
Logical Methods in Computer Science
Vol. 7 (2:4) 2011, pp. 1–57
www.lmcs-online.org

Submitted Nov. 15, 2009
Published May 4, 2011

A MODULAR TYPE-CHECKING ALGORITHM FOR

TYPE THEORY WITH SINGLETON TYPES AND

PROOF IRRELEVANCE

ANDREAS ABEL a, THIERRY COQUAND b, AND MIGUEL PAGANO c

a Ludwig-Maximilians-Universität München
e-mail address: andreas.abel@ifi.lmu.de

b Göteborg University
e-mail address: coquand@chalmers.se

c Universidad Nacional de Córdoba
e-mail address: pagano@famaf.unc.edu.ar

Abstract. We define a logical framework with singleton types and one universe of small
types. We give the semantics using a PER model; it is used for constructing a normalis-
ation-by-evaluation algorithm. We prove completeness and soundness of the algorithm;
and get as a corollary the injectivity of type constructors. Then we give the definition of
a correct and complete type-checking algorithm for terms in normal form. We extend the
results to proof-irrelevant propositions.

1. Introduction and Related Work

One of the raisons d’être of proof-checkers like Agda [46], Coq [33], and Epigram [40] is
to decide if a given term has some type (either checking for a given type or inferring one);
i.e., if a term corresponds to a proof of a proposition [32]. Hence, the convenience of such
a system is, in part, determined by the types for which the system can check membership.
We extend the decidability of type-checking done in previous works [2, 3] for Martin-Löf
type theories [38, 45] by considering singleton types and proof-irrelevant propositions.

We consider a type theory with a universe, which allows large eliminations, i.e., types
defined by recursion on natural numbers. The universe of small types was introduced
by Martin-Löf [37] for formalising category theory. Martin-Löf presents universes in two
different styles [38]: à la Russell (the one considered here), and à la Tarski.

1998 ACM Subject Classification: F.4.1.
Key words and phrases: type theory, type-checking, normalisation-by-evaluation, singleton types, proof-

irrelevance.
a Supported by INRIA as guest researcher in the PI.R2 team, PPS, Paris, France, from October 2009 to

March 2010.
c Partially supported by CONICET, Argentina.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:4) 2011
c© A. Abel, T. Coquand, and M. Pagano
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. ABEL, T. COQUAND, AND M. PAGANO

Singleton types were introduced by Aspinall [10] in the context of specification lan-
guages. An important use of singletons is as definitions by abbreviations (see [10, 21]);
they were also used to model translucent sums in the formalisation of SML [34]. It is
interesting to consider singleton types because beta-eta phase separation fails: one can-
not do eta-expansion before beta-normalisation of types because the shape of the types at
which to eta-expand is still unknown at this point; and one cannot postpone eta-expansion
after beta-normalisation, because eta-expansion at singleton type can trigger new beta-
reductions. Stone and Harper [54] decide type checking in a logical framework (LF) with
singleton types and subtyping. Yet it is not clear whether their method extends to compu-
tation on the type level. As far as we know, our work is the first where singleton types are
considered together with a universe.

De Bruijn proposed the concept of irrelevance of proofs [18], for reducing the burden
in the formalisation of mathematics. As shown by Werner [56], the use of proof-irrelevance
types together with sigma types is one way to get subset types à la PVS [51] in type-theories
having the eta rule. This style of subset types was also explored by Sozeau [53, Sec. 3.3];
for another presentation of subset types in Martin-Löf type-theory see [50]. Berardi conjec-
tured that (impredicative) type-theory with proof-irrelevance is equivalent to constructive
mathematics [14].

Checking dependent types relies on checking types for equality. To this end, we compute
η-long normal forms using normalisation by evaluation (NbE) [39]. Syntactic expressions
are evaluated into a semantic domain and then reified back to expressions in normal form.
To handle functional and open expressions, the semantic domain has to be equipped with
variables; a major challenge in rigorous treatments of NbE has been the problem to generate
fresh identifiers. Solutions include term families [16], liftable de Bruijn terms [8], or Kripke
semantics [5]. In this work we present a novel formulation of NbE which avoids the problem
completely: reification is split into an η-expansion phase (↓) in the semantics, followed
by a read back function (R) into the syntax which is indexed by the number of already
used variables. This way, a standard PER model is sufficient, and technical difficulties are
avoided.

Outline. In Section 2, we first present λSing, Martin-Löf’s logical framework with one uni-
verse and singleton types, as a generalized algebraic theory [19]. Secondly, we introduce λIrr,
Martin-Löf type theory with natural numbers, sigma types, and proof-irrelevant proposi-
tions. In Section 3, we show some examples using singleton types and proof-irrelevant
types. In Section 4, we present briefly NbE for untyped and simply typed lambda calculi;
in particular we illustrate our novel approach to generate fresh identifiers. In Section 5, we
define the semantics of the type theories by a PER model and prove the soundness of the
inference rules. We use this model to introduce a normalization algorithm nbe, for which
we prove completeness (if t = t′ is derivable, then nbe(t) and nbe(t′) are identical). The
soundness of the algorithm (i.e., t = nbe(t) is derivable) is proven by logical relations in
Section 6. In Section 7, we define a bi-directional algorithm for checking the type of normal
forms and inferring the type of neutral terms. More related work is discussed in Section 8.1.
The Haskell programs corresponding to the NbE, and type-checking algorithms are shown
in the appendices A and B, respectively.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 3

2. The Calculus as a Generalised Algebraic Theory

In this section, we introduce the type theory. In order to show the modularity of our
approach, we present it as two calculi λSing and λIrr: the first one has dependent function
spaces, singleton types, and a universe closed under function spaces and singletons. In the
second calculus we leave out singleton types and we add natural numbers, sigma types,
and proof-irrelevant propositions. It is not clear if singleton types can be combined with
proof-irrelevant propositions without turning the system inconsistent.

We present the calculi using the formalism proposed by Cartmell for generalised alge-
braic theories (GAT) [19]. A GAT consists of sort symbols and operator symbols, each with
a dependent typing, and equations between sort expressions and terms (“operator expres-
sions”). Following Dybjer [24], we are using “informal syntax” where redundant arguments
to operators are left implicit.

2.1. Calculus λSingwith singleton types. We use capital Greek letters (Γ,∆) for vari-
ables ranging over contexts; capital letters from the beginning of the Latin alphabet (A,B)
for variables ranging over types; small Greek letters (δ, ρ, σ) are used for variables denoting
substitutions; and minuscule Latin characters (r, s, t, u, a, b) for variables on terms. Words
in sans face denote constants (e.g., Type, q).

2.1.1. Sorts. The set of sort symbols is {Ctx,→,Type,Term} and their formation rules, in
the sense of Cartmell’s GATs, are:

Ctx is a type
(ctx-sort)

Γ,∆ ∈ Ctx

Γ→ ∆ is a type
(subs-sort)

Γ ∈ Ctx

Type(Γ) is a type
(type-sort)

Γ ∈ Ctx A ∈ Type(Γ)

Term(Γ, A) is a type
(term-sort)

In the following, whenever a rule has a hypothesis A ∈ Type(Γ), then Γ ∈ Ctx shall be a
further, implicit hypothesis. Similarly, σ ∈ Γ → ∆ presupposes Γ ∈ Ctx and ∆ ∈ Ctx, and
t ∈ Term(Γ, A) presupposes A ∈ Type(Γ), which in turn presupposes Γ ∈ Ctx. Note that
judgements of the form Γ ∈ Ctx, A ∈ Type(Γ), t ∈ Term(Γ, A), and σ ∈ Γ→ ∆ correspond
to the more conventional forms Γ `, Γ ` A, Γ ` t : A, and Γ ` σ : ∆, resp. After we have
defined the judgements, we will use the latter, more readable versions.

2.1.2. Operators. The set of operators is quite large and instead of giving it at once, we
define it as the union of the disjoint sets of operators for contexts, substitutions, types, and
terms.

Contexts. There are the usual two operators for constructing contexts: SC = {�, . }.

� ∈ Ctx
(empty-ctx)

Γ ∈ Ctx A ∈ Type(Γ)

Γ.A ∈ Ctx
(ext-ctx)

4 A. ABEL, T. COQUAND, AND M. PAGANO

Substitutions. We have five operators for substitutions, which are the usual operators for
explicit substitutions [1]: SS = {〈〉, (,), id , , p}. Semantically, substitutions σ ∈ Γ →
∆ are sequences of values, one for every variable declaration in ∆. The sequences are
constructed from the empty sequence 〈〉 by sequence extension (σ, t). Substitutions form a
category with identity idΓ and composition σ δ. Finally, we have the first projection p on
sequences.

Γ ∈ Ctx

〈〉 ∈ Γ→ �
(empty-subs)

σ ∈ Γ→ ∆ t ∈ Term(Γ, A σ)

(σ, t) ∈ Γ→ ∆.A
(ext-subs)

Γ ∈ Ctx

idΓ ∈ Γ→ Γ
(id-subs)

δ ∈ Γ→ Θ σ ∈ Θ→ ∆

σ δ ∈ Γ→ ∆
(comp-subs)

A ∈ Type(Γ)

p ∈ Γ.A→ Γ
(fst-subs)

Types. The set of operators for types is ST = {U,Fun , , { } }. U is a universe of small
types à la Russell, which means its elements are directly usable as types (u-el) without
coercion. Besides dependent function types FunAB we have the singleton type {t}A—a
subtype of A containing t as single inhabitant. Types A are closed under substitution Aσ.

Γ ∈ Ctx

U ∈ Type(Γ)
(u-f)

A ∈ Term(Γ,U)

A ∈ Type(Γ)
(u-el)

A ∈ Type(Γ) B ∈ Type(Γ.A)

FunAB ∈ Type(Γ)
(fun-f)

A ∈ Type(Γ) t ∈ Term(Γ, A)

{t}A ∈ Type(Γ)
(sing-f)

A ∈ Type(∆) σ ∈ Γ→ ∆

Aσ ∈ Type(Γ)
(subs-type)

Terms. The set of operators for terms is SE = {Fun , λ , app , , q, { } }. It includes
function space FunAB and singleton {t}A as small-type constructors in U. Lambda terms
with explicit substitutions are obtained via the constructions λt, app t u, q, and t σ. Since
we have used juxtaposition for composition and application of substitutions, we have the
explicit app for term application. Note that q stands for the top (0th) variable, the nth
variable is expressed as q pn.

A ∈ Term(Γ,U) B ∈ Term(Γ.A,U)

FunAB ∈ Term(Γ,U)
(fun-u-i)

t ∈ Term(Γ.A,B)

λt ∈ Term(Γ,FunAB)
(fun-i)

B ∈ Type(Γ.A) t ∈ Term(Γ,FunAB) u ∈ Term(Γ, A)

app t u ∈ Term(Γ, B (idΓ, u))
(fun-el)

A ∈ Type(Γ)

q ∈ Term(Γ.A,A p)
(hyp)

σ ∈ Γ→ ∆ t ∈ Term(∆, A)

t σ ∈ Term(Γ, A σ)
(subs-term)

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 5

A ∈ Term(Γ,U) t ∈ Term(Γ, A)

{t}A ∈ Term(Γ,U)
(sing-u-i)

t ∈ Term(Γ, A)

t ∈ Term(Γ, {t}A)
(sing-i)

a ∈ Term(Γ, A) t ∈ Term(Γ, {a}A)

t ∈ Term(Γ, A)
(sing-el)

2.1.3. Axioms for Equational Theory. In the following, we present the axioms of the equa-
tional theory of λSing. Equality is considered as the congruence closure of these axioms.
Congruence rules, also called derived rules, are generated mechanically for each symbol
from its typing. For instance, rule (subs-type) induces the derived rule

A = B ∈ Type(Γ) γ = δ ∈ ∆→ Γ

Aγ = B δ ∈ Type(∆)
.

Another instance of a derived rule is conversion, it holds because equality between sorts,
such as Term(Γ, A) = Term(Γ, A′):

t ∈ Term(Γ, A) A = A′ ∈ Type(Γ)

t ∈ Term(Γ, A′)

In the following, we present equality axioms without the premises concerning typing, except
in the cases where they cannot be inferred.

Substitutions. The first two equations witness extensionality for the identity substitution,
the next three the composition laws for the category of substitutions. Then there is a law
for the first projection p, and the last two laws show how to propagate a substitution δ into
a tuple.

id� = 〈〉 idΓ.A = (p, q)

id σ = σ σ id = σ

(σ δ) γ = σ (δ γ) p (σ, t) = σ

〈〉 δ = 〈〉 (σ, t) δ = (σ δ, t δ)

Axioms for β and η, propagation and resolution of substitutions. An explicit substitution
(idΓ, r) is created by contracting a β-redex (first law). It is then propagated into the various
term constructions until it can be resolved (last two laws).

app (λt) r = t (idΓ, r) λ(app (t p) q) = t

Uσ = U ({t}A)σ = {t σ}Aσ
(FunAB)σ = Fun (Aσ) (B (σ p, q)) (λt)σ = λ(t (σ p, q))

(app r s)σ = app (r σ) (s σ) (t δ)σ = t (δ σ)

q (σ, t) = t t id = t

6 A. ABEL, T. COQUAND, AND M. PAGANO

Singleton types. All inhabitants of a singleton type are equal (sing-eq-i). We mention the
important derived rule (sing-eq-el) here explicitly.

t, t′ ∈ Term(Γ, {a}A)

t = t′ ∈ Term(Γ, {a}A)
(sing-eq-i)

t = t′ ∈ Term(Γ, {a}A)

t = t′ ∈ Term(Γ, A)
(sing-eq-el)

There is a choice how to express the last two rules; they could be replaced with

t ∈ Term(Γ, {a}A)

t = a ∈ Term(Γ, {a}A)
(sing-eq-i’)

t ∈ Term(Γ, {a}A)

t = a ∈ Term(Γ, A)
(sing-eq-el’)

The rule (sing-eq-el) is essential; in fact, since we have eta-expansion for singletons, we
would like to derive

Γ.{λt}FunAB ` app q a = t (id, a) : B (id, a)

from Γ.{λt}FunAB ` q = λt : {λt}FunAB, and Γ ` a : A. Which would be impossible if
(sing-eq-el) were not a rule.

Conventions. We denote with |Γ| the length of the context Γ; and Γ!i is the projection of
the i-th component of Γ, for 0 6 i < |Γ|; i.e. if Γ = An−1 . . . A0 and 0 6 i < n, then
Γ!i = Ai. We say ∆ 6i Γ if ∆ ` pi : Γ; where pi is the i-fold composition of p with itself. 1

We denote with Terms the set of words freely generated using symbols in SS ∪ST ∪SE .
We write t ≡T t′ for denoting syntactically equality of t and t′ in T ⊆ Terms. We call A
the tag of {a}A.

Remark 2.1. Note that if ∆ ` pi : Γ, and Γ ` pj : Θ, then ∆ ` pi+j : Θ.

Definition 2.2 (de Bruijn index). The ith de Bruijn index vi is defined as

vi =

{
q if i 6 0
qpi if i > 0.

For convenience, we identify negative indices with the 0th index.

The following grammar describes the set Nf of β-normal forms. As auxiliary notion, it
uses the set Ne of neutral normal forms, i.e., normal forms with a variable in head position,
which blocks reduction. A bit sloppily, we refer to elements of Ne as “neutral terms”; in
general, the attribute neutral shall mean variable in head position (this is stricter than
Girard’s concept of neutral [28]).

Definition 2.3 (Neutral terms, and normal forms).

Ne 3 k ::= vi | app k v
Nf 3 v, V,W ::= U | FunV W | {v}V | λv | k

An advantage of introducing the calculus as a GAT is that we can derive several syntactical
results from the meta-theory of GATs; for instance, some of the following inversion results,
which are needed in the proof of completeness of the type-checking algorithm.

Remark 2.4 (Weakening of judgements). Let ∆ 6i Γ, Γ ` A = A′, and Γ ` t = t′ : A;
then ∆ ` A pi = A′ pi, and ∆ ` t pi = t′ pi : A pi.

1The direction ∆ 6i Γ (as opposed to ∆ >i Γ) has been chosen to be compatible with subtyping A 6 B.
Weakening (Remark 2.4) is a special case of subsumption which states that ∆ 6 Γ ` t : A 6 B implies
∆ ` t : B.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 7

Remark 2.5 (Syntactic validity).

(1) If Γ ` t : A, then Γ ` A.
(2) If Γ ` t = t′ : A, then both Γ ` t : A, and Γ ` t′ : A.
(3) If Γ ` A = A′, then both Γ ` A, and Γ ` A′.

Lemma 2.6 (Inversion of types).

(1) If Γ ` FunAB, then Γ ` A, and Γ.A ` B.
(2) If Γ ` {a}A, then Γ ` A, and Γ ` a : A.
(3) If Γ ` k, then Γ ` k : U.

The following lemma can be proved directly by induction on derivations by checking
the possibles rules used in the last step.

Lemma 2.7 (Inversion of typing).

(1) If Γ ` FunA′B′ : A, then Γ ` A = U, Γ ` A′ : U, and also Γ.A′ ` B′ : U;
(2) if Γ ` {b}B : A, then Γ ` A = U, Γ ` B : U, and also Γ ` b : B;
(3) if Γ ` λt : A, then either

(a) Γ ` A = FunA′B with Γ.A′ ` t : B; or
(b) Γ ` A = {a}A′ with Γ ` λt = a : A′.

(4) if Γ ` app t r : A, then Γ ` t : FunA′B′, Γ ` r : A′, and Γ ` A = B′ (id, r′).

Proof. (1) The last rule used is one of (fun-u-i), (conv), (sing-i), or (sing-e). In the first
case the premises of the rule are what is to be proved; in all other cases we have a premise
with the form Γ ` FunA′B′ : B, hence we can apply the i.h. (2-4) Analogously.

Remark 2.8 (Inversion of substitution). Any substitution ∆ ` σ : Γ.A is equal to some
substitution ∆ ` (σ′, t) : Γ.A. It is enough to note idΓ.A = (p, q), hence we have the equalities
σ = id σ = (p, q)σ = (pσ, qσ).

2.2. λIrr: A type theory with proof-irrelevance. In this section we keep the basic rules
of the previous calculus (those that do not refer to singleton types), and introduce types
for natural numbers, enumeration sets, sigma types, and proof-irrelevant types. The main
difference with other presentations [45, 38], on the syntactic level, is that the eliminator
operator (for each type) has as an argument the type of the result. The presence of the
resulting type in the eliminator is needed in order to define the normalisation function; it
is also necessary for the type-inference algorithm.

Sigma types. Both U and Type are closed under (strong) sigma-type formation; (a, b) intro-
duces a dependent pair and fst t and snd t eliminate it.

A ∈ Term(Γ,U) B ∈ Term(Γ.A,U)

ΣAB ∈ Term(Γ,U)
(sum-u-i)

A ∈ Type(Γ) B ∈ Type(Γ.A)

ΣAB ∈ Type(Γ)
(sum-f)

B ∈ Type(Γ.A) a ∈ Term(Γ, A) b ∈ Term(Γ, B (id, a))

(a, b) ∈ Term(Γ,ΣAB)
(sum-in)

t ∈ Term(Γ,ΣAB)

fst t ∈ Term(Γ, A)
(sum-el1)

t ∈ Term(Γ,ΣAB)

snd t ∈ Term(Γ, B (id, fst t))
(sum-el2)

8 A. ABEL, T. COQUAND, AND M. PAGANO

The β- and η-laws for pairs are given by the first three equations to follow. The
remaining equations propagate substitutions into the new term constructors.

fst (a, b) = a snd (a, b) = b (fst t, snd t) = t

(fst t)σ = fst (t σ) (snd t)σ = snd (t σ) (a, b)σ = (a σ, b σ)

(ΣAB)σ = Σ (Aσ) (B (σ p, q))

Propagation laws can be obtained mechanically: to propagate σ into c~t, just compose it
with each ti that is not a binder (e.g., A in ΣAB), and compose its lifted version (σ p, q)
with each tj that is a binder (e.g., B in ΣAB). Binders are those formed in an extended
context (here, B ∈ Type(Γ.A)). In the following, we will skip the propagation laws.

Natural numbers. We add an inductive type Nat with constructors zero and suc and prim-
itive recursion natrec.

Γ ∈ Ctx

Nat ∈ Term(Γ,U)
(nat-u-i)

Γ ∈ Ctx

zero ∈ Term(Γ,Nat)
(nat-z-i)

t ∈ Term(Γ,Nat)

suc t ∈ Term(Γ,Nat)
(nat-s-i)

B ∈ Type(Γ.Nat)
t ∈ Term(Γ,Nat) z ∈ Term(Γ, B (id, zero)) s ∈ Term(Γ,Rec(B))

natrec B z s t ∈ Term(Γ, B (id, t))
(nat-el)

Here, we used Rec(B) as an abbreviation for FunNat (FunB (B (p, suc q) p)) which in con-
ventional notation reads Πx :Nat. B → B[suc x/x]. Since B is a big type, it can mention
the universe U, thus, we can define small types by recursion via natrec. This so called large
elimination excludes normalization proofs which use induction on type expressions [23, 22].
We add the usual computation laws for primitive recursion.

natrec B z s zero = z

natrec B z s (suc t) = app (app s t) (natrec B z s t)

Enumeration sets. The type Nn has the n canonical inhabitants cn0 , . . . , cnn−1, which can be
eliminated by the dependent case distinction casen B t0 · · · tn−1 t with n branches.

Γ ∈ Ctx

Nn ∈ Term(Γ,U)
(nn-u-i)

Γ ∈ Ctx i < n

cni ∈ Term(Γ,Nn)
(nn-i)

B ∈ Type(Γ.Nn) t ∈ Term(Γ,Nn)
t0 ∈ Term(Γ, B (id, cn0)) · · · tn−1 ∈ Term(Γ, B (id, cnn−1))

casen B t0 · · · tn−1 t ∈ Term(Γ, B (id, t))
(nn-e)

We add the usual computational law for case distinction, and weak extensionality, which
for booleans (N2) reads “if t then true else false = t”in sugared syntax.

casen B t0 · · · tn−1 cni = ti

casen Nn cn0 · · · cnn−1 t = t

For N0 and N1 we can formulate strong η-laws: all their inhabitants are considered equal,
since there is at most one. To realize this, we introduce a new term ? in N0 if it already has
an inhabitant t; we consider ? as normal form of t. Note that this seemingly paradoxical

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 9

canonical form ? ∈ N0 does not threaten consistency, since it cannot exist in the empty
context Γ = �; otherwise there would have already been a term t ∈ Term(�,N0).

t ∈ Term(Γ,N0)

? ∈ Term(Γ,N0)
(n0-tm)

t, t′ ∈ Term(Γ,N0)

t = t′ ∈ Term(Γ,N0)
(n0-eq)

t, t′ ∈ Term(Γ,N1)

t = t′ ∈ Term(Γ,N1)
(n1-eq)

On the one hand, rule (n0-tm) destroys decidability of type checking: to check whether
? ∈ Term(Γ,N0) we would have to decide the consistency of Γ which is certainly impossible
in a theory with natural numbers. On the other hand, it allows us to decide equality by
computing canonical forms. We solve this dilemma by forbidding ? in the user syntax
which is input for the type-checker; ? is only used internally in the NbE algorithm and in
the canonical forms it produces. Formally this is reflected by having two calculi: one with
the rule (n0-tm) and one without it. For distinguishing the calculi, we decorate the turnstile
(`?) in judgements of the former and leave (`) for the calculus without (n0-tm). We also
use the different turnstiles for referring to each calculus. In Sect. 2.3 we prove that (`?) is
a conservative extension of (`).

Strong extensionality for booleans and larger enumeration sets is hard to implement
[9, 12] and beyond the scope of this work.

In the sequel we use ~t for denoting the n terms t0 · · · tn−1 in casen B t0 · · · tn−1 r. We
will omit the superscript n in ci, and in case B ~t r.

Proof irrelevance. Our treatment of proof-irrelevance is based on Awodey and Bauer [11]
and Maillard [36]. The constructor Prf turns a type A into the proposition Prf A in the sense
that only the fact matters whether A is inhabited, not by what. An inhabited proposition
is regarded as true, an uninhabited as false. The proposition Prf A still has all inhabitants
of A, but now they are considered equal. If A is not empty, we introduce a trivial proof ?
in Prf A which we regard as the normal form of any t ∈ Term(Γ,Prf A).

A ∈ Term(Γ,U)

Prf A ∈ Term(Γ,U)
(prf-f)

A ∈ Type(Γ)

Prf A ∈ Type(Γ)
(prf-f)

a ∈ Term(Γ, A)

[a] ∈ Term(Γ,Prf A)
(prf-i)

a ∈ Term(Γ, A)

? ∈ Term(Γ,Prf A)
(prf-tm)

A ∈ Type(Γ) t, t′ ∈ Term(Γ,Prf A)

t = t′ ∈ Term(Γ,Prf A)
(prf-eq)

Note that (prf-tm) is analogous to (n0-tm) and the same remarks apply; in particular,
(prf-tm) is also a rule in (`?) but not in (`).

We use Awodey and Bauer’s [11] elimination rule for proofs.

Γ ` t : Prf A Γ ` B Γ, x :A ` b : B Γ, x :A, y :A ` b = b[y/x] : B

Γ ` b where [x]← t : B

The content x : A of a proof t : Prf A can be used in b via the elimination b where [x] = t
if b does not actually depend on it, which is expressed via the hypothesis that b should be
equal to b[y/x] for an arbitrary y. This elimination principle is stronger than “proofs can
only be used inside of proofs” which is witnessed by the rule:

Γ ` t : Prf A Γ ` B Γ, x :A ` b : Prf B

Γ ` b where [x]← t : Prf B

10 A. ABEL, T. COQUAND, AND M. PAGANO

Note that this weaker elimination rule in the style of a bind operation for monads is an
instance of the Awodey-Bauer rule, since the equation Γ, x :A, y :A ` b = b[y/x] : Prf B holds
trivially due to proof irrelevance. An example which is typable with the Awoday-Bauer rule
but not the monadic rule is the term magic given in the next section.

The Awodey-Bauer where fulfills β-, η-, and associativity laws analogous to the ones of
a monad.

b where [x]← [a] = b[a/x]

b[[x]/y] where [x]← t = b[t/y]

a where [x]← (b where [y]← c) = (a where [x]← b) where [y]← c if y 6∈ FV(a)

After this more readable presentation in named syntax, we add the eliminator and its
equations to our GAT in de Bruijn style:

t ∈ Term(Γ,Prf A)
B ∈ Type(Γ) b ∈ Term(Γ.A,B p) b p = b (p p, q) ∈ Term(Γ.A.A p, B p p)

bwhereB t ∈ Term(Γ, B)
(prf-el)

bwhereB [a] = b (id, a) (prf-β)

b (p, [q])whereB t = b (id, t) (prf-η)

awhereA (bwhereB c) = (a (p p, q)whereA p b)whereB c (prf-assoc)

After exposition of the formation, introduction, elimination, and equality rules for the
types of λIrr, we continue with basic properties of derivations. From now, we use the more
conventional notation for judgements.

Definition 2.9 (Neutral terms and normal forms).

Ne 3 k ::= . . . | fst k | snd k | natrec V v v′ k | casen V v0 · · · vn−1 k | vwhereV k | ?
Nf 3 v, V ::= . . . | ΣV W | Nat | Nn | Prf V | (v, v′) | zero | suc v | cni | [v]

Lemma 2.10 (Inversion of types).

(1) If Γ ` ΣAB, then Γ ` A, and Γ.A ` B.
(2) If Γ ` Prf A, then Γ ` A.

Lemma 2.11 (Inversion of typing).

(1) If Γ ` ΣA′B : A, then Γ ` A = U, and Γ ` A′ : U, and Γ.A′ ` B : U.
(2) If Γ ` Nat : A, then Γ ` A = U.
(3) If Γ ` Nn : A, then Γ ` A = U.
(4) If Γ ` (t, b) : A , then Γ ` A = ΣA′B, and Γ ` t : A′, and Γ ` b : B (id, t).
(5) If Γ ` fst t : A , then Γ ` A = A′, and Γ ` t : ΣA′B, for some A′, and B.
(6) If Γ ` snd t : B, then Γ ` B = B′ (id, fst t), and Γ ` t : ΣAB′, for some A, and B′.
(7) If Γ ` zero : A, then Γ ` A = Nat.
(8) If Γ ` suc t : A, then Γ ` t : Nat, and Γ ` A = Nat.
(9) If Γ ` natrec B z s t : A , then Γ.Nat ` B, Γ ` z : B (id, zero), Γ ` s : Rec(B),

Γ ` t : Nat, and Γ ` A = B (id, t).
(10) if Γ ` cni : A, then Γ ` A = Nn;

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 11

(11) If Γ ` case B ~t t′ : A, then Γ.Nn ` B, Γ ` ti : B (id, ci), Γ ` t′ : Nn, and Γ ` A =
B (id, t).

(12) If Γ ` [t] : A, then Γ ` A = Prf A′ and Γ ` t′ : A′.
(13) If Γ ` bwhereB t : A, then Γ ` A = B, Γ ` t : Prf A′ for some A′, Γ.A′ ` b : B p, and

Γ.A′.A′ p ` b p = b (pp, q) : B p.

2.3. Conservativity of ?. In this section we prove that (`?) is a conservative extension
of (`); i.e., any derivation in (`?) has a counterpart derivation in (`) and the components
of the conclusions of those derivations are judgmentally equal in (`?).

Definition 2.12. A term is called pure if it does not contain any occurrence of ?. Let ν be
a syntactical entity, if µ is obtained from ν by replacing all occurrences of ? by pure terms,
then µ is called a lifting of ν.

We will distinguish those liftings that are judgmentally equal to the lifted entity, these
liftings are called good liftings.

Definition 2.13 (Good lifting).

(1) A context Γ′ ` is a good lifting of Γ `? if Γ′ is a lifting of Γ, such that `? Γ = Γ′.
(2) A substitution Γ′ ` σ′ : ∆′ is a good lifting of Γ `? σ : ∆ if Γ′ ` and ∆′ ` are good

liftings of Γ `? and ∆ `?, resp., and σ′ is a lifting of σ, such that Γ `? σ = σ′ : ∆.
(3) A type Γ ` A′ is a good lifting of Γ `? A if Γ′ ` is a good lifting of Γ `? and A′ is a

lifting of A, such that Γ `? A = A′.
(4) A term Γ ` t′ : A′ is a good lifting of Γ `? t : A if Γ′ ` A′ is a good lifting of Γ `? A

and t′ is a lifting of t, such that Γ `? t = t′ : A.

Now we can prove that there is a good lifting for each syntactic entity; for proving this, we
need the stronger condition that any pair of good liftings for some entity are judgmentally
equal.

Theorem 2.14.

(1) Let Γ `?; then there is a good lifting Γ′ ` of Γ `?; moreover if Γ′′ ` is also a good lifting
of Γ `? then ` Γ′ = Γ′′.

(2) Let Γ `? σ : ∆; then there is a good lifting Γ′ ` σ′ : ∆′ of Γ `? σ : ∆; moreover if
Γ′′ ` σ′′ : ∆′′ is also a good lifting of Γ `? σ : ∆ then ` Γ′ = Γ′′,` ∆′ = ∆′′, and
Γ′ ` σ′ = σ′′ : ∆′.

(3) Let Γ `? A; then there is a good lifting Γ′ ` A′ of Γ `? A ; moreover if Γ′′ ` A′′ is also
a good lifting of Γ `? A then ` Γ′ = Γ′′ and Γ′ ` A′ = A′′.

(4) Let Γ `? t : A; then there is a good lifting Γ′ ` t′ : A′ of Γ `? t : A ; moreover if
Γ′′ ` t′′ : A′′ is also a good lifting of Γ `? t : A then ` Γ′ = Γ′′, Γ′ ` A′ = A′′, and
Γ′ ` t′ = t′′ : A′.

Proof. By induction on derivations, in each rule we use i.h., and build up the corresponding
entity to the good lifting for each part of the judgement; then, given any other good lifting of
the whole judgement, we do inversion on the definition of good lifting, and get the equalities
for each part; we finish using congruence for showing that both good lifting are judgmental
equal.

12 A. ABEL, T. COQUAND, AND M. PAGANO

We show the case for (prf-tm). First we prove the existence of a good lifting.

Γ `? ? : Prf A hypothesis (*)

Γ `? t : A by inversion on (*) (†)
Γ′ ` t′ : A′ by ind. hyp. is a good lifting of (†)
Γ′ ` [t′] : Prf A′ by (prf-i), is a good lifting of(*)

Now we prove the second half of the theorem.

Γ′′ ` s : B hypothesis, be other good lifting of (†) (**)

Γ′′ ` B by inversion, good lifting of Γ `? Prf A
Γ′ ` B′′ = Prf A′ by ind. hyp.

Γ′ ` [t′] = s : Prf A′ by (prf-eq) and (conv).

Corollary 2.15. The calculus (`?) is a conservative extension of (`).

Combining singleton types and proof-irrelevant propositions. For illustrating the difficulties
one can find when extending λIrr with singleton types, consider a slightly different calculus
where we drop the type annotation of the eliminator for proof-irrelevance terms; i.e. we
would have bwhere t instead of bwhereB t. In the resulting system one can derive:

` c2
0 :{c2

0}N2

` ? :Prf {c2
0}N2

` x where [x]← ? :{c2
0}N2

` x where [x]← ? = c2
0 :{c2

0}N2

` x where [x]← ? = c2
0 :N2

` c2
1 :{c2

1}N2

` ? :Prf {c2
1}N2

` x where [x]← ? :{c2
1}N2

` x where [x]← ? = c2
1 :{c2

1}N2

` x where [x]← ? = c2
1 :N2

` c2
0 = c2

1 :N2

This derivation shows that mixing the rule (sing-eq-el) with erasure of proof-terms leads
to inconsistencies. It is yet unclear how to combine singleton types and erasure of proof-
terms; we leave this topic for a future work. On the other hand, there are no problems
in extending (`) with singletons types; in fact, we can construct (see Rem. 5.36) a model
where [[c2

0]] 6= [[c2
1]], which assures 6` c2

0 = c2
1 :N2.

3. Examples

3.1. Safe vector projection in λIrr. We give a short demonstration how to use proof
irrelevance in λIrr: we define vectors and a type safe projection function. While de Bruijn
style is good for implementation and reasoning, it is virtually unreadable for humans, so
we allow ourselves named λ-terms here which can be mechanically converted into actual
terms of λIrr. For instance, we write FunA (x.B) instead of the de Buijn style FunAB. For
further convenience, let (x : A) → B = FunA (x.B) and (x : A) × B = ΣA (x.B). The

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 13

non-dependent versions are written A→ B = (:A)→ B and A×B = (:A)×B. The type
Vec A n of vectors of length n over element type A can be defined recursively as follows.

Vec : (A :U)→ (n :Nat)→ U
Vec = λAλn. natrec U N1 (λn′λV.A× V) n

A more suggestive notation for definitions by recursion is pattern matching ; in this the
definition of Vec reads as follows:

Vec : (A :U)→ (n :Nat)→ U
Vec A zero = N1

Vec A (suc n′) = A× Vec A n′

In the following, we use pattern matching as syntactic sugar for natrec. Our language
already has booleans, so let us define comparison of natural numbers.

leq : (m :Nat)→ (n :Nat)→ Bool
leq zero n = true
leq (suc m) zero = false
leq (suc m) (suc n) = leq m n

Bool = N2

true = c2
0

false = c2
1

By reflecting booleans into U we can obtain witnesses of propositions.

True : (b :Bool)→ U
True true = N1

True false = N0

True (leq m n) is inhabited if m 6 n, because then True (leq m n) simplifies to N1 with
trivial inhabitant c1

0. If not m 6 n then True (leq m n) simplifies to the empty type N0. A
proposition Lt for “less than” is obtained as:

Lt : (m :Nat)→ (n :Nat)→ U
Ltmn = True (leq (suc m) n)

We are now ready to define a safe projection operation for vectors.

lookup : (A :U)→ (n :Nat)→ (m :Nat)→ (p :Prf (Ltmn))→ (v :Vec A n)→ A
lookup A zero m p v = magicAp
lookup A (suc n) zero p v = fst v
lookup A (suc n) (suc m) p v = lookup A n m p (snd v)

Since Lt (suc m) (suc n) = Ltmn we can simply pass p to the recursive call in the last
equation. In the first line we have to magically conjure an element of A from a proof
p : Prf (Ltm zero) = Prf (True (leq (suc m) zero)) = Prf (True false) = Prf N0.

magic : (A :U)→ (p :Prf N0)→ A
magicAp = case0Aq where [q]← p

This is well typed since all inhabitants of N0 are equal, thus, the Awodey-Bauer rule
(prf-el) is applicable.

The benefit of proof irrelevance is that now for any p, q : Ltmn, lookup A n m p v =
lookup A n m q v : A; for a more detailed discussion consult Werner [56].

14 A. ABEL, T. COQUAND, AND M. PAGANO

3.2. Isomorphisms in λIrr. Any already irrelevant type is isomorphic to its Prf version,
i.e., for A ∈ {N0,N1,Prf B, {t}B} we have coercions

φ = λx. [x] : A→ Prf A
ψ = λx. y where [y]← x : Prf A→ A

with ψ ◦ φ = λx. x by (prf-β) and φ ◦ ψ = λx. x by proof irrelevance. How do these
coercions extend to higher types? For arbitrary A,B we have.

φΣ : (x :Prf A)× Prf B → Prf ((x :A)×B)
φΣ = λp. [(a, b)] where [a]← fst p where [b]← snd p

ψΣ : Prf ((x :A)×B)→ (x :Prf A)× Prf B
ψΣ = λq. ([fst p], [snd p]) where [p]← q

φΠ : ((x :A)→ Prf B)→ Prf ((x :A)→ B)
φΠ = λf. [λx. ? where [y]← f x]

ψΠ : Prf ((x :A)→ B)→ (x :A)→ Prf B
ψΠ = λfλx. [g x] where [g]← f

We would like to put y for the ? in φΠ, but this is not well typed, since we do not have
y = z : B for arbitrary z. It seems that φΠ is not definable in λIrr, as it is not definable
in computational lambda-calculus [44] for an arbitrary monad Prf. Awodey and Bauer also
have only φΠ : ((x :A)→ Prf B)→ Prf ((x :A)→ Prf B), which is trivial.

For arbitrary p : (x :Prf A)× Prf B we have

(ψΣ ◦ φΣ)(p) =β ([a], [b]) where [a]← fst p where [b]← snd p
=η (fst p, snd p) =η p.

In the opposite direction, φΣ ◦ ψΣ = λq. q by proof irrelevance. Thus, φ and ψ establish an
isomorphism, which means that Prf distributes over Σ.

3.3. On subtyping in λSing. Subtyping can be defined in several ways, for instance, A is a
subtype of A′ in Γ, written Γ ` A <: A′, iff Γ, x :A ` x :A′. Most presentations of singleton
types include subtyping [10, 22, 54], so it is natural to ask whether the usual rules hold
in our calculus. Using the principle u = t : A iff u : {t}A, it is easy to see that we have
Aspinall’s two axioms [10]:

x : {t}A ` x : A
x : {t}A ` x : {t}{t}A since x = t : {t}A

Also, singleton formation is compatible with subtyping, if Γ ` A <: B then Γ ` {t}A <:
{t}B. Contravariant subtyping, however, only holds up to η-equality. If we relax the
definition of subtyping Γ ` A <: A′ to Γ, x : A ` η(x) : A′ where η(x) denotes any η-
expansion of x, then we get contravariant subtyping

Γ, x :A′ ` ηA(x) : A Γ, x :A′, y :B[ηA(x)/x] ` ηB(y) : B′

Γ, f : (x :A)→ B ` λx. ηB(f(ηA(x))) : (x :A′)→ B′
.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 15

Furthermore, we have following two axioms, which hold definitionally in Stone and Harper’s
system [54]

f : {t}(x:A)→B ` λx. f x : (x :A)→ {t x}B since f = t : (x :A)→ B
f : (x :A)→ {t x}B ` λx. f x : {t}(x:A)→B since f x = t x : B

The first axiom is one of Courant’s subtyping rules [22].

4. From Untyped to Typed Normalisation by Evaluation

In this section, we give a short introduction into normalisation-by-evaluation for typed
lambda calculi, with a special emphasis on our novel method for generation of fresh identi-
fiers during reification.

4.1. Fresh Name Generation in NbE. The basic idea of NbE is to evaluate a term
of type A into a suitable semantics [[A]] from which its normal form can be extracted by
reification. In case of the simply-typed lambda-calculus, this is possible if we choose for
base types [[o]] the set of terms of type o and for function types [[A→ B]] a suitable subset
of the function space [[A]] → [[B]]. During reification of a function f ∈ [[A → B]] to a term
λx.t, the identifier x has to be chosen fresh to avoid capture of names in the body of the
function f . However, since f is a semantic object, it is a non-trivial problem to compute a
name which is fresh for f . Garillot and Werner [27] solve it by first letting x be a dummy
identifier, computing the free variables in the reified function body t, and then reify f again
with a name x which is fresh for t. This is, of course, horribly inefficient, and there are other
solutions. In the original publication on NbE by Berger and Schwichtenberg [16], base types

[[o]] = Λ̂ are interpreted by term families. These are functions g from the natural numbers
into a de Bruijn level representation of terms such that all instances g(n) are α-equivalent
but in g(n) the bound variables are levels starting with n. In this setting, the reification
of a function f ∈ [[A→ B]] is not a term but a term family, mapping f to the term family
n 7→ λxn.φ(f(x̂n))(n + 1), where φ denotes the reification function and x̂n is the variable
xn seen as an element in [[A]]. Note that every λ in φ(f(x̂n))(n+ 1), the body of the reified
abstraction, will bind a variable from the set {xn+1, xn+2, . . .}.

When considering NbE for the untyped lambda calculus, the type semantics collapses

to a single domain D ∼= Λ̂ + [D → D] which contains terms and functions,2 as observed by
Filinski and Rhode [26]. Aehlig and Joachimski [8] replace term families by functions h
from natural numbers to a de Bruijn index representation of terms, where h(n) shifts all
free indices by n.

In this paper, instead of having term families Λ̂ in the semantics, we have a notion
of neutral (“term-like”) value built up from free variables xi and application of the free

variables to sequences of values ~d. The free variables are de Bruijn levels in spirit, thus,
no shifting is needed, just like in the locally nameless approach [49]. The second author
has given a semantics with neutrals before [20], calling the free variables generic values.
Also, this approach has been used by the first two authors together with Dybjer [5] for NbE
without a reflection operation, and independently by Löh, McBride, and Swierstra [35]. In

2 Let us notice here the tagging introduced by the disjoint sum operator +. Indeed, in the absence of a
type structure, tagless normalisation seems impossible.

16 A. ABEL, T. COQUAND, AND M. PAGANO

this article, we put the technique to a novel use by defining typed reification and reflection
for this semantics.

4.2. Untyped NbE. Let Var = {x0, x1, . . . } be a denumerable set of variables. We con-
sider a set D and a notion of function space [D → D] with an embedding constructor
Lam : [[D → D] → D] and two further constructors Var : Var → D and App : [D × D → D]
for neutral values. An application function · : [D× D→ D] is given by

(Lam f) · d = f(d)
e · d = App(e, d) if e not a Lam.

Such a D can be realised by solving the recursive domain equation D ∼= [D→ D]⊕Var⊥ ⊕
(D× D) or, for the practically minded, by defining a Haskell data type

data D where

Lam : (D -> D) -> D

Var : Var -> D

App : D -> D -> D

and programming · by pattern matching. Our definition of D is a bit “too big” since it
does not restrict App to the construction of neutral values App(. . .App(Var xi, d1) . . . , dn)
but we have also App(Lam f, d). However, we can ignore these unwanted elements since our
NbE algorithm never produces any.

Remark 4.1. The relationship between the denotational model D and the Haskell data type
D is not without subtleties. Domain theoretic functions such as application · correspond
to Haskell programs if our denotational semantics is computationally adequate for Haskell’s
operational semantics [48]. Filinski and Rhode [26] formally relate a NbE function on a
reflexive domain D to a NbE program written in an ML-like, call-by-value language, by
exploiting computational adequacy. We do not formally prove this connection for Haskell
in this article, this is deferred to future work.

Untyped NbE is now given by a standard evaluator [[t]]ρ ∈ D of terms t in environments
ρ and a readback function Rj d from values d at de Bruijn level j to terms [31]. For the sake
of readability, we use names instead of de Bruijn indices in the syntax of untyped terms.

[[x]]ρ = ρ(x)
[[r s]]ρ = [[r]]ρ · [[s]]ρ

[[λx.t]]ρ = Lam (d 7→ [[t]]ρ[d/x])

Rj (Var xi) = xi
Rj (App(r, s)) = (Rj r) (Rj s)
Rj (Lam f) = λxj .Rj+1 (f(Var xj))

To normalise a closed term t, compute R0 [[t]]. To normalise an open term t with free
variables y0, . . . yn−1 compute Rn [[t]]ρ with environment ρ(yi) = Var xi.

To prepare for applying our method to λSing and λIrr, let us switch to de Bruijn repre-
sentation. Environments become tuples and variables de Bruijn indices vi.

[[q]](ρ, d) = d
[[t p]](ρ, d) = [[t]]ρ
[[r s]]ρ = [[r]]ρ · [[s]]ρ
[[λt]]ρ = Lam (d 7→ [[t]](ρ, d))

Rj (Var xi) = vj−(i+1)

Rj (App(r, s)) = (Rj r) (Rj s)
Rj (Lam f) = λ (Rj+1 (f(Var xj)))

To read back a de Bruijn level Var xi as a de Bruijn index, we have to take the current length
j of the variable context into account. While de Bruijn levels are absolute references, they
are numbered x0, x1, . . . , xj−1 in a context of length j, de Bruijn indices are relative to the

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 17

length of the context, they are enumerated from right to left: vj−1, . . . , v1, v0. The formula
j − (i+ 1) (assuming i < j) converts level i into the corresponding index.

4.3. Typed NbE. While untyped NbE returns a β-normal form (if it exists), typed nor-
malisation by evaluation yields a βη-normal form, usually the η-long form. To obtain the
η-long form, we have to modify our reification procedure. One method is to make read-
back type directed [5], which corresponds to postponing η-expansion after β-normalisation.
However, this strategy is not sufficient in the case of λSing, because η-expansions at single-
ton types can trigger new β-reductions. The other method is to divide η-expansion into
reflection and “reification”, the first expanding variables to enable new reductions, and the
second expanding the result of β-normalisation to obtain an η-long form.3

The novel approach of this article is to do reflection ↑ and “reification” ↓, hence, η-
expansion, completely at the level of the semantics D. Since our value domain D allows us
to construct functions via Lam, the process of η-expansion is independent of any fresh name
considerations.

↑o e = e
↑A→B e = Lam (d 7→ ↑B App(e, ↓A d))

↓o d = d
↓A→B d = Lam (e 7→ ↓B (d · (↑A e)))

To compute the long normal form of a closed term t of type A, run R0 (↓A [[t]]). For an open
term y0 :A0, . . . , yn−1 :An−1 ` t : A, execute Rn (↓A [[t]]ρ), where ρ(yi) = ↑Ai

(Var xi).

5. Semantics

In this section we define a domain D for denoting types, terms, and substitutions. Then we
introduce a partial function Rj for reifying elements of the domain into the calculus; this
function takes an extra argument j ∈ N indicating the next free variable. We continue by
defining PERs over the domain; these PERs denote the axioms for types, terms, and substi-
tutions. We need PERs for the evaluation function is defined over syntactical entities and
not for typing judgements. We also introduce PERs Nf and Ne whose elements are invari-
ably, in every context, reified as normal forms and neutral terms respectively. Using these
PERs we define a family (indexed by denotations of types) of functions for “normalising”
in the domain. We conclude this section proving completeness for this family of normalisa-
tion functions; here completeness means that two terms in the theory are read back as the
same normal form. In this section we define a PER model of the calculus presented in the
previous section. The model is used to define a normalisation function later.

3In tagless normalisers [16], reflection is necessary to inject variables x : A of non-base types A into the
semantics [[A]]. However, for languages beyond pure type systems it is hard to obtain tagless normalisation.
Classic is the problem of disjoint sum types [9]: to display a free variable of type A + B as either a left
or a right injection, we need control structures [12]. Alternatively, one can replace data types by their
Church encodings. None of these approaches fit our purposes, thus, we are currently not aiming at tagless
normalisation.

18 A. ABEL, T. COQUAND, AND M. PAGANO

5.1. PER semantics. In this subsection we introduce the abstract notion of PER models
for our theory. This subsection does not introduce any novelty (except for some notational
issues). We refer the reader to [42] for a short report on the historical developments of PER
models.

Definition 5.1 (Partial Equivalence Relations). A partial equivalence relation (PER) over
a set A is a binary relation over A which is symmetric and transitive.

If R is a PER over A, and (a, a′) ∈ R then it is clear that (a, a) ∈ R. We define
dom(R) = {a ∈ A | (a, a) ∈ R}; clearly, R is an equivalence relation over dom(R). If
(a, a′) ∈ R, sometimes we will write a = a′ ∈ R, and a ∈ R if a ∈ dom(R). We denote
with PER(A) the set of all PERs over A. Given two PERs R and R′ over A, we say R is
included in R′ if (a, a′) ∈ R implies (a, a′) ∈ R′; we denote this inclusion with R ⊆ R′.

If R ∈ PER(A) and F : dom(R) → PER(A), we say that F is a family of PERs
indexed by R iff for all a = a′ ∈ R, F a = F a′. If F is a family indexed by R, we write
F : R → PER(A).

Definition 5.2 (Applicative structure). An applicative structure is given by a pair A =
(A, ·), where A is a set and · is a binary operation on A.

The following definitions are standard (e.g. [10, 21]) in definitions of PER models for
dependent types. The first one is even standard for non-dependent types (cf. [43]) and
“F-bounded polymorphism” ([17]); its definition clearly shows that equality is interpreted
extensionally for dependent function spaces. The second one is the PER corresponding to
the interpretation of singleton types; it has as its domain all the elements related to the
distinguished element of the singleton, and it relates everything in its domain.

Definition 5.3. Let A be an applicative structure, X ∈ PER(A), and F ∈ X → PER(A).

(1)
∏
X F = {(f, f ′) | f · a = f ′ · a′ ∈ F a, for all a = a′ ∈ X};

(2) {{a}}X = {(b, b′) | a = b ∈ X and a = b′ ∈ X}.

Besides interpreting function spaces and singletons we need PERs for the denotation of
the universe of small types, and for the set of large types; jointly with these PERs we need
functions assigning a PER for each element in the domain of these universe PERs. Note
that this forces the applicative structure to have some distinguished elements.

Definition 5.4 (Universe). Given an applicative structure A with distinguished elements
Fun and Sing, a universe (U , []) is a PER U over A and a family [] : U → Per(A) with the
condition that U is closed under function and singleton types. This means:

(1) Whenever X = X ′ ∈ U and for all a = a′ ∈ [X], F a = F ′ a′ ∈ U , then FunX F =
FunX ′ F ′ ∈ U , with [FunX F] =

∏
[X] (a 7→ [F a]).

(2) Whenever X = X ′ ∈ U and a = a′ ∈ [X], then Sing aX = Sing a′X ′ ∈ U and
[Sing aX] = {{a}}[X].

An applicative structure paired with one universe for small types and one universe for large
types is the minimal structure needed for having a model of our theory.

Definition 5.5 (PER model). Let A be an applicative structure with distinguished ele-
ments U,Fun, and Sing; a PER model is a tuple (A,U , T , []) satisfying:

(1) U ⊂ T ∈ PER(A), such that (T , []) and (U , []�U) are both universes, and
(2) U ∈ dom(T), with [U] = U .

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 19

In the following definition we introduce an abstract concept for environments: since
variables are represented as projection functions from lists (think of q as taking the head
of a list, and p as taking the tail), it is enough having sequences together with projections.

Definition 5.6 (Sequences). Given a set A, a set A∗ has sequences over A if there are
distinguished operations > : A∗, Pair : A∗ × A → A∗, fst : A∗ → A∗, and snd : A∗ → A
such that

fst (Pair a b) = a

snd (Pair a b) = b.

Now we need to extend the notion of PERs over A to PERs over A∗ for interpreting
substitutions.4

Definition 5.7. Let A be an applicative structure and let A∗ have sequences over A;
moreover let X ∈ PER(A∗) and F ∈ X → PER(A).

(1) 1 = {(>,>)};
(2)

∐
X F = {(a, a′) | fst a = fst a′ ∈ X and snd a = snd a′ ∈ F (fst a)};

Until here we have introduced semantic concepts. Now we are going to axiomatise the
notion of evaluation, connecting the syntactic realm with the semantic one.

Definition 5.8 (Environment model). Let (A,U , T , []) be a PER model and let A∗ have
sequences over A. We call M = (A,U , T , [],A∗, [[]], s[[]]) an environment model if the eval-
uation functions [[]] : Terms ×A∗ → A and s[[]] : Terms ×A∗ → A∗ satisfy:

s[[id]]a = a
s[[〈〉]]a = >

s[[σ δ]]a = [[σ]]([[δ]]a)
s[[(σ, t)]]a = Pair ([[σ]]a) ([[t]]a)

s[[p]]a = fst a

[[U]]a = U
[[FunAB]]a = Fun ([[A]]a)F , where F b = [[B]](Pair a b)

[[{t}A]]a = Sing ([[t]]a) ([[A]]a)
[[t σ]]a = [[t]](s[[σ]]a)
[[λt]]a = f , where f · b = [[t]](Pair a b)

[[app t u]]a = ([[t]]a) · ([[u]]a)
[[q]]a = snd a

Since no ambiguities arise, we shall henceforth write [[σ]] instead of s[[σ]].

Once we have an environment modelM we can define the denotation for contexts. The
second clause in the next definition is not well-defined a priori; its totality is a corollary of
Thm. 5.11.

Definition 5.9. Given an environment model M, we define recursively the semantic of
contexts ([]) : Ctx→ PER(A∗):
(1) ([�]) = 1,
(2) ([Γ.A]) =

∐
([Γ])(a 7→ [[[A]]a]) .

We use PERs for validating equality judgements and the domain of each PER for validating
typing judgements.

Definition 5.10 (Validity). Let M be an environment model. We define inductively the
predicate of satisfability of judgements by the model, denoted with Γ �M J :

4The reader is invited to think of 1 as the terminal object of the category of PERs over A∗ and PER
preserving morphisms; looked this way our definition for 1 does not differ very much from others [10, 21].

20 A. ABEL, T. COQUAND, AND M. PAGANO

(1) � � iff true
(2) Γ.A � iff Γ � A
(3) Γ � A iff Γ � A = A
(4) Γ � A = A′ iff Γ � and for all d = d′ ∈ ([Γ]), [[A]]d = [[A′]]d′ ∈ T
(5) Γ � t : A iff Γ � t = t : A
(6) Γ � t = t′ : A iff Γ � A and for all d = d′ ∈ ([Γ]), [[t]]d = [[t′]]d′ ∈ [[[A]]d]
(7) Γ � σ : ∆ iff Γ � σ = σ : ∆
(8) Γ � σ = σ′ : ∆ iff Γ �, ∆ �, and for all d = d′ ∈ ([Γ]), [[σ]]d = [[σ′]]d′ ∈ ([∆]).

Theorem 5.11 (Soundness of the Judgements). LetM be a model. If Γ ` J , then Γ �M J .

Proof. By easy induction on Γ ` J .

5.2. A concrete PER model. In this subsection we define a concrete PER model over a
Scott domain. The definition of the evaluation function is post-poned to the next subsection
after introducing the NbE machinery.

Definition 5.12. We define a domain

D = O⊕Var⊥ ⊕ [D → D]⊕ (D ×D)⊕ (D ×D)⊕O⊕ (D × [D → D])⊕ (D ×D) ,

where Var is a denumerable set of variables (as usual we write xi and assume xi 6= xj if
i 6= j, for i, j ∈ N), E⊥ = E ∪ {⊥} is lifting, O = {>}⊥ is the Sierpinski space, [D → D]
is the set of continuous functions from D to D, ⊕ is the coalesced sum (this is the disjoint
union where all the bottoms elements are identified), and D ×D is the Cartesian product
of D [6].

An element of D which is not ⊥ can be of one of the forms:

> (d, d′) for d, d′ ∈ D
Var xi U for xi ∈ Var

Lam f Fun d f for d ∈ D, and f ∈ [D → D]

App d d′ Sing d d′ for d, d′ ∈ D.
Elements of the form Var xi and App d d′ are called neutral ; in this section, we reuse the
letter k to denote neutral elements of D.

In order to define an environment model over D, we endow it with an applicative
structure. Note also that D has pairing, letting us to take the set of sequences over D
simply as D∗ = D with Pair a b = (a, b). We define application · : [D ×D → D] and the
projections fst, snd : [D → D] by

f · d = if f = Lam f ′ then f ′ d else ⊥,
fst d = if d = (d1, d2) then d1 else ⊥,
snd d = if d = (d1, d2) then d2 else ⊥.

We define a partial function R : N → D → Terms which reifies elements from the model
into terms; this function is similar to Grégoire and Leroy’s read-back function [31].

Definition 5.13 (Read-back function).

Rj U = U
Rj (FunX F) = Fun (Rj X) (Rj+1 (F (Var xj)))
Rj (Sing dX) = {Rj d}Rj X

Rj (App d d′) = app (Rj d) (Rj d
′)

Rj (Lam f) = λ(Rj+1 (f(Var xj)))
Rj (Var xi) = vj−(i+1)

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 21

As explained in Sect. 4.2, the reification of variables turns de Bruijn levels into de
Bruijn indices. Note that in case j < i+ 1 we return the 0th de Bruijn index just not to be
undefined; we will come back to this later.

The next PERs contain those elements of the domain D whose reification is defined
for any context length. Moreover, their elements are reified as neutral terms and normal
forms, respectively; allowing us to reason semantically about normal forms. Remember that
t ≡T t′ denotes that t is syntactically equal to t′ and t ∈ T .

Definition 5.14 ((Semantic) neutral terms and normal forms).

d = d′ ∈ Ne :⇐⇒ for all i ∈ N, Ri d and Ri d
′ are defined and Ri d ≡Ne Ri d

′

d = d′ ∈ Nf :⇐⇒ for all i ∈ N, Ri d and Ri d
′ are defined and Ri d ≡Nf Ri d

′

Notice that if the case j < i+ 1 were undefined in the clause for variables in 5.13, then for
any m the application R0 Var xm would be undefined; hence Var xm 6∈ Ne and, consequently,
Ne would be empty. Since we depend on having a semantic representation of variables and
neutrals we add the case j < i + 1. This case will not arise in our use of the readback
function.

Remark 5.15. These are clearly PERs over D: symmetry is trivial and transitivity follows
from transitivity of the syntactical equality.

Lemma 5.16 (Closure properties of Ne and Nf).

(1) U = U ∈ Nf .
(2) Let X = X ′ ∈ Ne. If F · k = F ′ · k′ ∈ Nf for all k = k′ ∈ Ne, then FunX F =

FunX ′ F ′ ∈ Nf .
(3) If d = d′ ∈ Nf and X = X ′ ∈ Nf , then Sing dX = Sing d′X ′ ∈ Nf .
(4) If f · k = f ′ · k′ ∈ Nf for all k = k′ ∈ Ne, then f = f ′ ∈ Nf .
(5) Var xi = Var xi ∈ Ne for all i ∈ N.
(6) If k = k′ ∈ Ne and d = d′ ∈ Nf , then App k d = App k′ d′ ∈ Ne.

We define U , T ∈ PER(D) and [] : dom(T) → PER(D) using Dybjer’s schema of
inductive-recursive definition [25]. We show then that [] is a family of PERs over D.

Definition 5.17 (PER model).

(1) Inductive definition of U ∈ PER(D).
(a) Ne ⊆ U ,
(b) if X = X ′ ∈ U and d = d′ ∈ [X], then Sing dX = Sing d′X ′ ∈ U ,
(c) if X = X ′ ∈ U and for all d = d′ ∈ [X], F d = F ′ d′ ∈ U then FunX F =

FunX ′ F ′ ∈ U .
(2) Inductive definition of T ∈ PER(D).

(a) U ⊆ T ,
(b) U = U ∈ T ,
(c) if X = X ′ ∈ T , and d = d′ ∈ [X] then Sing dX = Sing d′X ′ ∈ T ,
(d) if X = X ′ ∈ T , and for all d = d′ ∈ [X], F d = F ′ d′ ∈ T , then FunX F =

FunX ′ F ′ ∈ T .
(3) Recursive definition of [] ∈ dom(T)→ PER(D).

(a) [U] = U ,
(b) [Sing dX] = {{d}}[X],
(c) [FunX F] =

∏
[X] (d 7→ [F d]),

22 A. ABEL, T. COQUAND, AND M. PAGANO

(d) [d] = Ne, in all other cases.

Remark 5.18. The generation order @ on T is well-founded. The minimal elements are
U, and elements in Ne; X @ FunX F , and for all d ∈ [X], F d @ FunX F ; and, finally,
X @ Sing dX.

Lemma 5.19. The function [] : dom(T) → PER(D) is a family of PER(D) over T , i.e.,
[] : T → PER(D).

Proof. By induction on X = X ′ ∈ T . See Appendix C.1.

The previous lemma leads us to the definition of a PER model over D. Note also that
D has all the distinguished elements needed to call it a syntactical applicative structure.

Corollary 5.20. The tuple (D,U , T , []) is a PER model.

5.3. Normalisation and η-Expansion in the Model. In the following, we adopt the
NbE algorithm outlined in Section 4 to the dependent type theory λSing. Since read-back
has already be defined, we only require reflection, reification and evaluation functions.

Definition 5.21 (Reflection and reification). The partial functions ↑ , ↓ : [D → [D →
D]] and ⇓ : [D → D] are given as follows:

↑FunX F k = Lam (d 7→ ↑F d (App k ↓X d))
↑Sing dX k = d

↑U k = k
↑X k = k, in all other cases.

↓FunX F d = Lam (e 7→ ↓F ↑X e (d · ↑X e))
↓Sing dX e = ↓X d

↓U d = ⇓ d
↓X e = e, in all other cases.

⇓(FunX F) = Fun (⇓X) (d 7→ ⇓(F ↑X d))

⇓(Sing dX) = Sing (↓X d) (⇓X)

⇓U = U

⇓X = X, in all other cases.

In the following lemma we show that reflection ↑ corresponds to Berger and Schwichtenberg’s
“make self evaluating” and both reification functions ↓ and ⇓ correspond to“inverse of the
evaluation function” [16]. Note that they are indexed by types values instead of syntactic
types, since we are dealing with dependent instead of simple types.

Lemma 5.22 (Characterisation of ↑, ↓, and ⇓). Let X = X ′ ∈ T , then

(1) if k = k′ ∈ Ne then ↑X k = ↑X′ k′ ∈ [X];
(2) if d = d′ ∈ [X], then ↓X d = ↓X′ d′ ∈ Nf ;
(3) and also ⇓X = ⇓X ′ ∈ Nf .

Proof. By induction on X = X ′ ∈ T . See C.2.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 23

Let us recapitulate what we have achieved: we have defined a PER model over the
domain D; then we defined a family of functions ↓X indexed over denotation of types with
the property that when applied to elements in the corresponding PER we get back elements
which will be reified as normal forms. In fact, we have the stronger result that whenever
we apply ↓X to two related elements d = d′ ∈ [X] we get elements to be reified as the same
term.

Now we define evaluation which clearly satisfies the environment model conditions in
Def. 5.8; hence, we have a model and, using Thm. 5.11, we conclude completeness for our
normalisation algorithm.

Definition 5.23 (Semantics). Evaluation of substitutions and terms into D is defined
inductively by the following equations.

Substitutions.

[[�]]d = > [[id]]d = d

[[(γ, t)]]d = ([[γ]]d, [[t]]d) [[p]]d = fst d

[[γ δ]]d = [[γ]]([[δ]]d)

Terms (and types).

[[U]]d = U [[FunAB]]d = Fun ([[A]]d) (e 7→ [[B]](d, e))

[[{a}A]]d = Sing ([[a]]d) ([[A]]d) [[app t u]]d = [[t]]d · [[u]]d

[[λt]]d = Lam (d′ 7→ [[t]](d, d′)) [[t γ]]d = [[t]]([[γ]]d)

[[q]]d = snd d

Theorem 5.24 (Completeness of NbE). Let Γ ` t = t′ : A and let also d ∈ ([Γ]), then
↓[[A]]d [[t]]d = ↓[[A]]d [[t′]]d ∈ Nf .

Proof. By Thm. 5.11 we have [[t]]d = [[t′]]d ∈ [[[A]]d] and we conclude by Lem. 5.22.

5.4. Calculus λIrrwith proof irrelevance. We extend all the definitions concerning the
construction of the model.

Definition 5.25 (Extension of domain D).

D = . . .⊕D × [D → D]⊕D ⊕D
⊕O⊕O⊕D ⊕ [D → D]×D × [D → [D → D]]×D
⊕D ⊕O⊕ N⊕ N× N⊕ N× [D → D]×Dω ×D .

We use the following notations for the injections into D:

Sum dF Fst d, Snd d for d ∈ D,F ∈ [D → D]

zero Nat ?

suc d Prf d for d ∈ D
Nn cni for i, n ∈ N
Natrec(F, d, g, d′) for d, d′ ∈ D,F ∈ [D → D], g ∈ [D → [D → D]]

Casen(F, ~d, d′) for d, d′ ∈ D,F ∈ [D → D], ~d ∈ Dω, n ∈ N

24 A. ABEL, T. COQUAND, AND M. PAGANO

In this extension, the injections Fst, Snd, Natrec, and Case construct neutral elements k.
Soundness for the calculus (`?) requires the canonical element for proof-irrelevant types (?)
to be in every PER; thus we need to redefine application · to have ? ∈ [FunX F]:

? · d = ? .

We also redefine the projections fst and snd to account for neutrals and because they are
used in the definition of

∐
XF , which will be used as the denotation of sigma types.

fst d =


d1 if d = (d1, d2)

? if d = ?

Fst d otherwise

snd d =


d2 if d = (d1, d2)

? if d = ?

Snd d otherwise

Definition 5.26 (Read-back function).

Rj (SumX F) = Σ (Rj X)
(Rj+1 (F Var xj))

Rj Nat = Nat
Rj zero = zero

Rj (suc d) = suc (Rj d)
Rj (Prf d) = Prf (Rj d)
Rj (Nn) = Nn

Rj (d, d′) = (Rj d,Rj d
′)

Rj (Fst d) = fst (Rj d)
Rj (Snd d) = snd (Rj d)

Rj (Natrec(F, d, f, e)) = natrec (Rj+1 (F Var xj))
(Rj d) (Rj f) (Rj e)

Rj ? = ?
Rj (cni) = cni

Rj (Casen(F, 〈d0, . . . , dn−1〉, e)) = casen (Rj+1 (F Var xj)) (Rj d0) · · · (Rj dn−1) (Rj e)

We define inductively new PERs for interpreting naturals and finite types. Note that C0

and C1 are irrelevant, in this way we can model η-expansion for N0 and N1; |X | is also
irrelevant, even when X distinguishes its elements.

Definition 5.27 (More semantic types).

(1) N is the smallest PER over D, such that
(a) Ne ⊆ N
(b) zero = zero ∈ N
(c) suc d = suc d′ ∈ N , if d = d′ ∈ N

(2) If X ∈ PER(D) then |X | := {(d, d′) | d, d′ ∈ dom(X) ∪ {?}} ∈ PER(D).
(3) C0 = |∅| = {(?, ?)},
(4) C1 = |{c1

0}| = {(d, d′) | d, d′ ∈ {?, c1
0}},

(5) Cn = {(cni , cni) | i < n} ∪ Ne, for n > 2.

We add new clauses in the definitions of the partial equivalences for universe and types,
these clauses do not affect the well-foundedness of the order @ defined in 5.18, but now we
have that Nn and Nat are also minimal elements for that order.

Definition 5.28 (Extension of U and T).

(1) Inductive definition of U ∈ PER(D).
(a) If X = X ′ ∈ U , and for all d = d′ ∈ [X], F d = F ′ d′ ∈ U , then SumX F =

SumX ′ F ′ ∈ U .
(b) Nat = Nat ∈ U ,
(c) Nn = Nn ∈ U ,
(d) if X = X ′ ∈ U , then PrfX = PrfX ′ ∈ U .

(2) Inductive definition of T ∈ PER(D).

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 25

(a) If X = X ′ ∈ T , and for all d = d′ ∈ [X], F d = F ′ d′ ∈ T , then SumX F =
SumX ′ F ′ ∈ T .

(b) if X = X ′ ∈ T , then PrfX = PrfX ′ ∈ T .
(3) Recursive definition of [] ∈ dom(T)→ PER(D).

(a) [SumX F] =
∐

[X] (d 7→ [F d]),
(b) [Nn] = Cn
(c) [Nat] = N ,
(d) if X ∈ dom(T), then [PrfX] = {(?, ?)}.

Note that in the PER model, all propositions PrfX are inhabited. In fact, all types are
inhabited, for there is a reflection from variables into any type, be it empty or not. So, the
PER model is unsuited for refuting propositions. However, the logical relation we define in
the next section will only be inhabited for non-empty types.

Remark 5.29. It can be proved by induction on X ∈ T that ? ∈ [X].

Definition 5.30 (Reflection and reification, cf. 5.21).

↑SumX F k = (↑X Fst k, ↑F (↑X Fst k) Snd k)

↑Nat k = k
↑N0

k = ?
↑N1

k = c1
0

↑Nn
k = k for n > 2

↑PrfX k = ?

↓SumX F d = (↓X fst d, ↓F (fst d) snd d)

↓Nat d = d
↓N0

d = ?
↓N1

d = c1
0

↓Nn
d = d

↓PrfX d = ?

⇓ SumX F = Sum (⇓X) (d 7→ ⇓(F ↑X d)) ⇓Nat = Nat

⇓Nn = Nn ⇓PrfX = Prf (⇓X)

For giving semantics to eliminators for data types we need to define partial functions natrec :
[D → D]×D ×D ×D → D, and case : [D → D]×D ×D ×D → D.

Definition 5.31 (Eliminations on D).

(1) Elimination operator for naturals.

natrec(F, d, f, ?) = ?
natrec(F, d, f, zero) = d
natrec(F, d, f, suc e) = (f · e) · natrec(F, d, f, e)
natrec(F, d, f, k) = ↑F k (Natrec(d′ 7→ ⇓F d′,

↓F zero d,
Lam d′ 7→ (Lam e′ 7→ ↓F (suc d′) f · d′ · e′),
k))

(2) Elimination operator for finite types.

casen(F, 〈d0, . . . , dn−1〉, ?) = ?

casen(F, 〈d0, . . . , dn−1〉, cni) = di

casen(F, 〈cn0 , . . . , cnn−1〉, d) = d

casen(F, 〈d0, . . . , dn−1〉, k) = ↑F k Case
n(e 7→ ⇓F e, 〈↓F cn0

d0, . . . , ↓F cnn−1
dn−1〉, k)

26 A. ABEL, T. COQUAND, AND M. PAGANO

Remark 5.32. If for all d = d′ ∈ N , F d = F ′d′ ∈ T , and z = z′ ∈ [F zero], and for all
d = d′ ∈ N and e = e′ ∈ [F d], s · d · e = s′ · d′ · e′ ∈ [F (suc d)], and d = d′ ∈ N then
natrec(F, z, s, d) = natrec(F, z, s, d′) ∈ [F d].

With these new definitions we can now give the semantic equations for the new con-
structs.

Definition 5.33 (Extension of interpretation).

[[ΣAB]]d = Sum ([[A]]d) (d′ 7→ [[B]](d, d′)) [[Nn]]d = Nn

[[Nat]]d = Nat [[Prf A]]d = Prf [[A]]d

[[fst t]]d = fst [[t]]d [[snd t]]d = snd [[t]]d

[[(t, t′)]]d = ([[t]]d, [[t′]]d) [[zero]]d = zero

[[natrec B z s t]]d = natrec(e 7→ [[B]](d, e), [[z]]d, [[s]]d, [[t]]d) [[suc t]]d = suc [[t]]d

[[[a]]]d = ? [[?]]d = ?

[[bwhereB t]]d = [[b]](d, ?) [[cni]]d = cni

[[casen B t0 · · · tn−1 t]]d = casen(e 7→ [[B]](d, e), 〈[[t0]]d, . . . , [[tn−1]]d〉, [[t]]d)

Lemma 5.34 (Laws of proof elimination). β, η, and associativity for where are modeled by
the extended applicative structure.

Proof. See C.3.

Remark 5.35. All of lemmata 5.19, 5.22, and theorems 5.11, and 5.24 are valid for the
extended calculus.

Note that we have defined a proof-irrelevant semantics for (`?) that collapses all ele-
ments of Prf A to ?, which leads to a more efficient implementation of the normalisation
function. However, this semantics is not sound if λIrr is extended with singleton types inter-
preted analogously to C1, i.e., [Sing dX] = |{{d}}X |, because it does not model (sing-eq-el).
(We have d = ? ∈ [Sing dX] for all d ∈ [X], but not necessarily d = ? ∈ [X].) On the
other hand, λIrr without ? can be extended to singleton types as explained in the following
remark.

Remark 5.36 (Extending λIrr by singleton types). Singleton types can be added straight-
forwardly if we employ a proof-relevant semantics:

The domain D is not changed; in particular we have ? ∈ D, and it is readback as before,
Rj ? = ?; hence ? ∈ dom(Nf).

All the enumerated types are modelled in a uniform way: [Nn] = {(cni , cni) | i < n}∪Ne;
proof-irrelevance types Prf A are interpreted as the irrelevant PER with the same domain
as the PER for A: [PrfX] = {(d, d′) | d, d′ ∈ dom([X])}. Reflection and reification for PrfX
are defined respectively as

↑PrfX d = ↑X d and ↓PrfX d = ? .

With these definitions it is clear that the corresponding result for Lem. 5.22 is still valid.
Since dom([PrfX]) = dom([X]), introduction and elimination of proofs can be inter-

preted as follows

[[[a]]]d = [[a]]d and [[bwhereB t]]d = [[b]](d, [[t]]d) ;

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 27

this model is sound with respect to the calculus (`) extended with singleton types; hence
Thm. 5.24 is valid.

Remark 5.37. As was previously said we cannot use this PER model for proving that
there is no closed term in N0. Instead, one can build up a PER model, in the sense of 5.1, of
closed values, where [N0] = ∅. By soundness (Thm. 5.11) it follows that there is no possible
derivation of ` t : N0.

6. Correctness of NbE

In Thm. 5.24 we have proved that the NbE algorithm is complete with respect to the
judgemntal equality of our calculi; a corollary of that fact is totality of NbE.

Remark 6.1. Let Γ ` t : A. Given some d ∈ ([Γ]), we can conclude Ri (↓[[A]]d [[t]]d) is a
well-defined term in normal form.

In this section we prove correctness, with respect to the typing rules, for our NbE
algorithm. This means that given a typing Γ ` t : A, when NbE is applied to t, the
resulting normal form v, is provable equal to t; i.e. Γ ` t = v : A.

Let us anticipate the main results of this section. As a corollary of Thm. 6.11 we show
that a term is related to its denotation with respect to some canonical environment (to be
defined in Def. 6.12). Previously we prove in Lem. 6.6 that if a term is logically related
with some semantic element, then its reification will be judgmentally equal to the term.
Composing these facts we obtain correctness. As a consequence of having correctness and
completeness for NbE, one gets decidability for judgmentally equality: normalise both terms
and check they are syntactically the same. Another important corollary is injectivity for
constructors.

6.1. Logical relations. In this subsection we define logical relations and prove some techni-
cal lemmas about them. As is standard with logical relations one defines them by induction
on types (here we define by induction on semantics of types, i.e. elements of T) and for
basic types they are defined by prescribing the property to be proved; while for higher order
types they are defined using the relations of the domain and image types.

Definition 6.2 (Logical relations). We define simultaneously two families of binary rela-
tions:

(a) If Γ ` then (Γ ` ∼ ∈ T) ⊆ {A | Γ ` A} × T shall be a Γ-indexed family of relations
between well-formed syntactic types A and type values X.

(b) If Γ ` A ∼ X ∈ T then (Γ ` : A ∼ ∈ [X]) ⊆ {t | Γ ` t : A} × [X] shall be a
(Γ, A,X)-indexed family of relations between terms t of type A and values d in PER
[X].

These relations are defined simultaneously by induction on X ∈ T .

(1) Neutral types: X ∈ Ne.
(a) Γ ` A ∼ X ∈ T iff for all ∆ 6i Γ, ∆ ` A pi = R|∆| ⇓X.

(b) Γ ` t : A ∼ d ∈ [X] iff Γ ` A ∼ X ∈ T , and for all ∆ 6i Γ, ∆ ` t pi = R|∆| ↓X d :

A pi.
(2) Universe.

(a) Γ ` A ∼ U ∈ T iff Γ ` A = U.

28 A. ABEL, T. COQUAND, AND M. PAGANO

(b) Γ ` t : A ∼ X ∈ [U] iff Γ ` A = U, and Γ ` t ∼ X ∈ T .
(3) Singletons.

(a) Γ ` A ∼ Sing dX ∈ T iff Γ ` A = {a}A′ and Γ ` a : A′ ∼ d ∈ [X].
(b) Γ ` t : A ∼ d′ ∈ [Sing dX] iff Γ ` A = {a}A′ and Γ ` t : A′ ∼ d ∈ [X], and

Γ ` A′ ∼ X ∈ T .
(4) Function spaces.

(a) Γ ` A ∼ FunX F ∈ T iff Γ ` A = FunA′B, and Γ ` A′ ∼ X ∈ T , and ∆ `
B (pi, s) ∼ F d ∈ T for all ∆ 6i Γ and ∆ ` s : A′ pi ∼ d ∈ [X].

(b) Γ ` t : A ∼ f ∈ [FunX F] iff Γ ` A = FunA′B, Γ ` A′ ∼ X, and ∆ ` app (t pi) s :
B (pi, s) ∼ f · d ∈ [F d] for all ∆ 6i Γ and ∆ ` s : A′ pi ∼ d ∈ [X].

The following technical lemmata show that the logical relations are preserved by judgmental
equality, weakening of the judgement, and the equalities on the corresponding PERs. These
lemmata are proved simultaneously for types and terms.

Lemma 6.3 (Closure under conversion). Let Γ ` A ∼ X ∈ T and Γ ` A = A′. Then,

(a) Γ ` A′ ∼ X ∈ T , and
(b) if Γ ` t : A ∼ d ∈ [X] and Γ ` t = t′ : A then Γ ` t′ : A′ ∼ d ∈ [X].

Proof. By induction on X ∈ T . See C.4.

Lemma 6.4 (Monotonicity). Let ∆ 6i Γ, then

(a) if Γ ` A ∼ X ∈ T , then ∆ ` A pi ∼ X ∈ T ; and
(b) if Γ ` t : A ∼ d ∈ [X], then ∆ ` t pi : A pi ∼ d ∈ [X].

Proof. By induction on X ∈ T . See C.5.

Lemma 6.5 (Closure under PERs). Let Γ ` A ∼ X ∈ T , then

(a) if X = X ′ ∈ T , then Γ ` A ∼ X ′ ∈ T ; and
(b) if Γ ` t : A ∼ d ∈ [X] and d = d′ ∈ [X], then Γ ` t : A ∼ d′ ∈ [X].

Proof. By induction on X = X ′ ∈ T . See C.6.

The following lemma plays a key rôle in the proof of soundness. It proves that if a term
is related to some element in (some PER), then it is convertible to the reification of the
corresponding element in the PER of normal forms.

Lemma 6.6. Let Γ ` A ∼ X ∈ T . Then,

(a) Γ ` A = R|Γ| ⇓X,
(b) if Γ ` t : A ∼ d ∈ [X] then Γ ` t = R|Γ| ↓X d : A; and

(c) if k ∈ Ne and for all ∆ 6i Γ, ∆ ` t pi = R|∆| k : A pi, then Γ ` t : A ∼ ↑X k ∈ [X].

Proof. By induction on X ∈ T . See C.7.

In order to finish the proof of soundness we have to prove that each well-typed term
(and each well-formed type) is logically related to its denotation; with that aim we extend
the definition of logical relations to substitutions and prove the fundamental theorem of
logical relations.

Definition 6.7 (Logical relation for substitutions).

(1) Γ ` σ : � ∼ d ∈ 1 always holds.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 29

(2) Γ ` (σ, t) : ∆.A ∼ (d, d′) ∈
∐
X (d 7→ [F d]) iff Γ ` σ : ∆ ∼ d ∈ X , Γ ` Aσ ∼ F d ∈ T ,

and Γ ` t : Aσ ∼ d′ ∈ [F d].

By the way this relation is defined, the counterparts of 6.3, 6.4, and 6.5 are easily proved
by induction on the co-domain of the substitutions.

Remark 6.8. If Γ ` γ = δ : ∆, and Γ ` γ : ∆ ∼ d ∈ X , then Γ ` δ : ∆ ∼ d ∈ X .

Remark 6.9. If Γ ` δ : ∆ ∼ d ∈ X , then for any Θ 6i Γ, Θ ` δ pi : ∆ ∼ d ∈ X .

Remark 6.10. If Γ ` γ : ∆ ∼ d ∈ X , and d = d′ ∈ X , then Γ ` γ : ∆ ∼ d′ ∈ X .

Theorem 6.11 (Fundamental theorem of logical relations). Let ∆ ` δ : Γ ∼ d ∈ ([Γ]).

(1) If Γ ` A, then ∆ ` Aδ ∼ [[A]]d ∈ T ;
(2) if Γ ` t : A, then ∆ ` t δ : Aδ ∼ [[t]]d ∈ [[[A]]d]; and
(3) if Γ ` γ : Θ then ∆ ` γ δ : Θ ∼ [[γ]]d ∈ ([Θ]).

Proof. By mutual induction on the derivations. See C.9.

We define for each context Γ an element ρΓ of D. This environment will be used to
define the normalisation function.

Definition 6.12 (Canonical environment). We define ρΓ by induction on Γ as follows:

ρ� = >
ρΓ.A = (d′, ↑[[A]]d′ Var xn) where n = |Γ|, and d′ = ρΓ.

By an immediate induction on contexts we can check the following.

Lemma 6.13. If Γ ` then Γ ` idΓ : Γ ∼ ρΓ ∈ ([Γ]).

Proof. By induction on Γ `. See C.8

6.2. Main results. Now we can define concretely the normalisation function as the com-
position of reification with normalisation after evaluation under the canonical environment.
The following corollaries just instantiate previous lemmata and theorems concluding cor-
rectness of NbE.

Definition 6.14 (Normalisation algorithm). Let Γ ` A, and Γ ` t : A.

nbeΓ(A) = R|Γ| ⇓[[A]]ρΓ

nbeAΓ (t) = R|Γ| ↓[[A]]ρΓ
[[t]]ρΓ

Notice that if we instantiate Thm. 6.11 with ρΓ, then a well-typed term t under Γ will be
logically related to its denotation. Finally, using the key lemma 6.6 we conclude correctness
for NbE.

Corollary 6.15. Let Γ ` A, and Γ ` t : A, then by fundamental theorem of logical relations
(and Lem. 6.3),

(1) Γ ` A ∼ [[A]]ρΓ ∈ T ; and
(2) Γ ` t : A ∼ [[t]]ρΓ ∈ [[[A]]ρΓ],

Corollary 6.16 (Soundness of NbE). By way of Lem. 6.6, it follows immediately

30 A. ABEL, T. COQUAND, AND M. PAGANO

(1) Γ ` A = nbe(A), and
(2) Γ ` t = nbe(t) : A.

We have now a decision procedure for judgmental equality; for deciding Γ ` t = t′ : A,
put both terms in normal formal and check if they are syntactically equal.

Corollary 6.17. If Γ ` A, and Γ ` A′, then we can decide Γ ` A = A′. Also if Γ ` t : A,
and Γ ` t′ : A, we can decide Γ ` t = t′ : A.

As a byproduct we can conclude that type constructors are injective; this result is
exploited in the next section where we introduce the type-checking algorithm. Injectivity of
Fun plays a key rôle in all versions of dependent type theory with equality as judgement;
cf. Adams’ [7] proof of equivalence between PTS with equality as a judgement and equality
taken as a relation between untyped terms, improved by Siles and Herbelin [52].

Remark 6.18. By expanding definitions, we easily check

(1) nbeΓ(FunAB) = Fun (nbeΓ(A)) (nbeΓ.A(B)), and
(2) nbeΓ({a}A) = {nbeAΓ (a)}nbeΓ(A).

Corollary 6.19 (Injectivity of Fun and of { }). If Γ ` FunAB = FunA′B′, then
Γ ` A = A′, and Γ.A ` B = B′. Also Γ ` {t}A = {t′}A′, then Γ ` A = A′, and
Γ ` t = t′ : A.

6.3. Calculus λIrrwith proof irrelevance. In this section we introduce the logical rela-
tions for the new types in λIrr. We skip the re-statement of the results given for λSing in
6.1, instead we present in Appendix C the proof for some of the new cases arising in this
calculus for each of lemmata 6.3, 6.4, 6.5, 6.6 and theorem 6.11.

Definition 6.20 (cf. 6.2).

(1) Sigma types.
(a) Γ ` A ∼ SumX F iff Γ ` A = ΣA′B′ and Γ ` A′ ∼ X and for all ∆ 6i Γ and

∆ ` s : A′ pi ∼ d ∈ [X], ∆ ` B′ (pi, s) ∼ F d.
(b) Γ ` t : A ∼ d ∈ [SumX F] iff Γ ` A = ΣA′B′ and Γ ` fst t : A′ ∼ fst d ∈ [X] and

Γ ` snd t : B′ (idΓ, fst t) ∼ snd d ∈ [F (fst d)].
(2) Natural numbers.

(a) Γ ` A ∼ Nat iff Γ ` A = Nat.
(b) Γ ` t : A ∼ d ∈ [Nat] iff Γ ` A ∼ Nat and for all ∆ 6i Γ, ∆ ` t pi = R|∆| d : Nat.

(3) Finite types.
(a) Γ ` A ∼ Nn iff Γ ` A = Nn.
(b) Γ ` t : A ∼ d ∈ [Nn] iff Γ ` A ∼ Nn and for all ∆ 6i Γ, ∆ ` t pi = R|∆| d : Nn.

(4) Proof-irrelevance types.
(a) Γ ` A ∼ PrfX ∈ T iff Γ ` A = Prf A′ and Γ ` A′ ∼ X ∈ T .
(b) Γ ` t : A ∼ d ∈ [PrfX] iff Γ ` A ∼ PrfX.

Remark 6.21.

(1) nbeΓ(ΣAB) = Σ nbeΓ(A) nbeΓ.A(B);

(2) nbeΣAB
Γ ((t, b)) = (nbeAΓ (t),nbe

B (id,t)
Γ (b));

(3) nbe(suc t) = suc nbe(t).
(4) nbe(Prf A) = Prf nbe(A).

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 31

Corollary 6.22. If Γ ` ΣAB = ΣA′B′, then Γ ` A = A′, and Γ.A ` B = B′.

7. Type-checking algorithm

In this section, we define a couple of judgements that represent a bidirectional type checking
algorithm for terms in normal form; its implementation in Haskell can be found in the
appendix. The algorithm is similar to previous ones [20, 4], in that it proceeds by analysing
the possible types for each normal form, and succeeds only if the type’s shape matches the
one required by the introduction rule of the term. The only difference is introduced by the
presence of singleton types; now we should take into account that a normal form can also
have a singleton as its type.

This situation can be dealt in two possible ways; either one checks that the deepest tag
of the normalised type (see Def. 7.2) has the form of the type of the introductory rule; or
one adds a rule for checking any term against singleton types. The first approach requires
to have more rules (this is due to the combination of singletons and a universe). We take
the second approach, which requires to compute the eta-long normal form of the type before
type-checking. We also note that the proof of completeness is more involved, because now
the algorithm is not only driven by the term being checked, but also by the type.

Our algorithm depends on having a good normalisation function; note that this function
does not need to be based on normalisation by evaluation. Also note that the second point
asks for having correctness and completeness of the normalisation function.

Definition 7.1 (Good normalisation function).

(1) nbe({a}A) = {nbe(a)}nbe(A), and nbe(FunAB) = Funnbe(A)nbe(B) ;

(2) nbeΓ(A) = nbeΓ(B) if and only if Γ ` A = B, and nbeAΓ (t) = nbeAΓ (t′), if and only if
Γ ` t = t′ : A.

From these properties we can prove the injectivity of Fun which is crucial for completeness
of type checking λ-abstractions.

7.1. Type-checking λSing. In this section, let V, V ′,W, v, v′, w ∈ Nf , and k ∈ Ne. For
obtaining the deepest tag of a singleton type, we define an operation on types, which is
essentially the same as the one defined by Aspinall [10].

Definition 7.2 (Singleton’s tag).

V =

{
W if V ≡ {w}W
V otherwise.

The predicates for type-checking are defined mutually inductively, together with the function
for inferring types.

Definition 7.3 (Type-checking and type-inference). We define three mutually inductive
algorithmic judgements

Γ ` V ⇐ in context Γ, normal type V checks
Γ ` v ⇐ V in context Γ, normal term v checks against type V
Γ ` k ⇒ V in context Γ, the type of neutral term k is inferred as V .

32 A. ABEL, T. COQUAND, AND M. PAGANO

All three judgements presuppose and maintain the invariant the input Γ is a well-formed
context. The procedures Γ ` V ⇐ and Γ ` v ⇐ V expect their inputs V and v in β-normal
form. Inference Γ ` k ⇒ V expects a neutral term k and returns its principal type V in
long normal form.

Well-formedness checking of types Γ ` V ⇐.

Γ ` U⇐
Γ ` V ⇐ Γ.V `W ⇐

Γ ` FunV W ⇐
Γ ` V ⇐ Γ ` v ⇐ nbe(V)

Γ ` {v}V ⇐
Γ ` k ⇐ U

Γ ` k⇐
Type checking terms Γ ` v ⇐ V .

Γ ` V ⇐ U Γ.V `W ⇐ U

Γ ` FunV W ⇐ U

Γ.V ` v ⇐W

Γ ` λv ⇐ FunV W

Γ ` V ⇐ U Γ ` v ⇐ nbe(V)

Γ ` {v}V ⇐ U

Γ ` v ⇐ V ′ Γ ` v′ = v : V ′

Γ ` v ⇐ {v′}V ′
Γ ` k ⇒ V ′ Γ ` V ′ = V

Γ ` k ⇐ V
V 6≡ {w}W

Type inference Γ ` k ⇒ V .

Γ.Ai. . . . A0 ` vi ⇒ nbe(Ai p
i+1)

Γ ` k ⇒ V Γ ` V = FunV ′W Γ ` v ⇐ V ′

Γ ` app k v ⇒ nbe(W (id, v))

Bidirectional type checking for dependent function types is well-understood [20, 35]; let us
illustrate briefly how it works for singleton types, by considering the type checking problem
{zero}Nat ` q ⇐ {zero}Nat. Here is a skeletal derivation of this judgement, which is at the
same time an execution trace of the type checker:

{zero}Nat ` q⇒ {zero}Nat {zero}Nat ` {zero}Nat = Nat

{zero}Nat ` q⇐ Nat {zero}Nat ` q = zero : Nat

{zero}Nat ` q⇐ {zero}Nat
Since the type to check against is a singleton, the algorithm proceeds by checking {zero}Nat `
q ⇐ Nat and {zero}Nat ` q = zero : Nat. Now the type of the neutral q is inferred and
its tag compared to the given type Nat; as the tag is also Nat, the check succeeds. The
remaining equation {zero}Nat ` q = zero : Nat is derivable by (sing-eq-el). Of course, the
equations are checked by the nbe() function; for example, by using our own function for

normalisation we have nbeNat{zero}Nat(q) = zero = nbeNat{zero}Nat(zero).

Theorem 7.4 (Correctness of type-checking).

(1) If Γ ` V ⇐, then Γ ` V .
(2) If Γ ` v ⇐ V , then Γ ` v : V .
(3) If Γ ` k ⇒ V , then Γ ` k : V .

Proof. By simultaneous induction on Γ ` V ⇐, Γ ` v ⇐ V , and Γ ` V ⇒ k. See C.10.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 33

In order to prove completeness we define a lexicographic order on pairs of terms and
types, in this way we can make induction over the term, and the type.

Definition 7.5. Let v, v′ ∈ Nf , and A,A′ ∈ Type(Γ), then (v,A) ≺ (v′, A′) is the lexico-
graphic order on Nf × Type(Γ). The corresponding orders are v ≺ v′ iff v is an immediate
sub-term of v′; and A ≺Γ A′, iff nbe(A′) ≡ {w}nbe(A).

Theorem 7.6 (Completeness of type-checking).

(1) If Γ ` V , then Γ ` V ⇐.
(2) If Γ ` v : A, then Γ ` v ⇐ nbe(A).

(3) If Γ ` k : A, and Γ ` k ⇒ V ′, then Γ ` nbe(A) = V ′.

Proof. We prove these three statements simultaneously by well-founded induction on the
order ≺. The respective measures are (1) (V,U), (2) (v,A), and (3) (k,A). Details are in
the Appendix C.11.

7.2. Calculus λIrrwith proof irrelevance. We give additional rules for type-checking
and type-inference algorithms for the constructs added in Sect. 2.2. Remember that we
distinguished two calculi: the calculus (`?) has rules (n0-tm) and (prf-tm); while (`)
lacks those rules.

Definition 7.7 (Type-checking and type-inference). Σ-types.

Γ ` V ⇐ Γ.V `W ⇐
Γ ` ΣV W ⇐

Γ ` V ⇐ U Γ.V `W ⇐ U

Γ ` ΣV W ⇐ U

Γ ` v ⇐ V Γ ` v′ ⇐ nbe(W (idΓ, v))

Γ ` (v, v′)⇐ ΣV W

Γ ` k ⇒ ΣV W

Γ ` fst k ⇒ V

Γ ` k ⇒ ΣV W

Γ ` snd k ⇒ nbe(W (idΓ, fst k))

Natural numbers.

Γ ` Nat⇐ Γ ` Nat⇐ U Γ ` zero⇐ Nat

Γ ` v ⇐ Nat

Γ ` suc v ⇐ Nat

Γ.Nat ` V ⇐ Γ ` k ⇒ Nat
Γ ` v ⇐ nbe(V (idΓ, zero)) Γ ` v′ ⇐ FunNat (FunV nbe(V (p p, suc (q p))))

Γ ` natrec V v v′ k ⇒ nbe(V (id, k))

Finite types.

Γ ` Nn⇐ Γ ` Nn ⇐ U

i < n

Γ ` cni ⇐ Nn

Γ.Nn ` V ⇐ Γ ` k ⇒ Nn Γ ` vi ⇐ nbe(V (idΓ, c
n
i))

Γ ` casen V v0 · · · vn−1 k ⇒ nbe(V (id, k))

34 A. ABEL, T. COQUAND, AND M. PAGANO

Proof types.

Γ ` V ⇐
Γ ` Prf V ⇐

Γ ` V ⇐ U

Γ ` Prf V ⇐ U

Γ ` v ⇐ V

Γ ` [v]⇐ Prf V

Γ `W ⇐ Γ ` k ⇒ Prf V Γ.V ` v ⇐ nbe(W p) Γ.V.V p ` vp = v(pp, q) : Wpp

Γ ` vwhereW k ⇒W

We do not show the proof for correctness, because nothing is to be gained from it; suffice
it to say that we can prove correctness with respect to (`?).

Theorem 7.8. The type-checking algorithm is sound with respect to the calculus `?.

Proof. By simultaneous induction on the derivability of the type-checking judgements.

It is clear that the given rules are not complete for checking (`?), because there is no
rule for checking Γ ` ? ⇐ A. Note that it is not possible to have a sound and complete
type-checking algorithm with respect to (`?), for it would imply the decidability of type-
inhabitation. Since type checking happens always before normalisation, we can still use
a good normalisation function with respect to the calculus (`?) for normalising types or
deciding equality. Indeed, if the term to type-check does not contain ?, the need of checking
Γ ` ? ⇐ V will never arise; this is clearly seen by verifying that only sub-terms are type-
checked in the premises.

Theorem 7.9. The type-checking algorithm is complete with respect to the calculus (`).

Proof. By simultaneous induction on the normal form of types and terms, using inversion
on the typing judgement and correctness of nbe().

Corollary 7.10. The type-checking algorithm is correct (by Thm. 7.8 and Cor. 2.15) and
complete with respect to the calculus (`).

8. Conclusion

The main contributions of the paper are the definition of a correct and complete type-
checking algorithm, and a simpler solution to the problem of generating fresh identifiers in
the NbE algorithm for a calculus with singletons, one universe, and proof-irrelevant types.
The type-checker is based on the NbE algorithm which is used to decide equality and to prove
the injectivity of the type constructors. We emphasise that the type-checking algorithm is
modular with respect to the normalisation algorithm. All the results can be extended to a
calculus with annotated lambda abstractions, yielding a type-checking algorithm for terms
not necessarily in normal forms. The NbE algorithm can be implemented fairly easily in
Haskell (cf. Appendix A), but the correctness of the implementation depends on proving
the computational adequacy of the domain semantics with respect to Haskell’s operational
semantics. We have not developed this proof in this article and leave it for to future work.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 35

8.1. Related and Further Work on Singleton Types. Singleton types are used to
model the SML module system and records with manifest fields [21].

Aspinall [10] presents a logical framework with singleton types and subtyping and shows
its consistency via a PER model, yet not decidability. The second author, Pollack, and
Takeyama [21] extend the Aspinall’s framework by η-equality and records and a type check-
ing algorithm which is correct wrt. the PER model. This work is unconventional since there
is no complete syntactical specification of the LF in terms of syntax, typing and equality
rules. Instead, in the style of Martin-Löf meaning explanations, they list a number of infer-
ence rules which are valid in the semantics and prove that type-checked expressions evaluate
to values of the correct semantic type.

Courant [22] shows strong normalization for a variant of Aspinall’s system with equality
defined by reduction. He uses a typed Kripke model of strongly normalizing terms, a variant
of Goguen’s typed operational semantics [29].

Stone and Harper [54] extend Aspinall’s framework by sigma types and eta-equality,
which allows them to reduce singletons at higher types to singletons at base type. Their
decision procedure is type-directed, its completeness is shown via a Kripke model. Crary [23]
gives a simplified decision procedure via hereditary substitutions and proves its correctness
in Twelf, without the need for a model construction. His purely syntactical approach does
not scale to universes, since he cannot handle types defined by recursion. Goguen [30]
follows a similar agenda, he shows decidability for singleton types in the presence of eta by
an eta-expanding translation into a logical framework with beta-equality only. He works
with fully annotated terms in the sense of Streicher [55]. He stresses that his approach does
not scale to computation on the type level.

In the continuation of this work we want to investigate whether our type-checking
algorithm can be simplified if we implement Stone and Harper’s insight that singleton types
at higher types can be defined in terms of singleton base types. Further, we would like to
integrate subtyping in our calculus, which should not be too difficult, since the PER model
already supports subtyping [10, 21].

8.2. Related and Further Work on Proof Irrelevance. Pfenning [47] presents a logical
framework with proof irrelevance that supports irrelevant function arguments, with function
introduction rule (writing (x :Prf A)→ B in our syntax):

Γ, x÷A ` B Γ, x÷A ` t : B

Γ ` λxt : (x :Prf A)→ B

He proves decidability using erasure, mentioning that his technique does not scale to uni-
verses. Elimination of irrelevance is implicitly handled by annotating variables to ensure
proof variables (x÷A) appear only in proofs, in contrast to our explicit use of where []←
in the style of Awodey and Bauer [11]. However, we believe that Pfenning’s proof irrele-
vance can be modeled via bracket types Prf A, with the weaker “monadic” rule for where
(see section 2).

Barras and Bernardo’s [13] presentation of proof irrelevant functions

Γ, x : A ` B Γ, x : A ` t : B x 6∈ FV(t∗)

Γ ` λxt : (x :Prf A)→ B

diverges from Pfenning’s that they allow irrelevant variables x to be relevant in types B.
(In t the variable x might only appear irrelevantly, expressed by the side condition that x

36 A. ABEL, T. COQUAND, AND M. PAGANO

may not be free in the relevant parts t∗ of t.) Barras and Bernardo justify their calculus
by erasing into Miquel’s Implicit Calculus of Constructions (ICC) [41]. The ICC style
irrelevance seems more expressive than Awodey and Bauer’s or Pfenning’s, but the exact
relationship is unclear to us.

Berger’s Uniform Heyting Algebra [15] features uniform quantification {∀x}A (and
{∃x}A) to obtain optimized programs by extraction from proofs. A proof of a uniform
universal

Γ `M : A

Γ ` {∀}+(λxM) : {∀x}A
may not mention term variable x in a computational relevant position. Since the shape of
formulas does not depend on terms, Berger’s calculus can be seen as logical counterpart of
either Pfenning’s or Bruno and Bernardo’s type system.

We see two interesting questions about the different approaches to proof irrelevance
above:

(1) How can Barras and Bernardo’s ICC∗ be understood in terms of judgmental equality à
la Pfenning?

(2) How can ICC∗ and the calculus of Pfenning be extended to full bracket types à la
Awodey and Bauer without explicit use of where.

Acknowledgments. The authors have led many discussions with Peter Dybjer on normal-
ization by evaluation, generalized algebraic theories, and presentation of type theory as
categories with families. The authors thank the referees of a previous version of this article
for their helpful comments. The authors are also grateful for the suggestions made by the
anonymous referees on this long version.

References

[1] M. Abadi, L. Cardelli, P. L. Curien, and J. J. Lévy. Explicit substitutions. In POPL ’90: Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 31–46,
New York, NY, USA, 1990. ACM.

[2] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation for Martin-Löf type theory
with one universe. In Marcelo Fiore, editor, Proc. of the 23rd Conf. on the Mathematical Foundations
of Programming Semantics (MFPS XXIII), volume 173 of Electr. Notes in Theor. Comp. Sci., pages
17–39. Elsevier, 2007.

[3] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-Löf Type
Theory with typed equality judgements. In Proc. of the 22nd IEEE Symp. on Logic in Computer Science
(LICS 2007), pages 3–12. IEEE Computer Soc. Press, 2007.

[4] Andreas Abel, Thierry Coquand, and Peter Dybjer. On the algebraic foundation of proof assistants
for intuitionistic type theory. In Jacques Garrigue and Manuel V. Hermenegildo, editors, Proc. of the
9th Int. Symp. on Functional and Logic Programming, FLOPS 2008, volume 4989 of Lect. Notes in
Comput. Sci., pages 3–13. Springer, 2008.

[5] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic βη-conversion test for Martin-
Löf type theory. In Philippe Audebaud and Christine Paulin-Mohring, editors, Proc. of the 9th Int.
Conf. on Mathematics of Program Construction, MPC 2008, volume 5133 of Lect. Notes in Comput.
Sci., pages 29–56. Springer, 2008.

[6] Samson Abramsky and A Jung. Handbook of Logic in Computer Science, chapter Domain Theory, pages
1–168. Oxford University Press, 1994.

[7] Robin Adams. Pure type systems with judgemental equality. Journal Functional Programming,
16(2):219–246, 2006.

[8] Klaus Aehlig and Felix Joachimski. Operational aspects of untyped normalization by evaluation. Math.
Struct. in Comput. Sci., 14(4):587–611, August 2004.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 37

[9] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. Normalization by evaluation
for typed lambda calculus with coproducts. In Proc. of the 16th IEEE Symp. on Logic in Computer
Science (LICS 2001), pages 303–310. IEEE Computer Soc. Press, 2001.

[10] David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy Tiuryn, editors, Com-
puter Science Logic, 8th Int. Wksh., CSL ’94, volume 933 of Lect. Notes in Comput. Sci., pages 1–15.
Springer, 1995.

[11] Steven Awodey and Andrej Bauer. Propositions as [Types]. J. Log. Comput., 14(4):447–471, 2004.
[12] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisation and type-directed

partial evaluation for typed lambda calculus with sums. In Neil D. Jones and Xavier Leroy, editors,
Proc. of the 31st ACM Symp. on Principles of Programming Languages, POPL 2004, pages 64–76. ACM
Press, 2004.

[13] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a programming language
with dependent types. In FoSSaCS, pages 365–379, 2008.

[14] Stefano Berardi. About the sets-as-propositions embedding of HOL in CC. February 2004.
[15] Ulrich Berger. Uniform Heyting arithmetic. Ann. Pure Appl. Logic, 133(1–3):125–148, 2005.
[16] Ulrich Berger and Helmut Schwichtenberg. An inverse to the evaluation functional for typed λ-calculus.

In Proc. of the 6th IEEE Symp. on Logic in Computer Science (LICS’91), pages 203–211. IEEE Com-
puter Soc. Press, 1991.

[17] Kim Bruce and John C. Mitchell. Per models of subtyping, recursive types and higher-order polymor-
phism. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 316–327, New York, NY, USA, 1992. ACM.

[18] N. G. de Bruijn. Some extensions of Automath : the AUT-4 family. 1994.
[19] J. Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic,

pages 32–209, 1986.
[20] Thierry Coquand. An algorithm for type-checking dependent types. In Proc. of the 3rd Int. Conf. on

Mathematics of Program Construction, MPC ’95, volume 26 of Sci. Comput. Program., pages 167–177.
Elsevier, May 1996.

[21] Thierry Coquand, Randy Pollack, and Makoto Takeyama. A logical framework with dependently typed
records. Fundam. Inform., 65(1-2):113–134, 2005.

[22] Judicaël Courant. Strong normalization with singleton types. In Intersection Types and Related Systems
(ITRS 2002), volume 70 of Electr. Notes in Theor. Comp. Sci. Elsevier, 2002.

[23] Karl Crary. A syntactic account of singleton types via hereditary substitution. In James Cheney and
Amy Felty, editors, 4th Int. Wksh. on Logical Frameworks and Meta-languages: Theory and Practice
(LFMTP 2009), pages 21–29. ACM Press, 2009.

[24] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for Proofs and
Programs, Int. Wksh., TYPES’95, volume 1158 of Lect. Notes in Comput. Sci., pages 120–134. Springer,
1996.

[25] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. J.
Symb. Logic, 65(2):525–549, 2000.

[26] Andrzej Filinski and Henning Korsholm Rohde. A denotational account of untyped normalization by
evaluation. In Igor Walukiewicz, editor, Proc. of the 7th Int. Conf. on Foundations of Software Science
and Computational Structures, FoSSaCS 2004, volume 2987 of Lect. Notes in Comput. Sci., pages
167–181. Springer, 2004.

[27] François Garillot and Benjamin Werner. Simple types in type theory: Deep and shallow encodings. In
Klaus Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics, TPHOLs 2007,
volume 4732 of Lect. Notes in Comput. Sci., pages 368–382. Springer, 2007.

[28] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoret. Comput. Sci. Cambridge University Press, 1989.

[29] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University of Edin-
burgh, August 1994. Available as LFCS Report ECS-LFCS-94-304.

[30] Healfdene Goguen. A syntactic approach to eta equality in type theory. In Jens Palsberg and Mart́ın
Abadi, editors, Proc. of the 32nd ACM Symp. on Principles of Programming Languages, POPL 2005,
pages 75–84. ACM Press, January 2005.

38 A. ABEL, T. COQUAND, AND M. PAGANO

[31] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In Proc. of the 7th
ACM SIGPLAN Int. Conf. on Functional Programming (ICFP ’02), volume 37 of SIGPLAN Notices,
pages 235–246. ACM Press, September 2002.

[32] Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defining Logics. Journal of the
Association of Computing Machinery, 40(1):143–184, January 1993.

[33] INRIA. The Coq Proof Assistant, Version 8.1. INRIA, 2007. http://coq.inria.fr/.
[34] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Standard ML.

In Martin Hofmann and Matthias Felleisen, editors, Proc. of the 34th ACM Symp. on Principles of
Programming Languages, POPL 2007, pages 173–184. ACM Press, 2007.

[35] Andreas Löh, Conor McBride, and Wouter Swierstra. A tutorial implementation of a dependently typed
lambda calculus. Fundam. Inform., 102(2):177–207, 2010.

[36] Odalric-Ambrym Maillard. Proof-irrelevance, strong-normalisation in Type-Theory and PER. Technical
report, Chalmers Institute of Technology, 2006.

[37] Per Martin-Löf. An Intuitionistic Theory of Types. Technical report, 1972.
[38] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[39] Per Martin-Löf. Normalization by evaluation and by the method of computability. Talk at JAIST, Japan

Advanced Institute of Science and Technology, Kanazawa, June 2004.
[40] Conor McBride. Epigram: Practical programming with dependent types. In Varmo Vene and Tarmo

Uustalu, editors, 5th Int. School on Advanced Functional Programming, AFP 2004, Revised Lectures,
volume 3622 of Lect. Notes in Comput. Sci., pages 130–170. Springer, 2005.

[41] Alexandre Miquel. The implicit calculus of constructions. In Samson Abramsky, editor, Proc. of the
5th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2001, volume 2044 of Lect. Notes in
Comput. Sci., pages 344–359. Springer, 2001.

[42] John C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions (summary). In LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional
programming, pages 308–319, New York, NY, USA, 1986. ACM.

[43] John C. Mitchell. Type systems for programming languages. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 365–458. 1990.

[44] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Symposium
on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[45] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin Löf ’s Type Theory: An
Introduction. Clarendon Press, Oxford, 1990.

[46] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis,
Dept of Comput. Sci. and Engrg., Chalmers, Göteborg, Sweden, September 2007.

[47] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In LICS
2001: IEEE Symposium on Logic in Computer Science, June 2001.

[48] Gordon Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5:223–255, 1977.
[49] Robert Pollack. Closure under alpha-conversion. In Henk Barendregt and Tobias Nipkow, editors, Types

for Proofs and Programs (TYPES’93), Nijmegen, The Netherlands, volume 806 of Lect. Notes in Com-
put. Sci., pages 313–332. Springer, 1994.

[50] Giovanni Sambin and Silvio Valentini. Building up a toolbox for Martin-Löf’s type theory: subset
theory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36, chapter Oxford
Logic Guides, pages 221–244. Oxford University Press, New York, 1998.

[51] Natarajan Shankar and Sam Owre. Principles and Pragmatics of Subtyping in PVS. In WADT ’99:
Selected papers from the 14th International Workshop on Recent Trends in Algebraic Development Tech-
niques, pages 37–52, London, UK, 2000. Springer-Verlag.

[52] Vincent Siles and Hugo Herbelin. Equality is typable in semi-full pure type systems. In LICS, pages
21–30, 2010.

[53] Matthieu Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor McBride, editors, Types
for Proofs and Programs, Int. Wksh., TYPES 2006, volume 4502 of Lect. Notes in Comput. Sci., pages
237–252. Springer, 2007.

[54] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types. ACM Trans.
Comput. Logic, 7(4):676–722, 2006.

[55] Thomas Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhäuser
Verlag, Basel, 1991.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 39

[56] Benjamin Werner. On the strength of proof-irrelevant type theories. Logical Meth. in Comput. Sci., 4,
2008.

Appendix A. Normalisation by evaluation

type Type = Term

data Term = U -- universe

| Fun Type Type -- dependent function space

| Singl Term Type -- singleton type ({a}A)

| App Term Term -- application

| Lam Term -- abstraction

| Q -- variable

| Sub Term Subst -- substitution

| Sigma Type Type -- dependent pair type

| Fst Term -- first projection

| Snd Term -- second projection

| Pair Term Term -- dependent pair

| Nat -- naturals

| Zero -- 0

| Suc Term -- +1

| Natrec Type Term Term Term -- elimination for Nat

| Prf Type -- proof (with proof irrelevance)

| Box Term -- a term in Prf A

| Star -- canonical element of Prf A

| Where Type Term Term -- Box elimination

| Enum Int -- Enum n has n elements

| Const Int Int -- Const n i is the ith element

| Case Int Type [Term] Term -- elimination for Enum n

deriving (Eq ,Show)

data Subst = E -- empty substitution

| Is -- identity substitution

| Ext Subst Term -- extension

| P -- weakening

| Comp Subst Subst -- composition

deriving (Eq ,Show)

type DT = D -- semantic types

data D = T -- terminal object (empty context)

| Ld (D → D) -- function

| FunD DT (D → DT) -- dependent function type

| UD -- universe

| SingD D DT -- singleton type

| Vd Int -- free variable

| AppD D D -- neutral application

40 A. ABEL, T. COQUAND, AND M. PAGANO

| SumD DT (D → DT) -- dependent pair type

| PairD D D -- context comprehension

| FstD D -- first projection of neutral

| SndD D -- second projection of neutral

| NatD -- natural number type

| ZeroD -- 0

| SucD D -- +1

| NatrecD (D → DT) D D D -- recursion on neutrals

| PrfD DT -- proof type

| StarD -- don’t care

| EnumD Int -- enumeration type

| ConstD Int Int -- constants in EnumD

| CaseD Int (D → DT) [D] D -- elimination on neutrals

type Ctx = [Type]

pi1 , pi2 :: D → D

pi1 (PairD d d ′) = d

pi1 StarD = StarD

pi1 k = FstD k

pi2 (PairD d d ′) = d ′

pi2 StarD = StarD

pi2 k = SndD k

ap :: D → D → D

ap (Ld f) d = f d

ap StarD = StarD

neutralD :: D → Bool

neutralD (Vd) = True

neutralD (AppD) = True

neutralD (FstD) = True

neutralD (SndD) = True

neutralD (NatrecD) = True

neutralD (CaseD) = True

neutralD StarD = True

neutralD = False

natrec :: (D → DT)→ D → D → D → D

natrec b z s StarD = StarD

natrec b z s ZeroD = z

natrec b z s (SucD e) = (s ‘ap‘ e) ‘ap‘ (natrec b z s e)

natrec b z s d | neutralD d = up (b d)

(NatrecD (λe → downT (b e))

(down (b ZeroD) z)

downSuc

d)

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 41

where downSuc = down (FunD NatD

(λn → FunD (b n)

(λe → b (SucD n))))

s

downs :: Int → (D → DT)→ [D]→ Int → [D]

downs [] = []

downs n f (d : ds) i = down (f (ConstD n i)) d : downs n f ds (i + 1)

constD :: Int → Int → D → Bool

constD n i (ConstD m j) = m ≡ n ∧ i ≡ j

constD = False

caseD :: Int → (D → DT)→ [D]→ D → D

caseD n b ds StarD = StarD

caseD n b ds (ConstD m i) | n ≡ m ∧ i < n = ds !! i

caseD n b ds d | neutralD d ∧
and [constD n i (ds !! i) | i ← [0 . .n − 1]] = up (b d) d

caseD n b ds d | neutralD d = up (b d)

(CaseD n (λe → downT (b e))

(downs n b ds 0)

d)

up :: DT → D → D

up (SingD a x) k = a

up (FunD a f) k = Ld (λd → up (f d) (AppD k (down a d)))

up (SumD a f) k = PairD (up a (FstD k))

(up (f (up a (FstD k))) (SndD k))

up (PrfD a) k = StarD

up (EnumD 0) k = StarD

up (EnumD 1) k = ConstD 1 0

up d k = k

down :: DT → D → D

down UD d = downT d

down (SingD a x) d = down x a

down (FunD a f) d = Ld (λe → down (f (up a e)) (d ‘ap‘ (up a e)))

down (SumD a b) d = PairD (down a (pi1 a)) (down (b (pi1 d)) (pi2 d))

down (PrfD a) d = StarD

down (EnumD 1) d = ConstD 1 0

down d e = e

downT :: DT → DT

downT (SingD a x) = SingD (down x a) (downT x)

downT (FunD a f) = FunD (downT a) (λd → downT (f (up a d)))

downT (SumD a b) = SumD (downT a) (λd → downT (b (up a d)))

downT (PrfD a) = PrfD (downT a)

downT d = d

42 A. ABEL, T. COQUAND, AND M. PAGANO

readback :: Int → D → Term

readback i UD = U

readback i (FunD a f) = Fun (readback i a) (readback (i + 1) (f (Vd i)))

readback i (SingD a x) = Singl (readback i a) (readback i x)

readback i (Ld f) = Lam (readback (i + 1) (f (Vd i)))

readback i (Vd n) = mkvar (i − n − 1)

readback i (AppD k d) = App (readback i k) (readback i d)

readback i (FstD d) = Fst (readback i d)

readback i (SndD d) = Snd (readback i d)

readback i (PairD d e) = Pair (readback i d) (readback i e)

readback i (SumD a b) = Sigma (readback i a) (readback (i + 1) (b (Vd i)))

readback i NatD = Nat

readback i ZeroD = Zero

readback i (SucD e) = Suc (readback i e)

readback i (NatrecD b z s e) = Natrec (Fun Nat (readback (i + 1) (b (Vd i))))

(readback i z)

(readback i s)

(readback i e)

readback i (PrfD d) = Prf (readback i d)

readback i StarD = Star

readback i (EnumD n) = Enum n

readback i (ConstD n j) = Const n j

readback i (CaseD n b ds d) = Case n (readback (i + 1) (b (Vd i)))

(map (readback i) ds)

(readback i d)

-- Evaluation

type Env = D

eval :: Term → Env → D

eval U d = UD

eval (Fun t f) d = FunD (eval t d) (λd ′ → eval f (PairD d d ′))

eval (Singl t a) d = SingD (eval t d) (eval a d)

eval (Lam t) d = Ld (λd ′ → eval t (PairD d d ′))

eval (App t r) d = (eval t d) ‘ap‘ (eval r d)

eval Q d = pi2 d

eval (Sub t s) d = eval t (evalS s d)

eval (Sigma t r) d = SumD (eval t d) (λe → eval r (PairD d e))

eval (Fst t) d = pi1 (eval t d)

eval (Snd t) d = pi2 (eval t d)

eval (Pair t r) d = PairD (eval t d) (eval r d)

eval Nat d = NatD

eval Zero d = ZeroD

eval (Suc t) d = SucD (eval t d)

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 43

eval (Natrec b z s t) d = natrec (λe → eval b (PairD d e))

(eval z d)

(eval s d)

(eval t d)

eval (Prf t) d = PrfD (eval t d)

eval (Box t) d = StarD

eval Star d = StarD

eval (Where t b p) d = eval b (PairD d StarD)

eval (Enum n) d = EnumD n

eval (Const n i) d = ConstD n i

eval (Case n b ts t) d = caseD n (λe → eval b (PairD d e))

(map ((flip eval) d) ts)

(eval t d)

evalS :: Subst → Env → Env

evalS E d = T

evalS Is d = d

evalS (Ext s t) d = PairD (evalS s d) (eval t d)

evalS P d = pi1 d

evalS (Comp s s ′) d = (evalS s ◦ evalS s ′) d

nbe :: Type → Term → Term

nbe ty t = readback 0 (down (eval ty T) (eval t T))

nbeTy :: Type → Type

nbeTy ty = readback 0 (downT (eval ty T))

nbeOpen :: Ctx → Type → Term → Term

nbeOpen ctx ty t = readback n (down (eval ty env) (eval t env))

where n = length ctx

env = mkenv n ctx

nbeOpenTy :: Ctx → Type → Type

nbeOpenTy ctx ty = readback n (downT (eval ty env))

where n = length ctx

env = mkenv n ctx

mkenv :: Int → Ctx → Env

mkenv 0 [] = T

mkenv n (t : ts) = PairD d ′ (up td (Vd (n − 1)))

where d ′ = mkenv (n − 1) ts

td = eval t d ′

mkvar :: Int → Term

mkvar n | n ≡ 0 = Q

| otherwise = Sub Q (subs (n − 1))

subs n | n ≡ 0 = P

subs n | otherwise = Comp P (subs (n − 1))

44 A. ABEL, T. COQUAND, AND M. PAGANO

Appendix B. Type-checking algorithm

Type checking algorithm for normal forms, and type inference algorithm for neutral
terms.

Checking well-formedness of types.

chkType :: Ctx → Type → Bool

chkType ts U = True

chkType ts (Fun t r) = chkType ts t ∧ chkType (t : ts) r

chkType ts (Singl a t) = chkType ts t ∧ chkTerm ts t a

chkType ts (Sigma t r) = chkType ts t ∧ chkType (t : ts) r

chkType ts Nat = True

chkType ts (Prf t) = chkType ts t

chkType ts (Enum n) = True

chkType ts Q = chkNeTerm ts U Q

chkType ts w@(Sub Q s) = chkNeTerm ts U w

chkType ts w@(App k v) = chkNeTerm ts U w

chkType ts w@(Fst k) = chkNeTerm ts U w

chkType ts w@(Snd k) = chkNeTerm ts U w

chkType ts w@(Natrec t ′ v v ′ k) = chkNeTerm ts U w

chkType = False

Checking the types of terms.

sgSub :: Term → Term → Term

sgSub t t ′ = Sub t (Ext Is t ′)

chkTerm :: Ctx → Type → Term → Bool

chkTerm ts U (Fun t t ′) = chkTerm ts U t ∧
chkTerm (t : ts) U t ′

chkTerm ts U (Singl e t) = chkTerm ts U t ∧
chkTerm ts t e

chkTerm ts U (Sigma t t ′) = chkTerm ts U t ∧
chkTerm (t : ts) U t ′

chkTerm ts U Nat = True

chkTerm ts (Fun t t ′) (Lam e) = chkTerm (t : ts) t ′ e

chkTerm ts (Singl e t) e ′ = chkTerm ts (nbeOpenTy ts t) e ′ ∧
(nbeOpen ts e t) ≡ (nbeOpen ts e ′ t)

chkTerm ts (Sigma t r) (Pair e e ′) = chkTerm ts t e ∧
chkTerm ts (nbeOpenTy ts (sgSub r e)) e ′

chkTerm ts Nat Zero = True

chkTerm ts Nat (Suc t) = chkTerm ts Nat t

chkTerm ts (Prf t) (Box e) = chkTerm ts t e

chkTerm ts (Enum n) (Const m i) = m ≡ n ∧ i < n

chkTerm ts t e | neutral e = chkNeTerm ts t e

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 45

chkTerm = False

neutral :: Term → Bool

neutral Q = True

neutral (Sub Q s) = True

neutral (App k v) = True

neutral (Fst k) = True

neutral (Snd k) = True

neutral (Natrec t ′ v v ′ k) = True

neutral (Case n b ts t) = True

neutral (Where t b p) = True

neutral = False

erase :: Type → Type

erase (Singl e t) = erase t

erase t = t

maybeEr :: Maybe Type → Maybe Type

maybeEr = maybe Nothing (Just ◦ erase)

chkNeTerm :: Ctx → Type → Term → Bool

chkNeTerm ts t e = case maybeEr (infType ts e) of

Just t ′ → t ≡ t ′

Nothing → False

Inferring the types of neutral terms.

nbeType :: Ctx → Type → Maybe Type

nbeType ctx t = Just (nbeOpenTy ctx t)

infType :: Ctx → Term → Maybe Type

infType (t : ts) Q = nbeType (t : ts) (Sub t P)

infType ts (Sub Q s) = case infType (infCtx ts s) Q of

Just t → nbeType ts (Sub t s)

→ Nothing

infType ts (App e e ′) = case maybeEr (infType ts e) of

Just (Fun t t ′)→
if chkTerm ts t e ′

then nbeType ts (sgSub t ′ e ′)

else Nothing

→ Nothing

infType ts (Fst e) = case maybeEr (infType ts e) of

Just (Sigma t t ′)→ Just t

→ Nothing

infType ts (Snd e) = case maybeEr (infType ts e) of

Just (Sigma t t ′)→ nbeType ts (sgSub t ′ (Fst e))

→ Nothing

46 A. ABEL, T. COQUAND, AND M. PAGANO

infType ts (Natrec t v w k) = case maybeEr (infType ts k) of

Just Nat → if

chkType (Nat : ts) t ∧
chkTerm ts (nbeOpenTy ts (sgSub t Zero)) v ∧
chkTerm (Nat : ts)

(Fun (sgSub t Q)

(sgSub t (Suc (Sub Q P)))) w

then nbeType ts (sgSub t k)

else Nothing

→ Nothing

infType ts (Where t b k) = case maybeEr (infType ts k) of

Just (Prf t ′)→ if chkType ts t ∧
chkTerm (t ′ : ts) t b ∧

nbeOpen ts ′ w (Sub b (Ext (subs 1) Q)) ≡
nbeOpen ts ′ w (Sub b P)

then Just t

else Nothing

where ts ′ = Sub t ′ P : t ′ : ts

w = Sub t (subs 1)

→ Nothing

infType ts (Case n b cs k) = case maybeEr (infType ts k) of

Just (Enum m)→ if m ≡ n ∧
chkType (Enum n : ts) b ∧
chkList ts n b 0 cs

then nbeType ts (sgSub b k)

else Nothing

→ Nothing

infType = Nothing

chkList :: Ctx → Int → Type → Int → [Term]→ Bool

chkList ts [] = True

chkList ts n b i (e : es) = chkTerm ts (nbeOpenTy ts (sgSub b (Const n i))) e ∧
chkList ts n b (i + 1) es

infCtx :: Ctx → Subst → Ctx

infCtx (t : ts) P = ts

infCtx (t : ts) (Comp P s) = infCtx ts s

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 47

Appendix C. Proofs

C.1. Proof of Lemma 5.19. By induction on X = X ′ ∈ T . We do not show the base cases,
for they are trivial.

(1) Let Sing dX = Sing d′X ′ ∈ T .

[X] = [X ′] by ind. hyp.

d = d′ ∈ [X] by ind. hyp.

e = d ∈ [X] and e′ = d ∈ [X] hypothesis

e = d′ ∈ [X] and e′ = d′ ∈ [X] by transitivity

{{d}}X = {{d′}}X′ by definition.

(2) Let FunX F = FunX ′ F ′ ∈ T .

[X] = [X ′] by ind. hyp.

for all d ∈ dom([X]), F d = F ′ d ∈ T by definition (*)

for all d = d′ ∈ [X], f · d = f ′ · d′ ∈ [F d] hypothesis

f · d = f ′ · d′ ∈ [F ′ d] by ind. hypothesis in (*).

C.2. Proof of Lemma 5.22. By induction on X = X ′ ∈ T .

(a) Case Sing dX = Sing d′X ′ ∈ T .
(1) The partial function ↑ maps neutrals to related elements in the corresponding PER.

k = k ∈ Ne hypothesis

d = d′ ∈ [X] and X = X ′ ∈ T by inversion

↑Sing dX k = d and ↑Sing d′X′ k′ = d′ by def.

d = d′ ∈ {{d}}X by def. of this PER.

(2) The partial function ↓ maps related elements to related normal forms.

d1 = d2 ∈ {{d}}X hypothesis

d1 = d2 = d = d′ ∈ [X] and X = X ′ ∈ T by inversion

↓X d = ↓X′ d′ ∈ Nf by ind. hyp.

↓Sing dX d1 = ↓Sing d′X′ d2 ∈ Nf by def.

(3) The function ⇓ maps related elements in T to normal forms.

⇓ Sing dX = Sing (↓X d) (⇓X) by def.

⇓ Sing d′X ′ = Sing (↓X′ d′) (⇓X ′) by def.

↓X d = ↓X′ d′ ∈ Nf by ind. hyp.

⇓X = ⇓X ′ ∈ Nf by ind. hyp.

Sing (↓X d) (⇓X) = Sing (↓X d) (⇓X) ∈ Nf by Lem. 5.16.

(b) Case FunX F = FunX ′ F ′ ∈ T .

48 A. ABEL, T. COQUAND, AND M. PAGANO

(1) The partial function ↑ maps neutrals to related elements in the corresponding PER.

k = k′ ∈ Ne hypothesis

d = d′ ∈ [X] hypothesis (*)

X = X ′ ∈ T by inversion (†)
F d = F ′ d′ ∈ T by inversion (**)

↓X d = ↓X′ d′ ∈ Nf by ind. hyp. on (*) and (†)
App k (↓X d) = App k′ (↓X′ d′) ∈ Ne by Lem. 5.16 (‡)
↑F d (App k (↓X d)) = ↑F ′ d′ (App k′ (↓X′ d′)) ∈ [F d] by ind. hyp. on (**) and (‡)
↑FunX F k = ↑FunX′ F ′ k′ ∈ [FunX F] by def.

(2) The partial function ↓ maps related elements to related normal forms.

X = X ′ ∈ T by inversion (*)

f = f ′ ∈ [FunX F] hypothesis

k = k′ ∈ Ne hypothesis

↑X k = ↑X′ k′ ∈ [X] by ind. hyp. on (*) (†)
d := ↑X k abbreviation

d′ := ↑X′ k′ abbreviation

F d = F ′ d′ ∈ T by inversion and (†) (**)

f · d = f ′ · d′ ∈ [F d] definition of [FunX F] (‡)
↓F d (f · d) = ↓F ′ d′ (f ′ · d′) ∈ Nf by ind. hyp. on (‡)
(↓FunX F f) · k = (↓FunX′ F ′ f ′) · k′ ∈ Nf by def.

↓FunX F f = ↓FunX′ F ′ f ′ ∈ Nf by Lem. 5.16

(3) The function ⇓ maps related elements in T to normal forms.

X = X ′ ∈ T by inversion (*)

⇓X = ⇓X ′ ∈ Nf by ind. hyp. on (*) (**)

k = k′ ∈ Ne hypothesis.

↑X k = ↑X′ k′ ∈ [X] by ind. hyp. on (*) (†)
d := ↑X k abbr.

d′ := ↑X′ k′ abbr.

F d = F ′ d′ ∈ T by inversion and (†) (‡)
⇓(F d) = ⇓(F ′ d′) ∈ Nf by ind. hyp. on (‡)
⇓(FunX F) = ⇓(FunX ′ F ′) ∈ Nf by Lem. 5.16

C.3. Proof of Lemma 5.34. The proofs of soundness for (prf-β) and (prf-η) have the same
structure, so we show only the first one.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 49

(prf-β) bwhereB [a] = b (id, a)

[[bwhereB [a]]]d

= [[b]](d, ?) def. of semantics for bwhereB [a]

= [[b]](d, [[a]]d) ind. hypothesis on Γ.A.A p ` b p = b (p p, q) : B p p

= [[b]]([[(id, a)]]d) def. of semantics for substitutions

= [[b (id, a)]]d

(prf-assoc) awhereA (bwhereB c) = (a (p p, q)whereA p b)whereB c

[[awhereA (bwhereB c)]]d = [[a]](d, ?)
= [[a]](d, [[b]](d, ?))
= [[a (p p, q)]]((d, ?), [[b]](d, ?))
= [[a (p p, q)whereA p b)]](d, ?)
= [[(a (p p, q)whereA p b)whereB c]]d

C.4. Proof of Lemma 6.3. By induction on X ∈ T .

(a) Types; in all cases we use symmetry and transitivity to show the conditions. We only
show the case for FunX F .
(1) X = FunX ′ F :

Γ ` A = FunBC by definition (*)

Γ ` B ∼ X ′ by definition

∆ ` C (pi, s) ∼ F d ∈ T by definition

for all ∆ 6i Γ and ∆ ` s : B pi ∼ d ∈ [X ′]

Γ ` A′ = FunBC by sym. and trans. on (*)

(2) Nn ∈ T .

Γ ` t : A ∼ d ∈ [N1] hypothesis (*)

Γ ` t = t′ : A hypothesis (†)
∆ ` t pi = Ri d : A pi by inversion on (*) (**)

∆ ` t pi = t′ pi : A pi by congruence on (†) (‡)
∆ ` t′ pi = Ri d : A pi by sym. and trans. on (**) and (‡)

(b) Terms. As in the case for types, we use symmetry and transitivity. We show only the
case for singletons and functions.
(1) X = Sing dX ′:

Γ ` A = {b}B by hypothesis (*)

Γ ` B ∼ X ′ ∈ T by hypothesis

Γ ` t : B ∼ d ∈ [X ′] by hypothesis (†)
Γ ` A′ = {b}B by sym. and trans. on (*)

Γ ` t′ : B ∼ d ∈ [X ′] By i.h. on (†)

50 A. ABEL, T. COQUAND, AND M. PAGANO

(2) X = FunX ′ F :

Γ ` A = FunBC by hypothesis (*)

Γ ` B ∼ X ′ by hypothesis

∆ ` app t pi s : C (pi, s) ∼ f · d ∈ [F d] by hypothesis

for all ∆ 6i Γ and ∆ ` s : B pi ∼ d ∈ [X ′]

Γ ` A′ = FunBC by sym. and trans. on (*) (†)
∆ ` app t pi s = app t′ pi s : C (pi, s) by congruence on (†) (‡)
∆ ` app t′ pi s : C (pi, s) ∼ f · d ∈ [F d] by i.h. on (‡)

C.5. Proof of Lemma 6.4. By induction on X ∈ T . This property is trivial for the base
cases; for singletons is obtained by applying the i.h. We show two cases.

(1) Let X = FunX ′ F .

Γ ` A = FunBC by hypothesis (*)

Γ ` B ∼ X ′ (†)
Θ ` C (pi, s) ∼ F d ∈ T by hypothesis

for all Θ 6i Γ and Θ ` s : B pi ∼ d ∈ [X ′]

∆ ` A pi = Fun (B pi) (C (pi p, q)) by congruence on (*)

∆ ` B pi ∼ X by i.h. on (†)
Θ′ ` s : (B pi) pj ∼ d ∈ [X],with Θ′ 6j ∆ hypothesis

Θ′ ` s : B pi+j ∼ d ∈ [X] by rem. 2.1 and 6.3 (‡)
Θ′ ` C (pi+j q, s) ∼ F d by hyp. using (‡)
Θ′ ` C (pi p, q) (pj , s) ∼ F d By congruence and 6.3

(2) PrfX ∈ T . As mentioned earlier if Γ ` A ∼ PrfX ∈ T then Γ ` : A ∼ ∈ [PrfX]
is non-empty if and only if Γ ` : A is not empty.

Γ ` t : A ∼ d ∈ [PrfX] hypothesis (*)

Γ ` t : A by inversion on (*) (†)
Γ ` A ∼ PrfX ∈ T by inversion on (*) (**)

∆ ` t pi : A pi by weakening on (†)
∆ ` A pi ∼ PrfX ∈ T by monotonicity for types on (**)

∆ ` t pi : A pi ∼ d ∈ [PrfX] by definition of log. rel.

We do not show proofs for the second part, since the most involved case is dealt analogously
to the case for FunX ′ F .

C.6. Proof of Lemma 6.5. By induction on X = X ′ ∈ T . Note that the first part for the
base cases is trivial; the second point is also trivial for X ∈ Ne. Thus we do not show those
parts of the proof.

(a) Types.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 51

(1) Sing dX = Sing d′X ′.

Γ ` A = {b}B by hypothesis (*)

Γ ` B ∼ X ∈ T by hypothesis

Γ ` t : B ∼ d ∈ [X] by hypothesis (†)
Γ ` t : B ∼ d′ ∈ [X ′] By i.h. on (*) and (†)

(2) FunX F = FunX ′ F ′.

Γ ` A = FunBC by hypothesis

Γ ` B ∼ X ′ by hypothesis (*)

Θ ` C (pi, s) ∼ F d ∈ T by hypothesis (†)
for all Θ 6i Γ and Θ ` s : B pi ∼ d ∈ [X ′]

Γ ` B ∼ X ′ ∈ T By i.h. on (*)

Θ ` B (pi, s) ∼ F ′ d ∈ T by i.h. on (†)
(b) Terms.

(1) e = e′ ∈ [Sing dX].

Γ ` A = {b}B by hypothesis

Γ ` B ∼ X ∈ T by hypothesis (*)

Γ ` t : B ∼ d ∈ [X] by hypothesis (†)
e′ = d ∈ [X] by def. of e = e′ ∈ [Sing dX] (**)

Γ ` t : B ∼ e′ ∈ [X] by i.h. on (*), (†), and (**),

(2) f = f ′ ∈ [FunX F].

Γ ` A = FunBC

Γ ` B ∼ X (*)

∆ ` app t pi s : C (pi, s) ∼ f · d ∈ [F d] (†)
for all ∆ 6i Γ and ∆ ` s : B pi ∼ d ∈ [X] . (**)

By i.h. on (*) and (**) and monotonicity 6.4

∆ ` s : A′ pi ∼ d′ ∈ [X ′] .

By i.h. on (†)
∆ ` app (t pi) s : B (pi, s) ∼ f ′ · d′ ∈ [F d′] .

52 A. ABEL, T. COQUAND, AND M. PAGANO

(3) d = d′ ∈ [SumX F].

d = d′ ∈ [SumX F] hypothesis (*)

Γ ` t : A ∼ d ∈ [SumX F] hypothesis (**)

Γ ` A = ΣA′B by inversion on (**)

Γ ` ΣA′B ∼ SumX F ∈ T by inversion on (**)

Γ ` fst t : A′ ∼ fst d ∈ [X] by inversion on (*) (†)
Γ.A′ ` snd t : B (id, fst t) ∼ snd d ∈ [F fst d] by inversion on (**) (‡)
fst d = fst d′ ∈ [X] by definition of (*) (††)
snd d = snd d′ ∈ [F fst d] by definition of (*) (‡‡)
Γ ` fst t : A′ ∼ fst d′ ∈ [X] by ind. hyp. on (†) and (††)
Γ.A′ ` snd t : B (id, fst t) ∼ snd d′ ∈ [F fst d′] by ind. hyp. on (‡) and (‡‡).

C.7. Proof of Lemma 6.6. By induction on X ∈ T . By induction on X ∈ T . For a better
organisation of the proof we show the proofs for each point separately.

(a) Γ ` A = R|Γ| ⇓X. We skip the part for the minimal elements in T .
(1) Sing dX:

Γ ` A′ = R|Γ| ⇓X by ind. hyp.

Γ ` t = R|Γ| ↓X d : A′ by ind. hyp.

Γ ` {a}A′ = {R|Γ| ↓X d}R|Γ| ⇓X by congruence and transitivity

(2) FunX F :

Γ ` A′ = R|Γ| ⇓X by ind. hyp.

∆ ` B (pi, s) = R|∆| ⇓F d (*)

for any ∆ 6i Γ and ∆ ` s : A′ pi ∼ d ∈ [X]

Γ.A′ ` q : A′ p ∼ ↑X Var x|Γ| by ind. hyp. (†)
Γ.A′ ` B (p, q) = R|Γ.A′| ⇓F ↑X Var x|Γ| by instantiating (*) with (†)
Γ.A′ ` B = R|Γ.A′| ⇓F ↑X Var x|Γ| by 6.3.

(b) Γ ` t = R|Γ| ↓X d : A. We skip the part for the minimal elements in T .
(1) d′ ∈ [Sing dX]:

Γ ` A = {b}B (*)

Γ ` B ∼ X ∈ T
Γ ` t : B ∼ d ∈ [X] (†)
Γ ` t = R|Γ| ↓X d : B by ind. hyp. in (†)
Γ ` t = R|Γ| ↓X d : {t}B by conversion and (sing-eq-i)

Γ ` t = R|Γ| ↓X d : A by conversion

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 53

(2) f ∈ [FunX F]:

Γ.A′ ` q : A′ p ∼ ↑X Var x|Γ| ∈ [X] by ind. hyp. on the third part

d := ↑X Var x|Γ| abbreviation

Γ.A′ ` app (t p) q : B (p, q) ∼ f · d ∈ [F d] by definition of the logical relation

Γ.A′ ` app (t p) q = R|Γ.A| ↓F d f · d : B (p, q) by ind. hyp.

Γ.A′ ` app (t p) q = R|Γ.A| ↓F d f · d : B by (conv)

Γ ` λ(app (t p) q) = λ(R|Γ.A| ↓F d f · d) : FunA′B by congruence

Γ ` t = λ(app (t p) q) : FunA′B by (eta)

Γ ` t = R|Γ| ↓FunX F f : FunA′B by trans.

(c)
(1) Sing dX:

Γ ` A = {a}B by hypothesis

Γ ` B ∼ X ∈ T by hypothesis

Γ ` t : B ∼ d ∈ [X] by hypothesis

Γ ` B ∼ X ∈ T by monotonicity 6.4

∆ ` t pi : B pi ∼ d ∈ [X] by monotonicity 6.4

∆ ` A pi = {a pi}B pi by congruence

(2) FunX F :

∆ ` s : A′ pi ∼ d′ ∈ [X] hypothesis (*)

∆ ` s = R|∆| ↓X d′ : A′ pi by ind. hyp. on (*)

∆ ` app (t pi) s = app ((R|Γ| d) pi) (R|∆| (↓X d′)) : B (pi, s) by congruence

R|∆| App d ↓X d′ = app ((R|Γ| d) pi) (R|∆| (↓X d′)) by definition

∆ ` app (t pi) s : B (pi, s) ∼ ↑F d′ App d ↓X d′ ∈ [F d′] by ind. hyp.

C.8. Proof of Lemma 6.13. By induction on Γ `; we show only the inductive case. Let
Γ.A `.

d := ρΓ definition

Γ ` id : Γ ∼ d ∈ ([Γ]) by inversion and i.h. (*)

Γ.A ` id p : Γ ∼ d ∈ ([Γ]) from (*) by Rem. 6.9 (†)
Γ.A ` p : Γ ∼ d ∈ ([Γ]) from (†) by Rem. 6.8 (**)

Γ.A ` A p ∼ [[A]]d ∈ T by inversion and Thm. 6.11

Γ.A ` q : A p ∼ ↑[[A]]d Var xn ∈ [[[A]]d] by Thm. 6.11

Γ.A ` (p, q) : Γ.A ∼

(d, ↑[[A]]d Var xn) ∈
∐

([Γ]) (e 7→ [[[A]]e]) by Def. 6.7 (‡)
Γ.A ` id : Γ.A ∼ ρΓ.A ∈ ([Γ.A]) from (‡) by Rem. 6.8

54 A. ABEL, T. COQUAND, AND M. PAGANO

C.9. Proof of Theorem 6.11. We note that for terms we show only the cases when the last
rule used was the introductory rule, or the rule for introducing elements in singletons; for
the case of the conversion rule, we can conclude by i.h., and lemma 6.3.

(a) Types. We show only the case for (fun-f).

∆ ` s : A′ pi ∼ e ∈ [X] hypothesis (*)

Θ ` δ pi : Γ ∼ d ∈ ([Γ]) By monotonicity for substitutions 6.9 (†)
Θ ` (δ pi, s) : Γ.A ∼ (d, e) ∈ ([Γ.A]) From (*) and (†)
Θ ` B (δ pi, s) ∼ [[B]](d, e) ∈ T by ind. hyp. on Γ.A ` B and using 6.3 and 6.5

(b) Terms. We show the case for application (fun-el) and for (nn-e). The case for abstrac-
tion (fun-i) is analogous to (fun-f).
(1) (fun-el)

Γ ` app t r : B (id, r) hypothesis

∆ ` r δ : Aδ ∼ [[r]]d ∈ [[[A]]d] by ind. hyp. (*)

∆ ` t δ : FunAB δ ∼ [[t]]d ∈ [[[FunAB]]d] by ind. hyp. (†)
∆ ` app (t δ) (r δ) : B (id, r δ) ∼

[[t]]d · [[r]]d ∈ [[[B]](d, [[r]]d)] by def. of log. rel. for (†) with (*)

∆ ` (app t r) δ : B (id, r δ) ∼
[[app t r]]d ∈ [[[B]](d, [[r]]d)] by 6.3 and 6.5

(2) (nn-e)

Γ ` caseB t0 · · · tn−1 t : B (id, t) hypothesis

∆ ` t δ : Nn ∼ [[t]]d ∈ [Nn] by inversion and by ind. hyp.

∆ ` t δ = R|∆| [[t]]d : Nn by 6.6

∆ ` ti δ : B (δ, ci) ∼ [[ti]]d ∈ [[[B]](d, [[t]]d)] by inversion and by ind. hyp.

if R|∆| [[t]]d ≡ ci:

∆ ` (case B t0 · · · tn−1 ci) δ = ti δ : B (id, t) by subst.

∆ ` (case B t0 · · · tn−1 ci) δ : B (id, t) ∼
[[caseB t0 · · · tn−1 t]]d ∈ [[[B (id, t)]]d] by 6.3 and 6.5

if R|∆| [[t]]d ∈ Ne:

∆.Nn ` B (δ p, q) = R|∆|+1 ⇓[[B]](d,Var x|∆|)

∆ ` ti δ = R|∆| [[ti]]d : B (δ, ci) by 6.6

t′i := R|∆| [[ti]]d abbreviation

t′ := R|∆| ↓[[B]](d,ci) [[t]]d abbreviation

B′ := R|∆|+1 [[B]](d,Var x|∆|) abbreviation

∆ ` (case B t0 · · · tn−1 t) δ =

case B′ t′0 · · · t′n−1 t
′ : B (δ, t) congruence

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 55

∆ ` (case B t0 · · · tn−1 t) δ : B (δ, t) ∼
↑[[B]](d,[[t]]d) (case B′ t′0 · · · t′n−1 t

′ ∈ [[B]](d, [[t]]d)) by 6.6 and 6.4

∆ ` (case B t0 · · · tn−1 ci) δ : B (id, t) ∼
[[caseB t0 · · · tn−1 t]]d ∈ [[[B (id, t)]]d] by 6.3 and 6.5

(c) Substitutions. Only the proof for (ext-subs) is shown.

Γ ` Θ.A : (γ, t) hypothesis

∆ ` γ δ : Θ ∼ [[γ]]d ∈ ([Θ]) by ind. hyp. (*)

∆ ` t δ : (Aγ) δ ∼ [[t]]d ∈ [[[Aγ]]d] (†)

([[γ]]d, [[t]]d) ∈
∐

([Θ]) (e 7→ [[[Aγ]]e]) from (*) and (†)
∆ ` (γ, t) δ : Θ.A ∼ [[(γ, t)]]d ∈ ([Θ.A]) by 6.8 and 6.10

C.10. Proof of Theorem 7.4. By simultaneous induction on Γ ` V ⇐, Γ ` v ⇐ V , and
Γ ` V ⇒ k.

(1) Types:
• the case for FunV W is also obtained directly from the derivations we get using the

i.h. on Γ ` V ⇐, and Γ.V `W ⇐; and use them for deriving Γ ` FunV W
• for {v}V , we can apply the same reasoning as before: by i.h. on Γ ` V ⇐, and

Γ ` v ⇐ nbe(V) we know that there are, respectively, derivations with conclusions
Γ ` V , and Γ ` v : V ; from which we can conclude Γ ` {v}V
• here we’ll consider the three cases when V is a neutral term, because the reasoning

is the same. By i.h. on Γ ` V ⇐ U, we have a derivation with conclusion Γ ` V : U;
hence we use (u-el).

(2) Terms:
• let V = U, and v = FunV ′W . By i.h. Γ ` V ′ : U, and Γ.V ′ ` W : U, and using both

derivations we can derive Γ ` FunV W : U.
• consider V = U, and v = {v′}V ′ . by i.h. on Γ ` V ′ ⇐ U, and Γ ` v′ ⇐ nbe(V), we

have Γ ` V : U, and Γ ` v′ : nbe(V), and using conversion we derive Γ ` v′ : V ; and
these are the premises we need to show Γ ` {v′}V : U.
• V = FunV ′W , and v = λv′: we have Γ.V ′ ` v′ ⇐ W . From this we can conclude by

i.h. Γ.V ′ ` v′ : W ; and this is the key premise for concluding Γ ` λv′ : FunV ′W .
• V = {w}W : by hypothesis we know Γ ` w : W , and Γ ` v ⇐W , and Γ ` w = v : W ;

by the i.h. on the second one we get Γ ` v : W ; then we can conclude using (sing-i).
• v = k ∈ Ne, and V 6≡ {w}W : let Γ ` k ⇒ V ′, then we distinguish the cases when
V ′ is a singleton, and when V ′ is not a singleton. In the latter case, the derivation
is obtained directly from the correctness of type-inference. In the first case we use
the rule (sing-el), with the derivation obtained by i.h. and then we conclude with
conversion.

(3) Inference:
• for q pi, if i = 0, then we use (hyp), and conversion; if i > 0, then we have a derivation

with conclusion Γ ` q : Ai p, and clearly Γ ` pi : Γ.AiA0, hence by (subs-term),
we have Γ.AiA0 ` q pi : Ai p

i+1, we conclude by correctness of nbe() and by
conversion.

56 A. ABEL, T. COQUAND, AND M. PAGANO

• by i.h. we have derivations with conclusions Γ ` k : V ′, with V ′ = FunV W , hence we
have a derivation Γ ` k : FunV W (using (sing-el) if necessary) and Γ ` v : V , hence
by the rule (fun-el), we have Γ ` app k v : W (id, v). We conclude by conversion and
correctness of nbe().

C.11. Proof of Theorem 7.6. We prove simultaneously all the points. The first point is by
induction on the structure of the type. In the last two points we use well-founded induction
on the order ≺.

(1) Types:
• Γ ` FunV ′W ; by inversion we know Γ ` V ′, and Γ.V ′ ` W ; hence by i.h. we have

respectively Γ ` V ′⇐, and Γ.V ′ `W ⇐.
• V = {v}V ′ : by inversion we have Γ ` V ′, and Γ ` v : nbe(V ′), hence by i.h. we have

both Γ ` V ′⇐, and Γ ` v ⇐ V ′.
• Γ ` k, we have to show Γ ` k⇐. By lemma 2.7, we know Γ ` k : U; hence by i.h. we

have Γ ` k ⇒ A, and Γ ` A = U, hence Γ ` k ⇐ U.
(2) Terms: We omit the trivial cases, e.g. (U, A); we have re-arranged the order of the cases

for the sake of clarity.
• v = FunV ′W :

(a) either Γ ` A = U, Γ ` V ′ : U, and Γ.V ′ ` W : U; hence, by i.h. we know both
Γ ` V ′ ⇐ U, and Γ.V ′ `W ⇐ U; hence we can conclude Γ ` FunV W ⇐ U.

(b) Or Γ ` A = {a}A′ , Γ ` v : A′, and Γ ` v = a : A′, hence by i.h. we know
Γ ` v ⇐ nbe(B), by conversion we also have and transitivity of the equality
Γ ` nbe(a) = v : nbe(B), hence Γ ` v ⇐ {nbe(a)}nbe(B).

• v = {v′}V :
(a) Γ ` V : U, and Γ ` v′ : V . From those derivations we have by i.h. Γ ` V ⇐ U,

and Γ ` v′ ⇐ nbe(V), respectively; from which we conclude Γ ` {v′}V ⇐ U
(b) Γ ` A = {a}A′ , with Γ ` v : A′, and Γ ` v = a : A′, hence by i.h. we

know Γ ` v ⇐ nbe(B). We can also derive Γ ` nbe(a) = v : nbe(B), hence
Γ ` v ⇐ {nbe(a)}nbe(B).

• v = λv′

(a) Γ ` V = FunA′B, and Γ.A′ ` v′ : B; from this we can conclude Γ.nbe(A′) `
v′ : B by ind. hyp. we get Γ.nbe(A′) ` v′ ⇐ nbe(B); therefore Γ ` λv′ ⇐
Funnbe(A′) nbe(B′).

(b) Or Γ ` A = {a}A′ , Γ ` v : A′, and Γ ` v = a : A′, hence by i.h. we know
Γ ` v ⇐ nbe(B), by conversion we also have and transitivity of the equality
Γ ` nbe(a) = v : nbe(B), hence Γ ` v ⇐ {nbe(a)}nbe(B).

• v ∈ Ne: then we do case analysis on nbe(A).
(a) If nbe(A) = {w}W , then by soundness of nbe(), and conversion we have Γ `

k : {w}W ; and by inversion of singletons we have Γ ` k : W , and also Γ ` k =
w : W (∗). Clearly (k,W) ≺ (k,A), hence we can apply the inductive hypothesis
and conclude Γ ` k ⇐ W ; from that and (∗), we conclude Γ ` k ⇐ {w}W , i.e.,
Γ ` k ⇐ nbe(A).

(b) If V 6≡ {w}W , then V ≡ V . We use the last clause for concluding Γ ` k ⇐
nbe(A); but we need to show that if Γ ` k ⇒ V ′, then Γ ` V = V ′; we show this
in the next point.

(3) Inference: let Γ ` k : A, Γ ` k ⇒ V ′, and V = nbe(A). Show Γ ` V = V ′.

A MODULAR TYPE-CHECKING ALGORITHM FOR TYPE THEORY 57

• let us consider first the case when V = {w}W ; by inversion we have derivations
Γ ` k : W , and Γ ` k = w : W . Hence by i.h. we know that Γ ` V ′ = W , and
W = {w}W .
• Now we consider the case when V is not a singleton, and k = q pi; this case is trivial

because by inversion we know that Γ ` V = nbe((Γ!i) pi+1).
• the last case to consider is k = app k′ v and V not a singleton. By inversion we

know Γ ` app k v : B (id, v), and Γ ` k : FunAB, hence Γ ` k : Funnbe(A) nbe(B),
and Γ ` v : A, hence Γ ` v : nbe(A). By i.h. we know that if Γ ` k ⇒ V ′,
then V ′ = Funnbe(A) nbe(B), and also Γ ` v ⇐ nbe(A). Hence we can conclude
Γ ` app k v ⇒ nbe(nbe(B) (id, v)). And Γ ` nbe(nbe(B) (id, v)) = nbe(B (id, v))
(by correctness of the nbe() algorithm).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction and Related Work
	2. The Calculus as a Generalised Algebraic Theory
	2.1. Calculus Singletonswith singleton types
	2.2. Proof-irrelevance: A type theory with proof-irrelevance.
	2.3. Conservativity of *

	3. Examples
	3.1. Safe vector projection in Proof-irrelevance
	3.2. Isomorphisms in Proof-irrelevance
	3.3. On subtyping in Singletons

	4. From Untyped to Typed Normalisation by Evaluation
	4.1. Fresh Name Generation in NbE
	4.2. Untyped NbE
	4.3. Typed NbE

	5. Semantics
	5.1. PER semantics
	5.2. A concrete PER model
	5.3. Normalisation and eta-Expansion in the Model
	5.4. Calculus Proof-irrelevancewith proof irrelevance

	6. Correctness of NbE
	6.1. Logical relations
	6.2. Main results
	6.3. Calculus Proof-irrelevancewith proof irrelevance

	7. Type-checking algorithm
	7.1. Type-checking Singletons
	7.2. Calculus Proof-irrelevancewith proof irrelevance

	8. Conclusion
	8.1. Related and Further Work on Singleton Types
	8.2. Related and Further Work on Proof Irrelevance

	References
	Appendix A. Normalisation by evaluation
	Appendix B. Type-checking algorithm
	Checking well-formedness of types
	Checking the types of terms
	Inferring the types of neutral terms

	Appendix C. Proofs

