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Abstract. This paper presents a range of quantitative extensions for the temporal logic
CTL. We enhance temporal modalities with the ability to constrain the number of states
satisfying certain sub-formulas along paths. By selecting the combinations of Boolean and
arithmetic operations allowed in constraints, one obtains several distinct logics generalizing
CTL. We provide a thorough analysis of their expressiveness and succinctness, and of the
complexity of their model-checking and satisfiability problems (ranging from P-complete to
undecidable). Finally, we present two alternative logics with similar features and provide
a comparative study of the properties of both variants.

1. Introduction

Among the existing approaches to the formal verification of automated systems, model
checking [CE81, QS82] aims at automatically establishing the validity of a certain formal
specification (modeled as a formula in a suitable logic) over the system under study (modeled
for instance as a finite transition system). This set of techniques is now well established
and successful, with several industrial applications.

To formalize the specification of temporal properties, for instance in the case of reactive
systems, temporal logics (TL) were proposed thirty years ago [Pnu77] and widely studied
since. They are today used in many model-checking tools. There exists a wide variety of
temporal logics, differing for instance by the models over which formulas are interpreted
or by the kind of available temporal modalities. Two well-known examples are LTL in
the linear-time framework (where formulas are interpreted over infinite runs) and CTL for
the branching-time case (where formulas are interpreted over states of Kripke structures).
See [Eme90] for a survey of classical temporal logics for systems specification.

Temporal logics have been extended in various ways in order to increase their expressive
power. For example, while LTL and CTL only handle future operators, it is also possible to
consider past-time modalities to express properties of the past of a run. One can also extend
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temporal logics with regular expressions (see for instance [Wol83, ET97]). Other extensions
were proposed to handle quantitative aspects of systems. For example, some logics can con-
tain timing constraints to specify that an event, say P1, has to occur less than 10 time units
before another event P2. This kind of temporal logics, such as TCTL [ACD93, EMSS92],
have been particularly studied in the framework of timed model checking. Another quan-
titative extension consists in probabilistic logics where one can specify probability bounds
over the truth of some property (see for instance [BdA95]).

We propose several extensions of CTL with constraints over the number of states sat-
isfying certain sub-formulas along runs. For example, considering a model for an ATM, we
can express the property “whenever the PIN is locked, at least three erroneous attempts
have been made” by: ¬EF[♯error≤2]lock (one cannot reach a state where the PIN is locked
but less than two errors have occurred). Similarly, ¬EF[♯error≥3]money states that three
mistakes forbid cash retrieval. We put a subscript on the temporal modality (as in TCTL)
to constrain the runs over which the modality holds. Note that most properties of this kind
can also be expressed in CTL by nesting E U modalities, but the resulting formulas may
be too large to be conveniently handled by the user of a model checker. This is discussed
in more detail in Section 3, where we study the expressiveness of each of our fragments
compared to CTL. In some cases, there exist natural translations into equivalent CTL for-
mulas, implying that there is no strict gain in expressiveness. However, these translations
are often at best exponentially larger than the original formula. In other cases, we show
that our extensions strictly increases the expressive power of CTL.

We consider the model checking problem for various sets C of constraints. We show
that polynomial-time algorithms exist when considering Until modalities with constraints of
the form1 (

∑
i ♯ϕi) ∼ c with ∼∈ {<,≤,=,≥, >} and c ∈ N. Additionally allowing Boolean

combinations of such constraints or integer coefficients in the sum (or both) makes model
checking ∆P

2 -complete. We also consider the case of “diagonal” constraints (♯ϕ−♯ψ) ∼ c and
their more general form (

∑
i±♯ϕi) ∼ c with c ∈ Z and show that model checking can still be

done in polynomial time. However, allowing Boolean combinations of such constraints leads
to undecidability. We also investigate the complexity of the satisfiability problem, which
is 2-EXPTIME-complete for all fragments without subtraction and undecidable otherwise.
Finally, in order to investigate alternative definitions of counting logics generalizing CTL,
we define another semantics for our logics (called cumulative semantics) and a logic with
explicit variables. In both cases, we show that it induces a complexity blow-up for model
checking, which becomes PSPACE-complete without subtraction and undecidable otherwise.
The asymptotic complexity of satisfiability remains however 2-EXPTIME-complete in all
decidable cases.

Several existing works provide related results. In [LMP10a], we presented a prelimi-
nary version of the current article. Proofs and constructions were since considerably re-
fined, and are provided here in greater detail. This paper also provides new satisfiability
results. In [LMP10b], we provided a similar study of counting extensions of LTL and CTL∗.
In [ET97], an extension of LTL with a kind of regular expressions containing quantitative
constraints over the number of occurrences of sub-expressions is presented. This extension
yields algorithms whose time complexity is exponential in the size of formulas and the value
of integer constants. In [ET99], extensions of CTL including parameters in constraints
are defined. One of these formalisms, namely GPCTL, allows one to express properties

1Unless stated otherwise, complexity results always assume a binary encoding of constants.
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with constraints defined as positive Boolean combinations of sums of the form
∑
i Pi ≤ c

where every Pi is an atomic proposition. Model-checking E U formulas with such a con-
straint is shown to be NP-complete and a polynomial algorithm is given for a restricted
logic (with parameters). Another interesting specification language is Sugar/PSL [psl03],
which defines many additional operators above LTL and CTL∗. These include in particular
a kind of counting constraints used together with regular expressions, but to our knowl-
edge, there is no accurate study of lower complexity bounds for these extensions [BFH05].
In [YMW97], a branching-time temporal logic with general counting constraints (using a
variant of freeze variables) is defined to specify event-driven real-time systems. To obtain
decidability, the authors restrict their analysis to systems verifying some bounded progress
condition. In [BEH95a, BEH95b], extensions of LTL and CTL with Presburger constraints
over the number of states satisfying a formula are considered, for a class of infinite state
processes. The complexity of these problems is much higher than the cases we are concerned
with. Finally there also exist timed extensions of CTL interpreted over Kripke structures
(see for instance [EMSS92]).

The paper is organized as follows. In Section 2, we introduce the definitions of the
main formalisms we will use. In Section 3, we show that several of our proposed extensions
are not more expressive than classical CTL, yet exponentially more succinct. In Section 4,
we address the model-checking problem and provide exact complexity results for almost all
the logics we introduce. In Section 5 we study the complexity of the satisfiability problem.
Finally we present in Section 6 a different logic with explicit counting variables, as well as
an alternative semantics for our logics, together with the complexity of the related model-
checking problems.

2. Definitions

2.1. Models. Let AP be a set of atomic propositions. In branching-time temporal logics,
formulas are generally interpreted over states of Kripke structures.

Definition 2.1. A Kripke structure (or KS) S is a tuple 〈Q,R, ℓ〉 where Q is a finite set
of states, R ⊆ Q×Q is a total2 transition relation and ℓ : Q→ 2AP is a labelling of states
with atomic propositions.

A run ρ of S is an infinite sequence of states q0q1q2 . . . such that (qi, qi+1) ∈ R for every
i. We use ρ(i) to denote state qi, ρ|i to denote the prefix q0 · · · qi of ρ, and ǫ to represent
the empty prefix. Notice that ρ|−1

= ǫ, but ρ|0 = q0 6= ǫ. Runs(q) denotes the set of runs
starting from some state q ∈ Q and Runs(S) (resp. Prefs(S)) the set of all runs (resp. finite
prefixes of runs) in S. The length |σ| of a finite run prefix σ is defined as usual (i.e. |σ| = 0
if σ = ǫ and |σ| = i+ 1 if σ = q0 . . . qi). Note in particular that for any run ρ, |ρ|i | = i+ 1.
We write σ ≤ ρ when σ is a prefix of ρ.

We will also consider durational Kripke structures (DKS), where an integer duration is
associated with every transition. A DKS S = 〈Q,R, ℓ〉 is defined similarly to a KS, except
that R ⊆ Q×Z×Q. The duration of a transition is also called a weight or a cost, especially
when negative values are used to label a transition. We use DKS1 to denote the class of
DKS in which every weight is 1, DKS0/1 when the weights belong to {0, 1}, and DKS−1/0/1

when they belong to {−1, 0, 1}. The notion of weight is additively extended to finite runs of

2By total relation, we mean a relation R ⊆ Q×Q such that ∀p ∈ Q,∃q ∈ Q, (p, q) ∈ R.
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DKS. The existence of a transition of weight k between states p and q is sometimes denoted

as p
k
−→
R
q, that of a finite run of weight k as p

k
=⇒
R
q. R may be omitted when it is clear

from the context. The weight of a finite run ρ is also denoted as ‖ρ‖.

2.2. Counting CTL. We define several extensions of CTL able to express constraints over
the number of times certain sub-formulas are satisfied along a run.

Definition 2.2. Given a set of atomic propositions AP, we define the logic CCTL as the
set of formulas

ϕ,ψ ::= P | ϕ ∧ ψ | ¬ϕ | EϕU[C]ψ | AϕU[C]ψ

where P ∈ AP and C is a constraint of the form

C ::= (
m∑

i=1

αi · ♯ϕi) ∼ k

where ϕi ∈ CCTL, αi, k ∈ N and ∼ ∈ {<,≤,=,≥, >}.

We make use of the standard abbreviations ∨,⇒,⇔,⊥,⊤, as well as the additional
modalities EF[C]ϕ = E⊤U[C]ϕ, AF[C]ϕ = A⊤U[C]ϕ, and their duals AG[C]ϕ = ¬EF[C]¬ϕ
and EG[C]ϕ = ¬AF[C]¬ϕ. Any formula occurring in a constraint C associated with a
modality in Φ is considered a sub-formula of Φ. The size |Φ| of Φ thus takes into account
the size of these constraints and their sub-formulas, assuming that integer constants are
encoded in binary (unless explicitly stated otherwise). The DAG-size of Φ is the number
of distinct sub-formulas of Φ. As model-checking algorithms may be implemented in such
a way that the truth value of each sub-formula is computed only once, for instance using
dynamic programming, this is generally more relevant to the complexity of model-checking.

We also introduce several variants and extensions of CCTL:
• CCTL1 is the restriction of CCTL where every coefficient αi occurring in the constraints
equals 1. Thus the constraints are of the form (

∑
i ♯ϕi) ∼ k. For example, EF[♯P+♯P ′=10]P

′′

belongs to CCTL1.
• CCTL± is an extension of CCTL with coefficients αi in Z. The formula EF[♯P−3·♯P ′=10]P

′′

belongs to CCTL±.
• CCTL∧ extends CCTL by allowing Boolean combinations in the constraints. For example,

EF[♯P<4∧♯P ′>8] is in CCTL∧.

We can combine the previous variants and define the logics CCTL±1, CCTL∧1, CCTL∧±
and CCTL∧±1. The semantics of our logics are defined over Kripke structures as follows:

Definition 2.3. The following clauses define the conditions for a state q of some KS S =
〈Q,R, ℓ〉 to satisfy a formula ϕ (written q |=S ϕ) by induction over the structure of ϕ :

q |=S P iff P ∈ ℓ(q)

q |=S ¬ϕ iff q 6|=S ϕ

q |=S ϕ ∨ ψ iff q |=S ϕ or q |=S ψ

q |=S EϕU[C]ψ iff ∃ρ ∈ Runs(q), ρ |=S ϕU[C]ψ

q |=S AϕU[C]ψ iff ∀ρ ∈ Runs(q), ρ |=S ϕU[C]ψ

where ρ |=S ϕU[C]ψ iff ∃i ≥ 0, ρ(i) |=S ψ, ρ|i−1 |=S C and ∀0 ≤ j < i, ρ(j) |=S ϕ.
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For every finite run prefix σ = q0 . . . qi, the meaning of σ |=S C is based on the
interpretation of ♯ϕ over σ, which is the number of states among q0, . . . , qi verifying ϕ,
denoted by |σ|ϕ and defined as: |σ|ϕ = |{j | 0 ≤ j ≤ i ∧ σ(j) |=S ϕ}|. Given these values,
C is evaluated as an ordinary equation or inequation over integer expressions.

In the following we omit the subscript S for |= when no confusion occurs. We use ≡ to
denote the standard equivalence between formulas.

Remark 2.4. It can be derived from the above definitions that formula EF[C]ϕ holds
from q if and only if there is a run ρ from q and an index i such that ρ(i) |= ϕ and
ρ|i−1| |= C. Similarly, EG[C]ϕ holds if and only if there exists a run ρ such that, whenever
a finite prefix of ρ satisfies C, the next state must satisfy ϕ (in other words, for all i ≥ 0,
ρ|i−1

|= C =⇒ ρ(i) |= ϕ).

Remark 2.5. The above semantics imply that the truth value of a constraint only depends
on the strict prefix of the run leading to (but not including) the current state. This is
not an essential feature, and another definition would also be valid. However, this choice is
consistent with the semantics of existing logics (in particular TCTL [ACD93]). It also allows
us to express the classical X (or next) operator as EXϕ = EF[♯⊤=1]ϕ. Moreover, under this
semantics the formulas EϕUψ, E⊤U[♯¬ϕ=0]ψ and EF[♯¬ϕ=0]ψ are all equivalent.

Remark 2.6. In all logics allowing Boolean connectives inside constraints, the modality F
is sufficient to define U. Indeed, EϕU[C]ψ ≡ EF[C∧♯(¬ϕ)=0]ψ (and similarly for A-quantified
formulas). Thus every such logic can also be built from atomic propositions using Boolean
operators and modalities EF[C]ϕ and AF[C]ϕ (or EG[C]ϕ). Note that all these translations
are succinct (linear in the size of formulas) and thus do not have any impact on complexity
results.

Remark 2.7. The related temporal logic TCTL, whose semantics is defined over timed
models (in particular durational Kripke structures), allows one to label temporal modalities
with duration constraints. For instance, one may write AϕU<kψ to express the fact that ϕ
is consistently true until, before k time units have elapsed, ψ eventually holds.

When all transitions in a DKS have duration 1 (i.e. the duration of any run is equal
to its length), TCTL (or RTCTL in [EMSS92]) formulas can be directly expressed in any
variant of CCTL using only the sub-formula ⊤ inside constraints. A similar coding is also
possible when one uses a proposition tick to mark the elapse of time as in [LST03].

2.3. Examples of CCTL formulas. We now give several examples of natural quantitative
properties that can be easily expressed with CCTL-like logics.

(1) First consider an engine or plant that has to be controlled every 10000 cycles. Suppose
a warning is activated whenever the number of elapsed cycles since the last control
belongs to the interval [9900; 9950], and is maintained until the next control is done.
Moreover, an alarm is raised when the number of cycles is above 10100 (unless a control
was performed in-between) and is maintained until the next control. Such a specification
could be expressed in CCTL as follows:
(a) Either a control or a warning must occur in every period of 9950 cycles:

AG
Ä
AF[♯cycle≤9950](control ∨ warning)

ä
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where cycle (resp. warning, control) labels states corresponding to the end of a
cycle (resp. a warning, a control action).

(b) A warning cannot occur before 9900 cycles after a control:

AG
Ä
control ⇒ ¬EF[♯cycle<9900]warning

ä
.

(c) A control or an alarm occurs in every period of 10100 cycles:

AG
Ä
AF[♯cycle≤10100](control ∨ warning)

ä
.

(d) An alarm cannot occur strictly before 10100 cycles after a control:

AG
Ä
control ⇒ ¬EF[♯cycle<10100]alarm

ä
.

(e) The warning and the alarm are maintained:

AG(warning ⇒ A warning U (alarm ∨ control)
ä

and
AG(alarm ⇒ A alarm W control

ä
.

Note that we use a weak Until modality in the latter formula because we cannot
ensure the occurrence of a control.

(2) Consider a model for an ATM, whose atomic propositions include money, reset and
error, with the obvious meaning. To specify that it is not possible to get money after
three mistakes were made in the same session (i.e. with no intermediate reset), we can
use the CCTL∧1 formula

AG
Ä
¬EF[♯error≥3∧♯reset=0]money

ä
,

or the CCTL1 formula

AG
Ä
¬E(¬reset)U[♯error≥3]money

ä
.

(3) Consider a mutual exclusion algorithm with n processes trying to reach their critical
section (CS). We can express a bounded waiting property with bound 10 (i.e. when a
process P tries to reach its CS, then at most 10 other processes can reach theirs before
P does) by the CCTL∧1 formula

AG
∧

i∈[1,n]

Ä
requesti ⇒ ¬EF[

∑
j 6=i

♯CSj>10∧♯CSi=0]⊤
ä
.

As in the previous case, this can also be expressed in CCTL1 using U instead of F.
(4) In a model for a communicating system with events for the emission and reception of

messages, the CCTL±1 formula AG[♯send−♯receive<0]⊥ states that along any finite run,
the number of receive events cannot exceed the number of send events.

(5) Quantitative constraints can also be useful for fairness properties. For example the
CCTL∧1 formula AG AF[

∧
i
5≤♯ϕi≤10]⊤ states that each ϕi occurs infinitely often along

every run (as does the CTL formula
∧
i(AG AFϕi)) but also ensures some constraint on

the number of states satisfying formulas ϕi along every execution: for example, it is not
possible to have a sub-run where ϕ1 holds in 11 states and ϕ2 in only 4 states.

(6) Note that CCTL± can express properties about the ratio between the number of oc-
currences of two kinds of states along a run. For example, EF[100·♯error−♯⊤<0]P is true
when there is a run leading to some state satisfying P along which the rate of error
states is less than 1 percent. In fact any constraint of the form ♯P

♯P ′ ∼ k can be expressed

in this logic.
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(7) Finally note that we can use any temporal formula inside a constraint (and not only
atomic propositions). For example, AG(EF[♯(EXalarm)≤5]init) states that it is always
possible to reach init with a path along which at most 5 states have a successor
satisfying alarm.

Note that expressing these properties is rather straightforward using counting constraints.
When considering a classical temporal logic, such properties cannot easily be expressed
directly. Unfolding the formula as it is done in the next section to prove expressiveness
results cannot be achieved in practice even when the integer constraints are small: the
formula would most of the time become too long and too complex to be handled. A possible
pragmatic solution to avoiding counting constraints would be to add one or several counters
to the model and to use additional atomic propositions to mark states (or rather, in such
an extended model, configurations) where the constraints over the values of counters are
satisfied. First note that this method may be less convenient or even inapplicable in some
cases, as it requires modifying the model under verification. Moreover, this approach is
difficult to use when counting constraints do not only refer to atomic propositions, but deal
with nested temporal logic formulas (as in the last example above) or even other counting
properties, as this would require even more drastic modifications to the model.

These examples illustrate the ability of our logics to state properties over the portion
of a run leading to some state. A similar kind of properties could also be expressed with
past-time modalities (like § or F−1), but unlike these modalities our constraints cannot
easily describe the ordering of events in the past: they “only” allow to count the number of
occurrences of formulas. We will see in the next sections that our extensions do not always
induce a complexity blow-up, while model-checking CTL + F−1 is known to be PSPACE-
complete [LS00].

3. Expressiveness and succinctness

When comparing two logics, the first question which comes to mind is the range of properties
they can be used to define, in other words their expressiveness. When they turn out to be
equally expressive, a natural way to distinguish them is then to ask how concisely each
logic can express a given property. This is referred to as succinctness, and is also relevant
when studying the complexity of model-checking for instance, since it may considerably
influence the size of a formula required to express a given property, hence the time required
to model-check it. In this section we study the expressiveness of the various logics defined in
the previous section, and provide results and comments about their respective succinctness
with respect to CTL.

3.1. Expressiveness. We first show that only allowing Boolean combinations does not
allow our logics to express more properties than CTL.

Proposition 3.1. Any CCTL∧ formula Φ can be translated into an equivalent CTL formula

of DAG-size 2O(|Φ|2).

Proof. A naive translation, using nested E U and A U modalities to precisely count the
number of times each subformula inside a constraint is satisfied, is sufficient to show the
result. However the size of a translated formula would in general be exponential in the
value of all integer constants and in the DAG size of the original formula. We thus propose
a more concise (yet more involved) translation, whose size will be useful later on.
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Let Φ be a CCTL∧ formula. The proof is done by structural induction over Φ. The
basic and Boolean cases are direct. By Remark 2.6, we only need to consider the cases
Φ = EF[C]ϕ and Φ = AF[C]ϕ. Assume C contains m atomic constraints of the form

(
∑
j∈[1,ni] α

i
j♯ϕ

i
j) ∼ ki for i ∈ [1,m]. We translate Φ to CTL by building a family of formulas

whose intended meaning is as follows:

• If constraint C holds with ♯ϕij = 0 for all j, i, then ϕ may be true immediately.

• Otherwise, successively check for every j, i whether ϕij holds in the current state, and if

so then update C by decreasing the constant ki by α
i
j.

• Once all ϕij have been scanned, proceed to the next state and re-evaluate C for the new
values of the constants.

Let decr(C, i, j) denote the constraint obtained from C by replacing ki by ki−α
i
j. Note that

in contrast with the formal definition of CCTL∧ constraints, we allow the decr operation to
result in negative constants in the right-hand sides of atomic constraints.

Let ⊥ and ⊤ be two special constraints satisfied by no (resp. any) finite path in any
Kripke structure, we also define the constraint C↓ obtained from C by replacing any trivially
true atomic constraint (such as S ≥ 0 or S > −3) by ⊤ and any trivially false one (such
as S < 0 or S ≤ −1) by ⊥, and normalizing the obtained constraint in the usual way
(C ∨ ⊥ → C, . . . ). Note that due to this simplification step, C↓ is either reduced to ⊤ or
⊥, or it does not contain ⊤ or ⊥ as a sub-formula. Also note that C and C↓ are equivalent
(i.e. satisfied by the same finite runs).

We now turn to the formal CTL translation JΦK of formula Φ, which is defined induc-
tively on the structure of Φ. Boolean combinations and negation are left unchanged. In the
case where Φ = EF[C]ϕ, we proceed by unfolding the EF modality as follows:

JEF[C]ϕK =





⊥ if C↓ = ⊥
EFJϕK if C↓ = ⊤

E
Ä∧

i,j ¬JϕijK
ä
U
Ä
JϕK ∨Ψ

ä
if ǫ |= C

E
Ä∧

i,j ¬JϕijK
ä
UΨ if ǫ 6|= C

where Ψ is a CTL formula designed to be true in states where both EF[C]ϕ and at least one

formula ϕij hold. Indeed if C is trivially false, then EF[C]ϕ is clearly not satisfiable. If C is
trivially true, it is sufficient to check that ϕ eventually holds without any further checks on
sub-formulas ϕij . The third case states that if C holds on the empty path then EF[C]ϕ holds

if, after a path prefix not affecting the satisfaction of C, either ϕ holds or some ϕij holds
and we need to update C again. The last case is identical except that it does not check
for ϕ in the current state. It then only remains to define Ψ. More generally, we describe a
family of CTL formulas ΨC,i,j,C′, where i ∈ [1,m], j ∈ [1, ni] with m and ni as above, and
C,C ′ are CCTL∧ constraints. For all 1 ≤ i ≤ m, 1 ≤ j ≤ ni, let

ΨC,i,j,C′ = (JϕijK ∧ΨC,i,j+1,decr(C′,i,j)) ∨ (¬JϕijK ∧ΨC,i,j+1,C′). (3.1)

For all 1 ≤ i < m,
ΨC,i,ni+1,C′ = ΨC,i+1,1,C′. (3.2)

Finally

ΨC,m,nm+1,C′ =

{
⊥ if C = C ′,

EXJEF[C′
↓
]ϕK otherwise.

(3.3)
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We then set Ψ to denote ΨC,1,1,C . Formula ΨC,i,j,C′ implicitly assumes that, in the current
state, a certain (potentially empty) subset of the formulas ϕ1

1 up to (but not including)
ϕij holds, and that C ′ is the constraint obtained by updating C with respect to these

formulas. Then, it evaluates (the CTL translation of) formula ϕij , updating C
′ if necessary

and moving on to the next sub-formula (Eq. (3.1)). Whenever the scanning of sub-formulas
{ϕi1, . . . , ϕ

i
ni} relevant to the i-th atomic constraint is finished, we proceed with the next one

(Eq. (3.2)). Finally, once all sub-formulas have been scanned and the constraint updated
(Eq. (3.3)), if no progress was made at all (witnessed by the fact that C = C ′), the formula
is simply deemed false. Otherwise we move to the next state along a possible run using
modality EX, and develop the translation of formula EF[C′

↓
]ϕ with the last updated C ′.

The above recursive definition characterizes finite formulas. Indeed, consider a formula
JEF[C′

↓
]ϕK occurring as a sub-formula of JEF[C↓]ϕK, and f the injection mapping each right-

hand-side constant k′ in C ′ to the corresponding constant in C. By definition, we have
f(k′) ≤ k′ for every k′ in C ′, and either f is not surjective (meaning that some constant
k in C no longer appears in C ′ due to the simplification step in Eq. (3.3) above) or there
exists k′ such that f(k′) < k′. This is guaranteed by the fact that developing ΨC,1,1,C

according to its definition into a formula containing JEF[C′
↓
]ϕK resorts to at least one decr

operation followed by a simplification operation. Since any negative constant appearing
after a decrement is eliminated by the next simplification step, this process cannot repeat
indefinitely and must therefore terminate.

The translation of AF[C]ϕ is obtained by replacing each occurrence of the path quantifier
E by A in the above. The correctness of the translation can be shown by induction on the
nesting depth of until modalities in JΦK and quantities m and ni.

We now turn to the worst-case DAG-size of the translation of the whole CCTL formula
Φ. Let K be the largest integer constant in Φ,M the maximal number of atomic constraints
in any constraint in Φ and N the maximal number of counting expressions in any atomic
constraint in Φ. The number of distinct ΨC,i,j,C′ formulas involved in the translation of any

sub-formula EF[C]ϕ or AF[C]ϕ of Φ is bounded by KM ·M ·N ·KM . This construction is
repeated as many times as there are temporal modalities in Φ, which amounts to at most
|Φ| · KM ·M · N · KM distinct sub-formulas (this pessimistic upper bound clearly covers
the case of Boolean connectives, whose translation is much simpler). Since M,N ∈ O(|Φ|)

and K ∈ O(2|Φ|), we get a total DAG-size for JΦK in O
Ä
|Φ| · (2|Φ|)|Φ| · |Φ| · |Φ| · (2|Φ|)|Φ|

ä
=

O(|Φ|3.22|Φ|
2
) ⊆ 2O(|Φ|2).

Example 3.2. For any integer k and formula ϕ, we look at the translation of Φk = EF[Ck]ϕ

where Ck denotes the constraint ♯p1 + ♯p2 = k and ϕ is any formula:

JΦkK =





E
Ä∧

i ¬pi
ä
Uϕ if k = 0

E
Ä∧

i ¬pi
ä
UΨk otherwise

(3.4)

with Ψk =
(
p1 ∧

Ä
(p2 ∧ EXJ(Φk−2)↓K) ∨ (¬p2 ∧ EXJ(Φk−1)↓K)

ä)

∨ (¬p1 ∧ p2 ∧ EXJ(Φk−1)↓K),
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where (Φk)↓ = Φk if k ≥ 0 and ⊥ otherwise. Note that some simplifications were performed
in this translation: namely, (ϕ ∨ Ψ0) is replaced by ϕ in the first case of Eq. (3.4) since
Ψ0 ≡ ⊥, and a conjunct containing ⊥ is removed from Ψk.

Note that we provided a parametric upper bound for the above translation which can
be interpreted for all variants of CCTL below CCTL∧. In contrast to this result, introducing
subtractions in constraints yields a strict increase in expressiveness.

Proposition 3.3. The CCTL±1 formula ϕ = AG[♯A−♯B<0]⊥ cannot be translated into CTL.

(sketch). Formula ϕ (already seen in Sec. 2.3 with different atomic propositions) states
that the number of B-labeled states cannot exceed the number of A-labeled states along
any path. As shown by [BVW94] and also presented in [Wil99], the set of models of any
CTL formula can be recognized by a finite alternating tree automaton. Suppose there exists
a CTL formula ϕ′ equivalent to ϕ, and let A be the alternating tree automaton accepting
its set of models. From A, one can easily build a finite alternating automaton on words
over 2{A,B}, whose accepted language is the set of all finite prefixes of branches in models
of ϕ, namely words whose prefixes contain at most as many B’s as A’s. Since this language
is clearly not regular, this leads to a contradiction.

3.2. Succinctness. Our extensions of CTL come with three main potential sources of
concision, which appear to be orthogonal: the encoding of constants in binary, the possibility
to use Boolean combinations in constraints, and the use of sums. However, only the first
two turn out to yield an exponential improvement in succinctness. First we consider the
case of sums:

Proposition 3.4. For every formula Φ ∈ CCTL with unary encoding of integers, there
exists an equivalent CTL formula of DAG-size polynomial in |Φ|.

Proof. This proposition is a direct consequence of the DAG-size computation presented in
the proof of Prop. 3.1 where M , the number of atomic constraints in a constraint in Φ, is
set to 1 to reflect the absence of Boolean connectives inside constraints, and where K, the
maximal constant in Φ, is bounded by |Φ| due to the unary encoding.

We now look at the succinctness gap due to the binary encoding of constants3:

Proposition 3.5. CCTL1 can be exponentially more succinct than CTL.

Proof. In [LST03], it is shown that the logic TCTL, when interpreted over Kripke structures
with a special atomic proposition tick used to mark the elapsing of time, can be exponen-
tially more succinct than CTL4. More precisely, the TCTL formulas EF<nA and EF>nA,
which are of size O(log(n)) since n is encoded in binary, do not admit any equivalent CTL
formula of temporal height (and hence also size) less than n. These formulas express the
existence of a path where A eventually holds and less (resp. more) than n clock ticks are
seen until then. They are respectively equivalent to the O(log(n))-size CCTL1 formulas
EF[♯tick<n]A and EF[♯tick>n]A.

3Note that for real-time logics, it is already known that the binary encoding of integer constants induces
a complexity blow-up for the decision procedures [AH93, AH94].

4This was also observed in [EMSS92] for the logic RTCTL over DKS1.
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Note that the proof of the previous proposition only uses the simplest kind of constraint:
we do not need sums (and coefficients) or Boolean combinations in the constraints.

This exhibits a first aspect in which CCTL logics can be exponentially more succinct
than CTL. However, as expressed in the next proposition, another orthogonal feature of the
logic may yield a similar blow-up.

Proposition 3.6. CCTL∧1 with unary encoding of integers can be exponentially more suc-
cinct than CTL.

Proof. It was shown by [Wil99, AI03] that any CTL formula ϕ equivalent to the CTL+

formula ψ = E(FP0 ∧ . . . ∧ FPn) must be of length exponential in n. It turns out ψ is
equivalent to the CCTL∧1 formula ψ′ = EF[

∧
i
♯Pi≥1]⊤, which entails the result. Note that

ψ′ only contains the constant 1, which means that this gap cannot be imputed to the binary
encoding.

The intuitive reason for this blow-up is that a CTL formula expressing the property
that atomic propositions P1 to Pn are each seen at least once along a path would have to
keep track of all possible interleavings of occurrences of Pi’s.

To summarize, we showed that two different aspects of the extensions of CTL presented
in this paper, while not increasing the overall expressiveness of the logic, may yield exponen-
tial improvements in succinctness. It would remain to study the succinctness of remaining
CCTL fragments with respect to each other, in particular when these aspects are combined.

4. Model checking

4.1. Polynomial-time model-checking. Even though, as we discussed in the previous
section, diagonal constraints lead to strictly more expressive logics than CTL, it turns
out that model-checking CCTL±1 is asymptotically not more difficult than model checking
CTL itself. As a preliminary result of independent interest, we show that the existence
of a polynomial-time algorithm for the model-checking of the logic TCTL over DKS0/1, as
shown in [LST03], remains true when considering more general weighted graphs, namely
DKS’s with weights in {−1, 0, 1}. This result will be used to establish the complexity of
model-checking for CCTL±1, and as a corollary also for all weaker fragments.

Proposition 4.1. The model-checking problem for TCTL over DKS−1/0/1 is P-complete.

P-hardness is inherited from CTL (see [Sch03] for a proof of the P-hardness of CTL).
For membership in P, we consider a DKS S = 〈Q,R, ℓ〉 with R ⊆ Q × {−1, 0, 1} × Q, a
state q ∈ Q and a TCTL formula Φ, and show that deciding whether q |= Φ can be done
in polynomial time. As usual, we inductively assume the set of states satisfying all strict
sub-formulas of Φ to be known, and proceed from there. We distinguish several cases:

(1) Φ = EϕU≤kψ: We first determine the subset of states Q|EϕUψ from which the CTL
formula EϕUψ holds, and consider the restriction S ′ of S to Q|EϕUψ in which outgoing
edges of states labeled by ψ∧¬ϕ are removed. Φ holds over some state q in S if and only
if q ∈ Q|EϕUψ and there exists a path of weight at most k in S ′ from q to some other
state q′ where ψ holds. Considered paths are either simple, or composed of a prefix
from q to some state q′′, a negative-weight cycle from q′′ to itself repeated a certain
number of times, and a suffix from q′′ to q′.
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Even though finding a simple path of weight less than k in a graph containing negative
cycles is NP-complete, this is not exactly what we are considering since we allow paths
containing repeated states. Our problem can thus be tested in polynomial time using the
classical Floyd-Warshall algorithm (to compute all-pairs shortest paths) over S ′. The
matrix (α)q,q′ of shortest-path weights computed by this algorithm gives us sufficient
information: to decide whether a state q satisfies Φ: q |= Φ one simply need to check
whether there exists q′ satisfying ψ such that either αq,q′ ≤ k, or there exists q′′ such
that αq,q′′ <∞, αq′′,q′′ < 0 and αq′′,q′ <∞.

(2) Φ = EϕU≥kψ: We build the DKS S ′ as in the previous case, and a new DKS S ′′

isomorphic to S ′ but with opposite weights. Then, Φ is satisfied from q in S ′ (and thus
also S) if and only if the formula EϕU≤−kψ is satisfied from q in S ′′.

(3) Φ = EϕU=kψ: We build the DKS S ′ as in case 1, and compute the relation

Rk = {(q, q
′) ∈ Q|ϕ∧EϕUψ ×Q|EϕUψ | q

k
=⇒
R
q′}.

For k = 0, R0 can be seen as
⋃
i≥0Xi with:





X0 = (
0
−→
R

)∗

Xi+1 = Xi ∪ (Xi ·
1
−→
R
·Xi ·

−1
−→
R
·Xi) ∪ (Xi ·

−1
−→
R
·Xi ·

1
−→
R
·Xi)

which can be obtained by a simple fixed-point computation requiring at most |Q|2

iterations (since |R0| ≤ |Q|
2). For k = 1, we simply have R1 = R0 ·

1
−→
R
·R0. For greater

values of k, we use dichotomy to express this relation in terms of R0 and R1 in O(log(k))
steps (i.e. O(|Φ|), since k is encoded in binary), by writing

Rk = R⌊k/2⌋ · R⌈k/2⌉.

Each of these relational compositions requires time at most cubic in the size of Q. It
then suffices to test whether (q, q′) ∈ Rk for some q′ verifying ψ.

(4) Φ = AϕU=0ψ: The procedure consists in defining a standard Kripke structure S ′ and a
classical CTL formula Ψ such that S ′ satisfies Ψ if and only if S does not satisfy Φ.

Using fixed-point computations over Q×Q, we compute the relations R+
0 and R−0 as

the respective least solutions of




X0 = (
0
−→
R

)∗

Xi+1 = Xi ∪ (
1
−→
R
·Xi ·

−1
−→
R

)
and





X0 = (
0
−→
R

)∗

Xi+1 = Xi ∪ (
−1
−→
R
·Xi ·

1
−→
R

).

R+
0 and R−0 respectively express the reachability relation in S along paths of weight 0

with no prefix of strictly negative (resp. positive) weight. We also define the relation
Rs0 (where s stands for strict) as:

Rs0 =
0
−→ ∪ (

1
−→ ·R+

0 ·
−1
−→) ∪ (

−1
−→ ·R−0 ·

1
−→),

which expresses reachability in S by 0-weight paths such that no intermediate state
(other than the initial one) is reached with weight 0. Let Q+, Q− be two isomorphic
copies of Q (and q+, q− denote the copies in Q+ and Q− of some state q ∈ Q), we
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can now construct S ′ = (Q′, R′, ℓ′) with Q′ = Q ∪Q+ ∪ Q−, ℓ′(q) = ℓ(q) if q ∈ Q and
ℓ′(q±) = ℓ(q) ∪ {ok}, and

R′ = {q1 → q2 | (q1, q2) ∈ R
s
0}

∪ {q1 → q+2 | q1
1
−→
R
q2} ∪ {q

+
1 → q+2 | q1

1
−→
R
q2 ∨ (q1, q2) ∈ R

+
0 }

∪ {q1 → q−2 | q1
−1
−→
R
q2} ∪ {q

−
1 → q−2 | q1

−1
−→
R
q2 ∨ (q1, q2) ∈ R

−
0 }.

In order to eliminate finite paths, we additionally complete S ′ with a dummy state q⊥
and transitions from every state to q⊥ and a loop from q⊥ to itself. We let ℓ′(q⊥) = {ψ},
which will be explained in detail later on.

The set of states of S ′ is divided into four subsets: states in Q correspond to the
states reachable with weight 0 in S, and states in Q+ and Q− are the states reachable
with weight strictly more or strictly less than 0. Paths in S ′ ending in the dummy state
may not correspond to actual paths in S, but they correspond to situations which are
irrelevant to solving the problem. Since a path going from Q to Q+, and then from Q+

to Q is captured by the relation Rs0, we can omit transitions going back to Q from Q+

(and similarly for Q−). Hence all runs of S ′ either stay forever in Q, eventually reach
Q+ or Q− and stay there forever, or reach the dummy state and stay there forever.

We now define the CTL formula Ψ as E(¬ψ ∨ ok)W(¬ϕ∧ (¬ψ ∨ ok)) 5 and claim that
q |=S′ Ψ if and only if q |=S ¬Φ. The idea of the proof is to show that if Φ is not
satisfied from some state q in S then one can find a path from q in S ′ satisfying Ψ, and
conversely that finding a path satisfying Ψ from q over S ′ is sufficient to disprove Φ
from that state in S.

Lemma 4.2. q |=S ¬Φ =⇒ q |=S′ Ψ.

Proof. There are several ways in which Φ may fail to hold over S:
(a) There exists a path ρ in S along which a state q1 |= ¬ϕ appears strictly before the

first state satisfying ψ and reached with weight 0. Let ρ1q1 be the shortest prefix
of ρ such that q1 |= ¬ϕ and either q1 |= ¬ψ or ‖ρ1q1‖ 6= 0.
(i) If q1 |= ¬ψ and ‖ρ1q1‖ = 0, then by definition of Rs0 there must exist a path

ρ′1 from q to q1 in S ′ whose intermediate states all satisfy ¬ψ. Consequently,
any infinite continuation of ρ′ must satisfy ¬ψW(¬ϕ∧¬ψ), which implies that
q |=S′ Ψ.

(ii) If ‖ρ1q1‖ 6= 0, then we can write ρ1q1 = ρ2q2ρ3q1 where ρ2q2 is the longest
prefix of ρ1 of weight 0. By definition, q2ρ3q1 starts with a non-0 transition
and has no prefix of weight 0, hence by definition of S ′ there must exist a finite
path ρ′ = ρ′2q2ρ

′
3q
±
1 in S ′ such that all intermediate states of ρ′2q2 satisfy ¬ψ

and all intermediate states of ρ′3q
±
1 satisfy ok. Hence any continuation of ρ′

must satisfy (¬ψ ∨ ok)W(¬ϕ ∧ ok), which implies that q |=S′ Ψ.
(b) There exists a path ρ in S along which no state satisfying ψ ever appears at the

end of a prefix of weight 0. We assume that ϕ consistently holds along the path,
otherwise it comes down to the previous case. There are again two cases to consider:
(i) If ρ has infinitely many prefixes of weight 0, then by definition of Rs0 there must

exist an infinite path ρ′ in S ′ whose intermediate states never leave the set Q
and all satisfy ¬ψ. Therefore ρ′ satisfies G¬ψ, which implies that q |=S′ Ψ.

5W is called the weak until modality, and ϕWψ holds along a path if either Gϕ or ϕUψ does.
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(ii) If ρ has finitely many prefixes of weight 0, then using ideas similar to the above,
one can decompose it as ρ1ρ2, with ρ1 its longest finite prefix of weight 0, and
ρ2 an infinite path with no prefix of weight 0. This implies the existence of a
corresponding path ρ′ in S ′ with a finite prefix remaining in Q whose states
all satisfy ¬ψ and an infinite suffix remaining in Q+ or Q− whose states all
satisfy ok. Therefore ρ′ must satisfy G¬ψ ∨ ok, which implies that q |=S′ Ψ.

Lemma 4.3. q |=S′ Ψ =⇒ q |=S ¬Φ.

Proof. The proof is very similar to that of the previous lemma. Let us consider a path
ρ′ in S ′ satisfying Ψ. There are two main possibilities:
(a) The path ρ′ consistently satisfies ¬ψ ∨ ok. We distinguish two cases.

(i) If ρ′ never leaves the set Q (and thus consists only of edges representing the
relation Rs0), then there must exist a corresponding path ρ in S visiting at least
the same states in the same order (since Rs0 is a restriction of the reachability
relation of S). Moreover, all states reached with weight 0 in ρ must appear
in ρ′ (by definition of Rs0). Now whether or not the states in ρ satisfy ϕ, Φ
cannot be satisfied in S from q since no state reached with weight 0 satisfies
ψ along ρ.

(ii) If ρ′ eventually leaves the set Q, and since there are no transitions out of
Q+ and Q− except to the dummy state q⊥ (which satisfies ψ but not ok),
then necessarily ρ′ can be decomposed into ρ′1q1ρ

′
2 where ρ′1q1 is a finite path

in Q necessarily satisfying G¬ψ and ρ2 is an infinite path either in Q+ or
Q− necessarily satisfying Gok. As previously, this implies the existence of a
corresponding path ρ in S, where the part corresponding to ρ′1 never visits
a state satisfying ψ with weight 0, and the part corresponding to ρ2 never
reaches weight 0 again. Thus Φ cannot be satisfied from q in S.

(b) The other possibility is that ρ′ can be written ρ′1q1ρ
′
2, where ρ

′
1 satisfies G¬ψ ∨ ok

and q1 satisfies ¬ϕ ∧ (¬ψ ∨ ok). Again there are two possible cases.
(i) If q1 ∈ Q, then ρ′1 only visits states satisfying ¬ψ, and q1 |= ¬ϕ ∧ ¬ψ. As

previously there must exist a corresponding path ρ1 in S visiting at least the
same states in the same order. Now since by definition of Rs0 all 0-weight
prefixes of ρ1 end in states appearing in ρ′ and satisfying ¬ψ, and since q1
satisfies ¬ϕ ∧ ¬ψ, no continuation of ρ1q1 in S can satisfy ϕU=0ψ.

(ii) If q1 6∈ Q, then necessarily q1 ∈ Q
+∪Q− (since q⊥ 6|= ¬ψ∨ok) and q1 |= ¬ϕ∧ok.

Consequently one can write ρ′1 = ρ′2q2ρ
′
3 such that q2 ∈ Q, ρ′2 never leaves Q

and ρ′3 never leaves either Q+ or Q−. Moreover, all states in ρ′2q2 satisfy ¬ψ.
One can thus build in S a finite path ρ from q to q1 going through q2, in
which no state reached with weight 0 up to q2 (and thus also up to q1) satisfies
ψ, and all states occurring after q2 (in particular q1) are reached with non-0
weight. Hence since q1 |= ¬ϕ, this implies that no continuation of ρ can satisfy
ϕU=0ψ.

(5) Φ = AϕU=kψ: This case is similar to the previous one with slight modifications of
the construction. We first assume k to be positive, otherwise we can replace S by
an identical structure in which all weights are inverted and solve the formula with
parameter −k. We then inductively compute

R−k = R−⌊k/2⌋ · R
−
⌈k/2⌉ with R−1 = R−0 ·

1
−→
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and R−0 defined as previously. R−k is the reachability relation in GS by paths of weight k
whose prefixes all have weight strictly less than k. We also compute, using for instance
a modified Floyd-Warshall algorithm in which all integers greater than or equal to k are
assimilated to ∞, the reachability relation R−<k = {(q, q′) | ∃σ = qσ′q′,∀ρ ≤ σ, ‖ρ‖ <
k}.

We now construct a Kripke structure S ′ as in the previous case, except that Q′ =
Q∪Qinit ∪Q+ ∪Q− ∪ {q⊥} (where Q

init is yet another copy of Q and qinit denotes the
copy of q in Qinit) and R′ also contains {qinit1 → q2 | q1R

−
k q2} ∪ {q

init
1 → q−2 | q1R

−
<kq2}.

We additionally label states in Qinit with the atomic proposition ok. With this new
Kripke structure, we can show that q |=S ¬Φ if and only if qinit |=S′ Ψ.

(6) Φ = AϕU∼kψ with ∼∈ {≤, <,>,≥}: Let us first treat the case where ∼ is ≤. We
assume k to be greater than or equal to 0, otherwise we invert all weights in S and
solve the problem using the procedure for Φ = AϕU≥−kψ. We essentially use the same
procedure as for the previous case (= k), with a few modifications:
(a) Relations R−x have to be computed over the restricted set of states Q′ = {q ∈

Q | q |= ¬ψ}, because we have to make sure that no “hidden” intermediate state
reached after a path of weight less than k satisfies ψ;

(b) States in Q− should no longer be labelled by atomic proposition ok, because paths
which ultimately remain in Q− may correspond to paths in S satisfying Φ, and thus
should not satisfy Ψ unlike previously;

(c) Similarly, we remove the label ok from states inQinit , that is ∀q ∈ Q, ℓ′(qinit) = ℓ(q).
In the case where ∼ is ≥, we simply need to re-label states in Qinit and Q− with ok,
and remove ok from the labelling of Q+. Cases where ∼ is < and > are dealt with by
adding the ok label on states in Q in the constructions for ≤ and ≥.

This concludes the proof that deciding the satisfaction of a TCTL formula from a given state
of a DKS−1/0/1 is in P.

Theorem 4.4. The model-checking problem for CCTL±1 is P-complete.

Proof. As usual, P-hardness is inherited from CTL. Membership in P is done by reduction
to TCTL model-checking over DKS−1/0/1.

We provide polynomial-time procedures to deal with the sub-formulas EϕU[C]ψ and

AϕU[C]ψ with C =
∑ℓ
i=1 αi♯ϕi ∼ k where αi ∈ {−1, 1} and k ∈ Z. Consider a Kripke

structure S = (Q,R, ℓ), and inductively assume that the truth values of ϕ, ψ and ϕi over
each state of S are known: these sub-formulas will be seen as atomic propositions in the
following.

To each state q occurring along a path, we associate a cost |q|C =
∑
{αi | q |= ϕi}, and

note that the value of |q|C is in O(|C|). This cost is additively extended to paths in the usual
way. Deciding the truth value of the path formula ϕU[C]ψ then amounts to checking whether
there exists a finite prefix ρ′q of ρ such that |ρ′|C ∼ k, q |= ψ and ∀i ≤ |ρ′|, ρ′(i) |= ϕ.

Given the type of our counting constraints, each state contributes to the cost of a
path by a certain positive or negative number whose absolute value is bounded by d =
max(

∑
{αi | αi = 1},

∑
{|αi| | αi = −1}). The idea is to build a durational Kripke structure

with weights in {−1, 0, 1}, by adding (at most d + 1) copies of each state in the original
Kripke structure.

Formally, we build from S a DKS−1/0/1 S ′ = (Q′, R′, ℓ′) as follows: for each state
q ∈ Q with ||q|C | = n, Q′ contains n + 1 additional states q0, . . . , qn. R

′ is then defined as
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{q
0
−→ q0 | q ∈ Q} ∪ {qn

0
−→ q′ | (q, q′) ∈ R,n = ||q|C |} ∪ {qi

δq
−→ qi+1 | q ∈ Q, i < ||q|C |}

with δq = 1 if |q|C > 0 and δq = −1 otherwise. Finally, we set ℓ′(qi) = ∅ for all qi ∈ Q
′ \Q

and ℓ′(q) = ℓ(q) ∪ {ok} for all q ∈ Q′ ∩Q, where ok is a new atomic predicate.
To each path ρ = qσ in S, we associate the path ρ̃ = qq0 . . . qnσ̃ in S ′. It can now

be shown that ρ satisfies ϕU[C]ψ if and only if ρ̃ satisfies the TCTL path formula (ok ⇒
ϕ)U[∼k](ok ∧ ψ), and consequently that some state q satisfies AϕU[C]ψ (resp. EϕU[C]ψ) in

S if and only if it satisfies A(ok⇒ ϕ)U[∼k](ok ∧ ψ) (resp. E(ok⇒ ϕ)U[∼k](ok ∧ ψ)) in S
′.

Suppose ρ |=S ϕU[C]ψ. We reason by induction on the least integer i such that
ρ|i−1 |=S C, ρ(j) |=S ϕ for all j < i and ρ(i) |=S ψ. If i = 1, then ρ(1) |=S ψ and
thus ρ̃(1) |=S′ ψ (recall that ψ is seen as atomic). Otherwise, ρ = qρ′ with q |=S ϕ

and ρ′ |=S ϕU[C′]ψ with C ′ =
∑ℓ
i=1 ♯ϕi ∼ k − |q|C , in other words ρ′|i−2 |=S C ′ and

ρ′(i− 1) |=S ψ. By induction hypothesis, we have ρ̃′ |=S′ (ok⇒ϕ)U[∼k−|q|C ](ok∧ψ). Hence
ρ̃ = qq0 . . . q|q|C ρ̃

′ |=S′ (ok⇒ϕ)U[∼k](ok ∧ ψ).
Conversely, consider a path ρ in S ′ starting with some state q ∈ Q such that ρ |=S′

(ok⇒ϕ)U[∼k](ok ∧ ψ), and as previously let i be the least integer such that |ρ|i−1| ∼ k,

ρ(j) |=S′ (ok⇒ϕ) for all j < i and ρ(i) |=S′ (ok ∧ ψ). By construction of S ′, there
must exist a unique path σ in S such that σ̃ = ρ. We show by induction on i that
σ |=S ϕU[C]ψ. If i = 1, then ρ(1) |=S′ ok ∧ ψ, in which case σ(1) |=S ψ holds in S.
Otherwise by construction of S ′ there must exist q′ ∈ Q such that ρ = qq0q1 . . . qnq

′ρ′

and q′ρ′ |=S′ (ok⇒ϕ)U[∼k−|q|C ](ok ∧ ψ). Let σ = qq′σ′, by induction hypothesis we have

q′σ′ |=S ϕU[C′]ψ with C ′ =
∑ℓ
i=1 ♯ϕi ∼ k − |q|C . Hence σ |=S ϕU[C]ψ.

This result implies the following corollary on the complexity of model-checking for all
fragments of intermediate expressiveness:

Corollary 4.5. The model-checking problem for CCTL1 is P-complete.

Note that this weaker fragment allows considerable simplification of the proof presented
above for CCTL±1. Moreover, model-checking CCTL1 can be done using the TCTL model-
checking algorithm provided in [LST03] instead of the more involved construction used for
Prop. 4.1.

4.2. Model-checking CCTL∧1, CCTL and CCTL∧. We now establish the complexity of
model-checking for the fragments CCTL∧1, CCTL and CCTL∧ and show that these problems
are all ∆P

2 -complete. Let us first recall the definition of the complexity class ∆P
2 , one of the

classes of the polynomial hierarchy.

Definition 4.6. ∆P
2 = PNP is the class of problems solvable in polynomial time with access

to an oracle for some NP-complete problem.

We now prove ∆P
2 -hardness of the model-checking problem for CCTL∧1.

Theorem 4.7. The model-checking problem for CCTL∧1 is ∆P
2 -hard.

Proof. We proceed by reduction from the ∆P
2 -complete problem SNSAT (sequentially nested

satisfiability of propositional logic) [LMS01].
Given p families of variablesX1, . . . Xp withXi = {x

1
i , ..., x

m
i } and a set Z = {z1, . . . , zp}

of p variables, an instance I of SNSAT is defined as a collection of p propositional formulas
ϕ1, . . . , ϕp under 3-conjunctive normal form (3-CNF), where each ϕi involves variables in
Xi ∪ {z1, ..., zi−1}, and the value of each zi is defined as zi = ∃Xi. ϕi(z1, ..., zi−1,Xi). The
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zp zp−1 z1 x1p x2p xm1

qp qp−1 qp−2 · · · q1 q0 • • · · · • qF

z̄p z̄p−1 z̄1 x̄1p x̄2p x̄m1

Figure 1. Kripke structure associated to an SNSAT problem.

instance I is positive iff the value of zp is ⊤. We denote by vI the unique valuation of
variables in Z induced by I.

From I, we define the Kripke structure described in Figure 1. Every state zi or x
j
i is

labeled by its name, every state z̄i is labeled by some new atomic proposition z̄ and every
state of the form qi is labeled by q. We use X to denote the set X1 ∪ · · · ∪Xp and V for
X ∪ Z. A path ρ from qp to qF describes the valuation vρ such that vρ(y) = ⊤ if ρ visits
state y and ⊥ if it visits ȳ for every variable y in V. We use a CCTL∧1 formula to ensure
that vρ coincides with vI over Z, that is: vρ(zi) = ⊤ iff vI(zi) = ⊤ for any i ∈ {1, . . . , p}.

Let ϕ̃i be the formula ϕi where every occurrence of the literal x is replaced by ♯x=1.
We define the CCTL∧1 formula Ψ0 as ⊤ and for every 1 ≤ k ≤ p, Ψk as EX

Ä
E(z̄ ⇒

¬Ψk−1)U[Ck]qF
ä
, with Ck =

∧
ℓ≤k

Ä
(♯zℓ = 1) ⇒ ϕ̃ℓ

ä
∧

∧k
j=1

Ä
(♯q = j) ⇒ ϕ̃j

ä
. The first

part of the constraint Ck aims at ensuring that vρ(zℓ) = ⊤ is witnessed by a valuation for
{z1, . . . , zℓ−1} ∪Xℓ satisfying ϕℓ. The second part ensures the formula ϕj is satisfied by vρ
when Ψk is interpreted from zj or z̄j (i.e. when the number of q’s along the path leading to
qF is j). The formula Ψj holds for a state qi with i ≤ j when vI(zi) is ⊤. The embedding
of Ψj−1 inside Ψj is used to ensure that going through a z̄m with i ≥ m is always necessary
w.r.t. I (i.e. there is no way to satisfy the corresponding ϕm):

Lemma 4.8. For any i = 1, . . . , p and i ≤ j ≤ p, we have: zi |= Ψj ⇔ vI(zi) = ⊤ and
z̄i 6|= Ψj ⇔ vI(zi) = ⊥

Proof. First note that the truth value of Ψj at zi and z̄i is the same, due to the structure
of paths and the fact that Ψj begins with operator EX. Therefore, both statements of the
lemma are actually equivalent. Their proof is done by induction on i.

• i = 1: Any formula Ψj with 1 ≤ j ≤ p holds from z1 iff q0 satisfies EF[Cj ]qF . And given
the definition of Cj and the structure of any path starting from q0, this is equivalent to
q0 |= EF[‹ϕ1]

qF . And this last requirement is clearly equivalent to the existence of some

valuation for X1 to satisfy ϕ1. Finally note that z̄1 6|= Ψj is equivalent to q0 |= ¬EF[‹ϕ1]
qF

and then vI(z1) = ⊥.
• i > 1: Knowing whether zi |= Ψj is equivalent to qi−1 |= E(z̄ ⇒ ¬Ψj−1)U[C′

j
] qF where

C ′j is the constraint C ′j =
∧
ℓ≤i(♯zℓ=1⇒ ϕ̃ℓ) ∧ ϕ̃i. This entails that there exists a path

ρ leading to qF and defining a valuation vρ such that:
− for any visited zℓ with ℓ < i, we have vρ |= ϕℓ;
− for any visited z̄ℓ with ℓ < i, z̄ is true, and then ¬Ψj−1 holds from z̄ℓ. By induction

hypothesis we have vI(zℓ) = ⊥; and
− vρ |= ϕi.
These three conditions define a valuation vρ that coincides with vI for {zi−1, . . . , z1} and
such that there exists a compatible valuation for satisfying ϕi, thus vI(zi) = ⊤. Now if

z̄i 6|= Ψj, then qi−1 |= ¬E
Ä
z̄ ⇒ ¬Ψj−1

ä
U[C′

j
] qF and then vI(zi) 6= ⊤.
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It is now sufficient to check whether q0 satisfies Ψp or not, and then deduce the truth
value of vI(zp).

Note that in the previous proof, one does not use sums in the constraints to get the
complexity lower bound.

Theorem 4.9. The model-checking problem for CCTL is ∆P
2 -hard.

Proof. We provide a reduction from the model checking problem for TCTL specifications
over Durational Kripke structures. TCTL formulas allow to deal with the cost (or duration)
of paths (i.e. the sum of the weight of every transition occurring along the path). This
problem is ∆P

2 -complete [LMS06]. Let S = (Q,RS , ℓ) be a DKS. Let W be the set of
weights occurring in S. We define the Kripke structure S ′ = (Q′, RS′ , ℓ

′) as follows:

• Q′ = Q ∪ {(q, d, q′) | ∃(q, d, q′) ∈ RS},
• for any (q, d, q′) ∈ RS , we add (q, (q, d, q′)) and ((q, d, q′), q′) in RS′ ; and

• ℓ′ : Q′ → 2AP′

with AP′ = AP ∪ {ok} ∪ {Pd | d ∈ W}, assuming ok, Pd 6∈ AP. And we
have: ℓ′(q) = ℓ(q) ∪ {ok} for any q ∈ Q, and ℓ′(q, d, q′) = {Pd}.

We also inductively define ‹Φ for any TCTL formula Φ as: ‹P = P , ¬̃ψ = ¬ψ̃, ‡ϕ ∧ ψ = ϕ̃∧ ψ̃,
„�EϕU∼cψ = E(ok ⇒ ϕ̃)U[C∼c](ok ∧ ψ̃) and

„�AϕU∼cψ = A(ok ⇒ ϕ̃)U[C∼c](ok ∧ ψ̃) with C∼c =∑
d∈W d · ♯Pd ∼ c.

Now we can easily see that q |=S Φ with Φ ∈ TCTL is equivalent to q |=S′ ‹Φ.
Theorem 4.10. The model-checking problem for CCTL∧ is in ∆P

2 .

Proof. Let S = 〈Q,R, ℓ〉 be a Kripke structure. For this proof, by definition of ∆P
2 , it

is sufficient to provide NP procedures to deal with sub-formulas of the form EF[C]ϕ and
EG[C]ϕ (Cf. Rem.2.6). First let {C1, . . . , Cm} be the set of atomic constraints occurring in

C. Each Ci is of the form
∑
j∈[1,ni] α

i
j · ♯ϕ

i
j ∼i ki. And let k be the maximal integer constant

occurring in C. We can now present the algorithms:

• Φ = EF[C]ψ: If q |= Φ, then there exists a run ρq′ starting from q such that q′ |= ψ and
ρ |= C. First note that we can assume that the length of ρ is bounded with respect to
the model and formula (more specifically by m · |Q| · (k + 1)): a sequence of |Q| states
contributes for at least 1 to some linear expressions in C (loops containing only 0-states
can be avoided since they do not contribute to the satisfaction of C) and every atomic
constraint in C needs at most to collect a total weight of k + 1. Hence the length of ρ is
in O(|Q|.2|C|) due to the binary encoding of the constants.

An easy NP algorithm consists in guessing the Parikh image6 Fρ : R → N of the
sequence of transitions in ρ, where Fρ(r) with r ∈ R is the number of occurrences of
transition r in ρ. As the length of ρ is bounded by m · |Q| · (k+1), Fρ can be represented
in polynomial size. Moreover one can check in polynomial time that:
• q′ satisfies ψ,
• ρ satisfies C, since ♯ϕij =

∑
r | r|=ϕi

j

∑
(r,r′)∈R Fρ(r, r

′).

• Fρ corresponds to a correct path in S (by verifying that the sub-graph induced by Fρ
is connected and then applying the Euler circuit theorem).

6Recall that the Parikh image of a sequence u over some alphabet A is the function mapping each symbol
in A to its number of occurrences in u. This is also equivalently seen as a vector of dimension |A| called the
Parikh vector of u.
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• Φ = EG[C]ψ: For this case we have to find an infinite path ρ satisfying the property
“whenever the current prefix satisfies C then the next state has to satisfy ψ”.

Every atomic constraint Ci in C may change its truth value at most twice along ρ.
Therefore ρ can be decomposed in at most 3m parts (ρj)j∈[1,3m] along each of which the
truth value of every Ci is constant. Of course a part can be empty (restricted to a single
state) and the last part must contain a cycle to ensure that ρ is infinite.

As previously, the length of every ρj is bounded and its Parikh image can be encoded
in polynomial size. Moreover it is possible to ensure that each ρj ends at the starting
state of ρj+1. Finally we can also compute the truth value of C over any sequence ρ1 . . . ρj
and then verify whether ψ holds for any state in such a sequence if necessary.

A direct corollary of Theorems 4.7, 4.9 and 4.10 is:

Corollary 4.11. The model-checking problem for CCTL, CCTL∧1, CCTL∧ is ∆P
2 -complete.

4.3. Undecidability.

Theorem 4.12. The model-checking problem for CCTL∧±1 is undecidable.

Proof. This is done by reduction from the halting problem of a two-counter machine M
with counters C and D, and n instructions I1, . . . , In. Each Ii is either a decrement
〈if X=0 then j else X--, k〉 where X stands for C or D, an increment 〈X++, j〉,
or the halting instruction 〈halt〉. We define a Kripke structure SM = (Q,R, ℓ), where
Q = {q1, . . . , qn} ∪ {ri, si, ti | Ii = 〈if ...〉}. The transition relation is defined as follows:

• if Ii = 〈X++, j〉, then (qi, qj) ∈ R ; and
• if Ii = 〈if X=0 then j else X--,k〉, then (qi, ri), (ri, qk), (qi, si), (si, ti), and (ti, qj) in
R.

The labeling ℓ is defined over the set {halt,C�,C�,C0, C0̄, D�,D�,D0, D0̄} as ℓ(qi) = {X
�}

if Ii is an increment of X, ℓ(ri) = {X
�}, ℓ(si) = {X

0̄} and ℓ(ti) = {X
0} if Ii is a decrement

for X, and ℓ(qi) = {halt} if Ii is the halting instruction.
A run going through si and ti for some i will simulate the positive test “X = 0”: we

use the propositions X 0̄ and X0 to observe this fact. Indeed along any run in SM, a prefix
satisfies ♯X 0̄ > ♯X0 if and only if that prefix ends in some state si, which witnesses the fact
that the counter’s value was deemed equal to zero. The propositions on the other states are
self-explanatory, witnessing increments and decrements of counters.

Checking CCTL∧±1 on this structure solves the halting problem, sinceM does not halt
if and only if q1 |=SM EG[C]⊥ with the following constraint:

C = (♯halt ≥ 1) ∨
∨

X∈{C,D}

(
(♯X� − ♯X� < 0) ∨ (♯X� − ♯X� > 0 ∧ ♯X 0̄ − ♯X0 > 0)

)

This formula states that there exists a run where C is consistently false, where C is true
either if the run terminates, or if the simulation of M is wrong because the number of
decrements is at some point larger than the number of increments, or because some counter
was incorrectly assumed to be zero while simulating a test.
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5. Satisfiability

Here we address the satisfiability problem: given a formula Φ, does there exist a Kripke
structure S = 〈Q,R, ℓ〉 with a state q ∈ Q such that q |= Φ?

For branching-time temporal logics, satisfiability problems are often harder than model
checking (contrary to linear-time temporal logics) [Eme90], this is also the case for our
counting logics. As soon as diagonal constraints are allowed (as in CCTL±1 or CCTL±),
satisfiability is undecidable: this can be easily shown by adapting the undecidability proof
of CCTL∧±1 model checking:

Theorem 5.1. The satisfiability problem for CCTL±1 is undecidable.

Proof. As in the proof of Theorem 4.12, consider a two-counter machineM with counters
C and D, and n instructions I1, . . . , In. We build a CCTL±1 formula ΦM that is satisfiable
iffM halts.

We use the following set of atomic propositions: AP = {q1, . . . , qn,C
�,C�,C0,D�,D�,

D0,halt}. The CCTL±1 formula ΦM describes a linear KS whose every state is labeled
by exactly one qi corresponding to the current state of M and one proposition in P =
{C�,C�,C0,D�,D�,D0,halt} that indicates the operation that has to be done (X� and
X� are used to mark increment and decrement of X, and X0 labels states corresponding
to an instruction “if X == 0 . . . ” when the current value of X is 0). In the following we
use IM(X) (resp. TM(X)) to denote the set of instruction numbers corresponding to an
increment (resp. a test) of counter X. ΦM is the conjunction of the following formulae:

(1) AG
( ∨

i=1...n

(qi ∧
∧

j 6=i

¬qj)
)

(2) AG
( ∨

p∈P

(p ∧
∧

p′∈P\{p}

¬p′)
)

(3) for every instruction, we have a step formula Φi:

Φi =





AG
Ä
qi ⇒ (X� ∧ AX qj)

ä
if Ii = 〈X++, j〉

AG
(
qi ⇒

Ä
(X0 ∧ AX qj) ∨ (X� ∧ AX qk)

ä)
if Ii = 〈if X=0 then j else X--,k〉

AG
Ä
qi ⇒ (halt ∧ AX halt)

ä
if Ii = 〈halt〉

(4) no zero test succeeds when the actual value of the corresponding counter is strictly
positive (i.e. after a prefix witnessing strictly more increments than decrements), and
no decrement is performed when that value is 0:

∧

X∈{C,D}

(
AG[♯X�−♯X�>0](¬X

0) ∧ AG[♯X�=♯X�](¬X
�)

)

(5) AF halt
Clearly Φ is satisfiable by a finite KS iffM terminates.

For logics with no diagonal constraints, satisfiability remains decidable, with an additional
cost compared to classical CTL.

Theorem 5.2. The satisfiability problems for logics ranging from CCTL1 to CCTL∧ are
2-EXPTIME-complete .
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Proof. Hardness comes from the complexity of RTCTL= satisfiability [EMSS92]: this logic
is an extension of CTL with an Until operator equipped with constraints of the form ”=k”
over the number of transitions leading to the state satisfying the right part of the Until.
This result is based on an encoding of an exponential space alternating Turing machine by
a RTCTL= formula. Clearly, RTCTL= is included in CCTL1.

2-EXPTIME membership directly follows from the translation given in Lemma 3.1:
any CCTL∧ formula can be translated into CTL and the resulting formula’s DAG-size is

in O(2|Φ|
2
). It remains to use an exponential algorithm for CTL satisfiability to obtain a

2-EXPTIME procedure (note that considering DAG-size instead of standard size does not
matter for the complexity of the CTL procedure: indeed, in [KVW00] for instance, the size
of the alternating tree automaton built from a given CTL formula is its number of distinct
subformulae).

6. Extensions

In the semantics of CCTL modalities, each new path quantifier resets the counting along
a run, or more precisely starts counting anew on the remaining portion of the run. This
restriction is quite significant, and ensures in particular that CCTL is a state-based temporal
logic. Under some circumstances (as well as for the sake of completeness), it could be useful
to relax this hypothesis and consider logics in which nested modalities do not necessarily
reset the counting process.

In this section, we define two logics that allow this behaviour. The first one, called
CCTLv, uses explicit variables to keep track of the number of times a sub-formula was made
true along the current run since the variable was bound. The second logic, called CCTLc

uses a special reset modality and a different, cumulative semantics for U[C], where counting
ranges over the whole portion of the run since the last reset (hence potentially since the
very beginning of the run). This logic is interpreted over states with a history.

6.1. Explicit variables. Instead of using counting constraints associated with temporal
modalities, we now consider a logic equipped with explicit variables and constraints directly
stated inside formulas.

Definition 6.1. Given a set of atomic propositions AP and a countable set of variables V ,
we denote by CCTLv the set of formulas of the form

ϕ,ψ ::= P | ϕ ∨ ψ | ¬ϕ | EϕUψ | AϕUψ | z[ψ].ϕ |
ℓ∑

i=1

αi · zi ∼ c

where P ∈ AP, z, zi ∈ V , ℓ, αi, c ∈ N and ∼∈ {<,≤,=,≥, >}.

Intuitively z[ψ].ϕ means that variable z is defined and may be used in formula ϕ, where
it will stand for the number of times formula ψ was observed to be true along the current
run since z was defined.

More precisely, when the above formula is evaluated in a certain state, (1) variable z
is reset to zero and bound to the sub-formula ψ, (2) at each subsequent step of a run, z is
assigned the number of states in which formula ψ has held along this run since z was bound
(i.e. the value of z evolves like ♯ψ as in Definition 2.3) and (3) given this semantics for z, ϕ
holds in the current state.
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Remark 6.2. The logic CCTLv can easily express any CCTL∧ property. Indeed, any CCTL∧
formula EϕU[C]ψ, where C is a boolean combination f(C1, . . . , Cm) of atomic constraints

Ci =
∑ni
j=1 ♯ϕ

i
j ∼ ki, is equivalent to the CCTLv formula

z11 [ϕ
1
1].z

1
2 [ϕ

1
2] . . . z

m
nm [ϕ

m
nm ].EϕU

Ä
ψ ∧ f(C ′1, . . . , C

′
m)
ä

where C ′i =
∑ni
j=1 z

i
j ∼ ki (and similarly for the A-quantified modality). This translation

yields formulas whose size is linear in that of the original formulas.
For example, the CCTL∧1 formula EF[♯P≤5∧♯P ′>2]P

′′, stating that there exists a run
along which a state satisfying P ′′ is reached after at most 5 occurrences of P and more than
2 occurrences of P ′, can be expressed in CCTLv as z11 [P ].z

1
2 [P
′].EF(z11 ≤ 5 ∧ z12 > 2 ∧ P ′′).

We first introduce some notations. Given a function f : E → F , we denote by dom(f) ⊆
E the domain of f , and by ran(f) ⊆ F its range. For x ∈ E and a ∈ F , let f [x← a] be the
function mapping x to a and every y ∈ dom(f)\{x} to f(y), and f |D be the restriction of f
to some subset D of E. Moreover we let cl(ϕ) be the set of all sub-formulas of ϕ and V (ϕ)
denote the set of all variables occurring in ϕ. An occurrence of some z ∈ V (Ψ) is bound if
it occurs in the right-hand side ϕ of some sub-formula z[ψ].ϕ ∈ cl(Ψ), and free otherwise.
A variable is free in Ψ if it has at least one free occurrence. A formula without any free
variable is called closed. Formally, the set FV (Ψ) ⊆ V (Ψ) of free variables of Ψ is

FV (ϕ1 ∨ ϕ2) = FV (Eϕ1Uϕ2) = FV (Aϕ1Uϕ2) = FV (ϕ1) ∪ FV (ϕ2)

FV (P ) = ∅ FV (
∑ℓ
i=1 αi · zi ∼ c) = {zi | i ∈ [1, ℓ]}

FV (¬ϕ) = FV (ϕ) FV (z[ψ].ϕ) = FV (ψ) ∪ (FV (ϕ) \ {z})

Remark 6.3. In order to define the formal semantics of CCTLv, one must be able to deter-
mine, in a given context, which sub-formula ψ is bound to each variable z. For simplicity,
we will henceforth make the following two assumptions on the syntax of formulas:

(1) In any formula, every variable is bound at most once. In other words, every subformula
z[ψ].ϕ deals with a distinct variable z.

(2) In any formula Φ, there exists a (strict) total ordering ≺ on V (Φ) such that any formula
bound to some variable z only contains occurrences of variables less than z, or more
formally, for any sub-formula z[ψ].ϕ of Φ, z′ ∈ V (ψ) implies z′ ≺ z.

Note that neither assumption restricts the expressiveness of the logic, since one may eas-
ily rename variable occurrences in any formula to fulfill constraint 1, and order variables
according to an infix traversal of a formula’s syntax tree to fulfill constraint 2.

We call environment any partial function ε : V → CCTLv. A pair (Φ, ε) where Φ is
a CCTLv formula and ε is an environment, is a called a closure. We distinguish a specific
class of closures, called consistent, defined as follows:

Definition 6.4. A CCTLv closure (Φ, ε) is said to be consistent if

(1) dom(ε) ∩V (Φ) = FV (Φ);
(2) for all z ∈ dom(ε) and z′ ∈ FV (ε(z)), z′ ∈ dom(ε);
(3) for all z ∈ dom(ε) and z′ ∈ V (ε(z)), z′ ≺ z.

Condition (1) guarantees that the environment for Φ defines at least all free variables in
Φ (and potentially some additional variables not occurring in Φ) and does not redefine any
of Φ’s variables, condition (2) that ε does not refer to undefined variables and condition (3)
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that there are no cyclic definitions. Note that for any closed formula Φ, (Φ, ε∅) is consistent,
where ε∅ is the empty environment.

A consistent CCTLv closure (ϕ, ε) is interpreted over a state of a Kripke structure
extended with a valuation v : V → N such that dom(v) = dom(ε). Given a consistent
closure (ϕ, ε), a valuation v such that dom(v) = dom(ε), and a finite run π of a Kripke
structure, let v +ε π be the valuation describing the values of variables in dom(v) after
following π (i.e. once the states of π have all been visited and belong to the past): at each
step along π, the value of every variable z ∈ dom(v) is updated to take into account the
truth value of ε(z). Formally v +ε π is defined inductively as: v +ε π = v if |π| = 0 (i.e. π
is the empty sequence), and (v +ε π · r)(z) = v′(z) + 1 if (r, v′, ε) |= ε(z) (the satisfaction
relation |= is defined below) and (v +ε π · r)(z) = v′(z) otherwise, where v′ is the valuation
v +ε π and r is a state.

Definition 6.5. The following clauses define the satisfaction of a consistent CCTLv closure
(ϕ, ε) from the state q of some Kripke structure S = 〈Q,R, ℓ〉 under valuation v with
dom(v) = dom(ε) – written (q, v, ε) |=S ϕ – by induction over the structure of ϕ (we omit
the cases of Boolean modalities):

(q, v, ε) |=S z[ψ].ϕ iff (q, v[z ← 0], ε[z ← ψ]) |=S ϕ,

(q, v, ε) |=S
∑ℓ
i=1 αi · zi ∼ c iff

∑ℓ
i=1 αi · v(zi) ∼ c,

(q, v, ε) |=S EϕUψ iff ∃ρ ∈ Runs(q) s.t. (ρ, v, ε) |=S ϕUψ,

(q, v, ε) |=S AϕUψ iff ∀ρ ∈ Runs(q),we have (ρ, v, ε) |=S ϕUψ,

where

(ρ, v, ε) |=S ϕUψ iff ∃i ≥ 0 s.t. (ρ(i), v +ε ρ|i−1, ε) |=S ψ

and ∀ 0 ≤ j < i, (ρ(j), v +ε ρ|j−1, ε) |=S ϕ.

When there is no risk of confusion, we may omit subscript S, and simply write (q, v, ε) |=
ϕ. For any closed formula Φ, only the state q is relevant and we will simply write q |=S Φ,
or directly q |= Φ. Remark that, when evaluating a closed formula according to the above
semantic rules, only consistent closures are built and considered.

Finally, as a technical tool for the following proofs, we consider the set of relevant
variables of a closure, that is the set of variables whose current value is required to decide
whether the formula holds for a given state. Given a consistent closure (Φ, ε), we define
RV (Φ, ε) as follows:

RV (z[ψ].ϕ, ε) = RV (ϕ, ε[z ← ψ])\{z} (6.1)

RV (Eϕ1Uϕ2, ε) = RV (Aϕ1Uϕ2, ε) = RV (ϕ1 ∨ ϕ2, ε) = RV (ϕ1, ε) ∪ RV (ϕ2, ε) (6.2)

RV (¬ϕ, ε) = RV (ϕ, ε) (6.3)

RV (P, ε) = ∅ (6.4)

RV (zi ∼ c, ε) = {zi} ∪RV (ε(zi), ε) (6.5)

Note that relevant variables in formula ψ are only added to RV (z[ψ].ϕ, ε) when zi occurs
in formula ϕ, i.e. in case (6.5) above. Clearly FV (Ψ) ⊆ RV (Ψ, ε) ⊆ V (Ψ). Moreover by
Def. 6.4, for every z′ ∈ RV (ε(z), ε), z′ ≺ z.

Example 6.6. Consider the consistent closure (Ψ, ε) with

Ψ = z4[P
′].EF(z4 ≥ 2 ∧ z2 = 4) and ε = {z1 7→ P, z2 7→ EX(z1 > 2), z3 7→ P ′′},
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we have FV (Ψ) = {z2} and RV (Ψ, ε) = {z2, z1} because z1 occurs free in ε(z2), hence
RV (ε(z2), ε) = {z1} by Eq. (6.5). Of course z3 belongs to neither set because it occurs
nowhere, and z4 because it is bound in Ψ and RV (ε(z4), ε) = ∅.

Given a closure (Ψ, ε) and a valuation v, we denote by vΨ the restriction v|RV (Ψ,ε) of v
to the domain RV (Ψ, ε) (and εΦ is the corresponding restriction of ε). The set RV (Ψ, ε)
contains the relevant variables for evaluating Ψ as stated by the following lemma.

Lemma 6.7. For any consistent closure (Ψ, ε), the closure (Ψ, εΨ) is consistent. Moreover,
let v be a valuation over dom(ε) and q a state,

(q, v, ε) |= Ψ ⇐⇒ (q, vΨ, εΨ) |= Ψ.

The proof of this lemma is straightforward. In the remainder of this section, we will
study the expressiveness of this logic, as well as the complexity of its model-checking and
satisfiability problems.

6.1.1. Expressiveness. Similarly to CCTL formulas without diagonal constraints, we show
in this section that any closed CCTLv formula can be translated into an equivalent CTL
formula.

Proposition 6.8. For every closed CCTLv formula Φ, there exists an equivalent CTL for-

mula of dag-size 2O(|Φ|2).

Before presenting the actual translation, we show that variable values may be bounded
without changing the satisfaction of a formula. For a valuation v and an integer K, let us
denote by vK the restriction of v to the domain {z ∈ dom(v) | v(z) ≤ K}.

Lemma 6.9. Let (ϕ, ε) be a consistent CCTLv closure, and K the maximal constant oc-
curring in a constraint in ϕ or ε. For all Kripke structure S, state q of S and valuations v
and v′ over dom(ε), we have:

vK = v′K =⇒
Ä
(q, v, ε) |=S ϕ ⇐⇒ (q, v′, ε) |=S ϕ

ä
.

Proof. A reformulation of vK = v′K is v(z) ≤ K ⇒ v(z) = v′(z). For each free variable z
whose value by v is greater than K, the truth value of any constraint where z occurs will be
the same for v(z) and any other value greater than K, in particular v′(z), since the constant
in the right-hand side of the constraint is at most K. This is true in q, and remains true
along any run from q.

For any consistent closure (ϕ, ε) and for some valuation v with dom(v) = dom(ε) =
RV (ϕ, ε), we define the CTL translation JϕKvε by induction on the structure of ϕ. The case
of boolean connectives and atomic formulas is trivial:

Jψ1 ∧ ψ2K
v
ε = Jψ1K

vψ1
εψ1
∧ Jψ2K

vψ2
εψ2

JP Kvε = P J¬ϕKvε = ¬JϕKvε (6.6)

Variable definitions and constraints are also straightforward. It suffices to update and use
the valuation and environment suitably:

Jz[ϕ].ψKvε = JψK
v[z←0]
ε[z←ϕ] J

∑
i αi · zi ∼ cK

v
ε =

{
⊤ if

∑
i αi · v(zi) ∼ c

⊥ otherwise
(6.7)

Dealing with temporal modalities is more complex, and justifies the introduction of auxiliary
formulas. Similarly to the translation of CCTL to CTL, the idea is to successively evaluate
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each formula ε(z) which is relevant to the truth value of the whole formula, and to update
the valuation accordingly. However, since variable values strictly larger than K (where
K is the largest constant occurring in the formula or the environment) are all equivalent
according to the previous proposition, it is only useful to evaluate formulas ε(z) such that
v(z) ≤ K.

JEϕUψKvε = E
Ä
JϕKvϕεϕ ∧Θv

ε

ä
U
[
JψK

vψ
εψ ∨

(
JϕKvϕεϕ ∧ Γvε

Ä
EϕUψ,dom(vK), v

ä)]
(6.8)

with Θv
ε =

∧
z∈dom(vK )

Ä
¬Jε(z)K

vε(z)
εε(z)

ä
and, for Z 6= ∅, z ∈ Z and v′ a valuation:

Γvε(EϕUψ,Z, v′) =
Ä
¬Jε(z)K

vε(z)
εε(z) ∧ Γvε(EϕUψ,Z \ {z}, v′)

ä

∨
Ä
Jε(z)K

vε(z)
εε(z) ∧ Γvε(EϕUψ,Z \ {z}, v′[z ← v(z) + 1])

ä
(6.9)

and finally:

Γvε(EϕUψ,∅, v′) =

{
⊥ if v = v′,

EXJEϕUψKv
′

ε otherwise.
(6.10)

Finally, given a closed CCTLv formula Φ, we define its CTL translation JΦK as JΦK∅∅.
Intuitively, the above translation of until modalities with valuation v and environment

ε works by distinguishing interesting states, in which the value of at least one variable in
dom(vK) changes, from uninteresting ones. The CCTLv formula EϕUψ then holds if, and
only if, after a finite sequence of uninteresting states satisfying ϕ, either ψ holds or the
run has reached an interesting state satisfying ϕ, after which EϕUψ holds with a suitably
updated valuation.

Formula Θv
ε in Eq. (6.8) expresses the fact that the current state is uninteresting, and

Γvε(EϕUψ,dom(vK), v) that the current state is interesting, in other words satisfies at least
one of the formulas ε(z) for z a variable with value at mostK in v, and satisfies EXJEϕUψKvε .
For such a state it is necessary to know exactly which formulas ε(z) are satisfied and this is
done by scanning the set dom(vK), updating the valuation v′ for each z in turn whenever
ε(z) is attested to hold (Eq. (6.9)). If no ε(z) holds in the current state, which is witnessed
by the fact that v = v′, the state is in fact uninteresting and the whole scanning fails,
otherwise the unfolding process continues (Eq. (6.10)).

Note how v and ε are restricted to relevant variables at every recursive call to the above
translation procedure (for instance in Jε(z)K

vε(z)
εε(z)). This precaution is used to avoid cycles in

the update of variables. It is necessary, since simply translating ε(z) with an environment
and valuation containing z itself may generate an infinite formula. It is also sufficient, since
by definition of consistent closures, z 6∈ RV (ε(z), ε).

Formulas JAϕUψKvε and Γvε(AϕUψ,Z, v′) are defined similarly by replacing each occur-
rence of E with A in the above formulas.

Lemma 6.10. The above inductive definition for JΦK is well-founded, in other words JΦK

is a finite CTL formula. The DAG-size of JΦK is in 2O(|Φ|2).

Proof. In Equations (6.6) and (6.7), all inductive uses of the translation function are per-
formed over strictly shorter formulas. Even though this is not the case in Eq. (6.10), no
recursive call is made unless the valuation v′ used in Eq. (6.10) is different from (hence
necessarily strictly greater than) v. Since variables assigned a value greater than K do
not belong to dom(vK), this set will eventually become empty, meaning that no state is
considered interesting after some point. Hence no infinite inductive “call” to JEϕUψKvε is
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possible. Finally, the definition of Γvε(ϕ,Z, v
′) only refers to formulas Γvε(ϕ,Z

′, v′) with Z ′

strictly included in Z.
The maximal number of distinct valuations v we need to consider is bounded by (K+3)n

(since each of the n variables can assume a value between 0 and K + 1 or be undefined).
Since each Γvε(ϕ,Z, v

′) is indexed by two valuations v and v′, one sub-formula ϕ (of which
there are at most |Φ|) and a set of variables Z (at most 2n possibilities), the total number
of distinct such formulas to consider is less than ((K + 3)n)2 · |Φ| · 2n. Overall, since

K ∈ O(2|Φ|) due to the binary encoding and n ∈ O(Φ), this yields a worst-case DAG-size

for JΦK in O(|Φ| · (2|Φ| + 3)2|Φ| · 2|Φ|) ⊆ 2O(|Φ|2).

We have the following correctness lemma:

Lemma 6.11. Let (Φ, ε) be a consistent CCTLv closure, K the maximal constant in Φ and
ε. For every Kripke structure S, state q of S and (K + 1)-bounded valuation v we have:

(q, v, ε) |=S Φ ⇐⇒ q |=S JΦKvΦεΦ .

Proof. The proof of the direct implication is done by structural induction over Φ. We only
detail the cases of variable definition and temporal modalities.

• Φ = z[ϕ].ψ: Assume (q, v, ε) |= z[ϕ].ψ. This is semantically equivalent to (q, v[z ←

0], ε[z ← ϕ]) |= ψ. By induction hypothesis q |= JψK
v[z←0]ψ
ε[z←ϕ]ψ

, hence q |= JΦKvΦεΦ .

• Φ = EϕUψ: Assume (q, v, ε) |= EϕUψ. There exists a run ρ = q0q1q2 . . . with q0 = q and
an index i ≥ 0 such that (qi, v+ερ|i−1, ε) |= ψ and for all 0 ≤ j < i, (qj, v+ερ|j−1, ε) |= ϕ.
For every 0 ≤ j < i, let vj be the valuation vΦ +εΦ ρ|j−1, and Zj be the set of variables
z such that vj(z) ≤ K and vj+1(z) = vj(z) + 1, i.e. the set of relevant variables whose
value is incremented in state qj.
Let j1,. . . , jℓ be the positions in {0, . . . , i−1} along ρ where Zjh is non-empty. We reason

by induction over ℓ. If ℓ = 0, then clearly q |= E(JϕK
vϕ
εϕ∧Θ

vΦ
εΦ
)UJψK

vψ
εψ , and thus q |= JΦKvΦεΦ .

Now assume ℓ > 0, we have: Zj = ∅ for 0 ≤ j < j1, Zj1 6= ∅, and:

qj1 |=
∧

z∈Zj1

εΦ(z)

︸ ︷︷ ︸
Φ1

∧
∧

z∈dom(εΦ)\Zj1

¬εΦ(z)

︸ ︷︷ ︸
Φ2

Moreover we have (qj1+1, vj1+1, ε) |= EϕUψ. By induction hypothesis over ℓ we have

qj1+1 |= JEϕUψK
vj1+1
εΦ and thus: q |= E(JϕK

vϕ
εϕ ∧ ΘvΦ

εΦ)U(Φ1 ∧ Φ2 ∧ EXJEϕUψK
(vj1+1)
εΦ ).

Therefore we have q |= JΦKvΦεΦ .
• Φ = AϕUψ: in this case, every run from q has to verify ϕUψ. We can reuse the same
approach as before. In the general case, every run starts with a prefix along which every
state qj is such that Zj is empty, followed by some state qj1 where Zj1 6= ∅, which satisfies

AXJAϕUψK
(vj1+1)Φ
ε .

The converse is also done by structural induction on Φ. The case where Φ = z[ϕ].ψ follows
the same reasoning as above, only backwards. When Φ = EϕUψ, we reason by induction on
the following (well-founded) ordering of valuations. We write v′ E v whenever dom(v′K) ⊆
dom(vK) and ∀x ∈ dom(v′K), v′(x) ≥ v(x), meaning that v′ assigns greater values than v to
all variables to which v′ assigns a value less than or equal to K, and v′⊳v if additionally v′ 6=
v. Assume q |= JΦKvε, and consider the iterative unfolding of the definitions of subformula
Γ in JΦKvε. For this formula to hold, there must exist a satisfied formula Ψ, obtained by
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replacing each disjunction by one of its operands, resulting in a “witness” for the satisfaction
of JΦKvε. Ψ is of one of the forms:

Ψ = E
Ä
JϕKvϕεϕ ∧Θv

ε

ä
U
Ä
JϕKvϕεϕ ∧

∧

z∈Z

Jε(z)K
vε(z)
εε(z) ∧

∧

z∈dom(vK )\Z

¬Jε(z)K
vε(z)
εε(z) ∧ EXJΦKv

′

ε

ä
(6.11)

for some non-empty Z ⊆ dom(vK), and with v′(z) = v(z) + 1 if z ∈ Z and v(z) ≤ K and
v′(z) = v(z) otherwise, or

Ψ = E
Ä
JϕKvϕεϕ ∧Θv

ε

ä
UJψK

vψ
εψ . (6.12)

In the former case (Eqn. (6.11)), there must exist a run ρ = q0q1 . . . and some k ≥ 0

such that qi 6|=S Jε(z)K
vε(z)
εε(z) for all i < k and z ∈ dom(vK), qi |=S JϕK

vϕ
εϕ for all i ≤ k,

qk |=S Jε(z)K
vε(z)
εε(z) for all z ∈ Z, qk 6|=S Jε(z)K

vε(z)
εε(z) for all z ∈ dom(vK)\Z, and qk+1 |=S JΦKv

′

ε .

Since Z 6= ∅, we have v′ ⊳ v, hence by our induction hypotheses over the structure
of Φ and the ordering of valuations, we obtain that (qi, v, ε) 6|=S ε(z) for all i < k and
z ∈ dom(vK), (qi, v, ε) |=S ϕ for all i ≤ k, (qk, v, ε) |=S ε(z) for all z ∈ Z, (qk, v, ε) 6|=S ε(z)
for all z ∈ dom(vK) \ Z, and (qk+1, v

′, ε) |=S Φ.
Since the truth value of any subformula is independent of the variables which are

irrelevant for that subformula or whose value is already greater than K at the beginning of
the run, and given the truth values of formulas ε(z) along ρ, this implies that (qk+1, v +ε

ρ|k, ε) |=S EϕUψ and ∀i ≤ k, (qi, v+ε ρ|i−1, ε) |=S ϕ, hence (q0, v, ε) |=S Φ, and this remains
true for any valuation v′′ and environment ε′′ such that v′′Φ = v and ε′′Φ = ε.

The latter case (Eqn. (6.12)) is easier and is solved similarly. As previously, the A
quantifier is also treated in the same fashion.

Example 6.12. For the CCTLv formula Φ = z[P ].z′[z > 0].EF(z′ > 0 ∧ P ′), we obtain
(after simplification) the following translation:

JΦK
def
= E (¬P ) U

(
P ∧ EX

Ä
EX EFP ′

ä)

The two nested EX modalities are necessary because one must distinguish the first state r
where P holds true from its successor r′, which is the first to satisfy z > 0, and from the
successor r′′ of r′ which is the first state satisfying z′ > 0.

6.1.2. Model checking.

Theorem 6.13. Model checking closed CCTLv formulas is PSPACE-complete.

Proof.

• PSPACE-hardness can be proved by a reduction from the quantified Boolean formula
problem (QBF)7. Consider a QBF instance I = ∃x1∀x2 . . . ∃x2p−1∀x2p · Φ where Φ is a

propositional formula in 3-conjunctive normal form (3-CNF)
∧
j=1...m(ℓ

j
1 ∨ ℓ

j
2 ∨ ℓ

j
3) over

{x1, . . . , x2p}. Now consider the KS SI = 〈Q,R, ℓ〉 in Figure 2. We assume that every
state qi is labeled with its name, and every state xi (resp. x̄i) is labeled by the atomic

proposition Cj iff xi (resp. ¬xi) is one of the literals in {ℓj1, ℓ
j
2, ℓ

j
3}. Then I is positive iff

q1 satisfies the following formula:

z1[C1] · · · zm[Cm] · EF

Ç
q2 ∧ AF

(
q3 ∧ EF . . .

Ä
q2p ∧ AF(q2p+1 ∧

∧

i=1...m

(zi ≥ 1))
ä)å
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x1 x2 x2p−1 x2p

q1 q2 q3 · · · q2p−1 q2p q2p+1

x̄1 x̄2 x̄2p−1 x̄2p

Figure 2. Kripke structure associated to a QBF instance over {x1, . . . , x2p}.

• PSPACE-membership is obtained by considering a non-deterministic algorithm working
in polynomial space to decide whether a closed CCTLv formula Φ holds for a state q within
a KS S. This provides an NSPACE procedure which, by Savitch’s theorem, implies the
existence of a PSPACE algorithm.

We assume that Φ contains n variables z1, z2, . . . zn. Let us call configuration any triple
(q, v, ε) where q is a state, v a valuation and ε an environment. First note that valuations
can be encoded in space polynomial in |Φ| since it is sufficient to store the value for each
variable z as a K + 1-bounded counter, where K is the maximal constant occurring in
Φ, which requires at most |Φ| bits per variable. Hence configurations can be encoded in
space polynomial in |Φ| and linear in |S|.

For any consistent closure (Ψ, ε) with Ψ ∈ cl(Φ), we define an NSPACE procedure
Check(q, v, ε,Ψ) to decide whether Ψ holds over (q, v, ε). We consider several cases ac-
cording to the structure of Ψ, of which we omit the simplest.
− Ψ = zi[ψi].ϕi : the returned value is Check(q, v[zi ← 0], ε[zi ← ψi], ϕi).
− Ψ =

∑ℓ
i=1 αi · zi ∼ c : the returned value is the boolean evaluation of the constraint∑ℓ

i=1 αi · v(zi) ∼ c.
− Ψ = Eϕ1Uϕ2: if Check(q, v, ε, ϕ2) is evaluated to ⊤, then the returned value is ⊤. Else

if Check(q, v, ε, ϕ1) is ⊥, then the result is ⊥. Otherwise we proceed as follows:
(1) for every zi ∈ RV (Ψ, ε), call Check(q, vε(zi), εε(zi), ε(zi)) and assign 1 to an integer

variable δi if the result is ⊤, and 0 otherwise;
(2) guess a transition q → q′ in S;
(3) replace the current configuration (q, v, ε) by (q′, v′, ε) by v′(zi) = min(K+1, v(zi)+

δi) for all zi ∈ RV (Ψ, ε), and check whether ϕ2 holds for it, and so on.
− Ψ = EGϕ: since there are finitely many K + 1-bounded configurations, if there is a

run for Ψ starting in q then there must also exist one whose corresponding sequence
of bounded configurations is ultimately periodic, i.e. consists of a finite sequence
of configurations followed by an infinite repetition of a finite configuration cycle (up
to valuation equivalence). The procedure Check(q, v, ε,Ψ) can thus consist of the
following steps:
(1) start guessing a sequence of transitions as in the previous case, updating the current

state and valuation accordingly;
(2) in each new configuration (q, v, ε), verify that Check(q, v, ε, ϕ) is top;
(3) at some point, non-deterministically assume the current (bounded) configuration

to occur infinitely often in some ultimately periodic run satisfying Ψ, and store
the corresponding state qr and valuation vr;

(4) resume guessing transitions, checking at each step that Check(q, v, ε, ϕ) is ⊤;
(5) return ⊤ if the previously stored recurring configuration is ever encountered again.

Deciding q |= Φ is then achieved by calling Check(q, v0, ε,Φ).

7This is a simplification of the reduction used for TCTLc over KS [LST03].
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The space used by Check(q, v0, ε,Φ) is evaluated as follows: for Eϕ1Uϕ2 or EGϕ1, we
need to store at most three configurations (q, v, ε) and k boolean values. We also need
space for the recursive calls over subformulas. The maximal number of such nested calls is
bounded8 by th(Φ)+

∑n
i=1 th(ε(zi)): indeed the first term comes from the recursive calls

for Check(q, v, ϕi) and the second from the calls Check(q, v, ε(zi)). Thus the maximal
number of nested calls is bounded by |Φ|.

Remark 6.14. As soon as subtractions are allowed in CCTLv, model checking becomes
undecidable as a simple consequence of Thm. 4.12 and Rem. 6.2.

6.1.3. Satisfiability. As in the case of CCTL, the translation of CCTLv formulas into CTL
provides an optimal decision procedure for satisfiability:

Theorem 6.15. The satisfiability problem for CCTLv is 2-EXPTIME-complete.

Proof. A closed CCTLv formula Φ is satisfiable (i.e. it holds for a state q in a finite KS S)

iff the CTL formula JΦK is satisfiable. The (DAG) size of JΦK is in 2O(|Φ|2), which yields a
2EXPTIME procedure to decide satisfiability of Φ. Hardness is a consequence of Thm. 5.2
and Rem. 6.2.

6.2. Cumulative semantics for CCTL. We now define a variant of CCTL based on an
alternative semantics for E U and A U modalities. In this semantics, nesting two temporal
modalities no longer resets the counting process for the evaluation of the innermost modality:
its constraints are then interpreted over the whole run. In order to relax this semantics, we
add the modality N (for ’now’, or rather ’from now on’) which specifies that the counters
have to be reset in the current state and start counting again from the current position.
Let us fix the syntax of CCTLc:

Definition 6.16. Given a set of atomic propositions AP, we define:

CCTLc ∋ ϕ,ψ ::= P | ϕ ∧ ψ | ¬ϕ | Nϕ | EϕUc
[C]ψ | AϕUc

[C]ψ

with P ∈ AP. As in the case of CCTL, we use shorthands Fc
[C]ϕ and Gc

[C]ϕ to denote ⊤Uc
[C]ϕ

and ¬Fc
[C]¬ϕ respectively.

CCTLc formulas are interpreted over pairs (π, q) where q is a state of some Kripke
structure S and π is a history (i.e. a finite prefix) such that π · q ∈ Prefs(S). The following
clauses9 define when a CCTLc formula Φ holds for (π, q):

(π, q) |=S EϕUc
[C]ψ iff ∃ρ ∈ Runs(q), ∃i ≥ 0, (π · ρ|i−1, ρ(i)) |=S ψ, π · ρ|i−1 |=S C,

and ∀0 ≤ j < i, (π · ρ|j−1, ρ(j)) |=S ϕ
(π, q) |=S AϕUc

[C]ψ iff ∀ρ ∈ Runs(q), ∃i ≥ 0, (π · ρ|i−1, ρ(i)) |=S ψ, π · ρ|i−1 |=S C,

and ∀0 ≤ j < i, (π · ρ|j−1, ρ(j)) |=S ϕ
(π, q) |=S Nϕ iff (ǫ, q) |=S ϕ

8where th(ϕ) is the temporal height of ϕ defined as usual except for the reset operator for which we have:
th(z[ψ].ϕ) = th(ϕ).

9As previously, we only give the formal semantics of the main modalities. Boolean connectives are
interpreted in a natural way.
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The addition of the N modality allows us to easily express CCTL properties. Indeed
each CCTL formula Φ can be easily translated into a CCTLc formula Ψ by guarding each
of its temporal modalities with N. Both formulas are equivalent, in the sense that for any
state q and history π, we have q |= Φ ⇐⇒ (π, q) |= Ψ. We also have the following useful
property:

(π, q) |= E⊥Uc
[C]⊤ ⇐⇒ π |= C (6.13)

For simplicity, in the following we will thus allow ourselves to directly write constraints in
the formula and not only as subscripts of temporal modalities.

Example 6.17. The CCTLc formula EFc
[♯⊤≤k1]

(P1 ∧ EFc
[♯⊤≤k2]

P2) with k1 ≤ k2 holds for
a state q if and only if there exists a run with less than k2 transitions leading to some
state satisfying P2 and along this run there is a state satisfying P1 located at less than k1
transitions from q.

Example 6.18. The CCTLc formula EFc
[♯ϕ≥k1]EFc

[♯ϕ≤k2]ψ is semantically equivalent to the

CCTL∧1 formula EF[k1≤♯ϕ≤k2]ψ.

Proposition 6.19. Model checking CCTLc is PSPACE-hard.

Proof. We reduce the QBF problem to a model-checking problem for CCTLc by using exactly
the same reduction as for CCTLv (Thm. 6.13): given an instance I of QBF, we consider
the same KS SI and the following formula:

EF
Ç
q2 ∧ AF

(
q3 ∧ EF . . .AF

Ä
q2p+1 ∧

∧

i=1...m

(♯Ci ≥ 1)
ä)å

Recall that we can use constraints directly inside the formula due to the equivalence (6.13)
above.

Note that we do not use N to prove PSPACE-hardness. To prove membership in
PSPACE, we show that one can translate any CCTLc formula ϕ into an equivalent (and

succinct) CCTLv formula ϕ. First given ϕ ∈ CCTLc, we use S♯ϕ to denote the set of
subformulas ψ of ϕ such that ♯ψ occurs in a counting constraint inside ϕ. We now define
Φ as follows:

P = P ϕ ∧ ψ = ϕ ∧ ψ ¬ϕ = ¬ϕ

Nϕ = zψ1 [ψ1]. . . . zψk [ψk].ϕ with S♯ϕ = {ψ1, . . . , ψk}

EϕUc
[C]ψ = EϕU(C ∧ ψ) AϕUc

[C]ψ = AϕU(C ∧ ψ)
∑
i αi · ♯ϕi ∼ c =

∑
i αi · zϕi ∼ c

Given a set of formulas S, a prefix π, a valuation v for a set of variables V and an environ-
ment ε, we say that (v, ε) is compatible with (S, π) (written (v, ε) D (S, π) ) if and only if
for any ψ ∈ S, there is some zψ ∈ dom(v) such that ε(zψ) = ψ and v(zψ) = |π|ψ.

We have the following property:

Lemma 6.20. Let Φ be a CCTLc formula, q a state in some KS S, and π ∈ Prefs(S) be
a finite run such that π · q ∈ Prefs(S). Let v : V → N ∪ {⊥} be a valuation for a set of

variables V and let ε be an environment such that (v, ε) is compatible with (S♯Φ, π). Then:

(π, q) |=S Φ ⇐⇒ (q, v, ε) |=S Φ
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Proof. The proof is done by structural induction over Φ. The result is direct for atomic
propositions and boolean connectives.

Let Φ = EϕUc
[C]ψ, and assume (π, q) |= Φ. Then there exist ρ ∈ Runs(q) and i ≥ 0

such that (a) (π · ρ|i−1, ρ(i)) |= ψ, (b) π · ρ|i−1 |= C and (c) for all 0 ≤ j < i we have:
(π · ρ|j−1, ρ(j)) |= ϕ. Consider a valuation v and an environment ε such that (v, ε) is

compatible with (S♯Φ, π). Let vk be the valuation (v +ε ρ|k−1) for k ∈ {0, 1, . . . , i} (where

v0 = v). Clearly (vk, ε) D (S♯Φ, π · ρ|k−1), and since S♯ψ ⊆ S♯Φ and S♯ϕ ⊆ S♯Φ, (vk, ε) is

compatible with (S♯ψ, π · ρ|k−1) and (S♯ϕ, π · ρ|k−1). By induction hypothesis, we can deduce

from (a) and (c) that (a’) (ρ(i), vi, ε) |= ψ, and (c’) (ρ(j), vj , ε) |= ϕ for any j = 0, . . . , i− 1.

Moreover from (b) we can deduce: (b’) vi |= C. Thus (q, v, ε) |= EϕU(C ∧ ψ).
Conversely, assume (q, v, ε) |= EϕU(C ∧ ψ). Then there exists ρ ∈ Runs(q) and i ≥ 0

such that (a) (q, v +ε ρ|i−1, ε) |= ψ, (b) v +ε ρ|i−1 |= C and (c) for all 0 ≤ j < i we have:

(q, v+ε ρ|j−1, ε) |= ϕ. Now consider a prefix π such that π ·q ∈ Prefs(S) and (v, ε)D (S♯Φ, π).
By induction hypothesis, we have: (π · ρ|i−1, ρ(i)) |= ψ and (π · ρ|j−1, ρ(j)) |= ϕ for any

j = 0, . . . , i− 1. Hence (π, q) |= EϕUc
[C]ψ.

The case Φ = AϕUc
[C]ψ is treated similarly.

Let now Φ = Nϕ, and assume S♯ϕ = {ψ1, . . . , ψk}. Let ε be an environment such that

S♯Φ ⊆ dom(ε). Then for any valuation v0 that assigns 0 to every ψi,

(π, q) |= Nϕ ⇐⇒ (ǫ, q) |= ϕ ⇐⇒ (q, v0, ε) |= ϕ.

This is equivalent to (q, v, ε) |= zψ1 [ψ1]. . . . zψk [ψk].ϕ for any valuation v such that (v, ε) D

(S♯Φ, π).

In fact, CCTLc can be seen as a variant of CCTLv where only a global reset operator is
available, whose effect corresponds to the N modality in CCTLc. A direct consequence is:

Proposition 6.21. The model checking problem for CCTLc
∧ is in PSPACE.

This implies the following corollary:

Corollary 6.22. The model checking problem for all CCTLc variants up to CCTLc
∧ is

PSPACE-complete.

Again, as soon as diagonal constraints are allowed model checking becomes undecidable:

Theorem 6.23. Model checking CCTLc
±1 is undecidable.

Proof. The proof is based on the same technique as that of Theorem 4.12. Consider a two-
counter machineM with counters C andD and n instructions. We define a Kripke structure
SM = 〈Q,R, ℓ〉 where Q = {q1, . . . , qn}∪{ri, si | insti = 〈if ...〉}. The transition relation
is defined as follows:

• if insti = 〈X++, j〉, then (qi, qj) ∈ R ; and
• if insti = 〈ifX=0 then j else X--, k〉, then (qi, ri), (ri, qk), (qi, si), (si, qj) in R.

The labeling ℓ is defined over the set {halt} ∪
⋃
X∈{C,D}{X

+,X−,X0} as ℓ(qi) = {X+}

if insti is an increment of X, ℓ(ri) = {X−} and ℓ(si) = {X0} if insti is a conditional
decrement of X and ℓ(qi) = {halt} if insti is the halting instruction. One can show that
there exists a divergent run iff q1 satisfies the formula ΦM defined as follows:

EG
[
¬halt ∧

∧

X∈{C,D}

(Ä
X0 ⇒ (♯X+ = ♯X−)

ä
∧
Ä
X− ⇒ (♯X+ > ♯X−)

ä)]
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Note that we do not use N to prove undecidability.

Using the same techniques as previously, we obtain the following results for satisfiability:

Theorem 6.24. The satisfiability problem for all variants of CCTLc from CCTLc
1 up to

CCTLc
∧ is 2EXPTIME-complete, and becomes undecidable for CCTLc

±1.

7. Conclusion

In several cases (particularly CCTLv and thus also CCTL∧ and CCTLc
∧), the logics we

introduce are not more expressive than CTL but can concisely express properties which
would be difficult to write in that logic. In particular, even the fragment CCTL1, as well
as CCTL∧ with unary-encoded coefficients, can yield exponentially more succinct formulas
than CTL.

In terms of algorithmic complexity, even though CCTL±1 is strictly more expressive
than CTL, its model-checking remains polynomial. The introduction of either coefficients or
Boolean combinations increases the complexity to ∆P

2 , while the interplay between Boolean
connectives and possibly negative coefficients yields undecidability. Similarly, satisfiabil-
ity is 2-EXPTIME-complete for all classes without negative coefficients (when it is simply
EXPTIME-complete for CTL [EH85]), and undecidable for all above classes. All complexity
results are summarized in Figure 3.

Further work on CCTL will include completing the study of succinctness of its fragments
with respect to each other and to other logics, looking for an upper complexity bound for
the model-checking of CCTL±, as well as investigating new kinds of constraints. We also
wish to pursue the work described in this article and in [LMP10b] by investigating counting
extensions of other temporal logics (for instance with past operators) as well as µ-calculus.

Acknowledgements. The authors would like to thank the anonymous referees for their
very accurate and helpful comments.

References

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf. Comput.,
104(1):2–34, 1993.

[AH93] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Inf. Comput.,
104(1):35–77, 1993.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–203, 1994.
[AI03] M. Adler and N. Immerman. An n! lower bound on formula size. ACM Transactions on Compu-

tational Logic, 4(3):296–314, 2003.
[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In

15th FSTTCS, volume 1026 of LNCS, pages 499–513. Springer, 1995.
[BEH95a] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular properties

for nonregular processes. In Proc. 10th LICS, pages 123–133. IEEE Comp. Soc. Press, 1995.
[BEH95b] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state processes with sequential

and parallel composition. In Proc. 22nd POPL, pages 95–106, 1995.
[BFH05] D. Bustan, D. Fisman, and J. Havlicek. Automata construction for PSL. Technical report, The

Weizmann Institute of Science, 2005. Available as Tech. Report MCS05- 04.
[BVW94] O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-time

model-checking. In Proc. 6th CAV, volume 818 of LNCS, pages 142–155. Springer, 1994.



COUNTING CTL 33

P-complete ∆P
2-complete

undec.

EXPTIME, ∆P
2-hard

CCTL1

CCTL±1

CCTL

CCTL±

CCTL∧1

CCTL∧±1

CCTL∧

CCTL∧±

(a) CCTL model checking

PSPACE-complete

undecidable
CCTLc

∧1CCTLc
1

CCTLc
±1 CCTLc

∧±1

CCTLc
∧CCTLc

CCTLc
± CCTLc

∧±

CCTLv

(b) CCTLc/ CCTLv model checking

2-EXPTIME-complete

undecidable
CCTL∧1CCTL1

CCTL±1 CCTL∧±1

CCTL∧CCTL

CCTL± CCTL∧±

(c) CCTL satisfiability

2-EXPTIME-complete

undecidable
CCTLc

∧1CCTLc
1

CCTLc
±1 CCTLc

∧±1

CCTLc
∧CCTLc

CCTLc
± CCTLc

∧±

CCTLv

(d) CCTLc/ CCTLv satisfiability

Figure 3. Summary of model-checking and satisfiability complexity results.
Arrows indicate syntactic inclusion or straight-forward linear translations
(case of CCTLv).

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branch-
ing time temporal logic. In Logics of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic
of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985.

[Eme90] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, vol-
ume B, chapter 16, pages 995–1072. Elsevier Science, 1990.

[EMSS92] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.
Real-Time Systems, 4(4):331–352, 1992.

[ET97] E. A. Emerson and R. J. Trefler. Generalized quantitative temporal reasoning: An automata-
theoretic approach. In Proc. 7th TAPSOFT, volume 1214 of LNCS, pages 189–200. Springer,
1997.

[ET99] E. A. Emerson and R. J. Trefler. Parametric quantitative temporal reasoning. In Proc. 14th LICS,
pages 336–343. IEEE Comp. Soc. Press, 1999.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, 2000.

[LMP10a] F. Laroussinie, A. Meyer, and E. Petonnet. Counting ctl. In C.-H. Luke Ong, editor, FOSSACS,
volume 6014, pages 206–220. Springer, 2010.

[LMP10b] F. Laroussinie, A. Meyer, and E. Petonnet. Counting LTL. International Syposium on Temporal
Representation and Reasoning (TIME’10), pages 51–58, 2010.

[LMS01] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL+ and FCTL is hard. In
Proc. 4th FoSSaCS, volume 2030 of LNCS, pages 318–331. Springer, 2001.



34 F. LAROUSSINIE, A. MEYER, AND E. PETONNET

[LMS06] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking for discrete-time
systems. Theor. Comput. Sci., 353(1-3):249–271, 2006.

[LS00] F. Laroussinie and Ph. Schnoebelen. Specification in CTL+Past for verification in CTL. Inf.
Comput., 156(1/2):236–263, 2000.

[LST03] F. Laroussinie, Ph. Schnoebelen, and M. Turuani. On the expressivity and complexity of quanti-
tative branching-time temporal logics. Theor. Comput. Sci., 297(1–3):297–315, 2003.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS, pages 46–57. IEEE Comp. Soc.
Press, 1977.

[psl03] Property Specification Language Reference Manual, Version 1.1, 2003.
http://www.eda-stds.org/vfv/docs/PSL-v1.1.pdf .

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proc. 5th Int. Symp. on Programming, volume 137 of LNCS, pages 337–351. Springer, 1982.

[Sch03] Philippe Schnoebelen. The complexity of temporal logic model checking. In Philippe Balbiani,
Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, Selected Papers from the
4th Workshop on Advances in Modal Logics (AiML’02), pages 393–436, Toulouse, France, 2003.
King’s College Publication. Invited paper.

[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th FSTTCS, volume 1738
of LNCS, pages 110–121. Springer, 1999.

[Wol83] P. Wolper. Temporal logic can be more expressive. Inf. and Control, 56(1/2):72–99, 1983.
[YMW97] J. Yang, A. K. Mok, and F. Wang. Symbolic model checking for event-driven real-time systems.

ACM Transactions on Programming Languages and Systems, 19(2):386–412, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://www.eda-stds.org/vfv/docs/PSL-v1.1.pdf

	1. Introduction
	2. Definitions
	2.1. Models
	2.2. Counting CTL
	2.3. Examples of CCTL formulas.

	3. Expressiveness and succinctness
	3.1. Expressiveness
	3.2. Succinctness

	4. Model checking
	4.1. Polynomial-time model-checking
	4.2. Model-checking CCTL and boolean CCTL
	4.3. Undecidability

	5. Satisfiability
	6. Extensions
	6.1. Explicit variables
	6.2. Cumulative semantics for CCTL

	7. Conclusion
	Acknowledgements

	References

