
Logical Methods in Computer Science
Vol. 7 (2:2) 2011, pp. 1–47
www.lmcs-online.org

Submitted Nov. 21, 2009
Published Apr. 22, 2011

EXISTENTIAL WITNESS EXTRACTION IN CLASSICAL

REALIZABILITY AND VIA A NEGATIVE TRANSLATION

ALEXANDRE MIQUEL

LIP (UMR 5668 – CNRS – ENS de Lyon – UCBL – INRIA) ENS de Lyon, Université de Lyon,
France
e-mail address: alexandre.miquel@ens-lyon.fr

Abstract. We show how to extract existential witnesses from classical proofs using Kriv-
ine’s classical realizability—where classical proofs are interpreted as λ-terms with the
call/cc control operator. We first recall the basic framework of classical realizability (in
classical second-order arithmetic) and show how to extend it with primitive numerals for
faster computations. Then we show how to perform witness extraction in this framework,
by discussing several techniques depending on the shape of the existential formula. In
particular, we show that in the Σ0

1-case, Krivine’s witness extraction method reduces to
Friedman’s through a well-suited negative translation to intuitionistic second-order arith-
metic. Finally we discuss the advantages of using call/cc rather than a negative translation,
especially from the point of view of an implementation.

1. Introduction

Extracting an existential witness (i.e. an object t such that A(t)) from a proof of the formula
∃xA(x) is now a well-understood technique in intuitionistic logic. The simplest way to do
it is to normalize the proof and retrieve the witness from the premise of its normal form.
Through the Brouwer-Heyting-Kolmogorov interpretation, one can also read the proof as a
functional program that reduces to a pair whose first component is the desired witness. Such
techniques are implemented in proof-assistants based on intuitionistic systems [29, 20, 27].

Extracting a witness from a classical proof of an existential formula is much more
difficult, since classical logic is known not to enjoy the witness property. Such an extraction
is actually not always feasible: for instance, we cannot expect to extract a witness from the
obvious classical proof of the formula

∃x ((x = 1 ∧ C) ∨ (x = 0 ∧ ¬C))

in general—think of C being undecidable or, say, Riemann’s conjecture.

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Proof theory, Classical lambda-calculus, Classical realizability, Program

extraction.
This paper is an expanded version of [24].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:2) 2011

c© Alexandre Miquel
CC© Creative Commons

http://creativecommons.org/about/licenses

2 ALEXANDRE MIQUEL

However, several techniques [12, 13, 8, 6, 11] have been proposed in order to extract a
witness from a classical proof of an existential formula in some particular cases—typically:
when the formula is Σ0

1 (i.e. of the form ∃x f(x) = 0).

1.1. Friedman’s method. One of the most popular methods to extract witnesses from
classical proofs of Σ0

1-formulæ has been introduced by Friedman [6]. The idea of Friedman
is to generalize Gödel and Kolmogorov’s double negation translation by replacing the intu-
itionistic negation ¬A ≡ A ⇒ ⊥ by a relative negation ¬RA ≡ A ⇒ R parameterized by
an arbitrary formula R. (The only condition on R is that its free variables should not be
captured in the formula or the proof we want to translate.) In first-order Peano arithmetic
(PA) for instance, this negative R-translation A 7→ A¬¬ can be defined as follows

(e1 = e2)
¬¬ ≡ ¬R¬R(e1 = e2) (¬A)¬¬ ≡ ¬RA

¬¬

(A ∧B)¬¬ ≡ A¬¬ ∧B¬¬ (∀xA)¬¬ ≡ ∀xA¬¬

(A ∨B)¬¬ ≡ ¬R(¬RA
¬¬ ∧ ¬RB

¬¬) (∃xA)¬¬ ≡ ¬R∀x¬RA
¬¬

and it is easy to check that if a formula A is provable in Peano arithmetic, then the for-
mula A¬¬ is provable in Heyting Arithmetic (HA), independently from the choice of the
formula R.

If we apply this translation to a classical proof p of the formula ∃x f(x) = 0 (i.e. a
Σ0
1-formula), then we get an intuitionistic proof p∗ of the formula

¬R∀x¬R¬R¬Rf(x) = 0 .

By simplifying the triple (relative) negation and by unfolding the relative negation ¬RA ≡
A⇒ R, we thus get an intuitionistic proof p∗′ of the formula

∀x (f(x) = 0⇒ R) ⇒ R .

(The proof p∗′ we get is parametric w.r.t. the formula R.)
Now, let us introduce Friedman’s trick, which is to instantiate the parameter R with

the formula we want to prove, letting R ≡ ∃y f(y) = 0. Thus p∗′ is an intuitionistic proof
of the implication

∀x
(
f(x) = 0 ⇒ ∃y f(y) = 0

)
⇒ ∃y f(y) = 0 .

whose left member is the introduction rule of existential quantification. Combining the
modus ponens with the introduction rule of existential quantification, we finally get an
intuitionistic proof p̃ ≡ (p∗′) (∃-intro) of the formula

∃y f(y) = 0

from which we can perform the standard extraction techniques.
The transformation above actually shows that classical arithmetic is conservative over

intuitionistic arithmetic on the class of Σ0
1-formulæ. Since the transformation even works

when the inner formula depends on free variables, it is easy to generalize the latter result
to a result of conservativity on the class of Π0

2-formulæ:

⊢PA ∀x∃y f(x, y) = 0

⊢PA ∃y f(x0, y) = 0
(∀-elim, x0 fresh)

⊢HA ∃y f(x0, y) = 0
(Friedman’s transformation)

⊢HA ∀x∃y f(x, y) = 0
(∀-intro)

EXISTENTIAL WITNESS EXTRACTION 3

This conservativity result has been extended by Friedman (using the same technique)
to much stronger pairs of classical and intuitionistic theories, such as PA2/HA2, . . . ,
PAω/HAω, Z/IZ, ZF/IZFC [6].

1.2. Krivine’s classical realizability. Up to the 90’s, the computational contents of clas-
sical proofs was only studied indirectly, via clever translations to intuitionistic logic [8, 12, 6]
or to linear logic. The situation quickly changed with the discovery of a strong connection
between classical reasoning principles (such as Peirce’s law) and control operators (such as
call/cc) [9]. This led to the rise of many extensions of the λ-calculus with control primitives,
such as Krivine’s λc-calculus [19], Parigot’s λµ-calculus [26], Barbanera and Berardi’s (non
deterministic) symmetric λ-calculus [1] or Curien and Herbelin’s λλ̄µµ̃-calculus [5]. (This
list is far from being exhaustive.)

Among these different proposals to extend the proofs-as-programs paradigm to classical
logic, Krivine’s theory of classical realizability [16, 19] enjoys a particular position. First,
it is based on realizability rather than on typing, which makes it naturally more flexible
and more powerful than systems that are simply based on typing. Second, the simplicity
on the underlying calculus of realizers (the λ-calculus extended with the call/cc control
primitive) and of its evaluation policy (weak head normalization) hides its main feature,
which is its ability to incorporate new instructions in order to realize new formulæ, such
as (for instance) several forms of the axiom of choice [17]. Although classical realizability
is traditionally presented in second-order classical arithmetic, it can be extended to much
more expressive logical frameworks such as Zermelo-Fraenkel set theory [16] or the calculus
of constructions with universes [21].

Less known is the fact that Krivine’s framework allows to perform classical witness
extraction directly (especially from realizers of Σ0

1-formulæ), without going through a neg-
ative translation such as Friedman’s. The purpose of this paper is twofold. First, it aims at
presenting some methods that naturally come with classical realizability in order to extract
witnesses from classical proofs of existential formulæ—especially Σ0

1-formulæ. Second, it
aims to relate the extraction method for Σ0

1-formulæ with Friedman’s, by showing that
through a well-chosen negative translation (inspired from [25]), both methods are basically
the same (up to the details of the translation).

One of the difficulties of tracking arithmetic reasoning through a negative translation
is that some parts of the proof carry over logical invariants whereas other parts are only
devoted to arithmetic computations. To solve this problem, we shall introduce primitive
numerals in the language of realizers, while showing that they (essentially) realize the same
formulæ as Church numerals. As a side effect, replacing Church numerals with primitive
numerals also makes the corresponding extraction technique much more realistic—and we
believe, much more efficient—in the perspective of a practical implementation.

1.3. Outline of the paper. In section 2, we present a type system for classical second-
order arithmetic (PA2) based on the λ-calculus extended with the primitive call/cc. This
type system is given its semantics in section 3, by defining a family of classical realizability
models (following [19]). In section 4, we extend the calculus of realizers and the type system
for PA2 with primitive numerals to make arithmetic computations more efficient (in proof-
terms) and more easily tractable through the negative translation. The classical witness
extraction methods are presented in section 5 and we illustrate them with an example

4 ALEXANDRE MIQUEL

based on the minimum principle in section 6. In section 7, we define a more traditional
type system for intuitionistic second-order arithmetic (HA2), which we relate to the type
system for PA2 by defining in section 8 a negative translation in the spirit of [25].

2. Classical second-order arithmetic (PA2)

2.1. The language of second-order arithmetic. The language of PA2 (Fig. 1 p. 5) is
made of two kinds of syntactic expressions: arithmetic expressions (a.k.a. first-order terms1)
that represent individuals, and formulæ that represent mathematical propositions.

Arithmetic expressions (notation: e, e′, e1, etc.) are built from an infinite set of first-
order variables (notation: x, y, z, etc.) using function symbols (notation: f , g, h, etc.)
defined in a given first-order signature. Here, we assume that the signature contains a
constant symbol ‘0’ for zero, a unary function symbol ‘s’ for the successor function, and
more generally, a function symbol f of arity k for every primitive recursive definition of
a function with k arguments. In the sequel, we shall use binary function symbols ‘+’
(addition) and ‘×’ (multiplication) as well as unary function symbols ‘pred’ (predecessor)
and ‘neg’ (boolean negation) with the following definitions:

0 + y = y 0× y = 0
s(x) + y = s(x+ y) s(x)× y = (x× y) + y

pred(0) = 0 neg(0) = 1
pred(s(x)) = x neg(s(x)) = 0

(writing 1 = s(0), 2 = s(1), 3 = s(2), etc.) The set of all free variables of an arithmetic
expression e is written FV (e). The notion of (first-order) substitution in an arithmetic
expression is defined as usual and written e{x := e′}.

Formulæ of the language of second-order arithmetic (notation: A, B, C, etc.) are
formed from second-order variables (notation: X, Y , Z, etc.) of all arities using implication
and first- and second-order universal quantification (Fig. 1). We slightly deviate from the
traditional presentation of the syntax of the language [7, 14] by explicitly introducing a
unary predicate symbol ‘null’ expressing that its argument yields zero. The main reason
for introducing this symbol is that it facilitates the construction of a simple proof-term for
Peano’s 4th axiom within the type system presented in section 2.3.

The set of all free (first- and second-order) variables of a formula A is written FV (A).
The notions of first- and second-order substitution in a formula are defined as usual, and
written A{x := e} and A{X(x1, . . . , xk) := B} respectively. (See [7, 14] for a more detailed
presentation of the two forms of substitutions.)

2.1.1. Second-order encodings. Propositional units (⊤ and ⊥), negation, conjunction, dis-
junction, first- and second-order existential quantification as well as Leibniz equality are
represented using the second-order encodings given in Fig. 1. Here, we define the propo-
sitional constant ⊤ as a shorthand for the formula null(0), which is consistent with the
type system of section 2.3 and the realizability interpretation of section 3. Intuitively, the
formula ⊤ is the type of all proof-terms, and it is important not to confuse it with the
(true) formula 1 ≡ ∀Z (Z ⇒ Z) that has much less proof-terms.

1We shall prefer the terminology of ‘arithmetic expression’ to the more standard terminology of ‘first-order
term’ to prevent a confusion with the proof-terms we shall introduce in section 2.3.

EXISTENTIAL WITNESS EXTRACTION 5

The language of PA2

Arithmetic expr. e ::= x | f(e1, . . . , ek)

Formulæ A,B ::= null(e) | X(e1, . . . , ek)
| A⇒ B | ∀xA | ∀XA

Proof-terms t, u ::= x | λx . t | tu | cc

Contexts Γ ::= ∅ | Γ, x : A

The congruences e ∼= e′ and A ∼= A′

0 + y ∼= y pred(0) ∼= 0 neg(0) ∼= 1
s(x) + y ∼= s(x+ y) pred(s(x)) ∼= x neg(s(x)) ∼= 0

(etc.)

null(s(x)) ∼= ⊥

Abbreviations

⊤ ≡ null(0)
⊥ ≡ ∀Z Z

¬A ≡ A⇒ ⊥

A ∧B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

∃xA(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃XA(X) ≡ ∀Z (∀X(A(X)⇒ Z)⇒ Z)

e = e′ ≡ ∀Z (Z(e)⇒ Z(e′))
nat(e) ≡ ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x))

Typing rules of PA2

Γ ⊢NK x : A
(x:A)∈Γ

Γ ⊢NK t : ⊤
FV (t)⊆dom(Γ)

Γ ⊢NK cc : ((A⇒ B)⇒ A)⇒ A

Γ ⊢NK t : A

Γ ⊢NK t : A′ A∼=A′

Γ, x : A ⊢NK t : B

Γ ⊢NK λx . t : A⇒ B
Γ ⊢NK t : A⇒ B Γ ⊢NK u : A

Γ ⊢NK tu : B

Γ ⊢NK t : A
Γ ⊢NK t : ∀xA

x/∈FV (Γ)
Γ ⊢NK t : ∀xA

Γ ⊢NK t : A{x := e}

Γ ⊢NK t : A

Γ ⊢NK t : ∀XA
X/∈FV (Γ)

Γ ⊢NK t : ∀XA

Γ ⊢NK t : A{X(x1, . . . , xk) := B}

Figure 1: Classical second-order arithmetic (PA2)

6 ALEXANDRE MIQUEL

2.2. The congruences e ∼= e′ and A ∼= A′. We introduce two congruences e ∼= e′ and
A ∼= A′ over arithmetic expressions and formulæ that will be used to incorporate the
definitional equalities of the function symbols of the signature in the conversion rule of the
type system we shall introduce in section 2.3. The same mechanism will be used to build
proof-terms for Peano’s 3rd and 4th axioms.

The congruence e ∼= e′ over arithmetic expressions is simply defined as the congruence
generated by the defining equations of the primitive recursive function symbols of the signa-
ture. (We already gave the equations associated with the function symbols ‘+’, ‘×’, ‘pred’
and ‘neg’ in section 2.1.) Of course, these equations can be oriented in such a way that they
form a confluent and terminating system of rewrite rules, so that the congruence e ∼= e′ is
decidable. But we shall not need such a level of detail in the sequel.

The congruence A ∼= A′ over formulæ is defined by adding the equation null(s(x)) ∼= ⊥
to the system of equations defining the congruence e ∼= e′. Again, this new equation can
be oriented from left to right so that the resulting system of rewrite rules (including the
rewrite rules for function symbols) is confluent and terminating, and the congruence A ∼= A′

is thus decidable.

2.3. A type system for classical second-order arithmetic. The type/proof system of
PA2 closely follows the spirit of Second-order functional arithmetic (FA2) [14]. As in FA2,
first- and second-order universal quantifications are treated uniformly, by using Curry-style
proof-terms that do not keep track of introduction and elimination of universal quantifiers.2

As usual in such a framework, numeric quantifications require a special treatment we shall
recall in Section 2.4.

Formally, the type system of PA2 is based on a typing judgment of the form Γ ⊢NK t : A,
where Γ is a typing context, t a (Curry-style) proof-term, and where A is a formula of the
language of PA2 (section 2.1).

Proof-terms of PA2 (notation: t, u, etc.) are just pure λ-terms3 enriched with a special
constant cc (‘call/cc’) to prove Peirce’s law. The operational semantics of proof-terms (that
slightly differs from the traditional operational semantics of pure λ-calculus) will be given
in section 3.

A typing context (notation: Γ, Γ′, Γ1, etc.) is a finite unordered list of declarations of
the form Γ ≡ x1 : A1, . . . , xn : An where x1, . . . , xn are pairwise distinct proof-variables and
where A1, . . . , An are arbitrary formulæ. Given a typing context Γ ≡ x1 : A1, . . . , xn : An,
we write dom(Γ) = {x1; . . . ;xn} and FV (Γ) = FV (A1) ∪ · · · ∪ FV (An).

The inference rules for the judgment Γ ⊢NK t : A are given in Fig. 1. These rules contain
the standard typing rules of AF2 [14] (that correspond to the deduction rules of intuitionistic
natural deduction in second-order predicate logic), plus a typing rule for the constant cc

(Peirce’s axiom) to recover classical logic. These rules also contain a conversion rule as well
an introduction rule for the propositional constant ⊤. (These rules are specifically needed
to build proof-terms for the axioms of arithmetic.) In particular:

2For this reason, a (Curry-style) proof-term should not be confused with the proof (i.e. the derivation) it
comes from, since the latter contains much more information that cannot be reconstructed from the proof-
term. In such a setting, the proof-term is merely a computational digest of the formal proof, where some
computationally irrelevant parts of the proof have been already removed.

3Proof variables (i.e. variables of the λ-calculus) are written x, y, z, etc. in the sequel, but it is important
not to confuse them with first-order variables (written using the same letters) that occur in arithmetic
expressions and formulæ.

EXISTENTIAL WITNESS EXTRACTION 7

• For all arithmetic expressions e1(x1, . . . , xk) and e2(x1, . . . , xk) depending on the variables
x1, . . . , xk such that e1(x1, . . . , xk) ∼= e2(x1, . . . , xk), we have

⊢NK λz . z : ∀x1 · · · ∀xk e1(x1, . . . , xk) = e2(x1, . . . , xk)

(where = stands for Leibniz equality). So that λz . z is a proof-term for all definitional
equalities attached to the function symbols of the signature.
• Given an arbitrary proof-term u such that FV (u) ⊆ {z}, we have

⊢NK λz . z : ∀x∀y (s(x) = s(y)⇒ x = y)
⊢NK λz . zu : ∀x¬(s(x) = 0)

so that Peano’s 3rd and 4th axioms are provable in our type system. (The corresponding
derivations are given in Fig. 2.)

z : s(x) = s(y) ⊢NK z : s(x) = s(y)

z : s(x) = s(y) ⊢NK z : Z(pred(s(x)))⇒ Z(pred(s(y)))

z : s(x) = s(y) ⊢NK z : ∀Z (Z(pred(s(x)))⇒ Z(pred(s(y))))

z : s(x) = s(y) ⊢NK z : x = y

⊢NK λz . z : s(x) = s(y)⇒ x = y

⊢NK λz . z : ∀y (s(x) = s(y)⇒ x = y)

⊢NK λz . z : ∀x∀y (s(x) = s(y)⇒ x = y)

z : s(x) = 0 ⊢NK z : s(x) = 0

z : s(x) = 0 ⊢NK z : null(neg(s(x)))⇒ null(neg(0))

z : s(x) = 0 ⊢NK z : ⊤ ⇒ ⊥ z : s(x) = 0 ⊢NK u : ⊤

z : s(x) = 0 ⊢NK zu : ⊥

⊢NK λz . zu : s(x) = 0⇒ ⊥

⊢NK λz . zu : ∀x (s(x) = 0⇒ ⊥)

Figure 2: Derivations for Peano’s 3rd and 4th axioms

2.4. Induction. It is well known [7, 14, 19] that the induction principle

∀Z
(
Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ ∀xZ(x)

)

cannot be given a (closed) proof-term in the type system we presented above. The reason is
that first-order quantification is interpreted uniformly (i.e. as an infinitary intersection type)
in our setting, whereas universal quantification over natural numbers cannot be interpreted
uniformly, for that most proofs of A(n) computationally depend on the natural number n.
To circumvent this difficulty, we use a well-known trick of second-order logic which is to
relativize first-order quantifications using the predicate

nat(x) ≡ ∀Z
(
Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x)

)

8 ALEXANDRE MIQUEL

expressing that x belongs to the smallest set of individuals containing zero and stable under
the successor function. With this notation, the relativized form of the induction principle

∀Z
(
Z(0)⇒ ∀y (nat(y)⇒ Z(y)⇒ Z(s(y)))⇒ ∀x (nat(x)⇒ Z(x))

)

can be given a closed proof-term in our setting. (See [14] for instance.)
More generally, we associate to every formula A a formula Anat that is obtained by rela-

tivizing all the first-order quantifications with the predicate nat. Formally, the formula Anat

is defined by induction of A with the equations:

(null(e))nat ≡ null(e)
(X(e1, . . . , ek))

nat ≡ X(e1, . . . , ek)
(A⇒ B)nat ≡ Anat ⇒ Bnat

(∀xA)nat ≡ ∀x (nat(x)⇒ Anat)
(∀XA)nat ≡ ∀X(Anat)

We then easily check that

Proposition 2.1. If a closed formula A is provable in classical second-order arithmetic
(with the unrelativized induction principle), then the formula Anat has a closed proof-term
in the type system defined in Fig. 1.

3. Classical realizability

We shall now present the classical realizability interpretation of the type system presented
in section 2.3, following the method introduced by Krivine [19].

First, we shall introduce a calculus of realizers (Krivine’s language λc) containing the
proof-terms of Fig. 1, and give its evaluation rules, that constitute the small-step operational
semantics of the language. From this, we shall see how to interpret every formula A of PA2 as
a set of realizers |A|, reading the formula A as a specification of the computational behavior
of the realizers of A. The connection between the classical realizability interpretation and
big-step operational semantics in λc should become clear in sections 4 and 5.

3.1. A calculus of realizers. Krivine’s language λc [19] is a strict extension of the calculus
of proof-terms of PA2 (section 2.3). The language λc actually distinguishes three kinds of
syntactic entities: terms, stacks and processes.

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π ::= ⋄ | t · π

p, q ::= t ⋆ π

(κ ∈ K)

(t closed)

(t closed)

Terms of λc are pure λ-terms enriched with two kinds of constants:

• instructions κ ∈ K, where K is a fixed set of constants that contains (at least) an instruc-
tion written cc (call/cc);
• continuation constants kπ, one for every stack π.

Stacks are finite lists of closed terms terminated by the stack constant ⋄.4 Note that unlike
terms (that may be open or closed), stacks only contain closed terms and are thus closed
objects—so that the continuation constant kπ associated to every stack π is actually a

4Krivine allows the formation of stacks using many stack constants (representing as many empty stacks),
but we will not need more than one stack constant here.

EXISTENTIAL WITNESS EXTRACTION 9

constant. (The details of the mutual definition of terms and stacks are given in [19].)
Finally, a process is simply a pair formed by a closed term t and a stack π. The set of closed
terms (resp. the set of stacks) is written Λc (resp. Π), and the set of processes is written
Λc ⋆ Π.

In section 4 we shall extend the calculus with extra instructions to perform fast arith-
metic computations. (See also Remark 3.1.)

3.1.1. Evaluation. The set of processes is equipped with a binary relation of one step
evaluation written p ≻ p′, whose reflexive-transitive closure is written p ≻∗ p′ as usual. We
assume that this relation satisfies (at least) the following axioms:

(Grab)
(Push)
(Call/cc)
(Resume)

λx . t ⋆ u · π ≻ t{x := u} ⋆ π
tu ⋆ π ≻ t ⋆ u · π
cc ⋆ t · π ≻ t ⋆ kπ · π
kπ ⋆ t · π′ ≻ t ⋆ π

for all t, u ∈ Λc and π, π′ ∈ Π. Note that only processes are subject to evaluation: there is
no notion of reduction for either terms or stacks in λc.

This list of axioms—that basically implements weak head β-reduction in presence of the
control operator call/cc—can be extended with extra axioms to describe the computational
behavior of the other instructions κ ∈ K.

Remark 3.1. Formally, the definition of the language λc thus depends on two parameters:
the set K of instructions (containing at least the instruction cc), and the relation of evalu-
ation ≻ that fulfils the four axioms given above. In particular, the rules (Grab), (Push),
(Call/cc) and (Resume) are only conditions on the relation ≻, but they do not consti-
tute a defi (by cases) of this relation. (The reader is invited to check that these conditions
are actually the minimal conditions for proving Prop. 3.10.) Putting conditions on the
set K and on the relation of evaluation—rather than defining them completely—naturally
makes the calculus modular, since this design allows us to enrich the calculus with extra
instructions (by putting extra conditions on K) and extra evaluation rules (by putting extra
conditions on ≻), while keeping all the results that have been proved using a smaller set
of conditions on K and ≻5. Technically, this open design has only one drawback, which is
that it forbids any form of reasoning by ‘case analysis’ on an instruction or on an evaluation
step—since the contents of K and the definition of ≻ are not (completely) known. Again,
the reader is invited to check that this form of reasoning is never used in the results pre-
sented in Sections 3, 4 and 5—with the sole exception of Lemma 5.5 in section 5.3. The
set of available instructions and evaluation rules will only be closed in section 8, in order to
define the negative translation and to study its properties.

5This is the point of view that is taken in [16, 17, 19, 18].

10 ALEXANDRE MIQUEL

3.2. The realizability interpretation.

3.2.1. The notion of a pole. The construction of the classical realizability model is pa-
rameterized by a set of processes ⊥⊥ ⊆ Λc ⋆ Π, which we called the pole of the model. We
assume that this set is closed under anti-evaluation (or saturated according to the termi-
nology of [19]). Formally:

Definition 3.2. A pole is any set of processes ⊥⊥ ⊆ Λc ⋆ Π such that the conditions p ≻ p′

and p′ ∈ ⊥⊥ together imply p ∈ ⊥⊥ for all p, p′ ∈ Λc ⋆Π.

Remark 3.3. Since the definition of a pole explicitly depends on the relation of evalua-
tion ≻, all the conditions we put on the relation of evaluation (see Remark 3.1) are me-
chanically reflected in the definition of the notion of a pole. For instance, the rule (Push)
is reflected in all poles ⊥⊥ by the fact that t ⋆ u · π ∈ ⊥⊥ implies tu ⋆ π ∈ ⊥⊥ (for all terms t, u
and for all stacks π). The same holds for the rules (Grab), (Call/cc) and (Resume), as
well as for the new rules we shall introduce in Section 4. Putting more conditions on the
relation of evaluation thus reduces the number of available poles.

Note that there are two generic ways to define a pole ⊥⊥ from an arbitrary set of
processes P0 ⊆ Λc ×Π:

• The first method is to consider P0 as a set of final (or ‘accepting’) states, and to take ⊥⊥
as the closure of P0 by anti-evaluation, that is: ⊥⊥ = (≻P0), which is defined by (≻P0) ≡
{p : ∃p0 ∈ P0 p ≻

∗ p0}.
• The second method is to consider P0 as a set of initial (‘forbidden’) states, and to take ⊥⊥
as the complement of the closure of P0 by evaluation, that is: ⊥⊥ = (Λc ⋆ Π) \ (P0≻),
where (P0≻) ≡ {p : ∃p0 ∈ P0 p0 ≻

∗ p}.

In this paper, we shall build particular poles (in Section 5) only using the first method, but
interesting uses of the second method can be found in [17].

3.2.2. Truth and falsity values. From now on, ⊥⊥ denotes a fixed pole. We call a falsity
value any set of stacks S ⊆ Π. By orthogonality, every falsity value S ⊆ Π induces a truth
value S⊥⊥ ⊆ Λc defined as:

S⊥⊥ = {t ∈ Λc : ∀π ∈S t ⋆ π ∈ ⊥⊥} .

3.2.3. Valuations and parametric formulæ. A valuation is a function ρ whose domain is
a finite set of (first- and second-order) variables, such that:

• ρ(x) ∈ N for every first-order variable x ∈ dom(ρ);
• ρ(X) is a (total) function from Nk to P(Π) (i.e. a falsity value function) for every k-ary
second-order variable X ∈ dom(ρ).

A parametric expression (resp. a parametric formula) is simply an arithmetic expression e
(resp. a formula A) equipped with a valuation ρ, that we write e[ρ] (resp. A[ρ]). Parametric
contexts are defined similarly. A parametric expression (formula, context) is said to be
closed when every free variable of the underlying expression (formula, context) belongs to
the domain of the attached valuation.

For every closed parametric expression e[ρ] we write Val(e[ρ]) ∈ N the value of e[ρ],
interpreting variables by their images in ρ while giving to the primitive recursive function
symbols in e their standard interpretation.

EXISTENTIAL WITNESS EXTRACTION 11

We easily check that:

Lemma 3.4. If e and e′ are two arithmetic expressions such that e ∼= e′, then for all
valuations ρ closing e and e′ we have Val(e[ρ]) = Val(e′[ρ]).

Proof. By induction on the derivation of e ∼= e′.

3.2.4. The interpretation function. Every closed parametric formula A[ρ] is interpreted
as two sets, namely: a falsity value ‖A[ρ]‖ ⊆ Π and a truth value |A[ρ]| ⊆ Λc. Both sets are
defined by induction on the formula A as follows:

‖X(e1, . . . , ek)[ρ]‖ = ρ(X)(Val(e1[ρ]), . . . ,Val(ek[ρ]))

‖null(e)[ρ]‖ =

{
∅ if Val(e[ρ]) = 0

Π if Val(e[ρ]) 6= 0

‖(A⇒ B)[ρ]‖ = |A[ρ]| · ‖B[ρ]‖ = {t · π : t ∈ |A[ρ]|, π ∈ ‖B[ρ]‖}

‖(∀xA)[ρ]‖ =
⋃

n∈N

‖A[ρ;x← n]‖

‖(∀X A)[ρ]‖ =
⋃

F :Nk→P(Π)

‖A[ρ;x← F]‖

|A[ρ]| = ‖A[ρ]‖⊥⊥ = {t ∈ Λc : ∀π ∈ ‖A[ρ]‖ t ⋆ π ∈ ⊥⊥}

The reader is invited to check that the sets ‖A[ρ]‖ and |A[ρ]| only depend on the values
given by ρ to the free variables of A, so that we can drop the valuation ρ when A is closed
and simply write ‖A‖ and |A| for ‖A[ρ]‖ and |A[ρ]|.

We easily check that:

Lemma 3.5. If A and A′ are two formulæ of PA2 such that A ∼= A′, then for all valuations ρ
closing A and A′ we have ‖A[ρ]‖ = ‖A′[ρ]‖.

Proof. By induction on the derivation of A ≈ A′ using Lemma 3.4 together with the fact
that

‖⊥‖ =
⋃

S⊆Π

S = Π = ‖null(s(e))[ρ]‖

for all closed parametric expressions e[ρ] (to interpret ⊥ ∼= null(s(e))).

Since the truth value |A[ρ]| and the falsity value ‖A[ρ]‖ of the formula A actually depend
on the pole ⊥⊥, we shall sometimes use the notations |A[ρ]|⊥⊥ and ‖A[ρ]‖⊥⊥ to indicate this
dependency explicitly.

Definition 3.6 (Realizability). Given a pole ⊥⊥, a closed parametric formula A[ρ] and a
closed term t, we say that t realizes A[ρ] and write t
NK A[ρ] when t ∈ |A[ρ]|⊥⊥, keeping in
mind that this notation depends on the choice of the particular pole ⊥⊥. When t ∈ |A[ρ]|⊥⊥
for all poles ⊥⊥, we say that t universally realizes A[ρ] and write t �NK A[ρ].

12 ALEXANDRE MIQUEL

3.2.5. Writing parametric formulæ. In what follows, we shall often use the convenient
shorthand

Ḟ (e1, . . . , ek) ≡ (X(e1, . . . , ek))[X ← F]

to denote a parametric formula built from a kary predicate variable X that is bound to a
particular falsity value function F : Nk → P(Π) in the attached valuation. (The dot above

the symbol Ḟ is here to recall that F is an object that belongs to the semantics, not to the
syntax.) By systematically using this notation, we can write parametric formulæ without
explicitly mentioning valuations. In the sequel, we shall consider (for instance) that the
notation

∀z (Ḟ (z)⇒ Ṡ)

refers to the parametric formula

(∀z (X(z)⇒ Y))[X ← F, Y ← S]

where X and Y are arbitrarily chosen fresh variables. Note that the parametric formula
defined by such a notation is defined up to the names of the variables that are bound in
the valuation—but it is easy to see that these names have no impact in the interpretation
of the corresponding parametric formula.

3.3. The full standard model of PA2 as a degenerate case. In the case where ⊥⊥ = ∅,
the classical realizability model defined above collapses to the full standard model of PA2
(i.e. the model where individuals are interpreted by the elements of N and where second-
order variables of arity k are interpreted by all the subsets of Nk). To understand this point,
we first notice that when ⊥⊥ = ∅, the truth value S⊥⊥ associated to an arbitrary falsity value
S ⊆ Π can only take two different values: S⊥⊥ = Λc when S = ∅, and S⊥⊥ = ∅ when S 6= ∅.
Moreover, the realizability interpretation of implication and universal quantification mimics
the standard truth value interpretation of the corresponding logical construction (in the case
where ⊥⊥ = ∅). Writing M for the full standard model of PA2, we thus easily show that:

Lemma 3.7. If ⊥⊥ = ∅, then for every closed formula A of PA2 we have

|A| =

{
Λc if M |= A

∅ if M 6|= A

Proof. We more generally show that for all formulæ A and for all valuations ρ closing A (in
the sense defined in section 3.2) we have

|A[ρ]| =

{
Λc if M |= A[ρ̃]

∅ if M 6|= A[ρ̃]

where ρ̃ is the valuation in M (in the usual sense) defined by

• ρ̃(x) = ρ(x) if x is a first-order variable such that x ∈ dom(ρ);
• ρ̃(X) = {(n1, . . . , nk) ∈ Nk : ρ(X)(n1, . . . , nk) = ∅} if X is a second-order variable of
arity k such that X ∈ dom(ρ).

(This characterization is proved by a straightforward induction on A.)

EXISTENTIAL WITNESS EXTRACTION 13

An interesting consequence of the above lemma is the following:

Lemma 3.8. If a closed formula A has a universal realizer t �NK A, then A is true in the
full standard model of PA2.

Proof. If t �NK A, then t ∈ |A|∅. Therefore |A|∅ = Λc and M |= A.

However, the converse implication is wrong in general, since the formula ∀xnat(x) (cf
Fig. 1) that expresses the induction principle over individuals is obviously true in M , but
has no universal realizer [19, Theorem 12]6. Nevertheless, the converse implication becomes
true when we restrict it to arithmetic formulæ, that is, to the formulæ of the following
language:

Arithmetic formulæ P,Q ::= e1 = e2 | P ⇒ Q | ∀x (nat(x)⇒ P)

(This is a consequence of a slightly more general result in [19, Theorem 21].)

Remark 3.9. In the case where ⊥⊥ 6= ∅, every truth value S⊥⊥ is inhabited, for instance by
any term of the form kπ0

t0 where t0 ⋆ π0 ∈ ⊥⊥. An important consequence of this remark is
that a classical realizer of a formula A (w.r.t. to a nonempty pole) can never be taken as a
‘certificate’ that the formula A is true, even when A is an equality. (This remark is crucial
to understand the specific difficulty of witness extraction in classical realizability.)

3.4. Adequacy. We call a substitution any finite function from proof-variables to the set Λc

of closed λc-terms, and we denote by t[σ] the term obtained by applying a substitution σ to
a term t. Given a substitution σ and a closed parametric context Γ[ρ], we write σ
NK Γ[ρ]
when the following conditions are fulfilled:

(1) dom(Γ) ⊆ dom(σ);
(2) σ(x)
NK A[ρ] for every declaration (x : A) ∈ Γ.

We say that:

• A judgment Γ ⊢NK t : A is sound (w.r.t. the pole ⊥⊥) when for all valuations ρ and for
all substitutions σ such that σ
NK Γ[ρ], we have t[σ]
NK A[ρ].
• An inference rule P1···Pn

C (where P1, . . . , Pn and C are typing judgments) is sound (w.r.t.
the pole ⊥⊥) when the soundness of its premises P1, . . . , Pn (in the above sense) implies
the soundness of its conclusion C.

From these definitions, it is clear that the conclusion of any typing derivation formed with
only sound inference rules is sound w.r.t. all poles ⊥⊥.

Proposition 3.10 (Adequacy). The typing rules of PA2 (Fig. 1) are sound w.r.t. all poles
⊥⊥ ⊆ Λc ×Π.

Proof. The soundness of the introduction rule of ⊤ is obvious (since |⊤| = Λc) and the
soundness of the conversion rule follows from Lemma 3.5. The soundness of the remaining
typing rules is proved in [19].

6This explains the special treatment of the induction principle in section 2.4.

14 ALEXANDRE MIQUEL

A consequence of this proposition is that closed proof-terms that are built using the
type system of PA2 are actually universal realizers of the corresponding formulæ. (But not
all realizers can be detected via typing [19].)

4. Primitive natural numbers

Through the formulæ-as-types paradigm, the relativized form of first-order universal quan-
tification ∀x (nat(x)⇒ A(x)) corresponds to the (dependent) type of all functions mapping
realizers of the formula nat(n) to realizers of the formula A(n) for every n ∈ N. To get a
realizer of the formula A(n) (for a particular value of n ∈ N) from a realizer t of the formula
∀x (nat(x) ⇒ A(x)), it suffices to apply the term t to the Church numeral λxf . fnx using
the following fact

Fact 4.1. For every n ∈ N one has: ⊢NK λxf . fnx : nat(n).

combined with the property of adequacy (Prop. 3.10).
On the other hand, Church numeral λxf . fnx is far from being the only realizer of the

formula nat(n)—the situation being much more complex than in intuitionistic realizability
due to the presence of continuations in realizers. However, it is always possible to effectively
retrieve (in some sense) the natural number n from an arbitrary realizer of the formula
nat(n), and the traditional way to achieve this in classical realizability is to use a storage
operator [15, 19]. We propose here another method by changing the representation of
numerals.

Indeed, the main defect of Church numerals is not only their very poor efficiency in prac-
tical computations (especially for large values), but also the non atomicity of their encoding
that makes them very hard to track through a negative translation towards intuitionistic
logic. For this reason, we present here an alternative implementation of natural numbers
in classical realizability, based on the introduction of specific constants to represent natural
numbers with new instructions to compute with them.

4.1. Extending the language of realizers. We now enrich7 the instruction set K with
the following constants:

• For every n ∈ N, a constant n̂ ∈ K representing the natural number n as a pure datum.
Here, the constant n̂ hardly deserves the name of an instruction, since it comes with no
evaluation rule. The intuition is that the constant n̂ is only meaningful as a datum in
the stack, not in head position.8

• Two constants s and rec with the evaluation rules

(Succ)
(Rec-0)
(Rec-S)

s ⋆ n̂ · u · π ≻ u ⋆ n̂+ 1 · π

rec ⋆ u0 · u1 · 0̂ · π ≻ u0 ⋆ π

rec ⋆ u0 · u1 · n̂+ 1 · π ≻ u1 ⋆ n̂ · (rec u0 u1 n̂) · π

for all u, u0, u1 ∈ Λc, n ∈ N and π ∈ Π.

7See remark 3.1 p. 9.
8This is similar to the situation in most programming languages, where numbers are represented using

machine numbers (or blocks of machine numbers) that are meaningless as pointers, so that executing them
usually raises a memory fault.

EXISTENTIAL WITNESS EXTRACTION 15

With these new instructions, it is more generally possible to implement every recursive
function f of arity k as a term f̌ with the reduction rule

f̌ ⋆ n̂1 · · · n̂k · u · π ≻∗ u ⋆ m̂ · π ,

for all (n1, . . . , nk) ∈ dom(f), writing m = f(n1, . . . , nk).
9 To improve efficiency, we can

also introduce the f̌s (or some of them) as new instructions.
Apart from the representation of numerals as pure data, every natural number n ∈ N

can be also represented as a program ň defined by ň ≡ λx . xn̂. (We will momentarily see
how to give a ‘type’ to this program in PA2.)

4.2. Extending the realizability interpretation. To understand the computational be-
havior of the instructions that come with our alternative representation of numerals, we
extend the language of formulæ of PA2 with a new syntactic construct {e} ⇒ B where e is
an arithmetic expression and B a formula. (This extension is part of a larger system PA2+

that will be introduced in section 4.3.) Intuitively, this formula corresponds to the type of
all functions taking the representation of the value of e as the constant n̂ (where n = Val(e))
and return an object of type B.

Formally, the realizability interpretation of the formulæ of PA2 (section 3.2) is extended
to the syntactic construct {e} ⇒ B by letting:

‖({e} ⇒ B)[ρ]‖ = {n̂ · π : n = Val(e[ρ]), π ∈ ‖B[ρ]‖} .

In this extended syntax, we can now give a type to the lazy numeral ň ≡ λx . xn̂ by letting
nat′(e) ≡ ∀Z (({e} ⇒ Z)⇒ Z) and checking that:

Lemma 4.2. For every n ∈ N: ň ≡ λx . xn̂ �NK nat′(n)

Proof. Let ⊥⊥ be a fixed pole, and consider an arbitrary element of falsity value ‖nat′(n)‖ =
‖∀Z (({n} ⇒ Z)⇒ Z)‖, that is: a stack of the form u ·π where u ∈ |{n} ⇒ Ṡ| and π ∈ S for

some falsity value S ∈ P(Π). We have λx . xn̂⋆u ·π ≻∗ u⋆n̂ ·π. But since n̂ ·π ∈ ‖{n} ⇒ Ṡ‖
we get u ⋆ n̂ · π ∈ ⊥⊥, hence λx . xn̂ ⋆ u · π ∈ ⊥⊥ by anti-evaluation.

Moreover:

Lemma 4.3. Writing ∀NxA(x) ≡ ∀x ({x} ⇒ A(x)), we have:

(1) s �NK ∀
Nxnat′(s(x))

(2) rec �NK ∀Z
(
Z(0)⇒ ∀Ny (Z(y)⇒ Z(s(y)))⇒ ∀NxZ(x)

)

Proof. Let ⊥⊥ be a fixed pole.

(1) Let us consider an arbitrary element of ‖∀Nxnat′(s(x))‖, that is: a stack of the form

n̂·u·π, where n ∈ N, u ∈ |{s(n)} ⇒ Ṡ| and π ∈ S for some falsity value S ⊆ Π. We want

to show that s⋆n̂·u·π ∈ ⊥⊥. Using the evaluation rule of s, we get s⋆n̂·u·π ≻ u⋆n̂+ 1·π.

But since n̂+ 1 · π ∈ ‖{s(n)} ⇒ Ṡ‖, we have u ⋆ n̂+ 1 · π ∈ ⊥⊥, hence s ⋆ n̂ · u · π ∈ ⊥⊥
by anti-evaluation.

(2) Let us take a falsity value function F : N→ P(Π) and consider two realizers u0 ∈ |Ḟ (0)|
and u1 ∈ |∀

Ny (Ḟ (y) ⇒ Ḟ (s(y)))|. We first show by induction on n ∈ N that for all
stacks π ∈ F (n) we have rec ⋆ u0 · u1 · n̂ · π ∈ ⊥⊥.

9In the case we want to go beyond primitive recursion, it is necessary to use a fixpoint combinator to
implement minimization.

16 ALEXANDRE MIQUEL

− Base case. Take π ∈ F (0). We have rec⋆u0 ·u1 ·0̂·π ≻ u0⋆π ∈ ⊥⊥ (since u0 ∈ F (0)⊥⊥),

hence rec ⋆ u0 · u1 · 0̂ · π ∈ ⊥⊥ by anti-evaluation.
− Let us assume that the property holds for n ∈ N, and consider a stack π ∈ F (n+1).

We have rec ⋆ u0 · u1 · n̂+ 1 · π ≻ u1 ⋆ n̂ · (rec u0 u1 n̂) · π. We now want to show that

rec u0 u1 n̂ ∈ | ˙F (n)|. For that, we take a stack π′ ∈ F (n) and get rec u0 u1 n̂ ⋆ π′ ≻∗

rec ⋆ u0 · u1 · n̂ · π
′ ∈ ⊥⊥ by induction hypothesis, hence rec u0 u1 n̂ ⋆ π′ ∈ ⊥⊥ by

anti-evaluation. Thus we have rec u0 u1 n̂ ∈ | ˙F (n)|, hence we get

n̂ · (rec u0 u1 n̂) · π ∈ ‖{n} ⇒ Ḟ (n)⇒ Ḟ (s(n))‖
⊆ ‖∀Ny (Ḟ (y)⇒ Ḟ (s(y)))‖ .

Therefore u1⋆n̂ ·(rec u0 u1 n̂)·π ∈ ⊥⊥, and rec⋆u0 ·u1 ·n̂+ 1·π ∈ ⊥⊥ by anti-evaluation.

We have shown that rec ⋆u0 ·u1 · n̂ ·π ∈ ⊥⊥ for all F : N→ P(Π) and for all u0 ∈ |Ḟ (0)|,
u1 ∈ |∀

Ny (Ḟ (y) ⇒ Ḟ (s(y)))|, n ∈ N and π ∈ F (n). But this precisely means that rec

realizes the desired formula.

4.3. Extending the type system. To facilitate the construction of universal realizers
using the new instructions, we define an extension of PA2 (1), which we call PA2+. The
specific formation rules and typing rules of this system are summarized in Fig. 3.

Syntactic constructs

Formulæ A,B ::= · · · | {e} ⇒ B

Proof-terms t, u ::= · · · | n̂ | s | rec

Contexts Γ ::= · · · | Γ, x : {e}

Abbreviations

nat′(e) ≡ ∀Z (({e} ⇒ Z)⇒ Z)
∀NxA ≡ ∀x ({x} ⇒ A)
∃NxA ≡ ∀Z (∀x ({x} ⇒ A⇒ Z)⇒ Z)

Typing rules

Γ ⊢NK rec : ∀Z (Z(0)⇒ ∀Ny (Z(y)⇒ Z(s(y)))⇒ ∀NxZ(x))

Γ ⊢NK s : ∀Nx nat′(s(x))

Γ, x : {e} ⊢NK t : B

Γ ⊢NK λx . t : {e} ⇒ B

Γ ⊢NK t : {e} ⇒ B

Γ ⊢NK t x : B
(x:{e})∈Γ

Γ ⊢NK t : {n} ⇒ B

Γ ⊢NK t n̂ : B

Figure 3: Extending PA2 with primitive numerals

Compared to PA2, the grammar of the formulæ of PA2+ is enriched with the syntactic
construct {e} ⇒ B introduced in Section 4.2. (Arithmetic expressions remain unchanged.)
To reflect the presence of a second form of implication, typing contexts of system PA2+

EXISTENTIAL WITNESS EXTRACTION 17

introduce a second form of declaration, written x : {e}, that expresses that the proof-
variable x is bound to the constant n̂, where n is the value of e (i.e. n = Val(e)).

Proof-terms of PA2+ are the proof-terms of PA2 enriched with the constants n̂ (for all
n ∈ N), s and rec. System PA2+ provides typing rules for the constants s and rec, as well
as an introduction rule and two elimination rules for the formula {e} ⇒ B. Note that in
this system, we can only apply a proof-term of type {e} ⇒ B to a variable (declared with
x : {e}) or to a constant of the form n̂—in which case we must have e ≡ sn(0).

4.3.1. The realizability interpretation of PA2+. The realizability interpretation of PA2+ is
defined as for PA2, using the interpretation of the formula {e} ⇒ B described in Section 4.2.
(Of course, we now work with a set K of instructions and a relation of evaluation that fulfill
the conditions given in Section 3 and 4.)

To express the soundness of the new typing rules, we first have to adapt the definition
of σ
NK Γ[ρ] to the extended notion of context. For that, we say that a substitution σ
realizes a closed parametric context Γ[ρ] and write σ
NK Γ[ρ] when the following conditions
are fulfilled:

(1) dom(Γ) ⊆ dom(σ);
(2) σ(x)
NK A[ρ] for every declaration (x : A) ∈ Γ;
(3) σ(x) = n̂ where n = Val(e[ρ]) for every declaration (x : {e}) ∈ Γ.

(This definition obviously coincides with the former definition in the case where the con-
text Γ only contains declarations of the form (x : A).) The definition of sound judgments
and of sound valid rules (w.r.t. a fixed pole) immediately extends to the new system, so
that we can check the following:

Proposition 4.4 (Adequacy). The typing rules of PA2+ are sound w.r.t. all poles ⊥⊥ ⊆
Λc ×Π.

Proof. Let ⊥⊥ be a pole. We only treat the specific rules of PA2+ (Fig. 3).

• Typing rules for s and rec: immediately follows from Lemma 4.3.
• Introduction rule of {e} ⇒ B. Let us assume that Γ, x : {e} ⊢NK t : B is sound. To show
that the judgment Γ ⊢NK λx . t : {e} ⇒ B is sound too, consider a valuation ρ with a
substitution σ such that σ
NK Γ[ρ]. We want to prove that (λx . t)[σ] ∈ |({e} ⇒ B)[ρ]|.
For that, let us consider an arbitrary element of ‖({e} ⇒ B)[ρ]‖, that is: a stack of the
form n̂ ·π where n = Val(e[ρ]) and π ∈ ‖B[ρ]‖, and let us prove that (λx . t)[σ]⋆n ·π ∈ ⊥⊥.
Let σ′ = (σ, x := n̂). We have σ′

 (Γ, x : {e})[ρ], hence t[σ′] ∈ |B[ρ]| from the soundness
of judgment Γ, x : {e} ⊢NK t : B. By evaluating the process (λx . t)[σ] ⋆ n · π we get
(λx . t)[σ] ⋆ n · π ≻ t[σ′] ⋆ π ∈ ⊥⊥ (since t[σ′] ∈ |B[ρ]|), hence (λx . t)[σ] ⋆ n · π ∈ ⊥⊥ by
anti-evaluation.
• Elimination rules of {e} ⇒ B: both cases are straightforward.

Thanks to this extension, it is easy to check (by means of typing) that the new relativization
predicate nat′(x) is logically equivalent (in PA2+) to the traditional relativization predicate
nat(x) defined in section 2.4:

λz . z 0̌ (λy . y š) : ∀x (nat(x)⇒ nat′(x))
λz . z (rec (λxf . x) (λ nxf . f (nx f))) : ∀x (nat′(x)⇒ nat(x))

18 ALEXANDRE MIQUEL

(Intuitively, the above terms convert a Church numeral into the corresponding lazy numeral
and vice-versa.) Moreover, we can check that the formula ∀NxA(x) defined by the shorthand

∀NxA(x) ≡ ∀x ({x} ⇒ A(x)) (nat-as-data relativization)

is logically equivalent to the formula

∀x (nat′(x)⇒ A(x)) (nat-as-program relativization)

by means of the following proof-terms:

λfx . f (λy . yx) : ∀x (nat′(x)⇒ A(x)) ⇒ ∀NxA(x)
λfx . xf : ∀NxA(x) ⇒ ∀x (nat′(x)⇒ A(x))

(Intuitively, functions of type ∀NxA(x) expect a fully computed natural number represented
as a datum on the top of the stack, whereas functions of type ∀x (nat′(x)⇒ A(x)) expect a
lazy representation of a natural number on the top of the stack, whose corresponding value
can be computed later.)

The same remark holds for the two different ways to relativize first-order existential
quantification using primitive numerals

∀Z (∀x (nat′(x)⇒ A(x)⇒ Z)⇒ Z)

∃NxA(x) ≡ ∀Z (∀x ({x} ⇒ A(x)⇒ Z)⇒ Z)

that are provably equivalent.
In what follows, we shall thus only consider the problem of witness extraction from

universal realizers of existential formulæ of the form ∃NxA(x), whose witnesses are the
most directly accessible.

5. Witness extraction in classical realizability

In this section, we are interested in the problem of extracting a witness of a closed existential
formula ∃NxA(x) from a fixed universal realizer t0 of this formula:

t0 �NK ∃
NxA(x) ≡ ∀Z (∀x ({x} ⇒ A(x)⇒ Z)⇒ Z) .

(As a particular case, t0 may be a proof term of ∃NxA(x) in PA2.)
Throughout this section, we assume that the instruction set K contains (at least) the

extra instructions n̂, s and rec presented in Section 4.1, with their accompanying rules. For
convenience, we also assume the existence of an instruction stop with no evaluation rule,
that is intended to abort computation once the desired witness has been found. However,
the proofs of Prop. 5.1, 5.3 and 5.6 do not rely on any particular assumption on stop, so
that these propositions still hold if we consider that stop denotes a fixed closed λc-term.

The witness extraction methods discussed in Sections 5.2 and 5.4 are directly inspired
from the techniques presented in [19], while the method presented in Section 5.6 is due to
the author.

EXISTENTIAL WITNESS EXTRACTION 19

5.1. The failure of the naive method. To extract a witness from the universal realizer
t0 �NK ∃

NxA(x), a natural idea would be to apply t0 to the term λxy . stopx that extracts
the first component of the ‘pair’ t0 and passes it to stop. Applying this idea, we get the
following:

Proposition 5.1. For all π ∈ Π, the process t0 ⋆ (λxy . stopx) · π evaluates (in a finite
number of steps) to a process of the form stop ⋆ n̂ · π for some n ∈ N.

Proof. Let us take a stack π ∈ Π and work in the pole defined by

⊥⊥ = {p : ∃n∈N p ≻∗ stop ⋆ n̂ · π} .

Writing S = {π}, we easily check that stop
NK ∀x ({x} ⇒ Ṡ) (from the definition of ⊥⊥), so
that λxy . stop x
NK ∀x ({x} ⇒ A(x) ⇒ Ṡ) (by Prop. 3.10). Therefore (λxy . stop x) · π ∈
‖∃NxA(x)‖, and thus t0 ⋆ (λxy . stop x) · π ∈ ⊥⊥.

Alas, this result gives us no warranty that the natural number n we get by this method
is such that A(n) is true (in the full standard model). The mistake here is that we have
dropped the second component y of the pair t0 (that cannot be taken as a certificate that
A(n) holds), and we shall momentarily see that this component is actually the crucial
ingredient of the extraction process.

5.2. Extraction in the Σ0
1-case. Let us now consider the particular case where the pred-

icate A(x) is of the form A(x) ≡ f(x) = 0, where f is a unary function symbol of the
signature corresponding to (and denoted by) a primitive recursive function still written f .

To understand how to extract a (correct) witness from t0 in this case, let us first study
the denotation of equalities in the realizability model:

Lemma 5.2. Let e1 and e2 be closed arithmetic expressions. For all poles ⊥⊥ we have

‖e1 = e2‖ =

{
{t · π : (t ⋆ π) ∈ ⊥⊥} = ‖1‖ if Val(e1) = Val(e2)

Λ ·Π = ‖⊤ ⇒ ⊥‖ if Val(e1) 6= Val(e2)

(writing 1 ≡ ∀Z (Z ⇒ Z)).

In other words, true equalities are interpreted the same way as the formula 1 ≡ ∀Z (Z ⇒
Z) whereas false equalities are interpreted the same way as the formula ⊤ ⇒ ⊥ in the
classical realizability model. If u is a realizer of the formula f(n) = 0 (w.r.t. a particular
pole ⊥⊥), then we can distinguish two cases:

• The equality f(n) = 0 is true. In this case, we can think of u (
NK 1) as a term that
essentially behaves as the identity term λz . z: when coming in head position, it simply
vanishes and gives the control to its argument.
• The equality f(n) = 0 is false. In this case, we can think of u (
NK ⊤ ⇒ ⊥) as a term
that consumes its argument (whatever it is) and then backtracks to an earlier point in
the computation.

Of course, this informal description is only an loose approximation of the actual behavior of
the realizer u
NK f(n) = 0 (which may considerably vary depending on the choice of ⊥⊥),
but it gives us the clue to fix the naive extraction method.

The idea is to apply the universal realizer t0 �NK ∃
Nx f(x) = 0 to the term λxy . y (stopx)

that inserts a ‘breakpoint’ y before returning x. If the first component x is a correct witness,
then the second component y will vanish and let the program return the correct answer.

20 ALEXANDRE MIQUEL

If the first component x is incorrect, then y will issue a backtrack, and this until a correct
witness has been found.

We can now formalize this intuition as follows:

Proposition 5.3. For all π ∈ Π, the process t0 ⋆ (λxy . y (stopx)) · π evaluates (in a finite
number of steps) to a process of the form stop ⋆ n̂ · π for some natural number n ∈ N such
that f(n) = 0.

Proof. Let us take a stack π ∈ Π and work in the pole defined by

⊥⊥ = {p : ∃n∈N (f(n) = 0 and p ≻∗ stop ⋆ n̂ · π)} .

Writing S = {π}, we easily check that stop
NK {n} ⇒ Ṡ for all n ∈ N such that f(n) = 0
(from the very definition of ⊥⊥ and S). Let us now show that the term λxy . y (stop x)

realizes the formula ∀x ({x} ⇒ f(x) = 0 ⇒ Ṡ). For that, consider an arbitrary element of
the falsity value of this formula, that is: a stack of the form n̂ · u · π for some n ∈ N and
u ∈ |f(n) = 0|. We have

λxy . y (stopx) ⋆ n̂ · u · π ≻∗ u ⋆ (stop n̂) · π .

To show that u ⋆ (stop n̂) · π ∈ ⊥⊥, we distinguish two cases:

• f(n) = 0. In this case, we have stop n̂
NK Ṡ (using the ‘type’ we gave to stop), hence
(stop n̂) ⋆ π ∈ ⊥⊥ and thus (stop n̂) · π ∈ ‖1‖ = ‖f(n) = 0‖ (by Lemma 5.2). Therefore
u ⋆ (stop n̂) · π ∈ ⊥⊥.
• f(n) 6= 0. In this case, we have (stop n̂)·π ∈ ‖⊤ ⇒ ⊥‖ = ‖f(n) = 0‖, hence u⋆(stop n̂)·π ∈
⊥⊥.

In both cases we deduce that λxy . y (stopx)⋆ n̂ ·u ·π ∈ ⊥⊥ by anti-evaluation, which finishes

the proof that λxy . y (stop x)
NK ∀x ({x} ⇒ f(x) = 0 ⇒ Ṡ). From the latter we deduce
that (λxy . y (stopx)) · π ∈ ‖∃Nx f(x) = 0‖, so that t0 ⋆ (λxy . y (stop x)) · π ∈ ⊥⊥.

Remark 5.4. The simple (and reliable) extraction procedure presented above returns a
correct witness without keeping track of the intermediate witnesses proposed by the real-
izer t0. A simple way to display them during the computation is to introduce an instruction
print such that

print ⋆ n̂ · u · π ≻ u ⋆ π (n ∈ N, u ∈ Λ, π ∈ Π)

while printing the natural number n on some output device (the second part of the spec-
ification of print being purely informal). From the only evaluation rule of print, we easily
check that print �NK ∀x ({x} ⇒ 1). It is then a straightforward exercise to adapt the
proof of Prop. 5.3 when the process t0 ⋆ (λxy . y (stopx)) · π is replaced by the process
t0 ⋆ (λxy . print x y (stopx)) · π that ultimately does the same job—while printing the inter-
mediate results.

In section 8.4 we shall reinterpret the witness extraction method of Prop. 5.3 through
a well-suited negative translation.

5.3. Independence of the witness w.r.t. the stack π. It is easy to see that the witness
computed by the process t0⋆(λxy . y (stopx)) ·π (in the sense of Prop. 5.3) does not actually
depend on the stack π, provided we make the following ‘closed world’ assumptions:

(1) The relation of (one step) evaluation ≻ is defined as the union of the rules (Grab),
(Push), (Call/cc), (Resume), (Succ), (Rec-0) and (Rec-S) (cf Sections 3.1 and 4.1).
In particular, evaluation is deterministic.

EXISTENTIAL WITNESS EXTRACTION 21

(2) The term t0 contains no continuation constant kπ, that is: t0 is a proof-like term ac-
cording to the terminology of [19]. Note that this condition is automatically fulfilled
when t0 is a proof-term built in system PA2+.

(3) The term stop is an extra instruction (with no evaluation rule).

To prove the desired independence result, we define an operation of stack extension for
terms, stacks and processes as follows10. Given a fixed stack π0, we denote by t{⋄ := π0}
(resp. π{⋄ := π0}, p{⋄ := π0}) the term t (resp. the stack π, the process p) in which every
occurrence of the stack bottom ⋄ is replaced by the stack π0, including inside continuation
constants.

Formally, these operations are defined by:

x{⋄ := π0} ≡ x
(λx . t){⋄ := π0} ≡ λx . t{⋄ := π0}

(t u){⋄ := π0} ≡ t{⋄ := π0}u{⋄ := π0}
κ{⋄ := π0} ≡ κ

(kπ){⋄ := π0} ≡ k(π{⋄:=π0})

⋄{⋄ := π0} ≡ π0
(t · π){⋄ := π0} ≡ t{⋄ := π0} · π{⋄ := π0}

(t ⋆ π){⋄ := π0} ≡ t{⋄ := π0} ⋆ π{⋄ := π0}

(κ ∈ K)

Note that when t is a proof-like term, we have t{⋄ := π0} ≡ t. From assumption (1) we
immediately get:

Lemma 5.5. If p ≻ p′, then p{⋄ := π0} ≻ p′{⋄ := π0} (for all π0 ∈ Π).

Proof. By case analysis on the evaluation rule using (1).
(The same result holds if we replace ≻ by ≻∗.)
Let us now assume that t0 is a proof-like term (assumption (2)) that is a universal

realizer of the formula ∃Nx f(x) = 0. From Prop. 5.3, we know that there is some n ∈ N

such that f(n) = 0 and

t0 ⋆ (λxy . y (stopx)) · ⋄ ≻
∗ stop ⋆ n̂ · ⋄ .

But if we apply Lemma 5.5 with an arbitrary stack π, we thus get

t0 ⋆ (λxy . y (stop x)) · π ≻
∗ stop ⋆ n̂ · π

(using the fact that t0 is a proof-like term, so that t0{⋄ := π} ≡ t0).
Since evaluation is deterministic and since the instruction stop has no evaluation rule,

the answer produced by Prop. 5.3 with an arbitrary stack π is unique, and it is the same
as if we take the stack π ≡ ⋄.

5.3.1. Adding other instructions. The property of independence of the witness w.r.t. the
stack π crucially depends on the fact that evaluation is deterministic and substitutive w.r.t.
the stack constant ⋄ (in the sense of Lemma 5.5). However, it is sometimes useful to consider
instructions whose evaluation rules break Lemma 5.5 (without breaking determinism of
evaluation). An example of such an instruction is the instruction quote with the evaluation
rule

quote ⋆ t · π ≻ t ⋆ n̂π · π ,

10For an account of the possible uses of this technique, see [10].

22 ALEXANDRE MIQUEL

where nπ is the code of the stack π according to a fixed bijection between natural numbers
and stacks. (Such an instruction is introduced in [17] to realize several forms of the axiom of
choice.) If t0 uses such an instruction, then the witness provided by Prop. 5.3 may actually
depend on the stack π.

5.4. Extraction in the decidable case. The witness extraction procedure we presented
in section 5.2 for Σ0

1-formulæ can be generalized to any existential formula ∃NxA(x) provided
the predicate A(x) is decidable, using a decision function expressed as a λc-term.

Formally, a decision function for the predicate A(x) is a term dA ∈ Λc such that for all
n ∈ N, u, v ∈ Λc and π ∈ Π we have

dA ⋆ n̂ · u · v · π ≻∗

{
u ⋆ π if M |= A(n)

v ⋆ π if M 6|= A(n)

(writing M the full standard model of PA2). Intuitively, a decision function for the predicate
A(x) is a closed λc-term dA such that for every natural number n ∈ N, the applied term
dA n̂ acts as a boolean value indicating whether the formula A(n) holds or not in the full
standard model of PA2.

Extracting a witness in this case also requires another ingredient to repudiate the wrong
witnesses proposed by the realizer t0. Formally, we call a function of conditional refutation
of the predicate A(x) any term rA ∈ Λc such that

rA �NK {n} ⇒ ¬A(n)

for all n ∈ N such that M 6|= A(n). Intuitively, the purpose of a function of conditional
refutation rA is to provide a counter-realizer tA n̂ �NK ¬A(n) that we shall oppose to the
realizer u
NK A(n) coming with any wrong witness proposed by the realizer t0. Such terms
rA can be built for a very large class of formulæ as we shall see in section 5.5.

Using the decision function dA and the function of conditional refutation rA, we now get
a simple algorithm to perform witness extraction from a universal realizer t0 �NK ∃

NxA(x):

(1) Extract n ∈ N and u
NK A(n) from the universal realizer t0.
(2) Check whether A(n) is true or not, using the decision function dA.
• If A(n) is true, then return n (using the ‘stop’ instruction).
• If A(n) is false, then execute the realizer rA n̂ u
NK ⊥ to backtrack.

In the language λc, this procedure is implemented by applying the universal realizer t0 to
the λc-term λxy . dA x (stop x) (rA x y) that does the expected job:

Proposition 5.6. Let dA and rA be respectively a decision function and a function of
conditional refutation for the predicate A(x), and let t0 be a universal realizer of the formula
∃NxA(x). Then for all π ∈ Π, the process

t0 ⋆ (λxy . dA x (stop x) (rA x y)) · π

evaluates (in a finite number of steps) to a process of the form stop ⋆ n̂ · π for some natural
number n ∈ N such that A(n) is true in the full standard model.

Proof. Let us take a stack π ∈ Π and work in the pole defined by

⊥⊥ = {p : ∃n∈N (M |= A(n) and p ≻∗ stop ⋆ n̂ · π)} .

Writing S = {π}, we easily check that stop
NK {n} ⇒ Ṡ for all n ∈ N such that
M |= A(n) (from the very definition of ⊥⊥ and S). Let us now show that the term

EXISTENTIAL WITNESS EXTRACTION 23

λxy . dA x (stop x) (rA x y) realizes the formula ∀x ({x} ⇒ A(x)⇒ Ṡ). For that, consider an
arbitrary element of the falsity value of this formula, that is: a stack of the form n̂ · u · π
for some n ∈ N and u ∈ |A(n)|. We have

λxy . dA x (stopx) (rA x y) ⋆ n̂ · u · π ≻∗ dA ⋆ n̂ · (stop n̂) · (rA n̂ u) · π .

To show that dA ⋆ n̂ · (stop n̂) · (rA n̂ u) · π ∈ ⊥⊥, we distinguish two cases:

• M |= A(n). In this case we have

dA ⋆ n̂ · (stop n̂) · (rA n̂ u) · π ≻∗ (stop n̂) ⋆ π ≻ stop ⋆ n̂ · π ∈ ⊥⊥

(using the fact that stop
NK {n} ⇒ Ṡ when M |= A(n)), from which we get dA ⋆ n̂ ·
(stop n̂) · (rA n̂ u) · π ∈ ⊥⊥ by anti-evaluation.
• M 6|= A(n). In this case we have

dA ⋆ n̂ · (stop n̂) · (rA n̂ u) · π ≻∗ (rA n̂ u) ⋆ π ≻∗ rA ⋆ n̂ · u · π ∈ ⊥⊥

since n̂ · u · π ∈ ‖{n} ⇒ A(n) ⇒ ⊥‖ and rA ∈ |{n} ⇒ A(n) ⇒ ⊥| from the definition
that rA is a function of conditional refutation. By anti-evaluation we get: dA ⋆n̂ ·(stop n̂) ·
(rA n̂ u) · π ∈ ⊥⊥.

In both cases we deduce that λxy . dA x (stop x) (rA x y)⋆n̂·u·π ∈ ⊥⊥ by anti-evaluation, which

finishes the proof that λxy . dA x (stop x) (rA x y) realizes the formula ∀x ({x} ⇒ A(x)⇒ Ṡ)
in the pole ⊥⊥. From the latter, we immediately deduce that (λxy . dA x (stop x) (rA x y))·π ∈
‖∃Nx f(x) = 0‖, from which we conclude that t0 ⋆ (λxy . dA x (stopx) (rA x y)) · π ∈ ⊥⊥.

5.4.1. The particular case of Σ0
1-formulæ. In the case where the predicate A(x) is of the

formA(x) ≡ f(x) = 0 for some primitive recursive function symbol f , it is easy to implement
a decision function dA from a λc-term that actually computes f . Such a function d that
tests whether f(n) = 0 for a given argument n ∈ N can even be characterized in terms of
realizability as follows:

Lemma 5.7. Let f be a primitive recursive function symbol. For every term d ∈ Λc, the
following assertions are equivalent:

(1) d decides the predicate A(x) ≡ f(x) = 0;
(2) d �NK ∀Z ∀

Nx
(
Z(0)⇒ ∀y Z(s(y))⇒ Z(f(x))

)
.

Proof. 1.⇒ 2. Easily follows from the evaluation rules of the term d.
2.⇒ 1. Let n ∈ N, u, v ∈ Λc and π ∈ Π. We distinguish two cases:

• f(n) = 0. We let ⊥⊥ = {p ≻∗ u ⋆ π} and define a function F : N→ P(π) by F (0) = {π}
and F (p) = ∅ for all p > 0. We easily check that u ∈ |Ḟ (0)|, v ∈ |∀y Ḟ (s(y))| and
π ∈ ‖Ḟ (f(n))‖, hence d ⋆ n̂ · u · v · π ∈ ⊥⊥.
• f(n) 6= 0. We let ⊥⊥ = {p ≻∗ v ⋆ π} and define a function F : N → P(π) by F (0) = ∅

and F (p) = {π} for all p > 0. We again check that u ∈ |Ḟ (0)|, v ∈ |∀y Ḟ (s(y))| and
π ∈ ‖Ḟ (f(n))‖, hence d ⋆ n̂ · u · v · π ∈ ⊥⊥.

24 ALEXANDRE MIQUEL

The function of conditional refutation for the predicate A(x) ≡ f(x) = 0 is even easier
to build: simply take the constant function rA ≡ λ z . z ? (where ? is any λc-term possibly
depending on z), using the fact that ⊢NK λz . z ? : f(n) 6= 0 for all natural numbers n such
that f(n) 6= 0. (Note that the term λz . z ? does not depend on n.) In this case, the function
of conditional refutation rA can be replaced by the conditional refutation λz . z ? that is a
universal realizer of the formula f(n) 6= 0 for all natural numbers n such that f(n) 6= 0.

Given a term df ∈ Λc that decides the predicate f(x) = 0, we can thus perform witness

extraction from a universal realizer t0 �NK ∃
Nx f(x) = 0 using the process:

t0 ⋆ (λxy . df x (stop x) (y ?)) ⋆ π

(whose second branch has been simplified). Note that this process is slightly more complex
than the process presented in Prop. 5.3 that does not even need to consider a decision
function to perform witness extraction from t0.

5.5. Existence of functions of conditional refutation. The existence of a function of
conditional refutation can be shown for a wide class of predicates, and in particular for every
predicate A(x) that is expressed in the language of first-order arithmetic such as defined in
the end of section 3.3 (replacing ∀x (nat(x)⇒ P) by ∀NxP in the corresponding BNF).

Let us first recall that:

Proposition 5.8. For every k ≥ 0, there exists a closed proof-term Rk such that for every
formula of the form

A ≡ ∃Ny1 ∀
Nz1 · · · ∃

Nyk ∀
Nzk f(y1, z1, . . . , yk, zk) 6= 0 ,

if M |= A, then Rk �NK A.

Proof. The existence of such a proof-term Rk is an immediate consequence of Theorem 21
(p. 14) in [19]. Note that Rk only depends on k.

We also check that:

Proposition 5.9 (Existence of the prenex form). If A(x1, . . . , xp) is a formula of first-
order arithmetic depending on p first-order variables x1, . . . , xp, then there exists a natural
number k ≥ 0 and a function symbol f of arity p+ 2k such that the formula

A′(x1, . . . , xp) ≡ ∃
Ny1 ∀

Nz1 · · · ∃
Nyk ∀

Nzk f(x1, . . . , xp, y1, z1, . . . , yk, zk) 6= 0

is logically equivalent to A(x1, . . . , xp), in the sense that there are closed proof-terms u1, u2
such that

⊢NK u1 : ∀Nx1 · · · ∀
Nxp (A(x1, . . . , xp)⇒ A′(x1, . . . , xp))

⊢NK u2 : ∀Nx1 · · · ∀
Nxp (A

′(x1, . . . , xp)⇒ A(x1, . . . , xp)) .

Proof. This theorem is the reformulation in the type system of Fig. 1 and 3 of the existence
of prenex forms in first-order arithmetic.

EXISTENTIAL WITNESS EXTRACTION 25

From Prop. 5.8 and 5.9 we deduce the following:

Proposition 5.10 (Existence of a conditional refutation). If A(x) is a formula of first-
order arithmetic that only depends on a first-order variable x, then the predicate A(x) has
a function of conditional refutation rA.

Proof. From Prop. 5.9, there exists a formula

A′(x) ≡ ∃Ny1 ∀
Nz1 · · · ∃

Nyk ∀
Nzk f(x, y1, z1, . . . , yk, zk) 6= 0

with closed proof-terms u1, u2 such that:

⊢NK u1 : ∀Nx (A(x)⇒ A′(x)) and ⊢NK u2 : ∀Nx (A′(x)⇒ A(x)) .

It suffices to take rA ≡ λx . u2 xRk (by Prop. 5.8).

5.6. The method of the kamikaze. The witness extraction procedure presented in sec-
tion 5.4 depends on two components: a function dA deciding the predicate A(x), and another
function rA that conditionally refutes the predicate A(x). The critical component here is the
decision function dA, since the function rA can be constructed for a wider class of formulæ,
i.e. for all arithmetic formulæ (cf section 5.5).

In the case where we have a function of conditional refutation rA but no decision
function for the predicate A(x)—typically, when A(x) is a non atomic arithmetic formula—
we can still extract a possibly infinite sequence of ‘witness proposals’ from the universal
realizer t0 �NK ∀

NxA(x) by systematically repudiating every proposed witness using the
function of conditional refutation rA.

This extraction method, which we call the method of the kamikaze, consists to apply
the universal realizer t0 �NK ∃

NxA(x) to the term λxy . printx (rA x y) (using the ‘print’
instruction introduced in Remark 5.4), thus implementing in the language λc the following
algorithm:

(1) Extract n ∈ N and u
NK A(n) from the universal realizer t0.
(2) Print n on some output device.
(3) Try to backtrack by executing rA n̂ u.

The crucial point here is that there is no warranty that the piece of code executed at step 3
will actually issue a backtrack, since we do not know whether ¬A(n) is true. The only
invariant we can ensure is the following: as long as the proposed witness n is incorrect, the
refutation function rA is applied in agreement with its specification, so that step 3. will
issue a backtrack. But as soon as a correct witness n has been reached, the current process
becomes ill-typed, and then anything may happen: the process may enter an infinite loop
(possibly displaying other numbers) as it may crash, for instance due to a stack underflow
(by evaluating an abstraction or one of the instructions cc, kπ, print in front of an empty
stack), or due to the fact that print is evaluated in front of a stack which does not start
with a primitive numeral.

Of course, the interest of the method is that the process that performs the blind extrac-
tion of the successive witnesses proposed by the universal realizer t0 cannot go wrong until
a correct witness has been reached. We can actually even show that this process eventually
reaches a correct witness:

26 ALEXANDRE MIQUEL

Proposition 5.11. If t0 is a universal realizer of ∃NxA(x) and if rA is a function of
conditional refutation of the predicate A(x), then for all stacks π ∈ Π the process

t0 ⋆ (λxy . print x (rA x y)) · π

evaluates (in a finite number of steps) to a process of the form print ⋆ n̂ · u · π, where u ∈ Λc

and where n ∈ N is such that A(n) holds in the full standard model.

Proof. Let us take a stack π ∈ Π and work in the pole defined by

⊥⊥ = {p : ∃n∈N ∃u∈Λc (M |= A(n) ∧ p ≻∗ print ⋆ n̄ · u · π)} .

Set S = {π}. We first want to show that print ⋆ n̂ · (rA n̂ v) · π ∈ ⊥⊥ for all n ∈ N and for all
v ∈ |A(n)|. We distinguish the following two cases:

• M |= A(n). In this case we have print ⋆ n̂ · (rA n̂ v) · π ∈ ⊥⊥ from the very definition of the
pole ⊥⊥.
• M 6|= A(n). In this case, we have

print ⋆ n̂ · (rA n̂ v) · π ≻ (rA n̂ v) ⋆ π ≻∗ rA ⋆ n̂ · v · π ∈ ⊥⊥

from our assumption on rA combined with the fact that M 6|= A(n). Hence we get
print ⋆ n̂ · (rA n̂ v) · π ∈ ⊥⊥ by anti-evaluation.

From this result we easily get

λxy . printx (rA x y)
NK ∀x ({x} ⇒ A(x)⇒ Ṡ)

and finally: t0 ⋆ (M λxy . print x (rA x y)) · π ∈ ⊥⊥.

Let us note that the above proof relies in an essential way in the definition of a pole ⊥⊥
that is not closed under evaluation, thus reflecting the fact that the process which performs
kamikaze extraction is correct up to some point during evaluation. After this point has
been reached—that is: when a correct witness has been printed—the realizability model
gives us no invariant anymore about the execution of the current process, so that anything
may happen.

6. An example based on the minimum principle

In this section, we give an example of witness extraction in the Σ0
1-case.

An important aspect of the witness extraction procedure described in Prop. 5.3 is that
the universal realizer t0 �NK ∃

Nx f(x) = 0 does not need to be a proof-term in the sense
of the type system of PA2+—it just needs to be a universal realizer in the sense of classical
realizability. Indeed, the naive method that consists to extract the λc-term from the proof
as is tends to produce highly inefficient code. On the other hand, many useful arithmetic
lemmas have universal realizers that are much more compact (and much more efficient)
than the realizers that would come from official proofs.

For this reason, it is reasonable to isolate such lemmas during the extraction process,
and to replace their official proof-terms (i.e. coming from derivations in PA2+) by universal
realizers built by hand. In what follows, we shall illustrate this point with the minimum
principle.

EXISTENTIAL WITNESS EXTRACTION 27

6.1. Notations. In PA2+, it is convenient to define the ordering relation x ≤ y from
Leibniz equality by letting

x ≤ y ≡ minus(x, y) = 0 ,

where minus is the binary primitive recursive function defined by the equations

minus(x, 0) = x
minus(0, s(y)) = 0

minus(s(x), s(y)) = minus(x, y)

Given a unary primitive recursive function symbol f , we express that f is a function
from natural numbers to natural numbers with the formula

Fun(f) ≡ ∀Nxnat′(f(x)) ≡ ∀x ({x} ⇒ ∀Z (({f(x)} ⇒ Z)⇒ Z)) .

It is easy to check that universal realizers of the formula Fun(f) are precisely the closed
λc-terms that compute the function f , namely:

Lemma 6.1. Given a term t ∈ Λc, the following assertions are equivalent:

(1) For all u ∈ Λc, π ∈ Π: t ⋆ n̂ · u · π ≻∗ u ⋆ f̂(n) · π (i.e. t computes f)
(2) t �NK Fun(f) (i.e. t universally realizes Fun(f))

Proof. 1. ⇒ 2. immediately follows from the definitions of classical realizability.
2. ⇒ 1. Let us assume that t �NK Fun(f), and fix n ∈ N, u ∈ Λc and π ∈ Π. We define the

pole ⊥⊥ = {p : p ≻∗ u ⋆ f̂(n) · π} and the falsity value S = {π}, from which we easily check

that u
NK {f(n)} ⇒ Ṡ. From our initial assumption, we have t �NK {n} ⇒ ({f(n)} ⇒
Ṡ)⇒ Ṡ, and thus t ⋆ n̂ · u · π ∈ ⊥⊥.

Finally, we use the shorthand 〈x; y〉 ≡ λz . z x y to denote order pairs in λc, keeping in
mind that this construction can be used to prove (or realize) both conjunctions and numeric
existential quantifications.

6.2. The functional minimum principle. We now want to build a universal realizer of
the formula expressing that a function from natural numbers to natural numbers reaches
its minimum:

MinPrinc ≡ Fun(f)⇒ ∃Nx∀Ny (f(x) ≤ f(y))

(Note that the premise Fun(f) is crucial to prove/realize the result.) Since this formulation
of the minimum principle is (classically) provable in PA2+, we could take any proof-term
of it as a universal realizer. In this case however, it is much more interesting to build a
universal realizer by hand.

For that, let us take a closed λc-term test le that performs the comparison of two
primitive natural numbers, in the sense that

test le ⋆ n̂ · m̂ · u · v · π ≻∗

{
u ⋆ π if n ≤ m

v ⋆ π otherwise

for all n,m ∈ N, u, v ∈ Λc and π ∈ Π. (It is a straightforward exercise of programming to
implement such a term in λc.)

Now, let us consider a closed λc-term min aux such that

min aux ⋆ f · k · n ·m · π ≻∗

〈n, λn′ . f n′ (λm′ . test lemm′ I (k (min aux f k n′m′)))〉 · π

28 ALEXANDRE MIQUEL

for all f, k, n,m ∈ Λc and π ∈ Π. Intuitively, such a λc-term min aux is a recursive function
that takes the following arguments:

• A realizer f
NK Fun(f) (i.e. an implementation of f)
• A continuation k
NK ¬∃

Nx∀Ny (f(x) ≤ f(y)) for backtracking.
• The current witness proposal n.
• The image m = f(n) of the current witness proposal. (We keep this argument across the
recursive call to avoid recomputing it later.)

When it is called with these arguments, the function min aux returns an ordered pair 〈n, h〉
whose first component is the current witness proposal n, and whose second component is a
function

h ≡ λn′ . f n′ (λm′ . test lemm′ I (k (min aux f k n′m′)))

that takes a natural number n′, computes its image m′ = f(n′) and compares it with m.
In the case where m ≤ m′, the function h returns the identity term I, which is an obvious
realizer of f(n) ≤ f(n′). In the case where m′ < m, the function f backtracks using the
continuation k, and recursively calls min aux with n′ as the new witness proposal, and m′

as its image by f .
Note that there are several ways to implement the term min aux in λc. For instance,

we can let

min aux ≡ Y (λrfknm . 〈n, λn′ . f n′ (λm′ . test lemm′ I (k (r f k n′m′)))〉) ,

where Y ≡ (λyz . z(yy))(λyz . z(yy)) is Turing’s fixpoint combinator11; or we can simply
introduce min aux as an extra instruction with the desired evaluation rule. Whatever the
way we implement min aux, we can check that:

Lemma 6.2. Writing E ≡ ∃Nx∀Ny f(x) ≤ f(y), we have:

min aux �NK ∀x (Fun(f)⇒ ¬E ⇒ {x} ⇒ {f(x)} ⇒ E) .

Proof. Fix a pole ⊥⊥ and two realizers f
NK Fun(f) and k
NK ¬E, and consider the
property IH(m) defined by

IH(m) : for all n ∈ N s.t. f(n) = m, for all π ∈ ‖E‖
we have: min aux ⋆ f · k · n̂ · m̂ · π ∈ ⊥⊥ .

We want to prove IH(m) by well-founded induction on m. For that, let us fix m ∈ N,
assume that IH(m′) for all m′ < m, and take n ∈ N such that f(n) = m and π ∈ ‖E‖.
From the evaluation rules of test le, we can derive that

test le m̂ m̂′ I (k (min aux f k n′m′))
NK f(n) ≤ f(n′)

for all n′,m′ ∈ N such that m′ = f(n′), distinguishing cases depending on whether m ≤ m′

or m′ < m, and using the induction hypothesis IH(m′) in the second case. From this we
successively get

λm′ . test le m̂ m̂′ I (k (min aux f k n′m′))
NK ∀y ({f(y)} ⇒ f(n) ≤ f(y))

λn′ . f n′ (λm′ . test le m̂ m̂′ I (k (min aux f k n′ m′)))
NK ∀
Ny (f(n) ≤ f(y))

〈n, λn′ . f n′ (λm′ . test le m̂ m̂′ I (k (min aux f k n′m′)))〉
NK E

〈n, λn′ . f n′ (λm′ . test le m̂ m̂′ I (k (min aux f k n′m′)))〉 ⋆ π ∈ ⊥⊥

hence min aux ⋆ f · k · n̂ · m̂ · π ∈ ⊥⊥, by anti-evaluation.

11We using Turing’s fixpoint combinator rather than Church’s, since Turing’s combinator is better suited
for the call-by-name strategy.

EXISTENTIAL WITNESS EXTRACTION 29

Now we can set:

min princ ≡ λf . f 0̂ (λm . cc (λk .min aux f k 0̂m)) .

Intuitively, this function takes an implementation of f , computes the image m = f(0),
captures the current continuation as k and then calls min aux with 0 as the initial witness
proposal (accompanied with its image m = f(0)).

Combining Lemma 6.2 and the property of adequacy (Prop. 3.10) with the derivable
judgment

z : ∀x (Fun(f)⇒ ¬E ⇒ {x} ⇒ {f(x)} ⇒ E)

⊢NK λf . f 0̂ (λm . cc (λk . z f k 0̂m)) : MinPrinc

we immediately deduce that:

min princ �NK Fun(f)⇒ ∃Nx∀Ny (f(x) ≤ f(y)) .

6.3. A Σ0
1-consequence of the minimum principle. Let f and g be two functions from

natural numbers to natural numbers. The minimum principle gives a simple argument to
show the existence of a natural number x such that f(x) ≤ f(g(x)), which is to take a
point x where f reaches its minimum. In PA2+, the argument is formalized as follows:

z : MinPrinc, f : Fun(f), g : Fun(g) ⊢NK

z f (λnh . 〈n, ǧ h〉) : ∃Nx (f(x) ≤ f(g(x)))

Considering implementations f̌ �NK Fun(f) and ǧ �NK Fun(g) of the functions f
and g, we thus get a universal realizer of the following Σ0

1-formula:

min princ f̌ (λnh . 〈n, ǧ n h〉) �NK ∃
Nx (f(x) ≤ f(g(x)))

By Prop. 5.3, we know that the process

p0 ≡ min princ f̌ (λnh . 〈n, ǧ n h〉) ⋆ (λxy . y (stop x)) · ⋄

computes the desired witness (which depends of course on f and g).

6.4. Executing λc-code. Fig. 4 illustrates the execution of the above process p0 in the
particular case where f and g are given by

f(x) = |x− 1000| and g(x) = 2x+ 1 .

The process p0 was executed using the jivaro head reduction machine [23], a small inter-
pretor of Krivine’s λc-calculus extended with many built-in primitives (mainly for arbitrary-
precision arithmetic and string manipulation). We slightly altered the code of p0 in order
to print intermediate witness proposals, so that the actual code of p0 is

p0 ≡ min princ f̌ (λnh . 〈n, ǧ n h〉) ⋆ (λxy . printx y (stopx)) · ⋄

where print is the instruction mentioned in Remark 5.4 p. 20.
As shown in the input script of Fig. 4, each component of the process p0 is introduced

as a new instruction given with its evaluation rule (using the command Define). Note that
such definitions may be (mutually) recursive, which is the case here for the instructions
min aux and min snd. The interest of using named instructions rather than anonymous
λc-terms is that we can more easily track when each piece of the code comes into head
position during execution.

30 ALEXANDRE MIQUEL

Input script

Define I x = x ;; (* Identity *)

Define pair x y z = z x y ;; (* Pairing *)

Define test_le = int_le ;; (* Alias for int_le primitive *)

(* Realizing the minimum principle *)

Define min_aux f k n m = pair n (min_snd f k m) ;;

Define min_snd f k m n’ = f n’ (\m’ test_le m m’ I (k (min_aux f k n’ m’))) ;;

Define min_princ f = f 0 (\n (callcc (\k min_aux f k 0 n))) ;;

(* Take f(x) = |n - 1000| and g(x) = 2x + 1 *)

Define f n = int_le n 1000 (int_minus 1000 n) (int_minus n 1000) ;;

Define g n = int_mult 2 n (\m int_succ m) ;;

(* Universal realizer of \existsN x, f(x) <= f(g(x)) *)

Define realizer = min_princ f (\n\h pair n (g n h)) ;;

Trace On ;;

(* Perform Sigma^0_1 witness extraction & print intermediate witnesses *)

Eval realizer ; (\x\y print x y (stop x)) ;;

Output

0

1

3

7

15

31

63

127

255

511

1023

0.01 s: stopped

Final state: stop ; 1023

Evaluation statistics (instruction calls)

@ (Push) 419
λ (Grab) 68

int le 23
pair 22
f 12
int minus 12
g 11
int mult 11
int succ 11

min aux 11
min snd 11
print 11
test le 11
kπ (Restore) 10
I 1
callcc (Save) 1
min princ 1
realizer 1
stop 1

Figure 4: Example of witness extraction using the jivaro machine

The output given in Fig. 4 shows that during its execution, the process p0 successively
tries the following guesses for x:

x0 = 0, x1 = 1, x2 = 3, x3 = 7, x5 = 15, x6 = 31,
x7 = 63, x8 = 127, x9 = 255, x10 = 511, x11 = 1023.

Since the last guess (x11 = 1023) is a solution of the problem, the execution stops on the

final state stop ⋆ 1̂023 · ⋄, with the form predicted by Prop. 5.3.
The choice of this particular sequence of guesses is explained as follows.

EXISTENTIAL WITNESS EXTRACTION 31

During the execution of the process p0, the proof of ∃Nx (f(x) ≤ f(g(x))) uses the
guess xi produced by the minimum principle as well as the accompanying justification of
the formula ∀Ny (f(xi) ≤ f(y)) to build a realizer of f(xi) ≤ f(g(x)). But when the latter
is executed, it invokes the accompanying justification, that actually compares the values
of xi and g(xi) by f . In the case where f(g(xi)) < f(xi), the guess xi was wrong, and
the accompanying justification backtracks to the point where the minimum principle was
invoked (using an embedded continuation kπ). When restarted, the minimum principle can
then propose xi+1 = g(xi) as a new guess. As a consequence, the process p0 produces its
guesses xi = gi(0) by iterating the function g until f(xi) ≤ f(g(xi)).

12

Note that this behavior is the same as the one we observe when treating the same
example using Friedman’s method or its refinements [3]. Of course, this similarity is not a
coincidence since Friedman’s translation is actually hard-wired in Krivine’s semantics (as
already pointed out in [25]), and we shall come back to this point with more details in
sections 7 and 8.

6.4.1. Evaluation statistics. Fig. 4 also provides some statistics giving how many times
each instruction has been called during evaluation.

Not surprisingly, the most frequent operations are Push (419 times) and Grab (68
times), the asymmetry between these coming from the fact that stack arguments are not
only consumed by abstractions (Grab), but also by the instructions used by the program,
which may be primitive (callcc, int le, etc.) or defined by the user (pair, min aux, etc.)

We can also see that our hand-made implementation of the minimum principle is opti-
mal: the number of calls to the function f as well as the number of comparisons of images
(by f) of guesses (using the instruction test le) are both minimal. Moreover, the callcc
instruction is called once during the whole execution, thus creating a unique continuation
constant kπ (where |π| = 2) that is used exactly 10 times (Restore), that is: once for each
backtrack.

We also tested this example by replacing the hand-made realizer of the minimum prin-
ciple with an actual proof of it (in PA2+). The observed behavior remains the same, but
the proof-term is much bigger and its execution is quite inefficient, mainly due to the arith-
metic reasoning involved in the induction underlying the proof of the principle. (In the
hand-made realizer, induction is performed at the meta-theoretic level, and thus has no
cost during execution.) We can also notice that depending the way we use classical logic in
the proof of the minimum principle, the corresponding proof-term may invoke several times
the call/cc instruction, or only once as in the hand-made realizer.

7. Intuitionistic second-order arithmetic

We now define a type system for intuitionistic second-order arithmetic (HA2), as well as a
realizability model that closely follows the traditional Brouwer-Heyting-Kolmogorov inter-
pretation. As in [25], we introduce a primitive form of conjunction (as a Cartesian prod-
uct) and primitive forms of first- and second-order existential quantification (as infinitary
unions).

12Note that although each guess xi claims to be a point where f reaches its minimum (until the context
proves it wrong and forces backtrack), none of them—including the last one—is such a point, since f takes
its minimum for x = 1000.

32 ALEXANDRE MIQUEL

7.1. The language of formulæ. The language of arithmetic expressions of HA2 is the
same as for PA2 (Fig. 1), and it is equipped with the congruence e ∼= e′ generated from the
same equations (cf section 2.2). The language of formulæ is now the following:

Formulæ A,B ::= null(e) | nat(e) | X(e1, . . . , ek)
| A⇒ B | ∀xA | ∀X A
| A ∧B | ∃xA | ∃X A

To the language of formulæ of PA2 (Fig. 1) we add:

• A new predicate symbol nat(e) to give a type to the Peano-style numerals we shall intro-
duce in the language of proof-terms.
• A primitive conjunction A ∧ B that we shall interpret in the intuitionistic realizability
model as a type of pairs.
• Primitive forms of first- and second-order existential quantification that will be interpreted
in the model as infinitary unions (as in [25]).

In this setting, the units ⊤ and ⊥ are defined with the shorthands ⊤ ≡ ∃ZZ and ⊥ = ∀ZZ,
whereas numeric quantifications are defined as

∀NxA(x) ≡ ∀x (nat(x)⇒ A(x))

∃NxA(x) ≡ ∃x (nat(x) ∧A(x))

7.1.1. The congruence A ∼= A′. The congruence A ∼= A′ over the class of formulæ of HA2
is defined from the defining equations of the primitive recursive function symbols of the
signature, plus the three equations

and

null(0) ∼= ⊤ ≡ ∃ZZ null(s(e)) ∼= ⊥ ≡ ∀ZZ

(∃v A(v))⇒ B ∼= ∀v (A(v)⇒ B)

where v is any first- or second-order variable that does not occur free in B. We shall
see that the second equation is not only consistent with the interpretation of existential
quantifications as infinitary unions (cf section 7.4), but that it is also crucial to establish
Prop. 8.6.

7.2. A type system for intuitionistic second-order arithmetic. We introduce an in-
tuitionistic (and more traditional) proof system based on a judgment of the form Γ ⊢NJ t : A,
where the proof-term t is now formed in the pure λ-calculus enriched with the following
constants: pair (pairing), fst (first projection), snd (second projection), 0 (zero), s (succes-
sor) and rec (recursor). In what follows we shall write 〈t;u〉 for the application pair t u, and
denote by Λ the set of all closed proof-terms. Typing contexts are simply defined here as
finite ordered lists of declarations of the form Γ ≡ x1 : A1, . . . , xn : An where x1, . . . , xn are
pairwise distinct proof-variables.

The class of derivable judgments Γ ⊢NJ t : A is inductively defined from the rules of
inference of Fig. 5 (writing ∀NxA(x) ≡ ∀x (nat(x) ⇒ A(x))). Note that there is no elimi-
nation rule for first- and second-order primitive existential quantification, since the desired
elimination can be performed using the conversion rule ∀v (A(v) ⇒ B) ∼= (∃v A(v)) ⇒ B
(where v /∈ FV (B)).

EXISTENTIAL WITNESS EXTRACTION 33

The language of HA2

Formulæ A,B ::= X(e1, . . . , ek) | null(e) | nat(e)
| A⇒ B | ∀xA | ∀XA | ∃xA | ∃XA

Proof-terms t, u ::= x | λx . t | tu | pair

| fst | snd | 0 | s | rec

Contexts Γ ::= ∅ | Γ, x : A

The congruence A ∼= A′

null(0) ∼= ⊤ null(s(x)) ∼= ⊥ (∃v A)⇒ B ∼= ∀v (A⇒ B) (v /∈ FV (B))

Abbreviations

⊤ ≡ ∃Z Z ∀NxA(x) ≡ ∀x (nat(x)⇒ A(x))
⊥ ≡ ∀Z Z ∃NxA(x) ≡ ∃x (nat(x) ∧A(x))

e = e′ ≡ ∀Z (Z(e)⇒ Z(e′))

Typing rules

Γ ⊢NJ x : A
(x:A)∈Γ

Γ ⊢NJ t : A

Γ ⊢NJ t : A′ A∼=A′

Γ ⊢NJ pair : A⇒ B ⇒ A ∧B

Γ ⊢NJ fst : A ∧B ⇒ A Γ ⊢NJ snd : A ∧B ⇒ B

Γ ⊢NJ 0 : nat(0) Γ ⊢NJ s : ∀Nx nat(s(x))

Γ ⊢NJ rec : ∀Z (Z(0)⇒ ∀Ny (Z(y)⇒ Z(s(y)))⇒ ∀NxZ(x))

Γ, x : A ⊢NJ t : B

Γ ⊢NJ λx . t : A⇒ B
Γ ⊢NJ t : A⇒ B Γ ⊢NJ u : A

Γ ⊢NJ tu : B

Γ ⊢NJ t : A
Γ ⊢NJ t : ∀xA

x/∈FV (Γ)
Γ ⊢NJ t : ∀xA

Γ ⊢NJ t : A{x := e}

Γ ⊢NJ t : A
Γ ⊢NJ t : ∀XA

X/∈FV (Γ)
Γ ⊢NJ t : ∀XA

Γ ⊢NJ t : A{X(x1, . . . , xk) := B}

Γ ⊢NJ t : A{x := e}

Γ ⊢NJ t : ∃xA

Γ ⊢NJ t : A{X(x1, . . . , xk) := B}

Γ ⊢NJ t : ∃XA

Figure 5: Intuitionistic second-order arithmetic (HA2)

34 ALEXANDRE MIQUEL

The type system of HA2 is expressive enough to provide typable proof-terms for all the
theorems of intuitionistic second-order arithmetic. (The specific axioms of arithmetic are
treated the same way as in PA2.)

7.3. Weak reduction and inner reduction. Proof-terms of HA2 are equipped with a
binary relation of one-step weak reduction written t ≻w t′ and defined from the rules

(λx . t)u ≻w t{x := u} rec u0 u1 0 ≻w u0 rec u0 u1 (s t) ≻w u1 t (rec u0 u1 t)

fst 〈t1; t2〉 ≻w t1 snd 〈t1; t2〉 ≻w t2

t ≻w t′

tu ≻w t′u

u ≻w u′

tu ≻w tu′

Note that weak reduction is allowed both in the left- and right hand-side of applications,
but not below λ-abstraction (i.e. we disable the ξ-rule of λ-calculus). We write ≻∗

w the
reflexive-transitive closure of one step weak reduction.

Lemma 7.1. If t ≻w t′, then t{x := u} ≻w t′{x := u} (for all terms u).

Proof. By induction on the derivation of t ≻w t′.

Complementarily to the notion of weak reduction, we also define a relation of inner
reduction written t ≻i t

′ from the rules:

t ≻w t′

λx . t ≻i λx . t
′

t ≻i t
′

tu ≻i t
′u

u ≻i u
′

tu ≻i tu
′

t ≻i t
′

λx . t ≻i λx . t
′

The reflexive-transitive closure of the relation of inner reduction is written ≻∗
i

while its
reflexive-symmetric-transitive closure is written =i.

The union of both relations ≻w and ≻i is the ordinary relation of one step reduction,
written ≻. By the standard method of parallel reductions we get:

Proposition 7.2. The relation ≻ is confluent.

We now want to deduce from this proposition a result of confluence for weak reduction
modulo inner reductions. For that, we first need to show that inner reductions can be
postponed, in this sense that any finite sequence of (weak and inner) reductions can be
decomposed into a finite sequence of weak reductions followed by a finite sequence of inner
reductions. Following Takahashi [28], we shall prove this result by introducing a notion of
parallel inner reduction, written t ≻I t′ and defined from the rules:

t ≻I t

t ≻w t′

λx . t ≻I λx . t′
t ≻I t′ u ≻I u′

tu ≻I t′u′
t ≻I t′

λx . t ≻I λx . t′

From this definition it is clear that (≻i) ⊆ (≻I) ⊆ (≻i
∗), so that (≻i

∗) = (≻I
∗). We first

check that parallel inner reduction enjoys the expected property of substitutivity:

Lemma 7.3. If t ≻I t′ and u ≻I u′, then t{x := u} ≻I t′{x := u′}.

Proof. By induction on the derivation of t ≻I t′.

Proposition 7.4. If t ≻I t′ ≻w u, then t ≻+
w u0 ≻I u for some term u0.

Proof. By induction on the derivation of t′ ≻w u.

EXISTENTIAL WITNESS EXTRACTION 35

Corollary 7.5 (Postponement). If t ≻∗ u, then t ≻∗
w u0 ≻

∗
i
u for some u0.

Proof. We first show that if t ≻I t′ ≻∗
w u, then t ≻∗

w u0 ≻I u for some u0, by induction
on the number of reduction steps in t′ ≻∗

w u using Prop. 7.4. From this we deduce the
desired property by induction on the number of reduction steps in t ≻∗ u, using the fact
that (≻I

∗) = (≻i
∗).

From Prop. 7.2 and Corollary 7.5 we immediately get:

Proposition 7.6 (Confluence of ≻w modulo =i). It t ≻∗
w t1 and t ≻∗

w t2, then there are
terms t′1 and t′2 such that t1 ≻

∗
w t′1, t2 ≻

∗
w t′2 and t′1 =i t

′
2.

7.4. The intuitionistic realizability model. We now build a simple realizability model
for the type system defined above, in which formulæ are interpreted as saturated sets of
terms, that is, as sets of closed proof-terms S ⊆ Λ such that both conditions t ≻w t′ and
t′ ∈ S imply t ∈ S. The set of all saturated sets is written SAT.

Here, a valuation is a function ρ whose domain is a finite set of (first- and second-order)
variables, such that:

• ρ(x) ∈ N for every first-order variable x ∈ dom(ρ);
• ρ(X) : Nk → SAT for every k-ary second-order variable X ∈ dom(ρ).

Parametric expressions, formulæ and contexts are defined as before. Every closed parametric
formula A[ρ] is interpreted as a saturated set JA[ρ]K ∈ SAT that is defined by the expected
equations

JX(e1, . . . , ek)[ρ]K = ρ(X)(Val(e1[ρ]), . . . ,Val(ek[ρ]))

Jnull(e)[ρ]K =

{
Λ if Val(e[ρ]) = 0

∅ if Val(e[ρ]) 6= 0

Jnat(e)[ρ]K = {t ∈ Λ : t ≻∗
w sn0, where n = Val(e[ρ])}

J(A⇒ B)[ρ]K = {t ∈ Λ : ∀u∈ JA[ρ]K tu ∈ JB[ρ]K}

J(A ∧B)[ρ]K = {t ∈ Λ : ∃t1 ∈ JA[ρ]K ∃t2 ∈ JB[ρ]K t ≻∗
w 〈t1; t2〉}

J(∀xA)[ρ]K =
⋂

n∈N

JA[ρ;x← n]K J(∀XA)[ρ]K =
⋂

F :Nk→SAT

JA[ρ;X ← F]K

J(∃xA)[ρ]K =
⋃

n∈N

JA[ρ;x← n]K J(∃XA)[ρ]K =
⋃

F :Nk→SAT

JA[ρ;X ← F]K

In what follows, we shall write t
NJ A[ρ] for t ∈ JA[ρ]K.

Lemma 7.7. If A and A′ are two formulæ of HA2 such that A ∼= A′, then for all valuations ρ
closing A and A′ we have JA[ρ]K = JA′[ρ]K.

7.5. Adequacy. Given a substitution σ and a closed parametric context Γ[ρ], we write
σ
NJ Γ[ρ] when dom(Γ) ⊆ dom(σ) and σ(x)
NJ A[ρ] for all (x : A) ∈ Γ. We say that:

• A judgment Γ ⊢NJ t : A is sound when for all valuations ρ and for all substitutions σ
such that σ
NJ Γ[ρ], we have t[σ]
NJ A[ρ].

36 ALEXANDRE MIQUEL

• An inference rule P1···Pn

C (where P1, . . . , Pn and C are typing judgments) is sound when
the soundness of its premises P1, . . . , Pn (in the above sense) implies the soundness of its
conclusion C.

Proposition 7.8 (Adequacy). The typing rules of Fig. 5 are sound.

From this result, we immediately get:

Proposition 7.9 (Witness property). If ⊢NJ t : ∃Nxnull(f(x)), then there are a number
n ∈ N and a closed term u such that f(n) = 0 and t ≻∗

w 〈s
n0;u〉.

Proof. From the definition of the denotation of the formula ∃Nxnull(f(x)) ≡ ∃x (nat(x) ∧
null(f(x))) in the realizability model, we know that there are a number n ∈ N and a term
u ∈ Λ such that t ≻∗

w 〈s
n0;u〉 and u ∈ Jnull(f(n))K. Which means that the denotation

Jnull(f(n))K is inhabited, so that f(n) = 0 (by definition of the interpretation of the predi-
cate null).

8. The negative translation

8.1. Translating formulæ. We now define a negative translation of the formulæ of PA2+

(Fig. 1 and 3) into formulæ of HA2 (Fig. 5). We do not consider the usual double negation
translation, but Streicher and Oliva’s negative translation [25], that is designed to mimic
Krivine’s realizability in intuitionistic logic. Technically, this translation is parameterized
by a fixed formula R (of HA2) that is intended to represent the pole ⊥⊥. In what follows,
we write ¬RA as a shorthand for A⇒ R.

Every formula A of PA2+ is translated as two formulæ of HA2, written A¬¬ and A⊥.
Intuitively, the intuitionistic formula A⊥ represents the type of stacks facing a classical
proof of A; it is mainly built using the connective ∧ (representing the operation of consing)
and from the two primitive forms of existential quantifications in HA2 (corresponding to
universal quantification from the point of view of stacks). The intuitionistic formula A¬¬—
that represents the type of classical proofs of A—is uniformly defined by A¬¬ ≡ ¬RA

⊥.
Formally:

Definition 8.1 (Definition of the negative translation). The formula A⊥ is defined by
induction on A by the equations

(X(e1, . . . , ek))
⊥ ≡ X(e1, . . . , ek) (null(e))⊥ ≡ null(neg(e))

(A⇒ B)⊥ ≡ A¬¬ ∧B⊥ (∀xA)⊥ ≡ ∃xA⊥

({e} ⇒ B)⊥ ≡ nat(e) ∧B⊥ (∀X A)⊥ ≡ ∃X A⊥

(using the unary function ‘neg’ defined in section 2.1), whereas the formula A¬¬ is defined
as A¬¬ ≡ ¬RA

⊥ ≡ A⊥ ⇒ R.

Remark 8.2. Notice that through this translation, we have

(∀v A(v))¬¬ ≡ ∃v A(v)⊥ ⇒ R ∼= ∀v (A(v)⊥ ⇒ R) ≡ ∀v (A(v)¬¬) ,

using the specific commutation rules of HA2. These conversions are crucial for the transla-
tion of the introduction and elimination rules of first- and second-order universal quantifi-
cations in the proof of Prop. 8.6.

We first check that the translations A 7→ A⊥ and A 7→ A¬¬ are substitutive:

EXISTENTIAL WITNESS EXTRACTION 37

Lemma 8.3 (Substitutivity). For all arithmetic expressions e and for all formulæ A and B
of PA2+:

(1) (A{x := e})⊥ ≡ A⊥{x := e}
(2) (A{x := e})¬¬ ≡ A¬¬{x := e}
(3) (A{X(x1, . . . , xk) := B})⊥ ≡ A⊥{X(x1, . . . , xk) := B⊥}
(4) (A{X(x1, . . . , xk) := B})¬¬ ≡ A¬¬{X(x1, . . . , xk) := B⊥}

Proof. Item 1 is proved by induction on A, and item 2 immediately follows from item 1
(since A¬¬ ≡ A⊥ ⇒ R). The same for item 3 and item 4.

It is a simple exercise to check that:

Lemma 8.4. If A ∼= A′ (PA2+), then A⊥ ∼= A′⊥ and A¬¬ ∼= A′¬¬ (HA2).

Proof. This is obvious for the defining equations of function symbols (that are the same in
both systems) since the translation does not affect arithmetic expressions. We only have to
check that

(null(s(e)))⊥ ≡ null(neg(s(e))) ∼= null(0) ∼= ∃ZZ ≡ (∀ZZ)⊥ ≡ (⊥)⊥ .

The rest of the proof proceeds by a straightforward induction.

We finally extend the translation A 7→ A¬¬ to a translation Γ 7→ Γ¬¬ that transforms
any context Γ of PA2+ into a context Γ¬¬ of HA2. This translation is defined by induction
on the length of Γ as follows:

∅¬¬ ≡ ∅
(Γ, x : A)¬¬ ≡ Γ¬¬, x : A¬¬

(Γ, x : {e})¬¬ ≡ Γ¬¬, x : nat(e) .

8.2. CPS-translating terms and stacks. To define the translation of proof-terms, we
introduce the convenient shorthand

let 〈x; y〉 = u in t ≡ (λxy . t) (fst u) (snd u) (‘destructing let’)

We first define a translation t 7→ t∗ from proof-terms of PA2+ (Fig. 1 and 3) into proof-terms
terms of HA2 (Fig. 5). We will later extend this translation to continuation constants kπ
and stacks. Formally:

Definition 8.5 (Translation of proof-terms). We associate to every proof-term of PA2+ a
proof-term t∗ of HA2 that is inductively defined by:

x∗ ≡ x
(tu)∗ ≡ λk . t∗ 〈u∗; k〉

(λx . t)∗ ≡ λk . let 〈x; k′〉 = k in t∗ k′

(cc)∗ ≡ λk . let 〈x; k′〉 = k in x 〈(λk′′ . let 〈y; 〉 = k′′ in y k′); k′〉

(n̂)∗ ≡ sn 0

(s)∗ ≡ λk . let 〈x; k′〉 = k in
let 〈y; k′′〉 = k′ in y 〈sx; k′′〉

(rec)∗ ≡ λk . let 〈z0; k
′〉 = k in

let 〈z1; k
′′〉 = k′ in

let 〈x; k′′′〉 = k′′ in rec z0 (λx
′yk0 . z1 〈x

′; 〈λk1 . y k1; k0〉〉)x k
′′′

38 ALEXANDRE MIQUEL

Notice how the destructing let is used to mimic the destruction of the stack represented
by the continuation variable k. Also note that the translation of the constant n̂ does not
start with a continuation abstraction λk . . ., which reflects the fact that this construct is
not intended to appear in head position.

We can now prove the following:

Proposition 8.6 (Correctness w.r.t. typing). If Γ ⊢NK t : A in PA2+, then Γ¬¬ ⊢NJ t
∗ : A¬¬

(in the sense of Fig. 5).

Proof. By induction on the derivation, distinguishing cases according to the last applied
rule. We first treat the cases of the rules of Fig. 1.

• Axiom.I.mmediate, since x∗ ≡ x.
• Conversion. Immediately follows from Lemma 8.4.
• ⇒-intro. The desired judgment comes from the following derivation:

.... (IH)

(Γ, x : A)¬¬ ⊢NJ t∗ : B¬¬

Γ¬¬, k : A¬¬ ∧B⊥, x : A¬¬, k′ : B⊥ ⊢NJ t∗ : B⊥ ⇒ R

Γ¬¬, k : A¬¬ ∧B⊥, x : A¬¬, k′ : B⊥ ⊢NJ t∗ k′ : R

Γ¬¬, k : A¬¬ ∧ B⊥ ⊢NJ let 〈x; k′〉 = k in t∗ k′ : R

Γ¬¬ ⊢NJ λk . let 〈x;k′〉 = k in t∗ k′

︸ ︷︷ ︸

(λx . t)∗

: (A ⇒ B)¬¬

(In the derivation above, we omit obvious branches and indicate uses of the admissible
rule of weakening with a double bar.)
• ⇒-elim. The desired judgment comes from the following derivation:

.... (IH)

Γ¬¬ ⊢NJ t∗ : (A ⇒ B)¬¬

Γ¬¬, k : B⊥ ⊢NJ t∗ : A¬¬ ∧B⊥ ⇒ R

.... (IH)

Γ¬¬ ⊢NJ u∗ : A¬¬

Γ¬¬, k : B⊥ ⊢NJ u∗ : A¬¬

Γ¬¬, k : B⊥ ⊢NJ 〈u∗; k〉 : A¬¬ ∧B⊥

Γ¬¬, k : B⊥ ⊢NJ t∗ 〈u∗; k〉 : R

Γ¬¬ ⊢NJ λk . t∗ 〈u∗; k〉
︸ ︷︷ ︸

(tu)∗

: B¬¬

• ∀-intro (1st order). The desired judgment comes from the derivation
.... (IH)

Γ¬¬ ⊢NJ t∗ : A¬¬

Γ¬¬ ⊢NJ t∗ : ∀x (A¬¬)

Γ¬¬ ⊢NJ t∗ : (∀xA)¬¬ (Remark 8.2)

• ∀-elim (1st order). The desired judgment comes from the derivation
.... (IH)

Γ¬¬ ⊢NJ t∗ : (∀xA)¬¬

Γ¬¬ ⊢NJ t∗ : ∀x (A¬¬)
(Remark 8.2)

Γ¬¬ ⊢NJ t∗ : A¬¬{x := e}

Γ¬¬ ⊢NJ t∗ : (A{x := e})¬¬ (Lemma 8.3)

EXISTENTIAL WITNESS EXTRACTION 39

• ∀-intro (2nd order). The desired judgment comes from the derivation
.... (IH)

Γ¬¬ ⊢NJ t∗ : A¬¬

Γ¬¬ ⊢NJ t∗ : ∀X (A¬¬)

Γ¬¬ ⊢NJ t∗ : (∀XA)¬¬ (Remark 8.2)

• ∀-elim (2nd order). The desired judgment comes from the derivation
.... (IH)

Γ¬¬ ⊢NJ t∗ : (∀X A)¬¬

Γ¬¬ ⊢NJ t∗ : ∀X (A¬¬)
(Remark 8.2)

Γ¬¬ ⊢NJ t∗ : A¬¬{X(x1, . . . , xk) := B⊥}

Γ¬¬ ⊢NJ t∗ : (AX(x1, . . . , xk) := B})¬¬ (Lemma 8.3)

• Peirce’s law. Let us use the shorthand uk′ ≡ λk′′ . let 〈y; 〉 = k′′ in y k′. The desired
judgment comes from the derivation

k′ : A⊥, k′′ : A¬¬ ∧B⊥, y : A¬¬ ⊢NJ y k′ : R

k′ : A⊥, k′′ : A¬¬ ∧B⊥ ⊢NJ let 〈y; 〉 = k′′ in y k′ : R

k′ : A⊥ ⊢NJ λk′′ . let 〈y; 〉 = k′′ in y k′ : (A ⇒ B)¬¬

x : (A ⇒ B)¬¬ ∧A⊥ ⇒ R, k′ : A⊥ ⊢NJ uk′ : (A ⇒ B)¬¬

x : (A ⇒ B)¬¬ ∧A⊥ ⇒ R, k′ : A⊥ ⊢NJ 〈uk′ ; k′〉 : (A ⇒ B)¬¬ ∧ A⊥

x : (A ⇒ B)¬¬ ∧A⊥ ⇒ R, k′ : A⊥ ⊢NJ x 〈uk′ ; k′〉 : R

k : ((A ⇒ B) ⇒ A)¬¬ ∧A⊥, x : ((A ⇒ B) ⇒ A)¬¬, k′ : A⊥ ⊢NJ x 〈uk′ ; k′〉 : R

k : ((A ⇒ B) ⇒ A)¬¬ ∧A⊥ ⊢NJ let 〈x;k′〉 = k in x 〈uk′ ; k′〉 : R

⊢NJ λk . let 〈x; k′〉 = k in x 〈uk′ ; k′〉 : (((A ⇒ B) ⇒ A) ⇒ A)¬¬

Γ¬¬ ⊢NJ λk . let 〈x; k′〉 = k in x 〈uk′ ; k′〉
︸ ︷︷ ︸

cc
∗

: (((A ⇒ B) ⇒ A) ⇒ A)¬¬

Let us now treat the rules of Fig. 3.
• { } ⇒-intro. The desired judgment comes from the derivation:

.... (IH)

(Γ, x : {e})¬¬ ⊢NJ t∗ : B¬¬

Γ¬¬, k : nat(e) ∧B⊥, x : nat(e), k′ : B⊥ ⊢NJ t∗ : B⊥ ⇒ R

Γ¬¬, k : nat(e) ∧B⊥, x : nat(e), k′ : B⊥ ⊢NJ t∗ k′ : R

Γ¬¬, k : nat(e) ∧B⊥ ⊢NJ let 〈x; k′〉 = k in t∗ k′ : R

Γ¬¬ ⊢NJ λk . let 〈x; k′〉 = k in t∗ k′

︸ ︷︷ ︸

(λx . t)∗

: ({e} ⇒ B)¬¬

• { } ⇒-elim-1. The desired judgment comes from the derivation:
.... (IH)

Γ¬¬ ⊢NJ t∗ : ({e} ⇒ B)¬¬

Γ¬¬, k : B⊥ ⊢NJ t∗ : nat(e) ∧ B⊥ ⇒ R

Γ¬¬, k : B⊥ ⊢NJ x : nat(e)

Γ¬¬, k : B⊥ ⊢NJ 〈x;k〉 : nat(e) ∧B⊥

Γ¬¬, k : B⊥ ⊢NJ t∗ 〈x; k〉 : R

Γ¬¬ ⊢NJ λk . t∗ 〈x; k〉
︸ ︷︷ ︸

(t x)∗

: B¬¬

40 ALEXANDRE MIQUEL

• { } ⇒-elim-2. The desired judgment comes from the derivation:
.... (IH)

Γ¬¬ ⊢NJ t∗ : ({n} ⇒ B)¬¬

Γ¬¬, k : B⊥ ⊢NJ t∗ : nat(n) ∧ B⊥ ⇒ R

Γ¬¬, k : B⊥ ⊢NJ s
n
0 : nat(n)

Γ¬¬, k : B⊥ ⊢NJ 〈sn 0; k〉 : nat(n) ∧ B⊥

Γ¬¬, k : B⊥ ⊢NJ t∗ 〈sn0; k〉 : R

Γ¬¬ ⊢NJ λk . t∗ 〈sn0; k〉
︸ ︷︷ ︸

(t n̂)∗

: B¬¬

The cases of s and rec are left to the reader.

8.2.1. Extending the translation to the full λc-calculus. We now extend the translation
t 7→ t∗ defined on the proof-terms of PA2+ into a full translation of the λc-calculus. For
that, we close the set of instructions K by letting

K = {cc; s; rec; stop} ∪ {n̂ : n ∈ N} ,

and we close the relation of evaluation ≻ by defining it as the union of the rules (Grab),
(Push), (Call/cc), (Resume), (Succ), (Rec-0) and (Rec-S).

Formally, we define by mutual induction on t and π two translations t 7→ t∗ (where t
now ranges over all terms of the λc-calculus) and π 7→ π∗ by adding to the equations of
Def. 8.5 the following:

(kπ)
∗ ≡ λk . let 〈x; 〉 = k in xπ∗

stop∗ ≡ λz . z
(⋄)∗ ≡ 0

(t · π)∗ ≡ 〈t∗; π∗〉

Stacks are translated here in the obvious way, that is: as finite lists. Note that the bottom
of the stack ⋄ could be translated by any closed term as well: it has no evaluation rule, and
it is not involved in the type system of PA2. On the other hand, we translate stop as the
identity term, and this choice will be important in the analysis of section 8.4.

Finally, processes are translated by letting:

(t ⋆ π)∗ ≡ t∗ π∗ .

8.3. Simulation of evaluation by weak reduction. The expected property would be
that each evaluation step t1 ⋆π2 ≻ t2 ⋆π2 in λc corresponds to one or several weak reduction
steps t∗1 π

∗
1 ≻

+
w t∗2 π

∗
2 through the CPS-translation. Although this works for almost all the

evaluation rules (application, abstraction, call/cc, continuation and successor), the property
does not hold for the rule (Rec-s) so that we need to refine a little bit more.

Proposition 8.7 (One step simulation). If t1 ⋆ π1 ≻ t2 ⋆ π2 (one step evaluation in λc),
then t∗1 π

∗
1 ≻

+
w t∗2 u (weak reduction) for some term u =i π∗

2. Moreover, for all rules but
(Succ-s), we have u ≡ π∗

2.

Proof. We distinguish cases according to the applied rule. The cases of abstraction, appli-
cation, call/cc and continuation constants are easy—they do not involve inner conversion
steps—and standard [25], so that we do not treat them here. Let us consider the evaluation
rules dealing with primitive numerals.

EXISTENTIAL WITNESS EXTRACTION 41

• Rule (Succ) We have:

(s ⋆ n̂ · u · π)∗ ≡ s∗ 〈sn 0; 〈u∗;π∗〉〉

≻∗
w u∗ 〈sn+1 0; π∗〉 ≡ (u ⋆ n̂+ 1 · π)∗

• Rule (Rec-0) We have:

(rec ⋆ u0 · u1 · 0̂ · π)
∗ ≡ rec∗ 〈u∗0; 〈u

∗
1; 〈0;π

∗〉〉〉
≻∗
w rec u∗0 T [u

∗
1] 0π

∗

≻∗
w u∗0 π

∗ ≡ (u0 ⋆ π)
∗ ,

writing T [z] ≡ λx′yk0 . z 〈x
′; 〈λk1 . y k1; k0〉〉.

• Rule (Rec-s) We have:

(rec ⋆ u0 · u1 · n̂+ 1 · π)∗ ≡ rec∗ 〈u∗0; 〈u
∗
1; 〈s

n+1 0;π∗〉〉〉
≻∗
w rec u∗0 T [u

∗
1] (s

n+1 0)π∗

≻∗
w u∗1 〈s

n 0; 〈λk1 . rec u
∗
0 T [u

∗
1] (s

n 0) k1; π∗〉〉

Moreover:

u∗1 〈s
n 0; 〈λk1 . rec u

∗
0 T [u

∗
1] (s

n 0) k1; π∗〉〉
=i u∗1 〈s

n 0; 〈λk1 . (rec u0 u1 n̂)
∗ k1; π∗〉〉

=i u∗1 〈s
n 0; 〈(rec u0 u1 n̂)

∗; π∗〉〉 ≡ (u1 ⋆ n̂ · (rec u0 u1 n̂) · π)
∗

(In the second last line, we mimic η-reduction with an inner reduction step, using the
fact that the term (rec u0 u1 n̂)

∗ is an abstraction).

Corollary 8.8 (Grand simulation). If t1 ⋆ π1 ≻
∗ t2 ⋆ π2 (evaluation in λc), then t∗1 π

∗
1 ≻

∗
w u

(weak reduction) for some term u =i t
∗
2 π

∗
2.

Proof. By induction on the number of evaluation steps, using Prop. 8.7 and Corollary 7.5
for the induction case.

8.4. The negative interpretation of classical witness extraction. Let us now rein-
terpret the classical witness extraction method described in section 5.2 through the negative
translation defined above.

For that, let us consider a closed classical proof term t0 such that

⊢NK t0 : ∃Nx f(x) = 0

(where ∃Nx f(x) = 0 ≡ ∀Z (∀x ({x} ⇒ f(x) = 0 ⇒ Z) ⇒ Z)), and let us analyze the
behavior of the process

p0 ≡ t0 ⋆ (λxy . y (stopx)) · ⋄

that performs witness extraction (by Prop. 5.3) through the negative translation of sec-
tion 8.1 and the CPS-translation of section 8.2. (We can end p0 with the empty stack from
the results of section 5.3.)

In the sequel, we write u ≡ λxy . y (stop x).

42 ALEXANDRE MIQUEL

8.4.1. Typing the process (p0)
∗. From Prop. 8.6 we get

⊢NJ t∗0 : ∀Y
(
∀x

(
nat(x) ∧ (f(x) = 0)¬¬ ∧ Y ⇒ R

)
∧ Y ⇒ R

)

(writing conjunction right-associative), so that by instantiating Y with ⊤:

⊢NJ t∗0 : ∀x
(
nat(x) ∧ (f(x) = 0)¬¬ ∧ ⊤ ⇒ R

)
∧ ⊤ ⇒ R .

Let us now fix the pole R by letting R ≡ ∃Nxnull(f(x)). Since stop∗ ≡ λz . z, we can give
it the type

⊢NJ stop∗ : ∀x
(
nat(x) ∧ null(f(x))⇒ R

)
,

which is precisely the introduction rule of numeric existential quantification. (Remember
that R ≡ ∃Nxnull(f(x)) ≡ ∃x (nat(x) ∧ null(f(x))).)

Thanks to this, we can typecheck through the CPS-translation all the constituents of
the term u. We first have

x : nat(x) ⊢NJ (stopx)∗ : null(f(x))⇒ R .

Moreover:
y : (f(x) = 0)¬¬ ⊢NJ y : ∀Z

((
Z(f(x))⇒ R

)
∧ Z(0)⇒ R

)

(using the definition of Leibniz equality, the axiom rule and the conversion rule), so that by
instantiating Z(x) with null(x) we get

y : (f(x) = 0)¬¬ ⊢NJ y :
(
null(f(x))⇒ R

)
∧ ⊤ ⇒ R

We thus have
x : nat(x), y : (f(x) = 0)¬¬ ⊢NJ (y (stop x))∗ : ⊤ ⇒ R

and finally:
⊢NJ u∗ : ∀x

(
nat(x) ∧ (f(x) = 0)¬¬ ∧ ⊤ ⇒ R

)

We can now typecheck the term (u · ⋄)∗

⊢NJ (u · ⋄)∗ ≡ 〈u∗; 0〉 :
(
nat(x) ∧ (f(x) = 0)¬¬ ∧ ⊤ ⇒ R

)
∧ ⊤ ,

so that ⊢NJ p∗0 ≡ t∗0 〈u
∗; 0〉 : R.

This shows that the CPS-translation of the process described in Prop. 5.3 is actually
an intuitionistic proof (in HA2) of the formula R ≡ ∃Nxnull(f(x)). From Prop. 7.9, we
thus know that the term (p0)

∗ weakly reduces to a pair whose first component is the desired
witness.

Through the CPS-translation defined in section 8.2, the extraction method described in
section 5.2 thus amounts to transform a classical proof-term t0 of the formula ∃Nx f(x) = 0
into an intuitionistic proof-term t∗0〈u

∗; 0〉 of the same formula (up to the coding details of nu-
meric existential quantification and of the predicate expressing the nullity of its argument).
Here we can see the essential ingredients of Friedman’s transformation:

• The use of a negative translation to transform a classical proof t0 of a Σ0
1-formula into an

intuitionistic proof t∗0 of a more complex formula.
• The choice of the return formula R (the pole), that is precisely defined as the formula we
want to prove intuitionistically.
• The key use of the introduction rule of numeric existential quantification (here via the
term stop∗ ≡ λz . z) to return the desired result.

EXISTENTIAL WITNESS EXTRACTION 43

9. Conclusion

9.1. From BHK semantics to Krivine’s semantics. Friedman’s extraction method
consists to transform a classical proof of an existential formula into an intuitionistic proof of
the same formula. Its main drawback is that the underlying CPS-transformation makes the
resulting program much bigger than the originating proof, and more difficult to understand.

For this reason, much attention has been devoted to the optimization of the extracted
code. The typical approach is refined program extraction [3], that relies on a clever analysis
of formulæ in order to minimize the insertion of negations during the translation. In practice,
such an approach gives much better programs than Friedman’s method, typically when
considering examples such as the one we treated in section 6. However, the approach of
refined program extraction ultimately remains intuitionistic, since the extracted program
is built and analyzed according to the traditional Brouwer-Heyting-Kolmogorov (BHK)
semantics, using the tools of intuitionistic realizability (i.e. the mathematical expression of
BHK semantics).

In this paper, we have proposed another approach, which is to extract a program from a
classical proof directly, by interpreting classical reasoning principles with control operators.
The price to pay is that the computational meaning of the extracted program cannot be
analyzed within the traditional BHK semantics anymore. For that, we proposed to use
Krivine’s theory of classical realizability, that constitutes a genuine alternative to BHK
semantics for classical logic.

9.1.1. A negative semantics for classical programs. It has already been pointed out [25]
that Friedman’s negative translation is hard-wired in Krivine’s semantics. Taking the no-
tations of section 8, we get the correspondence:

Krivine’s semantics Friedman’s translation
The pole ⊥⊥ The formula R

Falsity value ‖A‖ Formula A⊥

Truth value |A| = ‖A‖⊥⊥ Formula A¬¬ ≡ A⊥ ⇒ R
Classical proof-term t CPS-translated term t∗

In this paper, we have shown that the correspondence can be lifted up at the level of the
witness extraction methods, in the sense that the natural extraction method that comes
with Krivine’s machinery (section 5.2) is, up to a CPS-translation, the same as Friedman’s
(provided we use Streicher and Oliva’s negative translation instead of the traditional not-not
translation).

However, Krivine’s semantics is more subtle than the composition of a negative trans-
lation with the standard BHK interpretation, since the way it is formulated makes the
negative translation implicit. Thanks to this, it is possible to reason about classical pro-
grams directly. We illustrated this point with the witness extraction procedures presented
in section 5 and with the construction by hand of a universal realizer of the minimum
principle in section 6.

It should also be noted that Krivine’s semantics is compatible with the usual deduction
rules of intuitionistic logic, as soon as they are formulated in FA2 style [14]. In particular,
the typing rules of Fig. 1 but the last one (Peirce’s law) are the usual Curry-style typing
rules of intuitionistic minimal logic, formulated the usual way. Any intuitionistic proof-
term that is well typed in FA2 is not only correct w.r.t. the usual intuitionistic realizability

44 ALEXANDRE MIQUEL

semantics of FA2 [14], but it is also correct according to Krivine’s semantics. The latter
departs from the traditional BHK semantics only when classical reasoning is involved.

9.2. Executing extracted programs. In our approach, extracted programs are not or-
dinary λ-terms, but λ-terms with control operators that need to be evaluated according to
a strict call-by-name discipline. Specific tools are thus required to execute them13.

The main implementation difficulty comes from stacks, whose machine representation
has to be carefully designed in order to avoid unnecessary duplications when call/cc is
executed. Fortunately, control operators have been introduced in programming languages
long before the discovery of their connection with classical logic, and we can benefit from
the many implementation strategies that have been proposed since. To illustrate this, we
shall discuss two of them. (For a survey on the different ways to implement control, see [4].)

9.2.1. Stacks as chained lists. The simplest way to implement stacks is to represent them
as heap-allocated chained lists of closures. With this representation, call/cc comes for free
since it simply consists to make a copy of the current stack pointer. The main advantage
of this method is that it naturally maximizes the possibility of sharing large final segments
of stacks. Its main drawback is that each Push operation requires the allocation of a small
block on the heap, which block is subject to later garbage collection. Moreover, the resulting
fragmentation of the stack may considerably degrade cache performance.

However, the simplicity of this approach makes it well-suited for a small interpreter
intended to quickly test small examples. This is this design that is currently used in the
jivaro machine [23].

9.2.2. The stack/heap model. In the perspective of implementing a real compiler of λc-
programs, a more realistic representation of stacks is given by the stack/heap model [4],
where the logical stack is physically split in two parts:

• A stack cache, that consists of a mutable array of closures representing the topmost part
of the logical stack. This stack cache lies in a fixed zone of the memory, and works almost
as the ordinary system stack.
• A far stack, that represents the rest of the logical stack in the heap as a chained list of
non mutable blocks containing stack chunks. As for all the other heap-allocated blocks,
the stack chunks of the far stack may be shared and are subject to garbage collection.

The underlying idea of the stack/heap approach is that during execution, almost all the
operations on the logical stack take place in the stack cache, the manipulation of the far
stack being exceptional. Pushing an argument onto the stack proceeds in the stack cache
as usual, as well as grabbing the topmost element. The difference is that in the latter case,
the cache may underflow, in which case we need to refill the cache by copying the contents
of the first block of the far stack. (After copying, the far stack pointer should point to the
next block). With this approach, call/cc only needs to make a copy of the stack cache into
a newly heap-allocated block. The pointer to this newly allocated block then becomes the
corresponding continuation constant as illustrated in Fig. 6. Restoring a formerly saved

13We cannot directly use the interpreters and compilers dedicated to popular functional programming
languages such as LISP, Caml, SML or Haskell, since these tools implement either the call-by-value discipline
or the call-by-need discipline.

EXISTENTIAL WITNESS EXTRACTION 45

t u1 u2 u3 k u1 u2 u3

sp

u1 u2 u3

sp

stack cachestack cache

Before executing call/cc After executing call/cc

u4 u5 u6 u7

u8 u9 · · ·

u4 u5 u6 u7

u8 u9 · · ·

h

e

a

p

h

e

a

p

Figure 6: Execution of call/cc in the stack/heap model

stack thus consists to clear the stack cache and to let the far stack pointer point to the
first continuation block. (The stack cache will then be automatically refilled with the next
Grab operation.)

The interest of this approach is that call/cc only needs to copy the part of the stack that
has been used since the last execution of a control operator. The authors of [4] consider that
this approach is a zero overhead approach, in the sense that it adds a negligible overhead to
the most frequent operations Push and Grab, compared with the traditional single-chunk
stack model.

9.2.3. On the frequency of control in classical proofs. The above discussion about im-
plementation issues raises a strong argument in favor of using λc for interpreting classical
proofs. A quick look at the classical proofs of well-known theorems shows that classi-
cal reasoning is definitely not used with the same frequency as intuitionistic reasoning.
Purely intuitionistic reasoning (introduction/elimination of connectives and quantifiers, in-
duction. . .) appears everywhere, whereas classical reasoning principles are only used at
some few strategic places. In some sense, one can consider that actual mathematics are
more quasi-intuitionistic than really classical. The execution trace (Fig. 4 p. 30) of the
example of section 6 makes the comparison more dramatic, since it shows that intuitionistic
operations are executed several hundreds of times while classical operations are executed a
dozen of times (call/cc being invoked only once).

These figures suggest that a good execution policy for classical proofs should concen-
trate all the execution overhead induced by the presence of classical reasoning to the classical
operations themselves (that are the less frequent ones) while keeping ordinary intuitionis-
tic operations (the most frequent ones) as fast as possible. But this is precisely what the
λc-calculus does, especially when executed in the stack/heap model described above. On
the other hand, using a negative translation—even optimized—adds a non negligible exe-
cution overhead to all the intuitionistic operations of the proof, just to remove the need of
introducing specific operators for classical reasoning.

9.3. Classical extraction in Coq. The ideas presented in this paper have been imple-
mented in a classical extraction module for Coq developed by the author [22]. On the
theoretical side, this implementation is based on an extension of Krivine’s classical realiz-
ability model to the calculus of constructions with universes [21]. This module permits the
extraction of a λc-term from any classical proof formalized in Coq—provided classical logic
is only allowed in the impredicative sort Prop. It also proposes witness extraction facilities
based on the techniques presented in section 5.

46 ALEXANDRE MIQUEL

This module automatically performs several optimizations in the extracted code. For
instance, Coq unary numerals (as well as the corresponding arithmetic operators) are au-
tomatically translated into the primitive numerals discussed in section 4. Similar optimiza-
tions are introduced to change the representation of other inductively defined data-types
such as ordering. Moreover, the extractor proposes predefined optimized realizers for many
theorems of Coq’s standard library, following the spirit of what we did in section 6 with the
minimum principle. In this way, the user can formalize classical proofs using the tools pro-
vided by Coq’s standard library while benefiting from many optimizations that are allowed
by the theory of classical realizability.

However, these hand-made optimized realizers are provided only for a little fragment
of Coq’s standard library, and there is currently no general mechanism to generate them on
the fly. Future work includes the design of a general theory for realizer optimization in the
framework of classical realizability, following the spirit of refined program extraction [3].

References

[1] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Inf. Com-
put., 125(2):103–117, 1996.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and
The Foundations of Mathematics. North-Holland, 1984.

[3] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extraction form classical proofs.
Annals of Pure and Applied Logic, 114(1-3):3–25, 2002.

[4] W. D. Clinger, A. Hartheimer, and E. Ost. Implementation strategies for first-class continuations.
Higher-Order and Symbolic Computation, 12(1):7–45, 1999.

[5] P.-L. Curien and H. Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.
[6] H. Friedman. Classically and intuitionistically provably recursive functions. Higher Set Theory, 669:21–

28, 1978.
[7] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.

[8] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica,
12:280–287, 1958.

[9] T. Griffin. A formulae-as-types notion of control. In Principles Of Programming Languages (POPL’90),
pages 47–58, 1990.

[10] M. Guillermo. Jeux de réalisabilité en arithmétique classique. PhD thesis, Université Paris 7, 2008.
[11] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer,

2008.
[12] G. Kreisel. On the interpretation of non-finitist proofs, part I. Journal of Symbolic Logic, 16:241–267,

1951.
[13] G. Kreisel. On the interpretation of non-finitist proofs, part II: Interpretation of number theory. Journal

of Symbolic Logic, 17:43–58, 1952.
[14] J. L. Krivine. Lambda-calculus, types and models. Masson, 1993.
[15] J.-L. Krivine. A general storage theorem for integers in call-by-name lambda-calculus. Th. Comp. Sc.,

129:79–94, 1994.
[16] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch. Math. Log.,

40(3):189–205, 2001.
[17] J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc., 308:259–276, 2003.
[18] J.-L. Krivine. Structures de réalisabilité, RAM et ultrafiltre sur N. Manuscript, available on the author’s

web page, 2008.
[19] J.-L. Krivine. Realizability in classical logic. In interactive models of computation and program be-

haviour. Panoramas et synthèses, 27, 2009.
[20] P. Letouzey. A new extraction for Coq. In H. Geuvers and F. Wiedijk, editors, TYPES, volume 2646

of Lecture Notes in Computer Science, pages 200–219. Springer, 2002.

EXISTENTIAL WITNESS EXTRACTION 47

[21] A. Miquel. Classical program extraction in the calculus of constructions. In J. Duparc and T. A. Hen-
zinger, editors, CSL, volume 4646 of Lecture Notes in Computer Science, pages 313–327. Springer,
2007.

[22] A. Miquel. The classical extraction module for Coq.
http://perso.ens-lyon.fr/alexandre.miquel/kextraction/, 2009.

[23] A. Miquel. The Jivaro head reduction machine for the λc-calculus.
http://perso.ens-lyon.fr/alexandre.miquel/jivaro/, 2009.

[24] A. Miquel. Relating classical realizability and negative translation for existential witness extraction.
In P.-L. Curien, editor, TLCA, volume 5608 of Lecture Notes in Computer Science, pages 188–202.
Springer, 2009.

[25] P. Oliva and T. Streicher. On Krivine’s realizability interpretation of classical second-order arithmetic.
Fundam. Inform., 84(2):207–220, 2008.

[26] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J. Symb. Log.,
62(4):1461–1479, 1997.

[27] H. Schwichtenberg. Minimal logic for computable functionals. Technical report, Mathematisches Institut
der Universität München, 2005.

[28] M. Takahashi. Parallel reductions in lambda-calculus. J. Symb. Comput., 7(2):113–123, 1989.
[29] The Coq Development Team. The coq proof assistant reference manual – version v8.2. Technical report,

INRIA, 2009.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Friedman's method
	1.2. Krivine's classical realizability
	1.3. Outline of the paper

	2. Classical second-order arithmetic (PA2)
	2.1. The language of second-order arithmetic
	2.2. The congruences e.5-.5.5-.5.5-.5.5-.5e' and A.5-.5.5-.5.5-.5.5-.5A'
	2.3. A type system for classical second-order arithmetic
	2.4. Induction

	3. Classical realizability
	3.1. A calculus of realizers
	3.2. The realizability interpretation
	3.3. The full standard model of PA2 as a degenerate case
	3.4. Adequacy

	4. Primitive natural numbers
	4.1. Extending the language of realizers
	4.2. Extending the realizability interpretation
	4.3. Extending the type system

	5. Witness extraction in classical realizability
	5.1. The failure of the naive method
	5.2. Extraction in the 01-case
	5.3. Independence of the witness w.r.t. the stack
	5.4. Extraction in the decidable case
	5.5. Existence of functions of conditional refutation
	5.6. The method of the kamikaze

	6. An example based on the minimum principle
	6.1. Notations
	6.2. The functional minimum principle
	6.3. A 01-consequence of the minimum principle
	6.4. Executing c-code

	7. Intuitionistic second-order arithmetic
	7.1. The language of formulæ
	7.2. A type system for intuitionistic second-order arithmetic
	7.3. Weak reduction and inner reduction
	7.4. The intuitionistic realizability model
	7.5. Adequacy

	8. The negative translation
	8.1. Translating formulæ
	8.2. CPS-translating terms and stacks
	8.3. Simulation of evaluation by weak reduction
	8.4. The negative interpretation of classical witness extraction

	9. Conclusion
	9.1. From BHK semantics to Krivine's semantics
	9.2. Executing extracted programs
	9.3. Classical extraction in Coq

	References

