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Abstract. Two styles of definitions are usually considered to express that a security
protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s
should never be disclosed while equivalence-based secrecy states that two executions of a
protocol with distinct instances for s should be indistinguishable to an attacker. Although
the second formulation ensures a higher level of security and is closer to cryptographic
notions of secrecy, decidability results and automatic tools have mainly focused on the
first definition so far.

This paper initiates a systematic investigation of the situations where syntactic se-
crecy entails strong secrecy. We show that in the passive case, reachability-based secrecy
actually implies equivalence-based secrecy for digital signatures, symmetric and asymmet-
ric encryption provided that the primitives are probabilistic. For active adversaries, we
provide sufficient (and rather tight) conditions on the protocol for this implication to hold.

1. Introduction

Cryptographic protocols are small programs designed to ensure secure communications.
Since they are widely distributed in critical systems, their security is primordial. In partic-
ular, verification using formal methods attracted a lot of attention during this last decade.
A first difficulty is to formally express the security properties that are expected. Even a
basic property such as confidentiality admits two different acceptable definitions namely
reachability-based (syntactic) secrecy and equivalence-based (strong) secrecy. Syntactic se-
crecy is quite appealing: it says that the secret is never accessible to the adversary. For
example, consider the following protocol where the agent A simply sends a secret s to an
agent B, encrypted with B’s public key.

A→ B : {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this notion of secrecy
may be sufficient in many scenarios, in others, stronger security requirements are desirable.
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For instance consider a setting where s is a vote and B behaves differently depending on
its value. If the actions of B are observable, s remains syntactically secret but an attacker
can learn the values of the vote by watching B’s actions. The design of equivalence-based
secrecy is targeted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to express
properties like confidentiality of a vote, of a password, or the anonymity of participants to
a protocol.

Although the second formulation ensures a higher level of security and is closer to
cryptographic notions of secrecy, so far decidability results and automatic tools have mainly
focused on the first definition. The syntactic secrecy preservation problem is undecidable
in general [21], it is co-NP-complete for a bounded number of sessions [31], and several
decidable classes have been identified in the case of an unbounded number of sessions [21, 16,
9, 30]. These results often come with automated tools, we mention for example ProVerif [6],
Casper [27], CAPSL [19], and Avispa [5].

Many works have been dedicated to proving correctness properties of protocols such
as strong secrecy using contextual equivalences on process calculi, like the spi-calculus. In
particular framed bisimilarity has been introduced by Abadi and Gordon [2] for this purpose.
However it was not well suited for automation, as the definition of framed bisimilarity uses
several levels of quantification over infinite domains (e.g. set of contexts). In [22] the
authors introduce fenced bisimilarity as an attempt to eliminate one of the quantifiers.
Also in [12], Borgström et al propose a sound but incomplete decision procedure based on a
symbolic bisimulation. Another approach to circumvent the context quantification problems
is presented in [11] where labelled transition systems are constrained by the knowledge
the environment has of names and keys. This approach allows for more direct proofs of
equivalence. In order to get some support for compositional reasoning in this setting, [10]
extends it with some equational laws. In [20] model-checking techniques for the verification
of spi-calculus testing equivalence are explored. The technique is limited to finite processes
but seems to perform well on some examples. The concept of logical relations for the
polymorphic lambda calculus has also been been employed to prove behavioral equivalences
between programs that rely on encryption in a compositional manner [33].

However, to the best of our knowledge, the only tool capable of verifying strong secrecy
is the resolution-based algorithm of ProVerif [7] that has been extended for this purpose.
Proverif has also been enhanced for handling equivalences of processes that differ only in the
choice of some terms in the context of the applied pi calculus [8]. This allows to add some
equational theories for modelling properties of the underlying cryptographic primitives.

Similarly very few decidability results are available for strong secrecy. In the article [24],
Hüttel proves decidability for a fragment of the spi-calculus without recursion for framed
bisimilarity. For recursive processes only a class of ping-pong protocols restricted to two
principals admits a decidable strong bisimilarity relation [26].

Finally, we should mention here some related works based on the concept of non-
interference [32]. This notion formalizes the absence of unauthorized information flow in
multilevel computer systems. Non-interference has been widely investigated in the con-
text of langage-based security (e.g. [34, 35]). It can be expressed with process equivalence
techniques and has been applied also to security protocols in [23, 14]. An advantage of
this approach is that various security properties, including secrecy, can be modeled by se-
lecting proper equivalence relations. However as far as we know decidability results for
non-interference properties of security protocols have not been reported.
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In light of the above discussion, it may seem that the two notions of secrecy are sep-
arated by a sizable gap from both a conceptual but also from a practical point of view.
These two notions have counterparts in the cryptographic setting (where messages are bit-
strings and the adversary is any polynomial probabilistic Turing machine). Intuitively, the
syntactic secrecy notion can be translated into a similar reachability-based secrecy notion
and equivalence-based notion is close to indistinguishability. A quite surprising result [18]
states that cryptographic syntactic secrecy actually implies indistinguishability in the cryp-
tographic setting. This result relies in particular on the fact that the encryption schemes
are probabilistic thus two encryptions of the same plaintext lead to different ciphertexts.

Motivated by the result of [18] and the large number of available systems for syntactic
secrecy verification, we initiate in this paper a systematic investigation of situations where
syntactic secrecy entails strong secrecy. Surprisingly, this happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied pi
calculus [1]. We first treat in Section 2 the case of passive adversaries. We prove that
syntactic secrecy is equivalent to strong secrecy. This holds for signatures, symmetric and
asymmetric encryption. It can be easily seen that the two notions of secrecy are not equiv-
alent in the case of deterministic encryption. Indeed, the secret s cannot be deduced from
the encrypted message {s}pub(B) but if the encryption is deterministic, an intruder may try
different values for s and check whether the ciphertext he obtained using B’s public key
is equal to the one he receives. Thus for our result to hold, we require that encryption is
probabilistic. This is not a restriction since this is de facto the standard in almost all cryp-
tographic applications. Next, we consider the more challenging case of active adversaries.
We give sufficient conditions on the protocols for syntactic secrecy to imply strong secrecy
(Section 3). Intuitively, we require that the conditional tests are not performed directly
on the secret since we have seen above that such tests provide information on the value of
this secret. We again exhibit several counter-examples to motivate the introduction of our
conditions. An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication. In particular, our
result holds for an unbounded number of sessions.

The interest of our contribution is twofold. First, conceptually, it helps to understand
when the two definitions of secrecy are actually equivalent. Second, we can transfer many
existing results (and the armada of automatic tools) developed for syntactic secrecy. For
instance, since the syntactic secrecy problem is decidable for tagged protocols for an un-
bounded number of sessions [30], by translating the tagging assumption to the applied-pi
calculus, we can derive a first decidability result for strong secrecy for an unbounded num-
ber of sessions. Other decidable fragments might be derived from [21] for bounded messages
(and nonces) and [4] for a bounded number of sessions. A first version of this result was
published in the Proceedings of CSL’06 [17], with no detailed proofs. In that preliminary
version, the correspondence result in the active case was only established for symmetric
encryption. We extend it here to asymmetric encryption and digital signatures.

2. Passive case

2.1. Syntax. Cryptographic primitives are represented by function symbols. More specif-
ically, we consider the signature Σ = {enc, dec, enca, deca, pub, priv, 〈〉, π1, π2, sign, check,
retrieve} where the function symbols have arities 3, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3 and 1 respectively.
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T (Σ,X ,N ), or simply T , denotes the set of terms built over Σ extended by a set of con-
stants, the infinite set of names N and the infinite set of variables X . A term is closed
or ground if it does not contain any variable. The set of names occurring in a term T
is denoted by fn(T ), the set of variables is denoted by V(T ). The positions in a term T
are defined recursively as usual (i.e. as sequences of positive integers), ǫ being the empty
sequence. Denote by N

∗
+ the set of sequences of positive integers. We denote by T |p the

subterm of T at position p and by U [V ]p the term obtained by replacing in U the subterm
at position p by V . Pos(T ) denotes the set of positions of T , Posv(T ) the set of positions of
variables in T and Posnv(T ) = {p ∈ Pos(T ) | T |p /∈ V(T )} the set of non-variable positions
of T . We may simply say that a term V is in a term U if V is a subterm of U We denote
by ≤st (resp. <st) the subterm (resp. strict) order. hU denotes the function symbol, name
or variable at position ǫ in the term U . A substitution is a function that maps variables to
terms σ : X → T . We write σ = {T1/x1

, . . . Tn/xn} to say that xiσ = Ti for 1 ≤ i ≤ n and
xσ = x for x 6= xi. The expression U [V/x] denotes Uσ where σ = {V/x}.

We equip the signature with an equational theory E:



π1(〈z1, z2〉) = z1
π2(〈z1, z2〉) = z2
dec(enc(z1, z2, z3), z2) = z1
deca(enca(z1, pub(z2), z3), priv(z2)) = z1
check(z1, sign(z1, priv(z2)), pub(z2)) = ok

retrieve(sign(z1, z2)) = z1

Let RE be the corresponding rewrite system (obtained by orienting the equations from left
to right). RE is convergent. The normal form of a term T w.r.t. RE is denoted by T↓.
Notice that E is also stable by substitution of names. As usual, we write U → V if there
exists θ, a position p in U and L→ R ∈ RE such that U |p = Lθ and V = U [Rθ]p.

The symbol 〈 , 〉 represents the pairing function and π1 and π2 are the associated pro-
jection functions. The term enc(M,K,R) represents the messageM encrypted with the key
K. The third argument R reflects that the encryption is probabilistic: two encryptions of
the same messages under the same keys are different. The symbol dec stands for decryption.
The symbols enca and deca are very similar but in an asymmetric setting, where pub(a)
and priv(a) represent respectively the public and private keys of an agent a. We denote by
encg (respectively decg) a generic encryption (decryption), that is when using it we refer
to both symmteric and asymmetric encryption (decryption). The term sign(M,K) repre-
sents the signature of message M with key K. check enables to verify the signature and
retrieve enables to retrieve the signed message from the signature.1 The function symbols
〈〉, enc, enca and sign are called constructors, while π1, π2, dec, deca, check and retrieve are
called destructors.

After the execution of a protocol, an attacker knows the messages sent on the network
and also in which order they were sent. Such message sequences are organized as frames
ϕ = νñ.σ, where σ = {M1/y1 , . . . ,

Ml/yl} is an acyclic substitution and ñ is a finite set of
names. We denote dom(ϕ) = dom(σ) = {y1, . . . , yl} and ran(ϕ) = ran(σ) = {M1, . . . ,Ml}.
The variables yi enable us to refer to each message. The names in ñ are said to be restricted
in ϕ. Intuitively, these names are a priori unknown to the intruder. The names outside ñ
are said to be free in ϕ. The set of free names occurring in ϕ is denoted fn(ϕ). A term M

1Signature schemes may disclose partial information on the signed message. To enforce the intruder
capabilities, we assume that messages can always be retrieved out of the signature.
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is said public w.r.t. a frame νñ.σ (or w.r.t. a set of names ñ) if fn(M) ∩ ñ = ∅ and it does
not use the function symbol priv; in other words if M ∈ T (Σ\{priv},X ,N \ñ). The frame
or the set of names might be omitted when it is clear from the context. We usually write
νn1, . . . , nk instead of ν{n1, . . . , nk}.

2.2. Deducibility. Given a frame ϕ that represents the history of messages sent during
the execution of a protocol, we define the deduction relation, denoted by ϕ ⊢M . Deducible
messages are messages that can be obtained from ϕ by applying function symbols and the
equational theory E.

νñ.σ ⊢ xσ
x ∈ dom(σ)

νñ.σ ⊢ m
m ∈ N\ñ

νñ.σ ⊢ T1 · · · νñ.σ ⊢ Tl
νñ.σ ⊢ f(T1, . . . , Tl)

f 6= priv
νñ.σ ⊢ T T =E T ′

νñ.σ ⊢ T ′

Example 1. k and 〈k, k′〉 are deducible from the frame νk, k′, r.{enc(k,k
′,r)/x,

k′/y}.

A message is usually said secret if it is not deducible. By opposition to our next notion
of secrecy, we say that a term M is syntactically secret in ϕ if ϕ 6⊢M .

We will often use another characterization of deducible terms.

Proposition 2.1. Let ϕ = νñ.σ be a frame and M be a term. ϕ ⊢ M if and only if there
exists a public term T w.r.t. ϕ such that Tσ =E M .

This is easily proved by induction on the length of the proof of deducibility.

2.3. Static equivalence. Deducibility does not always suffice to express the abilities of an
intruder.

Example 2. The set of deducible messages is the same for the frames ϕ1 = νk, n1, n2, r1.
{enc(n1,k,r1)/x,

〈n1,n2〉/y,
k/z} and ϕ2 = νk, n1, n2, r1.{

enc(n2,k,r2)/x,
〈n1,n2〉/y,

k/z}, while an at-
tacker is able to detect that the first message corresponds to distinct nonces. In particular,
the attacker is able to distinguish the two “worlds” represented by ϕ1 and ϕ2.

We say that a frame ϕ = νñ.σ passes the test (U, V ) where U, V are two terms, denoted
by (U = V )ϕ, if there exists a renaming of the restricted names inϕ such that (fn(U) ∪
fn(V )) ∩ ñ = ∅ and Uσ =E V σ. Two frames ϕ = νñ.σ and ϕ′ = νm̃.σ′ are statically
equivalent, written ϕ ≈ ϕ′, if they pass the same public tests, that is, if dom(ϕ) = dom(ϕ′)
and for all public terms U, V w.r.t. ϕ and ϕ′ such that (V(U) ∪ V(V )) ⊆ dom(ϕ) we have
(U = V )ϕ if and only if (U = V )ϕ′.

Example 3. The frames ϕ1 and ϕ2 defined in Example 2 are not statically equivalent since
(dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.

Let ϕ = νñ.σ be a frame and s ∈ ñ a restricted name in ϕ. Let M be a term such that
fn(M) ∩ ñ = ∅. We denote by ϕ[M/s] the frame νñ.σ[M/s] obtained by instantiating s with
M in each term of the substitution σ.

We say that s is strongly secret in ϕ if for every closed public terms M,M ′ w.r.t. ϕ,
we have ϕ[M/s] ≈ ϕ[M

′
/s] that is, the intruder cannot distinguish the frames obtained by

instantiating the secret s by two terms of its choice. For simplicity we may omit s and
write ϕ[M ] instead of ϕ[M/s].
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2.4. Syntactic secrecy implies strong secrecy. Syntactic secrecy is usually weaker than
strong secrecy! We first exhibit some examples of frames that preserves syntactic secrecy
but not strong secrecy. They all rely on different properties.

Probabilistic encryption. The frame ψ1 = νs, k, r.{enc(s,k,r)/x,
enc(n,k,r)/y} does not

preserve the strong secrecy of s. Indeed, ψ1[n] 6≈ ψ1[n
′] since (x = y)ψ1[n] but (x 6= y)ψ1[n

′].
This would not happen if each encryption used a distinct randomness, that is if the encryp-
tion was probabilistic.

Key position. The frame ψ2=νs,n.{
enc(〈n,n′〉,s,r)/x} does not preserve the strong secre-

cy of s. Indeed, ψ2[k] 6≈ ψ2[k
′] since (π2(dec(x, k)) = n′)ψ2[k] but (π2(dec(x, k)) 6= n′)ψ2[k

′].
If s occurs in key position in some ciphertext, the intruder may try to decrypt the cipher-
text since s is replaced by public terms and check for some redundancy. It may occur that
the encrypted message does not contain any verifiable part. In that case, the frame may
preserve strong secrecy. It is for example the case for the frame νn.{enc(n,s,r)/x}. Such cases
are however quite rare in practice.

No destructors. The frame ψ3 = νs.{π1(s)/x} does not preserve the strong secrecy of
s simply because (x = k) is true for ψ3[〈k, k

′〉] while not for ψ3[k].

Retrieve rule. The retrieve(sign(z1, z2))=z1 equation may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is actually crucial
for our result. For example, the frame ψ4 = νs.{sign(s,priv(a))/x,

pub(a)/y} does not preserve
the strong secrecy of s because (check(n, x, y) = ok) is true for ψ4[n] but not for ψ4[n

′].
In the three first cases, the frames preserve the syntactic secrecy of s, that is ψi 6⊢ s,

for 1 ≤ i ≤ 3. In the fourth case, we would also have ψ4 6⊢ s without the retrieve equation.

We define agent encryptions as encryptions which use “true” randomness, that is fresh
names. Note that in the passive case all encryptions are produced by agents and not by the
intruder. Encryption (as a primitive) is probabilistic if each (instance of the) encryption
uses a distinct randomness. Next, we define those notions formally.

We say that an occurrence qenc of an encryption in a term U is an agent encryption
w.r.t. a set of names ñ if U |qenc·3 ∈ ñ. We say that an occurrence qenc of an encryption in
a term U is a probabilistic encryption w.r.t. a set of terms S if no distinct term shares the
same randomness, that is, for any term V ∈ S and position p such that V |p = U |qenc·3 we
have that p = q · 3 for some q and V |q = U |qenc .

The previous examples lead us to the following definition.

Definition 1. A frame ϕ = νñ.σ is well-formed w.r.t. some name s if

(1) any encryption in σ is an agent encryption w.r.t. ñ\{s} and a probabilistic encryption
w.r.t. the set of terms of σ;

(2) s is not part of a key or a randomness, i.e. for all enc(M,K,R), enca(M ′,K ′, R′),
sign(U, V ), pub(W ), priv(W ′) subterms of ϕ, s /∈ fn(K,K ′, V,W,W ′, R,R′);

(3) ϕ does not contain destructor symbols.

For well-formed frames, syntactic secrecy is actually equivalent to strong secrecy.

Theorem 2.2. Let ϕ be a well-formed frame w.r.t. s, where s is a restricted name in ϕ.

ϕ 0 s if and only if ϕ[M/s] ≈ ϕ[M
′

/s]

for all M,M ′ closed public terms w.r.t. ϕ.
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Proof. Let ϕ = νñ.σ be a well-formed frame w.r.t. s. If ϕ ⊢ s, this trivially implies that s
is not strongly secret. Indeed, there exists a public term T w.r.t. ϕ such that Tσ =E s, by
Proposition 2.1. Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈ fn(ϕ). Since
Tσ[n1/s] =E n1 the frames ϕ[n1/s] and ϕ[

n2/s] are distinguishable with the test (T = n1).
We assume now that ϕ 0 s. We first show that any syntactic equality satisfied by the

frame ϕ[M/s] is already satisfied by ϕ.

Lemma 2.3. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. Let
U , V and M be public terms w.r.t. ϕ, with V(U),V(V ) ⊆ dom(σ) and M ground. Then
Uσ[M/s] = V σ[M/s] implies Uσ = V σ.

This lemma is proved in Subsection 2.5.
The key lemma is that any reduction that applies to a deducible term U where s is

replaced by some M , directly applies to U .

Lemma 2.4. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. Let U be
a term with V(U) ⊆ dom(ϕ) and M be a closed term in normal form such that U and M
are public w.r.t. ϕ. If Uσ[M/s] → V , for some term V , then there exists a frame ϕ′ = νñ.σ′

well-formed w.r.t. s

• extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
• preserving deducible terms: ϕ ⊢W if and only if ϕ′ ⊢W ,
• and such that V = V ′σ′[M/s] and Uσ → V ′σ′ for some V ′ public w.r.t. ϕ′.

This lemma (proved in Subsection 2.5) allows us to conclude the proof of Theorem 2.2.
Fix arbitrarily two public closed terms M,M ′. We can assume w.l.o.g. that M and M ′

are in normal form. Let U 6= V be two public terms such that V(U),V(V ) ⊆ dom(ϕ) and
Uσ[M/s] =E V σ[M/s]. Then there are U1, . . . , Uk and V1, . . . , Vl such that Uσ[M/s]→U1→
. . .→Uk, V σ[

M/s]→V1→ . . .→Vl, Uk = Uσ[M/s]↓, Vl = V σ[M/s]↓ and Uk = Vl.
Applying repeatedly Lemma 2.4 we obtain that there exist public terms U ′

1, . . . , U
′
k

and V ′
1 , . . . , V

′
l and well-formed frames ϕi = νñ.σi, for i ∈ {1, . . . , k} and ψj = νñ.θj , for

j ∈ {1, . . . , l} (as in the lemma) such that Ui = U ′
iσi[

M/s], Uσ → U ′
1σ1, U

′
iσi → U ′

i+1σi+1,

Vj = V ′
j θj[

M/s], V σ → V ′
1θ1 and V ′

j θj → V ′
j+1θj+1.

The substitution σk extends σ, which means that σk = σ∪σ′k with dom(σ)∩dom(σ′k) =
∅. Similarly, θl = σ ∪ θ′l with dom(σ) ∩ dom(θ′l) = ∅. By possibly renaming the variable
of θ′l and of the V ′

j , we can assume that dom(σ′k) ∩ dom(θ′l) = ∅. We consider ϕ′ = νñ.σ′

where σ′ = σ ∪ σ′k ∪ θ
′
l. Since only subterms of ϕ have been added to ϕ′, it is easy to verify

that ϕ′ is still a well-formed frame and for every term W we have that ϕ ⊢ W if and only
if ϕ′ ⊢W . In particular ϕ′

0 s.
By construction we have that U ′

kσk[
M/s] = V ′

l θl[
M/s]. Then, by Lemma 2.3, we deduce

that U ′
kσk = V ′

l θl that is Uσ =E V σ. By stability of substitution of names, we have

Uσ[M
′
/s] =E V σ[M

′
/s]. We deduce that ϕ[M/s] ≈ ϕ[M

′
/s].

2.5. Generalization of well-formed frames. In the active case, we need a more general
definition for well-formed frames and for the corresponding lemmas. In particular, we need
to consider frames with destructor symbols. Thus we provide here the definition of extended
well-formed frames, show that well-formed frames are special cases of extended well-formed
(when the frames preserve syntactic secrecy), and then prove analogue lemmas for extended
well-formed frames.
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We say that there is an encryption plaintext-above a subterm T of a term U at position
qT if there is a position q < qT such that U |q is a cyphertext, that is hU |q ∈ {enc, enca}. In
addition, T occurs in the plaintext subterm of the encrypted term, that is q · 1 ≤ qT .

Definition 2. We say that a frame ϕ = νñ.σ is an extended well-formed w.r.t. s if (1) all
the terms of σ are in normal form, (2) any agent encryption w.r.t. ñ in σ is a probabilistic
encryption w.r.t. ran(σ), and (3) for every occurrence qs of s in yσ with y ∈ dom(σ), there
exists an agent encryption (say qenc) w.r.t. ñ\{s} plaintext-above s. In addition, (4) the
lowest agent encryption q0 plaintext-above s satisfies hyσ|q ∈ {〈〉, sign}, for all positions q
with q0 < q < qs.

This definition ensures in particular that there is no destructor directly above s.

Example 4. The frame ϕ = νs, k, n.{π1(enc(a,enc(〈b,s〉,k,n)),n′′)/x,
enc(a,k′,n′)/y,

enc(b,k′,n′)/z} is ex-

tended well-formed, while the frames ϕ2 = νn.{enc(a,k,n)/y,
enc(b,k,n)/z}, ϕ3 = νn.{enc(a,s,n)/x},

and ϕ4 = νs, k, n.{enc(π1(s),k,n)/x} are not, each frame ϕi contradicting condition (i).

We first start by a preliminary lemma which states that in a well-formed frame w.r.t. s,
either every occurrence of s is under some encryption or s is deducible.

Lemma 2.5. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ and let qs be an occurrence
of s in yσ for some y ∈ dom(σ). If ϕ 0 s then there is an encryption plaintext-above s,
that is exists a position q < qs such that yσ|q is a cyphertext, that is hyσ|q ∈ {enc, enca}. In
addition, s occurs in the plaintext subterm of the encrypted term, that is q · 1 ≤ qs.

Proof. Assume by contradiction that there is an occurrence of s such that there is no
encryption plaintext-above s. Then, from Properties 2 and 3 of well-formed frames, we
have that there are only pairs and signatures as function symbols above s. Hence s is
deducible (by applying the projections and the retrieve equations). Thus there exists a
position q < qs such that yσ|q is an encryption. By Property 2 of well-formed frames, s
must occur in the plaintext part of the encryption that is q · 1 ≤ qs.

Lemma 2.6. Let ϕ = νñ.σ be a frame and s a restricted name in ϕ such that ϕ 0 s. If ϕ
is a well-formed frame w.r.t. s then it is an extended well-formed frame w.r.t. s.

Proof. Since there are no destructor symbols in ϕ all terms are in normal form. Since any
encryption in σ is probabilistic it will be a fortiori the case for agent encryptions.

Consider an occurrence qs of s in yσ with y ∈ dom(σ). From Lemma 2.5 we have
that there is at least an encryption plaintext-above s in yσ. Consider the lowest one.
Then condition 1 of well-formed frames says that this encryption is an agent encryption.
Conditions 2 and 3 impose that the only function symbols in between may be 〈〉 and sign.

The following lemma states that if in two distinct terms the secret is protected by agent
probabilistic encryptions then by replacing the secret with any term we cannot obtain two
syntactically equal terms.

Lemma 2.7. Let ñ be a set of names and s be a name, s ∈ ñ. Let M be a ground public
term w.r.t. ñ and U, V be two terms such that for any occurrence qs of s (in U or V )
there is an encryption qenc (in U or V respectively) with qenc · 1 ≤ qs such that qenc is an
agent encryption w.r.t. ñ\{s} and qenc is a probabilistic encryption w.r.t. {U, V }. Then
U [M/s] = V [M/s] implies U = V .
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Proof. Suppose that U [M/s] = V [M/s] and U 6= V . Then there is an occurrence qs of s, say
in U , such that V |qs 6= s. Consider an agent probabilistic encryption qenc with qenc · 1 ≤ qs
as in the lemma. We have U |qenc·3 ∈ ñ\{s}. It follows that V [M/s]|qenc·3 ∈ ñ\{s}. Since M is
public this implies that qenc ·3 is a position in V . And since qenc is a probabilistic encryption
and U |qenc·3 = V |qenc·3 it follows that U |qenc = V |qenc . Hence U |qs = V |qs which represents a
contradiction with V |qs 6= s.

Corollary 2.8. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such that
ϕ 0 s. Let U , V and M be public terms w.r.t. ϕ, with V(U),V(V ) ⊆ dom(σ) an d M
ground. Let W,W ′ be subterms of terms in ran(σ) such that for every occurrence qs of s
in W (or W ′) there is an occurrence of an encryption qenc in W (or W ′ respectively) with
qenc < qs. Then

(1) Uσ[M/s] = V σ[M/s] implies Uσ = V σ;
(2) Uσ[M/s] =W [M/s] implies Uσ =W ;
(3) W [M/s] =W ′[M/s] implies W =W ′.

Proof. We prove below that in Uσ and inW for each occurrence qs of s there is an encryption
q′enc (in yσ for some y ∈ V(U), and in W respectively) with q′enc · 1 ≤ qs such that q′enc is
an agent encryption w.r.t. ñ\{s}. Then, by analogy, the same thing holds for V σ and W ′.
Since by condition (2) of extended well-formed frames an agent encryption w.r.t. ñ is a
probabilistic encryption, it follows that each pair (Uσ, V σ), (Uσ,W ) and (W,W ′) satisfies
the conditions of Lemma 2.7. Then the result follows directly.

Consider an occurrence qs of s in Uσ. Since U is public, there is a variable y ∈ V(U) ⊆
dom(σ) and an occurrence py of it in U such that py ≤ qs. From the definition of extended
well-formed frames we know that there is an encryption q′enc in yσ with q′enc · 1 ≤ qs which
is an agent encryption w.r.t. ñ\{s}. Hence q′enc satisfies the conditions of Lemma 2.7.

In W for each occurrence qs of s there is an occurrence qenc of an encryption above
qs. Then we can consider the lowest occurrence q′enc of an encryption above qs in W . By
the definition of extended well-formed frames, the lowest encryption above qsis an agent
encryption and is plain-text above qs. Hence q

′
enc satisfies the conditions of Lemma 2.7.

Lemma 2.3 can now be easily deduced since it is the analogous statement of Point 1
of Corollary 2.8 for well-formed frames (which are extended well-formed frames as we have
seen in Lemma 2.6).

The following lemma is the generalization of Lemma 2.4 for extended well-formed
frames.

Lemma 2.9. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let U be a term with V(U) ⊆ dom(ϕ) and M be a closed term in normal form such that U
and M are public w.r.t. ϕ. If Uσ[M/s] → V , for some term V , then there exists an extended
well-formed frame ϕ′ = νñ.σ′ w.r.t. s

• extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
• preserving deducible terms: ϕ ⊢W if and only if ϕ′ ⊢W ,
• and such that V = V ′σ′[M/s] and Uσ → V ′σ′ for some V ′ public w.r.t. ϕ′.

We give here only a proof sketch, the detailed proof can be found in Appendix A.

Proof sketch. Let U, V,M be terms with U and M public w.r.t. ϕ, M being closed and in
normal form such that Uσ[M/s] → V , as in the statement of the lemma. Let L → R ∈ RE
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be the rule that was applied in the above reduction and let p be the position at which it
was applied, i.e. Uσ[M/s]|p = Lθ. Since M is in normal form, p ∈ Pos(Uσ).

By a case analysis of the rewrite rules in RE one can prove that there is a substitution
θ0 such that Uσ|p = Lθ0. It follows that Uσ is reducible. Since all terms in an extended-
well formed frame, thus in ϕ, are in normal form, we have that p ∈ Posnv(U). Then, for
T = U |p, Tσ[

M/s] = Lθ and Tσ = Lθ0.
For our equational theory E, R is either a constant (i.e. ok) or a variable. If R is a

constant then we take V ′ = U [R]p and σ′ = σ. If R is a variable, say z0, then consider the
position q of z0 in L. This position q is also in Lθ0, that is in Tσ. Hence the two following
possibilities may occur:

(1) If q ∈ Posnv(T ), that is there is no y ∈ dom(σ) above z0, then we consider V ′ =
U [T |q]p and σ′ = σ.

(2) If q /∈ Posnv(T ), that is there is some y ∈ dom(σ) above z0, then we consider
V ′ = U [y′]p and σ′ = σ ∪ {Rθ0/y

′}, where y′ is a new variable (i.e. y′ /∈ dom(σ)).

A simple analysis of these three cases shows that σ′ and V ′ satisfy that the conditions of
the lemma.

3. Active case

In the active case, we provide sufficient conditions for syntactic and strong secrecy
to be also equivalent. In particular, we require that no test is performed directly on the
secret. We establish our equivalence result in the applied pi calculus framework, introduced
by Mart̀ın Abadi and Cédric Fournet. We do not make any restriction on the use of the
replication symbol, which means that protocols with an unbounded number of sessions as
well as protocols with a bounded number of sessions can be considered.

3.1. Modeling protocols within the applied pi calculus. The applied pi calculus [1]
is a process algebra well-suited for modeling cryptographic protocols, generalizing the spi-
calculus [2]. We shortly describe its syntax and semantics. This part is mostly borrowed
from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q := processes
0 null process νn.P name restriction
P | Q parallel composition u(z).P message input
!P replication u〈M〉.P message output
if T = T ′ then P else Q conditional

where n is a name, M , T , T ′ are terms, and u is a name or a variable. The null process 0
does nothing. Parallel composition executes the two processes concurrently. Replication
!P creates unboundedly many instances of P . Name restriction νn.P builds a new, private
name n, called channel name, binds it in P and then executes P . The conditional if T =
T ′ then P else Q behaves like P or Q depending on the result of the test T = T ′. If Q is
the null process then we use the notation [T = T ′].P instead. Finally, the process u(z).P
inputs a message and executes P binding the variable z to the received message, while the
process u〈M〉.P outputs the message M and then behaves like P . We may omit P if it is 0.
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In what follows, we restrict our attention to the case where u is a name since it is usually
sufficient to model cryptographic protocols.2

Extended processes are defined by the grammar:

A,B := extended processes
P plain process νn.A name restriction
A | B parallel composition νx.A variable restriction
{M/x} active substitution

Active substitutions are just cycle-free substitutions. They generalise the let binding, in
the sense that νx.({M/x}|P ) corresponds to let x = M in P standard construction, while
unrestricted, {M/x} behaves like a permanent knowledge, permitting to refer globally to
M by means of x. Substitutions {M1/x1

, . . . ,Ml/xl
} with l ≥ 0 are identified with extended

processes {M1/x1
}| . . . |{Ml/xl

}. In particular, the empty substitution is identified with the
null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound variables and
free and bound names of A, respectively, defined inductively as usual and using fv({M/x}) =
fv(M)∪{x} and fn({M/x}) = fn(M) for active substitutions. An extended process is closed
if it has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process and active substitutions (using the
given constructions, that is, parallel composition, restriction and active substitutions) are
called frames3. To every extended process A we associate the frame ϕ(A) obtained by

replacing all embedded plain processes with 0. For example, if A = νy, k, r.{enc(m,k,r)/x,
a/y} |

c〈y〉 then ϕ(A) = νy, k, r.{enc(m,k,r)/x,
a/y}. Note that ϕ(A) ≡ νk, r.{enc(m,k,r)/x}.

An evaluation context is an extended process with a hole not under a replication, a
conditional, an input or an output.

Structural equivalence (≡) is the smallest equivalence relation on extended processes
that is closed by α-conversion of names and variables, by application of evaluation con-
texts and such that the standard structural rules for the null process, parallel composition
and restriction (such as associativity and commutativity of |, commutativity and binding-
operator-like behaviour of ν) together with the following ones hold.

νx.{M/x} ≡ 0 ALIAS

{M/x} |A ≡ {M/x} |A{
M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

If ñ represents the (possibly empty) set {n1, . . . , nk}, we abbreviate by νñ the se-
quence νn1.νn2 . . . νnk. Every closed extended process A can be brought to the form
νñ.{M1/x1

}| . . . |{Ml/xl
}|P by using structural equivalence, where P is a plain closed pro-

cess, l ≥ 0 and ñ ⊆ ∪i fn(Mi). Hence the two definitions of frames are equivalent up to
structural equivalence on closed extended processes. To see this we apply rule SUBST until
all terms are ground (this is assured by the fact that the considered extended processes
are closed and the active substitutions are cycle-free). Also, another consequence is that if
A ≡ B then ϕ(A) ≡ ϕ(B).

2Note that we do not change the calculus. In particular, there is no restriction on the use of channels for
adversaries/observers that are used in the definition of observational equivalence.

3We see later in this section why we use the same name as for the notion defined in Section 2.



12 V. CORTIER, M. RUSINOWITCH, AND E. ZĂLINESCU

Two semantics can be considered for this calculus, defined by structural equivalence
and by internal reduction and labeled reduction, respectively. These semantics lead to
observational equivalence (which is standard and not recalled here) and labeled bisimilarity
relations. The two bisimilarity relations are equal [1]. We use here the latter since it relies
on static equivalence and it allows to take implicitly into account the adversary, hence
having the advantage of not using quantification over contexts.

Internal reduction is the smallest relation on extended processes which is closed by
structural equivalence and application of evaluation contexts, and such that:

c〈x〉.P | c(x).Q → P | Q COMM

if T = T ′ then P else Q → P THEN

for any ground terms T and T ′ such that T =E T ′

if T = T ′ then P else Q → Q ELSE

for any ground terms T and T ′ such that T 6=E T ′

On the other hand, labeled reduction is defined by the following rules:

c(x).P
c(M)
−−−→ P{M/x} IN c〈u〉.P

c〈u〉
−→ P OUT-ATOM

A
c〈u〉
−−→ A′

νu.A
νu.c〈u〉
−−−−→ A′

u 6= c OPEN-ATOM A
α

−→ A′

νu.A
α

−→ νu.A′

u does not
occur in α

SCOPE

A
α

−→ A′

A|B
α

−→ A′|B
(*) PAR

A ≡ B B
α

−→ B′ B′ ≡ A′

A
α

−→ A′
STRUCT

where c is a name and u is a metavariable that ranges over names and variables, and the
condition (*) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 3. Labeled bisimilarity (≈l) is the largest symmetric relation R on closed ex-
tended processes such that ARB implies:

(1) ϕ(A) ≈ ϕ(B);
(2) if A→ A′ then B →∗ B′ and A′RB′, for some B′;

(3) if A
α
→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α) ∩ fn(B) = ∅ then B →∗ α

→→∗ B′ and
A′RB′, for some B′.

We denote A⇒ B if A→ B or A
α
→ B.

Definition 4. A frame ϕ is valid w.r.t. a process P if there is A such that P ⇒∗ A and
ϕ ≡ ϕ(A).

Definition 5. Let P be a closed plain process without variables as channels and s a bound
name of P , but not a channel name. We say that s is syntactically secret in P if, for every
valid frame ϕ w.r.t. P , s is not deducible from ϕ. We say that s is strongly secret if for
any closed terms M,M ′ such that bn(P ) ∩ (fn(M) ∪ fn(M ′)) = ∅, P [M/s] ≈l P [

M ′
/s], where

P [M/s] represents the instantiation of the name s with M in P except (of course) in the
name restriction constructions.

Let Mo(P ) be the set of outputs of P , that is the set of terms m such that c〈m〉 is
a message output construct for some channel name c in P , and let Mt(P ) be the set of
operands of tests of P , where a test is a couple T = T ′ occurring in a conditional and
its operands are T and T ′. Let M(P ) = Mo(P ) ∪ Mt(P ) be the set of messages of P .
Examples are provided at the end of this section.
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The following lemma intuitively states that any message contained in a valid frame is
an output instantiated by messages deduced from previous sent messages.

Lemma 3.1. Let P be a closed plain process, and A be a closed extended process such that
P ⇒∗ A. There are l ≥ 0, an extended process B = νñ.σl|PB, where PB is some plain
process, and θ a substitution public w.r.t. ñ such that: A ≡ B, ñ ⊆ bn(P ), for every
operand of a test or an output M of PB there is a message M0 in P (an operand of a test
or an output respectively), such that M =M0θσl, and, σi = σi−1 ∪ {Miθiσi−1/yi} is a ground
substitution, for all 1 ≤ i ≤ l, where Mi is an output in P , θi is a substitution public w.r.t.
ñ and σ0 is the empty substitution.

The proof is done by induction on the number of reductions in P ⇒∗ A. A detailed
proof can be found in Appendix B. Intuitively, B is obtained by applying the SUBST rule
(from left to right) as much as possible until there are no variables left in the plain process.
Note that B is unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ϕ(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A⇒ B : A,Na

B ⇒ S : B, {A,Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas , {A,Kab}Kbs

A⇒ B : {A,Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key Kab. The key
is created by a trusted server S which shares the secret keys Kas and Kbs with A and B
respectively. The protocol is modeled by the following process:

PY = νkas, kbs. (!PA) | (!PB) | (!νk.PS(k)) | νkab.PS(kab)

with

PA = νna.c〈a, na〉.c(za).[b = Ub].[na = Una ].c〈π2(za)〉.0
PB = c(zb).νnb, rb.c〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉.c(z

′
b).[a = π1(dec(z

′
b, kbs))].0

PS(x) = c(zs).[a = Va].[b = π1(zs)].νrs, r
′
s.

c〈〈enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r
′
s)〉〉.0

where Ub = π1(dec(π1(za), kas)) Una = π1(π2(π2(dec(π1(za), kas))))
Va = π1(dec(π2(zs), kbs)) Vn = π2(dec(π2(zs), kbs)).

Note that for simplicity and concision, we only consider two honest agents. However,
we could extend the process to the case where A and B are also willing to interact with a
corrupted identity C and establish a similar result.

For this protocol the set of outputs and operands of tests are respectively:

Mo(PY ) = {〈a, na〉, π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉,
〈enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r

′
s)〉} and

Mt(PY ) = {b, Ub, na, Una , a, π1(dec(z
′
b, kbs)), Va, b, π1(zs)}.
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3.2. Our hypotheses. In what follows, we assume s to be the desired secret. As in the
passive case, destructors above the secret must be forbidden. We also restrict ourself to
processes with ground terms in key position. Indeed, consider the process

P1 = νs, k, r, r′.
(
c〈enc(s, k, r)〉 | c(z).c〈enc(a, dec(z, k), r′)〉

)
.

The name s in P1 is syntactically secret but not strongly secret. Indeed,

P1 ≡ νs, k, r, r′.
(
νz.

(
{enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a, dec(z, k), r′)〉

))

→ νs, k, r, r′.
(
{enc(s,k,r)/z} | c〈enc(a, s, r′)〉

)
(COMM rule)

≡ νs, k, r, r′.
(
νz′.

(
{enc(s,k,r)/z ,

enc(a,s,r′)/z′} | c〈z′〉
))

νz′.c〈z′〉
−−−−−→ P ′

1 = νs, k, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′}

and P ′
1 does not preserve the strong secrecy of s (see the frame ψ2 of Section 2.4).

Without loss of generality with respect to cryptographic protocols, we assume that
terms occurring in processes are in normal form and that no destructor appears above
constructors. Indeed, terms like π1(encg(M,K,R)) are usually not used to specify protocols.
We also assume that tests do not contain constructors. Indeed a test [〈T1, T2〉 = T ′] can
be rewritten as [T1 = T ′

1].[T2 = T ′
2] if T

′ = 〈T ′
1, T

′
2〉, and [T1 = π1(T

′)].[T2 = π2(T
′)] if T ′

does not contain constructors, and will never hold otherwise. Similar rewriting applies for
encryption, except for the test [encg(T1, T2, T3) = T ′] if T ′ does not contain constructors.
It can be rewritten in [decg(T

′, T2) = T1] but this is not equivalent. However since the
randomness of encryption is not known to the agents, explicit tests on the randomness
should not occur in general.

This leads us to consider the following class of processes.

Definition 6. A process P is well-formed w.r.t. a name s if it is closed, channels are names
different from s and:

(1) the symbol retrieve does not occur in M(P ), the symbol check does not occur in
M(P ) except in head of a test, that is, the check symbol can only appear in tests
of the form [check(M,N,K) = ok] where check does not appear in M,N,K;

(2) any encryption in some term ofM(P ) is a probabilistic agent encryption w.r.t.M(P )
and bn(P )\{s} respectively;

(3) for any subterm term encg(M,K,R), decg(M,K) or sign(M,K) occurring in M(P ),
K is a closed term;

(4) in M(P ) there are no destructors, nor pub or priv function symbols above construc-
tors, nor above s;

(5) for any test,
• either each operand of a test T ∈ Mt is a name, a constant or has the form
π1(dec1(. . . π

l(decl(π
l+1(z),Kl)) . . . ,K1)), with l ≥ 0, where deci ∈ {dec, deca},

πi are words on {π1, π2} and z is a variable,
• or the test is [check(M,N,K) = ok] with K being a closed term and M and N
is of the previously described form.

Conditionals should not test on s. For example, consider the following process:

P2 = νs, k, r.
(
c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉

)

where a is a non restricted name. The name s in P2 is syntactically secret but not strongly
secret. Indeed, P2 → νs, k, r.({enc(s,k,r)/z} | [s = a].c〈ok〉) and the process P2[

a/s] reduces
further, while P2[

b/s] does not.
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That is why we have to prevent hidden tests on s. Such tests may occur nested in
equality tests. For example, let

P3 = νs, k, r, r1, r2.
(
c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉

| c(z).[dec(dec(z, k), k′) = a].c〈ok〉
)

→
P ′
3 = νs, k, r, r1, r2.

(
{enc(s,k,r)/z} | c〈enc(enc(a, k′, r2), k, r1)〉 | [dec(s, k

′) = a].c〈ok〉
)

Then P3[
enc(a,k′,r′)/s] is not equivalent to P3[

n/s], since the process P ′
3[
enc(a,k′,r′)/s] emits the

message ok while P ′
3[
n/s] does not. This relies on the fact that the decryption dec(z, k)

allows access to s in the test.
For the remaining of the section we assume that x and z0 are new fixed variables. To

prevent hidden tests on the secret, we compute an over-approximation of the ciphertexts
that may contain the secret, by marking with x all positions under which the secret may
appear in clear.

We first introduce a function fep that extracts the lowest encryption over s and “cleans
up” the pairing function above s. Formally, we define the partial function

fep : T × N
∗
+ →֒ T × N

∗
+

fep(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the position (if it exists) of
the lowest encryption on the path p in U . If q does not exist or if p is not a maximal position
in U , then fep(U, p) =⊥. Otherwise, V is obtained from U |q by replacing all arguments of
pairs that are not on the path p with new variables. More precisely, let V ′ = U |q. The
subterm V ′ must be of the form encg(M1,M2,M3) and q = i ·q′. If i 6= 1, then fep(U, p) =⊥.
Otherwise, V is defined by V = encg(M

′
1,M2,M3) with M

′
1 = prune(M1, q

′) where prune is
recursively defined by:

prune(N, ǫ) = N
prune(〈N1, N2〉, 1 · r) = 〈prune(N1, r), x2·r〉
prune(〈N1, N2〉, 2 · r) =〈x1·r, prune(N2, r)〉
prune(sign(M,K), 1 · r) = sign(prune(M), x2·r)
prune(f(N1, . . . , Nk), r) = f(N1, . . . , Nk) if f is a destructor

and is undefined in all other cases. For example,

fep( enc

enc

〈, 〉

〈, 〉

a b

c

k2 r2

k1 r1

, 1 · 1 · 2) = ( enc

〈, 〉

z1·2 c

k2 r2

, 1)

The function fe is the composition of the first projection with fep. With the function
fe, we can extract from the outputs of a protocol P the set of ciphertexts where s appears
explicitly below the encryption.

E0(P ) = {fe(M [x]p, p) |M ∈ Mo(P ) ∧ M |p = s}.

For example, E0(PY ) = {enc(〈z1·1, 〈x, z2〉〉, kas, rs), enc(〈z1, x〉, kbs, r
′
s)}, where PY is the pro-

cess corresponding to the Yahalom protocol defined in previous section.
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However smay appear in other ciphertexts sent later on during the execution of the pro-
tocol after decryptions and encryptions. Thus we also extract from outputs the destructor
parts (which may open encryptions). Namely, we define the partial function

fdp : T × N
∗
+ →֒ T × N

∗
+

fdp(U, p) = (V, q) where V and q are defined as follows: q ≤ p is the occurrence of the
highest destructor different from check above p (if it exists). Let r ≤ p be the occurrence
of the lowest decryption above p (if it exists). We have U |r = decg(U1, U2). Then U1 is
replaced by the variable z0 that is V = (U [decg(z0, U2)]r)|q. If q or r do not exist then
fdp(U, p) =⊥.

For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1 · 1 · 1 · 1) = (π1(dec(z0, k1)), 1).
The function fd is the composition of the first projection with fdp. By applying the

function fd to messages of a well-formed process P we always obtain either terms D of the
form4 D = D1(. . . Dn) where Di(z0) = πi(decg(z0,Ki)) with 1 ≤ i ≤ n, Ki are ground
terms and πi is a (possibly empty) sequence of projections πj1(πj2(. . . (πjl) . . . )), or terms
check(M,D,K) where D is of the previously defined form.

With the function fd, we can extract from the outputs of a protocol P the meaningful
destructor part.

Do(P ) = {fd(M,p) |M ∈ Mo(P ) ∧ p ∈ Posv(M)}.

Remember that Posv(M) is the set of variable positions.
For example, Do(PY ) = {π2(dec(z0, kbs)), π1(dec(z0, kbs))}.
We are now ready to mark (with x) all the positions where the secret might be trans-

mitted (thus tested). We define inductively the sets Ei(P ) as follows. For each element E
of Ei we can show that there is an unique term in normal form denoted by E such that
V(E) = {z0} and E(E)↓ = x. That is, intuitively, E opens E until x. For example, let
E1=enc(〈z1, 〈x, z2〉〉, kas, rs), then E1 = π1(π2(dec(z0, kas))). We define

Ei(P ) = {U | ∃E ∈ Ei(P ), U ≤st E and ∃q ∈ Pos(U), hU |q = decg},
Ei+1(P ) = {M ′[x]q | ∃M ∈ Mo(P ), p ∈ Posv(M) s.t. fep(M,p) = (M ′, p′),

fdp(M
′, p′′) = (D, q), p = p′ · p′′,D = D1(. . . Dn), and D1 ∈ E i(P )}.

For example,
E0(PY ) = {π1(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas), π2(dec(z0, kbs)), dec(z0, kbs)}
E1(PY ) = {enc(〈z1·2, 〈z1, x〉〉, kas, rs)}
E1(PY ) = {π2(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas)}
and Ei(PY ) = ∅ for i ≥ 2.

Note that E(P ) = ∪i≥0Ei(P ) is finite up-to renaming of the variables since for every
i ≥ 1, every term M ∈ Ei(P ), Pos(M) is included in the (finite) set of positions occurring
in terms of M0.

We can now define an over-approximation of the set of tests that may be applied over
the secret.

Ms
t (P ) =

{
T ∈ Mt(P ) | T = s or ∃p ∈ Posv(T ) s.t. D1(. . . Dn)=fd(T, p) 6=⊥,

∃E ∈ E(P ),∃i s.t. Di = πi(decg(z0,K)), E = encg(U,K,R) and x ∈ Di(E)↓
}

For example, Ms
t (PY ) = {π1(π2(π2(dec(π1(za), kas))))}.

4in this context we simply write D(T ) instead of D[T/z0 ]
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Definition 7. We say that a well-formed process P w.r.t. s does not test over s if the
following conditions are satisfied:

(1) for all E ∈ E(P ), for all D = D1(. . . Dn) ∈ Do(P ), if Di = πi(decg(z0),K) and

E = encg(U,K,R) and x ∈ fn(Di(E)↓) then i = 1 and E 6<st D1,
(2) if [T = T ′], [T ′ = T ], [check(T, T ′,K) = ok] or [check(T ′, T,K) = ok] is a test of P

and T ∈ Ms
t (P ) then T

′ is a restricted name different from s.

For example, PY does not test over s. Note that E(P ) can be computed in polynomial
time from P and that whether P does not test over s is decidable. We show in the next sec-
tion that the first condition is sufficient to ensure that frames obtained from P are extended
well-formed. It ensures in particular that there are no destructors right above s. If some
Di cancels some encryption in some E and x ∈ fn(Di(E)↓) then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely projections
from Di) remain above x). Also we have i = 1 since otherwise a Di may have consumed
the lowest encryption above x, thus the other decryption may block, and again there would
be destructors left above x.

The second condition requires that whenever an operand of a test [T = T ′] is potentially
dangerous (that is T or T ′ is in Ms

t (P )) then the other operand should be a restricted name.

Example 5. A simple class of protocols that do not test on the secret is the one where
in all messages sent by the protocol, the secret occurs only in the second component of
pairs, and the tests apply only on the first component of pairs. For example, if for a
protocol P3 we have Mo(P3) = {enc(〈na, s〉, k, r), enc(〈na, π2(dec(z, k)), k

′, r′)〉} and the
test is [π1(dec(z

′, k′)) = π1(dec(z
′′, k))] then there will be no test on s. Moreover, this

protocol also satisfies the first condition and hence we obtain that s is strongly secret using
the main result of this section.

We also give examples of protocols not satisfying the two conditions of Definition 7.
Consider first a protocol P1 for which Mo(P1) = {enc(π1(dec(z, k)), k, r

′), enc(s, k, r)}. P1

does not satisfy the first condition of the previous definition because the term enc(π1(s), k, r)
(with a destructor right above s) could be obtained by sending the first message to the agent
which constructs the second message.

A second example of protocol not satisfying the conditions (this time the second one) is
inspired from the Otway-Rees protocol. Consider a protocol P2 where the server waits for
A, {Na, A}Kas , performs a test on A and then sends {Na,Kab}Kas . Using a second session,
the intruder is able to transform the test that the server does on A into a test on the se-
cret. Formally, Mo(P2) = {〈a, enc(〈na, a〉, kas, r)〉, enc(〈π1(dec(π2(z), kas)), s〉), kas, r

′} and
Mt(P2) = {π1(z), π2(dec(π2(z), kas))}. Then π2(dec(π2(z), kas)) ∈ Ms

t (P2) but π1(z) is not
a restricted name.

3.3. Main result. We are now ready to prove that syntactic secrecy is actually equivalent
to strong secrecy for protocols that are well-formed and do not test over the secret.

Theorem 3.2. Let P be well-formed process w.r.t. a bound name s such that P does not
test over s. We have ϕ 0 s for any valid frame ϕ w.r.t. P if and only if P [M/s] ≈l P [

M ′
/s],

for all ground terms M,M ′ public w.r.t. bn(P ).

Proof. Consider first the simpler implication, that is strong secrecy implies syntactic secrecy.
Suppose that there is a valid frame ϕ w.r.t. P such that ϕ ⊢ s. Then, as for the passive
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case, there are M and M ′ public ground terms such that ϕ[M/s] 6≈ ϕ[M
′
/s]. Since ϕ is a

valid frame there is an extended process A such that P ⇒∗ A and ϕ = ϕ(A). Then clearly

P [M/s] ⇒
∗ A[M/s] and P [

M ′
/s] ⇒

∗ A[M
′
/s]. Thus if P [

M/s] ≈l P [
M ′
/s] then A[

M/s] ≈l A[
M ′
/s]

and moreover ϕ(A[M/s]) ≈ ϕ(A[M
′
/s]). Since ϕ(A[T/x]) = ϕ(A)[T/x] for any term T , we get

ϕ[M/s] ≈ ϕ[M
′
/s], contradiction. We deduce P [M/s] 6≈l P [

M ′
/s] and thus s is not strongly

secret in P .
The remaining of the section is devoted to the converse implication. Let P be well-

formed process w.r.t. a bound name s with no test over s and assume that s is syntactically
secret in P . Let M,M ′ be to public terms w.r.t. bn(P ). To prove that P [M/s] and P [

M ′
/s]

are labeled bisimilar, we need to show that each move of P [M/s] can be matched by a move

in P [M
′
/s] such that the corresponding frames are bisimilar (and conversely). By hypothesis,

P is syntactically secret w.r.t. s thus for any valid frame ϕ w.r.t. P , we have ϕ 0 s. In
order to apply our previous result in the passive setting (Theorem 2.2), we need to show
that all the valid frames are well-formed. However, frames may now contain destructors
in particular if the adversary sends messages that contain destructors. That is why we
consider extended well-formed frames, defined in Section 2.5.

Theorem 2.2 can easily be generalized to extended well-formed frames.

Proposition 3.3. Let ϕ be an extended well-formed frame w.r.t. s, where s is a restricted
name in ϕ. Then ϕ 0 s if and only if ϕ[M/s] ≈ ϕ[M

′
/s] for all M,M ′ closed public terms

w.r.t. ϕ.

The proof of Proposition 3.3 is exactly the same as the proof of Theorem 2.2 except
that it uses Corollary 2.8 and Lemma 2.9 instead of Lemmas 2.3 and 2.4 respectively.

The first step of the proof of Theorem 3.2 is to show that any frame produced by the
protocol is an extended well-formed frame. We actually prove directly a stronger result,
crucial in the proof: the secret s always occurs under an agent encryption and this encryp-
tion is an instance of a term in E(P ). This shows that E(P ) is indeed an approximation of
the cyphertexts that may contain the secret.

Lemma 3.4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be a
valid frame w.r.t. P such that ϕ 0 s. Consider the corresponding standard frame νñ.σ =
νñ.{Ui/yi | 1 ≤ i ≤ l}. For every i and every occurrence qs of s in Ui↓, we have fe(Ui↓, qs) =
E[W/x] for some E ∈ E(P ) and some termW . In addition νñ.σi↓ is an extended well-formed
frame w.r.t. s.

The lemma is proved in Appendix C. The proof uses an induction on i and relies deeply
on the construction of E(P ).

The second step of the proof consists in showing that any successful test in the process
P [M/s] is also successful in P and thus in P [M

′
/s].

Lemma 3.5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid frame
for P such that ϕ 0 s, θ a public substitution and M a public ground term. If T1 = T2 is a
test in P , then T1θσ[

M/s] =E T2θσ[
M/s] implies T1θσ =E T2θσ.

This lemma is proved in Appendix C by case analysis, depending on whether T1, T2 ∈
Ms

t (P ) and whether s occurs or not in fn(T1θσ) and fn(T2θσ).
Using Lemmas 3.4 and 3.5, we are ready to complete the proof of Theorem 3.2, showing

that P [M/s] and P [
M ′
/s] are labeled bisimilar.
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We consider the relation R between closed extended processes defined as follows: ARB
if there is an extended process A0 and ground terms M,M ′ public w.r.t. bn(P ) such that

P ⇒∗ A0, A = A0[
M/s] and B = A0[

M ′
/s].

We show that R satisfies the three points of the definition of labeled bisimilarity. Sup-
pose ARB, that is A0[

M/s]RA0[
M ′
/s] for some A0,M,M ′ as above.

(1) Let us show that ϕ(A0[
M/s]) ≈ ϕ(A0[

M ′
/s]). We know that ϕ(A0) is a valid frame

w.r.t. P (from the definition of R), hence ϕ(A0) 0 s (from the hypothesis). Let

ϕ′ ≡ ϕ(A0) having only ground and normalised terms (take for example ϕ′ = ϕ(A)↓,

where ϕ(A) is the standard frame w.r.t. A). Then, by Lemma 3.4, we have that ϕ′

is an extended well-formed frame. We can then use Proposition 3.3 to obtain that
ϕ(A0[

M/s]) ≈ ϕ(A0[
M ′
/s]).

(2) Let us show that if A0[
M/s] → A′ then A′ ≡ A′

0[
M/s], A0[

M ′
/s] → A′

0[
M ′
/s] and

A′
0[
M/s]RA′

0[
M ′
/s], for some A′

0. We distinguish two cases, according to whether
the transition rule was the COMM rule or one of the THEN and ELSE rules:

• if the COMM rule was used then A0[
M/s] ≡ C[M/s]

[
c〈z〉.Q[M/s]|c(z).R[

M/s]
]
,

where C is an evaluation context and A′ = C[M/s]
[
Q[M/s]|R[

M/s]
]
. Then A0 ≡

C[c〈z〉.Q|c(z).R]. Take A′
0 = C[Q|R]. We have that P ⇒∗ A′

0 and thus, by

definition of R, we have that A′
0[
M/s]RA′

0[
M ′
/s].

• otherwise, A0[
M/s] ≡ C[M/s]

[
if T ′[M/s] = T ′′[M/s] then Q[M/s] else R[

M/s]
]
.

Then A0 ≡ C[if T ′ = T ′′ then Q else R]. From Lemma 3.1 we know that
T ′ = T ′

0θσ and T ′′ = T ′′
0 θσ, where T

′
0 = T ′′

0 is a test in P and νñ.σ ≡ ϕ(A0)
is the standard frame w.r.t. A0. Take A′

0 = C[Q] if T ′
0θσ =E T ′′

0 θσ and
A′

0 = C[R] otherwise. From Lemma 3.5 we have that T ′
0θσ =E T ′′

0 θσ if and

only if T ′
0θσ[

M/s] =E T ′′
0 θσ[

M/s]. Hence A0[
M/s] → A′

0[
M/s], A0[

M ′
/s] → A′

0[
M ′
/s]

and A0 → A′
0. We conclude A′

0[
M/s]RA′

0[
M ′
/s] from the definition of R.

(3) Let us show that if A0[
M/s]

α
→ A′ and fv(α) ⊆ dom(ϕ(A0[

M/s])) and bn(α) ∩

fn(A0[
M ′
/s]) = ∅ then A′ ≡ A′

0[
M/s], A0[

M ′
/s]

α
→ A′

0[
M ′
/s] and A′

0[
M/s]RA′

0[
M ′
/s],

for some A′
0. Depending on the form of α, we consider the following cases:

• α = c(T ). Suppose A0[
M/s] ≡ C[M/s]

[
c(z).Q[M/s]

]
. Then take A′

0 = C[Q{T/z}].

• α = c〈u〉. Suppose A0[
M/s] ≡ C[M/s]

[
c〈u〉.Q[M/s]

]
. Then take A′

0 = C[Q].

• α = νu.c〈u〉. Suppose A0[
M/s] ≡ C[M/s]

[
νu.A1[

M/s]
]
, where A1[

M/s]
c〈u〉
−→

A′
1[
M/s]. Then take A′

0 = C[A1].

The above discussion proves that R ⊆ ≈l. Since we have P [M/s]RP [M
′
/s] it follows

that P [M/s] ≈l P [
M ′
/s].

4. Application to some cryptographic protocols

We apply our result to three protocols (Yahalom, Needham-Schroeder with symmetric
keys and Wide-Mouthed-Frog), known to preserve the usual syntactic secrecy property.
Since all these three protocols satisfy our hypotheses, we directly deduce that they preserve
the strong secrecy property.
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4.1. Yahalom. We have seen in Section 3.2 that PY is a well-formed process w.r.t. kab and
does not test over kab. Applying Theorem 3.2, if PY preserves the syntactic secrecy of kab,
we can deduce that the Yahalom protocol preserves the strong secrecy of kab that is

PY [
M/kab ] ≈l PY [

M ′

/kab ]

for any public terms M,M ′ w.r.t. bn(PY ). We did not formally prove that the Yahalom
protocol preserves the syntactic secrecy of kab but this was done with several tools in slightly
different settings (e.g. [13, 29]).

In what follows, for sake of simplicity, we may omit the symbol 〈, 〉 for pairing. In that
case, we assume a right priority that is a, b, c = 〈〈a, b〉, c〉.

4.2. Needham-Schroeder symmetric key protocol. The Needham-Schroeder symmet-
ric key protocol [28] is described below:

A⇒ S : A,B,Na

S ⇒ A : {Na, B,Kab, {Kab, A}Kbs
}Kas

A⇒ B : {Kab, A}Kbs

The target secret is Kab. The protocol is modeled by the following process:

PNS = νkas.νkbs. (!A) | (!c(zb)) | (!νk.S(k)) | νkab .S(kab)

where
A = νna.c〈a, b, na〉.c(za).[π1(dec(za, kas)) = na].

[π1(π2(dec(za, kas))) = b].c〈π2(π2(π2(dec(za, kas))))〉
S(x) = c(zs).νr, r

′.c〈enc(〈π2(π2(zs)), π1(π2(zs)), kab,
enc(〈x, π1(zs)〉, kbs, r

′)〉, kas, r)〉

Note that other processes should be added to considered corrupted agents or roles A,B and
S talking to other agents but this would not really change the following sets of messages.

The output messages are:

Mo =





a, b, na
π2(π2(π2(dec(za, kas))))
enc(〈π2(π2(zs)), π1(π2(zs)),
kab, enc(〈kab, π1(zs)〉, kbs, r

′)〉, kas, r)





The tests are: {
π1(dec(za, kas)) = na
π1(π2(dec(za, kas))) = b

}

We define max Ei = {e | e ∈ Ei} in order to increase readability, and since it is easy to
deduce Ei from max Ei.

Do = {π2(π2(π2(dec(z, kas))))}

E0 = {enc(〈z1, 〈z2, 〈x, z3〉〉〉, kas, r), enc(〈x, z4〉, kbs, r
′)}

max E0 = {π1(π2(π2(dec(z, kas)))), π1(dec(z, kbs))}

Do ∩ E0 = ∅

Mkab
t = ∅

We deduce that PNS is a well-formed process w.r.t. kab, that does not test over kab.
Applying Theorem 3.2 and since the Needham-Schroeder symmetric key protocol is known
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to preserve syntactic secrecy of kab, we deduce that the protocol preserves strong secrecy of
kab that is

PNS [
M/kab ] ≈l PNS [

M ′

/kab ]

for any public terms M,M ′ w.r.t. bn(PNS ).

4.3. Wide Mouthed Frog Protocol (modified). We consider a modified version of the
Wide Mouthed Frog Protocol [15], where timestamps are replaced by nonces.

A⇒ B : Na

B ⇒ S : {Na, A,Kab}Kbs

S ⇒ A : {Na, B,Kab}Kas

The target secret is Kab. The protocol is modeled by the following process:

PWMF = νkas.νkbs. (!A) | (!S) | (!νk.B(k)) | νkab .B(kab)

where

A = νna.c〈na〉.c(za).[π1(dec(za, kas)) = na]
B(x) = c(zb).νr.c〈enc(〈zb, a, x〉, kbs, r)〉

S = c(zs).[π1(π2(dec(zs, kbs))) = a].
νr′.c〈enc(〈π1(dec(zs, kbs)), b, π2(π2(dec(zs, kbs)))〉, kas, r

′)〉

Note that other processes should be added to considered corrupted agents or roles A,B
and S talking to other agents but again, this would not really change the following sets of
messages.

The output messages are:

Mo =





na
enc(〈zb, a, kab〉, kbs, r)
enc(〈π1(dec(zs, kbs)), b,
π2(π2(dec(zs, kbs)))〉, kas, r

′)





The tests are: {
π1(dec(za, kas)) = na
π1(π2(dec(zs, kbs))) = a

}

Do = {π1(dec(z, kbs)), π2(π2(dec(z, kbs)))}

E0 = {enc(〈z1, 〈z2, x〉, kbs, r)〉}

max E0 = {π2(π2(dec(z, kbs)))}

E1 = {enc(〈z1, 〈z2, x〉, kas, r)〉}

max E1 = {π2(π2(dec(z, kas)))}

Do ∩ E1 = ∅

Mkab
t = ∅

We obtain similarly that PWMF is a well-formed process w.r.t. kab, that does not test
over kab. Applying Theorem 3.2 and since the Wide Mouthed Frog protocol is known to
preserve syntactic secrecy of kab, we deduce that the protocol preserves strong secrecy of
kab that is

PWMF [
M/kab ] ≈l PWMF [

M ′

/kab ]

for any public terms M,M ′ w.r.t. bn(PWMF ).
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5. Conclusion

In recent years many automatic tools have been developed for verifying security pro-
tocols. The overwhelming majority of them address reachability-based properties such as
syntactic secrecy. On the other hand some important security notions such as strong secrecy
rely on provable equivalences between systems. Typically the impossibility of guessing a
vote or a password is commonly expressed that way. Hence in order to widen the scope of the
current protocol analysis tools, in the present paper we have shown how syntactic secrecy
actually implies strong secrecy in both passive and active setting under some conditions,
motivated by counterexamples. In particular such a result cannot hold for deterministic
encryption and we had to assume that it is probabilistic.

As future works, we plan to further investigate the active case by trying to relax our
conditions. There are several possible directions. First, we may consider specific classes of
protocols by restricting the syntax (for instance considering protocols without pairs such as
in [3, 25]) to see whether it is possible to refine our results in this setting. Second, we may
relax the requirement that processes cannot test over the secret by requiring instead that
the two branches of the test are indistinguishable. This is the case for example when a test
is followed in each branch by other tests that will never succeed when the first one is really
applied to a secret data. This would require to consider more complex over-approximations
of the set of sent messages. In particular, in the definition of the set E , we would have to
consider trees instead of simply paths potentially leading to the secret.
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Appendix A. Proof of Lemma 2.9

Lemma A.1. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let U be a term with V(U) ⊆ dom(ϕ) and M be a closed term in normal form such that U
and M are public w.r.t. ϕ. If Uσ[M/s] → V , for some term V , then there exists an extended
well-formed frame ϕ′ = νñ.σ′ w.r.t. s

• extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
• preserving deducible terms: ϕ ⊢W if and only if ϕ′ ⊢W ,
• and such that V = V ′σ′[M/s] and Uσ → V ′σ′ for some V ′ public w.r.t. ϕ′.

Proof. Let U, V,M be terms with U and M public w.r.t. ϕ, M being closed and in normal
form such that Uσ[M/s] → V , as in the statement of the lemma. Let L → R ∈ RE be
the rule that was applied in the above reduction and let p be the position at which it was
applied, i.e. Uσ[M/s]|p = Lθ. Since M is in normal form, p ∈ Pos(Uσ).

Assume that there is a substitution θ0 such that Uσ|p = Lθ0. This will be proved in the
Claim below. It follows that Uσ is reducible. If p 6∈ Posnv(U) then there is a term of ran(σ)
which is reducible. This contradicts the fact that ϕ is an extended-well formed frame (since
all terms in such a frame should be in normal form). Hence we have that p ∈ Posnv(U).
Let T = U |p. We have Tσ[M/s] = Lθ and Tσ = Lθ0.

For our equational theory E, R is either a constant (i.e. ok) or a variable. If R is a
constant then we take V ′ = U [R]p and σ′ = σ. It is easy to verify that the conditions of
the lemma are satisfied in this case.

Suppose now that R is a variable z0. Then, consider the5 position q of z0 in L. This
position q is also in Lθ0, that is in Tσ. Hence the two following possibilities may occur:

(1) If q ∈ Posnv(T ), that is there is no y ∈ dom(σ) above z0, then we consider V ′ =
U [T |q]p and σ′ = σ. In this case also, it is easy to verify that the conditions of the
lemma are satisfied.

(2) If q /∈ Posnv(T ), that is there is some y ∈ dom(σ) above z0, then we consider
V ′ = U [y′]p and σ′ = σ ∪ {Rθ0/y

′}, where y′ is a new variable (i.e. y′ /∈ dom(σ)).
The term V ′ is clearly public w.r.t. ϕ′. Since Tσ =E Rθ0, ϕ ⊢ Rθ0. This shows
that ϕ ⊢W if and only if ϕ′ ⊢W for any term W .

We have V ′σ′ = (U [y′]p)σ
′ = Uσ′[y′σ′]p = Uσ[Rθ0]p. Hence Uσ → V ′σ′.

From Tσ = Lθ0 and Tσ[M/s] = Lθ we deduce that zθ0[
M/s] = zθ for all z ∈ V(L),

hence Rθ0[
M/s] = Rθ. Thus V ′σ′[M/s] = (Uσ[M/s])[Rθ]p = V .

Since there is some y ∈ dom(ϕ) above z0, Rθ0 = z0θ is a subterm of a term of σ.
Then Rθ0 is in normal form since all the terms in ran(σ) are in normal form. Also
all agent encryptions in ϕ′ are probabilistic. Suppose that there is an occurrence of
s in Rθ0 such that there is no encryption plaintext-above it (in Rθ0). In this case
we have that all the function symbols above this occurrence in Rθ0 are 〈〉 or sign.
Thus s is deducible from ϕ′ and hence from ϕ, which represents a contradiction
with the hypothesis. Hence there is an encryption plaintext-above any occurrence
of s in Rθ0. All this proves that ϕ

′ is also an extended well-formed frame.

Claim: Let us now prove that there exists θ0 such that Uσ|p = Lθ0. Assume by contradic-
tion that it is not the case. Then at least one of the following cases occurs:

(1) there is a position in L which is not a position in Uσ|p;

5For our equational theory there is exactly one occurrence of z0 in L.
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(2) there is a variable z in L having at least two occurrences, say at positions p1, p2, for
which (Uσ|p)|p1 6= (Uσ|p)|p2 .

Let us examine in detail the two cases:

(1) Consider a minimal position q′ (w.r.t. the prefix order) in L which is not a position
in Uσ|p. Then q′ = q · 1 with q position of Uσ|p and there is an s at position q in
Uσ|p (since such minimal positions in L must be positions in Uσ[M/s]|p, but not in
Uσ|p). Also q 6= ǫ (i.e. it does not correspond to the head of L) since otherwise
M would not be in normal form. By examining all rules in RE , we observe that at
least one of the conditions in the definition of extended well-formed frames is not
satisfied. For example, if L → R is the rule π1(〈z1, z2〉) → z1 then q = 1. Then
either π1(y) is the subterm at position p in U and yσ = s (impossible case since
s would be deducible), either π1(s) is the subterm at position p in Uσ and this
subterm is also a subterm of a term of σ (again an impossible case because there are
no destructors right above s in term of an extended well-formed frame). If L → R
is the rule deca(enca(z1, pub(z2), z3), priv(z2)) → then q might be 1 or 1 · 2. The
case q = 1 is similar with the previous one. If q = 1 · 2 then we have a term in σ
having enca(W, s) as subterm for some W (otherwise s would be deducible). But
this again contradicts the definition of extended well-formed frames. The analysis
for the other rules is similar.

(2) Let T1 = (Uσ|p)|p1 and T2 = (Uσ|p)|p2 . We have T1 6= T2, but T1[
M/s] = T2[

M/s].
Consider an arbitrary position qs of s in T1. Since U is public, there is a variable
y ∈ V(U) at position say py such that py ≤ p · p1 · qs. Consider the lowest agent
encryption qenc plaintext-above qs in Uσ. It occurs in yσ according to the definition
of extended well-formed frames. Suppose that p · p1 > qenc. The function symbols
between qenc and p · p1 must be 〈〉 or sign. But this doesn’t hold for none of rules
in RE . Hence there is an agent encryption plaintext-above qs in T1. The same
argument applies to T2. We can thus use Point 3 of Corollary 2.8 to T1 and T2 and
obtain a contradiction, that is T1 = T2.

We have seen that the two cases lead to contradictions. So there is θ0 such that Uσ|p = Lθ0.

Appendix B. Proof of Lemma 3.1

Lemma B.1. Let P be a closed plain process, and A be a closed extended process such
that P ⇒∗ A. There are l ≥ 0, an extended process B = νñ.σl|PB, where PB is some
plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B, ñ ⊆ bn(P ), for every
operand of a test or an output M of PB there is a message M0 in P (an operand of a test
or an output respectively), such that M =M0θσl, and, σi = σi−1 ∪ {Miθiσi−1/yi} is a ground
substitution, for all 1 ≤ i ≤ l, where Mi is an output in P , θi is a substitution public w.r.t.
ñ and σ0 is the empty substitution.

Proof. We provide an inductive and constructive proof. We reason by induction on the
number of reductions in P ⇒∗ A.

The base case is evident.
Assume that P ⇒l Ak and that there are l, Bl and θ as in the statement of the lemma.

Suppose that Al ⇒ Al+1 and consider the reduction rule that was used:
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• If it is an internal reduction then, since static equivalence is closed by structural
equivalence and by internal reduction (see Lemma 1 in [1]), it is sufficient to consider
as searched values the same as for Al.

• If it is a labeled reduction then we prove the following property: α 6= c〈x〉 (for any a
and x) and there is an extended process Bl+1 = ϕ(Bl+1)|Pl+1 such that Bl+1 ≡ Al+1

and
– if α = νx.c〈x〉 then Pl+1 = Pl and ϕ(Bl+1) = νñ.σk+1, where σk+1 = σk∪{

Ml/x}
and Ml is an output in Pl.

– if α = c(M) then ϕ(Bl+1) = ϕ(Bl) and for every message (an operand of a
test or an output) Ml+1 in Pl+1 there is a message (an operand of a test or an
output, respectively) Ml in Pl, such thatMl+1 =Mlθ

′σk, for some substitution
θ′ public w.r.t. νñ.

– if α = c〈n〉 or α = νn.c〈n〉 then Pl+1 = Pl, and ϕ(Bl+1) = ϕ(Bl) or ϕ(Bl+1) =
ν{ñ}\{n}.σk , respectively.

It is easy to see that this property is sufficient to prove the inductive step.
The property can be verified, by showing, using induction on the shape of the

derivation tree, that for any extended processes A′, A′′, B′ such that A′ α
→ A′′,

A′ ≡ B′, B′ = νñ.σ|Q there is B′′ such that A′′ ≡ B′′ and B′ = νñ′.σ′|Q′ where
– if α = c(M) then ñ′ = ñ, σ′ = σ and N ′′ = N ′{M/x} for each term N ′′ of B′′

where N ′ is the corresponding term in B′ and c(x) is an input in B′;
– if α = νx.c〈x〉 then Q′ = Q, ñ′ = ñ, and σ′ = σ∪{M/x} where c〈M〉 is an input

in B′;
– if α = c〈x〉, α = c〈n〉 or α = νn.c〈n〉 then ñ′ = ñ for the first two cases, and

{ñ′} = {ñ}\{n} for the third one, σ′ = σ and Q′ = Q.

Appendix C. Proof of lemmas 3.4 and 3.5

In what follows we usually simply write M, Mt, Mo, Do, E instead of respectively
M(P ), Mt(P ), Mo(P ), Do(P ), E(P ), etc.

We also define the partial subtraction function − : N∗
+×N

∗
+ → N

∗
+ as follows: p− q = r

if p = q · r and p− q =⊥ otherwise.
Let U and V be two terms. We define Pos(U, V ) = {p ∈ Pos(U) | U |p = V }.
Observe that for the rewriting system corresponding to equational theory E, there is at

most one rule that can be applied and for each rule R→ L, there is exactly one occurrence
of R in L.

We denote by U →q V the reduction U → V such that U |q = Lθ and V = U [Rθ]q,
where q is a position in U , L→ R is a rule in RE , and θ is a substitution. Let p be a position
in U . We define a partial function par1(U, p, q) that computes, when U →q V , the position
after one rewriting of a function symbol at position p in U . In particular, if par1(U, p, q) 6=⊥
then U |p = V |par1(U,p,q). Formally, we define the function par1 : T × N

∗
+ × N

∗
+ → N

∗
+ as

follows:

par1(U, p, q) =

{
p′, if U →q V
⊥, otherwise,
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where

p′ =





p, if p 6≥ q,
⊥, if p ≥ q ∧ p 6≥ q · qr,
q · (p − q · qr), if p ≥ q · qr,

and L→ R is the rule that was applied and qr is the position of R in L.
Similarly, the function par(U, p) computes the position after rewriting in U↓. The

function par : T ×N
∗
+ →֒ N

∗
+ is formally defined by par(U, p) = pk where U →q1 · · · →qk Uk,

Uk = U↓, pi = par1(U, pi−1, qi), for 1 ≤ i ≤ k and p0 = p. Due to the particular form of
our equational theory, the choice of the rewriting steps does not change the final value of
pk thus the definition is correct.

The function par−1(U, p) is the inverse function: to a position p in U↓ it associates the
corresponding position in U , that is, par−1 : T × N

∗
+ →֒ N

∗
+, par

−1(U, p) = p′ if and only if
par(U, p′) = p.

We say that a function symbol at position p is consumed in V w.r.t. the reduction
U →q V if par1(U, p, q) is undefined. Similarly, we say that a function symbol at position p
is consumed in U↓ w.r.t. the normal form U↓ if par(U, p) is undefined. We say simply that
an occurrence is consumed in some term when it is clear from the context which definition
is used.

Lemma C.1. Let P be a well-formed process with no test over s and ϕ = νñ.σ be a
valid frame w.r.t. P such that ϕ 0 s. Consider the corresponding standard frame νñ.σ =
νñ.{Ui/yi | 1 ≤ i ≤ l}. For every i and every occurrence qs of s in Ui↓, we have fe(Ui↓, qs) =
E[W/x] for some E ∈ E(P ) and some termW . In addition νñ.σi↓ is an extended well-formed
frame w.r.t. s.

Proof. We write the standard frame σ as in the statement of Lemma 3.1, that is Ui =
Miθiσi−1 for all 1 ≤ i ≤ l with Mi an output in P , θi a public substitution w.r.t s and
σi = σi−1 ∪ {Ui/yi}, σ0 being the empty substitution. We reason by induction on i.

Base case: i = 1. We have that U1 = M1θ1. Then U1↓ = M1(θ1↓) since there are
no destructors in the output M1. Hence any position qs of s is in fact a position in M1

since s cannot appear in θ1 because s is restricted and θ is a public substitution. There
must an encryption above qs in M1 (that is a position qenc · 1 ≤ qs), since otherwise s

would be deducible (the same argument as in Lemma 2.5 applies). Then the result follows
immediately from the definition of E0 (take W = s) and the properties of well-formed
processes.

Inductive step. Let ps = par−1(Ui, qs).
If ps ∈ Pos(Mi) then, as in the previous paragraph, fe(Ui↓, qs)[

x/s] ∈ E0.

Otherwise, since θi is public, ps /∈ Pos(Miθ). It follows that there are z ∈ V(Mi)
and yi1 ∈ V(Miθi) at positions pz and py1 respectively, such that pz ≤ py1 ≤ ps and
1 ≤ i1 ≤ i− 1. Let p1s = ps− py1 and q1s = par(Ui1 , p

1
s). By induction hypothesis, σi−1 is an

extended well-formed frame and fe(Ui1↓, q
1
s) = E[W/x] with E ∈ El, for some term W and

some l ≥ 0. It follows from the definition of extended well-formed frames that in y1σi1 there
is an encryption above q1s, that is q1enc = max{ q ∈ Pos(Ui1↓) | q < q1s ∧ h(Ui1

↓)|q = encg }

exists. Let p1enc = par−1(Ui1 , q
1
enc).

If py1 ·p
1
enc is not consumed in Ui↓ then par(Ui, py1 ·p

1
enc) is the lowest encryption in Ui↓

above q1s (since it corresponds to q1enc). It follows that fe(Ui↓, qs) = fe(Ui1↓, q
1
s).



28 V. CORTIER, M. RUSINOWITCH, AND E. ZĂLINESCU

Otherwise, that is if py1 · p1enc is consumed in Ui↓, consider the occurrence of decg
in Ui, say pdec, that consumes it. Since p1enc is not consumed w.r.t. Ui1↓ it follows that
pdec ∈ Pos(Miθi), and all encryptions above p1enc in Ui1 are consumed in Ui↓. If pdec is
in zθi (that is, pdec /∈ Posnv(Mi)) then all encryptions above p1enc in Ui1 are consumed by
decryptions that are in zθi. This means that in (zθiσi−1)↓ there is no encryption above s

and thus ϕ ⊢ s. Hence pdec is in Mi (that is, pdec ∈ Posnv(Mi)).
Let U, V,K,K ′ and R be terms such that decg(U,K) = Ui|pdec and encg(V,K

′, R) =
Ui|py1 ·p1enc = Ui1 |p1enc . We have that K =E K ′ since pdec consumes py1 · p

1
enc. We then have

decg(U,K) →∗ decg(encg(V,K,R),K) →∗ V ↓.
Let (D, p) = fdp(Mi, pz) and write it as D = D1(. . . Dn) where Dj = πj(decg(z0,Kj))

with 1 ≤ j ≤ n and consider Dk such that the decryption pdec is that of Dk. Clearly
x ∈ fn(Dj(E)↓). From the first condition of processes that do not test over s we have

that j = 1 and E 6<st D1. Since pdec consumes py1 · p
1
enc, above pdec in D1 there are only

projections, below encg in E there are only pairs and E 6<st D1 it follows that D1 ≤st E.

Hence D1 ∈ E l.
Suppose that there is no encryption above pdec in Mi. Then since D1 is consumed

and above D1 in Mi there are only pairs or signatures, it follows that s is deducible from
σi (more exactly from Ui↓). Thus there is at least one encryption above pdec in Mi. Let
(M ′, penc) = fep(Mi, pz). Then M

′[x]p ∈ El+1.
Since penc is not consumed in Ui↓ and in M ′ all function symbols above p are not

destructors we have that fe(Ui, ps) →
∗ (M ′[x]p)[x → D1(fe(encg(V,K

′, R), p′s))] where p
′
s =

p1s−p
1
enc. Hence fe(Ui↓, qs) = (M ′[x]p)[

W ′
/x], whereW

′ = D1(fe(encg(V,K
′, R), p′s))↓. That

is we have the first part of the lemma.

In order to prove that σ↓ is an extended well-formed frame we just need show that
M ′[x]p and W ′ contain only pairs and signatures (except for the head of M ′[x]p which is
an encryption); obviously all agent encryptions are probabilistic encryption, either by the
definition of well-formed process or by induction hypothesis. From the definition of M ′ all
function symbols (except for the head) in M ′[x]p are pairs and signatures. And since σi1
is an extended well-formed frame and the term W ′ is a subterm of fe(encg(V ↓,K

′, R), q′s)
which (except for the head) contains only pairs as function symbols and signatures by
definition of fe.

Claim. Let P be a well-formed process with no test over s, ϕ = νñ.σ be a valid frame
w.r.t. P such that ϕ 0 s, T ∈ Mt(P ) be an operand of a test and θ be a public substitution.
If T /∈ Ms

t then for any occurrence qs of s in (Tθσ)↓ there is an encryption qenc plaintext-
above it such that this encryption is an agent encryption w.r.t. ñ\{s}, is a probabilistic
encryption w.r.t. ran(σ) and h(Tθσ)↓|q ∈ {〈〉, sign}, for all positions q with qenc < q < qs.

Proof. Suppose that T /∈ Ms
t and consider an occurrence qs of s in (Tθσ)↓. Hence T is not

ground and denote by z the variable of T and by pz its position. Let Tz = (zθσ)↓.
Let σ = {U1/y1 , . . . ,

Ul/yl} be the standard frame w.r.t. A (where ϕ = ϕ(A) for some
extended process A). Let ps = par−1(Tθσ, qs). Let yi be the variable of zθ on the path
to ps at position say py, with 1 ≤ i ≤ l. Applying Lemma 3.4 to Ui we obtain that
fe(Ui↓, qs) = E[W/x] with E ∈ E(P ), for some term W . Consider the lowest encryption qenc
in Ui↓ above q′s, where q

′
s is the position in Ui↓ of qs.

Suppose that this encryption is consumed. Then it must be consumed by a decg from
T since otherwise s would be deducible. It follows that there is 1 ≤ j ≤ l such that
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Dj = πj(dec(z0,K)), where fd(T, pz) = D1(. . . Dn), E = enc(U,K,R) and x ∈ Di(E)↓
for some terms U , K and R. Thus T ∈ Ms

t , but this contradicts the hypothesis. Hence
qenc is not consumed in (Tθσ)↓. Since νñ.σ↓ is an extended well-formed frame (again from
Lemma 3.4) then the encryption qenc clearly satisfies the hypothesis.

Lemma C.2. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid frame
for P such that ϕ 0 s, θ a public substitution and M a public ground term. If T1 = T2 is a
test in P , then T1θσ[

M/s] =E T2θσ[
M/s] implies T1θσ =E T2θσ.

Proof. T1θσ[
M/s] =E T2θσ[

M/s] rewrites in (T1θσ[
M/s])↓ = (T2θσ[

M/s])↓. Since the rewrite
system RE is convergent, it follows that ((T1θσ)↓ [

M/s])↓ = ((T2θσ)↓ [
M/s])↓.

Suppose first that T1, T2 6∈ Ms
t . Then from the claim above any occurrence of s there

are no destructors, hence (T1θσ)↓[
M/s] is already in normal form. The same thing holds for

T2. Thus (T1θσ)↓[
M/s] = (T2θσ)↓[

M/s]. The previous claim also ensures that in (T1θσ)↓ and
(T2θσ)↓ there is an agent probabilistic encryption above each occurrence of s. Hence we
can apply Lemma 2.7 and obtain that (T1θσ)↓ = (T2θσ)↓, that is T1θσ =E T2θσ.

Suppose now that T1 ∈ Ms
t . Then T2 = n where n is a restricted name. The name n is

a subterm of (T1θσ[
M/s])↓ appearing at a position p in T1θσ[

M/s]. Since M is public, while
T2 is restricted it follows n is not a subterm of M , that is there is no occurrence qs of s in
T1θσ such that qs ≤ p. Then ((T1θσ)↓[

M/s])↓ = (T1θσ)↓[
M/s]. Hence (T1θσ)↓ = n.

If the test is check(T, T ′,K) = ok then Tθσ[M/s] =E retrieve(T ′)θσ[M/s]. Applying the
lemma for the test T =E retrieve(T ′) we obtain that Tθσ =E retrieve(T ′)θσ. Since the keys
are ground then it follows that check(T, T ′,K)θσ =E ok.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.


	1. Introduction
	2. Passive case
	2.1. Syntax
	2.2. Deducibility
	2.3. Static equivalence
	2.4. Syntactic secrecy implies strong secrecy
	2.5. Generalization of well-formed frames

	3. Active case
	3.1. Modeling protocols within the applied pi calculus
	3.2. Our hypotheses
	3.3. Main result

	4. Application to some cryptographic protocols
	4.1. Yahalom
	4.2. Needham-Schroeder symmetric key protocol
	4.3. Wide Mouthed Frog Protocol (modified)

	5. Conclusion
	References
	Appendix A. Proof of Lemma ??
	Appendix B. Proof of Lemma ??
	Appendix C. Proof of lemmas ?? and ??

