmonoX.C
µ,A,β{ itr

A
α[K, β], K } : C[µ] Γ ⊢

∆, α : A is derivable by Lemma 3.14. Therefore we haveΓ (M•monoX.C
µ,A,β{ itr

A
α[K, β], K }).α•L ⊢ ∆

by using (IR), (Cut) rules.
The case of (βν) is shown similarly to the case of (βµ).
The other cases are straightforwardly proved by the induction hypothesis.

The duality transformation (−)◦ preserves reduction.

Theorem 3.18(Duality of DCµν). D −→DCµν E implies(D)◦ −→DCµν (E)◦ for any expressions D
and E.

Proof. This is proved by induction on the generation of−→DCµν.

Proposition 3.19. If D −→DCµν E is the rules(βµ) and(βν), then(D)◦ −→DCµν (E)◦ is (βν) and(βµ)
respectively.

We have shown the duality of inductive types and coinductivetypes. Proposition 3.11 and
Theorem 3.18 show that the duality transformation is a homomorphic involution. The description
of a type can be defined as the set of the type itself, its terms,its coterms, and their reduction. The
duality transformation maps the description of an inductive type and that of a coinductive type to
each other. That is, we have the following. (1) Definition 3.7shows that the inductive typeµX.A is
mapped to the coinductive typeνX.(A)◦, the term constructed byin for the inductive type is mapped
to the coterm constructed byout for the coinductive type, and the coterm constructed byitr for the
inductive type is mapped to the term constructed bycoitr for the coinductive type. (2) Proposition
3.19 shows that the cut elimination procedure of the inductive type is mapped to the cut elimination
procedure of the coinductive type. (3) the coinductive typeis mapped to the inductive type in a
similar way to (1) and (2).
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Remark 3.20. We cannot define our typing system by using

K : C[A/X] Γ ⊢ ∆, α : A

itrA
α [K, β] : µX.C Γ ⊢ ∆, β : A

(µL′)

instead of the typing rule (µL). If we used (µL′), the set of terms would not be closed under sub-
stitution, becauseitrA

α[K, L] would not have typing rules for it and hence it would not be a term,
though it is obtained fromitrA

α [K, β] by substitutingL for β.

4. Examples

In this section we show some examples of inductive and coinductive types inDCµν. Let X0 be a
distinguished type variable. We use the following abbreviations:

⊤ = ¬X0 ∨ X0, ⊥ = ¬X0 ∧ X0, and ∗ = λx.x.

The typeNat of natural numbers can be represented by:

Nat = µX.(⊤ ∨ X),

0 = inNat〈 〈∗〉inl 〉,

succ〈M〉 = inNat〈 〈M〉inr 〉,

where0 is the zero andsucc is the successor. We can proveΓ ⊢ ∆ 0 : Nat. We can also
prove Γ ⊢ ∆ succ〈M〉 : Nat from Γ ⊢ ∆ M : Nat. The n-th natural number ˜n is rep-
resented bysucc〈succ〈. . . succ〈0〉 . . .〉〉 (n times of succ). We will write M[ /x]n(N) for
M[M[. . . [M[N/x]/x] . . . /x]/x] (n times ofM). We define a cotermItrB[F,N,K] of typeNat by
itrB

α

[

[y.(N •α), x.(F • (x@α))],K
]

, wherey is not free inN, the termF has typeB ⊃ B, andN and
K are of typeB. When the cotermItrB[F,N,K] getsñ as its input, it computesn-time iterations
of applying the functionF to N, and passes the output toK. This reduces ˜n • ItrB[λx.M,N,K] to
M[ /x]n(N) • K.

The typeList(A) of lists of elements of typeA is represented by:

List(A) = µX.(⊤ ∨ (A∧ X)),

nil = inList(A)〈 〈∗〉inl 〉,

M :: Nl = inList(A)〈 〈 〈M,Nl〉 〉inr 〉.

The termnil is the empty list and (::) is the list constructor. InDCµν, the judgmentΓ ⊢
∆ nil : List(A) is provable. The judgmentΓ ⊢ ∆ M :: Nl : List(A) is also provable from
Γ ⊢ ∆ M : A andΓ ⊢ ∆ Nl : List(A).

We note that the above examples can be considered under the call-by-value setting (section 7)
if we restrict terms in the above examples to values.

We can also define the typeStream(A) of streams of elements of typeA by:

Stream(A) = νX.(A∧ X),

cons〈M,Ns〉 = coitrA∧Stream(A)
x 〈 〈π1(x), (π2(x) • outStream(A)[α]).α〉, 〈M,Ns〉 〉,

hd[K] = outStream(A)[ fst[K] ] ,

tl[L] = outStream(A)[ snd[L] ] ,

whereπ1(M) is the first projection ofM defined by (M • fst[α]).α, andπ2(M) is the second pro-
jection of M defined by (M • snd[α]).α. The termcons〈M,Ns〉 constructs a new stream from a
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given elementM and a given streamNs. The cotermhd[K] receives the first element from a given
stream and gives it toK. The cotermtl[L] removes the first element from a given stream and gives
the resulting stream toL. We can proveΓ ⊢ ∆ cons〈M,Ns〉 : Stream(A) from Γ ⊢ ∆ M : A and
Γ ⊢ ∆ Ns: Stream(A). We can also provehd[K] : Stream(A) Γ ⊢ ∆ from K : A Γ ⊢ ∆. We can
also provetl[L] : Stream(A) Γ ⊢ ∆ from L : Stream(A) Γ ⊢ ∆. This reducescons〈M,Ns〉•hd[K]
to M • K. We also reducecons〈M,Ns〉 • tln+1[hd[K]] to Ns• tln[hd[K]], wheretln[hd[K]] is
defined bytl[tl[. . . tl[ hd[K] ] . . .]] (n times oftl). Hence the cotermtln[hd[K]] receives the
n-th element of a given stream and gives it toK. Let M be a term of typeA. The stream of infi-
nite number ofM is represented bycoitr⊤x 〈〈M, x〉, ∗〉, wherex is a fresh variable. We will write
stream(M) for coitr⊤x 〈〈M, x〉, ∗〉. Indeed, the statementstream(M) • tln[hd[K]] is reduced toM
for anyn. This means that anyn-th element ofstream(M) is M.

We note that this stream example can be considered under the call-by-name setting (section 7)
if we restrict coterms in the above example to covalues.

Proposition 4.1. Nat is dual toStream(⊥), that is, (Nat)◦ = Stream(⊥), (0)◦ = hd[(∗)◦], and
(succ〈M〉)◦ = tl[(M)◦] hold.

If Stream(⊥) is considered under the call-by-name setting andNat is considered under the call-
by-value setting, then the duality of the above propositioncan be understood as follows. The type⊤
means the singleton set{∗}. The type⊥means the type of a program that returns some answer after
computation with the input∗ since⊥ is equivalent to¬⊤. The typeNat means the infinite disjoint
sum⊤+⊤+⊤+ . . .. The typeStream(⊥) means the infinite cartesian product⊥×⊥×⊥× . . .. Since
a term inStream(⊥) is equivalent to a coterm inNat, when the term gets some natural number and
is computed, it returns some answer. When the term gets the natural number ˜n, sinceñ is ∗ in the
n-th⊤ in ⊤+⊤+ . . ., the term in then-th⊥ in ⊥×⊥× . . . is given the input∗ and it is computed to
give some answer.

Here we can also consider examples that include non-deterministic choices. LetM and N
be terms of same type,x be a fresh variable,α andβ be fresh covariables. We define the non-
deterministic choice〈M | N〉 by

〈M | N〉 = ((M • α).β • x.(N • α)).α,

whereα andβ are fresh covariables. This term has both (βL) and (βR)-redexes. It is reduced to
M if the (βR)-redex is chosen, and is reduced toN if the (βL)-redex is chosen. Thus,〈M | N〉
can be considered as a non-deterministic choice of eitherM or N. This non-deterministic choice
〈M | N〉 is forced to chooseM under the call-by-value strategy, and is forced to chooseN under the
call-by-name strategy.

An example of non-deterministic computation is the list insertion function. This function gets a
list as its input data, and non-deterministically chooses one arbitrary place in the list. Then it returns
a new list that is obtained by inserting a given element at theplace.

Let M be a term of typeA, andK′ be a coterm of typeList(A) ∧ List(A). Then we define
insM [K′] of typeList(A) by

insM[K′] = itrList(A)∧List(A)
α [[L1(α), L2(α)],K′],

L1(α) = x.(〈M :: nil, nil〉 • α),
L2(α) = z.(〈 〈π1(z) :: π1π2(z), π1(z) :: π2π2(z)〉 | 〈M :: π1(z) :: π2π2(z), π1(z) :: π1π2(z)〉 〉 • α)

wherex occurs inL1(α) is a fresh variable of type⊤, andz occurs inL2(α) is a fresh variable of
typeA∧ (List(A) ∧ List(A)). Then ifNl is a list andNl′ is a list obtained by insertingM in some
place ofNl, then the statementNl • insM[K′] can be reduced to〈Nl′,Nl〉 • K′. We can show this
by induction on the length ofNl. If Nl is nil, thenNl′ is M :: nil. The statementnil • insM[K′]



16 D. KIMURA AND M. TATSUTA

is reduced to〈M :: nil, nil〉 • K′. If Nl is N :: Nl0, thenNl′ is eitherN :: Nl′0 or M :: N :: Nl0,
whereNl′0 is an inserted list obtained fromNl0. The statement (N :: Nl0) • insM[K′] is reduced to
(〈N, (Nl0•insM [γ]).γ〉•L2(α)).α•K′. Then this statement is reduced to (〈N, 〈Nl0,Nl′0〉〉•L2(α)).α•
K′ by the induction hypothesis. We have〈 〈N :: Nl′0,Nl〉 | 〈M :: N :: Nl0,Nl〉 〉 • K′. Hence we can
obtain〈M :: N :: Nl0,Nl〉 • K′ or 〈M :: N :: Nl0,Nl〉 • K′.

Let K be a coterm of typeList(A). Here we define

insertM[K] = insM [fst[K]] .

Then the statementNl • insertM[K] is reduced toNl′ • K for any inserted listNl′ obtained from
Nl.

5. The Second-Order Dual Calculus DC2

We consider the second-order extensionDC2 of DC given by Tzevelekos [26]. He showed the basic
properties ofDC2, such as the substitution lemma and subject reduction. Without formal discussion,
he also mentioned that his translation fromDC into the symmetricλ-calculus can be extended to
the second-order case. In this section, we give a formal definition of the second-order translation
from DC2 into the second-order symmetricλ-calculus, and show the strong normalization ofDC2 by
using this translation. For this purpose we will use the strong normalization result of the second-
order symmetricλ-calculus given in [21].

Definition 5.1. An expression is defined to be strongly normalizing if there does not exist any
infinite reduction sequence starting from the expression.

First, we define a second-order extensionDC2 of DC.

Definition 5.2 (DC2). The types, terms, coterms, and statements ofDC2 are defined by:

Types AF X | A∧ A | A∨ A | ¬A | ∀X.A | ∃X.A,
Terms MF x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α | 〈M〉a | 〈M〉e,
Coterms K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S) | a[K] | e[K],
Statements SF M • K.

The typing rules and reduction rules (denoted by−→DC2) of DC2 are defined by extending the rules
of DC with the following rules:

Γ ⊢ ∆ M : A
Γ ⊢ ∆ 〈M〉a : ∀Z.A

(∀R)
K : A[B/X] Γ ⊢ ∆
a[K] : ∀X.A Γ ⊢ ∆

(∀L)

Γ ⊢ ∆ M : A[B/X]
Γ ⊢ ∆ 〈M〉e : ∃X.A

(∃R)
K : A Γ ⊢ ∆

e[K] : ∃Z.A Γ ⊢ ∆
(∃L)

(β∀) 〈M〉a • a[K] −→DC2 M • K,

(β∃) 〈M〉e • e[K] −→DC2 M • K,

whereZ is not free inΓ and∆ in (∀R) and (∃L). We write−→+
DC2 to denote the transitive closure of

−→DC2.

We have the new constructorsa ande, which are trivial witnesses for the quantifiers at the
level of expressions, so that the system has subject reduction. We choose ourDC2 so that it does
not contain type information in expressions, since our purpose is to show strong normalization of
the second-order dual calculus, and in general the strong normalization of the system with type
information is implied by the strong normalization of the system without type information.
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We sometimes use the symbol⊢DC2 instead of the symbol⊢ that appears in a judgment in order
to explicitly show it is a judgment ofDC2. That is, we writeΓ ⊢DC2 ∆ M : A for the judgment
Γ ⊢ ∆ M : A. Similarly, we writeK : A Γ ⊢DC2 ∆ andΓ S ⊢DC2 ∆.

We writeΓ[B/X] for x1 : C1[B/X], . . . , xn : Cn[B/X] if Γ is x1 : C1, . . . , xn : Cn. We also write
∆[B/X]] for α1 : D1[B/X], . . . , αm: Dm[B/X] if ∆ is α1 : D1, . . . , αm: Dn.

Lemma 5.3. The following claims hold.

(1) If Γ ⊢DC2 ∆ M : A, thenΓ[B/X] ⊢DC2 ∆[B/X] M : A[B/X] holds.
(2) If K : A Γ ⊢DC2 ∆, then K: A Γ[B/X] ⊢DC2 ∆[B/X] holds.
(3) If Γ S ⊢DC2 ∆, thenΓ[B/X] S ⊢DC2 ∆[B/X] holds.

Proof. They are shown simultaneously by induction on expressions.

The basic lemmas forDC andDCµν are also shown inDC2. We use Lemma 5.3 to show weak-
ening lemma.

Lemma 5.4(Weakening lemma). LetΓ ⊆ Γ′ and∆ ⊆ ∆′. Then the following hold inDC2.

(1) If Γ ⊢ ∆ M : A is provable, thenΓ′ ⊢ ∆′ M : A holds.
(2) If K : A Γ ⊢ ∆ is provable, then K: A Γ′ ⊢ ∆′ holds.
(3) If Γ S ⊢ ∆ is provable, thenΓ′ S ⊢ ∆′ holds.

Proof. They are shown simultaneously by induction onM, K, andS. We use Lemma 5.3 when we
show the cases of〈M〉a ande[K]. We consider these cases.

The case of〈M〉a. AssumeΓ ⊆ Γ′, ∆ ⊆ ∆′, andΓ ⊢ ∆ 〈M〉a : A is derivable. Since the last
rule of the derivation must be (∀R), we haveA is ∀X.B for someB, the variableX is not free inΓ
and∆, andΓ ⊢ ∆ M : B is derivable. Then we haveΓ ⊢ ∆ M : B[Z/X] for a fresh type variableZ
by using Lemma 5.3. By the induction hypothesis,Γ′ ⊢ ∆′ M : B[Z/X] holds. Therefore we obtain
Γ′ ⊢ ∆′ 〈M〉a : ∀Z.(B[Z/X]) by (∀R) rule, sinceZ is not free inΓ′ and∆′.

The case ofe[K] is shown similar to the case of〈M〉a.
The other cases are straightforwardly proved by the induction hypothesis.

Lemma 5.5. LetΓ′ ⊆ Γ and∆′ ⊆ ∆. Then the following hold inDC2.

(1) If FV(M) ⊆ dom(Γ′) and FCV(M) ⊆ dom(∆′), thenΓ ⊢ ∆ M : A impliesΓ′ ⊢ ∆′ M : A.
(2) If FV(K) ⊆ dom(Γ′) and FCV(K) ⊆ dom(∆′), then K: A Γ ⊢ ∆ implies K: A Γ′ ⊢ ∆′.
(3) If FV(S) ⊆ dom(Γ′) and FCV(S) ⊆ dom(∆′), thenΓ | S ⊢ ∆ impliesΓ′ | S ⊢ ∆′.

Proof. They are shown simultaneously by induction onM, K, andS.

Lemma 5.6(Substitution lemma). The following claims hold.

(1) SupposeΓ ⊢DC2 ∆ N : A is derivable. Then the following hold.
(1a) If Γ, x: A ⊢DC2 ∆ M : B, thenΓ ⊢DC2 ∆ M[N/x] : B.
(1b) If K : B Γ, x: A ⊢DC2 ∆, then K[N/x] : B Γ ⊢DC2 ∆.
(1c) If Γ, x: A S ⊢DC2 ∆, thenΓ S[N/x] ⊢DC2 ∆.

(2) Suppose L: A Γ ⊢DC2 ∆ is derivable. Then the following hold.
(2a) If Γ ⊢DC2 ∆, α : A M : B, thenΓ ⊢DC2 ∆ M[L/α] : B.
(2b) If K : B Γ ⊢DC2 ∆, α : A, then K[L/α] : B Γ ⊢DC2 ∆.
(2c) If Γ S ⊢DC2 ∆, α : A, thenΓ S[L/α] ⊢DC2 ∆.

Proof. The claims (1a),(1b), and (1c) are shown simultaneously by induction onM, K, andS. The
claims (2a),(2b), and (2c) are also shown simultaneously byinduction onM, K, andS.
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This system has subject reduction.

Proposition 5.7(Subject reduction ofDC2). The following claims hold.

(1) If Γ ⊢DC2 ∆ M : A and M−→DC2 N, thenΓ ⊢DC2 ∆ N : A holds.
(2) If K : A Γ ⊢DC2 ∆ and K−→DC2 L, then L: A Γ ⊢DC2 ∆ holds.
(3) If Γ S ⊢DC2 ∆ and S−→DC2 T, thenΓ T ⊢DC2 ∆ holds.

Proof. They are shown simultaneously by induction on the generation of −→DC2 using Lemma 5.3,
5.4, 5.5, and 5.6. We show the cases of (β∀) and (β∃).

The case of (β∀). SupposeΓ 〈M〉a • a[K] ⊢ ∆ is derivable. ThenΓ ⊢ ∆ 〈M〉a : C and
a[K] : C Γ ⊢ ∆ are derivable for some typeC. Since the last rules of these derivation must be (∀R)
and (∀L), we haveC is ∀X.A for someA, X is not free in bothΓ and∆, andΓ ⊢ ∆ M : A and
K : A[B/X] Γ ⊢ ∆ are derivable for someB. Then we can obtainΓ ⊢ ∆ M : A[B/X] by Lemma 5.3.
ThereforeΓ M • K ⊢ ∆ can be derived by (Cut) rule.

The case of (β∃) is shown similar to the case of (β∀).
The other cases are straightforwardly proved by the induction hypothesis.

Remark 5.8. The trivial witnessesa ande are necessary for the subject reduction. If we did not
have these constructors, the subject reduction would fail.If we chose the following (∀R′) and (∀L′)
instead of (∀R) and (∀L),

Γ ⊢ ∆ M : A
Γ ⊢ ∆ M : ∀Z.A

(∀R′)
K : A[B/X] Γ ⊢ ∆
K : ∀X.A Γ ⊢ ∆

(∀L′)

then the following would be a counter-example: we would haveΓ (x • fst[α]).α • β ⊢ ∆ whereΓ
is x: X∧Y, the sequence∆ is β : ∀Z.X, andZ , X,Y, but would not haveΓ x• fst[β] ⊢ ∆, though
(x • fst[α]).α • β is reduced tox • fst[β].

In λ-calculus the constructora is not necessary for subject reduction while the constructor e is
necessary for it [25]. In our system, since∀ and∃ are dual, the constructora is also needed.

The duality transformation can be extended fromDC to DC2.

Definition 5.9 (Duality Transformation). The duality transformation for types, expressions, and
inference rule names ofDC2 is defined by those ofDC and the following equations:

(∀X.A)◦ = ∃X.(A)◦, (∃X.A)◦ = ∀X.(A)◦,
(〈M〉a)◦ = e[(M)◦], (e[K])◦ = 〈(K)◦〉a,
(〈M〉e)◦ = a[(M)◦], (a[K])◦ = 〈(K)◦〉e,
(∀R)◦ = (∃L), (∃L)◦ = (∀R), (∀L)◦ = (∃R), (∃R)◦ = (∀L).

This duality transformation preserves substitution of types, terms, and coterms.

Lemma 5.10. Let A and B be types, D be an expression, M be a term, and K be a coterm ofDC2.
Then the following hold.

(1) (A[B/X])◦ = (A)◦[(B)◦/X].
(2) (D[M/x])◦ = (D)◦[(M)◦/x′].
(3) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claim (1) is shown by induction onA. The claims (2) and (3) are shown by induction on
D.
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The extended duality transformation preserves typing and reduction. It is an involution inDC2.

Proposition 5.11(Duality of DC2). The following claims hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then(J)◦ is derived from
(Jn)◦, . . . , (J1)◦ by the inference rule(R)◦.

(2) D −→DC2 E implies(D)◦ −→DC2 (E)◦.
(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and((J)◦)◦ = J hold.

Proof. The claim (1) is proved by case analysis of the inference rules of DC2. The claim (2) is
proved by induction of the generation of−→DC2 using Lemma 5.10. The claim (3) is proved by
induction on types and expressions.

Next we give a definition of the second-order symmetricλ-calculusSλ2. The symmetricλ-
calculus is introduced by Barbanera and Berardi [2] as a classical extension of theλ-calculus. The
strong normalization of its second-order extensionSλ2 is proved by Parigot [21] using the reducibil-
ity method. The particular system we consider here is an extension of Parigot’s system with two
additional rules (ηr andηl). As discussed in ibid., Parigot’s proof works with this variant without
problem.

Definition 5.12 (Sλ2). We define the second-order symmetricλ-calculusSλ2. The types ofSλ2 are
either the special type⊥ or m-types (denoted byτ, σ, . . .) given by:

τF X | X⊥ | τ × τ | τ + τ | ∀X.τ | ∃X.τ

whereX,Y, . . . range over type variables. The types∀X.τ and∃X.τ bind X in τ. The negation (τ)⊥

of τ is defined by:

(X)⊥ = X⊥, (X⊥)⊥ = X,
(τ × σ)⊥ = (τ)⊥ + (σ)⊥, (τ + σ)⊥ = (τ)⊥ × (σ)⊥,
(∀X.τ)⊥ = ∃X.(τ)⊥, (∃X.τ)⊥ = ∀X.(τ)⊥.

The symbolsx, y, . . ., α, β, . . . range over variables. The terms ofSλ2, denoted byt, u, . . ., are defined
by

tF x | inj1(t) | inj2(t) | 〈t, t〉 | t ∗ t | λx.t | a(t) | e(t).

The one-step reduction relation−→Sλ2 of Sλ2 is defined as the compatible closure of the fol-
lowing rules:

(βr ) (λx.t) ∗ u −→Sλ2 t[u/x], (βl) u ∗ (λx.t) −→Sλ2 t[u/x],
(β×+1) 〈t1, t2〉 ∗ inj1(u) −→Sλ2 t1 ∗ u, (β+×1) inj1(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t1,
(β×+2) 〈t1, t2〉 ∗ inj2(u) −→Sλ2 t2 ∗ u, (β+×2) inj2(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t2,
(β∀∃) a(t) ∗ e(u) −→Sλ2 t ∗ u, (β∃∀) e(u) ∗ a(t) −→Sλ2 u ∗ t,
(ηr ) λy.(y ∗ t) −→Sλ2 t, (ηl) λy.(t ∗ y) −→Sλ2 t,

wherey is not free int in (ηl) and (ηr).
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A typing context (denoted byΓ,∆) is a finite set and of the formx1 : τ1, . . . , xn : τn. A judgment
of Sλ2 takes either the formΓ ⊢ t : τ or Γ ⊢ t : ⊥. The typing rules ofSλ2 are defined as follows:

Γ, x : τ ⊢ x : τ
(Ax)

Γ, x : τ ⊢ t : ⊥
Γ ⊢ λx.t : (τ)⊥

(abs) Γ ⊢ t : (τ)⊥ Γ ⊢ u : τ
Γ ⊢ t ∗ u : ⊥

(app)

Γ ⊢ t : τi
Γ ⊢ inji(t) : τ1 + τ2

(+i) (i = 1, 2)
Γ ⊢ t : τ Γ ⊢ u : σ
Γ ⊢ 〈t, u〉 : τ × σ

(×)

Γ ⊢ t : τ
Γ ⊢ a(t) : ∀X.τ

(∀)
(X is not free inΓ)

Γ ⊢ t : τ[σ/X]
Γ ⊢ e(t) : ∃X.τ

(∃)

Theorem 5.13(Strong normalization ofSλ2 [21]). Every typable term is strongly normalizing in
Sλ2.

We will give a reduction-preserving and type-preserving translation fromDC2 into Sλ2. Our
translation is a second-order extension of the translationfrom DC into the symmetricλ-calculus
given by Tzevelekos [26].

Definition 5.14. Let A be a type ofDC2. The type (A)† of Sλ2 is defined as follows:

(X)† = X, (A∧ B)† = (A)† × (B)†, (A∨ B)† = (A)† + (B)†,
(¬A)† = ((A)†)⊥, (∀X.A)† = ∀X.(A)†, (∃X.A)† = ∃X.(A)†.

Let D be an expression ofDC2. The term (D)† of Sλ2 is defined by:

(x)† = x, (α)† = α,
((S).α)† = λα.(S)†, (x.(S))† = λx.(S)†,
(〈M〉a)† = a((M)†), (〈M〉e)† = e((M)†),
(e[K])† = a((K)†), (a[K])† = e((K)†),
(〈M〉inl)† = inj1((M)†), (fst[K])† = inj1((K)†),
(〈M〉inr)† = inj2((M)†), (snd[K])† = inj2((K)†),
(〈M,N〉)† = 〈(M)†, (N)†〉, ([K, L])† = 〈(K)†, (L)†〉,
([K]not)† = λx.(x ∗ (K)†), (not〈M〉)† = (M)†,
(M • K)† = (M)† ∗ (K)†.

We define the translation of [K]not by usingη-expansion, so that all reductions inDC2 are strictly
simulated inSλ2.

(Γ)† and ((∆)†)⊥ are defined asx1 : (A1)†, . . . , xn : (An)† andα1 : ((B1)†)⊥, . . . , αm: ((Bm)†)⊥

respectively ifΓ is x1 : A1, . . . , xn : An, and∆ is α1 : B1, . . . , αm: Bm. For a judgmentJ of DC2,
the judgment (J)† of Sλ2 is defined as follows: The judgment (Γ ⊢ ∆ M : A)† is defined
as (Γ)†, ((∆)†)⊥ ⊢ (M)† : (A)†. The judgment (K : A Γ ⊢ ∆)† is defined as (Γ)†, ((∆)†)⊥ ⊢
(K)† : ((A)†)⊥. The judgment (Γ S ⊢ ∆)† is defined as (Γ)†, ((∆)†)⊥ ⊢ (S)† : ⊥.

This translation preserves provability and one-step reductions.

Proposition 5.15. The following claims hold.

(1) If J is provable inDC2, then(J)† is provable in Sλ2.
(2) D −→DC2 E implies(D)† −→Sλ2 (E)†.

Proof. The claim (1) is shown by induction on the proof ofJ. The claim (2) is shown by induction
on the definition of−→DC2.
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We can obtain strong normalization ofDC2 from the above proposition.

Theorem 5.16(Strong normalization ofDC2). Every typable expression is strongly normalizing in
DC2.

Proof. Assume there is an infinite reduction sequence

D = D0 −→DC2 D1 −→DC2 . . .

starting fromD. From Proposition 5.15, the expression (D)† is typable inSλ2, and

(D)† −→Sλ2 (D1)† −→Sλ2 . . .

is an infinite reduction sequence. This contradicts Theorem5.13.

Remark 5.17. Tzevelekos [26] also gave a back translation (−)p from the symmetricλ-calculus
into DC. As noted in his paper (Section 3, Note 3.5), this translation cannot extend to the second-
order case since it does not preserve typing judgments for existential quantification. This is because
the translation (−)p does not preserve type substitution: (A[B/X])p

, (A)p[(B)p/X]. The same
argument applies to ours.

6. Strong Normalization of DCµν

In this section, we prove strong normalization inDCµν. We will give a translation fromDCµν into
DC2 that is based on the second-order encoding of inductive andcoinductive types. Our proof of
strong normalization will be done by showing the fact that one-step reduction inDCµν is translated
to one or more steps reduction inDC2.

We use the following degree of expressions inDCµν for defining the second-order coding of
inductive and coinductive types.

When we try to prove some properties of expressions by induction on expressions, that induc-
tion sometimes does not work, since the expression containsmono

X,C
A,B,x.M{N} that is defined by using

induction on||C||X. In order for solving this, we will introduce the pair of the summation of||C||X
and the size of an expression as a measure.

Definition 6.1. Let D be an expression inDCµν. The number||D|| is defined by:

||x|| = ||α|| = 0,
||〈M,N〉|| = ||coitrA

x〈M,N〉|| = max(||M||, ||N||),
||M • K|| = max(||M||, ||K||),
||[K, L]|| = ||itrA

α[K, L]|| = max(||K||, ||L||),
||(S).α|| = ||x.(S)|| = ||S||,
||〈M〉inl|| = ||〈M〉inr|| = ||not〈M〉|| = ||M||,
||inµX.A〈M〉|| = ||M|| + ||A||X + 1,
||fst[K]|| = ||snd[K]|| = ||[K]not|| = ||K||,
||outνX.A[K]|| = ||K|| + ||A||X + 1.
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The number|D| is defined by:

|x| = |α| = 0,
|〈M,N〉| = |coitrA

x 〈M,N〉| = |M| + |N| + 1,
|M • K| = |M| + |K| + 1,
|[K, L]| = |itrA

α [K, L]| = |K| + |L| + 1,
|(S).α| = |x.(S)| = |S| + 1,
|〈M〉inl| = |〈M〉inr| = |not〈M〉| = |inµX.A〈M〉| = |M| + 1,
|fst[K]| = |snd[K]| = |[K]not| = |outνX.A[K]| = |K| + 1.

The degreedeg(D) of the expressionD is defined as the pair (||D||, |D|). We also define the order of
the degrees by the lexicographic order.

The number|D| is the number of constructors in the expressionD. The number||D|| is the
maximum summation of (||A||X + 1) for inµX.A〈M〉 andoutνX.A[K] in paths inD. For example,
deg(inµX.¬X∨X〈(〈[x.(〈x〉inr • γ)]not〉inl • γ).γ〉) = (4, 7). We have||E|| ≤ ||D|| and|E| < |D| when
the expressionE is a proper subexpression ofD. The degree satisfies the following properties.

Lemma 6.2. The following claims hold.

(1) ||D|| = ||(D)◦|| and |D| = |(D)◦| hold.
(2) || monoX.A

B,C,x{M,N} || ≤ ||M|| + ||N|| + ||A||X holds.

(3) deg(inµX.A〈M〉) > deg( monoX.A
µX.A,Y,α{ x.(y • (x@α)), β }) holds.

Proof. The claims of (1) are shown by induction onD. The claim (2) is shown by induction on
||A||X. The claim (3) is proved by using (2).

We present the second-order encoding forDCµν. We will write λ(x, α).S for λx.((S).α). Then
(λ(x, α).S) • (N@K) is reduced toS[N/x][K/α].

Definition 6.3 (Translation(−) from DCµν into DC2). Let A be a type ofDCµν. The typeA of DC2 is
defined as follows:

X = X, A∧ B = A∧ B, ¬A = ¬A, A∨ B = A∨ B,

µX.A = ∀X.((A ⊃ X) ⊃ X), νX.A = ∃X.(¬(¬A∧ X) ∧ X),

where⊃ is defined in Definition 2.9. For an expressionD of DCµν, the expressionD of DC2 is defined
by induction ondeg(D) as follows. For the expressionsD of the same degree, we first defineD for

D such thatD is not of the formoutνX.A[K] or coitrA
x 〈M,N〉, and we next defineD for D such that

D is of the formoutνX.A[K] or coitrA
x 〈M,N〉.

x = x, α = α,

(S).α = (S).α, x.(S) = x.(S),
〈M,N〉 = 〈M,N〉, [K, L] = [K, L],
〈M〉inl = 〈M〉inl, fst[K] = fst[K],
〈M〉inr = 〈M〉inr, snd[K] = snd[K],
[K]not = [K]not, not〈M〉 = not〈M〉,
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M • K = M • K,

itrA
α [K, L] = a[ ( λ(x, α).(x • K) )@L ],

outνX.A[K] = (inµX.(A)◦〈(K)◦〉)◦,

inµX.A〈M〉 = 〈 λ(y, β).(y • ( (QY[X.A] • RM{y, γ}).γ@β )) 〉a,

coitrA
x 〈M,N〉 = (itr(A)◦

x′ [(M)◦, (N)◦])◦,

whereQY[X.A] is defined asλy.λ(z, β).( z•monoX.A
µX.A,Y,α{ x.(y • (x@α)), β } ), andRM{N,K} is defined

as (λ(x, α).(x • a[N@α]) )@(M@K).
We also define the translation of judgments. The contextΓ is defined asx1 : A1, . . . , xn : An if Γ

is x1 : A1, . . . , xn : An. The cocontext∆ is defined asα1 : B1, . . . , αm: Bm if ∆ isα1 : B1, . . . , αm: Bm.
The judgmentΓ ⊢ ∆ M : A is defined asΓ ⊢ ∆ M : A. The judgmentK : A Γ ⊢ ∆ is defined as
K : A Γ ⊢ ∆. The judgmentΓ S ⊢ ∆ is defined asΓ S ⊢ ∆.

The next lemma shows that this translation commutes with (−)◦.

Lemma 6.4. ( A )◦ = (A)◦, ( D )◦ = (D)◦, and( J )◦ = (J)◦ hold.

Proof. The claim forA is proved by induction onA.
The claim forD is proved by induction onD. The cases ofinµX.A〈M〉, outνX.A[K], itrA

α [K, L],
and coitrA

x〈M,N〉 are shown by the definition of the translation and the dualities of DCµν and

DC2. The case ofinµX.A〈M〉 is shown as follows: (inµX.A〈M〉)◦ = (inµX.((A)◦)◦〈((M)◦)◦〉)◦ =

outνX.(A)◦[(M)◦] = (inµX.A〈M〉)◦ . We can show the casesoutνX.A[K], itrA
α[K, L], and

coitrA
x〈M,N〉 similarly. The other cases are straightforwardly proved bythe induction hypothe-

sis.
The claim forJ is proved by using the claims forA andD.

The translation(−) preserves substitution.

Lemma 6.5. A[B/X] = A[B/X], D[N/x] = D[N/x], andD[L/α] = D[L/α] hold.

Proof. The first claim is shown by induction onA. The second and the third claims are shown
simultaneously by induction ondeg(D). For the expressionsD of the same degree, we first show

the claims forD such thatD is not of the formoutνX.A[K] or coitrA
x〈M,N〉, and we next show the

claims forD such thatD is of the formoutνX.A[K] or coitrA
x 〈M,N〉.

We consider the cases ofinµX.A〈M〉, itrA
α[K, L], outνX.A[K] and coitrA

x 〈M,N〉. The other
cases are straightforwardly proved by the induction hypothesis.

The second claim of the caseinµX.A〈M〉 is shown in the following way. By the induction

hypothesis, we havemonoX.A
µX.A,Y,α{ x.(y • (x@α)), β }[N/x] = monoX.A

µX.A,Y,α{ x.(y • (x@α)), β }[N/x]

since deg( monoX.A
µX.A,Y,α{ x.(y • (x@α)), β }) < deg(inµX.A〈M〉) by Lemma 6.2 (3). By

Lemma 3.13 (2a),monoX.A
µX.A,Y,α{ x.(y • (x@α)), β }[N/x] = monoX.A

µX.A,Y,α{ x.(y • (x@α)), β }. Hence

we have (QY[X.A])[N/x] = QY[X.A]. By the induction hypothesis, we haveRM{y, γ}[N/x] =

RM[N/x] {y, γ} sincedeg(M) < deg(inµX.A〈M〉). Therefore,inµX.A〈M〉[N/x] is equal to〈 λ(y, β).(y •
( ((QY[X.A])[N/x] • (RM{y, γ})[N/x]).γ@β )) 〉a. Then it is equal to〈 λ(y, β).(y • ( (QY[X.A] •

RM[N/x] {y, γ}.γ@β )) 〉a. The last term is equal to(inµX.A〈M〉)[N/x] by the definition of(−).
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The second claim of the caseitrA
α [K, L] is shown in the following way. The coterm

itrA
α [K, L][N/x] is equal toa[ ( λ(y, α).(y • K[N/x]) )@L[N/x] ]. By the induction hypothesis,

it is equal toa[ ( λ(y, α).(y • K[N/x]) )@L[N/x] ]. Hence it is equal to(itrA
α[K, L])[N/x] by the

definition of(−).
The second claim of the caseoutνX.A[K] is shown in the following way. Since||K|| = ||(K)◦||

and |K| = |(K)◦| by Lemma 6.2 (1), we havedeg(outνX.A[K]) = deg(inµX.(A)◦〈(K)◦〉). Hence

inµX.(A)◦〈(K[N/x])◦〉 = inµX.(A)◦〈(K)◦〉[(N)◦/x′] holds by Lemma 3.10, since the third claim for
inµX.(A)◦〈(K)◦〉 is already shown before this case. Then we can obtain the claim of this case as
follows:

(outνX.A[K])[N/x] = ( inµX.(A)◦〈(K[N/x])◦〉 )◦ = ( inµX.(A)◦〈(K)◦〉[(N)◦/x′] )◦ =

( inµX.(A)◦〈(K)◦〉 )◦[((N)◦)◦/x] = outνX.A[K][((N)◦)◦/x] = outνX.A[K][N/x].
The third claim of this case is shown similarly.
The second and third claims of the casecoitrA

x〈M,N〉 is shown in the similar way to the case
of outνX.A[K].

Note that the second and third claims of the above lemma cannot be proved straightforwardly
by induction onD. For example, for proving the case ofinµX.A〈M〉 in the second claim, we need
induction hypothesis formonoX.A

µX.A,Y,α{ x.(y • (x@α)), β } but it is not a subterm ofinµX.A〈M〉.

The next proposition says the translation(−) preserves provability.

Proposition 6.6. If J is provable inDCµν, thenJ is provable inDC2.

Proof. This is shown by induction on the degree of the principal expression inJ. We show the cases
of inµX.A〈M〉, outνX.A[K], itrA

α[K, L], andcoitrA
x〈M,N〉.

The case ofitrA
α [K, L] is shown by the induction hypothesis and Lemma 6.5. The cases of

coitrA
x〈M,N〉 andoutνX.A[K] are shown by the induction hypothesis and the dualities ofDCµν and

DC2.
We prove the case ofinµ〈M〉. We write µ, A[B], and A[C] as abbreviations ofµX.A,

A[B/X], and A[C/X] respectively. This case is shown by the following three steps: (a) we show
RM{y, γ} : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y] Γ, y: A[Y] ⊃ Y ⊢ ∆, γ : A[Y] is derivable, whereRM{y, γ} is
(λ(x, α).(x • a[y@α]) )@(M@γ). Next, (b) we show ⊢ QY[X.A] : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y]

is derivable, whereQY[X.A] is λy.λ(z, β).( z • monoX.A
µX.A,Y,α{ x.(y • (x@α)), β } ). Finally, (c) we can

easily showΓ ⊢ ∆ inµ〈M〉 : µ from (a) and (b).
The claim (a) is shown in the following way. SupposeΓ ⊢ ∆ inµ〈M〉 : µ is derivable. Then

we have the derivation ofΓ ⊢ ∆ M : A[µ]. By the induction hypothesis and Lemma 6.5, we obtain
Γ ⊢ ∆ M : A[µ]. Then we have a derivation ofM@γ : A[µ] ⊃ A[Y] Γ ⊢ ∆, γ : A[Y] by (⊃ L) rule.
On the other hand, we can showy: A[Y] ⊃ Y ⊢ λ(x, α).(x • a[y@α]) : µ ⊃ Y. Then we have
RM{y, γ} : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y] Γ, y: A[Y] ⊃ Y ⊢ ∆, γ : A[Y].

The claim (b) is shown as follows. We can showmonoX.A
µ,Y,α{ x.(y • (x@α)), β } : A[µ] y: µ ⊃

Y ⊢ β : A[Y] in DCµν by using Lemma 3.14, the judgmentx.(y • (x@α)) : µ y: µ ⊃ Y ⊢

α : Y, β : A[Y], andβ : A[µ] y: µ ⊃ Y ⊢ β : A[Y]. By Lemma 6.2 (3), we havedeg(inµX.A〈M〉) >

deg(monoX.A
µ,Y,α{ x.(y • (x@α)), β }). HencemonoX.A

µ,Y,α{ x.(y • (x@α)), β } : A[µ] y: µ ⊃ Y ⊢ β : A[Y] is
derivable by induction hypothesis and Lemma 6.5. Thereforewe obtain ⊢ QY[X.A] : (µ ⊃ Y) ⊃
A[µ] ⊃ A[Y].

The other cases are straightforwardly proved by the induction hypothesis.
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The translation(−) maps one-step reduction to one or more steps of reduction.

Proposition 6.7. For expressions D and E ofDCµν, the relation D−→DCµν E impliesD −→+
DC2 E.

Proof. First we show the claim without (βµ) nor (βν) by induction on−→DCµν with Lemma 6.5.
Next, by using this and Lemma 6.5, we show the claim of this proposition by induction on−→DCµν.
We consider cases according to the reduction rule.

The case of (βµ) is shown as follows: Suppose we haveinµX.A〈M〉 • itrB
α[K, L]. This is

equal to〈λ(y, β).(y • ((QY[X.A] • RM{y, γ}).γ@β))〉a • a[(λ(x.α).(x • K))@L]. It is reduced to
(λ(y, β).(y • ((QY[X.A] • RM{y, γ}).γ@β))) • ((λ(x.α).(x • K))@L), and then we have (λ(x.α).(x •
K))• ((QY[X.A] •RM{λ(x.α).(x•K), γ}).γ@L) by more than one step reduction. Sinceλ(x.α).(x•K)
equalsλx.((x • K).α), we have ((QY[X.A] • RM{λ(x.α).(x • K), γ}).γ • K).α • L by (β ⊃). This is
reduced to ((QY[X.A] •RM{λ(x.α).(x•K),K}).α • L by (βR). HereRM{λ(x.α).(x•K),K} is equal to

(λ(y, β).(y • itrB
α[K, β])@(M@K)). Hence we can reduceQY[X.A] • RM{λ(x.α).(x • K),K} to M •

monoX.A
µ,Y,α{itr

B
α [K, β],K} by using Lemma 6.5 and the first claim. Therefore the previously obtained

expression ((QY[X.A]•RM{λ(x.α).(x•K),K}).α•L is reduced to (M•monoX.A
µX.A,Y,α{itr

B
α[K, β],K}).α•

L. This is equal to(M • monoX.A
µX.A,Y,β{itr

B
α [K, β],K}).α • L.

The case of (βν) is shown by using the duality of (βν) and (βµ), the duality ofDC2, and
Lemma 6.4.

Other cases are shown straightforwardly.

Finally, we complete a proof of strong normalization ofDCµν.

Theorem 6.8(Strong normalization ofDCµν). Every typable expression ofDCµν is strongly normal-
izing.

Proof. Assume thatD is typable inDCµν and there is an infinite reduction sequence

D −→DCµν D1 −→DCµν . . .

starting fromD. ThenD is typable inDC2 by Proposition 6.6 and

D −→+
DC2 D1 −→

+
DC2 . . .

is an infinite reduction sequence starting fromD by Proposition 6.7. This contradicts Theorem 5.16.

7. The call-by-value and call-by-name DCµν

The motivation for introducing the dual calculus in [27] wasto show the duality between call-
by-value and call-by-name. In this section, we follow this motivation. That is, we will extend
the duality to inductive and coinductive types by introducing the call-by-value and call-by-name
variants ofDCµν. These variants also satisfy the important properties suchas strong normalization
and the Church-Rosser property.

We recall the definition of the call-by-value and call-by-name DC. The call-by-value and call-
by-name dual calculus use the notion of values and covalues.They are defined as follows.
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Definition 7.1 (Values and covalues ofDC [27]). The values (denoted byV,W, . . .) and covalues
(denoted byP,Q, . . .) of DC are defined by the following grammar:

V ::= x | 〈V,V〉 | 〈V〉inl | 〈V〉inr | [K]not,
P ::= α | [P,P] | fst[P] | snd[P] | not〈M〉,

whereM is a term andK is a coterm ofDC.

The types, expressions, and typing rules of the call-by-value and call-by-nameDC are the same
as them ofDC. The call-by-value reduction relation ofDC is defined as follows.

Definition 7.2 (Call-by-value reduction rules ofDC). The call-by-value reduction relation−→v
DC

of
DC is defined from the following rules.

(β∧1)v 〈V,W〉 • fst[K] −→v
DC

V • K,
(β∧2)v 〈V,W〉 • snd[K] −→v

DC
W • K,

(β∨1)v 〈V〉inl • [K, L] −→v
DC

V • K,
(β∨2)v 〈W〉inr • [K, L] −→v

DC
W • L,

(β¬)v [K]not • not〈M〉 −→v
DC

M • K,
(βR)v (S).α • K −→v

DC
S[K/α],

(βL)v V • x.(S) −→v
DC

S[V/x],
(ς∧1)v 〈M,N〉 −→v

DC
(M• x.(〈x,N〉 • α)).α,

(ς∧2)v 〈V,M〉 −→v
DC

(M• x.(〈V, x〉 • α)).α,
(ς∨1)v 〈M〉inl −→v

DC
(M• x.(〈x〉inl • α)).α,

(ς∨2)v 〈M〉inr −→v
DC

(M• x.(〈x〉inr • α)).α,
(ηR)+v M −→v

DC
(M • α).α, and

(ηL)+v K −→v
DC

x.(x • K),

whereM is not a value, andx andα in (ς∧1)v, (ς∧2)v, (ς∨1)v, (ς∨2)v, (ηL)+v and (ηR)+v are fresh.

An example of use ofς-rules is

〈(S).α〉inl −→v
DC

((S).α • x.(〈x〉inl • β)).β −→v
DC

(S[x.(〈x〉inl • β)/α]).β.

This system is obtained from the call-by-value dual calculus given in [27] by removing the implica-
tion.

We note that the original system in [27] includes implication types, values for implication, and
a call-by-valueβ-rule for implication. However, as mentioned in [27], an implication A ⊃ B can be
defined as¬(A∧¬B) under call-by-value. Hence each value for implication canbe replaced a value
in terms of other connectives, and the reduction rule for implication can be simulated by the other
β-rules.

The rules (ς∧1)v, (ς∧2)v, (ς∨1)v, and (ς∨2)v are the separated forms of the rule (ς) given in
[27], and our rules are equivalent to his rule. However, we prefer this separated form since this form
is easy to addς-rules for inductive and coinductive types later.

The symbol+ used in (ηL)+v and (ηR)+v meansη-expansion rules. When we extend call-by-
value and call-by-name calculi with inductive and coinductive types later in this section, we will
use the reduction (ηR) and (ηL) instead of the above expansion (ηR)+v and (ηL)+v for the following
reasons. In [27],η-rules requires side conditions to avoid infinite reductionsequence: “expansions
(ηL) and (ηR) should be applied only to a termM or cotermK that is not the immediate subject
of a cut”. However, two problems still remain aboutη-expansion rules. One problem is that a
value becomes non-value by theη-expansion: For example, a valuex is expanded to a non-value
(x • α).α by (ηR)+v -rule. The second problem is that infinite reduction sequences occur withς-rule:
For example,〈x〉inl • β is reduced to〈(x • α).α〉inl • β by (ηR)+v . Since (x • α).α is not a value,
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it can be reduced to ((x • α).α • y.(〈y〉inl • γ)).γ • β by (ς∨1)v. Then, we have〈x〉inl • β again
by (βL)v and (βR)v-rules. Tzevelekos [26] assumed additional conditions onη-expansion rules, and
showed strong normalization and the Church-Rosser properties of the call-by-value and call-by-
nameDC under his conditions. However, his approach does not solve the first problem. One simple
solution for the both problems is to replaceη-expansion byη-reduction. For this reason, we will
adoptη-reduction in our call-by-value and call-by-name systems.

The dual calculus considered in [28] hasη-rules for conjunction, disjunction, and negation.
These rules could be defined naturally because the system in [28] was based on equations. However,
we cannot define theseη-rules naively in the call-by-value and call-by-name reduction systems of
DC since these rules break the Church-Rosser property: The call-by-value (η∨)-rule defined in [28]
is [x.(〈x〉inl • K), y.(〈y〉inr • K)] = K, whereK has typeA ∨ B. Suppose that we add (η∨)-
reduction rule [x1.(〈x1〉inl•K), x2.(〈x2〉inr•K)] →v

DC
K to the call-by-valueDC. Then the statement

[x1.(〈x1〉inl • y.(z• α)), x2.(〈x2〉inr • y.(z• α))] has two normal forms [x1.(z• α), x2.(z• α)] and
y.(z• α). Suppose that we add (η∨)-expansion ruleK →v

DC
[x1.(〈x1〉inl • K), x2.(〈x2〉inr • K)] to

the call-by-valueDC. The statementx• y.(z• α) (the variablezand the covariableα have typeX,
and the variablesx andy have typeA∨B) is reduced toz•α by (βL)-rule. The statementx•y.(z•α)
is also expanded tox • [x1.(〈x1〉inl • y.(z• α)), x2.(〈x2〉inr • y.(z• α))] by (η∨)-rule, and then it
is reduced tox • [x1.(z• α), x2.(z • α)] by (βL)v-rule. These two results are never confluent since
the first onez• α cannot produce a coterm of the form [K, L], and the bracket [..] in the second one
x • [x1.(z• α), x2.(z• α)] cannot be eliminated.

The call-by-name reduction relation ofDC is defined as follows.

Definition 7.3 (Call-by-name reduction rules ofDC). The call-by-name reduction relation−→n
DC

of
DC is defined from the following rules.

(β∧1)n 〈M,N〉 • fst[P] −→n
DC

M • P,
(β∧2)n 〈M,N〉 • snd[P] −→n

DC
N • P,

(β∨1)n 〈M〉inl • [P,Q] −→n
DC

M • P,
(β∨2)n 〈M〉inr • [P,Q] −→n

DC
M • Q,

(β¬)n [K]not • not〈M〉 −→n
DC

M • K,
(βR)n (S).α • P −→n

DC
S[P/α],

(βL)n M • x.(S) −→n
DC

S[M/x],
(ς∧1)n fst[K ] −→n

DC
x.((x • fst[α]).α • K),

(ς∧2)n snd[K ] −→n
DC

x.((x • snd[α]).α • K),
(ς∨1)n [K , L] −→n

DC
x.((x • [α, L]).α • K),

(ς∨2)n [P,K ] −→n
DC

x.((x • [P, α]).α • K),
(ηR)+n M −→n

DC
(M • α).α, and

(ηL)+n K −→n
DC

x.(x • K),

whereK is not a covalue, andx andα in (ς∧1)n, (ς∧2)n, (ς∨1)n, (ς∨2)n, (ηL)+n and (ηR)+n are fresh.

This system is obtained from the call-by-name dual calculusgiven in [27] by removing the
implication.

As mentioned in [27], an implicationA ⊃ B can be defined as¬A ∨ B under call-by-name.
Hence, covalues for implication, and a call-by-name reduction rules for implication given in the
original system can be replaced in terms of other connectives.

The call-by-value reduction and the call-by-name reduction are dual strategies inDC.
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Proposition 7.4 (Duality between call-by-value and call-by-name inDC [27]). Let D and E be
expressions ofDC. Then, D−→v

DC
E iff (D)◦ −→n

DC
(E)◦, where(−)◦ is the duality transformation

defined in the section 2.

Now we will introduce the call-by-value and call-by-name variants ofDCµν. We first consider
a call-by-value restriction ofDCµν (calledweak call-by-valueDCµν) which is given by simply re-
stricting the reduction rules ofDCµν. This restricted system satisfies both strong normalization and
the Church-Rosser properties. However, this system is rather weak since it lacks theς-rules. The
call-by-valueDCµν (denoted byCBV DCµν) is obtained by adding theς-rules to the weak call-by-
valueDCµν. The weak call-by-nameDCµν and the call-by-nameDCµν (denoted byCBN DCµν) are
also considered. The call-by-nameDCµν is the dual system of the call-by-valueDCµν.

We first define the notion of values and covalues inDCµν.

Definition 7.5 (Values and covalues ofDCµν). The values (denoted byV,W, . . .) and the covalues
(denoted byP,Q, . . .) of DCµν are defined by the following grammar:

V ::= x | 〈V,V〉 | 〈V〉inl | 〈V〉inr | [K]not | inµX.A〈V〉 | coitrA
x 〈M,V〉,

P ::= α | [P,P] | fst[P] | snd[P] | not〈M〉 | outνX.A[P] | itrA
α[K,P],

whereM is a term andK is a coterm ofDCµν.

The set of values ofDCµν is a subset of terms ofDCµν. The set of covalues ofDCµν is a subset
of coterms ofDCµν. Note that the above definition is a straightforward extension of the definition of
values and covalues inDC.

The set of values and covalues are closed under substitutionof values and covalues, respec-
tively.

Lemma 7.6. Let V and W be values, and P and Q be covalues ofDCµν. The following claims hold.

(1) V[W/x] is a value ofDCµν.
(2) P[Q/α] is a covalue ofDCµν.

Proof. They are straightforwardly proved by induction onV andP.

The types, expressions, and typing rules of the weak call-by-value and the weak call-by-name
DCµν are the same as them ofDCµν. The reduction relation of the weak call-by-valueDCµν is given
as follows.

Definition 7.7 (Reduction rules of the weak call-by-valueDCµν). The reduction relation−→wCBV
of the weak call-by-valueDCµν is defined as the compatible closure of the reduction rules (β∧1)v,
(β∧2)v, (β∨1)v, (β∨2)v, (β¬)v, (βR)v, (βL)v, and the following reduction rules:

(βµ)v inµX.C〈V〉 • itrA
α[K, L] −→wCBV (V • monoX.C

µX.C,A,β{ itr
A
α[K, β], K }).α • L,

(βν)v coitrA
x〈M,V〉 • out

νX.C[K] −→wCBV V • x.(monoX.C
A,νX.C,z{ coitr

A
x〈M, z〉, M } • K),

(ηR)v (M • α).α −→wCBV M,
(ηL)v x.(x • K) −→wCBV K,

wherex andα are fresh in (ηL)v and (ηR)v, respectively.

The reduction relation of the weak call-by-nameDCµν is given as follows.

Definition 7.8 (Reduction rules of the weak call-by-nameDCµν). The reduction relation−→wCBN
of the weak call-by-nameDCµν is defined as the compatible closure of the reduction rules (β∧1)n,
(β∧2)n, (β∨1)n, (β∨2)n, (β¬)n, (βR)n, (βL)n, and the following reduction rules:
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(βµ)n inµX.C〈M〉 • itrA
α[K,P] −→wCBN (M • monoX.C

µX.C,A,β{ itr
A
α [K, β], K }).α • P,

(βν)n coitrA
x〈M,N〉 • out

νX.C[P] −→wCBN M • x.(monoX.C
A,νX.C,z{ coitr

A
x〈M, z〉, M } • P),

(ηR)n (M • α).α −→wCBN M,
(ηL)n x.(x • K) −→wCBN K,

wherex andα are fresh in (ηL)n and (ηR)n, respectively.

The weak call-by-value reduction and the weak call-by-namereduction are dual strategies.

Proposition 7.9(Duality between weak call-by-value and weak call-by-namein DCµν). Let D and
E be expressions ofDCµν. Then, D−→wCBV E iff (D)◦ −→wCBN (E)◦, where(−)◦ is the duality
transformation ofDCµν defined in the section 3.

The rules (β¬)v, (βR)v, (ηL)v, and (ηR)v are the same as (β¬), (βR), (ηL), and (ηR)-rules ofDCµν,
respectively. The rules (β∧1)v, (β∧2)v, (β∨1)v, (β∨2)v, (βL)v, (βµ)v, and (βν)v are just restrictions
of the rules (β∧1), (β∧2), (β∨1), (β∨2), (βL), (βµ), and (βν), respectively. The situation of the
call-by-name case is similar to the call-by-value case. Hence, we can easily obtain the following
proposition.

Proposition 7.10. Let D and E be expressions inDCµν. Then the following claims hold.

(1) If D −→wCBV E, then D−→DCµν E.
(2) If D −→wCBN E, then D−→DCµν E.

From the above proposition and the strong normalization result of DCµν (Theorem 6.8), we have
the strong normalization of the weak call-by-value and the weak call-by-name reduction relations.

Proposition 7.11(Strong normalization of the weak CBV and CBNDCµν). We have the following.

(1) Every typable expression is strongly normalizing in the weak call-by-valueDCµν.
(2) Every typable expression is strongly normalizing in the weak call-by-nameDCµν.

The reduction relations−→wCBV and−→wCBN of DCµν satisfy the Church-Rosser property. We
first recall the definition of the Church-Rosser property.

Definition 7.12 (Church-Rosser property). Let A be a set and→ be a reduction relation onA. We
write b← a→ c if both a→ b anda→ c hold. We also writeb→ a← c if both b→ a andc→ a
hold.

(1) The reduction relation→ satisfies the diamond property if, for alla, b, c ∈ A, the relation
b← a→ c implies that there existsd ∈ A such thatb→ d← c.

(2) The reduction relation→ satisfies the Church-Rosser property if→∗ satisfies the diamond prop-
erty, where→∗ is the reflexive transitive closure of→.

From now on, we concentrate to show the Church-Rosser property of −→wCBV. The Church-
Rosser property of−→wCBN can be obtained from the result of−→wCBV and the duality (Proposi-
tion 7.9). In order to show the Church-Rosser property of−→wCBV, we will use the parallel reduction
technique. The definition of the parallel reduction relation is given as follows.

Definition 7.13 (Parallel reduction of the weak call-by-valueDCµν). The parallel reduction relation
(denoted by⇒) of the weak call-by-valueDCµν is defined inductively from the following rules.

x⇒ x andα⇒ α for any variablex and covariableα.
〈M,N〉 ⇒ 〈M′,N′〉 if M ⇒ M′ andN⇒ N′.
[K, L] ⇒ [K′, L′] if K ⇒ K′ andL ⇒ L′.
〈M〉inl⇒ 〈M′〉inl, 〈M〉inr⇒ 〈M′〉inr, and not〈M〉 ⇒ not〈M′〉 if M ⇒ M′.
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fst[K] ⇒ fst[K′], snd[K] ⇒ snd[K′], and [K]not⇒ [K′]not if K ⇒ K′.
inµX.A〈M〉 ⇒ inµX.A〈M′〉 if M ⇒ M′.
outνX.A[K] ⇒ outνX.A[K′] if K ⇒ K′.
coitrA

x〈M,N〉 ⇒ coitr
A
x〈M

′,N′〉 if M ⇒ M′ andN ⇒ N′.
itrA

α [K, L] ⇒ itrA
α [K

′, L′] if K ⇒ K′ andL⇒ L′.
M • K ⇒ M′ • K′ if M ⇒ M′ andK ⇒ K′.
(S).α⇒ (S′).α andx.(S)⇒ x.(S′) if S⇒ S′.
M • x.(S)⇒ S′[V/x] if M ⇒ V andS⇒ S′.
(S).α • K ⇒ S′[K′/α] if K ⇒ K′ andS⇒ S′.
〈M,N〉 • fst[K] ⇒ V • K′ if M ⇒ V, N ⇒W, andK ⇒ K′.
〈M,N〉 • snd[K] ⇒W • K′ if M ⇒ V, N⇒W, andK ⇒ K′.
〈M〉inl • [K, L] ⇒ V • K′ if M ⇒ V, K ⇒ K′.
〈M〉inl • [K, L] ⇒ V • L′ if M ⇒ V, L⇒ L′.
[K]not • not〈M〉 ⇒ M′ • K′ if M ⇒ M′ andK ⇒ K′.
inµX.C〈M〉 • itrA

α[K, L] ⇒ (V • monoX.C
µX.C,A,β{ itr

A
α[K

′, β], K′ }).α • L′ if M ⇒ V, K ⇒ K′,
andL⇒ L′.
coitrA

x〈M,N〉 • out
νX.C[K] ⇒ V • x.(monoX.C

A,νX.C,z{ coitr
A
x〈M

′, z〉, M′ } • K′) if M ⇒ M′,
N ⇒ V, andK ⇒ K′.

(M • α).α⇒ M′ if M ⇒ M′ andα is not free inM.
x.(x • K)⇒ K′ if K ⇒ K′ andx is not free inK.

The parallel reduction of the weak call-by-valueDCµν satisfies the following basic properties.

Lemma 7.14. Let M be a term, V and V′ be values, K and K′ be coterms, and D and D′ be
expressions ofDCµν. Then the following hold.

(1) Suppose D⇒ E. If D is a term, then E is also a term. If D is a coterm, then E is also a coterm.
If D is a statement, then E is also a statement. If D is a value, then E is also a value.

(2) D⇒ D.
(3) If M ⇒ V and D⇒ D′, then D[M/x] ⇒ D′[V/x].
(4) If K ⇒ K′ and D⇒ D′, then D[K/α] ⇒ D′[K′/α].

Proof. The claim (1) is shown by induction on the definition of⇒. The claim (2) is shown by
induction onD.

The claim (3) is shown by induction onD ⇒ D′ with Lemma 7.6. We show the case that
N0 • y.(T0) ⇒ T1[W/y] is derived fromN0 ⇒ W andT0 ⇒ T1. By the induction hypothesis, we
haveN0[M/x] ⇒ W[V/x] andT0[M/x] ⇒ T1[V/x]. By Lemma 7.6,W[V/x] is a value. Hence we
have (N0 • y.(T0))[M/x] = (N0[M/x]) • y.(T0[M/x]) ⇒ T1[V/x][W[V/x]/y] = T1[W/y][V/x]. The
other cases are straightforwardly proved by the induction hypothesis.

The claim (4) is shown by induction onD⇒ D′.

Lemma 7.15. Let D and D′ be expressions ofDCµν. Then the following claims hold.

(1) If D −→wCBV E, then D⇒ E.
(2) If D ⇒ E, then D−→∗

wCBV
E.

(3) The parallel reduction relation⇒ satisfies the diamond property, that is, if the relation D1 ⇐

D⇒ D2 holds, then there exists E such that D1⇒ E⇐ D2.

Proof. The claim (1) is shown by induction on the definition of−→wCBV. The claim (2) is shown by
induction on the definition of⇒.
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The claim (3) is shown by induction onD. We show the case thatD is the shape of (S).α•x.(T),
D1 is S′[L/α], andD2 is T′[V/x] with the conditionsS ⇒ S′, T ⇒ T′, x.T ⇒ L, and (S).α ⇒ V.
Recall that a critical pair inDCµν occurs in this shape. This case is most important to see that this
critical pair is avoided in the weak call-by-valueDCµν .

From the definition of the parallel reduction and (S).α⇒ V, we haveS = M • α, M ⇒ V, and
α is not free inM. Then, fromM • α = S⇒ S′, we have the following two cases: (i)S′ = M′ • α
andM ⇒ M′ for someM′, or (ii) M = (S0).β, S′ = S0

′[α/β], andS0⇒ S0
′ for someS0 andS0

′.
From the conditionx.(T) ⇒ L, we also have the following two cases: (a)T = x • K, x is not free
in K, andK ⇒ L for someK andL, or (b)L = x.(T′′) andT ⇒ T′′ for someT′′.

The case of (i). We haveD1 = (S′)[L/α] = (M′•α)[L/α] = M′•L. By the induction hypothesis
andV ⇐ M ⇒ M′, there exists a termW such thatV ⇒ W⇐ M′. From Lemma 7.14 (1),W is a
value. We then consider the subcases (a) and (b).

The subcase of (a). From the conditionK ⇒ L andT = x• K, we have (x• L)⇐ T ⇒ T′. By
the induction hypothesis, there exists a statementT̃ such that (x • L) ⇒ T̃ ⇐ T′. Hence we have
D1 = (x • L)[M′/x] ⇒ T̃[W/x] ⇐ T′[V/x] = D2 from M′ ⇒W⇐ V and Lemma 7.14 (3).

The subcase of (b). By the induction hypothesis andT′ ⇐ T ⇒ T′′, there existsT̃ such
that T′ ⇒ T̃ ⇐ T′′. Hence we haveD2 = T′[V/x] ⇒ T̃[W/x] by Lemma 7.14 (3) andV ⇒ W.
We also haveD1 = M′ • L = M′ • x.(T′′) ⇒ T̃[W/x] from M′ ⇒ W andT′′ ⇒ T̃. Therefore
D1⇒ T̃[W/x] ⇐ D2 holds.

The case of (ii). We first claim that, for anyS andV, if (S).α⇒ V, then there is someM such
thatS = M • α, M ⇒ V, andα is not free inM. This claim is easily obtained from the definition
of the parallel reduction. In this case, we haveV ⇐ M = (S0).β ⇒ (S0

′).β. By the induction
hypothesis and Lemma 7.14 (1), there is a valueW such thatV ⇒ W⇐ (S0

′).β. Then, there exists
a N such thatS0

′ = N • β, N ⇒ W, andβ is not free inN from the above claim. Hence we have
D1 = S′[L/α] = S0

′[α/β][L/α] = S0
′[L/β] = (N • β)[L/β] = N • L. We then consider the subcases

(a) and (b).
The subcase of (a). By the induction hypothesis, there exists a statement̃T such that (x• L)⇒

T̃ ⇐ T′. Hence we haveD1 = (x • L)[N/x] ⇒ T̃[W/x] ⇐ T′[V/x] = D2 from N ⇒ W ⇐ V and
Lemma 7.14 (3).

The subcase of (b). By the induction hypothesis andT′ ⇐ T ⇒ T′′, there existsT̃ such
that T′ ⇒ T̃ ⇐ T′′. Hence we haveD2 = T′[V/x] ⇒ T̃[W/x] by Lemma 7.14 (3) andV ⇒ W.
We also haveD1 = N • L = N • x.(T′′) ⇒ T̃[W/x] from N ⇒ W and T′′ ⇒ T̃. Therefore
D1⇒ T̃[W/x] ⇐ D2 holds.

The other cases are also proved by the induction hypothesis.

From Lemma 7.15, we can obtain the Church-Rosser property ofthe weak call-by-valueDCµν.

Proposition 7.16.The reduction relations−→wCBV and−→wCBN ofDCµνcbv satisfy the Church-Rosser
property.

Proof. We first show the Church-Rosser property of−→wCBV. Suppose thatD −→∗
wCBV

D′ and
D −→∗

wCBV
D′′ hold. We will show that there exists someE such thatD′ −→∗

wCBV
E andD′′ −→∗

wCBV

E. We haveD = D00 −→wCBV D01 −→wCBV . . . −→wCBV D0n = D′ and D −→wCBV D10 −→wCBV
. . . −→wCBV D1m = D′′ for somen,m ≥ 0. By Lemma 7.15 (1),D ⇒ D01 ⇒ . . . ⇒ D0n = D′ and
D ⇒ D′′10 ⇒ . . . ⇒ D′′1m = D′′ hold. By the diamond property of⇒, there existsD(i+1)( j+1) such
that Di( j+1) ⇒ D(i+1)( j+1) ⇐ D(i+1) j for each 0≤ i ≤ n − 1 and 0≤ j ≤ m− 1. Hence we have
D′ = D0n⇒ D1n⇒ . . .⇒ Dmn andD′′ = Dm0⇒ Dm1⇒ . . .⇒ Dmn. By Lemma 7.15 (2), we can
replace⇒ by −→∗

wCBV
. Therefore, we haveD′ −→∗

wCBV
Dmn andD′′ −→∗

wCBV
Dmn.
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The Church-Rosser property of−→wCBN is shown by the former result and the duality between
−→wCBV and−→wCBN (Proposition 7.9).

We will next define the call-by-value and the call-by-nameDCµν, which we callCBV DCµν and
CBN DCµν. The types, expressions, and typing rules ofCBV DCµν andCBN DCµν are the same as them
of DCµν.

The reduction relation ofCBV DCµν is obtained by addingς-rules to the weak call-by-value
DCµν.

Definition 7.17 (Reduction relation ofCBV DCµν). The reduction relation−→CBV of CBV DCµν is
defined by the compatible closure of the reduction rules of the weak call-by-valueDCµν and (ς∧1)v,
(ς∧2)v, (ς∨1)v, (ς∨2)v, and the following reduction rules:

(ςµ)v in
µX.C〈M〉 −→CBV (M• x.(inµX.C〈x〉 • α)).α,

(ςν)v coitrA
y 〈M,M〉 −→CBV (M• x.(coitrA

y 〈M, x〉 • α)).α,

whereM is not a value ofDCµν, and the variablex and the covariableα in (ςµ)v, (ςν)v are fresh.

We sometimes write (β)v to mean (β∧1)v, (β∧2)v, (β∨1)v, (β∨2)v, (β¬)v, (βµ)v, (βν)v, (βL)v, or
(βR)v-rule. We write (η)v to mean (ηL)v or (ηL)v-rule. We also write (ς)v to mean (ς∧1)v, (ς∧2)v,
(ς∨1)v, (ς∨2)v, (ςµ)v, or (ςν)v-rule.

The reduction relation ofCBN DCµν is obtained by addingς-rules to the weak call-by-name
DCµν.

Definition 7.18 (Reduction relation ofCBN DCµν). The reduction relation−→CBN of CBN DCµν is
defined by the compatible closure of the reduction rules of the weak call-by-nameDCµν and (ς∧1)n,
(ς∧2)n, (ς∨1)n, (ς∨2)n, and the following reduction rules:

(ςµ)n itrA
β [K,K ] −→CBN x.((x • itrA

β [K, α]).α • K),
(ςν)n outνX.C[K ] −→CBN x.((x • outνX.C[α]).α • K),

whereK is not a covalue ofDCµν, and the variablex and the covariableα in (ςµ)n, (ςν)n are fresh.

From the above definitions,CBV DCµν includes the weak call-by-valueDCµν, andCBN DCµν
includes the weak call-by-nameDCµν. That is, the following lemma holds.

Lemma 7.19. Let D and E be expressions ofDCµν. Then, the following claims hold.

(1) If D −→wCBV E, then D−→CBV E.
(2) If D −→wCBN E, then D−→CBN E.

The call-by-valueDCµν is dual to the call-by-nameDCµν.

Proposition 7.20(Duality between call-by-value and call-by-name inDCµν). Let D and E be ex-
pressions ofDCµν. Then, D−→CBV E iff (D)◦ −→CBN (E)◦, where(−)◦ is the duality transformation
of DCµν defined in the section 3.

The call-by-value and call-by-nameDCµν satisfy both the Church-Rosser and strong normal-
ization properties. We will concentrate to show these properties of CBV DCµν. The proof will be
performed by giving a transformation fromCBV DCµν into the weak call-by-valueDCµν. The trans-
formation (−)⊛ given as follows.
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Definition 7.21. Let D be a expression ofDCµν. The expression (D)⊛ of DCµν is defined inductively
as follows.

(x)⊛ = x,
(〈V,W〉)⊛ = 〈(V)⊛, (W)⊛〉,
(〈V,N〉)⊛ = ((N)⊛ • y.(〈(V)⊛, y〉 • α)).α,
(〈M,W〉)⊛ = ((M)⊛ • x.(〈x, (W)⊛〉 • α)).α,
(〈M,N〉)⊛ =

(

(M)⊛ • x.
(

((N)⊛ • y.(〈x, y〉 • β)).β • α
)

)

.α,

(〈V〉inl)⊛ = 〈(V)⊛〉inl,
(〈M〉inl)⊛ = ((M)⊛ • x.(〈x〉inl • α)).α,
(〈V〉inr)⊛ = 〈(V)⊛〉inr,
(〈M〉inr)⊛ = ((M)⊛ • x.(〈x〉inr • α)).α,
([K]not)⊛ = [(K)⊛]not,
(inµX.A〈M〉)⊛ = ((M)⊛ • x.(inµX.A〈x〉 • α)).α,
(inµX.A〈V〉)⊛ = inµX.A〈(V)⊛〉,
(coitrA

z 〈M,V〉)
⊛ = coitrA

z 〈(M)⊛, (V)⊛〉,
(coitrA

z 〈M,N〉)
⊛ = ((N)⊛ • y.(coitrA

z 〈(M)⊛, y〉 • α)).α,
((S).α)⊛ = ((S)⊛).α,
(α)⊛ = α,
([K, L])⊛ = [(K)⊛, (L)⊛],
(fst[K])⊛ = fst[(K)⊛],
(snd[K])⊛ = snd[(K)⊛],
(not〈M〉)⊛ = not〈(M)⊛〉,
(outνX.A[K])⊛ = outνX.A[(K)⊛],
(itrA

γ [K, L])⊛ = itrA
γ [(K)⊛, (L)⊛],

(x.(S))⊛ = x.((S)⊛), and
(M • K)⊛ = (M)⊛ • (K)⊛,

whereV andW are values,M andN are not values, andx, y, α, β are fresh.

We need the redundant definition of (〈M,N〉)⊛ for a technical reason, and it is necessary in
order to show Proposition 7.25.

The transformation (−)⊛ preserves typing.

Proposition 7.22. Let M be a term, K be a coterm, and S be a statement ofDCµν. The following
claims hold.

(1) If Γ ⊢DCµν ∆ | M : A is provable, thenΓ ⊢DCµν ∆ | (M)⊛ : A holds.
(2) If K : A | Γ ⊢DCµν ∆ is provable, then(K)⊛ : A | Γ ⊢DCµν ∆ holds.
(3) If Γ | S ⊢DCµν ∆ is provable, thenΓ | (S)⊛ ⊢DCµν ∆ holds.

Proof. They are shown simultaneously by induction onM, K, andS.

The transformation (−)⊛ satisfies the following basic properties.

Lemma 7.23. Let V be a value, M and N be terms, D be an expression ofDCµν. Then the following
claims hold.

(1) M is a value iff (M)⊛ is a value.
(2a) 〈(M)⊛, (N)⊛〉 −→∗

wCBV
(〈M,N〉)⊛.

(2b) 〈(M)⊛〉inl −→∗
wCBV

(〈M〉inl)⊛, and〈(M)⊛〉inr −→∗
wCBV

(〈M〉inr)⊛.

(2c) inµX.A〈(M)⊛〉 −→∗
wCBV

(inµX.A〈M〉)⊛.
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(2d) coitrA
z 〈(M)⊛, (N)⊛〉 −→wCBV (coitrA

z 〈M,N〉)
⊛.

(3a) monoX.A
B,C,x{(M)⊛, (N)⊛} −→∗

wCBV
(monoX.A

B,C,x{M,N})
⊛.

(3b) monoX.A
B,C,α{(K)⊛, (L)⊛} −→∗

wCBV
(monoX.A

B,C,α{K, L})
⊛.

(4) D −→∗
CBV

(D)⊛.

Proof. The claim (1) is shown by the definition of (−)⊛. The claims (2a), (2b), (2c), and (2d) are
shown by (1) andς-rules. The claims (3a) and (3b) are shown by induction on||C||X using (2a),
(2b), (2c), and (2d). The claim (4) is shown by induction onD.

The transformation (−)⊛ preserves substitution of a value for a variable, and of a coterm for a
covariable.

Lemma 7.24. (D[V/x])⊛ = (D)⊛[(V)⊛/x] and(D[K/α])⊛ = (D)⊛[(K)⊛/α].

Proof. The former claim is shown by induction onD using Lemma 7.23 (1). The latter one is shown
by induction onD.

The transformation (−)⊛ translates one step reduction of−→CBV into zero or more steps reduc-
tion of −→wCBV.

Proposition 7.25. D −→CBV E implies(D)⊛ −→∗
wCBV

(E)⊛. In particular, if D −→CBV E by (β)v or
(η)v, then(D)⊛ −→+

wCBV
(E)⊛ holds.

Proof. The claim is shown by induction on the definition of−→CBV. We show the cases of (βL)v,
(βµ)v, and (ς∧1)v.

The case of (βL)v is proved by Lemma 7.24. We have (V • x.(S))⊛ = (V)⊛ • x.((S)⊛) −→wCBV
(S)⊛[(V)⊛/x]. By Lemma 7.24, the last statement is (S[V/x])⊛.

The case of (βµ)v is proved by Lemma 7.23 (3b). We have (inµX.C〈V〉 • itrA
α [K, L])⊛ =

inµX.C〈(V)⊛〉 • itrA
α [(K)⊛, (L)⊛] −→wCBV ((V)⊛ • monoX.C

µX.C,A,β{ itr
A
α[(K)⊛, β], (K)⊛ }).α • (L)⊛ =

((V)⊛ • monoX.C
µX.C,A,β{ (itr

A
α[K, β])

⊛, (K)⊛ }).α • (L)⊛. By Lemma 7.23 (3b), the last statement is

reduced to ((V)⊛ • (monoX.C
µX.C,A,β{ itr

A
α[K, β], K })⊛).α • (L)⊛ by −→∗

wCBV
. Therefore this statement is

((V • monoX.C
µX.C,A,β{ itr

A
α[K, β], K }).α • L)⊛.

The case of (ς∧1)v is proved by the definition of (−)⊛. We consider the subcase of
〈M,N〉 −→CBV (M• x.(〈x,N〉•α)).α, whereM andN are not values. Hence we have (〈M,N〉)⊛ =
(

(M)⊛ • x.
(

((N)⊛ •y.(〈x, y〉 •β)).β•α
)

)

.α =
(

(M)⊛ • x.
(

(〈x,N〉)⊛ •α
))

.α =
(

M• x.
(

〈x,N〉•α
))

.α
)⊛.

The other subcase of (ς∧1)v for 〈N ,V〉 with a non-valueN is shown in the similar way.
The other cases are also shown by the induction hypothesis.

Then we can show the Church-Rosser property of−→CBV and−→CBN.

Theorem 7.26. The reduction relations−→CBV of CBV DCµν and −→CBN of CBN DCµν satisfy the
Church-Rosser property.

Proof. We first show the Church-Rosser property of−→CBV.
Assume thatD −→∗

CBV
D′ andD −→∗

CBV
D′′ hold. By Proposition 7.25, we have (D)⊛ −→∗

wCBV

(D′)⊛ and (D)⊛ −→∗
wCBV

(D′′)⊛. By the Church-Rosser property of−→wCBV, there existsE such that
(D′)⊛ −→∗

wCBV
E and (D′′)⊛ −→∗

wCBV
E. Therefore, by Lemma 7.19 (1) and Lemma 7.23 (4), we

haveD′ −→∗
CBV

(D′)⊛ −→∗
CBV

E andD′′ −→∗
CBV

(D′′)⊛ −→∗
CBV

E.
The Church-Rosser property of−→CBN is shown by the former result and the duality between

−→CBV and−→CBN (Prop 7.20).
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We will prove strong normalization ofCBV DCµν andCBN DCµν. This property is shown by
using the strong normalization result of the weak call-by-value and the weak call-by-nameDCµν
(Proposition 7.11).

We define the following rank of expressions inDCµν. This rank is used to show that there is no
infinite sequence ofς-rules.

Definition 7.27. Let D be an expression inDCµν. The rankr(D) of D is defined by:

r(x) = r(α) = 0,
r([K]not) = r(fst[K]) = r(snd[K]) = r(outνX.A[K]) = r(K),
r([K, L]) = r(itrA

α [K, L]) = r(K) + r(L),
r(not〈M〉) = r(M),
r(〈M,N〉) = r(M) + r(N) + 2,
r(〈M,V〉) = r(〈V,M〉) = r(M) + r(V) + 1,
r(〈V,W〉) = r(V) + r(W),
r(〈M〉inl) = r(〈M〉inr) = r(inµX.A〈M〉) = r(M) + 1,
r(〈V〉inl) = r(〈V〉inr) = r(inµX.A〈V〉) = r(V),
r(coitrA

x 〈M,N〉) = r(M) + r(N) + 1,
r(coitrA

x 〈M,V〉) = r(M) + r(V),
r(x.(S)) = r((S).α) = r(S), and
r(M • K) = r(M) + r(K),

whereV andW are values, andM andN are not values.

The rankr(D) counts the number of redexes of (ς∧1)v, (ς∧2)v, (ς∨1)v, (ς∨2)v, (ςµ)v, and (ςν)v-
rules. We writeD −→ςv E whenD is reduced toE by one step (ς)v-reduction.

Lemma 7.28. Let D and E be expressions ofDCµν. Then, the following claims hold.

(1) If D −→ςv E, then r(D) > r(E).
(2) There is no infinite sequence of(ς)v-reduction.

Proof. The claim (1) is shown by induction onD. The claim (2) is shown by (1).

We then show strong normalization ofCBV DCµν andCBN DCµν.

Theorem 7.29(Strong normalization ofCBV DCµν andCBN DCµν). The following claims hold.

(1) Every typable expression is strongly normalizing inCBV DCµν.
(2) Every typable expression is strongly normalizing inCBN DCµν.

Proof. We first show the call-by-value case. Assume thatD is typable inDCµν and there is an infinite
reduction sequence

D −→CBV D1 −→CBV . . .

starting fromD. Then (D)⊛ is typable by Proposition 7.22, and we have

(D)⊛ −→∗
wCBV

(D1)⊛ −→∗
wCBV
. . .

by Proposition 7.25. From the strong normalization result of the weak call-by-valueDCµν (Proposi-
tion 7.11), there is someDk such that

(Dk)⊛ = (Dk+1)⊛ = . . . .

By the latter part of Proposition 7.25, we have the followinginfinite sequence of (ς)v-reduction:

Dk −→ςv Dk+1 −→ςv . . . .
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This contradicts Lemma 7.28 (2).
The call-by-name case is proved by strong normalization ofCBV DCµν and the duality between

CBV DCµν andCBN DCµν (Proposition 7.20).

8. Conclusion

We have introduced the non-deterministic systemDCµν by extending the dual calculus given in [27]
with inductive types and coinductive types. Besides the same duality of the original dual calculus,
we have shown the duality of inductive and coinductive types, by giving the involution that maps
terms and coterms for inductive types to coterms and terms ofcoinductive types respectively and
vice versa, and maps their reduction rules to each other. We have proved its strong normalization
by translating it into the second-order dual calculusDC2.

The second-order dual calculusDC2 also have been introduced. Its strong normalization have
been shown by translating it into the second-order symmetric lambda calculus.

We have finally introduced the call-by-value systemCBV DCµν and the call-by-name system
CBN DCµν of the dual calculus with inductive and coinductive types. We have shown the duality of
call-by-value and call-by-name with inductive and coinductive types, their Church-Rosser property,
and their strong normalization. Their strong normalization have been shown by translating them
into DCµν.

The first author introduced the call-by-value and call-by-name dual calculi with recursive
types [11, section 4.2]. In these systems, a recursive typerec X.A can be defined for any type
A. If we assume thatrec X.A can be defined only if everyX positively occurs inA, then we can
define two provability-preserving transformations from the dual calculi with recursive types into
DCµν. The one translates a recursive type to an inductive type, and the other translates a recursive
type to a coinductive type. We could not straightforwardly show that these transformations preserve
reductions (or equations) since some additional rules suchasη-rules for connectives seem to be
required. This problem would be future work.

The duality of call-by-value and call-by-name inλµ-calculus is shown by using the dual calculi
in [28]. Since our systemsCBV DCµν andCBN DCµν are extensions of his dual calculi, we could
show the duality of call-by-value and call-by-name inλµ-calculus with inductive and coinductive
definitions, by using our systemsCBV DCµν andCBN DCµν. It would be future work.

A reduction-based duality between call-by-value and call-by-name in theλµ-calculi was pre-
sented in [12], by refining Wadler’s result [28]. Extending the result given in [12] with inductive
and coinductive types would be future work.

Our systems use the iteration for inductive types. An extension of the iteration to primitive
recursion would be future work.

A CPS translation from the dual calculus toλ-calculus was given in [27]. Extending this CPS
translation to the systems with inductive and coinductive types would be future work.
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