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ABSTRACT. The theory of classical realizability is a framework in which we can develop
the proof-program correspondence. Using this framework, we show how to transform into
programs the proofs in classical analysis with dependent choice and the existence of a well
ordering of the real line. The principal tools are:

- The notion of realizability algebra, which is a three-sorted variant of the well known
combinatory algebra of Curry.

- An adaptation of the method of forcing used in set theory to prove consistency results.
Here, it is used in another way, to obtain programs associated with a well ordering of R
and the existence of a non trivial ultrafilter on N.

INTRODUCTION

When we want to obtain programs from mathematical proofs, the main problem is, natu-
rally, raised by the axioms: indeed, it has been a long time since we know how to transform
a proof in pure (i.e. without axioms) intuitionistic logic, even at second order [2| [7], 4].
The very first of these axioms is the excluded middle, and it seemed completely hopeless for
decades. The solution, given by T. Griffin [5] in 1990, was absolutely surprising. It was an
essential discovery in logic because, at this moment, it became clear that all other axioms
will follow, as soon as we will work in a suitable framework.

The theory of classical realizability is such a framework: it was developed in [12, [13], where
we treat the axioms of Analysis (second order arithmetic with dependent choice).

In [15], we attack a more difficult case of the general axiom of choice, which is the existence
of a non trivial ultrafilter on N ; the main tool is the notion of realizability structure, in
which the programs are written in A-calculus.

In the present paper, we replace it with the notion of realizability algebra, which has many
advantages: it is simpler, first order and much more practical for implementation. It is a
three-sorted variant of the usual notion of combinatory algebra. Thus, the programming
language is no longer the A-calculus, but a suitable set of combinators ; remarkably enough,
this is almost exactly the original set given by Curry. The A-terms are now considered only
as notations or abbreviations, very useful in fact: a A-term is infinitely more readable than
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its translation into a sequence of combinators. The translation used here is new, as far as
I know ; its fundamental property is given in theorem

The aim of this paper is to show how to transform into programs, the classical proofs which
use dependent choice and:

i) the existence of a non trivial ultrafilter on N ;

ii) the existence of a well ordering on R.

Of course, (ii) implies (i) but the method used for (i) is interesting, because it can give
simpler programs. This is an important point, because a new problem is appearing now, an
important and very difficult problem: to understand the programs we obtain in this way,
that is to explain their behavior. A fascinating, but probably long work.

The logical frame is given by classical second order logic, in other words the (first order)
theory of the comprehension scheme. However, since we use a binary membership relation on
individuals, we work, in reality, in at least third order logic. Moreover, this is indispensable
since, although the axiom of dependent choice on R can be expressed as a second order
scheme, axioms (i) and (ii) cannot be expressed in this way.

By using the method expounded in [11], we can obtain the same results in ZF.

It seems clear to me that, by developing the technology of classical realizability, we shall
be able to treat all “natural” axioms introduced in set theory. It is already done for the
continuum hypothesis, which will be the topic of a forthcoming paper. In my opinion, the
axiom of choice and the generalized continuum hypothesis in ZF do not pose serious issues,
except this: it will be necessary to use the proper class forcing of Easton [3] inside the
realizability model, and it will probably be very painful.

A very interesting open problem is posed by axioms such as the existence of measurable
cardinals or the determination axiom.

But the most important open problem is to understand what all these programs do and, in
this way, to be able to execute them. 1 believe that big surprises are waiting for us here.
Indeed, when we realize usual axioms of mathematics, we need to introduce, one after the
other, the very standard tools in system programming: for the law of Peirce, these are
continuations (particularly useful for exceptions) ; for the axiom of dependent choice, these
are the clock and the process numbering ; for the ultrafilter axiom and the well ordering of
R, these are no less than read and write instructions on a global memory, in other words
assignment.

It seems reasonable to conjecture that such tools are introduced for some worthwhile pur-
pose, and therefore that the very complex programs we obtain by means of this formalization
work, perform interesting and useful tasks. The question is: which ones ?

Remark.

The problem of obtaining a program from a proof which uses a given axiom, must be set correctly
from the point of view of computer science. As an example, consider a proof of a theorem of
arithmetic, which uses a well ordering of P(N): if you restrict this proof to the class of constructible
sets, you easily get a new proof of the same theorem, which does not use this well ordering any more.
Thus, it looks like you simply have to transform this new proof into a program.

But this program would be extracted from a proof which is deeply different from (and dramatically
more complicated than) the original one. Moreover, with this method, it is impossible to associate a
program with the well ordering axiom itself. From the point of view of computer science, this is an
unacceptable lack of modularity: since we cannot put the well ordering axiom in a program library,
we need to undertake again the programming work with each new proof.
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With the method which is explained below, we only use the A\-term eztracted from the original proof.
Therefore, this term contains an unknown instruction for the well ordering axiom on P(N), which is
not yet implemented. Then, by means of a suitable compilation, we transform this term into a true
program which realizes the initial theorem.

As a corollary of this technology, we obtain a program which is associated with the well ordering
axiom, which we can put in a library for later use.

1. REALIZABILITY ALGEBRAS

A realizability algebra is composed of three sets: A (the set of terms), IT (the set of stacks),
A % TII (the set of processes) with the following operations:

(€,m) — (&)n from A% into A (application) ;
(&,m) = &om from AXII into IT (push) ;

(&,m) = Exm from AXII into A x I (process) ;
7 — Ky from IT into A (continuation).

We have, in A, the distinguished elements B,C, E, I, K, W, cc, called elementary combina-
tors or instructions.

Notation. The term (... (((&)n1)n2)...)n, will be also denoted by (&)mina ..., or even
Emmz ... Ny For example: &n¢ = (§)n¢ = (€n)¢ = ((E)n)C.

We define on A*IT a preorder relation, denoted by . It is the least reflexive and transitive
relation such that we have, for any £,17,{ € A and 7, w € II:

Enrxm=Exn.m.

Ix&.m>=Exm.

Kx&.n.m>=Exm.

Ex&on.m = (En*m.

Wx€Enem =Exnon.m.
Cx&.n.Cem=ExCon.m.
Bx&.n.Com = ().
ccx&.m - Exky ..

kx> Exm.

Finally, we are given a subset I of A % II which is a terminal segment for this preorder,
which means that: pe 1L, p’' >=p=p' € L.
In other words, we ask that I be such that:
Emrxm¢ L=Exn.m ¢ L.

Ixéem¢ L=Exmd L.

Kxfon.m¢g L=Exm ¢ L.
Ex{on.né¢ L= (En* ¢ L.
Wxénend¢ L=Exnen.m ¢ 1.
Cx&enCem¢d L=ExCenom e L.
Bx¢on.Comd L= () (n)Crmé¢ L.
ccxéom¢ Ll =Exkyom ¢ L.

Kexéewd L=Exm g L.
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c-terms and A-terms. We call c-term a term which is built with variables, the elementary
combinators B, C, E, I, K, W, cc and the application (binary function). A c-term is called
closed if it contains no variable ; it will then also be called proof-like ; a proof-like term has
a value in A.

Given a c-term t and a variable x, we define inductively on ¢, a new c-term denoted by Ax t.
To this aim, we apply the first possible case in the following list:

1. Azt = (K)t if t does not contain x.

2. xzx=1.

3. Mxtu = (CAz(E)t)u if u does not contain z.

4. Az tx = (E)t if t does not contain x.

5. Azte = (W) z(E)t (if ¢ contains z).

6. Az(t)(u)v = A\z(B)tuv (if uv contains x).

We easily see that this rewriting is finite, for any given C-term ¢: indeed, during the rewriting,
no combinator is introduced inside ¢, but only in front of it. Moreover, the only changes in ¢
are: moving parentheses and erasing occurrences of x. Now, rules 1 to 5 strictly decrease
the part of ¢ which remains under Az, and rule 6 can be applied consecutively only finitely
many times.

The A-terms are defined as usual. But, in this paper, we consider A-terms only as a nota-
tion for particular c-terms, by means of the above translation. This notation is essential,
because almost every c-term we shall use, will be given as a A-term. Theorem gives the
fundamental property of this translation.

Remark. We cannot use the well known K S-translation of A-calculus, because it does not satisfy
Theorem

Lemma 1.1. Ift is a C-term with the only variables ©,y1,...,Yn, and if E,n1,...,n € A,
then: Az )[m/y1, - /Yn] *E e T = /T, M /Y1y -+ s/ Yn) * T

Proof. To lighten the notation, let us put «* = ul[ni/y1,...,nn/yn] for each c-term w ;
thus, we have:

wlé/z] = ull/z,m/yr, ./ Ynl

The proof is done by induction on the number of rules 1 to 6 used to translate the term
Az t. Consider the rule used first.

If it is rule 1, then we have (Azxt)* x&.m=(K)t* x€.m =t %7

=tl&/x,m /Y1, ..M /yn] *x T since x is not in ¢.

Ifit isrule 2, we have t = x and (A\xt)*x{ . = I*x€ o = Exm = HE /T, m /Y1y - -« s 0/ Yn|* T
If it is rule 3, we have t = uv and (Axt)*x&.7m = (CAx(E)u)*v* x €.

= Cx (Az(B)u)* cv* &om = Az(B)u)* x v e = (E)u*[¢/x] x v* .7 (by induction
hypothesis) = E x u*[{/z] . v* o7 = (u*[/x])v* * T = t[{/2,m /Y1, -« 0/ Yn] *x T since x is
not in v.

If it is rule 4, we have t =ux and (A t)*x.m=(E)u**{.m = Exu* . §.m = u*E*m
=tl&/z,m/y1,- - On/yn] * T since u does not contain x.

If it isrule 5, we have t = ux and (Axt)*x{.m = WAz(E)u)**& . = Wx(Ax(E)u)* . o
= (Az(E)u)* x &&= (E)u*[¢/x] x £ .7 (by induction hypothesis)

= Exur[¢/a] Eom = (u[E/a])Ex m =t mm/yrs - nn/yn] < .

If it is rule 6, we have t = (u)(v)w and (Azxt)* *x&.7m = (Ax(B)uvw)* x&.m

= (B)u*[¢/x]v*[¢/x]w* [ /x] x m (by induction hypothesis)
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= Bxutl¢/z] v*[¢/a]  wt[E/x] o= (ut[€/]) (0¥ [/ w* (€ /o] x T
= t[E/x,m /Y1, -/ Yn] * T N

Theorem 1.2. Ift is a C-term with the only variables x1,...,T,, and if &1,...,&, € A,
then Ay ... Axpt*&1 oo o&pom = t[&1/z1,. .., &n/Tn] * .

Proof. By induction on n ; the case n = 0 is trivial.
We have Azp .. . ATp_ 1 AZpt*x &1 e v &1 o &n o= (Azpt)[&1/x1, .o 1 /Tn-1] *&n o
(by induction hypothesis) > t[&1/21, ..., &n—1/Tn-1,&n/Tn] * ™ by lemma [[L1] U]

Natural deduction. Before giving the formal language that we shall use, it is perhaps
useful to describe informally the structures (models) we have in mind. They are second
order structures, with two types of objects: individuals also called conditions and predicates
(of various arity). Since we remain at an intuitive level, we start with a full model which
we call the ground model. Such a model consists of:

e an infinite set P (the set of individuals or conditions).

e the set of k-ary predicates is P(P¥) (full model).

e some functions from P¥ into P.

In particular, there is an individual 0 and a bijective function s : P — (P \ {0}). This
enables us to define the set of integers N as the least set which contains 0 and which is
closed for s.

There is also a particular condition denoted by 1 and an application denoted by A from P2
into P.

e some relations (fixed predicates) on P. In particular, we have the equality relation on
individuals and the subset C of non trivial conditions.

Clpnq] reads as: “p and q are two compatible conditions”.

We now come to the formal language, in order to write formulas and proofs about such
structures. It consists of:

e individual variables or variables of conditions called z,y,... or p,q,...

e predicate variables or second order variables X,Y,...; each predicate variable has an
arity which is in N.

e function symbols on individuals f,g,... ; each one has an arity which is in N.

In particular, there is a function symbol of arity k for each recursive function f : N¥ — N.
This symbol will also be written as f.

There is also a constant symbol 1 (which represents the greatest condition) and a binary
function symbol A (which represents the inf of two conditions).

The terms are built in the usual way with variables and function symbols.

The atomic formulas are the expressions X (t1,...,t,), where X is an n-ary predicate vari-
able, and tq,...,t, are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols —,V:

e cach atomic formula is a formula ;

e if A, B are formulas, then A — B is a formula ;

e if A is a formula, then Vax A and VX A are formulas.

Notations.

The formula Ay — (A2 — (... (A, — B)...) will be written Ay, As,..., A, — B.

The usual logical symbols are defined as follows:
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(X is a predicate variable of arity 0, also called propositional variable)
1=VXX;-A=A—-1;AVB=(A—-1),(B—>1)—= 1L;AANB=(
JyF =Vy(F — 1) — L (wherey is an individual or predicate variable).
More generally, we shall write 3y{Fi,...,F;} for Vy(Fy,...,F — 1) —
We shall sometimes write F for a finite sequence of formulas Fi,..., Fj.
Then, we shall also write 3y{F} and Vy(F — 1) — L.

x =y is the formula VZ(Zx — Zy), where Z is a unary predicate variable.

AB—1)— L1,

The rules of natural deduction are the following (the A;’s are formulas, the x;’s are variables
of c-terms, t,u are C-terms):

1. I ZAl,...,anAnl—J}i:Ai.

2. 21 A1, Ay Ft:A— B, x1:A,...,xp i Apbui A = x1: A, x
A, Ftu: B.

3.11:A1,...,xp Ay, AFt: B = x1:A1,...,xp: Ay Azt A— B.

4. 21 : A, Ap bt A = x1: Ay, xn: Ay Bt VXA for every variable X
(individual or predicate) which does not appear in Ay, ..., A,.

5.21: Ay, s A BtV A = xy i Ay, x, s Ap Bt AlT/x] where x is an
individual variable and 7 is a term.

6. 21:A1,...,xn: ApFt: VXA = x1: A1, . xn: Ay bt A[F/Xy1...yr] where X
is a predicate variable of arity k& and F' an arbitrary formula.

Remark.
In the notation A[F/Xyj ...yx|, the variables yi,...,y; are bound. A more usual notation is:
ANy ...y F/X]. T prefer this one, to avoid confusion with the A defined for c-terms.

Realizability. Given a realizability algebra A = (A, II, AxII, 1), a A-model M consists
of the following data:

e An infinite set P which is the domain of variation of individual variables.

e The domain of variation of k-ary predicate variables is P (IT)" "

e We associate with each k-ary function symbol f, a function from P* into P, denoted by
f or even f if there is no ambiguity.

In particular, there is a distinguished element 0 in P and a function s : P — P (which is the
interpretation of the symbol s). We suppose that s is a bijection from P onto P\ {0}.Then,
we can identify s"0 € P with the integer n, and therefore, we have N C P.

Each recursive function f : N¥ — N is, by hypothesis, a function symbol. Of course, we
assume that its interpretation f : P¥ — P takes the same values as f on NF.

Finally, we have also a condition 1 € P and a binary function A from P? into P.

A closed term (resp. a closed formula) with parameters in the model M is, by definition, a
term (resp. a formula) in which all free occurrences of each variable have been replaced with
a parameter, i.e. an object of the same type in the model M: a condition for an individual
variable, an application from P* into P(IT) for a k-ary predicate variable.

Each closed term ¢, with parameters in M has a value t € P.

An interpretation Z is an application which associates an individual (condition) with each
individual variable and a parameter of arity k with each second order k-ary variable.

Z[x < p] (resp. Z[X « X)) is, by definition, the interpretation obtained by changing, in Z,
the value of the variable z (resp. X) and giving to it the value p € P (resp. X € P(H)Pk).
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For each formula F' (resp. term t), we denote by FZ (resp. t) the closed formula (resp.
term) with parameters obtained by replacing each free variable with the value given by Z.
For each closed formula FZ with parameters in M, we define two truth values:

|F%|| C IT and |F%| C A.

|FZ| is defined as follows: ¢ € |FZ| < (Vre||FE|)éxm e L.

|FZ|| is defined by recurrence on F:

e [ is atomic: then F7T has the form X(t1,...,t;) where X : P* — P(II) and the t;’s are
closed terms with parameters in M. We set || X (t1,...,t)| = X(t1,..., k).

e F=A— B:weset |[FI||={¢.7; ¢ |AT|,m € ||BY|}.

e F=Vz A: weset |FZ| = {||AZ=P]||; pe P}

o« F =VXA: weset |[FI| = J{|AZXY)): x e PII)F"} if X is a k-ary predicate
variable.

Notation. We shall write ¢ |- F for & € |F).

Theorem 1.3 (Adequacy lemma).
If w2 Ar,. . op: Agbtc A and if & [ AT . & [ AL, where T is an interpretation,

then t[fl/xl, N ,fk/a:k] H— AZ.
In particular, if A is closed and if =t : A, thent |- A.

Proof. By recurrence on the length of the derivation of xy: Ay,...,z,: Ay F1t: A.

We consider the last used rule.

1. We have t = z;, A = A;. Now, we have assumed that & [ AT ; and it is the desired
result.

2. We have t = uv and we already obtained:

1Ay, ok ApFu:B— A and x1: Ay,...,xp Ap b o B

Given 7 € ||AT||, we must show (uv)[é1/x1,...,&/zp] x7 € L.

By hypothesis on L, it suffices to show u[&1/x1,. .., &/ xk] xv[&1 /21, ... &k /xk] .7 € L.
By the induction hypothesis, we have v[¢;/21,...,& /2] |- BT and therefore:

vl /@1, &) e || B — AT

But, by the induction hypothesis, we have also w[¢1/z1,...,&/zk] |- B — A%, hence the
result.

3. We have A = B — C, t = Aru. We must show Azu[&/z1,...,&/xx] |- BT — CT ;
thus, we suppose ¢ |- BY, m € |C%|| and we have to show Az u[é; /x1,. .., & /zp]xE .7 € L.
By hypothesis on L and lemma [[T] it suffices to show wu[/x,&1/z1,. .., &/ xm € L.
This follows from the induction hypothesis applied to x1 : A1,...,2, : Ap,z: BFu:C.
4. We have A =VX B, and X is not free in Aq,..., A,. We must show:

t[{l/wl, R ,fk/a:k] H— (VX B)Z, i.e. t[gl/xl, o ,fk/a:k] H— BY with J = I[X — X] But,
by hypothesis, & |- A7 therefore &; |- AY: indeed, since X is not free in A;, we have:
|A7|| = || A7 ||. Then, the induction hypothesis gives the result.

6. We have A = B[F/Xy; ...y,] and we must show:

tlér/z1, . & /xy] |- BIF/Xyi ... yp)" assuming that t[¢1 /21, ..., & /zy] |- (VX B)*.

This follows from lemma [[.4] below. L]
Lemma 1.4. ||B[F/Xy; ...yn)*|| = | BEX<Y))| where X : P* — P(II) is defined by:
X(pr,...pa) = | ni]

Proof. The proof is by induction on B. That is trivial if X is not free in B. Indeed, the
only non trivial case of the induction is B = VY C' ; and then, we have Y # X and:



8 J.-L. KRIVINE

IBIE/Xy1 ... ynl®|| = (VY CIF/ Xy ... ya)) Pl = Uy [CIF/ Xy ..y
By induction hypothesis, this gives (J,, |CTYVIX XY that is Uy |CTX XY X)) e,
I(vy )P <A, O

Lemma 1.5. Let XY C I be truth values. If m € X, then K, X — ).

Proof. Suppose ¢ X and p € Y ; we must show k;x&.p € L, that is Ex7 € L, which
is clear. n

Proposition 1.6 (Law of Peirce). cc [FVXVY (X —-Y) = X) = X).

Proof. We want to show that cc [ (X — V) — X) — X. Thus, we take { [ (X = V) —
X and m € X ; we must show that ccx{.m € L, that is ¢ xKk; . m € 1. By hypothesis on
¢ and m, it is sufficient to show that k, [ X — Y, which results from lemma (]

Proposition 1.7.

) If £FA— B, then Vn(n f-A=&n |t B).
ii) If Vn(n - A=&n |- B), then (E)|-A— B.

Proof.
i) From &n*m = &xn.m.
ii) From (E){*n.m = &n*m. (]

Remark. Proposition[[7lshows that £ |- A — B is “almost” equivalent (i.e. up to an n-expansion
of §) to ¥n(n |- A= &n |- B).

Predicate symbols. In the following, we shall use extended formulas which contain predicate

symbols (or predicate constants) R,S, ... on individuals. Each one has an arity, which is
an integer.

In particular, we have a unary predicate symbol C (which represents the set of non trivial
conditions).

We have to add some rules of construction of formulas:

e If F'is a formula, R is a n-ary predicate constant and ¢1,...,t, are terms, then
R(t1,...,t,) = F and R(t1,...,t,) — F are formulas.

e T is an atomic formula.

In the definition of a A-model M, we add the following clause:

e With each relation symbol R of arity n, we associate an application, denoted by Ry or
R, from P" into P(A). We shall also write |R(pi,...,pn)|, instead of R(pi,...,pn), for
Pl,---.Pn € P. B

In particular, we have an application C: P — P(A), which we denote as |C[p]|.

We define as follows the truth value in M of an extended formula:

Tl = 0.

I(R(t1,. .- tn) = )| = {t.m t € [R(tE, ... t1)|, 7 € |[FZ|}.
I(R(t1, ... tn) = V2| = [|FE| if T € |R(tE, ... t1)] ;

I(R(t1, ..., tn) = F)T|| = 0 otherwise.

Proposition 1.8.

i) \e(z)] |FVXVzy.. Vo, [(R(z1, ..., 2n) = X) = (R(z1,...,20) — X)].

ii) If we have |R(p1,...,pn)|#0 = I¢€ |R(p1,...,pn)| for every pi,...,p, € P, then:
K |FVYXVzy.. Ve, [(R(z1,...,2n) = X) = (R(z1,...,2,) = X)].
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Proof. Trivial. L]

Remark. By means of proposition [[8] we see that, if the application R : P" — P(A) takes only
the values {I} and (}, we can replace R(t1,...,t,) = F with R(t1,...,t,) — F.

We define the binary predicate ~ by putting |p ~ ¢q| = {I} if p = ¢ and |p ~ ¢ = 0 if
p#4q.

By the above remark, we can replace p ~ ¢ — F with p ~ ¢ — F. Proposition shows
that we can also replace p=q¢ — F withp~q+— F.

Notations. We shall write p = g +— F instead of p ~ g+~ F. Thus, we have:
lp=g= F|=|F| ifp=q; lp=q— F| =0 ifp#q.

We shall write p # q for p= ¢+ L. Thus, we have:

lp#qll =T if p=gqand [p#q|=0ifp#q.

Using p=q+— F instead of p=¢ — F, and p # q instead of p = ¢ — L, greatly
simplifies the computation of the truth value of a formula which contains the symbol =.

Proposition 1.9.
) Azl FVXVaVy((z=y - X) = (e =y — X)) ;
i) Aedyyx FVXVaVy((x =y — X)),z =y = X).

Proof.

i)Let a,be P, X CILL{ fFa=b—Xand € |la=b— X|.

Then, we have a = b, thus I || a = b, therefore { x I . € AL, thus Azal x§.7m € L.
ii) Now let n - (a=b— X), ( Fa=0band p € | X|
We show that AzAyyz*n.(.p € L in other words (*n.p e L.
Ifa=0b,thenn |-X, ( VY (Y = Y). Wehave n.p € [|X — X||, thus (xn.p € L.
Ifa#b,then ( T — L, thus(xn.pe L.

In both cases, we get the desired result. L]

Remark.

Let R be a subset of P¥ and 1 : P¥ — {0, 1} its characteristic function, defined as follows:
1r(p1,...,pn) =1 (resp. =0) if (p1,...,pn) € R (resp. (p1,...,pn) ¢ R).

Let us define the predicate R in the model M by putting:

[R(p1, .- pn)| = {1} (resp. = 0) if (p1,...,pn) € R (vesp. (p1,...,pn) & R).

By propositions [[L8 and [[L9] we see that R(z1,...,z,) and 1g(x1,...,2,) = 1 are interchangeable.
More precisely, we have: I |FVXVzy...Vo,((R(z1,...,2,) — X) & (1g(x1,...,2,) = 1= X)).
For each formula A[zq,...,x;], we can define the k-ary predicate symbol N4, by putting
INa(p1,--.,0)| = {Kr; ™ € ||A[p1,-..,pk]||}- Proposition [[LI0] below shows that N4 and
—A are interchangeable ; this may simplify truth value computations.

Proposition 1.10.
i) I V.. Vep(Na(xy, ..., zx) = Az, ... x))
ii) cc f-Voy ... Ve (Na(zy,...,zx) = L) = A(z1, ..., 28)).

Proof.

i) Let p1,...,pr € P, w € ||A(p1,---,pK)ll, & F A(p1,...,pr) and p € II. We must show:
Ixk;.&.p€ L, that is £ xm € 1, which is obvious.

ii) Let n - Na(p1,...,px) = L and 7€ ||A(p1,-...,px)||. We must show:

ccxn.me L, ie nxky.m € L, which is clear, since K; € |[Na(p1,...,pk)l|- ]
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Fized point combinator.

Theorem 1.11. Let Y = AA with A = Aa\f(f)(a)af. Then, we have Yx& . = ExYE . .
Let f: P2 — P such that f(x,y) = 1 is a well founded relation on P. Then:
i)Y FVX{Vz[Vy(f(y,x) =1— Xy) - Xz| = Ve Xz}
i) Y FVXy ... VX,
{Vz[Vy(X1y, ..., Xpy — f(y,2) #1), X1z,..., X — L] =» Ve(Xiz,..., Xz — L)},

Proof. The property Yx&.m = &x Y& . is immediate, from theorem

i) We take X : P — P(II), p € P and & |FVz[Vy(f(y,z) =1 +— Xy) — Xz]. We show, by
induction on the well founded relation f(z,y) =1, that Y x{ .7 € L for every m € Xp.
Let m € Xp ; from (i), we get Y *&.7m > £+ Y. m and thus, it is sufficient to prove that
ExY¢.m e L. By hypothesis, we have & [ Vy(f(y,p) = 1+— Xy) — Xp; thus, it suffices to
show that Y¢ [ f(q,p) =1 — Xq for every ¢ € P. This is clear if f(q,p) # 1, by definition
of .

If f(q,p) =1, we must show Y¢ |- Xq, i.e. Yx&.p € L for every p € Xq. But this follows
from the induction hypothesis.

ii) The proof is almost the same: take Xj,...,X; : P — P(II), p € P and

¢ FVeVy(Xy, ..., Xy — f(y,x) #1), X12,..., Xz — L]. We show, by induction on the
well founded relation f(x,y) =1, that Y x & .7 € L for every 7 € ||Xip, ..., Xep — L]

As before, we have to show that: Y¢ |- Xiq,...,Xkq — f(q,p) # 1 forall g € P ;

this is obvious if f(q,p) # 1. If f(¢q,p) = 1, we must show Y¢ |- Xiq,...,Xkqg — L, or
else:

Yx&.p € A for every p € ||X1q,...,Xq — L|. But this follows from the induction
hypothesis. L]

Integers, storage and recursive functions. Recall that we have a constant symbol 0
and a unary function symbol s which is interpreted, in the model M by a bijective function
s: P — (P\{0}).

And also, that we have identified s”0 with the integer n ; thus, we suppose N C P.

We denote by int(z) the formula VX (Vy(Xy — Xsy), X0 — Xx).

Let u = (up)nen be a sequence of elements of A. We define the unary predicate symbol e,
by putting: |eu(s"0)| = {un} ; leu(p)| =0 if p & N.

Theorem 1.12. Let T, S, € A be such that S, (T — L), T — L and:
Tu* eV T =V kSyedatiogeT; Sy W ety o™= Y kUpy] o7

for every v, ¢, € A and w € IL. Then:

T, FVXVz[(ey(z) — X), int(x) — X].

Ty s called a storage operator.

Proof. Let p € P, ¢ -eu(p) = X, v -int(p) and 7 € || X|. We must show Ty*x¢p.v.m €
1L ie vxSy.d.ug.me L.

e If p ¢ N, we define the unary predicate Y by putting:
Y(@=TifqgeN; Y(g=T — Lifg¢N.

Thus, we have obviously ¢ |- Y (0) and ug .7 € |Y(p)||.

But, by hypothesis on v, we have v || Vy(Yy — Ysy), Y0 — Yp.
Thus, it is sufficient to show that:

Su FYy(Yy — Ysy), ie. Sy FY(q) = Y(sq) for every q € P.
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This is clear if ¢ € N, since we have [|Y (sq)| = 0.
If ¢ ¢ N, we must show S, [ (T — L), T — L, which follows from the hypothesis.

o If p € N, we have p = sP0 ; we define the unary predicate Y by putting:

|Ys0|| = {up—; .7} for 0 <i<pand |Yq|=0if q¢ {s°0; 0<i<p}

By hypothesis on v, ¢, 7, we have:

vIFVy(Yy = Ysy), YO = YsPO0; ¢ YO0 ; up.m e ||YsPO.

Thus, it suffices to show that S, [FVy(Yy — Ysy), ie. Sy |FYq— Ysq for every g € P.
This is clear if ¢ ¢ {s°0; 0 < i < p}, since then ||Ysq|| = 0.

If ¢ = s'0 with i < p, let & [FYq ; we must show S, *&.up_j—1.m€ L.

But we have Sy, *&.up—j—1.7 > {*up—;.m which is in 1L, by hypothesis on &. []

Notation. We define the closed c-terms 0 = AxAyy ; o = AnAfix(f)(n)fz ; and, for
each n € N, we put n = (¢)"0. We define the unary predicate symbol ent(x) by putting:
lent(n)| = {n} if n € N;

lent(p)| =0 if p ¢ N.

In other words, ent(x) is the predicate e, (z) when the sequence u is (n)nen.

Theorem 1.13.

We put T = AfAn(n)Sf0, with S = Aghx(g)(o)x. Then, we have:
i) T VXV ((ent(x) — X), int(x) - X).

i) I |Va((ent(x) —int(x)).

Therefore, T' is a storage operator (theorem [L12]).

Proof.

i) We immediately have, by theorem

Txp.vem=vxS.¢p.0.m; Sxtp. ()"0 =% ()" 0.7

for every v, ¢, € A and 7 € II.

Now, we check that S| (T — 1), T — L: indeed, if { T — L, then S*x&.n.7 >
Exon.m e L for every n € A and 7 € IT (by theorem [T.2]).

Then, the result follows immediately, from theorem

ii) We must show I |- ent(p) — int(p) for every p € P. We may suppose p € N (otherwise
ent(p) = 0 and the result is trivial). Then, we must show:

I %oP0.p € I knowing that p € ||int(sP0)]|.

Therefore, we can find a unary predicate X : P — P(II), ¢ |- Vy(Xy — Xsy), w [ X0 and
m € || X sPO|| such that p = ¢.w.nw. We must show (0)P0*¢p.w.mw € L. In fact, we show
by recurrence on p, that (0)PQx¢.w.m e 1L for all w e || XsPO].

If p=0,let 7 € | X0 ; we must show Ox¢p.w.m € L, ie wxnm € 1L, which is clear, since
w - X0.

To move up from p to p + 1, let m € || XsP10|. We have:
oP0xp.w.m=(0)(0)P0*p.w.T=0x0P0.pew.m = ¢*(dP0)pw . .

But, by induction hypothesis, we have 0P0*x ¢ .w.p € L for every p € || XsPO||. It follows
that (oP0)¢w |- X sP0. Since ¢ [ XsP0 — XsPHL0, we obtain ¢ % (0P0)¢w .7 € L. O]

Theorem [[.13] shows that we can use the predicate ent(x) instead of int(z), which greatly
simplifies many computations. In particular, we define the universal quantifier restricted to
integers Y™ by putting Vo™ F = Ve (int(z) — F).

Thus, we can replace it with the universal quantifier restricted to ent(x) defined as follows:
V2 F = Va(ent(x) — F). Then, we have [[Vz®™ F| = {n.m; ne€N,7 € ||F[s"0/z]||}.
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Therefore, the truth value of the formula Vz®' F is much simpler than the one of the
int

formula Vz' F.

Theorem 1.14. Let ¢ : N — N be a recursive function. There exists a closed \-term 6
such that, if m € N, n = ¢(m) and f is a A-variable, then Omf reduces into fn by weak
head reduction.

This is a variant of the theorem of representation of recursive functions by A-terms. It is
proved in [13].

Theorem 1.15. Let ¢ : N¥ — N be a recursive function. We define, in M, a function
symbol f, by putting f(s™0,...,s™0) = s"0 with n = ¢p(mq,...,my) ; we extend f on
P*\ N* in an arbitrary way. Then, there exists a proof-like term 6 such that:

0 |-V ... Vaglint(zy), ..., nt(xg) —int(f(z1,...,25))].

Proof. For simplicity, we assume k = 1. By theorem [[L.13] it suffices to find a proof-like
term @ such that 6 |- Vz[ent(x), (ent(f(x)) — L) — L]. In other words:

0 |- ent(p), (ent(f(p)) — L) — L for every p € P.

We can suppose that p = s™0 (otherwise, —ent(p)| = () and the result is trivial).

Thus, we have ent(p) = {m} ; we must show:

Oxm.&.me L for all m € IT and & |- ent(s"0) — L, with n = ¢(m).

Take the A-term 6 given by theorem [[LT4l From this theorem, we get:
Oxm.&.m = &xn.m, which is in 1, by hypothesis on &. []

Remark. We have now found proof-like terms which realize all the axioms of second order arith-
metic, with a function symbol for each recursive function.

2. STANDARD REALIZABILITY ALGEBRAS

A realizability algebra A is called standard if its set of terms A and its set of stacks II are

defined as follows:

We have a countable set Il which is the set of stack constants.

The terms and the stacks of A are finite sequences of elements of the set:
HO U {B7C7E717K7WCC7§7X7X/7k7 (7)7 [7]7 '}

which are obtained by the following rules:

e B,C,E,I,K,W,cc,s,, X are terms ;

e cach element of Il is a stack ;

e if £, n are terms, then (§)n is a term ;

e if £ is a term and 7 a stack, then £ .7 is a stack ;

o if 7 is a stack, then K[| is a term.

A term of the form K[r] is called continuation. It will also be denoted as K.

The set of processes of the algebra A is A xTI.
If £ € A and 7 € I1, the ordered pair (£, 7) is denoted as & x .

Therefore, every stack has the form 7 =¢& . ... .&, .7, where &1,...,&, € A and mg € I
(mo is a stack constant). Given a term 7, we put:
T =E&1e ... o&p o T o7

We choose a recursive bijection from II onto N, which is written 7 — n;.
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We define a preorder relation =, on A xII. It is the least reflexive and transitive relation
such that, for all £,1,( € A and 7, w € 11, we have:

En*m=Exn.m.

Ix&.m>=Exm.

Kx&.n.m>=Exm.

Ex&on.em = (En*m.

Wx&enem=Exn.n.m.

Cx&neCem=ExConom.

Bx&.n.Com = ()(m)C .

CCk&oem = ExKp o,

kKpx€.w > Ex .

k& .m=ExN_ ..

X*E.mT = EXxT T

X *&eTom=Exm’.

Finally, we have a subset IL of AxII which is a final segment for this preorder, which means
that: pe L, p'>=p=p € L.

In other words, we ask that I has the following properties:
Emrxm¢ L=Exn.m ¢ L.

Ixéomg L=Exmd L.

Kx{onpeng L=Exme AL,
Ex¢.n.n¢ L= (En* n¢ L.

Wxéenerg¢g L=Exnen.m ¢ L.

Cx&enCemrg L=ExCen.m et L.
Bx&.on.Comd L= (§)(m)Crm ¢ L.
ccxéom¢ Ll = Exkyom ¢ L.

Kexéewd L=Exm g L.

skl L=Exn ¢ L.

X & Ll =ExTomm g L.

X'*x&eremd L=Exn" ¢ L.

Remark. Thus, the only arbitrary elements in a standard realizability algebra are the set IIy of
stack constants and the set I of processes.

The axiom of choice for individuals (ACI). Let A be a standard realizability algebra
and M a A-model, the set of individuals of which is denoted as P. Then, we have:

Theorem 2.1 (ACI). For each closed formula Vzi...Vr,YyF with parameters, there
exists a function f: P™tY — P such that:

i) ¢ fVay ... Va,(Ve(ent(x) — F[f(x1,...,2m,x)/y]) = Yy F).

i) ¢ V... Va,(Ve(int(x) = F[f(x1,...,2m,2)/y]) = Yy F).

Proof. For p1,...,pm,k € P, we define f(p1,...,pm,k) in an arbitrary way if k ¢ N.

If k£ € N, we have k = n,, for one and only one stack m;, € II.

We define the function f(p1,...,pm, k) by means of the axiom of choice, in such a way that,
if there exists ¢ € P such that:

T € ||F[p17 s 7pm7q]||7 then we have T € ||F[p17 s 7pm7f(p17 -y Pm; k)]”

1) We must show S H»Va:(ent(:n) — F[ph cee 7pm,f(p17 s 7pm7$)]) - F[pb cee 7pm7q]7 for
every pi,...,pm,q € P.
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ThUS, let g H»Vx(ent(:n) - F[plv <oy Pny f(pb s ,pn7$)]) and 7 € HF[plv s 7pm7q]|| ; We
must show ¢x&.m € 1L, thatis £xn_.m € 1. But we have:

¢ Fent(ng) = Flp1,..s0m, f(P1,- - Pm,Nz)] by hypothesis on ¢ ;

n_ € |ent(n;)| by definition of ent ;

m € |[|[Fp1y--yPms f(P1,- -y Pm,Nx)]|| by hypothesis on 7 and by definition of f.

ii) The proof is the same ; in fact, (ii) is weaker than (i) since |ent(x)| C |int(z)]. L]

Remarks.

1. A seemingly simpler formulation of this axiom of choice is the existence of a function

¢ : P™ — P such that Vap ... Vo, (Fl¢(z1,. .., 2m)/y] = Yy F).

This clearly follows from theorem 2T} simply define ¢(x1,...,2m) as f(x1,...,&Tm,x) for the first
integer  such that =F[f(x1,...,Zm,z)/y] if there is such an integer ; otherwise, ¢(x1,...,x,y,) is
arbitrary.

But this function ¢ is not a function symbol, i.e. it cannot be defined in the ground model. For
this reason, we prefer to use this axiom in the form stated in theorem 2.1 which is, after all, much
simpler.

2 .The axiom of dependent choice DC is a trivial consequence of ACI ; therefore theorem [2.I] shows
that DC is realized by a proof-like term. Theorem 2] is also crucial to prove theorem (4] (see
lemma [4.0]).

3. In the following, there will be individuals which represent sets of integers (proposition [5.1J), but
extensionality is not realized. That is why ACI is much weaker than the usual axiom of choice. For
instance, it does not imply well-ordering.

Generic models. Given a standard realizability algebra A and a A-model M, we now
build a new realizability algebra B and a B-model N/, which is called generic over M. Then,
we shall define the notion of forcing, which is a syntactic transformation on formulas ; it is
the essential tool in order to compute truth values in the generic model N.

Thus, we consider a standard realizability algebra A and a A-model M, the set of individuals
of which is P.

We have a unary predicate C : P — P(A), a binary function A : P> — P and a distinguished
individual 1 € P. We suppose that the data {C,a,1} constitute what we call a forcing
structure in M, which means that we have the following property:

There exist six proof-like terms ag, o, a2, By, 51, B2 such that:

7 € [Cl(prg)nr]| = aoT € [Clpa(gar)]] ;

7 € [Clpl| = a17 € [C[pnl]| ;

7 € [Clpaq]| = o7 € [Clg]| ;

7 € [Clpl| = BoT € [Clpp]| ;

T € |C[paq]| = BT € |Clgnp]| ;

7 € [Cl((prg)ar)as]] = Bat € [C[(pr(gar))ns]|.

We shall call C-expression any finite sequence of symbols of the form v = (dp)(d1) ... ()
where each §; is one of the proof-like terms g, a1, o, 8o, 51, B2.

Such an expression is not a C-term, but 7 is, for every c-term 7 ;

the term 7 = (d9)(d1) ... (0 )7 will also be written (y)7.

Notation. A A-term is, by definition, a term which is written with the variables p1, ..., pg,
the constant 1 and the binary function symbol A. Let t(p1,...,pk), u(p1,...,pr) be two A-
terms. The notation:
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v t(ph s 7pk) = U(pl, s 7pk)
means that v is a C-expression such that 7 € |C[t(p1,...,pr)]| = ()7 € |Clu(p,- ... pr)]l|-

Thus, with this notation, the above hypothesis can be written as follows:
i (pAg)ar = pa(gar) ; Dp=paAl; Qg pAag = q
ﬁ 1P = pAp; B pag = qu s B2 2 ((pAg)nr)as = (pa(gar))ns
Lemma 2.2. There exist C-expressions (), 81, 35, B3, B35 such that:
Bh i pAq = (pAg)Aq 5 By i (pag)ar = (gap)ar ; Bh = pa(gar) = (pag)ar
Bs i pa(gar) = pa(raq) 5 B% = (pa(gar))as = (pa(rag))as
Proof. We write the sequence of transformations, with the C-expressions which perform
them:

® By = (B1)(az2)(a0)(Bo)-

prg; Bo s (pA@)A(pag) 5 ao spA(gn(pag)) 5 a2 59A(pag) 5 B (PAg)Ag.

o 35 = (B1)(a0)(B1)(ao0)(Br).

pA(grr) 5 By s (gar)ap s ag s ga(rap) 5 B (rap)ag s ao s Ta(paq) 5 Br s (pag)ar

o 31 = (@2)(a0)(B2)(B1)(0)(2)(B1)(B2)(Bp) (B1)-

(prg)ar 5 Br s ralpag) 5 By (TA(pAq))A(pA )5 By 5 ((ra(prg))ap)ag 5 B s an((ra(pag))ap) ;
a5 (ra(pag))ap s ao s TA((pAg)ap) 5 Br s ((pag)ap)ar s Ba s (pa(gap))ar s ao ;
pr((grp)ar) 5 ag 5 (gap)ar.

e B3 = (B1)(B1)(B1)-

pA(gar) 5 Brs (gar)ap s By s (rag)ap ;s Br s pa(rag).

° 3y = (51)(ﬁ2)( 1)(0)(By)-

(pA(grm))ns s By s ((gar)ap)as s ag 5 (gar)a(pas) 5 B (rag)a(pas) 5 By 5 ((TAg)Ap)as

81 (pa(rag))ns. L
Lemma 2.3. Let t be a n-term and p a variable of t. Then, there exists a C-expression
v such that ~ ::t = tap.

Proof. By induction on the number of symbols of ¢ which stand after the last occurrence of
p. If this number is 0, then ¢ = p or ¢t = uap. Then, we have v = fy or ), (lemma [2.2]).
Otherwise, we have t = uav ; if the last occurrence of p is in u, the recurrence hypothesis
gives 7' :: vau = (vau)Ap. Then, we have v = (51)(7)(51).

If the last occurrence of p is in v, we have v = wvgavy. If this occurrence is in vy, the
recurrence hypothesis gives ' :: ua(viavg) = (una(viavg))ap. We put v = (85)(7)(53)

(lemma [22]).
If this occurrence is in vy, the recurrence hypothesis gives
v i (unvg)avy = ((uavg)avy)ap. Then, we put v = (82)(Y')(55). O

Lemma 2.4. Let t,u be two A-terms such that each variable of u appears in t. Then, there
exists a C-expression v such that v :: t = tru.

Proof by recurrence on the length of u.

If w =1, then v = ay ; if u is a variable, we apply lemma 231

If w = vaw, the recurrence hypothesis gives +' :: t = tav and also " :: tav = (tAv)Aw.
Then, we put vy = (ao)(v")(7)- O

Theorem 2.5. Let t,u be two n-terms such that each variable of uw appears in t. Then,
there exists a C-expression v such that v ::t = u.

Proof. By lemma 24 we have 4 ::t = taru. Thus, we can put v = (a2)(7/). U]
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Corollary 2.6. There exist C-expressions Yr, Vi, YE, YW, YCs VB> Yec, Yk Such that:

VI pAg = q 5 i 2 In(pa(gar)) = par ;e s Ia(pa(gar)) = (pag)ar ;

yw i In(pa(gar)) = pa(ga(gar)) ; o = Ia(pa(ga(ras))) = pa(ra(gas)) ;

VB 2 In(pA(gn(ras))) = (pA(grr))As 5 Yee = In(pAq) = pA(gng)

Yk =2 pA(gaT) = gAp. L]

The algebra B. We define now a new realizability algebra B = (A, II, A » IT, Il ): its
set of terms is A = A x P, its set of stacks is II = IIx P and its set of processes is
AxII= (A1) xP.

The distinguished subset I g of A xII is denoted by L. It is defined as follows:

E*xmp) el & (VreClp)Ern" € L.

For (§,p) € A and (m,q) € IT, we put:

(&p) *(m,q) = (E*x 7, prq)

(£7p) * (7T7 q) = (g . 7T7p/\q)'

For (§,p), (n,q) € A, we put:

(& p)(n, @) = ([@o&n, prg) with @ = Az (x) Ay (X ) (0)y-

Lemma 2.7. For each C-expression v, we put 7 = Ax(x)\y(x'z)(7)y.
Then, we have F*x & .m" = &7,

Proof. This is immediate, by means of theorem
We could take also 7 = (x)\zAy(x'y)(7)z. O

Proposition 2.8. If we have ~ :t(p1,...,px) = u(p1,...,pr), then:
(7*6 . 7T7t(p17 LI 7pk)) >~ (5*7T7u(p17 L 7pk))

Proof. Suppose that (§ x&.m, t(p1,...,pk)) ¢ L. Thus, there exists 7 € C[t(p1,...,pk)]
such that:
Fx&.mT ¢ L. Therefore, we have { x 777 ¢ L et y7 € Clu(py, ..., pk)]. It follows that:

(& *mu(pry...,px)) & AL. ]
Lemma 2.9. We have (&,p)(n,q)* (m,r) ¢ 1L = (£,p)*(n,q) . (m,r) ¢ L.

Proof. By hypothesis, we have (a@o&n*m, (pag)ar) ¢ 1L ; thus, there exists 7 € C[(pag)ar]
such that @yén+7" ¢ IL. By lemma 2.7] we have £ xn .77 ¢ 1 ; since agT € C[pa(gar)],
we have (£ *n.m, pr(grr)) ¢ L and thus (&,p) *x(n,q) . (m,7) ¢ L. O

We define the elementary combinators B, C, E, I, K, W, cc of the algebra B by putting:
B=(B"1);C=(C*1);E=(E*1);I=(I"1); K= (K*"1); W=(W*"1);

cc = (cc*, 1)

with B* = AzAyAz(Yp)(@ox)(Q0)yz ; C* =7 C ; E* = AxXy(Tp)(@o)zy ; I* =71 ;

K* =Fg K ; W* =7y W ; cc* = (x)AzAy(ce) Mk ((X'y) (vec)2) O Az Ay (k) (X y) () 2

We put Ky = (Kz,p) with ki = (x)AzAy(kx)(X'y) ()

Theorem 2.10. For every £, € A and 7, € I, we have:
Ix(.mdll = Exme AL ;

= Exm¢ A ;

ey,
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BxE.qj.(.agdll = (E)Cx7¢ L ;
Cxé.f.C.ig¢gll = ExConj.m¢ I
cCHE.7gll = Exkz.7e .
kix. ¢ I = Exn¢ .

Proof. We shall prove only the cases W, B, kx, ccC.

We put &= (§p),1 = (1,9),( = ((;7), 7 = (m,8), @ = (@, ).

Suppose W £ .7.7 ¢ AL, and therefore (Fy W %€ .n .7, 1a(pa(gns))) ¢ L.
Thus, there exists 7 € C[1a(pa(gas))] such that FyW *x&.n.n7 ¢ L.

Since Yy W x&enen™ = Exnen .77 we have Exn.n.7WT ¢ L.

But v € Clpa(ga(gas))] and it follows that €% 7.7.7 ¢ IL.

Suppose Bx&.7.C.7 ¢ AL, that is (B**x&.1n.C.m In(pa(ga(ras)))) ¢ AL
Thus, there exists 7 € C[1a(pa(gna(ras)))] such that B**&.n.C.n” ¢ L.
But, we have B**§.n.C.n7 = (Fg)(@of)(ap)n¢ = m™ (by theorem [I.2))

= (@p) (@o)n¢ x BT (by lemma 2.7). Therefore, we have (@o&)(ap)n¢ w787 ¢ L.

But g7 € C[(pa(grr))as] and thus, we have:

((@o&)(ap)n¢ * , (pa(gar))as) ¢ AL, in other words (&)(n){ 7 ¢ L.

Suppose ki €. ¢ U, thatis (K:%£&.w,sn(paq)) ¢ AL

Thus, there exists 7 € C[sa(pag)] such that K. x&.w” ¢ L. But we have:

Kix&ow = Axdy(Ke) (Xy)(w)x 7« & e = (K ) (X'E) ()T * @ (by theorem [L.2])

= (X (W)THT = X *E T o = Ex T,

Thus, we have {xn%7 ¢ L ; but, since 7 € Clpnas], we get ExT ¢ .

Suppose CC *&.7 ¢ I, thatis (cc* *&.m 1a(pas)) & AL

Thus, there exists 7 € C[1a(pas)] such that cc*x{.n7 ¢ L. But we have:

cc* €T = A Ay(COME((Xy) (vee) ) ) AzAY (B) (X Y) (Ve )z + T+ € o 0

= (CO)A((X'€) (vee)T) DO AT AY (R) (X' y) (W) *

= (X'E) (Yee)T) ) AZAY (K ) (X y) (W) T+ T = X 5§+ YeeT - () AZAY (K ) (X y) (i) - 7

= & ()AAY (Ke) (X ) ()2« 70T = Ex Ko e

It follows that & x K. .7w%7 ¢ 1. But we have 7.7 € C[pa(sas)] and it follows that we
have (&,p)* (KX, s).(m, s) ¢ I, thatis & ksz.7 ¢ AL O

We have now completely defined the realizability algebra B.

For each closed c-term ¢ (proof-like term), let us denote by t¢5 its value in the algebra B
(its value in the standard algebra A is t itself). Thus, we have tg = (t*,1;), where t* is a
proof-like term and 1; a condition written with 1, A and parentheses, which are obtained
as follows, by recurrence on ¢:

e If ¢ is an elementary combinator B,C, E,I, K, W, cc, then t* is already defined ; 1; = 1.
o (tu)* = ot u* ; 1y, = 11aly,.

The model N. The B-model N has the same set P of individuals and the same functions
as M.

By definition, the k-ary predicates of A" are the applications from P* into P(II). But, since
IT = II x P, they are the same as the applications from P**! into P(II), i.e. the k 4 l-ary
predicates of the model M.

Each predicate constant R, of arity k, is interpreted, in the model M, by an application
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Ra¢ from PF into P(A). In the model N, this predicate constant is interpreted by the
application Ry : P¥ — P(A), where Rar(p1,...,pk) = Rm(p1, .-, pe)x {1}

For each closed formula F, with parameters in N, its truth value, which is a subset of II,
will be denoted by || F|||. We shall write (&,p) |l F to mean that (£,p) € A realizes F, in
other words (Vr € I)(Vq € P)(((m,q) € [[F[]) = (£ p) * (7,q) € 1L).

Theorem 2.11.
If we have Ft: A in classical second order logic, where A is a closed formula, then

tg = (t*,1¢) |- A.
Proof. Tmmediate application of theorem [[.3] (adequacy lemma) in the B-model V. ]

Proposition 2.12.

i) If (&,1) | F, then (F&,p) | F for each p € P, with ~ :: paq = 1aq.
ii) Let £&,m € A be such that { xm = n*7 for each m € II. Then, we have:
(Exmyp) ¢ L= (nxm,p) ¢ L for everym €Il and p € P ;

(n,p) FF = (&) |FF for every closed formula F'.

Proof.

i) We must show that, for each (7,q) € ||F||, we have (F§,p) = (7, q) € AL, that is:

(¢ *m,paq) € AL, Thus, let 7 € C[paq], so that y7 € C[1aq].

Since we have, by hypothesis, (£ x m,1rq) € L, it follows that £+ 77" € 1L and therefore
~exnT e L.

ii) By hypothesis, there exists 7 € C[p] such that £ x 77 ¢ 1. Thus, we have nxz” ¢ 1L,
so that (nxm,p) ¢ 1.

Let (m,q) € || F]|| ; we have (n,p) * (7, q) € 1L, that is (nx 7, parg) € L. From what we have
just shown, it follows that (£ x 7, paq) € L, and therefore (&,p) x (m,q) € L. L]

The integers of the model N'. Recall that we have put:

o=MAfx(f)(n)fz, 0= xdyy and n = (0)"0 for every integer n.

Thus, we have o = (0*,1,) and ng = ((0)"0)p = (n*,1,).

Therefore 0 = (KI)p = (K*,1)(I*,1) and n+ 1z = opng = (0*,1,)(n", 1,).
Thus, the recursive definitions of n*,1,, are the following:

Q* — EOK*I* : (n_—l—l)* — Eoo*ﬁ* :

1o =1A1; 1,41 = 1,11,

We can define the unary predicate ent(x) in the model N in two distinct ways:

i) From the predicate ent(x) of the model M, by putting:

jont(s70)| = (1, 1)} ; [ent(p)| = 0 if p & N,

ii) By using directly the definition of ent(x) in the model N ; we denote this predicate by
entr(z). Therefore, we have:

ety (s"0)| = {np} ; lenty(p)| =0 if p ¢ N.

From theorem [LI3] applied in the model N, we know that the predicates int(z) and
entps(x) are interchangeable. Theorem 2.13shows that the predicates int(x) and ent(z) are
also interchangeable. Thus, we have three predicates which define the integers in the model
N ; it is the predicate ent(z) that we shall mostly use in the sequel. In particular, we shall
often replace the quantifier V™" with Vzent.
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Theorem 2.13.

There exist two proof-like terms T, J such that:
i) (T,1) |- YXVz((ent(x) — X), int(xz) — X).
ii) (J,1) || Va(ent(x) —int(x)).

Proof.

i) We apply theorem to the sequence u : N — A defined by u,, = (n,1).

We are looking for two proof-like terms 7, S such that:

(S, 1) * (¢, p)+ (0, 1)« (m,7) = (¥, p) x (n+ L, 1)« (m,r) 5 (S,1) =T = LT — L
(T,1) % (¢,p) « (v, @) « (m,7) = (v,9) % (8,1) + (¢,p) « (0, 1) « (, 7).

Then theorem will give the desired result:

(T,1) |l VXVz((ent(z) — X), int(z) — X).

We put S = AfAzx(Ff)(0)z, with v :: Ta(pa(gar)) = pa(gar).

Then, we have (S,1) % (¢,p). (v,q).(m,r) = (S*x¢.v.m 1In(pa(gar))) =

(7 x ov « 7, In(pA(gar))) (theorem and proposition 2.12)(ii))

= (Y xov.m,pr(grr)) (proposition 2ZZ8) = (¢, p) x (ov,q) « (m, 7).

Suppose first that (¢, p) |- T — L ; then, we have (¢, p) *x (ov,q) . (m,7) € 1L and thus:
(S,1) * (¢,p) . (v,q) « (m,r) € AL. ThlS shows that (5,1) [T — L, T—)J_

Moreover, if we put v =n, so that ov =n+1, and ¢ = 1, we have shown that:

(57 1) * (1/1,])) * (ﬂa 1) * (7‘(’,7’) s (1/1717) * (Tl——f—l, 1) * (7'(',7’).

Now, we put T = AfAx(7x)Sf0, with ~" :: 1a(pa(gar))] = gr(Ia(pa(1aT))).

Then, we have (T,1)* (¢,p).(v,q) . (m,7) = (T xp.v.m 1a(pr(grr))) -
Fv*S.¢.0.m 1n(pa(gar))) (theorem [[2] and proposition 2I2(ii))

= (v*S.p.0.m gr(1A(pA(1AT)))) (proposition 2.8])

= (r,q) x(S,1).(¢,p).(0,1). (m,r) which is the desired result.

ii) We are looking for a proof-like term J such that (J,1) |- Va(ent(x) —>int(a:)). It is
sufficient to have (J,1) |} ent(s™0) —int(s™0) for each n € N, since |ent(p i
Let (m,q) € ||int(n)|| ; we must have (J,1) % (n,1).(m,q) € I, that is:
(Jxn.m 1n(1Aq)) € L.

But, we have (n*,1,) = ((0)"0)g |}-int(s™0) (theorem [[.3] applied in B) and therefore:
(n*,1,) % (m,q) € IL orelse (n**m,1,nq) € L.

Thus, let 7 € C[1A(1Aq)] ; we have then (7)"(70)T € C[1,Aq]

where g and y are two C-expressions such that:

Y0 2 IA(Inq) = (1A1)Aq 5 7 pAg = (1,AD)AG.

Indeed, we have seen that 19 = 1a1 and 1,41 = 1,21,. It follows that, if 7 € C[1A(1Aq)],
then (y0)7 € C[1gag], and therefore (v)"(70)7T € C[1,Aq].

Thus, we have n* * 71" 007 ¢ | |

Now, we build below two proof-like terms g, j such that, for each n € N, we have:

a) gxn.&.m7 = Exm()"0)7

b)j*n.{.m=Exn* ..

Then, by putting J = \z(gz)(j)z, we have J+n.nw" = n* % 70" (0)7 ¢ || which is the
desired result.

a) We put g = AkAz(7,)(k)7x ; from theorem [[.2] we have:

gxn €T = Ty K (n)FE T = (n)FE * 0T

Thus, it suffices to show that (n)y& 7" = 7" which we do by recurrence on n.
If n =0, we have immediately 0*x7.& .77 = &x 77 since 0 = Az Ay y.

s
=)
]
A
Z
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Going from n to n+ 1: we have (n+ 1)FE*x77 = (on)JE*xn" = oxn.y. {717

=T x (n)FE T = (n)FE+ T = £ (™7 by induction hypothesis.

b) We put 8 =apo”, U= AgAy(9)(B)y and j = AkAf(k)U fO".

Therefore, we have jxn.£.w = nU&*0*.w. We show, by recurrence on n, that:

nUEx k" om = Ex (n+ k)* .7 for each integer k, which gives the desired result with k& = 0.
For n =0, we have QUEx k™ o > €% k™ . since 0 = Ax Ay y.

Going from n ton+1: we have (n+ 1)xU & k" .n=onxU ... k" e = U nUE K" o
(since o = AnAfaz(f)(n)fz) = nUEx Bk e =nUlx(k+1)* . =Ex(n+k+1)"om

by induction hypothesis. L]

3. FORCING

Forcing is a method to compute truth values of formulas in the generic B-model N.

For each k-ary predicate variable X, we add to the language a new predicate variable,
denoted by X, which has arity ¥ + 1. In the A-model M, we use the variables X and
X7 ; in the B-model NV, only the variables X.

With each k-ary second order parameter X : P* — P(II) of the model A, we associate a
(k + 1)-ary second order parameter X+ : P! — P(II) of the model M. It is defined in
an obvious way, since I = IIx P ; we put:

X+(p7p17 s 7pk) = {7T € Ha (ﬂ-vp) € X(plv s 7pk)}

For each formula F written without the variables X, with parameters in the model N,
we define, by recurrence on F, a formula denoted by p | F' (read “ p forces F' 7), with
parameters in the model A, written with the variables X and a free condition variable p:
If F is atomic of the form X(t1,...,tx), then p | F is Vq(Clprq] = X (q,t1,...,tx)).

If F is atomic of the form X(t1,...,tx), then p |- F is Vq(Clprq] — X T (q,t1,...,tk)).

If F = (A — B) where A, B are formulas, then p |- F'is Vq(¢ | A — parg | B).

If F = (R(t1,...,tx) = B), where R is a predicate constant, then:

pFF is (R(ty,....tx) > p } B).

If F=(t; =to— B), then p} F is (t1 =ta—p | B).

If F=Vx A, then p} F is Va(p | A).

If F=VX A, then pfF is VXT(p | A).

Thus we have, in particular:

If F=V2®™ A, then p | F is Vz®(p |- A).

Lemma 3.1. Let F' be a formula the free variables of which are amongst X1,..., X and let
X1,..., X be second order parameters in the model N, with corresponding arities. Then,

we have: (pF F)[X7 /X7, .., X7 /X =W FlXa/Xa,. .., X/ X))
Proof. Immediate, by recurrence on F'. L]

Theorem 3.2.

For each closed formula F with parameters in the model N, there exist two proof-like terms
XF, X, which only depend on the propositional structure of F, such that we have:
EFEF) = (xrép) FF

&p) FF = xpl @ EF)
for every £ € A and p € P.
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The propositional structure of F is the simple type built with only one atom O and the
connective —, which is obtained from F by deleting all quantifiers, all symbols — with
their hypothesis, and by identifying all atomic formulas with O.

For instance, the propositional structure of the formula:

VX (Vx(Vy(f(z,y) =0 — Xy) - Xz) > Ve Xzx) is (O— 0)— O.

Proof. By recurrence on the length of F'.
o If F' is atomic, we have F' = X(t1,...,tx) ; we show that xrp = x and X = X'.
Indeed, we have: ||p | F|| = ||Vq(Clprqg] = X (g, t1, ..., tx)|
= U {7.m 7 €Clpngl, (m,q) € [|X(t1,. ... )},

because, by definition of X*, we have 7 € || X*(q,t1,...,tx)|| & (m,q) € | X (t1,..., tx)]]-
Therefore, we have:
) SF@FF) <

(Vq € P)(V7 € Clpag))(Vm € IT)((m, q) € | X (t1,... . t)|| = ExT7.m e L).
Moreover, we have ({,p) [ F < (Vg € P)(Vr € I)((m,q) € [|F|| = (&, p) * (7,q) € L)
& (Vge P)(Vr e I)((m,q) € ||F|| = (£ *7m,parg) € L) and finally, by definition of L :
(=) (&p) IFF < (Vg€ P)(Vr € Clpag])(Vr € IN)((mr,q) € [|F|| = {x 77 € L).
Suppose that ¢ |- (p | F). Since x§x @™ > £ x 7. m, we have from (x):
(Vg € P)(Vr € Clpaq))(Vm € IT)((m, q) € || X (t1,....t)|| = xExT.m e L)
and therefore (x&,p) [ F from ().
Conversely, suppose that (&,p) [|- F. By applying (xx) and x'§ * 7.7 = £ x 77, we obtain
(Vg € P)(vr € Clpag))(vm € TT)((m,q) € ||Fl| = X'Ex 7.7 & 1)
and therefore X'¢ - (p b F) from (x).
e If F=VX A thenp | F=VXT(p} A).
Therefore, we have ¢ F(p | F)=VXT(E | (p | 4)).
Moreover, we have (€,7) I F = YX((€,p) - A).
Let X : P¥ — P(II) be a second order parameter in the model N, with the same arity as
X, and let X* be the corresponding parameter of the model M.
It € (p b F), then we have (£ |- (p | A))[X+/X*), thus £ - (p | A[X/X]), from
lemma, 311
By the recurrence hypothesis, we have (x4&,p) || A[X/X]. Since X is arbitrary, it follows
that (xa&,p) [I- VX A
Conversely, if we have (§,p) |- F, then (&,p) | A[X/X] for every X.
By the recurrence hypothesis, we have x4¢ [ (p | A[X/X]), and therefore:
Xaé I (p | A)[XT/XT]), from lemma 31l Since X7 is arbitrary, it follows that:
Yab VX (0 | A), that s X4¢ |- (0 b VX A).
e lf F=Vz A thenplp F=Vz(p | A). Therefore ¢ fpF F=vVx(§ | (p | A)).
Moreover, (&,p) - F =Vz((€ p) - A).
The result is immediate, from the recurrence hypothesis.
o lf F=(ti =ta— A), thenp | F =t; =ty — p | A. Therefore:
PR =t=t= < FA).
Moreover, (&,p) |FF = (t1 =t2— (&, p) [FA).
The result is immediate, from the recurrence hypothesis.
o If F=A— B, wehave p} F=Vq(q | A — parg | B) and therefore:

(*) E-EF) =9 (g FA) — &n - (pag | B)).
Suppose that & |- (p |- F) and put xr = AzAy(7o)(xB) () (X'4)y-
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We must show (xré,p) [F A — B ; thus, let (n,q) |- A and (7,7) € || B]||-

We must show (xr&,p) * (1,q) . (m,r) € AL that is (xp&*n.m, pr(gar)) € L.

Thus, let 7 € Clpa(gar)] ; we must show xp{xn.n” € 1L orelse xpx&.n.n" € L.
From the recurrence hypothesis applied to (7, q) |- A, we have x'yn [ (¢ |- A).

From (%), we have therefore (&)(x'4)n I (prg | B).

Applying again the recurrence hypothesis, we get:

((xB)(£)(X'a)n: prq) [ B. But since (m,r) € || B[, we have:

((xB)(E)(Xa)n:prg) * (m,r) € AL, that is ((xB)(§)(X)n* T, (prg)rr) € L.

Since 7 € C[pa(gar)], we have o7 € C[(prg)ar] and therefore (xp)(&)(Xy)n* 77" € L.
But, by definition of x g, we have, from theorem

xp*€en.m = (xB)(&)(X'4)n * 77 which gives the desired result: xp*&.n.n" € L.

Suppose now that (£,p) [ A — B ; we put X% = AzAy(xg) (@ox)(xa)y-

We must show x=¢ |- (p | A — B) thatis Yg(xX%¢ (¢ F A — pag | B)).

Thus, let n -q¢ | A and 7 € ||[pag | B|| ; we must show xp{*n.me L.

By the recurrence hypothesis, we have (xan,q) |- A, therefore (£, p)(xan,q) |[F B or else,
by definition of the algebra B: ((@o)(xa)n,prq) |- B.

Applying again the recurrence hypothesis, we have (x’z)(@&)(xa)n I (pr¢ | B) and
therefore:

(X5)([@o€)(xa)n*m € L. But we have:

XpExnem = Xp*&.n.m = (Xg)([@&)(xa)n * ™ from theorem ; the desired result
follows. L]

A formula F is said to be first order if it is obtained by the following rules:

e | is first order.

o If A, B are first order, then A — B is first order.

e If B is first order, R is a predicate symbol and ¢4, ...,t; are terms with parameters, then
R(t1,...,tx) — B, t; =ty — B are first order.

e If A is first order, then Vx A is first order (x is an individual variable).

Remarks.

i) If A is a first order formula, it is the same for Yzt A,

ii) This notion will be extended below (see proposition [L3)).

Theorem 3.3. Let F be a closed first order formula. There exist two proof-like terms
Or, 0, which depend only on the propositional structure of F, such that we have:
§ I (Clpl = F) = (6r&,p) - F 5

& p) -F = 0p¢ I-(Clpl = F)
for every £ € A and p € P.

Proof. The proof is by recurrence on the construction of F following the above rules.

o If Fis 1, we put:

d1 = dz(x)\y(x)(a)y with a2 prg = p .

8 = Azdy(X'z)(o/)y with o/ :: p= pal .

Indeed, suppose that ¢ |- C[p] — L and let us show that (6§, p)(m, q) € AL, that is:
(61.&*m,pag) € AL, Thus, let 7 € Clpaq], so that at € C[p], so that {xar.m € L, by
hypothesis on &, which gives §,&*xn7 € L.

Conversely, if (£,p) |- L, we have (&,p)x(m,1) = ({ xm,pal) € 1L for every 7 € II.
But, if 7 € C[p], we have «'7 € C[pal], therefore &+ 77 € I, thus 0 ExT.me L.
Therefore ¢ & |- Clp] — L.
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o If Fis A — B, we put:

da—n = AxAy()A2((X') (0p)Ad((2)(a)2) (04 y)(B)2)(v)z with

a:pa(gar) = p; B ipa(gar) = q 5 v = pa(gar) = 1ar.

Indeed, suppose that ¢ |-C[p],A — B, (n,q) A and (m,r) € ||B]|.

We must show (04-5&,p) * (n,q) . (m,r) € 1L, that is (§4—pE*n.m, pA(gar)) € L.
Thus, let 7 € Clpa(gar)] ; we must show dapE*xn.n" € L.

We have at € C|p|, B € Cl[q] ; but, by the recurrence hypothesis, we have:

541 - Cla] — A, therefore (,m)(B)7 |- A and ((€)(@)r)(Eym)(B)r I B ;

thus  Ad((§)(a)T)(6yn)(B) |- C[1] — B.

From the recurrence hypothesis, we have ((6g)Ad((§)(a)7)(0’yn)(B)7,1) |}~ B, thus:
((68)Ad((E)()T)(074m)(B)T, 1) x (m,7) € L, that is:

((68)Ad((€)()7)(0%4n)(B)T > m,1ar) € L.

But, we have y7 € C[1ar], therefore (0p)Ad((§)(a)7)(0"yn)(B)T * 7™ € I, and thus:
(X)) (0B)AA(()(a)T)(0"4m)(B)T)(y)T *m € L. Tt follows that:
OOA2((X)(6B)AA((&)()2) (8" m)(B)2)(v)z x 7T € L so that dapExn.n” € L.

We now put:

8y g = AeAyrz((85)(aox)(0a)Ad 2)(o)y with « 2 p = pal.

Suppose that (&,p) |FA — B ;let 7 € Clp|, n | A and 7 € ||B|. We must show:
8y gE*T.n.me L. We have A\dn |- C[1] — A ; applying the recurrence hypothesis, we
have ((04)Adn,1) [I- A, thus (§,p)((64)Adn, 1) [ B that is ((@0€)(04)Adn,pAl) |t B.
Applying again the recurrence hypothesis, we find:

(0%) (@) (64)Adn |- C[pal] — B. Since we have ar € Clpal], we get:
(0%)(@&)(da)Ndn*ar .m € L and finally ¢y  péxT.n.me L.

e If F =R(§) — B, where R is a k-ary predicate symbol and 7 € P*, we put:

Or—B = A\ y(@)(0p)A\z(x)zy with « :: pA(1ar) = par.

O g = AeAyrz((d)(ap)zz) (o )y with o ::p = pal.

Suppose that ¢ |- C[p],R[qg] — B and let n € |R[g]|, (7,7) € ||B]|. We must show:
(0r—BE p)*x (0, 1)« (m,r) € AL, that is (dp—pE*n.m, pA(1ar)) € L.

Thus, let 7 € C[pa(1ar)] ; we must show dr_p&*n.n" € L. But, we have:

Az(€)zn | Clp] — B, and thus ((0p)Az(£)zn,p) | B, by the recurrence hypothesis.

It follows that ((dp)A\z(&)zn,p) * (m,r) € L, that is:

((6B)Az(&)zn x m,par) € AL. But we have ar € Clpar], and therefore:

(0p)Az(&)zn x T € AL, thus (@)(dp)Az(§)zn * 7™ € L, therefore dpp&*n.n" € L.
Suppose now that (&,p) [FR(¢) = B ;let 7€ C[p], n € |IR[¢]| and = € ||B|.

We must show 8, z€*7.n.7 € L. But, we have (£,p)(n,1) |- B, that is:

((@0)&n, prl) |- B, thus (8%3)(@0)én || Clpal] — B, by recurrence hypothesis.

But, we have o' € C[pal], therefore (§%3)(ao)én* o't .m € L, hence the result.

o If F=(p; =py— B), weput ép =0p and O = 0.

Indeed, suppose that & |-C[p] — (p1 = p2 — B) and (m,q) € ||p1 = p2 — B||. We
must show that (dp&,p) x (7,q) € L. Since ||p1 = p2 — B|| # 0, we have p; = po, thus
(m,q) € ||B]| and £ |}~ C[p] — B. Hence the result, by the recurrence hypothesis.

Suppose now that (&,p) |Fp1 = p2 — B, 7 FC[p] et ® € ||p1 = p2 — BJ|. We must
show ¢z 7.7 € AL. Since ||p1 = p2 — B| # 0, we have p; = po, therefore 7 € ||B|| and
(&,p) |F B. Hence the result, by the recurrence hypothesis.

o If F=VzA weput dp =04 and o =J.
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Indeed, if ¢ || C[p] — Vz A, we have £ || Clp] — Ala/x] for every a € P. By the recurrence
hypothesis, we have (04, p) |- Ala/z] ; thus (04&,p) |} Vo A.

If (§,p) | Vz A, we have (§,p) || Ala/x] for every a € P. By the recurrence hypothesis,
we have 0,¢ | Clp] — Ala/z] ; thus ¢,¢ || Clp] — Yz A. O

The generic ideal. We define a unary predicate J : P — P(II) in the model N (second
order parameter of arity 1), by putting J(p) = I[Ix{p} ; we call it the generic ideal.
Thus, the binary predicate J+ : P? — P(II) which corresponds to it in the model M, is
such that J*(p,q) = 0 (resp. II) if p # q (resp. p = q). In other words:

J T (p,q) is the predicate p # q.
The formula p |- 7 (q) is Vr(Clpar] — T *(r,q)). Therefore, we have:
Ip = T (@)l = [[-Clpag]|l ; in other words:

p I J(q) is exactly =Clpag].

Notations.
e We denote by p C ¢ the formula Vr(—Clgar] — —C[par]) and by p ~ ¢ the formula
pE qgAqL p,that is Vr(=Clgar] <> =C[par]).
In the sequel, we shall often write F' — C[p] instead of —C[p] — —F ;
Then p C ¢ is written Vr(C[par] — Clgar]) and p ~ ¢ is written Vr(C[par] <+ Clgar]).
Remark. We recall that C[p] is not a formula, but a subset of A ; in fact, in some realizability
models which will be considered below, there will exist a formula C[p] such that:
IC[p]| = {7 € A¢; 7 | C[p]}. In such cases, we can identify C[p] with the formula C[p].
o If F' is a closed formula, we shall write |- F to mean that there exists a proof-like term
6 such that (6,1) |- F. From proposition 2:12(i), this is equivalent to say that there exists
a proof-like term 6 such that (0,p) | F for every p € P.

Proposition 3.4.
i) € - =Clprg] = (x&:p) Ii- T (9)
(&,p) IFT(@) = x'¢ |- —Clpng.
ii) & I=Vr(Clpa(1ar)],Clg] = L) = (x&,p) - —Clg] ;
(&,p) [i-~Cla] = X'€ [t Vr(Clpa(1ar)],Clq] — L).
iii) If ¢ -R(aq,...,ar) then (&,p) |F —R(a1,...,ar) for all p
(R is a predicate symbol of arity k).
Proof.

i) If £ |- =C|pngq], then {x7 .7 € L and therefore y¢é 77 € L for all 7 € C[pag]. Thus, we
have: (x&m,paq) € AL, that is (x&,p) x (m,q) € I for every m € II, i.e. (x&,p) [ T (q).
If (&,p) | Tlq], we have (§,p) x (7,q) € AL, thus (§ x7,paq) € AL for all m € II. Therefore,
we have {x77 € L, that is x'éx7 .7 € L for each 7 € C[png]. Therefore x'¢ |- =C[prq].
ii) If £ |- VYr(Clpa(1ar)],Clg] — L), we have E xv.7.m € 1L if v € Clpa(lar)] and
7 € Clq]. Therefore x&x7.7" € L, thus (x§* 7.7, pA(1ar)) € AL that is:

(x§,p) * (1,1) . (m,r) € L. But (7,1) is arbitrary in Cx[g], and therefore:

(x¢,p) [I-Clgl = L.

If (¢,p) [ —Clg], we have (¢,p) x (1,1) . (m,r) € I, and therefore (§ *x 7.7, pr(1ar)) € A
for each 7 € Clg]. Thus, we have {x7.7Y € I therefore Y'{xv.7.7m € I for each
v € C[pa(1ar)]. Tt follows that x'¢ |- Vr(Clpa(1ar)],Clg] — L).

iii) Let 7 € |[R(a1,...,ax)| ; we have { x 7. € L for all m € I, thus ({ x7.m,a) € AL for
all @ € P, and therefore (&,p) % (7,1). (7, q) € L. ]
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Theorem 3.5 (Elementary properties of the generic ideal).

i) (@, 1) |F~J (1) with «: 1a(pag) = pAal.

i) (6,1) | Vo(—Clz] = J(z)) where 6 = Ax(x)A\y((x'x)(B)y)()y
with o :: In(prq) = ¢ and B :: 1a(paq) = pa(1A1).
iii) (0,1) [ Vavy(T (zay), T () — T(y)) where 0 = Ixdy(@)(y)(B)z with o :
1A' Ad'rg)) = d'A((grp")AL) and B (gap’)np = p'A(pAg).
iv) (0,1) |- Va(Vy(~Clzry] — T (y)) — =T (x)) where 0 = Axiy(y)(z)Az(X"y)(B)z, with
B :pag = qrp and 7y Ia(ra(gar’)) = ra(1ap).

v) (6,1) [ Vavy(J (z),y C = — T (y))
where 0 = AzXy(()Az((X) [@oy) A2 (X ) (8)2) (@)2)(7)z, with
a : IAPA(rAq)) = (ral)A(IAL) ; o 2 IA(P'A('AQ)) = qrp’ 5 B pag = qrp.
Proof.

i) Let (&p) [ J(1) ; we must show that (@, 1)« (&,p). (7, ¢q) € L, that is to say:
(@x&.m,1n(prg)) € L. But, from proposition 2.8 we have:
(@x&.m,In(prq)) = (Exm,pAl) = (&, p) * (7, 1).
Now, we have (&,p)* (m,1) € UL by hypothesis on (&, p).

ii)Let (n,p) [f-—Clq] and (7, q) € [|T(g)[[. We must show that (6,1)* (1,p) - (m,q) € IL,
ie. (Oxn.m 1a(paq)) € AL. Thus, let 7 € C[1a(prq)] ; we must show that Oxn.77 € L.
From proposition B4, we have x'n |- C[pa(1a1)],Clg] — L.
Now, we have 87 € C[pr(1a1)] and ar € C|g|, therefore x'n* f7.ar.m € L thus
COAY () (B)y)(a)y x 77 € L thus §*n.7" € L.
iii) Let (§,p) =T (pra), (0,¢') [-~T(p) and (m,q) € [|T(g)[|. We must show that:
(0,1) % (§,p') - (n,q') - (m,q) € IL,ie. (0x&.n.m In(p'A(q'Aq))) € L.
From propositions 2.12[(ii) and 28] it suffices to show:
(@ m)(B)E*m, In(p'A(¢'rg))) € IL then (n*BE.m, ¢'A((grp")A1)) € AL, that is:
(n,4") % (BE, qnp’) « (m,1) € AL B
By hypothesis on (7, ¢'), we have now to show that (3¢, qrp’) [ T (p), ie.:
(BE,qap’) * (w,p) € L, or else (B¢ * @, (gap’)ap) € L for all w € 1.
But, by proposition 2.8 we have:
(BE x @, (qrp’)ap) = (§x @, ' A(pAq)) = (€,9') * (w, pag) € AL by hypothesis on (£,p').
iv) Let (£, ) - 7 (p) and (n,7) [~ Vg(=Clprg] — T (q)) ; we must show that:
(0,1) % (n,7)« (§,q) « (m,r") € A, that is (@ xn.&.m, 1n(ra(gnrr’))) € L.
From proposition B.4((i), we have x'¢ |- —=Clgap]. Let 7 € C[pag|, thus p7 € Clgap]
therefore Y/'¢xB7.p € L for every p € II. Therefore, we have \x(x'€)(B8)z*7.p € I, thus
Az(X'€)(B)z |+ —C[paq]. From proposition B.A4((iii), we have (Az(x'€)(8)z,1) |l —C[paq].
By hypothesis on (n,r), we thus have (n,7)* (Az2(X'€)(8)z,1). (7,q) € 1, i.e.:
(n* Az(X'€)(B)z « m,rA(1ag)) € AL, thus ((F)(m)Az(x'E)(B)z * 7, 1n(ra(grr’))) € AL
(proposition 2.8)) and therefore (0 xn.& ., 1n(ra(gar’))) € AL.

v) Let (¢,p) |- T (p) and (n,7) |I-q E p ; we must show that:
0,1) % (&,p) . (n,7) . (m,q) € UL for all 7 € II, that is (@ x&.n. 7w, 1a(p'A(rAq))) € L.
From proposition B4{(i), we have x'¢ |- =C[p'ap], thus A2/ (X'€)(8)z’ |- =C[prp']: indeed, if
7 € Clpap'] and p € T, we have N2/ (X'€)(B)2' x7.p = (X'E)(B)T*p € L since B € C[p'ap].
Then, from proposition B.4(iii), we have (A2'(x’€)(8)z’,1) |- =C[pap’]. But, by hypothesis
on (n,r), we have (n,r) || (=Clpap’] = —Clgnp’]). It follows that:
(0, 1) (A (X'€)(B)7, 1) |- =Clgnp'], ie. (([@on)Az'(X'€)(B)2',ral) | ~Clgnp'].
From proposition B4l(ii), we have (x')(@on)Az'(x'€)(5)z" | C[(ra1)a(1a1)],Clgnrp’] — L.
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Let 7 € C[1A(p'A(rAq))], therefore at € C[(ral)a(1A1)] and o/7 € Clgap'].
Thus, we have:
)T)

(X)) @om) A2 (X&) (B)2 ) (« )7 % € L, therefore:
) Az(((x )(040?7))\2 (X’ 5); )2 )« )2*777 € 1. In other words:

(v
ICI
()Az((O) @om) Az (X'€)(8)2') (@) 2) (@) z x m, 1n(p'A(rng))) € AL
or else, from proposition ZI2(ii): (0 *&.n.m, IA(p'A(rAq))) € L. O]

Theorem 3.6 (Density).

For each function ¢ : P — P, we have:

(0,1) [} Va(=Clznd(z)] = T (2)), Vo T (znd(x)) — L
where 0 = (B)AzAy(z)()y, ¥ = (X)AdAzAy(x'z)(@)y ;
with « 2 gar = ga(gar) ;B 1a(pa(gar)) = pa(1aq).

Proof. Let (€,p) Il Ya(~Cland(e)] = T()), (1,) IF- Yo T(erd(x)) and () € TI

we must show that (0 x&.n.m Ia(pa(gar))) € AL ; thus, let 79 € C[1a(pa(gar))]. We
must show *x&.n.770 € L.

We first show that (9n,1) | —-Clgad(q)].

Thus, let (w,r’) € IT and 7 € C[gad(q)] ; we must show (9n,1) % (1,1) . (w,r’) € AL

ie. (Un*7.w,1n(1ar")) € U or else Inx7.w” € L for each 7/ € C[1a(1ar)]).

Now, 9n*7.w” = nxw® and ar € Clga(gagd(q))]. Thus, it suffices to show:

(n* @, qn(grd(q))) € UL or else (n,q) x (@, qrd(q)) € L.

But this follows from the hypothesis on (7, ¢), which implies (7, q) |} J(grd(q)).

By hypothesis on &, we have (£,p) [ —Clgrg(q)] — T (q). It follows that:

(& p)* (Un,1).(m,q) € AU, that is (§xIn.m,pA(1rg)) € AL.

But we have 79 € C[1a(pa(gar))]), thus B € Clpa(1aq)]. Tt follows that &xdn.nf™ € I.
This gives the desired result, since @ x& .1 .77 = & % On. 7P, []

4. COUNTABLE DOWNWARD CHAIN CONDITION

In this section, we consider a standard realizability algebra A and a A-model M. We
suppose that the set P (domain of variation of individual variables) has a power > 2%0,
We choose a surjection ¢ : P — P(II)N and we define a binary predicate in the model M,
which we denote also by ¢, by putting:

Inepll = e(@)(n) fn €N [nep| =0itngN
(we use, for the predicate ¢, the notation nep instead of £(n, p)).
Therefore, the predicate € enables us to associate, with each individual, a set of integers
which are its elements. Proposition .1l shows that the following axiom is realized:
For every set, there exists an individual which has the same integer elements.

This axiom will be called axiom of representation of predicates on N and denoted by RPN.

Proposition 4.1 (RPN).
Az (2)00 [ VXIVn(Xn < nex).

Proof. This formulais VX (Vz[Vn(ent(n), Xn — nex),Vn(ent(n),nex — Xn) — L] — 1).
Thus, we consider a unary parameter X : P — P(II) and a term £ € A such that:

¢ | Vz[Vn(ent(n), Xn — nex),Vn(ent(n),nex — Xn) — L].

We must show that Az(z)00*&.7m € 1, orelse £x0.0.7 € I for every stack = € II.
By definition of e, there exists pg € P such that Xn = ||nepg| for every integer n.
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But, we have: & |- Vn(ent(n), Xn — nepg),Vn(ent(n),nepy — Xn) — L.

Thus, it suffices to show that 0 |- Vn(ent(n), Xn — nepg)

and 0 [ Vn(ent(n),nepyg — Xn).

Recall that the predicate ent(x) is defined as follows:

lent(n)] = {n} ifn €N and |ent(n)|=0if n ¢ N.

Therefore, we have to show:

0xn.n.pe L forallne N, n |-X(n) and p € |nepol ;

O0xn.n.pel foralneN, ' Fnepy and p' € X(n).

But this follows from nxp € 1L and n'xp’ € L, which is trivially true, since Xn = ||n e py|.
[

We suppose now that {C, A, 1} is a forcing structure in M. Then we define also the symbol
¢ in the B-model N by putting:

Inepl|| = |Inepl x{1} for n,p € P. In other words

Inepll ={(x,1); 7€ e(p)(n)} if n €N ; [Jnep|| =0 if n ¢ N.

Proposition 4.2. The predicate €% (q,n,p) is ¢=1+ nep.
The formula q Fnep is Clgal] — nep.

Proof. Immediate, by definition of ||nep||. L]

Proposition 4.3.

i) £ F(Clp] = neq) = (6&,p) Fneq where 6 = Ax(x)\y(z)(a)y and « :: pAl = p.
ii) (&,p) Fneq = 8¢ (Clp] = neq) where & = Xz y(x'z)(a)y and o :: p = pal.

Proof.

We have (&,p) [Fnep < (§,p)*(m,1) € UL for all w € ||nep]|, or else:

& p) |Fnep & &x77 € L for each 7 € Cpal] and 7 € [[nep||.

i) Suppose that & |- (C[p] = neq), 7 € Clpal] and = € ||nep||. Then,we have:

rxm" = Exar.m e L, since ar € Clp|.

ii) Suppose that (£,p) Fneq, 7 € C[p] and 7 € ||nepl||. Then,we have:
FexT.m = Exm™T € I, since o/7 € Clpal]. (]
The notion of first order formula has been defined previously (see theorem [B.3]). We extend
this definition with the following clause:

e tcuy is first order, for all terms ¢, u.

Proposition 1.3 shows that theorem B3] remains true for this extended notion.

We say that the forcing structure {C, A, 1} satisfies the countable downward chain condition
(in abridged form c.d.c.) if there exists a proof-like term cdc such that:
cde [ VX [Yn®3p X (n, p), ¥nVp¥e(X (n, p), X (n,q) — p = q),

Y pvg(X (n,p), X (sn,q) — ¢ C p) —

I {Vnp(X (n,p) — p' C p), (Vn™Vp(X (n,p) — C[p]) — C[p'])}].
The intuitive meaning of this formula is:
If X (n,p) is a decreasing sequence of conditions, then there exists a condition p’ which is less than
all of them ; moreover, if all these conditions are non trivial, then p’ is non trivial.

We intend, in this section to prove the:
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Theorem 4.4 (Conservation of reals).
If the c.d.c. is verified, then there exists a proof-like term crl such that:
(crl, 1) VX 32Yne(Xn <> nex).

Proof. This means that the axiom RPN, which is realized in the .A-model M (see proposi-
tion [L.])) is also realized in the generic B-model N.

Notation.

The formula Yq(Clprgl,q¢ | Xn — p | Xn) reads as “ p decides Xn ”, and is denoted by
p | £Xn.

It can also be written as VqVr(Clpaq],q | Xn,Clpar] — X (r,n)).

If X¥: P— P(IIxP) is a unary predicate in the B-model N,

and XT : P?2 — P(II) is the corresponding binary predicate in the standard A-model M,
the formula Yq(Clpag],q¢ | Xn — p | &A'n) is thus also denoted by p | £An.

Theorem 4.5. If the c.d.c. is verified, there exists a proof-like term dec such that:
dec |- YXVpoIp'{(C[po] — C[p']),p’ C po, ¥n™(p' |- £Xn)}.

Remark. This formula means that, for any predicate X, the set of conditions which decide Xn for
all integers n is dense.

We first show how theorem [£.4] can be deduced from this theorem
From theorem [B.2] it is sufficient to find a proof-like term crlO such that:
crlo |- 1 | VX 32Vn®Y(Xn <> nex)
or else, since 1 | —A =Vpo((po | A),C[lrpo] — L):
crlo |- YXVpo[(po | Yg{Vn® (Xn <> neq) — L}),C[1apo] — L].
From theorem (7] it is sufficient to find a proof-like term crll such that:
crl1 |- ¥X¥po¥p'{(Clpo] — Clp')),p' C po, Y™ (¢ |- £X7),

(b0 | Ya(¥n™(Xn > neq) - 1)),Cliapo] = L}.
It is sufficient to find a proof-like term crl2 such that:
crl2 [ VX Vpo¥p'{(po |- Ya(¥n®™ (Xn <> neq) — 1)), p' C po,

vt (p' | £Xn),C[p'] — L}

Indeed, we take then crll= AzAyAzAulv((z)(crl2)uyz)(d)v with § :: 1ap = p ;
(recall that the formula C[pg] — C[p/] is written, in fact, as —=C[p’] — —=C[po))-

We fix X+ : P2 P(II), po.p/ € P € |- (po |- Va(vn™ (Xn o neg) = 1)), n -9/ C po,
¢ |V (p' | £Xn) and 7 € C[p/]. We must have (crl2)én¢r || L.
We choose ¢ € P such that we have |[neq|| = ||p’ | Xn] for all n € N, which is possible,
by definition of ¢.
We trivially have & [ (po | (Vn®™(neqo — &n), Vn®(Xn — neqy) — L1)).
But, the formula pg |- (Vn®(neqgq — Xn), Vn®™(Xn — neqy) — L) is written as:
Vv (r | Yn® ™ (ne go — &n), v |V (Xn — neqo), Cl(porr)ar’] — L).
Replacing r and " with p’, we obtain:
EQ FYn®™(neg — Xn), p' | Vn®(Xn — neq), Cl(porp’)ap’] — L).
From 7 € C[p/] and n | Vr(=Clporr] — —C[p'ar]), we deduce that:
AR((m)Az(h)(B)z) ()T = ==C[(porp)rp']
where a, 8 are C-expressions such that « : p = pap; B :: pag = (pAg)Ag.
Thus, we have:
(1) A=) a(y=)(B)) (@) |-
(P FVn™(neqgo — Xn)), (' | ¥ (Xn — neqo)) — L.
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e The formula p' |- Vn®(neqy — X'n) is written as Vn®"Wr(r - neqo — p'ar |- &n).
But r | neqy = Clral] — neqo (proposition £2) = C[ral] — p' | X(n) by definition
of go. Therefore p' |- ¥nY(neqq — &An) = Vnr((Clral] — p' |- X(n)) — p'ar | &n) =
Yo" [Vq(Clrall], Clp'ag] — Xt (g, n)), Cl(W'nr)ng') — X T (¢, n)].

Thus, we have:

(2) MA@ (@) (B |- (& F I e go - Xn))

with o :: (par)ag = ral and B 2 (par)ag = pag.

e The formula p’ |- Vn®™(Xn — neqp) is written as Vn®Wr(r |- Xn — p'ar | ne qo),

or else: Vn®"Wr(r |- Xn, C[(p'ar)Al] — ne qo), that is, by definition of go:

Yy (r | Xn, Cl(p'ar)al] — p' | &n). But, we have:

¢ | Vnt(p’ | £Xn), in other words (¢ |- Vn®™Wr(r | Xn, C[p'rr] — p’ | Xn). Therefore:
(3) AndzAy(Cnx)()y o' | Vn(Xn — neqo) with o i (par)Al = par.

It follows from (1,2,3) that:

(AyAz((n)Az(§yz)(B)z)(a)T) AdAzAy((z)(e)y)(8)y) AndzAy(Cna)(e”)y - L.

Therefore, we can put crl2 =

AonyoAzoAU((AyAZ((yo)Afc(woyz)(ﬁ)x)(a)U)AdM:Ay((w)(0/)y)(6’)y)AnMMy(zOnx)(a”)y-D

The remaining of this section is devoted to the proof of theorem

Definition of a sequence by dependent choices. In this section, we are given a fixed
element pg € P and a finite sequence of formulas with parameters F (n,p,p’). We are also
given a proof-like term dse such that:
dse |- VnVp3p' F(n,p,p).
Remark. The aim of this section is to write down a formula ®(z,y) which represents the graph of
a function ¢ : N — P such that the formulas ¢(0) = py and Vn®™ F(n, ¢(n), ¢(n + 1)) are realized
by proof-like terms. We shall only apply the results of this section to a particular sequence F of
length 3.
From theorem R.(i) (axiom of choice for individuals), there exists a function f: P3 — P
such that: < |- VrVp(VES2 (F (n, p, f(n,p, k) — L) = Vp'(F(n,p,p') — L)).
It follows that Az(dse)(¢)z |- VnVp(Vk™ (E(n,p, f(n,p.k)) — L) — L1).
We define a function denoted by (mjn), from P2 into P, by putting, for m,n € P:
(min) =1if m,n € N and m < n ; (mjn) = 0 otherwise.
Obviously, the relation (mjn) =1 is well founded on P.
Thus, from theorem [[.TIii), we have:
Y [FVE(Vi(ent (D), F(n, p, f(n,p,1)) — (lik) # 1),ent(k), F(n, p, f(n,p, k)) — L)

— Vk(ent(k), F(n,p, f(n,p,k)) — L).
Therefore, if we set Y = Az (Y)Aylz(x)zy, we have:
Y - VRSV (Fln, p, f(n,p,1)] — (lik) # 1), Fln,p, f(n,p, k)] — L}

— VK (F[n,p, f(n,p, k)] — L1).

Thus, we have:
Az (dse)(s)(Y)z [ VEHVIN (Fln, p, f(n,p,1)] = (lik) # 1), Fln,p, f(n,p, k)] = 1} — L.
We define the formula G(n,p, k) = VI (F(n,p n,p (n p,1)) — (lik) # 1) and the finite
sequence of formulas ﬁ(n,p, k) = {G(n,p, k), ( , f(n,p,k))}. Then, we have shown:
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Lemma 4.6. dse0 |- VnVp3k®{H (n,p, k)}, with dse0 = \z(dse)(s)(Y")z.
Remark. The meaning of H(n, p, k) is “k is the least integer such that F(n,p, f(n,p, k))".

Lemma 4.7. Let cp be a proof-like term such that, for every m,n € N, we have:

cpxm .n.&en.Com=Exm (resp. nxm, (xmw)if m<n (resp. n<m, m=mn). Then:
i) cp |- YmENn ((mm) # 1, (njm) # 1,m #n — L).

ii) dsel |- VVpVke™ ™k (H (n,p, k), H (n,p, k'), k £ K — L)

with dsel= MkAE' Az G A’ NG ((cp K'k)(z)K'y" ) (2" )ky, where 4.4 are two sequences of
distinct variables of the same length as the sequence F.

Proof.

i) Trivial.

ii) Let & |+G(n,p, k), 7 |+ F(n,p, f(n,p,k)), & [FGn,p, k), 7 | F(n,p, f(n,p, k)

and ¢ |-k #K. We must show cpxk . k. (k7T .()kij.C.me L.

If k = K/, it remains to prove ¢ xm € 1L ; but this is true because we then have ¢ |- L.

If ¥’ < k, it remains to prove &%k’ .77 .m € 1. This results immediately from:

€ |- VE e (F(n, p, f(n,p, k) — (K'ik) # 1) and thus:

¢ [ ent(k), F(n,p, f(n,p, k') — L, since k' < k. L]

We now define the binary predicate:

O (2,y) = VX (Vv (H (n, p, k), X (n,p) — X (sn, f(n,p, k))), X (0, po) = X (2,y))

and we show that ®(x,y) is a sequence of conditions (functional relation on N) and also
some other properties of ®.

Remark. Intuitively, the predicate ® is the graph of the function ¢ of domain N, recursively defined
by the conditions: ¢(0) =po; ¢(n+1) = f'(n,¢(n))

where f'(n,p) is f(n,p, k) for the least k such that F(n,p, f(n,p,k)). Unfortunately, we cannot
introduce f’ as a function symbol because, unlike f, it is not defined in the ground model.

Lemma 4.8.
1) Azdyy [ 2(0, po).
i) Az(@) 11 = Vy(®(0,y) =y = po)-
iii) rec |- VaVyVk " (H (z,y, k), ®(z,y) — ®(sz, f(z,y,k)))
where rec = Ak xAgAx' Xz Au(zkzy) (2')zu
and 1 is a sequence of distinct variables of the same length as F.

Proof.
i) Trivial.
ii) We define the binary predicate X : P? — P(II) by putting:
X(0,9) = llg=pol| and X(p,q) =0 for p # 0.
We replace X with X" in the definition of ®(0,y). Since we have sn # 0 for all n € P, we
obtain ||[®(0,y)|| D || T,po =po — y = po| ; hence the result.

iii) Let € |- G(a,y, k), 7 |- F(a,y, f(z,9.k), € |- ®(z,y),

¢ |- YnYpYE U (H (n, p, k), X (n,p) — X (sn, f(n,p, k))),

v - X(0,po) and 7 € || X(sz, f(z,y,k))l.

Then &'Cv || X(x,y), therefore (xk.&. 7.8 Cv.me 1L ie (rec)ké&n'Cvxme L. [
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Lemma 4.9. cdcl |- VYn®3p d(n,p) where:

cdcl = An((n)\xAy(x)Az(cdl)zy) Az (z) \x Ay y

with cdl = AzAy(dse0)NAZ(y)(rec)lZx ;

7 is a sequence of distinct variables of the same length as H.

Proof by recurrence on n ; we have AxAyy |- ®(0,pp), therefore A\x(x) \xAyy [ Iy P(0,vy).
We now show that cdl || ®(x,y) — JyP(sz,y).

Thus, we consider & |- ®(x,y), n | Vy(P(sz,y) — L).

We have rec [ VI (H (z,y,1), ®(z,y) — ®(sz, f(z,y,1))) (lemma ESIiii),

n k- (®(sz, f(z,y,1)) — L), and therefore:

MAZ(n)(rec)lZ¢ |- VI (H (z,y,1) — L), where Z has the same length as H.

Now, we have dse0 |- 3k {H (x,y, k)} (lemma 6] ; therefore:

(dse0)AINZ(n)(rec)lZ¢ |- L, that is (cdl)én |- L.

Thus, we have shown that cdl || Vy(®(x,y) — JyP(sz,y)), and it follows that:

Az dy(x)Az(cdl)zy | Jy@(x,y) — yP(sz,y). L]

Lemma 4.10. There exists a proof-like term cdc2 such that:
cde2 |-V "pVg(®(n, p), B(n,q) — p = q).

Proof. We give a detailed proof, by recurrence on n. It enables us to write explicitly the
proof-like term cdc2.
For n = 0, the lemma [.8|(ii) gives the result: ®(0,p), ®(0,q) — p = q.
Let us fix m and suppose that VpVq(®(m,p), ®(m,q) — p = q).
We define the binary predicate:
U(n,q) = VpVk®™(n = sm,ﬁ(m,p, k), ®(m,p) — q = f(m,p,k)).
We show that |} Vka‘ent(ﬁ(n,p, k), ®(n,p) — V(sn, f(n,p,k))), that is to say:
H’ VquVk‘entVlem
{H(n,p,k),®(n,p), sn = sm, H(m, q,1),®(m,q) — f(n,p,k) = f(m,q,1)}.
But we have ||sn = sm|| = ||n = m||, ®(m, p), ®(m,q) — p = ¢ by hypothesis of recurrence ;
ﬁ(m,p, k:),ﬁ(m,p,l) — k =1 (lemma [7|ii)), and it follows that f(n,p,k) = f(m,q,l).
If we put ¥'(z,y) = ®(z,y) A ¥(z,y), we have:
- VpVESY (H (n, p, k), ¥ (n, p) — W' (sn, f(n,p, k))) ; we have also |- ¥’(0, o). This shows
that |- (®(z,y) — ¥'(z,y)) by making X = ¥’ in the definition of ®.
Thus, we have [ ®(sm,q) — Vka’ent(ﬁ(m,p, k), ®(m,p) — q= f(m,p,k)).
It follows that:
[ @(sm, q), ®(sm,q') —
VpYkt(H (m, p, k), ®(m,p) = (q = f(m,p,k)) A (d' = f(m,p,k)))
and therefore |- ®(sm,q), ®(sm,q') — VpVk (H (m,p, k), ®(m,p) — q = )
Thus, we obtain |- ®(sm,q), ®(sm,q") — ¢ = ¢/, since we have CdCl 3p®(m,p) by
lemma 9 and dse0 |- VpIke™{H (m, p,k)} by lemma @ O

Resumption of the proof of theorem[{.5 In order to show theorem [L.5] we fix py € P and
a binary predicate X : P? — P(II).

We have to find a proof-like term dec such that:

dec |- 3p'{(Clpo] — C[p']),p' E po, Vn*""(p' |- £xn)}.
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We apply the above results, taking for F (n,p,p’) the sequence of three formulas:
{(Clp] = Clp']), @ Cp), p' | £Xn}. )
Lemma [L.1T] below gives a proof-like term dse such that dse |- VnVp3p'{F(n,p,p’)}.

Lemma 4.11. dse |- Vpﬂp/{ﬁ(n,p,p/)}
where dse = Aa(Ah(all)\x y h)Az(cc) \k((adz x2)B ) ey (k) (y)(a)z
with B = XxAy(x)(B)y, «:: (prag)ar = raq and B (prAq)Ar = par.

Proof. The formula we consider is written as Vp'[(C[p] — C[p/]),p' C p,(» | £Xn) —
1] — L.

Thus, let & |FVp'[(Clp] — ClY']),p’ Ep, (' | £Xn) — L]. We must show (dse)¢ [ L.

e We show that AR(SINAzAyh [ —(p | Xn):

Let ¢ |- (p | &n) ; therefore, we have AzAy( | (p | £Xn) ; indeed:

p b +Xn =Vq(Clprgl,q | Xn — p | An).

But, we have ¢ | (Clp] = Clp]),pCp,(p | £Xn) — L ;

we have I | C[p] — C[p] and I -p C p (since p’ C p = Vq(—C|prq] — —C[p'Aq])).

Thus (£I1)AzAy ¢ |- L, hence the result.

e We now show Az(cC)Ak((EAx x2)B ) AxXy(k)(y)(a)z [ (p | Xn).

Thus, let 7 € C[pag] and 7 € X (g,n). We must show:

((Exz 7)) Az y(Ky ) (y) () x m € L. But, we have Az z7 [ =—=C[paq],

B" - prg C p (lemmadI2) and £ | (-Clpag] — —Clp]),prq C p, (prq | £Xn) — L ; thus:
(Exzx7)f | ((prg | £Xn) — L). Therefore, it is sufficient to show:

Az Ay (Kz) (y) (@) |- (prg | £4&n), de.:

Az Ay (Kr) (y)(a)z |- r(Cl(pag)ar], r | Xn — pag | Xn). In fact, we show:
Ay (k) () (@) | 9r(Cl(pag)ar], b Xn = 1),

Thus, let v € C[(pag)ar] and 7 |- (r | Xn). We must show:

(Ke)(m)(@)vxp € L for all p €I, ie. (n)(a)v+rm € L. But, we have (a)v € C[rag|,
therefore (n)(a)v |- Xt (g,n), hence the result, since 7 € X*(q,n).

o It follows that (AR(EIT)AxAy h)Az(cC)Nk((EAx x2)B" ) Az y(k)(y)(a)x |- L

ie. (dse)¢ |- L, which completes the proof. O

Lemma 4.12. Let (3 :: (pag)ar = par. Then AxAy(x)(B)y | VpVq((pag) E p).

Proof. This formula is written Vp¥qVr(—Clpar], C[(pag)ar] — L).
Therefore, let £ |- =Clpar], T € C[(prg)ar], thus BT € C[par] and (§)(8)7 | L.
Thus, we obtain AzAy(z)(B)y*x&.7.m € L for every 7 € II. ]

We propose now to apply the countable downward chain condition to the binary predicate
®(z,y). Lemmas and (10l show that the first two hypothesis of the c.d.c. are realized
by cdcl and cdc2. The third one is given by lemma [Z.13] below.

Lemma 4.13. There exist two proof-like terms cdc3 and for such that:
i) cde3 [l V" YpVq(®(n, p), ®(sn,q) = ¢ C p).
i) for |- Vn"q(®(sn,q) — q | £&n).
Proof. By lemma [.8[(iii), we have:
rec || V& (H (n,p, k), ®(n,p) — ®(sn, f(n,p,k))). Using cdc2 (lemma EI0), we get:
I VKU (H (n,p, k), @(n, p), ®(sn,q) = q = f(n,p.k)).
Now, H(n,p,k) is a sequence of four formulas, the last two of which are:
f(n7p7 k) E p and f(nvpv k) H_ :l:X?’L
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i) It follows first that |l V&2t (H (n,p, k), ®(n, p), ®(sn,q) — q C p).
Hence the result, since we have dse0 |- 3k®™{H (n,p,k)} (lemma E.G).
i) It follows also that |- V& (H (n, p, k), ®(n, p), ®(sn,q) = q | £Xn).
Thus, we obtain |- Vn®Vq(®(sn,q) — q | £&n) since we have cdcl [ Vn®3p &(n,p)
(lemma A3) and dse0 |- VnVpIke™{H (n,p, k)} (lemma E0). L]

We can now apply the c.d.c. to the predicate ®(z,y), which gives a proof-like term cdcO
such that cdcO |- 3p{Q(n,p,p')} with :

Q(n, p,p') = {VnWp(®(n,p) = p' C p), Yn™Vp(d(n,p), ~Clp] — L), -C[p/] — L}.
Therefore, in order to complete the proof of theorem [£.35] it is sufficient to find proof-like
terms dec0,decl,dec2 such that:

decO f-Vp'(Q(n,p,p'), ﬁC[Po] Clp'l = 1) ;

decl |- Vp'(Q(n,p,p') = 1/ C po) ;

dec2 |- Vp/(Q(n, p,p') — Vnt(p/ | £Xn)).

Thus, let wg,w; € A be such that:

wo [F Y (®(n,p) — p' Cp) and wy - Vnp(®(n,p), ~Clp] — L), -C[p'] = L
Applying lemma [8(i) with n = 0, p = pg, we obtain (wo)A\zAyy |- p' C po.
Therefore, we can take decl = Aa\b(a) \z\yy.

Lemma 4.14. cdc4 |- (Clpo] — Vn®p(®(n, p), -C[p] — 1))
where cdcd = Aa\bAc((bAzoAxi Axo \xs \xAy(x)(z1)y) A\x za)c.

Proof. Let 7 € Clpg], £ |- ®(n,p) and 7 [ =Clp].
Making X (z,y) = -—Cly] in the definition de ®, we get:
€ |-V VR (G, k), Fla! 1, £/, K)], ~~Clpl) — ~—~CLf (', B)),
~“Clpol, ~Clp] - L

We have Az(z)7 | ——Clpo].
Moreover, since F[n’,p',q] = {(=Clq] = ~C[p']), (¢ T ), q | £Xn}, we easily get:
AZOATIAT2ATIATAY () (21)Y [+

V'V YRG! pl K, F ', f(/, ' k)], ==Clp] = —=C[f (0, ', k)])-
It follows that ((§AzoAxiAzodzsAxAy(z)(x1)y) \x(x)T)n | L, i.e. (cdcd)rén | L. Il

From lemma [£14] we immediately deduce Az(wq)(cdcd)z |- Clpo], -C[p'] — L.
Therefore, we can put decO = AaAbAz(b)(cdcd)zx.

Lemma 4.15.

i) lef0 |-VpYq(p F Xn, T p — q | Xn) with 1ef0= AzAyrz(cc) \k((y) A u(k)(x)u)z.
i) lefl |-Vp¥Yq(p | £&Xn, ¢Cp — q |} £Xn) with

lefl = AzAyAzAu((lef0)(cc)Ah((y)A\v(h)(z)vu)z.

Proof.

i) This is immediate, if we write explicitly the formulas:
p b Xn=Vr(Clprr] = X1 (r,n)) ;

q C p =Vr(=Clpar] = —Clgnr]) ;

q | Xn=Vr(Clgrr] = X1 (r,n)).

We declare xz:p | Xn, y:qCp, z:Clgar], k:-XTn.
ii) We write down the formulas:

p b £Xn =vr(Clparl,r | Xn —p | Xn) ;
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q C p = Vr(=Clpar] — =Clgar]) ;
q |} £Xn =vr(Cigar],r | Xn — q | &n).
We declare z:p |} +Xn, y:qCp, z:Clgrr], u:r | Xn, v:Clpar], h:=(p [ Xn).[J

By means of lemmas [T3(ii) and 15 and also wq [ Yn®*Vp(®(n,p) — p’ C p), we obtain:
AnAz((lefl)(for)nz)(wo)nz |- ¥nWq(®(sn,q) — p' | £Xn).

But, we have cdcl |- Vn®3p ®(n,p) (lemma [A3) ; it follows that:
An(cc)Ak((cdcl)(s)n)z(k)((lefl)(for)nz)(wo)nx |- Vn (py | £Xn).

Thus, we can put dec2 = AaAbAn(cc)\k((cdcl)(s)n) z(k)((lefl)(for)nx)(a)nx.

This completes the proof of theorem L]

5. THE ULTRAFILTER AXIOM ON N

Let us consider a standard realizability algebra A and a .A-model M in which the individual
set (which is also the set of conditions) is P = P(I)N.

The binary relation e is defined by |[nep| = p(n) if n € N ; otherwise |[nep| = 0.

1 is defined by 1(n) =0 for every n € N ;

A is defined by |[[ne (paq)|| = |[nep Aneql for every n € N.

The azxiom of representation of predicates on N (RPN). We define the following recursive
function of arity k, denoted by (ni,...,ny) (coding of k-uples): (ni,ng) = ni + (n1 +
n2)(n1 +ng + 1)/2 ; (nla v ,7’Lk+1) - ((n17 ce 7nk)7nk+l)'

Proposition 5.1. [-VX32Vyi™. . Yy ((y1,...,y)ex < X(y1,...,y)) where X is a
predicate variable of arity k.

Proof. Let X : P* — P(II) be a predicate of arity k. We define a € P by putting:
a(n) = X(ny,...,ng) for n € N, n = (ny,...,ng). Then, we have immediately:
Ik Vyfnt .. .Vy,‘znt((yl, ooyk)ea— X(y1,...,yk)) and

TVt (X, k) = (k) £ 0).
It follows that:

Az(2)] [ VX Tevy$t . vy (yr, ..y e — X (Y1, ..., yk)) and
Az(2)] [ VX TeVy$t . Yy (X (1, k) — (Y1, Uk) ET).
Then, it suffices to apply theorem [[.13l ]

The comprehension scheme for N (CSN). Let Fly,x1,...,z;] be a formula the free vari-
ables of which are taken among y,x1,...,z. We define a k-ary function g¢p : P¥ — P,
in other words gp : P¥xN — P(II) by putting gr(p1,...,px)(n) = [|F[n,p1,...,px]|| for
every n € N,

Proposition 5.2. We have |V ...VaVy"™ (yegr(zy,...,x5) < Fly,z1,...,15)) for
every formula Fly,xz1,...,x].

Proof. Indeed, we have trivially:

I |-V, .. Vo vy (ye gr(x1, ..., 28) = Fly,z1,...,2;]) and

I |-V, .. Vo Yy (Fly, z1,...,21) = yegr(zi,...,x1)).

Then, it suffices to apply theorem [[.13] U]
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Remark.
The binary function symbol A is obtained by applying CSN to the formula yez1 A ye xs.

The generic model. We denote by C[z] the formula Ym™3n" (m + n) ez, which says
that the set z of integers is infinite. The predicate C is defined by this formula: for every
p € P, |C[p]| is, by definition, the set {7 € A; 7 |- C[p]}.

It follows that the condition ~ :: t(p1,...,pn) = u(p1,...,pn) is written as:

Axvyx Vp1... Voo (Clt(p1, ..., pn)] = Clu(p1,...,pn)])-

Therefore, in order to complete the definition of the algebra B (and of the B-model N), it
remains to find proof-like terms «yg, o1, oo, By, 51, B2 such that:

ag [+ VpVgvr(Cl(pag)ar] — Clpa(grr)]) 5 on [t Vp(Clp] — Clpal]) ;

ay - Vp¥q(Clpagl — Cla]) 5 Bo |- Vp(Clp] — Clpap]) 5 b1 |- Vp¥a(Clprg] — Clanp]) ;

B2 I VpVavrVs(Cl((prg)ar)ns] — Cl(pa(gnr))as]).

Now, we easily have, in natural deduction:

FO:Vn(nex — nea’) — (Clz] — Cla']) with 6 = AfAudmAh(um)\nAz(hn)(f)z.
Therefore, by theorem [[.3] (adequacy lemma), we can put «a; = 6o and f; = 087, with
proof-like terms «a, 57 (0 < ¢ < 2) such that:

Fof : VXYYWZ{{XANY)ANZ - XANYANZD)}; Faj :VX{X - XAT}; Foj:
VXVY{XAY =Y}, FBJ:VX{X > XAX}; FB VXVY{XAY Y AX};

F G5 VXVYVIVU{(XAY)NZ)ANU - (X AN (Y NZ)) AU}

The countable downward chain condition. In this section, we show the:

Theorem 5.3.
The forcing structure {C,n,1} satisfies the countable downward chain condition in M.

Remark. The proof of this theorem is a formalization of the following simple result:

The set of infinite subsets of N with the preorder “p C g < p\ ¢ is finite”, satisfies the countable
downward chain condition.

The proof is as follows: let p,, be a decreasing sequence for this preorder ; put hy, = (,.,, Pi, kn =
the first element of h,, which is > n, and consider {k, ; n € N} which is an infinite subset of N.

Proof. We have to find a proof-like term cdc such that:
cde - VX 3z{¥n®™3p X (n, p), ¥n*"Vp¥q(X (n, p), X (n,q) — p = q),
Yn"p¥g(X (n, p), X (sn,q) = ¢ C p) —
Yn"Wp(X (n,p) — @ C p) A (VnVp(X (n,p) — Clp]) — Clz])}
where p C ¢ is the formula Vr(C[par] — Clgar]).
By theorem [[LT3] this amounts to find a proof-like term cdc’ such that:
cdc’ |- VX3z{vn™3p X (n, p), Yn"VpVq(X (n,p), X (n,q) = p = q),
v p¥g(X (n,p), X (sn,q) — ¢ T p) =
Vn™p(X (n,p) — « C p) A (¥n™Vp(X (n,p) — Clp]) — Cla])}.
By theorem (adequacy lemma), given a formula F', we can use the following method to
show || F:
First, show || Ay,..., | Ak, then show Ap,..., Ax F F by means of the rules of classical
second order natural deduction (which contains the comprehension scheme), and of the
following axioms which are realized by proof-like terms in the A-model M:
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e t # v for all closed terms ¢,u which take distinct values in M.
o Vit Vri(t(xy, ... xp) = u(wy,. .., xp)) for all the equations between terms which are
true in N.
e The foundation scheme (SCF, see theorem [[LTTli) which consists of the formulas:
VX1 VXV Yy ( Xy, Xy — fy, o) # 1), Xz, .., Xz — 1]

— V:Eint(Xll‘, oo, Xpx — J_)}
where f:P? — P is such that the relation f(y,z) =1 is well founded on N.
e The axiom of choice scheme for individuals (ACI, see theorem [21]) which consists of the
formulas VZ(Vy™F(Z, fr(Z,y)) — Yy F(Z,y)) ;
Z = (x1,...,7k) is a finite sequence of variables, VZVy™ F is an arbitrary closed formula,
and fr is a function symbol of arity k£ + 1.
e The axiom of representation of predicates on N (RPN, see proposition [5.1]) which consists
of the formulas VX 3zVG" ((y1,...,yr)ex < X7) ;
¥ = (y1,-.-,yk) is a sequence of k variables and X is a predicate variable of arity k.
e The comprehension scheme for integers (CSN, see proposition [5.2]), which consists of the
formulas V&Vy™(ye gr(Z) & Fly, 7)) ;
Z = (x1,...,7) is a sequence of k variables, VZVy™ F is an arbitrary closed formula, and
gr is a function symbol of arity k.

Lemma 5.4. - VpVq(p C q < Im"™n"™(n +mep — n+meq)).

Proof. We apply the CSN to the formula F[y,z] = y ¢ x ; thus, we obtain:
FVaVy ™t (y e~z < y )

using the notation —x for gp(z).

We have p C q = Vr(C[par] — Clgar]) and therefore p C ¢ F C[pa—gq] — Clgrq].

But, we have Clga—gq] F Ym™3n™(m +neqgAm+ng¢q) L, and thus:

pC q F—=Clpa—q], thatis FpC g — Im™Wn—(m 4+ nep A —(m+neq)).

Conversely, from the hypothesis:

v/ ! ol ep = m/ 4+ 1’ eq), Ym™ I (m + nep Am +ner), we deduce:

Vm ™3I (m! +m) + nep A (m' +m) 4+ ner), then:

VYm ™30 (m 4 (m/ 4 n)eqg Am + (m’ +n)er) then:

VYm™3n0t(m 4 neq Am +ner). Therefore:

v/ M (m/ 4 n'ep — m' +n'eq) F Clpar] — Clgar] and thus:

Im/Vn' M (m! +n'ep — m/ +n'eq) + Clpar] — Clgnr]. O

Applying RPN and the comprehension scheme, we obtain |- VX3h D(h, X) with:
D(h, X) = VEMYRIM (k. n) e h & Vg¥i™ (i < n, X (i,q) = keq)).
Remark. The intuitive meaning of D(h, X) is: h is the individual associated with the decreasing
sequence of conditions X', the n-th term of which is the intersection of the n first terms of the
sequence X.
We apply CSN to the formula F'(k,n,h) = (k,n)eh. Thus, we obtain:
FYnVAYEY (ke gp(n, h) < (k,n)eh).
We shall use the notation h,, for gr(n, h). Therefore, we have:

- VnVhVE (ke by, <> (k,n)eh).
and it follows that:

D(h, X) F YEYYRI (ke by, 5 VoVi™ (i < n, X (i,q) — keq))
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We put ®(k, h,n) = IV (G 4 neh, = (j <i)#1),i+nehy, k=1i+n}.
Remark. The intuitive meaning of ®(k, h,n) is: “ k is the first element of h,, which is > n ”.
We apply CSN to the formula F(k, k) = 3n™ &(k, h,n). Thus, we obtain:
FVYAVE (ke gp(h) < In™ &(k, b, n)).
We shall use the notation inf(h) for gr(h). Therefore, we have:
F VAV (ke inf(h) <> In™ & (k, h,n)).

The hypothesis of the c.d.c. are:
Ho[X] = VYn™3p X (n,p) ;

[X] = Yn™"p¥q(X (n,p), X (n,q) = p=q) ;
Hy[X] = Yn™WpVq(X (n,p), X (sn,q) = ¢ C p) ;
Hy[X] = Yni"p(X (n,p) — Clpl).
We put  H[X] = {Ho[X], H1[X], Ho[X], H3[X]} and H[X] = {Ho[X], H:[X], H[X]}.
Thus, it is sufficient to show:
D(h, X), HJX] F ¥Yn"p(X (n,p) — inf(h) C p) and
D(h,X),H[X] + C[inf(h)].
Notation. The formula Vn'™(nep — neq) is denoted by p C q.
Lemma 5.5. D(h,X) I metVnmt(thrm C hy).

Proof. This formula is written VmintVninthmt(k‘ € hptm — kehy). Now, we have:

D(h, X) F VYmMpmty it (ke by, — YoV ™ (0 < n+my X (i, q) — keq)) ;

F YmItY R oyt (5 < n omy X (5, q) — keq) — Vo¥i™ (i < n, X (i,q) — keq)]:
D(h, X) F YmMpntyEDt (Ve (i < n, X (i, q) — keq) = kehy). O

Lemma 5.6. D(h, X), Hy[X], H,[X] F Vo™ k"N p(X (sn,p), kep, kehy — ke hg,).

Proof. We have D(h, X), int(k), int(n) - Vp¥Vi" (i < sn, X (i,p) — kep) = ke han.
But, we have int(n), int(i), i < sn F i <nVi= sn, and therefore:
int(n), VpVi™ (i < n, X (i,p) — kep), Vp(X(sn,p) = kep) +
VpVit (i < sn, X (i,p) — kep).
It follows that: .
D(h,X), int(k), int(n) - VpVi™ (i < n, X(i,p) — kep),¥p(X(sn,p) — kep) — ke hgp,
ie.
D(h,X), int(k), int(n) - k‘z—:hn,Vp( (sn,p) = kep) — ke hg,. Therefore:
D(h,X), int(k), int(n), Hy[X], H1[X] F Vp(ke hyp, X (sn,p),kep — ke hgy,). Il
)

Lemma 5.7. D(h,X), HJ[X] F Vn™Np(X(n,p) — p C hy).

Proof. By recurrence on n. We must show:

D(h, X), HJX], int(n) F VpIm™WVit(X (n,p),l + mep — | +mehy).

For n = 0, we have D(h,X) F Vk™ (Vq(X(0,q) — keq) — kehg). Thus, it suffices to
show:

D(h, X), HJX] + Vpam™vi™vg(X (0,p),l + mep, X(0,q) = [+ meq),

which follows, in fact, from H;[X], that is X(0,p), X(0,q) = p =g.

The recurrence hypothesis is Vp(X (n,p) — p C hy,) ;

Hy[X] is Vp¥q(X (n,p), X (sn,q) — q E p) ; Ho[X] is Ip X (n,p).

Moreover, we have easily ¢ C p,p E r = q E r. Thus, it follows that:

Vp(X(sn,p) = p C hy), ie. VpIm™WIN (X (sn,p),l +mep — 1+ mehy,).
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Now, we have, by lemma 5.0}

D(h,X),Hy[X], H1[X] F X(sn,p), l+mep, | +mehy, — 1+ mehg,.

Therefore, we have VYpIm™Wi™ (X (sn,p),l + mep — | +mehg,) that is:

Vp(X(sn,p) = p C hgy,), which is the desired result. ]

Lemma 5.8. D(h, X), H(X) F VYn™Cl[h,].

Proof. We have VYn™"Vp(X (n,p) — C[p]) from Hs. Moreover, we have easily:
F Vp¥q(Clp],p C g — Clg]). Thus, applying lemma [5.7] we obtain:
D(h, X), H(X) F Vn"Vp(X (n,p) — Clhy]). Hence the result, from Hy[X]. O

Lemma 5.9. D(h, X), H[X] F Vn™3k"™® (k, h,n).

Proof. By the foundation scheme (SCF), we have:

F Vi (G e by, — (Gid) # 1),0 +nehy, — L} = Vi™ (i +neh, — L).

But, we have D(h, X), H[X]+ Vn™Cl[h,] (lemma [.8), therefore:

D(h, X), H[X] - ¥Yn'™3i"; 4 ne h,. Tt follows that:

D(h, X), H[X] F Yn™3i0 {5t (5 4 neh, — (i) #1),i +nehy}. N

—

Lemma 5.10. D(h,X), H[X] F Clinf(h)].

Proof. We have Clinf(h)] = Vm™3i" (i + m e inf(h)).

Now, by definition of the function symbol inf, we have:

F VRVE™ (ke inf(h) < In" (K, h,n)).

Therefore + Clinf(h)] <> Ym™ 3 3n0S (i + m, b, n).

By definition de @, we have trivially F VY™V (& (k, h,n) — i (k =i +n)).
Moreover, we have D(h, X), H[X] F Yn™3k™®(k, h,n) (lemma [59).

Therefore D(h, X), H[X] F ¥Yn™3i™ &(i + n, h,n), thus D(h, X), H[X] F C[inf(h)]. [J
Lemma 5.11. A A

D(h, X), H,[X] F VhVE™NE " oyn by ™ (@ (k, h,n), ® (K, h,n'), K > k — n' > n).

Proof. We have ®(k,h,n) = 3i™U(k, h,n,i), with :

U(k,h,n,i) = {Vj"(j +nehy, — (jii) #1), i+ nehy, k=1i+n}.

Thus, we have to show:

D(h, X), HJX], int(k), int(k"), int(n), int(n'), int(i), int(7') = Z(h, k,n,i, k', n',i) = L
with Z(h, k,n, i,k ,n',i') = {O(k, h,n,i), O(K h,n',7), k' >k n <n} that is:
E(h,k,n,i K n/,i') =

(Vi (j+nehy, — (jii) # 1), i+nehy, k=i+n,

Vi (Gl e hy — (§) £ 1), i 0 ey, K =4 0/,

K >k, n' <n}.

From n’ <n and k=1i+n, we deduce n’ <k, thus k=3 +n'.

From k' >k, we deduce ' +n/ > k, and thus j’ < 7.

Therefore, we have j + n'¢hy, i.e. kfhy. But, from n' < n, we deduce h,, C hy
(lemma [B.5]), thus k¢ h,, which contradicts i+ neh,, k =i+ n. O

By definition of ®, we have trivially + VYn"'WEY (D (k h,n) — ke hy,).

By lemmas and B.11] we get: .

D(h, X), HJX] b VAVED O™y p 0ty (& (kb n), DK h,n'), k' >k — K € hy).
Lemma [5.9 gives Vn™ 3k ® (k. h,n). It follows that:
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D(h, X), H]X] F Y™ty ity it (@ (1 hon') K > k — K € hy),

and therefore D(h, X), HJX] F Vn'™ (inf (h) C h,).

But, we have trivially D(h, X) F Yo" "W&""p (ke h,, X (n, p) — ke p). Therefore, finally:
D(h, X), H]X] F Vn™Wp(X (n,p) — inf(h) C p).

We have eventually obtained the desired proof-like term cdc’, which completes the proof of
theorem [5.3] O]

The ultrafilter. In the model N, we have defined the generic ideal J, which is a unary
predicate, by putting: J(p) = I x{p} for every p € P.
By theorem [B.5] we have:
) [F-J(@)
ii) [FVz(-Clz] — J(x))
iii) |- VaVy(T (zry) = T(z) V T (y))
iv) | Va(Vy(=Clzry] = T (y)) = ~J (2))
v) |- VaVy(J(z),y Ex — J(y))
By theorem B3], we have | F < |- F for every closed first order formula F'.

Remark. A “first order” formula contains quantifiers on the individuals which, by means of the
symbol e, represent the subsets of N. Therefore, it is a second order formula from the point of view
of Arithmetic. But it contains no quantifier on sets of individuals.

By theorems [[L13 and .13}, we can use, in F, the quantifier V2™, since the quantifier Va2t
is first order.
Therefore, we have:
vi) |l Clz] +» Ym™3n"t(m 4+ nex)
vii) |y C x < Im™Val"(m + ney — m+nex)
viil) [FVn™nel ; |- VaVyvn™(nezny <> nex Aney)
since all these formulas are first order. Properties (i) to (viii) show that, in the B-model N,
the following formula is realized:
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N which are
represented by individuals.
Now, by theorems 4.4 and [5.3] the following formula is realized in N:
Every subset of N is represented by an individual.
Thus the following formula is realized in N:
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N.

Programs obtained from proofs. Let F' be a formula of second order arithmetic, that
is to say a second order formula every individual quantifier of which is restricted to N and
every second order quantifier of which is restricted to P(N).

We associate with F, a first order formula FT, defined by recurrence on F:

elf Fist=u, FT =F.

o If Fis Xt, F1is te X—, where X~ is an individual variable associated with the unary

predicate variable X.
oIf Fis A— B, Ffis AT — Bf.
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o If FlisVz A, FT is Vai™ AT,

o If Fis VX A, FTis VX~ AT

We note that, if F' is a formula of first order arithmetic, then F' is simply the restriction
FInt of F to the predicate int(z).

Let F be a closed formula of second order arithmetic and let us consider a proof of F'; which
uses the axiom of dependent choice DC and the axiom UA of ultrafilter on N, written in
the following form, with a constant 7 of predicate: “J is a maximal non trivial ideal on
P(N) 7.

We can transform it immediately into a proof of F'' if we add the axiom RPN of represen-
tation of predicates on N: VX JzVy(yez <> Xy). Thus, we obtain:

z:UA, y: RPN, z: DCT + t[z,y, 2] : FT.

Therefore, we have Fu:UA, RPN — G with u = AxAyAzt[z,y, 2] and G = DCT — FT.
Thus, G is a first order formula.

In the previous section, we obtained proof-like terms 6,0 such that (6,1) [F UA and
(0',1) |+ RPN (theorems [.4] and (.3)).

Therefore, theorem 2111 (adequacy lemma) gives (u*,1,)(6,1)(6’,1) |- G, that is to say:
(v, (1uA1)AL) G with v = ((@o)(aip)u*h)6’.

By theorem B3] we thus have dg v |- C[(1,41)A1] — G, that is:

5 [ Cl(1,a1)A1], DCT — F.

The axiom DC' is consequence of ACI (axiom of choice for individuals). Therefore, by
theorem 211, we have a proof-like term 7 |- DCT.

Moreover, we have obviously a proof-like term &y [ C[(1,A1)A1].

Thus, finally, we have dv€ono |- F.

Then, we can apply to the program ¢ = dv€no all the results obtained in the framework
of usual classical realizability. The case when F is an arithmetical (resp. II}) formula is
considered in [13] (resp. [14]).

Let us take two very simple examples:

If F=VX(X1,X0— X1), we have (*k.r'.7m = %7 for all terms k,x’ € A and every
stack 7 € II.

If F = VYm™3n0(¢(m,n) = 0), where ¢ is a function symbol, then for every m € N, there
exists n € N such that ¢(m,n) =0 and (xm.Tk.7m > kxn.7.

T is the proof-like term for integer storage, given in theorem [L.I3li).

m, Kk are arbitrary ; therefore, by taking a constant for x, we obtain a program which
computes n from m.

6. WELL ORDERING ON R

The A-model M is the same as in the previous section: the set of individuals is P = P(II)N.
Recall that an element of P is called sometimes an individual, sometimes a condition,
depending on the context.

We put (m,n) = m+ (m+n)(m+n+1)/2 (bijection of N2 onto N). We define a binary
function v : P? — P by putting:

v(n,p)(i) = p(i,n) if n € N ; y(n,p) is arbitrary (for instance 0) if n ¢ N.

Notation. In the sequel, we shall write p,, instead of y(n,p). Thus, it is the same to give
an individual p or a sequence of individuals p,(n € N).

If i,n € N, we have ||(i,n)ep| = |liepn]-
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We fix a well ordering < on P = P(II)Y, which is strict (i.e. Yz—(z <)) and isomorphic to

the cardinal 2%0: every proper initial segment of < is therefore of power < 2%, We define a

binary function, denoted by (p<q) by putting (p<q) =1ifp<q; (p<q) = 0 otherwise.

Since the relation (p<q) = 1 is well founded on P, we have (theorem [[.1]):

Y VX [Ve(Vy((y<z) =1~ Xy) = Xz) — Vo Xz]

in the A-model M, but also in every B-model V.

We shall write, in abridged form, y <z for (y <) = 1.

Thus, in M and N, the relation < is well founded but, in general, not total.

It is a strict order relation, in both models ; indeed we have immediately, in the model M:

I'fVe((z<z)#1); I FVeVyVz((z<y) =1— (y<z) =1 (z<z) =1)).

Since all these formulas are first order, by theorem B.3] we have also, in the model N:
V(@ az) #1) 5 |FVaVyVz((zay) =1 ((y<z) =1 (z<2) = 1)).

A condition p € P is also a sequence of individuals pg. Intuitively, we shall consider it, as
“ the set of individuals pg41 for kepg ” ; we define accordingly the condition 1, the formula

C[p] which says that p is a non trivial condition, and the binary operation A.

1 is the empty set, in other words iec 1y (i.e. (i,0)e 1) must be false. Therefore, we put:
1(n) =1II for every n € N.

A condition is non trivial if the set of individuals, which is associated with it, is totally
ordered by <. Therefore, we put:

Clp] = Vi®"'Wj*™ (i e py, j e po — Elpit1,pj+1]) with :

Elz,y=(x =yVax<yVy<zx) thatis Elz,y|=(x#y,(x<y)#1,(y<z)#1— 1).
The set associated with pag is the union of the sets associated with p and with ¢ ; therefore,
we put:

pAg =1 where rq is defined by: |[2ierg|| = |[iepo|| ; |20 + Lero|| = ||ie qol ;

rj+1 is defined by: 72i11 = pit1 5 T2i12 = ¢t

The notation p C ¢ means that the set associated with ¢ contains the one associated
with p.

Therefore, we put:

p C q=Vi™(iepy — I {j e qo, pit1 = qj+1})-

Lemma 6.1.

i) 0 FVpVgVr(p C q,q Cr—p Cr) with 0 = AfAghidzAh(fix) j \y(g)jyh.

ii) 0" || VpVeVr(p C ¢ — par C gar)  with:

0" = A fNidyAu((ei) (w)iy) (((f)(d2)iy)Aj(u)(do)j

where dy, dq,ds, e are proof-like terms representing respectively the recursive functions:
n—2n, n—2n+1, n— [n/2], n— parity of n (e returns boolean values).

Proof.

i) We suppose:

f |t Vi(ent(i), iepo, Vi(ent(j), j e qo — pi+1 # ¢j+1) = L) ;

g - Yj(ent(y),j € qo, Vk(ent(k),kerg — qj+1 # re+1) = L) ;

x fiepo; h [FVE(ent(k),kerg — piy1 # Tk+1) ; and we have ¢ € |ent(q)].

It follows that fix |- Vj(ent(j),jeqo — pit1 # ¢j+1) — L.

Suppose that y [-jeqo and let j € |ent(j)].

If piy1 = gj11, then gjyh |- L ; therefore gjyh [ pit1 # gj+1. We have shown:
AjAy(g)gyh [-Vi(ent(5),j € qo — piv1 # gj+1)- Therefore (fiz)\jAy(g)jyh |- L.
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ii) We suppose:
[ I Vilent (i), ie po, Vi(ent(j), j € qo — piv1 # qj+1) = L) ;
y [Fi'e(prr)o s u V5 (ent(5'), " e (grar)o — (par)iga # (A7) 1)
If we replace j' with 2j”, and then with 2j” + 1, we obtain, by definition of A:
(1) (u)(do)j" 7" eqo = (pAT)irs1 # qjrsa
(2) (u)(d)j" 5" ero = (par)isa # rjrsa.
Then, there are two cases:
o If i' = 2", we have y[f-i"cpo and, by (1), (u)(do)i” [Fi"eq0 — pir+1 # g1
Therefore:
Aj(u)(do)j [ Vi(ent(), j € qo — pins1 # gj+1) and it follows that:

(((N)(d2)i)y)Aj(u)(do)j I L.
o If i’ =2i" + 1, we have y |-i"ery and, by (2), (u)(d1)j" 7" ero— rirg1 # rjmga.
By making j” = i, we obtain (u)(dy)i"” |-’ ery — L and therefore:

(wi'y L.

Thus, in both cases, we get:  ((e2')(u)i'y)(((f)(d2)i")y)Aj(u)(do)j - L. O

Lemma 6.2.

i) 0 |- VpVqa(p C q,Clg] — Clp]) with

0 = MNfAgNN Az ' Audvdw (fi' 2" )N Ny (fiz)NjAy(9)75 yy uvw.

i) |VpVqVr(p C q,Clgar] — Clpar]) in other words ||-Vp¥q(p C ¢ — q C p).

Proof.

i) Let f|-pCq,g[-Clqg], thatis:

[ = Vi(ent (i), i€ po, Vj(ent(s), j € qo = pi+1 # ¢j+1) = L) ;

g I-VjV5' (ent(5), ent(5"), j € qo, J € g0 — Elgj+1,qjr41]) with :

Elz,y)= (v #y,(xqy) #1,(y<z) #1 - 1).

Let z [-iepo, 2’ 1" epo,u [ pit1 # pir1,v = (Pit1 <pirs1) # Low - (pr1 <pigr) # 1.
Let y Fjeq, ¥ i €qo.

We have g7 j'yy" I Elgj+1, ¢jr+1] 5 if piv1 = gj+1 and pyrqq = gjry1, then:

97 3'yy" I Elpit1, py41], and therefore gj j'yy'vow [f- L.

Thus, we have A\jAy(g)jj' vy uvw ||-ent(j),jeq0 — L if pir1 = gjy1 and pirg1 = gy
Therefore, A\jAy(9)jj'yy'vvw |-Vi(ent(5),5€q0 — pi+1 # gj+1) if piy1 = gjry1, thus:
(fiz)AjAy(9)jj yy' vow |- L if pyy1 = gjriq, thus:

NN (Fix) A jAy(9) i 5 vy uow [ V5’ (ent(5), 5" € o — piry1 # gjr41). Therefore:
(fi'x")NG' Ny (fie) NjAy(9)dd yy wow |- L.

ii) Follows immediately from (i) and [} VpVgVr(p C ¢ — par C gar) (lemma [6.1)). O]

The following lemma shows that we can build the algebra B and the B-model N.

Lemma 6.3. There exist siz proof-like terms ag, aq, as, Bo, B1, B2 such that:

ag I Vp¥avr(Cl(pag)ar] — Clpa(gar)]) ; aa |=Vp(Clp] — Clpal]) ;

az |- VpVq(Clpag] — Clgl) ; Bo |+Vp(Clp] — Clpapl) ; B |+ pVa(Clpag] — Clanp]) ;
Ba |- VpVqvrVs(C[((prg)ar)ns] — Cl(pa(gar))ns]).

Proof. We only show the first case. By lemma [6.2(i), it suffices to find a proof-like term:
0 | VpYqvr(pa(grr) C (pag)ar). Thus, we suppose:

y ie(pa(gar))o ; u -Vi(ent(s), j e (prg)ar)o = (pA(gar))iva # (PAG)AT) j41)-
There are three cases:
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e i = 2i’ ; then, we have y ||-i'epg. We make j = 2i = 47/, therefore:

u [ ent(2i),4 € po — piry1 # piry1. Thus, we have: (u)(do)iy [ L.

e i =4¢' +1; then, we have y [Fi'eqy. We make j =i+ 2 = 4¢' + 3, thus:

u | ent(i +2),i" €qo — qry1 # girp1. Thus, we have: ((u)(0)%i)y [ L.

e i = 4¢' + 3 ; then, we have y [ erg. We make j =i — 3 = 44/, thus:

u - ent(i —3),i" erg — 141 # rirs1. Therefore, we have: ((u)(p)3i)y | L

(p is the program for the predecessor).

Thus, we put 0 = NidyAu(((eqi)(u)(do)iy)((u)(o)?i)y)((u)(p)3i)y, where e4 is defined by its
execution rule: egxi.&.n.Com>=&om (vesp. nom, (om)if i = 44’ (vesp. 4i' +1,4¢'+3).[1

We now show the:

Theorem 6.4.
The forcing structure {C, n, 1} satisfies the countable downward chain condition in M.

Proof. The hypothesis of the c.d.c. are:

Hy=VYn3pX(n,p) ;

Hy =Yn"p¥e{X(n,p), X(n,q) = p=q} ;

Hy = Yn™p¥q(X(n,p), X (sn,q) = ¢ C p) ;

H3 =Yn™"p(X(n,p) — C[p)).

Moreover, by theorem 2.1l we have a binary function f : P? — P such that:
s -V (3p X (n,p) — FEX (n, f(n, k))).

Therefore, by Hy, we can also use the hypothesis:

Hl = Vn® 3k X (n, f(n, k)).

Let us put H = {Hy, H), H,, Hy, H3} and H, = {Hy, H}), H,, H>}.

Lemma 6.5. H + VpVgvm®™Nn® (X (m,p), X (n,q) — Clpaq]).

Proof. We show Ym™ni™ (X (m,p), X(m +n,q) — ¢ C p) by recurrence on n.

For n = 0, this follows from Hy, Hs. For the recurrence step, we use Ho.

Thus, we have VpVqvmeWn (X (m,p),X(n,q) = pCE qV qC p).

From p C ¢, we deduce C[pap] — Clgnp], and the result follows, by H3 and C[p] — Clpap].
L]

We define the wanted limit h by defining hg and h,,+1 for each m € N.

For m = (i,n, k) (that is (i, (n,k)) ), we put |mehg|| = ||X(n, f(n,k)) Nie(f(n, k))ol ;
then hpq1 = (f(n,k))ig1.

Intuitively, X defines a sequence of countable sets, and h is the union of these sets.
e Proof of H, X(n,p) = h Cp.

By lemma [6.2(ii), it suffices to show X' (n,p) — p C h, that is:
X(n,p),iepo, Ym™ (me hg, = hmi1 # pit1) — L, for n,i € N,

We fix k € N and we put m = (i,n, k). By definition of h, it suffices to show:
X(n,p),icepo, VKU X (n, f(n, k), ie (f(n,k))o, = (F(n,k))iz1 # piv1) — L.

Now, from Hy, X(n,p), X(n, f(n,k)), we deduce f(n,k)=p and therefore:
(f(n,k))o =po and (f(n,k))i+1 = pi+1. Thus, it remains to show:
X(n,p),iepo, VEY X (n, f(n,k)),iepo — pis1 # pis1) — L.

But this formula follows immediately from Hy).
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e Proof of H + C[h].

We must show C[h], that is me hg,m' e hg = E[hpmt1, hy11]. Now, we have:

m = (i,n,k) ; [[mehol| = || X(n, f(n, k) Nie(f(n,k))oll ; hmir = (f(n,k))is1 ;

m' = (I, 0 k) 5 [mehol = |X(n', f(0/, k) Ad"e (fF (0, K)ol 5 Brgr = (f (R, K))irgr
From X(n, f(n,k)), X(n', f(n', k")), it follows that:

Clu] with u = f(n,k)af(n/, k') (lemma [65]). Therefore, we have:

lie (f(n.k))oll = l2ieul 5 [i"e (f(n',K))oll = [12¢' + Leul| ;

himt1 = u2it1 5 hpyg1 = ugyyo.

From Clu], we deduce FElug;i1,us o], that is E[hmy1, hya1].

This completes the proof of theorem ]

The well ordering on P(N). In the model N, we define the unary predicate:
G(z) = I =T (p),icpo, = pit1}.

Lemma 6.6. |} G(x),G(y) — E[z,y].

We must show |- =T (p), =T (), i€ po, = = pit1,§ € G0,y = ¢j+1 — Elz,y], that is:
=T (), =T (@);icpo,jeqo — Elpit1,qj1]-
By theorem [B.5(ii) and (iii), we have |} -7 (p), T (q) — Clprq].
Therefore, it is sufficient to show that ||- C[paq],iepo,je qo = Elpit1, gj+1]-
We show below that we have I |- Clpagl,icpo,jeqo — E[pit1,qj+1]. Since this is a first
order formula, this gives the desired result, by theorem [3.3]
Indeed, we have: piy1 = (pAQ)2i41 ; @41 = (PAG)2j42 ;
liepoll = lI2ie (pra)oll 5 [l7€qoll = 1127 + 1 (prg)ol|-
Therefore, it remains to show:
I' |- Clpag], 2ie (prg)o, 2 + 1€ (prq)o — E[(PAq)2i+1, (PAq)25+2]
which is obvious, by definition of C[pag|. ]

Lemma [6.6] shows that < is a total relation on G. But, moreover, <is a well founded relation
in V. Therefore, we have:
I G is well ordered by <.
We define now two functions on P:
e a unary function §: P — P by putting [[ied(p)o|| =i+ 1epoll ; 0(p)it1 = pivo.
e a binary function ¢ : P> — P by putting:
10€ d(p,@oll =05 [li + 1 d(p, ol = lliepol| ;

o(P:9)1 =q; ¢(p;q)i+2 = pi+1 for every i € N.
Therefore, we have §(é(p,q)) =p and ¢(p,q)1 =

q
I [-Ypvq(s(é(p,q)) =p) 5 T II-VpVYa(5(é(p.q)) =p) ;
I [-Vp¥q(é(p,a)1 = @) 5 T [-VpVa(dp. )1 = q).
Intuitively, (p) defines the set we obtain by removing p; from the set associated with p ;
&(p, q) defines the set we obtain by adding ¢ to the set associated with p.

for all p,q € P and thus:

Lemma 6.7. If p,q € P, there exists ¢ € P such that §(¢') = q¢ and p; <q" for every
i€ N.

For each a € P, we have §(¢(q,a)) = g. But the application a — ¢(gq,a) is obviously
injective, since ¢(q,a); = a. Thus, the set {¢(q,a); a € P} is of cardinal 2%. Now, by
hypothesis on «, every proper initial segment of P, for the well ordering <, is of cardinal
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< 2%, Thus, there exists some ag € P such that p; < ¢(q,ag) for every i € N. Then, it
suffices to put ¢’ = ¢(q, ao). ]

Therefore, we can define a binary function v : P2 — P such that we have:
5(¢(p,q)) =q and (p;<t¥(p,q)) =1 for all p,q € P and i € N. Thus, we have:
I §-VpYa(6(v(p,q)) = a) i T If-YpYa(d(v(p,q)) = q).

K1 [-Vp¥a¥i®(p; a(p,q)) i KI |- Vp¥g¥i™ (p; <4(p, q))-

Lemma 6.8. We have |}-Yq3z{G(z),d(x) = q}.

Proof. This is written as ||~ Vq[VaVpVi®™(§(z) = q, iepo, = pir1 — J(p)) — L] or
else:
I Yq[VpVi®™t (i e po, (pir1) = ¢ — T (p)) — 1].
By making ¢ = 0, it is sufficient to show:
(1) - Valvp(0e po, d(p1) = ¢ = T (p)) — L].
By replacing p with &(p,¥(p,q)) in (1), we see that it remains to show:
- Ya=vp T (¢(p, ¥ (p. 9)))-

Lemma 6.9. [ VpVq(Clp] — Clo(p,¥(p,q))]).

Proof. We have Clr] = Vi®"Vj®"(icry, jerg — E[rit1,7;+1]). Therefore, in order to show
that [ C[p] — CJr], it suffices to show:

(1) | Clp] — ViV + 1erg, j + lerg — Elrita,rj42]) and

(2) [ Clp] = Vi (0erg,j + lerg = Elri,mj12)).

We apply this remark by putting r = ¢(p,1(p,q)). Then (1) is written as || C[p] — C[p]

since ||t + lerg|| = ||iepol and 712 = piy1 and the same for j.
Thus, it suffices to show (2), that is:
- Clp] —

Vi (0 e G(p, (P, )0, 5 + L d(p, (D, q))o = Eld(p, ¥(p, q))1, ¢(p,(p, q))j42))-

But, we have I ||-VpVq(0ed(p,q)o) ; I I-YpVq(iepo — j+ 1ed(p,(p,q))o) ;

I |=Vp¥a(o(p, v (p, )1 =¥, q) 5 I |+-YpVa(d(p,v(p;q))j+2 = Pj+1)-

Therefore, it remains to show:

I Clp] = V5" (j e po — E[(p,q), pj+1])

which is trivial, since we have K1 |- VpVqVj®™ (p;+1 <94 (p, q)). L]

Lemma 6.10. XiAz\y((y)(o)i)x [ VpVa(p C ¢(p,q)).

Proof. This is written as:

Aidz Ay ((y)(o)i)z [ Vi(ent(i), i€ po, Vi(ent(5), j € ¢(p, 9o = ¢(p, @)j41 # Pit1) = L)
which is immediate, by making j = ¢ + 1. L]

We have || p C ¢(p,¥(p,q)) (lemma [6.10]), and it follows that:

= &(p, ¢ (p,q)) E p (lemmaB.2), and thus |- Clo(p, ¥(p, q))] = Clprd(p, P(p, q))]-
Therefore, by lemma 6.9, we have:

I+ VpVq(Clp] — Clprd(p,¥(p,q))]). Since this is a first order formula, we have, by theo-
rem B3 |- VpVq(Clp] — Clprd(p,1(p,q))])

and therefore, by theorem B5[ii): || VpVq(=Clpad(p, ¥(p, q))] — T (p)).

Then, we apply theorem B.6] which gives: [} Vg—=Vp J(o(p, ¥ (p,q)))
which is the desired result. L]
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Theorem 6.11. The following formulas are realized in N :
i) There exists a well ordering on the set of individuals.
ii) There exists a well ordering on the power set of N.

Proof.

i) Lemma shows that, in A/, the function § is a surjection from G onto the set P of
individuals. But, we have seen that the formula: “ G is well ordered by < ” is realized in
N.

ii) By theorems [£.4] and [6.4] the following formula is realized in N: “ Every subset of N
is represented by an individual ”. Hence the result, by (i). L]

Theorem [6.TT](ii) enables us to transform into a program any proof of a formula of second
order arithmetic, which uses the existence of a well ordering on R. The method is the same
as the one explained above for the ultrafilter axiom.
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