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Abstract. A compositional Petri net-based semantics is given to a simple language al-
lowing pointer manipulation and parallelism. The model is then applied to give a notion
of validity to the judgements made by concurrent separation logic that emphasizes the
process-environment duality inherent in such rely-guarantee reasoning. Soundness of the
rules of concurrent separation logic with respect to this definition of validity is shown. The
independence information retained by the Petri net model is then exploited to characterize
the independence of parallel processes enforced by the logic. This is shown to permit a
refinement operation capable of changing the granularity of atomic actions.

1. Introduction

The foundational work of Hoare on parallel programming [Hoa72] identified the fact
that attributing an interleaved semantics to parallel languages is problematic. Three areas
of difficulty were isolated, quoted directly:
• That of defining a ‘unit of action’.
• That of implementing the interleaving on genuinely parallel hardware.
• That of designing programs to control the fantastic number of combinations involved in

arbitrary interleaving.
The significance of these problems increases with developments in hardware, such as

multiple-core processors, that allow primitive machine actions to occur at the same time.
As Hoare went on to explain, a feature of concurrent systems in the physical world is

that they are often spatially separated, operating on completely different resources and not
interacting. When this is so, the systems are independent of each other, and therefore it is
unnecessary to consider how they interact. This perspective can be extended by regarding
computer processes as spatially separated if they operate on different memory locations.
The problems above are resolved if the occurrence of non-independent parallel actions is
prohibited except in rare cases where atomicity may be assumed, as might be enforced using
the constructs proposed in [Dij68, Bri72].
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Independence models for concurrency allow semantics to be given to parallel languages
in a way that can tackle the problems associated with an interleaved semantics. The common
core of independence models is that they record when actions are independent, and that
independent actions can be run in either order or even concurrently with no consequence on
their effect. This mitigates the increase in the state space since unnecessary interleavings of
independent actions need not be considered (see e.g. [CGMP99] for applications to model
checking). Independence models also permit easier notions of refinement which allow the
assumed atomicity of actions to be changed.

It is surprising that, to our knowledge, there has been no comprehensive study of the
semantics of programming languages inside an independence model. The first component
of our work gives such a semantics in terms of a well-known independence model, namely
Petri nets. Our model isolates the specification of the control flow of programs from their
effect on the shared state. It indicates what appears to be a general method (an alternative
to Plotkin’s structural operational semantics) for giving a structural Petri net semantics to
a variety of languages — see the Conclusion, Section 7.

The language that we consider is motivated by the emergence of concurrent separation
logic [O’H07], the rules of which form a partial correctness judgement about the execution
of pointer-manipulating concurrent programs. Reasoning about such programs has tradi-
tionally proved difficult due to the problem of variable aliasing. For instance, Owicki and
Gries’ system for proving properties of parallel programs that do not manipulate pointers
[OG76] essentially requires that the programs operate on disjoint collections of variables,
thereby allowing judgements to be composed. In the presence of pointers, the same syntac-
tic condition cannot be imposed to yield a sound logic since distinct variables may point to
the same memory location, thereby allowing arbitrary interaction between the processes.
To give a specific example, Owicki and Gries’ system would allow a judgement of the form

{x 7→ 0 ∧ y 7→ 0} x := 1 ‖ y := 2 {x 7→ 1 ∧ y 7→ 2},

indicating that the result of assigning 1 to the program variable x concurrently with assign-
ing 2 to y from a state where x and y both initially hold value 0 is a state where x holds
value 1 and y holds value 2. The judgement is sound because the variables x and y are
distinct. If pointers are introduced to the language, however, it is not sound to conclude
that

{[x] 7→ 0 ∧ [y] 7→ 0} [x] := 1 ‖ [y] := 2 {[x] 7→ 1 ∧ [y] 7→ 2},

which would indicate that assigning 1 to the location pointed to by x and 2 to the location
pointed to by y yields a state in which x points to a location holding 1 and y points to a
location holding 2, since x and y may both point to the same location.

At the core of separation logic [Rey00, IO01], initially presented for non-concurrent
programs, is the separating conjunction, ϕ∗ψ, which asserts that the state in which processes
execute may be split into two parts, one part satisfying ϕ and the other ψ. The separating
conjunction was used by O’Hearn to adapt Owicki and Gries’ system to provide a rule for
parallel composition suitable for pointer-manipulating programs [O’H07].

As we shall see, the rule for parallel composition is informally understood by splitting
the initial state into two parts, one owned by the first process and the other by the second.
Ownership can be seen as a dynamic constraint on the interference to be assumed: parallel
processes always own disjoint sets of locations and only ever act on locations that they own.
As processes evolve, ownership of locations may be transferred using a system of invariants
(an example is presented in Section 4). A consequence of this notion of ownership is that
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the rules discriminate between the parallel composition of processes and their interleaved
expansion. For example, the logic does not allow the judgement

{ℓ 7→ 0} [ℓ] := 1 ‖ [ℓ] := 1 {ℓ 7→ 1},

which informally means that the effect of two processes acting in parallel which both assign
the value 1 to the memory location ℓ from a state in which ℓ holds 0 is to yield a state
in which ℓ holds 1. However, if we adopt the usual rule for the nondeterministic sum of
processes, the corresponding judgement is derivable for their interleaved expansion,

([ℓ] := 1; [ℓ] := 1) + ([ℓ] := 1; [ℓ] := 1).

One would hope that the distinction that the logic makes between concurrent processes and
their interleaved expansion is captured by the semantics; the Petri net model that we give
does so directly.

The rules of concurrent separation logic contain a good deal of subtlety, and so lacked
a completely formal account until the pioneering proof of their soundness due to Brookes
[Bro07]. The proof that Brookes gives is based on a form of interleaved trace semantics. The
presence of pointers within the model alongside the possibility that ownership of locations
is transferred means, however, that the way in which processes are separated is absolutely
non-trivial, which motivates strongly the study of the language within an independence
model. We therefore give a proof of soundness using our net model and then characterize
entirely semantically the independence of concurrent processes in Theorem 5.4.

It should be emphasized that the model that we present is different from Brookes’ since
it provides an explicit account of the intuitions behind ownership presented by O’Hearn.
It involves taking the original semantics of the process and embellishing it to capture the
semantics of the logic. The proof technique that we employ defines validity of assertions
in a way that captures the rely-guarantee reasoning [Jon83] emanating from ownership in
separation logic directly, and in a way that might be applied in other situations.

In [Rey04], Reynolds argues that the separation of parallel processes arising from the
logic allows store actions that were assumed to be atomic, in fact, to be implemented as
composite actions (seen as a change in their granularity) with no effect on the validity of
the judgement. Independence models are suited to modeling situations where actions are
not atomic, a perspective advocated by Lamport and Pratt [Pra86, Lam86]. We introduce a
novel form of refinement, inspired by that of [vGG89], and show how this may be applied to
address the issue of granularity using our characterization of the independence of processes
arising from the logic.

2. Terms and states

Concurrent separation logic is a logic for programs that operate on a heap. A heap is a
structure recording the values held by memory locations that allows the existence of pointers
as well as providing primitives for the allocation and deallocation of memory locations. A
heap can be seen as a finite partial function from a set of locations Loc to a set of values
Val:

Heap
def
= Loc⇀fin Val

We will use ℓ to range over elements of Loc and v to range over elements of Val. As stated,
a heap location can point to another location, so we require that Loc ⊆ Val. We shall say
that a location is current (or allocated) in a heap if the heap is defined at that location. The



4 J. HAYMAN AND G. WINSKEL

procedure of making a non-current location current is allocation, and the reverse procedure
is called deallocation. If h is a heap and h(ℓ) = ℓ′, there is no implicit assumption that h(ℓ′)
is defined. Consequently, heaps may contain dangling pointers.

In addition to operating on a heap, the programs that we shall consider shall make use
of critical regions [Dij68] protected by resources. The mutual exclusion property that they
provide is that no two parallel processes may be inside critical regions protected by the same
resource. We will write Res for the set of resources and use r to range over its elements.
Critical regions are straightforwardly implemented by recording, for each resource, whether
the resource is available or unavailable. A process may enter a critical region protected
by r only if r is available; otherwise it is blocked and may not resume execution until the
resource becomes available. The process makes r unavailable upon entering the critical
region and makes r available again when it leaves the critical region. The language also has
a primitive, resource w do t od, which says that the variable w represents a resource local
to t.

The syntax of the language that we will consider is presented in Figure 1. The symbol
α is used to range over heap actions, which are actions on the heap that might change the
values held at locations but do not affect the domain of definition of the heap. That is,
they neither allocate nor deallocate locations. We reserve the symbol b for boolean guards,
which are heap actions that may proceed without changing the heap if the boolean b holds.

Provision for allocation within our language is made via the alloc(ℓ) primitive for
ℓ ∈ Loc, which makes a location current and sets ℓ to point at this location. For symmetry,
dealloc(ℓ) makes the location pointed to by ℓ non-current if ℓ points to a current location.
Writing a heap as the set of values that it holds for each allocated location, the effect of
the command alloc(ℓ) on the heap {ℓ 7→ 0} might be to form a heap {ℓ 7→ ℓ′, ℓ′ 7→ 1} if
the location ℓ′ is chosen to be allocated and is assigned initial value 1. The effect of the
command dealloc(ℓ) on the heap {ℓ 7→ ℓ′, ℓ′ 7→ 1} would be to form the heap {ℓ 7→ ℓ′}.

The guarded sum α.t + α′.t′ is a process that executes as t if α takes place or as t′

if α′ takes place. We refer the reader to Section ? for a brief justification for disallowing
non-guarded sums.

As mentioned earlier, critical regions are provided to control concurrency: the sub-
process t inside with r do t od can only run when no other process is inside a critical region
protected by r. The term resource w do t od has the resource variable w bound within t,
asserting that a resource is to be chosen that is local to t and used for w. Consequently, in
the process

(resource w do with w do t1 od od) ‖ (resource w do with w do t2 od od)

the sub-processes t1 and t2 may run concurrently since they must be protected by different
resources, one local to the process on the left and the other local to the process on the right.
To model this, we shall say that the construct resource w do t od binds the variable w
within t, and the variable w is free in with w do t od. We write fv(t) for the free variables
in t and say that a term closed if it contains no free resource variables; we shall restrict
attention to such terms. We write [r/w]t for the term obtained by substituting r for free
occurrences of the variable w within t. As standard, we will identify terms ‘up to’ the
standard alpha-equivalence ≡ induced by renaming bound occurrences of variables. The
notation res(t) is adopted to represent the resources occurring in t.

The semantics of the term resource w do t od will involve first picking a ‘fresh’ resource
r and then running [r/w]t. It will therefore be necessary to record during the execution of
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Terms:
t ::= α heap action

| alloc(ℓ) heap allocation
| dealloc(ℓ) heap disposal
| t1; t2 sequential composition
| t1 ‖ t2 parallel composition
| α1.t1 + α2.t2 guarded sum
| while b do t od iteration
| resource w do t od resource declaration
| with r do t od critical region
| with w do t od critical region (local).

Free variables and resources:
fv(α) = ∅ res(α) = ∅

fv(alloc(ℓ)) = ∅ res(alloc(ℓ)) = ∅
fv(dealloc(ℓ)) = ∅ res(dealloc(ℓ)) = ∅

fv(t1; t2) = fv(t1) ∪ fv(t2) res(t1; t2) = res(t1) ∪ res(t2)
fv(t1 ‖ t2) = fv(t1) ∪ fv(t2) res(t1 ‖ t2) = res(t1) ∪ res(t2)

fv(α1.t1 + α2.t2) = fv(t1) ∪ fv(t2) res(α1.t1;α2.t2) = res(t1) ∪ res(t2)
fv(while b do t od) = fv(t) res(while b do t od) = res(t)

fv(resource w do t od) = fv(t) \ {w} res(resource w do t od) = res(t)
fv(with r do t od) = fv(t) res(with r do t od) = res(t) ∪ {r}
fv(with w do t od) = fv(t) ∪ {w} res(with w do t od) = res(t)

Substitution:
[r/w] α = α
[r/w] alloc(ℓ) = alloc(ℓ)
[r/w] dealloc(ℓ) = dealloc(ℓ)
[r/w] t1; t2 = ([r/w] t1); ([r/w] t2)
[r/w] t1 ‖ t2 = ([r/w] t1) ‖ ([r/w] t2)
[r/w] α1.t1 + α2.t2 = α1.([r/w] t1) + α2.([r/w] t2)
[r/w] while b do t od = while b do [r/w] t od
[r/w] resource w′ do t od = resource w′ do [r/w] t od if w 6= w′

[r/w] resource w do t od = resource w do t od
[r/w] with r′ do t od = with r′ do [r/w] t od

[r/w] with w′ do t od =

{

with r do [r/w] t od if w = w′

with w′ do [r/w] t od otherwise

Figure 1: Syntax of terms

processes which resources are current (i.e. not fresh) as well as which current resources are
available (i.e. not held by any process).

The way in which we shall formally model the state in which processes execute is
motivated by the way in which we shall give the net semantics to closed terms. We begin
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by defining the following sets:

D
def
= Loc×Val

L
def
= {curr(ℓ) | ℓ ∈ Loc}

R
def
= Res

N
def
= {curr(r) | r ∈ Res}.

A state σ is defined to be a tuple
(D,L,R,N)

where D ⊆ D represents the values held by locations in the heap; L ⊆ L represents the
set of current, or allocated, locations of the heap; R ⊆ R represents the set of available
resources; and N ⊆ N represents the set of current resources. The sets D, L, R and N are
disjoint, so no ambiguity arises from writing, for example, (ℓ, v) ∈ σ.

The interpretation of a state for the heap is that (ℓ, v) ∈ D if ℓ holds value v and
that curr(ℓ) ∈ L if ℓ is current. For resources, r ∈ R if the resource r is available and
curr(r) ∈ N if r is current. It is clear that only certain such tuples of subsets are sensible.
In particular, the heap must be defined precisely on the set of current locations, and only
current resources may be available.

Definition 2.1 (Consistent state). The state (D,L,R,N) is consistent if we have:

• the sets D, L, R and N are all finite,
• D is a partial function: for all ℓ, v and v′, if (ℓ, v) ∈ D and (ℓ, v′) ∈ D then v = v′,
• L represents the domain of D: L = {curr(ℓ) | ∃v : (ℓ, v) ∈ D}, and
• all available resources are current: R ⊆ {r | curr(r) ∈ N}.

It is clear to see that the L component of any given consistent state may be inferred
from the D component. It will, however, be useful to retain this information separately for
when the net semantics is given. We shall call D ⊆ D a heap when it is a finite partial
function from locations to values, and shall write ℓ 7→ v for its elements rather than (ℓ, v).
We shall frequently make use of the following definition of the domain of a heap D:

dom(D)
def
= {ℓ | ∃v.(ℓ 7→ v) ∈ D}.

3. Process models

The definition of state that we have adopted permits a net semantics to be defined.
Before doing so, we shall define how heap actions are to be interpreted and then give a
transition semantics to closed terms.

3.1. Actions. The earlier definition of state allows a very general form of heap action to
be defined that forms a basis for both the transition and net semantics. We assume that
we are given the semantics of primitive actions α as AJαK comprising a set of heap pairs:

AJαK ⊆ Heap ×Heap.

We require that whenever (D1,D2) ∈ AJαK, it is the case that D1 and D2 are (the graphs
of) partial functions with the same domain.

The interpretation is that α can proceed in heap D if there are (D1,D2) ∈ AJαK such
that D has the same value as D1 wherever D1 is defined. The resulting heap is formed by
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updating D to have the same value as D2 wherever it is defined. It is significant that this
definition allows us to infer precisely the set of locations upon which an action depends.
The requirement on the domains of D1 and D2 ensures that actions preserve consistent
markings (Lemma 3.25).

Example 3.1 (Assignment). For any two locations ℓ and ℓ′, let [ℓ] := [ℓ′] represent the
action that copies the value held at location ℓ′ to location ℓ. Its semantics is as follows:

AJ[ℓ] := [ℓ′]K
def
=

{({ℓ 7→ v, ℓ′ 7→ v′},
{ℓ 7→ v′, ℓ′ 7→ v′}) | v, v′ ∈ Val}

Following the informal account above of the semantics of actions, because in the semantics
we have

({ℓ0 7→ 0, ℓ1 7→ 1}, {ℓ0 7→ 1, ℓ1 7→ 1}) ∈ AJ[ℓ0] := [ℓ1]K,

the state {ℓ0 7→ 0, ℓ1 7→ 1, ℓ2 7→ 2} is updated by [ℓ0] := [ℓ1] to {ℓ0 7→ 1, ℓ1 7→ 1, ℓ2 7→ 2}.

Example 3.2 (Booleans). Boolean guards b are actions that wait until the boolean expres-
sion holds and may then take place; they do not update the state. A selection of literals
may be defined. For example:

AJ[ℓ] = vK
def
= {({ℓ 7→ v}, {ℓ 7→ v})}

AJ[ℓ] = [ℓ′]K
def
= {({ℓ 7→ v, ℓ′ 7→ v}, {ℓ 7→ v, ℓ′ 7→ v}) | v ∈ Val}

The first gives the semantics of an action that proceeds only if ℓ holds value v and the
second gives the semantics of an action that proceeds only if the locations ℓ and ℓ′ hold the
same value.

Since boolean actions shall not modify the heap, they shall possess the property that:

if (D1,D2) ∈ AJbK then D1 = D2.

This is preserved by the operations defined below. For heaps D and D′, we use D ↑ D′ to
mean that D and D′ are compatible as partial functions and D 6 ↑D′ otherwise, i.e. if they
disagree on the values assigned to a common location.

AJtrueK
def
= {(∅, ∅)}

AJfalseK
def
= ∅

AJb ∧ b′K
def
= {({D ∪D′}, {D ∪D′}) | D ↑ D′ and (D,D) ∈ AJbK and (D′,D′) ∈ AJb′K}

AJb ∨ b′K
def
= AJbK ∪ AJb′K

AJ¬bK
def
= {(D,D) | D is a ⊆-minimal heap s.t. ∀D′.(D′,D′) ∈ AJbK : D 6 ↑D′}

By insisting on minimality in the clause for ¬b, we form an action that is defined at as few
locations as possible to refute all grounds for b.

3.2. Transition semantics. As an aid to understanding the net model, and in particular to
give a model with respect to which we can prove its correspondence, a transition semantics
for closed terms (terms such that fv(t) = ∅) is given in Figure 2. A formal relationship
between the two semantics is presented in Theorem 3.27. The transition semantics is given

by means of labelled transition relations of the forms 〈t, σ〉
λ

−→ 〈t′, σ′〉 and 〈t, σ〉
λ

−→ σ′. As
usual, the first form of transition indicates that t performs an action labelled λ in state σ
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to yield a resumption t′ and a state σ′. The second indicates that t in state σ performs an
action labelled λ to terminate and yields a state σ′. Labels follow the grammar

λ ::= act(D1,D2) heap action
| alloc(ℓ, v, ℓ′, v′) heap allocation
| dealloc(ℓ, ℓ′, v) heap disposal
| decl(r) resource declaration
| end(r) end of resource scope
| acq(r) resource acquisition (critical region entry)
| rel(r) resource release (critical region exit).

In the transition semantics, we write σ ⊕ σ′ for the union of the components of two states
where they are disjoint and impose the implicit side-condition that this is defined wherever
it is used. For example, this implicit side-condition means, in the rule (Alloc), that for
alloc(ℓ, v, ℓ′, v′) to occur we must have curr(ℓ′) 6∈ σ, and hence ℓ′ was initially non-current.
Similarly, the rule (Res) can only be applied to derive a transition labelled decl(r) if the
resource r was not initially current.

The syntax of terms is extended temporarily to include rel r and end r which are
special terms used in the rules (Rel) and (End). These, respectively, are attached to the
ends of terms protected by critical regions and the ends of terms in which a resource was
declared.

For conciseness, we do not give an error semantics to situations in which non-current
locations or resources are used; instead, the process will become stuck. We show in Section
4.3 that such situations are excluded by the logic.

3.3. Petri nets. Petri nets, introduced by Petri in his 1962 thesis [Pet62], are a well-known
model for concurrent computation. It is beyond the scope of the current article to provide
a full account of the many variants of Petri net and their associated theories; we instead
refer the reader to [BRR87] for a good account. Roughly, a Petri net can be thought of as
a transition system where, instead of a transition occurring from a single global state, an
occurrence of an event is imagined to affect only the conditions in its neighbourhood. Petri
nets allow a derived notion of independence of events; two events are independent if their
neighbourhoods of conditions do not intersect.

We base our semantics on the following well-known variant of Petri net (cf. the ‘basic’
nets of [CW01] and [WN95]):

Definition 3.3 (Petri net). A Petri net is a five-tuple,

(B,E, •(−), (−)•,M0).

The set B comprises the conditions of the net, the set E consists of the events of the net,
and M0 is the subset of B of marked conditions (the initial marking). The maps

•(−), (−)• :E → Pow(B)

are the precondition and postcondition maps, respectively.

Petri nets have an appealing graphical representation, with:

• circles to represent conditions,
• bold lines to represent events,
• arrows from conditions to events to represent the precondition map,
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(Act) :

(D1, D2) ∈ AJαK
D1 ⊆ D D′ = (D \D1) ∪D2

〈α, (D,L,R,N)〉
act(D1,D2)

−→ (D′, L,R,N)

(Alloc) : 〈alloc(ℓ), σ ⊕ {ℓ 7→ v}〉
alloc(ℓ,v,ℓ′,v′)

−→ σ ⊕ {ℓ 7→ ℓ′, ℓ′ 7→ v′, curr(ℓ′)}

(Dealloc) : 〈dealloc(ℓ), σ ⊕ {ℓ 7→ ℓ′, ℓ′ 7→ v′, curr(ℓ′)}〉
dealloc(ℓ,ℓ′,v′)

−→ σ ⊕ {ℓ 7→ ℓ′}

(Seq) :
〈t1, σ〉

λ
−→ 〈t′1, σ

′〉

〈t1; t2, σ〉
λ

−→ 〈t′1; t2, σ
′〉

(Seq′) :
〈t1, σ〉

λ
−→ σ′

〈t1; t2, σ〉
λ

−→ 〈t2, σ
′〉

(Par-1) :
〈t1, σ〉

λ
−→ 〈t′1, σ

′〉

〈t1 ‖ t2, σ〉
λ

−→ 〈t′1 ‖ t2, σ′〉
(Par-2) :

〈t2, σ〉
λ

−→ 〈t′2, σ
′〉

〈t1 ‖ t2, σ〉
λ

−→ 〈t1 ‖ t′2, σ
′〉

(Par′-1) :
〈t1, σ〉

λ
−→ σ′

〈t1 ‖ t2, σ〉
λ

−→ 〈t2, σ′〉
(Par′-2) :

〈t2, σ〉
λ

−→ σ′

〈t1 ‖ t2, σ〉
λ

−→ 〈t1, σ′〉

(Sum-1) :
〈α1, σ〉

λ
−→ σ′

〈α1.t1 + α2.t2, σ〉
λ

−→ 〈t1, σ′〉
(Sum-2) :

〈α2, σ〉
λ

−→ σ′

〈α1.t1 + α2.t2, σ〉
λ

−→ 〈t2, σ′〉

(While) :
〈b, σ〉

λ
−→ σ

〈while b do t od, σ〉
λ

−→ 〈p; while b do t od, σ〉

(While′) :
〈¬b, σ〉

λ
−→ σ

〈while b do t od, σ〉
λ

−→ σ

(With) : 〈with r do t od, σ ⊕ {r})〉
acq(r)
−→ 〈t; rel r, σ〉

(Rel) : 〈rel r, σ〉
rel(r)
−→ σ ⊕ {r}

(Res) : 〈resource w do t od, σ〉
decl(r)
−→ 〈[r/w]t; end r, σ ⊕ {r, curr(r)}〉

(End) : 〈end r, σ ⊕ {r, curr(r)}〉
end(r)
−→ σ

Figure 2: Transition semantics

• arrows from events to conditions to represent the postcondition map, and
• tokens (dots) inside conditions to represent the marking.

Action within nets is defined according to a token game which defines how the marking
of the net changes according to firing of the events. An event e can fire if all its preconditions
are marked and, following their un-marking, all the postconditions are not marked. That
is, in marking M ,

(1) •e ⊆M

(2) (M \ •e) ∩ e• = ∅.
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Such an event is said to have concession or to be enabled. The marking following the
occurrence of e is obtained by removing the tokens from the preconditions of e and placing

a token in every postcondition of e. We write M
e

−։M ′ where

M ′ = (M \ •e) ∪ e•.

If constraint (2) does not hold but constraint (1) does, so the preconditions are all marked
(have a token inside) but following removal of the tokens from the preconditions there is
a token in some postcondition, there is said to be contact in the marking and the event
cannot fire.

Consider the following example Petri net, with its transition system between markings
derived according to the token game.

e1

e2

e3
a

b

c

d

e4

f

g

{d, c, g}

e3

%%KKK
KKK

KK
KK

{a, g}
e1

// {b, c, g}

e2

99sssssssss

e3
%%KKKKKKKKK

{d, f, g}

{b, f, g}

e2

99ssssssssss

The event e1 is the only event with concession in the initial marking {a, g}. Its occurrence
yields the marking obtained by un-marking its preconditions and marking its postconditions,
namely {b, c, g}. In the marking {b, c, g}, contact prevents the occurrence of e4 since its
postcondition g is marked following removal of the token from its precondition c. However,
in the marking {b, c, g} both event e2 and event e3 can occur. Note that the occurrence
of e2 in marking {b, c, g} does not affect the occurrence of e3 and vice versa since the two
events operate on completely disjoint sets of conditions.

For any event e ∈ E, define the notation

•e•
def
= •e ∪ e•.

The standard notion of independence within this form of Petri net is to say that two events
e1 and e2 are independent, written e1Ie2, if their neighbourhoods are disjoint. That is,

e1Ie2 ⇐⇒ •e1
• ∩ •e2

• = ∅.

It is easy to see in general that the occurrences of independent events in a marking do not
affect each other.

Proposition 3.4. Let e1 and e2 be events of the net N and suppose that e1Ie2.

• If there exist markings M , M ′ and M1 of N such that M
e1
−։ M1 and M1

e2
−։ M ′ then

there exists a marking M2 such that M
e2
−։M2 and M2

e1
−։M ′.

• If there exist markings M , M1 and M2 of N such that M
e1
−։ M1 and M

e2
−։ M2 then

there exists a marking M ′ such that M1
e2
−։M ′ and M2

e1
−։M ′.
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3.4. Overview of net semantics. Before giving the formal definition of the net semantics
of closed terms, by means of an example we shall illustrate how our semantics shall be
defined. First, we shall draw the semantics of an action toggle(ℓ, 0, 1) that toggles the
value held at a location ℓ between 0 and 1.

terminal conditionsinitial conditions

ℓ 7→ 0 ℓ 7→ 1

i t

evolves to

control conditions

terminal conditionsinitial conditions

ℓ 7→ 0 ℓ 7→ 1

i t

state conditions

Notice that in the above net there are conditions to represent the shared state in which
processes execute, including for example the values held at locations (we have only drawn
conditions that are actually used by the net). There are also conditions to represent the
control point of the process. The net pictured on the left is in its initial marking of control
conditions and the net on the right is in its terminal marking of control conditions, indicating
successful completion of the process following the toggle of the value; the marking of the
net initially had the state condition ℓ 7→ 0 marked and finished with the condition ℓ 7→ 1
marked. There is an event present in the net for each way that the action could take
place: one event for toggling the value from 0 to 1 and another event for toggling the value
from 1 to 0. Only the first event could occur in the initial marking of the net on the left,
and no event can occur in the marking on the right since the control conditions are not
appropriately marked.

The parallel composition toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1) can be formed by taking two
copies of the net toggle(ℓ, 0, 1) and forcing them to operate on disjoint sets of control
conditions.

control conditions

ℓ 7→ 0 ℓ 7→ 1
state conditions

1 : t

2 : t

initial conditions terminal conditions

1 : i

2 : i

An example run of this net would involve first the top event changing the value of ℓ from
0 to 1 and then the bottom event changing ℓ back from 1 to 0. The resulting marking of
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control conditions would be equal to the terminal conditions of the net, so no event would
have concession in this marking.

The net representing the sequential composition

(toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1)); (toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1))

is formed by a ‘gluing’ operation that joins the terminal conditions of one copy of the net
for toggle(ℓ, 0, 1) to the initial conditions of another copy of the net for toggle(ℓ, 0, 1). (In
this example net, for clarity we shall not show the state conditions.)

initial conditions terminal conditions

“gluing”

3.5. Net structure. As outlined above, within the nets that we give for processes we
distinguish two forms of condition, namely control conditions and state conditions. The
markings of these sets of conditions determine the control point of the process and the state
in which it is executing, respectively. When we give the net semantics, we will make use of
the closure of the set of control conditions under various operations.

Definition 3.5 (Conditions). Define the set of control conditions C, ranged over by c, to
be the least set such that:

• C contains distinguished elements i and t, standing for ‘initial’ and ‘terminal’, respectively.
• If c ∈ C then r:c ∈ C for all r ∈ Res and i:c ∈ C for all i ∈ {1, 2}, to distinguish processes
working on different resources or arising from different subterms.

• If c, c′ ∈ C then (c, c′) ∈ C to allow the ‘gluing’ operation above.

Define the set of state conditions S to be D ∪ L ∪R ∪N.

A state σ = (D,L,R,N) corresponds to the markingD∪L∪R∪N of state conditions in
the obvious way. Similarly, if C is a marking of control conditions and σ is a state, the pair
(C, σ) corresponds to the marking C ∪ σ. We therefore use the notations interchangeably.

The nets that we form shall be extensional in the sense that two events are equal if
they have the same preconditions and the same postconditions. An event can therefore be
regarded as a tuple

e = (C, σ,C ′, σ′)

with preconditions •e
def
= C∪σ and postconditions e•

def
= C ′∪σ′. To obtain a concise notation

for working with events, we write Ce for the pre-control conditions of e:

Ce
def
= •e ∩C.
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We likewise define notations eC, De, Le etc., and call these the components of e by virtue
of the fact that it is sufficient to define an event through the definition of its components.
The pre-state conditions of e are Se = De ∪ Le ∪ Re ∪ Ne, and we define eS similarly.

Two markings of control conditions are of particular importance: those marked when
the process starts executing and those marked when the process has terminated. We call
these the initial control conditions I and terminal control conditions T , respectively. We
shall call a net with a partition of its conditions into control and state with the subsets of
control conditions I and T an embedded net. For an embedded net N , we write Ic(N) for I
and Tc(N) for T , and we write Ev(N) for its set of events. Observe that no initial marking
of state conditions is specified.

The semantics of a closed term t shall be an embedded net, written N JtK. No confusion
arises, so we shall write Ic(t) for Ic(N JtK), and Tc(t) and Ev(t) for Tc(N JtK) and Ev(N JtK),
respectively. The nets formed shall always have the same sets of control and state conditions;
the difference shall arise in the events present in the nets. It would be a trivial matter to
restrict to the conditions that are actually used.

As we give the semantics of closed terms, we will make use of several constructions on
nets. For example, we wish the events of parallel processes to operate on disjoint sets of
control conditions. This is conducted using a tagging operation on events. We define 1:e to
be the event e changed so that

C(1:e)
def
= {1:c | c ∈ Ce} (1:e)C

def
= {1:c | c ∈ eC}

but otherwise unchanged in its action on state conditions. We define the notations 2:e and
r:e where r ∈ Res similarly. The notations are extended pointwise to sets of events:

1:E
def
= {1:e | e ∈ E}.

Another useful operation is what we call gluing two embedded nets together. For
example, when forming the sequential composition of processes t1; t2, we want to enable
the events of t2 when t1 has terminated. This is done by ‘gluing’ the two nets together
at the terminal conditions of t1 and the initial conditions of t2, having made them disjoint
on control conditions using tagging. Wherever a terminal condition c of Tc(t1) occurs as a
pre- or a postcondition of an event of t1, every element of the set {1:c} × (2:Ic(t2)) would
occur in its place. Similarly, the events of t2 use the set of conditions (1:Tc(t1)) × {2:c′}
instead of an initial condition c′ of Ic(t2). A variety of control properties that the nets we
form possess (Lemma 3.11), such as that all events have at least one pre-control condition,
allows us to infer that it is impossible for an event of t2 to occur before t1 has terminated,
and thereon it is impossible for t1 to resume. An example follows shortly.

Assume a set P ⊆ C×C. Useful definitions to represent gluing are:

P ⊳ C
def
= {(c1, c2) | c1 ∈ C and (c1, c2) ∈ P}

∪ {c1 | c1 ∈ C and ∄c2.(c1, c2) ∈ P}

P ⊲ C
def
= {(c1, c2) | c2 ∈ C and (c1, c2) ∈ P}

∪ {c2 | c2 ∈ C and ∄c1.(c1, c2) ∈ P}

The first definition, P ⊳ C, indicates that an occurrence of c1 in C is to be replaced by
occurrences of (c1, c2) for every c2 such that (c1, c2) occurs in P . The second definition,
P ⊲ C, indicates that an occurrence of c2 in C is to be replaced by occurrences of (c1, c2)
for every c1 such that (c1, c2) occurs in P .
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The notation is extended to events to give an event P ⊳e in the following way, recalling
that gluing will only affect the control conditions used by an event and in particular not its
state conditions:

C(P ⊳ e)
def
= P ⊳ (Ce) (P ⊳ e)C

def
= P ⊳ (eC)

S(P ⊳ e)
def
= Se (P ⊳ e)S

def
= eS

The notation P ⊲e is defined similarly, and it is also extended to sets of events in the obvious
pointwise manner. For any marking M = (C, σ), we will write P ⊳ M for (P ⊳ C, σ) and
similarly write P ⊲M for (P ⊲ C, σ).

To give an example, consider the gluings P ⊳ C1 and P ⊲ C2 where C1 = {a, b} and
C2 = {c, d} are joined at P = C1 × C2. Applying P ⊳ C1 to the left net and P ⊲ C2 to the
right net below, this indicates how gluing is used to sequentially compose embedded nets:

a c

b d

(b, c)

(a, d)
glue to form

e1

e2

e3

e4

e1

e2

e3

e4(b, d)

(a, c)

The operations of gluing and tagging affect only the control flow of events, not their
effect on the marking of state conditions.

Lemma 3.6. Let N be an embedded net with control conditions C. Suppose that P ⊆ C×C.
For any marking M of N and tag x ∈ Res ∪ {1, 2}:

• M
e

−։M ′ iff x:M
x:e
−։ x:M ′.

• M
e

−։M ′ iff P ⊳M
P⊳e
−։ P ⊳M ′, and

• M
e

−։M ′ iff P ⊲M
P⊲e
−։ P ⊲M ′.

Furthermore:

• if 1:M
1:e
−։M ′

1 then M ′
1 = 1:M ′ for some M ′,

• if P ⊳M
P⊳e
−։ M ′

1 then M ′
1 = P ⊳M ′ for some M ′, and

• if P ⊲M
P⊲e
−։ M ′

2 then M ′
2 = P ⊲M ′ for some M ′.

Proof. The first and fourth items are straightforward to prove. The remaining properties
may be shown using the following easily-demonstrated equations, along with their counter-
parts for ⊲, for any subset of control conditions C:

(1) C = ∅ iff P ⊳ C = ∅,
(2) P ⊳ (C \ C ′) = (P ⊳ C) \ (P ⊳ C ′),
(3) P ⊳ (C ∪C ′) = (P ⊳ C) ∪ (P ⊳ C ′), and
(4) P ⊳ (C ∩C ′) = (P ⊳ C) ∩ (P ⊳ C ′).

3.6. Net semantics. The net semantics that we now give for closed terms is defined by
induction on the size of terms, given in the obvious way. The reason why it is not given by
induction on terms is that the semantics of resource w do t od is given according to the
semantics of [r/w]t for all resources r.
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⊲ Heap action: Let act(C,C′)(D1,D2) denote an event e with

Ce = C eC = C ′ De = D1 eD = D2

and all other components empty, i.e. Le = eL = Re = eR = Ne = eN = ∅. For an action
α, we define:

Ic(α)
def
= {i}

Tc(α)
def
= {t}

Ev(α)
def
= {act({i},{t})(D1,D2) | (D1,D2) ∈ AJαK}.

Example 3.7 (N J[ℓ] := 5K). Recall that

AJ[ℓ] := 5K = {({ℓ 7→ v}, {ℓ 7→ 5}) | v ∈ Val},

so
Ev([ℓ] := 5) = {act({i},{t})({ℓ 7→ v}, {ℓ 7→ 5}) | v ∈ Val}.

The definitions give the net N J[ℓ] := 5K:

i

state conditions

ℓ 7→ 0

control conditions

t

act({i},{t})({ℓ 7→ 1}, {ℓ 7→ 5})

ℓ 7→ 1

Ic([ℓ] := 5) Tc([ℓ] := 5)

ℓ 7→ 5

act({i},{t})({ℓ 7→ 0}, {ℓ 7→ 5})

⊲ Allocation and deallocation: The command alloc(ℓ) activates, by making current
and assigning an arbitrary value to, a non-current location and sets ℓ to point at it. For
symmetry, dealloc(ℓ) deactivates the current location pointed to by ℓ.

We begin by defining two further event notations. First, alloc(C,C′)(ℓ, v, ℓ
′, v′) is the

event e such that Ce = C and eC = C ′ and
De = {ℓ 7→ v} eD = {ℓ 7→ ℓ′, ℓ′ 7→ v′} Le = ∅ eL = {curr(ℓ′)},

and otherwise empty components, which changes ℓ′ from being non-current to current,
gives it value v′ and changes the value held at ℓ from v to ℓ′. If the condition curr(ℓ′) is
marked before the event takes place, contact occurs, so the event has concession only if
the location ℓ′ is not initially current. Second, dealloc(C,C′)(ℓ, ℓ

′, v′) is the event e such
that Ce = C and eC = C ′ and

De = {ℓ 7→ ℓ′, ℓ′ 7→ v′} eD = {ℓ 7→ ℓ′} Le = {curr(ℓ′)},

which does the converse of allocation. The location ℓ is left with a dangling pointer to ℓ′.
The two events may be drawn as:
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alloc(C,C′)(ℓ, v, ℓ
′, v′): dealloc(C,C′)(ℓ, ℓ

′, v′):

ℓ′ 7→ v′

curr(ℓ′)

ℓ 7→ v ℓ 7→ ℓ′

C C′

ℓ 7→ ℓ′

C C′

curr(ℓ′)

ℓ′ 7→ v′

ℓ 7→ ℓ′

The semantics of allocation is given by:

Ic(alloc(ℓ))
def
= {i}

Tc(alloc(ℓ))
def
= {t}

Ev(alloc(ℓ))
def
= {alloc({i},{t})(ℓ, v, ℓ

′, v′) | ℓ′ ∈ Loc and v, v′ ∈ Val}.

Note that there is an event present for every value that ℓ might initially hold and every
value that ℓ′ might be assumed to take initially.

The semantics of disposal is given by:

Ic(dealloc(ℓ))
def
= {i}

Tc(dealloc(ℓ))
def
= {t}

Ev(dealloc(ℓ))
def
= {dealloc({i},{t})(ℓ, ℓ

′, v′) | ℓ′ ∈ Loc and v′ ∈ Val}.

⊲ Sequential composition: The sequential composition of terms involves gluing the ter-
minal marking of the net for t1 to the initial marking of the net for t2. The operation is
therefore performed on the set

P = 1:Tc(t1)× 2:Ic(t2).

Following the intuition above, we take

Ic(t1; t2)
def
= 1:Ic(t1)

Tc(t1; t2)
def
= 2:Tc(t2)

Ev(t1; t2)
def
= (P ⊳ 1:Ev(t1)) ∪ (P ⊲ 2:Ev(t2)).

The formation of the sequential composition on control conditions may be drawn schemat-
ically as:

Ic(t1; t2)

P ⊳ 1:Ev(t1) P ⊲ 2:Ev(t2)

P = 1:Tc(t1) × 2:Ic(t2)

Tc(t1; t2)

=;Ev(t1)

Ic(t1) Tc(t1)

Ev(t2)

Ic(t2) Tc(t2)

⊲ Parallel composition: The control flow of the parallel composition of processes is au-
tonomous; interaction occurs only through the state. We therefore force the events of the
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two processes to work on disjoint sets of control conditions by giving them different tags:

Ic(t1 ‖ t2)
def
= 1:Ic(t1) ∪ 2:Ic(t2)

Tc(t1 ‖ t2)
def
= 1:Tc(t1) ∪ 2:Tc(t2)

Ev(t1 ‖ t2)
def
= 1:Ev(t1) ∪ 2:Ev(t2).

Note that the definition of the semantics parallel composition is associative and commu-
tative only if we regard nets up to isomorphism on the control conditions.

⊲ Guarded sum: Let t be the term α1.t1 + α2.t2. The sum is formed by prefixing the
actions onto the tagged nets representing the terms and then gluing the sets of terminal
conditions. Let P = (1:Tc(t1))× (2:Tc(t2)). Define:

Ic(t)
def
= {i}

Tc(t)
def
= P

Ev(t)
def
= {act({i},1:Ic(t1))(D1,D2) | (D1,D2) ∈ AJα1K}

∪ {act({i},2:Ic(t2))(D1,D2) | (D1,D2) ∈ AJα2K}

∪ P ⊳ (1:Ev(t1)) ∪ P ⊲ (2:Ev(t2)).

The net may be pictured schematically as follows, in which we have drawn only one
representative event for each of α1 and α2, and have elided the effect of these events on
state conditions.

Pi

1:Ic(t1)

α2

α1

2:Ic(t2)

P ⊳ 1:Ev(t1)

P ⊲ 2:Ev(t2)

On a technical point, one may wonder why the syntax of the language requires that
sums possess guards. This is seemingly curious since the category of safe Petri nets,
which intuitively underlies a category of embedded nets, has a coproduct construction.
However, as remarked in Section 5 of [Win87], there are cases where the coproduct of
nets does not coincide with the usual interpretation of nondeterministic sum. In Section
3.3 of [Win86], this is explained as the occurrence net unfolding (the ‘behaviour’) of the
coproduct of two nets not being equal to the coproduct of their respective unfoldings. To
repeat an example given there, letting + represent coproduct in the category of safe nets,
we have:

e′

e

e

e′

+
=
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Consequently, using this coproduct as a definition of general sum, the runs of the net
representing α+ (while true do α′) would consist of some finite number of executions of
α′ followed, possibly, by one of α. Quite clearly, this does not correspond to the normal
understanding of nondeterminism presented in the transition semantics.

The restriction of processes to only use guarded sums allows us to recover the standard
interpretation of sums (hence allowing the standard structural operational rule for sums).
As stated in [Win87, Win86], another alternative would be to ensure that no event has a
postcondition inside the initial conditions of the net. This would necessitate a different
semantics for while loops, possibly along the lines of [vGV87] which would unfold one
iteration of any loop.

⊲ Iteration: To form the net for while b do t od we glue the initial and the terminal
conditions of b.t together and then add events to exit the loop when ¬b holds. Let
P = {i} × 1:Tc(t). Define:

Ic(while b do t od)
def
= P

Tc(while b do t od)
def
= {t}

Ev(while b do t od)
def
= {act(P,1:Ic(t))(Dt,Dt) | (Dt,Dt) ∈ AJbK}

∪ {act(P,{t})(Df ,Df) | (Df ,Df) ∈ AJ¬bK}

∪ P ⊲ (1:Ev(t)).

The loop can be visualized in the following way (in which we only present one event, eb,
for the boolean b and one event, e¬b, for the boolean ¬b):

=

i

t

e¬b

eb

1:Ic(t) 1:Tc(t)

1:Ev(t)

glue

eb

t

e¬b

P ⊲ 1:Ev(t)

P

P ⊲ 1:Ic(t)

⊲ Critical regions and local resources:We introduce the following notations for resource
events.

decl(C,C′)(r): eR = {r} and eN = {curr(r)}
end(C,C′)(r):

Re = {r} and Ne = {curr(r)}
acq(C,C′)(r):

Re = {r}
rel(C,C′)(r): eR = {r}

These all have Ce = C and eC = C ′, and the components other than those listed are
empty. Observe that the event decl(C,C′)(r) will avoid contact, and thus be able to occur,
only if the resource r is initially non-current.

First consider resource w do t od. Its initial and terminal conditions are defined as:

Ic(resource w do t od)
def
= {i}

Tc(resource w do t od)
def
= {t}.
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Its events are defined as:

Ev(resource w do t od)
def
= {decl({i},r:Ic(t′))(r), end(r:Tc(t′),{t})(r) | r ∈ Res and t′ = [r/w]t}

∪
⋃

{r:Ev(t′) | r ∈ Res and t′ = [r/w]t}

The net formed can be depicted:

i t

decl(r)

decl(r′)
r′:Ev([res′/w]t)

r:Ev([r/w]t)

r

curr(r)

r′

curr(r′)

end(r)

end(r′)

As such, the semantics of resource variable binding is a representation of the nondeter-
ministic choice of resource to be selected to be used for the variable. Only one resource
shall be chosen for the variable, and it will initially have been non-current thanks to
contact described above. Note that the semantics is invariant under α-equivalence ≡.

Now consider the term with r do t od. Its semantics is, informally, to acquire the
resource r, then to execute t, and finally to release the resource r:

Ic(with r do t od)
def
= {i}

Tc(with r do t od)
def
= {t}

Ev(with r do t od)
def
= {acq({i},r:Ic(t))(r)} ∪ r:Ev(t)

∪ {rel(r:Tc(t),{t})(r)}.

3.7. Runs of nets. A well-known property of independence models is that they support a
form of run of the net in which independent actions are not interleaved: Given any sequence
of events of the net between two markings, we can swap the consecutive occurrences of any
two independent events to yield a run between the same two markings. As seen in for
example [WN95], this allows us to form an equivalence class of runs between the same
markings, generating a Mazurkiewicz trace. This yields a partially ordered multiset, or
pomset, run [Pra86], in which the independence of event occurrences is captured through
them being incomparable.

Definition 3.8. A pomset path of a net N = (B,E, •(−), (−)•,M0) is a tuple π = (X,≤, λ)
such that

• X is a finite set;
• ≤ is a partial order on X;
• λ :X → E; and
• for all x, x′ ∈ X, if x 6≤ x′ and x′ 6≤ x then λ(x) I λ(x′).
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The elements of X can be thought of via λ as occurrences of events. Where two occur-
rences are unrelated through the order ≤, they can be thought of as occurring concurrently.
Their independence ensures that the effect of this is defined simply as any sequential oc-
currence of the events.

Definition 3.9. A sequence is a path π = (X,≤, λ) in which ≤ is a total order on X. Let
x1 be the event occurrence least in X according to ≤; let x2 be the least event occurrence
strictly greater than x1; and so on, all the way up to xn which is the greatest event occurrence
according to ≤ for n equal to the size of X (assumed to be finite). The sequence π can be
written as e1, . . . , en, where λ(xi) = ei for all 0 < i ≤ n. Say that a sequence π = e1, . . . , en
is from marking M to marking M ′ in N if there exist M0, . . . ,Mn such that in N

M =M0
e1
−։M1 . . .

en
−։Mn =M ′.

Note that the empty path is from marking M to marking M for any marking M . We
shall say that a pomset path (X,≤, λ) is from markingM toM ′ if there exists any extension
of ≤ to a total order ≤′ such that (X,≤′, λ) is a sequence from M to M ′. As discussed, it
is a standard result that any other extension of ≤ to a total order also yields a path from
M to M ′.

In fact, when we consider concurrent separation logic, we will only need to consider
paths that are sequences, so in the rest of this paper we shall restrict attention to them; all
our results generalize straightforwardly to pomsets. From now on, we shall therefore use
the terms ‘sequence’, ‘path’ and ‘run’ interchangeably. We have chosen to highlight pomset
runs (for conciseness, we have not presented other forms of ‘run’ of a net, such as causal
nets) simply to show that Petri nets possess a notion of run that is non-interleaved.

Write () for the path comprising no events and write e for the path with just a single
event e. We introduce the notation π :M −։

∗
M ′ to mean that π is a path from marking

M to marking M ′, and write M−։
∗
M ′ if there exists a path from marking M to marking

M ′. We shall also write π1 · π2 for the composition of sequential paths; clearly, M
π1·π2
−։ M ′

iff there exists M ′′ such that M
π1
−։M ′′ and M ′′

π2
−։M ′.

Finally, the tagging and gluing operations are extended to paths pointwise:

x:(e1, . . . , en)
def
= (x:e1), . . . , (x:en)

P ⊳ (e1, . . . , en)
def
= (P ⊳ e1), . . . , (P ⊳ en)

P ⊲ (e1, . . . , en)
def
= (P ⊲ e1), . . . , (P ⊲ en)

3.8. Structural properties. Here we establish characterizations of the runs of the net
N JtK according to the structure of t. The reader may wish to pass over these technical, but
important, details and go directly to Section 3.9.

A complicating factor in characterizing the runs is that that we cannot describe a priori
the markings reachable in the net for t from an initial state simply from the markings
reachable from the nets representing the subterms of t (allowing for the substitution of
resources for resource names) running from suitable initial states; this property, as one
would expect, fails for parallel composition. However, we can establish properties about the
control flow of programs. Since such properties are insensitive to the interaction through
shared state of parallel processes, they may be established inductively on (the size of) terms.

For an event e and markings of control conditions C and C ′, we write C
e

−։C C
′ if the event
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e has concession in the marking C when considering only its control conditions, and its
occurrence would result in the marking of control conditions C ′:

C
e

−։C C
′ ⇐⇒ Ce ⊆ C and (C \ Ce) ∩ eC = ∅ and C ′ = (C \ Ce) ∪ eC.

We write σ
e

−։S σ
′ if the event e has concession on state conditions in the marking σ and

its occurrence yields the marking of state conditions σ′

Lemma 3.10. For any event e and markings C,C ′ of control conditions and σ, σ′ of state

conditions, (C, σ)
e

−։ (C ′, σ′) iff C
e

−։C C
′ and σ

e
−։S σ

′.

Following the above notation, we shall write π :C −։
∗
C
C ′ if the path π is from the

control marking C to C ′, defined in the obvious way. We shall say that a marking C ′ is
control-reachable from C ′, written C−։

∗
C
C ′, if there exists a path π such that π :C−։

∗
C
C ′.

A particular consequence of the above lemma is that the marking (C ′, σ′) is reachable from
(C, σ) only if C ′ is control-reachable from C.

We begin with some fairly straightforward properties about the initial and terminal
markings and the sets of pre- and postconditions of each event being nonempty. The first
and second items of the lemma below could even be seen as part of the definition of embedded
net since nonemptiness is necessary for the constructions above to result in nets with the
expected behaviours. With the final property, they can be used to show that no event has
concession in the terminal marking of the net. The third property eases the definitions
constructing N JtK.

Lemma 3.11. For any closed term t and event e ∈ Ev(t):

(1) Ic(t) 6= ∅ and Tc(t) 6= ∅,
(2) Ce 6= ∅ and eC 6= ∅,
(3) Ic(t) ∩Tc(t) = ∅, and
(4) Ce ∩ Tc(t) = ∅

Proof. The proof follows a simple induction on the size of terms.

The following property, that any event occurring from the initial marking of a net has a
precondition in the set of initial conditions (and the corresponding property that any event
into the terminal marking of the net has a postcondition inside the terminal conditions),
follows immediately from the previous lemma. It will be used frequently; for instance, to
show that in the net N Jt1; t2K if e1 is an event from N Jt1K and e2 is an event from N Jt2K
and e2 immediately follows e1 in some sequential run, then there is a control condition that
occurs in both the postconditions of e1 and the preconditions of e2. This property is used
in Theorem 5.4.

Lemma 3.12. For any closed term t, event e and marking C of control conditions of N JtK:

• If Ic(t)
e

−։C C then •e ∩ Ic(t) 6= ∅.

• If C
e

−։C Tc(t) then e• ∩ Tc(t) 6= ∅.

Another important technical property that the embedded nets formed possess is that
the marking of control conditions is equal to the set of initial conditions if either only initial
conditions are marked or if all initial conditions are marked, for any reachable marking, and
the similar statement for the terminal conditions of the net.

Definition 3.13. Say that an embedded net N is clear if, for any marking of control
conditions C that is control-reachable from Ic(N):
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(1) if either C ⊆ Ic(t) or Ic(t) ⊆ C then C = Ic(t), and
(2) if either C ⊆ Tc(t) or Tc(t) ⊆ C then C = Tc(t).

This is used in the proofs characterizing the markings reachable in the net N JtK in
terms of the markings reachable in the nets representing t’s subterms (for instance, to show
that any run to completion of the net N Jt1; t2K can be obtained as a run of the net N Jt1K
followed by a run of the net N Jt2K since when t1 in N Jt1; t2K terminates, precisely the
terminal control conditions of N Jt1K will be marked).

Some care is necessary since the proof that, for any closed term t, the net N JtK is
clear itself requires understanding of the markings reachable in the net N JtK. To resolve
this apparent ‘circularity’, when proving the properties required of the net N JtK required
to show that the net is clear we shall assume that the nets representing the subterms of t
are clear. We shall then prove that any net N JtK is clear, allowing us to use elsewhere the
properties relating runs of the net N JtK to the runs of the nets of subterms of t. In effect,
we will be proving clearness and the structural properties simultaneously, by induction on
the size of terms.

3.8.1. Sequential composition. The technique that we use to relate the runs of the net for
a term t to the runs of the nets of its subterms is to establish a suitably strong invariant
relating the markings arising before and after the occurrence of any event present in N JtK,
and then perform an induction on the length of sequence. For instance, for sequential
composition, we prove:

Lemma 3.14. Let P = 1:Tc(t1)× 2:Ic(t2). Assume that N Jt1K and N Jt2K are clear (Defi-
nition 3.13), and consider the net N Jt1; t2K. For any event e ∈ Ev(t1; t2) and any markings
of control conditions C1 and C2:

• Ic(t1; t2) = P ⊳ 1:Ic(t1) and Tc(t1; t2) = P ⊲ 2:Tc(t2).
• P = P ⊳ 1:C1 iff C1 = Tc(t1), and P = P ⊲ 2:C2 iff C2 = Ic(t2).

• Suppose that C1 is control-reachable from Ic(t1) in N Jt1K. If P ⊳1:C1
e

−։C C
′ in N Jt1; t2K

then either C1 = Tc(t1) or there exist C ′
1 and e1 such that C1

e1
−։C C ′

1 in N Jt1K and
C ′ = P ⊳ 1:C ′

1 and e = P ⊳ 1:e1.

• Suppose that C2 is control-reachable from Ic(t2) in N Jt2K. If P ⊲2:C2
e

−։C C
′ in N Jt1; t2K

then there exist C ′
2 and e2 such that C2

e2
−։C C ′

2 in N Jt2K and C ′ = P ⊲ 2:C ′
2 and e =

P ⊲ 2:e2.

Proof. The first item is simply a re-statement of part of the definition of N Jt1; t2K and the
second item is easy to show. The remaining parts follow an analysis of the events of the
net.

Using this result, it can be shown that any state reached in N Jt1; t2K is reached either
as a run of N Jt1K or as a run of N Jt1K to a terminal marking followed by a run of N Jt2K.

Lemma 3.15. Suppose that the nets N Jt1K and N Jt2K are clear. If π : Ic(t1; t2)−։
∗
C
C in

N Jt1; t2K then either:

• there exist C1 and π1 such that C = P ⊳ 1:C1 and π = P ⊳ 1:π1 and π1 : Ic(t1)−։
∗
C
C1 in

N Jt1K, or
• there exist C2, π1 and π2 such that C = P ⊲ 2:C2 and π = (P ⊳ 1:π1) · (P ⊲ 2:π2) and
π1 : Ic(t1)−։

∗
C
Tc(t1) in N Jt1K and π2 : Ic(t2)−։

∗
C
C2 in N Jt2K,
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where P = 1:Tc(t1)× 2:Ic(t2).

Proof. A straightforward induction on the length of π using Lemma 3.14.

The above lemma can be extended straightforwardly using Lemma 3.10 to obtain the
following result involving states, using the fact that the operations of prefixing and tagging
do not affect the action of events on state conditions:

Lemma 3.16. Suppose that the nets N Jt1K and N Jt2K are clear. If π :(Ic(t1; t2), σ0)−։
∗

(C, σ) in N Jt1; t2K then either:

• there exist C1 and π1 such that C = P ⊳ 1:C1 and π = P ⊳ 1:π1 and π1 :(Ic(t1), σ0)−։
∗

(C1, σ) in N Jt1K, or
• there exist C2, σ

′, π1 and π2 such that C = P ⊲ 2:C2 and π = (P ⊳ 1:π1) · (P ⊲ 2:π2) and
π1 :(Ic(t1), σ0)−։

∗
(Tc(t1), σ

′) in N Jt1K and π2 :(Ic(t2), σ
′)−։

∗
(C2, σ) in N Jt2K,

where P = 1:Tc(t1)× 2:Ic(t2).

The converse result, that runs of the nets N Jt1K and N Jt2K, with appropriate interme-
diate states, give rise to runs of the net N Jt1; t2K can also be shown.

3.8.2. Parallel composition. Runs of control within the net N Jt1 ‖ t2K are amenable to a
similar (though in fact less complicated) analysis to that presented in Lemmas 3.14 and
3.15:

Lemma 3.17. Consider the net N Jt1 ‖ t2K.

• Ic(t1 ‖ t2) = 1:Ic(t1) ∪ 2:Ic(t2) and Tc(t1 ‖ t2) = 1:Tc(t1) ∪ 2:Tc(t2).
• For any markings C1, C2 and C ′ of control conditions and any event e ∈ Ev(t1 ‖ t2), if

1:C1 ∪ 2:C2
e

−։C C
′ in N Jt1 ‖ t2K then either:

− there exists e1 ∈ Ev(t1) such that e = 1:e1 and there exists C ′
1 such that C ′ = 1:C ′

1∪2:C2

and C1
e1
−։C C

′
1 in N Jt1K, or

− there exists e2 ∈ Ev(t2) such that e = 2:e2 and there exists C ′
2 such that C ′ = 1:C1∪2:C

′
2

and C2
e2
−։C C

′
2 in N Jt2K.

Proof. A straightforward examination of the events of N Jt1 ‖ t2K.

Using the preceding lemma, the paths of the net N Jt1 ‖ t2K on control conditions can
be characterized as:

Lemma 3.18. If π : Ic(t1 ‖ t2)−։
∗
C
C in N Jt1 ‖ t2K then any event e in π is either equal to

1:e1 for some event e1 ∈ Ev(t1) or equal to 2:e2 for some event e2 ∈ Ev(t2). Furthermore,
there exist C1 and C2 such that C = 1:C1 ∪ 2:C2 and

π1 : Ic(t1)−։
∗
C
C1 and π2 : Ic(t2)−։

∗
C
C2,

where π1 is obtained by removing events equal to 2:e2 for some e2 from π, and π2 is obtained
by removing events equal to 1:e1 for some e1 from π.

Proof. Induction on the length of path π.
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Notably there is no analogue to Lemma 3.16 involving the markings of state conditions
for the parallel composition.

3.8.3. Iteration. The net N Jwhile b do t0 odK allows runs that start with an event that
either shows that the boolean b holds or an event that shows that b fails. If b fails, the net
enters its terminal marking an no further action occurs. If the boolean b passes, a run of
the net N Jt0K occurs, followed by the net re-entering its initial control state. The following
lemma captures this; it is proved by establishing an invariant in the same way as was done
for the sequential composition, though for brevity we shall omit it.

Lemma 3.19. Let t ≡ while b do t0 od and suppose that N Jt0K is clear. Let P =
{i} × 1:Tc(t1), and recall that P = Ic(t). Assume that π is a path such that π : Ic(t)−։

∗
C
C

in N JtK for some C. There exists a natural number n ≥ 0 and a (possibly empty if n = 0)
collection of paths π1, . . . , πn and heaps D1, . . . ,Dn such that, for each path πi:

πi : Ic(t0)−։
∗
C
Tc(t0) in N Jt0K

act(Ic(b),Tc(b))(Di,Di) : Ic(b)−։C Tc(b) in N JbK.

Write ei for the event act(P,1:Ic(t0))(Di,Di). Either:

• C = Ic(t) and π = e1 · (P ⊲ 1:π1) · . . . · en · (P ⊲ 1:πn);
• C = P ⊳ 1:C ′ for some marking of control conditions C ′ and there exists a path π′ and
heap D′ such that

π = e1 · (P ⊲ 1:π1) · . . . en · (P ⊲ 1:πn) · act(P,1:Ic(t0))(D
′,D′) · (P ⊲ 1:π′)

and
π′ : Ic(t0)−։

∗
C
C ′ in N Jt0K

act(Ic(b),Tc(b))(D
′,D′) : Ic(b)−։C Tc(b) in N JbK; or

• C = Tc(t) and there exists a heap D′ such that

π = e1 · (P ⊲ 1:π1) · . . . en · (P ⊲ 1:πn) · act(P,Tc(t))(D
′,D′)

and act(Ic(¬b),Tc(¬b))(D
′,D′) : Ic(b)−։C Tc(b) in N J¬bK.

The three possible cases for the control marking C above correspond to net being in its
initial control state (following some number of iterations), the net being in the body of the
loop, and the net being in its terminal control state following exit of the loop.

3.8.4. Sums. The behaviour of the net N Jα1.t1 + α2.t2K can be characterized as either the
occurrence of an event of the action α1 followed by a run of t1 or the occurrence of an event
of the action α2 followed by a run of t2. Note that if C = P ⊳1:C1 then C = Tc(α1.t1+α2.t2)
if, and only if, C1 = Tc(t1), and the similar property for t2.

Lemma 3.20. Let t ≡ α1.t1 +α2.t2 and P = 1:Tc(t1)× 2:Tc(t2) and suppose that the nets
N Jt1K and N Jt2K are clear. If π is a path π : Ic(t)−։

∗
C in N JtK for some C then:

• C = Ic(t) and π = (), or
• C = P ⊳1:C1 for some C1 and π = act(Ic(t),1:Ic(t1))(D1,D

′
1) · (P ⊳1:π1) for some π1,D1,D

′
1

such that

act(Ic(α1),Tc(α1))(D1,D
′
1) : Ic(α1)−։C Tc(α1) in N Jα1K

π1 : Ic(t1)−։
∗
C
C1 in N Jt1K; or
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• C = P ⊲2:C2 for some C2 and π = act(Ic(t),2:Ic(t2))(D2,D
′
2) · (P ⊲2:π2) for some π2,D2,D

′
2

such that

act(Ic(α2),Tc(α2))(D2,D
′
2) : Ic(α2)−։C Tc(α2) in N Jα2K

π2 : Ic(t2)−։
∗
C
C2 in N Jt2K.

Proof. An induction following establishing an invariant in the style of Lemma 3.14.

3.8.5. Resource declaration. A consequence of the following result is that any complete run
of the net resource w do t0 od consists first of an event that chooses a resource r to be
used for w, then a run of [r/w]t0, and finally an event that records that r is no longer in
use.

Lemma 3.21. Suppose that the net N J[r/w]t0K is clear for any resource r and let t ≡
resource w do t0 od. If in the net N JtK we have π : Ic(t)−։

∗
C
C then either:

• C = Ic(t) and π = (), or
• there exist r ∈ Res and C ′ and π0 such that C = r:C ′ and

π = decl({i},r:Ic([r/w]t0))(r) · (r:π0)

and
decl({i},r:Ic([r/w]t0)) : Ic(t)−։C r:Ic([r/w]t0) in N JtK and

π0 : Ic([r/w]t0)−։
∗
C
C ′ in N J[r/w]t0K, or

• C = Tc(t) and there exist r ∈ Res and π0 such that

π = decl({i},r:Ic([r/w]t0))(r) · (r:π0) · end(r:Tc([r/w]t0),{t})(r)

and
decl({i},r:Ic([r/w]t0)) : Ic(t)−։C r:Ic([r/w]t0) in N JtK,

π0 : Ic([r/w]t0)−։
∗
C
Tc([r/w]t0) in N J[r/w]t0K, and

end(r:Tc([r/w]t0),{t}) : r:Tc([r/w]t0)−։C Tc(t) in N JtK.

Proof. By establishing an invariant on markings between the occurrences of single events,
as in Lemma 3.14.

3.8.6. Critical regions. The net N Jwith r do t0 odK starts by acquiring the resource r. If
this action cannot proceed because the resource is unavailable, no event will occur. If
the resource is available, the process behaves as t0, and then releases the resource r if t0
terminates.

Lemma 3.22. Let t ≡ with r do t0 od and suppose that the net N Jt0K is clear. If in the
net N JtK we have π : Ic(t)−։

∗
C
C then either:

• C = Ic(t) and π = (),
• C = r:C0 for some marking of control conditions C0 and π = acq(Ic(t),r:Ic(t0))(r) · (r:π0)

for some path π0 such that π0 : Ic(t0)−։
∗
C
C0 in N Jt0K, or

• C = Tc(t) and π = acq(Ic(t),r:Ic(t0))(r) · (r:π0) · rel(r:Tc(t0),Tc(t))(r) for some path π0 such

that π0 : Ic(t0)−։
∗
C
Tc(t0) in N Jt0K.
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3.8.7. Clearness. Now that we have established these control properties of the runs of pro-
cesses, we can show that the clearness property of Definition 3.13 does indeed hold in the
net N JtK for any term t.

Lemma 3.23. For any closed term t, the net N JtK is clear.

Proof. Following the observation that

1:C ⊆ 1:C ′ iff C ⊆ C ′

P ⊳ C ⊆ P ⊳ C ′ iff C ⊆ C ′

P ⊲ C ⊆ P ⊲ C ′ iff C ⊆ C ′,

the property can be proved by induction on the size of terms using the above control
properties.

3.8.8. Preservation of consistency. The final attribute that we aim towards is that any
marking of state conditions σ reachable in N JtK from a consistent initial marking of state
conditions σ0 is itself consistent. The only challenge here will be showing that if r ∈ σ then
curr(r) ∈ σ, which shall require some understanding of the nature of the critical regions
present in our semantics; the other requirements for consistency are straightforwardly shown
to be preserved through the occurrence of the events present in N JtK.

We shall first show that any release of a resource is dependent on the prior acquisition
of that resource: for any sequence π and any resource there exists an injection f that
associates any occurrence of a release event to a prior occurrence of an acquisition event of
that resource, and between the two occurrences there are no other actions on that resource.

Lemma 3.24. Let π be a sequence of events, π = (e1, . . . , en). For any closed term t,
resource r and marking of control conditions C such that π : Ic(t) −։

∗
C
C in N JtK, there

exists a partial function f :N⇀ N satisfying, for all i, j ∈ N:

• f is injective,
• if there exist sets of control conditions C1, C2 such that ei = rel(C1,C2)(r) then f(i) defined,
and

• if f(i) defined then f(i) < i and there exist sets of control conditions C1, C2 such that
ef(i) = acq(C1,C2)(r).

Moreover, if there exist markings of state conditions σ0, . . . , σn and markings of control

conditions C0, · · · , Cn such that (Ci−1, σi−1)
ei
−։ (Ci, σi) for all i with 0 < i ≤ n and

C0 = Ic(t), then there exists an f satisfying the above constraints and such that, for all
k with i < k < f(i), there exist no C ′ and C ′′ such that either ek = acq(C′,C′′)(r) or

ek = rel(C′,C′′)(r).

Proof. The first property is shown, using the control properties of sequences established
above, by induction on the size of terms. The second property arises since if ei = acq(Ci,C′

i)
(r)

and ej = acq(Cj ,C′
j)
(r) for i < j then there must exist k such that i < k < j and

ek = rel(Ck ,C
′
k
)(r), and the symmetric property for release events.
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We are now able to show that the nets formed preserve the consistency of the markings
of state conditions.

Lemma 3.25 (Preservation of consistent markings). For any closed term t, if (Ic(t), σ0)−։
∗

(C, σ) in the net N JtK and the marking σ0 of state conditions is consistent then σ is con-
sistent.

Proof. It is straightforward to prove by induction on the size of the term t that the events
present in that net N JtK are all of one of the following forms:

act(C,C′)(D,D
′) alloc(C,C′)(ℓ, v, ℓ

′, v′) decl(C,C′)(r) acq(C,C′)(r)

dealloc(C,C′)(ℓ, ℓ
′, v′) end(C,C′)(r) rel(C,C′)(r)

It is readily shown that each form of event preserves the consistency of the marking of state
conditions, apart from showing that if r ∈ σ then curr(r) ∈ σ.

Suppose, for contradiction, that π′ is a path such that π′ :(Ic(t), σ0)−։
∗
(C, σ) in N JtK

and that r ∈ σ but curr(r) 6∈ σ. Assume, furthermore, and without loss of generality,
that any other marking of state conditions σ′ along π has the property that if r ∈ σ then
curr(r) ∈ σ. It must be the case that π′ = π · rel(D1,D′

1)
(r) for some D1,D

′
1 and π. By

Lemma 3.24, there exist D2,D
′
2, π1 and π2 such that π = π1 · acq(D2,D′

2)
(r) ·π2 and no event

in π2 is an acq(r) or rel(r) event. Let π1 :(Ic(t), σ0)−։
∗
(C1, σ1). We must have r ∈ σ1, and

by assumption curr(r) ∈ σ1. It can be seen that we must have curr(r) ∈ σ′ and r 6∈ σ′ for
all states σ′ reached along acq(D2,D′

2)
(r) · π2 from (C1, σ1) since no end(r) event can have

concession in such markings. Consequently, we must have curr(r) ∈ σ2 for σ2 obtained by
following the path π :(Ic(t), σ0)−։

∗
(C2, σ2), and therefore curr(r) ∈ σ.

The structure of processes ensures that any resource initially current remains current
through the execution of the net. The same property working backwards from the terminal
marking of the net also holds.

Lemma 3.26. Let σ, σ′ be a consistent markings of state conditions. For any markings of
control conditions C,C ′:

(1) If (Ic(t), σ)−։
∗
(C ′, σ′) in N JtK and curr(r) ∈ σ then curr(r) ∈ σ′.

(2) If (C, σ)−։
∗
(Tc(t), σ′) in N JtK and curr(r) ∈ σ′ then curr(r) ∈ σ.

Proof. We shall only show (1) since (2) is similar. An induction on the size of terms using
the control properties above gives the following:

• If there exists a sequence π such that π · end(C1,C2)(r) : Ic(t)−։
∗
C
C for some C1, C2 then

there exists an event decl(C′
1,C

′
2)
(r) in π for some C ′

1, C
′
2.

Let π′ be a sequence π′ :(Ic(t), σ)−։
∗
(C ′, σ′) and assume that curr(r) ∈ σ. Without loss

of generality, suppose that (C ′, σ′) is the earliest marking along π′ from (Ic(t), σ) such
that curr(r) 6∈ σ′; otherwise, we can take the initial segment of π′ with this property.
Examination of the events given by our semantics reveals that the last event in π′ is an
end(C1,C2)(r) event, since otherwise curr(r) is not in the state prior to σ′. Now, applying
the result above informs that there is an event decl(C′

1,C
′
2)
(r) in π′ and this must occur

before end(C1,C2)(r). Now, the event decl(C′
1,C

′
2)
(r) can only occur in a marking σ0 of state

conditions such that curr(r) 6∈ σ0, but this contradicts our assumption that σ′ was the first
marking of state conditions reachable along π′ from (Ic(t), σ) with curr(r) 6∈ σ′.
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3.9. Correspondence of semantics. As we have progressed, the event notations intro-
duced have corresponded to labels of the transition semantics. Write |e| for the label corre-
sponding to event e. Before progressing to consider separation logic, we shall give a theorem1

that shows how the net and transition semantics correspond. It assumes a definition of open
map bisimulation [JNW93, NW96] based on paths as pomsets, (N,M) ∼ (N ′,M ′), relating
paths of net N from marking M to paths of N ′ from M ′. The bisimulations that we form
respect terminal markings and markings of state conditions.

Theorem 3.27 (Correspondence). Let t be a closed term and σ be a consistent state.

• If 〈t, σ〉
λ

−→ σ′ then there exists e such that |e| = λ and (Ic(t), σ)
e

−։ (Tc(t), σ′) in N JtK.

• If 〈t, σ〉
λ

−→ 〈t′, σ′〉 then there exists e such that |e| = λ and (Ic(t), σ)
e

−։ (C ′, σ′) in N JtK
and (N JtK, C ′, σ′) ∼ (N Jt′K, Ic(t′), σ′).

• If (Ic(t), σ)
e

−։ (C ′, σ′) in N JtK then either there exists t′ such that 〈t, σ〉
|e|
−→ 〈t′, σ′〉 and

(N JtK, C ′, σ′) ∼ (N Jt′K, Ic(t′), σ′), or 〈t, σ〉
|e|
−→ σ′ and C ′ = Tc(t).

Write (t, σ) ∼ (t′, σ′) iff there exist a label-preserving bisimulation (in the standard
sense) between the transitions systems for t from initial state σ and t′ from σ′. From the
preceding result, we obtain adequacy of our semantics:

Corollary 3.28 (Adequacy). Let t, t′ be closed terms and σ, σ′ be consistent states. If
(N JtK, Ic(t), σ) ∼ (N Jt′K, Ic(t′), σ′) then (t, σ) ∼ (t′, σ′).

The converse property with respect to ∼ fails. For instance, for any σ we have

(α1 ‖ α2, σ) ∼ (α1.α2 + α2.α1, σ).

However, the definition of open bisimulation on the nets with pomsets as paths yields

(N Jα1 ‖ α2K, Ic(α1 ‖ α2), σ) 6∼ (N Jα1.α2 + α2.α1K, Ic(α1.α2 + α2.α1), σ).

The reason why the property fails is that the transition system does not capture the inde-
pendence of actions.

4. Separation logic

As discussed in the introduction, concurrent separation logic establishes partial cor-
rectness assertions about concurrent heap-manipulating programs; that whenever a given
program running from a heap satisfying a heap formula ϕ terminates, the resulting heap
satisfies a heap formula ψ. The semantics of the heap logic arises as an instance of the logic
of Bunched Implications [OP99]. At its core are the associated notions of heap composi-
tion and the separating conjunction. Two heaps may be composed if they are defined over
disjoint sets of locations:

D1 ·D2
def
= D1 ∪D2 if dom(D1) ∩ dom(D2) = ∅.

1The proof of this theorem is rather technical and requires a presentation of open maps on the category of
embedded Petri nets, so we shall not present the proof here. It shall appear, with the other omitted results,
in the first author’s PhD thesis.
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A heap satisfies the separating conjunction ϕ1 ∗ ϕ2 if it can be split into two parts, one
satisfying ϕ1 and the other ϕ2:

D |= ϕ1 ∗ ϕ2 iff there exist D1,D2 such that D1 ·D2 defined and

D = D1 ·D2 and D1 |= ϕ1 and D2 |= ϕ2.

The semantics of the other parts of the heap logic is of little significance when considering
the semantics of the program logic. For completeness, however, it is defined by induction
on the size of formulæ in Figure 3 where the full syntax also appears. Unlike the heap
logic presented in [Bro07], we do not allow arithmetic on memory locations; this is just to
simplify the presentation, and such arithmetic could easily be added. Since we distinguish
the types of locations and values, we use xloc as the logical variable for locations and xval
for the logical variable for values. We adopt the usual binding precedences, and ∗ binds
more tightly the standard logical connectives. We define the shorthand notation ℓ 7→ −
for ∃xval(ℓ 7→ xval). We shall write |= ϕ if D |= ϕ for all heaps D, and write ϕ =⇒ ψ if
|= ϕ→ ψ.

We now present the intuition for the key judgement of concurrent separation logic,
Γ ⊢ {ϕ} t {ψ}, where ϕ and ψ are formulæ of the heap logic, and Γ is a environment of
resource invariants , of the form r1 : χ1, · · · , rn : χn, associating invariants χi with resources
ri. (We refer the reader to [O’H07] for a fuller introduction.) Informally, the judgement
means:

In any run from a heap satisfying ϕ and the invariants Γ, the process t never accesses
locations that it does not own, and if the process t terminates then it does so in a heap
satisfying ψ and the invariants Γ.

Central to this understanding is the notion of ownership, which we capture formally in
Section 4.1. Initially the process t is considered to own that part of the heap which satisfies
ϕ, and accordingly to own the locations in that subheap. As t runs the locations it owns
may change as it acquires and releases resources, and correspondingly the locations used in
justifying their invariants.

Ownership plays a key role in making the judgements of concurrent separation logic
compositional: a judgement Γ ⊢ {ϕ} t {ψ} should hold even if other (unknown) processes
are to execute in the same heap. It is therefore necessary to make certain assumptions
about the ways in which these other processes might interact with the process t. This is
achieved through ownership, by assuming that each process owns, throughout its execution,
a separate, though possibly changing, part of the heap; the part of the heap that each
process owns must not be accessed by any other process; moreover a process must not
access locations it does not own.

The rules of concurrent separation logic are presented in Figure 4 in the style of [Bro07].
The only significant difference between the two systems is that we omit the rules for auxiliary
variables and for existential quantification. Both are omitted for simplicity since they are
peripheral to the focus of our work.

As a first example, the rule for heap actions (L-Act) would allow the judgement

Γ ⊢ {ℓ 7→ 0} [ℓ] := 1 {ℓ 7→ 1}

since the process is initially assumed to own the location ℓ because the part of the heap
that the process initially owns satisfies ℓ 7→ 0. The resulting part of the heap owned by the
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Variables: x ::= xloc Location variable
| xval Value variable

Location expressions: eloc ::= xloc Location variable
| ℓ Location, ℓ ∈ Loc

Expressions: e ::= eloc Location expression
| xval Value variable
| v Value, v ∈ Val

Formulæ: ϕ ::= eloc 7→ eval heap location
| ϕ ∗ ϕ separating conjunction
| empty empty heap
| ϕ ∧ ϕ conjunction
| ϕ ∨ ϕ disjunction
| ϕ→ ϕ implication
| ¬ϕ negation
| ∃x.ϕ existential quantification
| ∀x.ϕ universal quantification
| e = e equality
| ⊤ true
| ⊥ false

Semantics of closed formulæ:

D |= ℓ 7→ v iff D = {ℓ 7→ v}
D |= ϕ1 ∗ ϕ2 iff there exist D1,D2 such that D1 ·D2 defined and

D = D1 ·D2 and D1 |= ϕ1 and D2 |= ϕ2

D |= empty iff D = ∅
D |= ϕ1 ∧ ϕ2 iff D |= ϕ1 and D |= ϕ2

D |= ϕ1 ∨ ϕ2 iff D |= ϕ1 or D |= ϕ2

D |= ϕ1 → ϕ2 iff D |= ϕ1 implies D |= ϕ2

D |= ¬ϕ iff not D |= ϕ
D |= ∃xloc.ϕ iff there exists ℓ ∈ Loc such that D |= [ℓ/xloc]ϕ
D |= ∃xval.ϕ iff there exists v ∈ Val such that D |= [v/xval]ϕ
D |= ∀xloc.ϕ iff for all ℓ ∈ Loc: D |= [ℓ/xloc]ϕ
D |= ∀xval.ϕ iff for all v ∈ Val: D |= [v/xval]ϕ
D |= v = v′ iff v = v′

D |= ⊤ always
D |= ⊥ never

Figure 3: Syntax and semantics of the heap logic
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(L-Act) :

for all D |= ϕ and (D1, D2) ∈ AJαK :
dom(D1) ⊆ dom(D)

and
D1 ⊆ D implies (D \D1) ∪D2 |= ψ

Γ ⊢ {ϕ} α {ψ}

(L-Alloc) : Γ ⊢ {ℓ 7→ −} alloc(ℓ) {∃xloc(ℓ 7→ xloc ∗ xloc 7→ −)}

(L-Dealloc) : Γ ⊢ {∃xloc(ℓ 7→ xloc ∗ xloc 7→ −)} dealloc(ℓ) {∃xloc(ℓ 7→ xloc)}

(L-Seq) :
Γ ⊢ {ϕ} t1 {ϕ′} Γ ⊢ {ϕ′} t2 {ψ}

Γ ⊢ {ϕ} t1; t2 {ψ}

(L-Sum) :
Γ ⊢ {ϕ} α1 {ϕ1} Γ ⊢ {ϕ} α2 {ϕ2}
Γ ⊢ {ϕ1} t1 {ψ} Γ ⊢ {ϕ2} t2 {ψ}

Γ ⊢ {ϕ} α1.t1 + α2.t2 {ψ}

(L-While) :
Γ ⊢ {ϕ} b {ϕ′} Γ ⊢ {ϕ} ¬b {ψ}

Γ ⊢ {ϕ′} t {ϕ}
Γ ⊢ {ϕ} while b do t od {ψ}

(L-Res) :
Γ, r :χ ⊢ {ϕ} [r/w]t {ψ}

Γ ⊢ {ϕ ∗ χ} resource w do t od {ψ ∗ χ}

(

χ precise
r 6∈ dom(Γ)

)

(L-CR) :
Γ, r :χ ⊢ {ϕ ∗ χ} t {ψ ∗ χ}

Γ, r :χ ⊢ {ϕ} with r do t od {ψ}

(L-Par) :
Γ ⊢ {ϕ1} t1 {ψ1} Γ ⊢ {ϕ2} t2 {ψ2}

Γ ⊢ {ϕ1 ∗ ϕ2} t1 ‖ t2 {ψ1 ∗ ψ2}

(L-Frame) :
Γ ⊢ {ϕ} t {ψ}

Γ ⊢ {ϕ ∗ ϕ′} t {ψ ∗ ϕ′}

(L-Consequence) :
ϕ =⇒ ϕ′ Γ ⊢ {ϕ′} t {ψ′} ψ′ =⇒ ψ

Γ ⊢ {ϕ} t {ψ}

(L-Conjunction) :
Γ ⊢ {ϕ1} t {ψ1} Γ ⊢ {ϕ2} t {ψ2}

Γ ⊢ {ϕ1 ∧ ϕ2} t {ψ1 ∧ ψ2}

(L-Disjunction) :
Γ ⊢ {ϕ1} t {ψ1} Γ ⊢ {ϕ2} t {ψ2}

Γ ⊢ {ϕ1 ∨ ϕ2} t {ψ1 ∨ ψ2}

(L-Expansion) :
Γ ⊢ {ϕ} t {ψ}

Γ,Γ′ ⊢ {ϕ} t {ψ}

(L-Contraction) :
Γ,Γ′ ⊢ {ϕ} t {ψ}
Γ ⊢ {ϕ} t {ψ}

(res(t) ⊆ dom(Γ))

Figure 4: Rules of concurrent separation logic
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process satisfies ℓ 7→ 1. The judgement

Γ ⊢ {empty} [ℓ] := 2 {⊤}

is not derivable however: the part of the heap initially owned by the process satisfies empty,
and therefore the process initially does not own the location ℓ. Assignment to ℓ violates
the principle that the process may only act on locations that it owns — the so-called frame
property.

An instance of the separating conjunction is seen in the rule for parallel composition,
(L-Par):

Γ ⊢ {ϕ1} t1 {ψ1} Γ ⊢ {ϕ2} t2 {ψ2}
Γ ⊢ {ϕ1 ∗ ϕ2} t1 ‖ t2 {ψ1 ∗ ψ2}

Informally, the rule is sound because the part of the initial heap that is owned by the
process t1 ‖ t2 can be split into two parts, one part satisfying ϕ1 owned by t1 and the other
satisfying ϕ2 owned by t2; as the processes execute the subheaps that we see each as owning
remain disjoint from each other and end up separately satisfying ψ1 and ψ2.

It is vital that the logic enforces the requirement that processes only act on locations
that they own. If this requirement were not imposed, so that the judgement

Γ ⊢ {empty} [ℓ] := 2 {⊤}

were derivable, then the rule for parallel composition could be applied with the other judge-
ment above to conclude that

Γ ⊢ {ℓ 7→ 0 ∗ empty} [ℓ] := 1 ‖ [ℓ] := 2 {ℓ 7→ 1 ∗ ⊤}.

This flawed assertion would imply that whenever the process [ℓ] := 1 ‖ [ℓ] := 2 runs from a
state satisfying ℓ 7→ 0, the resulting state has ℓ 7→ 1, which is obviously wrong.

The notion of ownership is subtle since the collection of locations that a process owns
may change as the process evolves. As seen in the rule (L-Alloc), the intuitive reading is
that after an allocation event has taken place the process owns the newly current location.
Similarly, deallocation of a location leads to loss of ownership. For example, it is possible
to make the judgement

Γ ⊢ {ℓ 7→ −} alloc(ℓ) {∃xloc.ℓ 7→ xloc ∗ xloc 7→ −}.

If the new location were ℓ′ which initially held value v, this would mean that in the the
(fragment of the) resulting heap {ℓ 7→ ℓ′ ∗ ℓ′ 7→ v}, the locations ℓ and ℓ′ would be owned
by the process. Consequently, an action [[ℓ]] := 0 which assigns 0 to the location pointed
to by ℓ resulting in the heap {ℓ 7→ ℓ′, ℓ′ 7→ 0} allows the judgement

Γ ⊢ {∃xloc.ℓ 7→ xloc ∗ xloc 7→ −} [[ℓ]] := 0 {∃xloc.ℓ 7→ xloc ∗ xloc 7→ 0}

by (L-Act) since both locations would be owned by the process. The rule (L-Seq) can
now be applied to obtain

Γ ⊢ {ℓ 7→ −} alloc(ℓ); [[ℓ]] := 0 {∃xloc.ℓ 7→ xloc ∗ xloc 7→ 0},

indicating that the process has ownership of the location ℓ′, seen in the ability to write to
ℓ′, once it has been allocated.

To allow the logic to make judgements beyond those applicable to the almost ‘disjointly
concurrent’ programs outlined so far, further interaction is allowed through a system of
invariants. The judgement environment Γ records a formula called an invariant for each
resource in its domain, which contains all the resources occurring in the term. The intuition
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is that, whenever a resource r with an invariant χ is available, there is part of the heap
unowned by any other process and protected by the resource that satisfies χ. In such a
situation, we shall say that the locations used to satisfy χ are ‘owned’ by the invariant for
r. Processes may gain ownership of these locations, and thereby the right to access them,
by entering a critical region protected by the resource. When the process leaves the critical
region, the invariant must be restored and the ownership of the locations used to satisfy
the invariant is relinquished. This is reflected in the rule (L-CR). As an example, we have
the following derivation:

(L-Act)
r : ℓ 7→ 0 ⊢ {ℓ′ 7→ − ∗ ℓ 7→ 0} [ℓ′] := [ℓ] {ℓ′ 7→ 0 ∗ ℓ 7→ 0}

(L-CR)
r : ℓ 7→ 0 ⊢ {ℓ′ 7→ −} with r do [ℓ′] := [ℓ] od {ℓ′ 7→ 0}

The process initially owns the location ℓ′, and the location ℓ is protected by the resource
r. We reason about the process inside the critical region running from a state with ownership
of the locations governed by the invariant in addition to those that it owned before entering
the critical region since no other process can be operating on them; that is, we reason about
[ℓ′] := [ℓ] with locations ℓ and ℓ′ owned by the process. However, when the process leaves
the critical region, ownership of the locations used to satisfy the invariant is lost, indicated
by the conclusion ℓ′ 7→ 0 in the judgement rather than ℓ′ 7→ 0 ∗ ℓ 7→ 0.

An invariant is required to be a precise heap logic formula.

Definition 4.1 (Precision). A heap logic formula χ is precise if for any heap D there is at
most one subheap D0 ⊆ D such that D0 |= χ.

We leave discussion of the rôle of precision to the conclusion, though it might be seen
to be of use since it identifies uniquely the part of the heap that is owned by the invariant if
the resource is available. Formally, Γ ranges over finite partial functions from resources to
precise heap formulæ. We write dom(Γ) for the set of resources on which Γ is defined, and
write Γ,Γ′ for the union of the two partial functions, defined only if dom(Γ)∩ dom(Γ′) = ∅.
We write r :χ for the singleton environment taking resource r to χ, and we allow ourselves
to write r :χ ∈ Γ if Γ(r) = χ.

The rules allow ownership of locations to be transferred through invariants. Consider
the invariant χ defined as ℓ′ 7→ 0∨(ℓ′ 7→ 1∗ℓ 7→ 0). If the resource is available, the invariant
is satisfied: it either protects the location ℓ′, which has value 0, or it protects location ℓ′,
which has value 1, as well as location ℓ. A process can acquire ownership of ℓ across a
critical region by changing the value of ℓ′ from 1 to 0 and may leave ownership of ℓ inside
the invariant by changing the value of ℓ′ from 0 to 1.

Assume, for example, that the process owns location ℓ. The only way in which the
invariant χ can be satisfied disjointly from the locations that the process owns is for ℓ′ to
hold value 0. That is, we have

ℓ 7→ 0 ∗ (ℓ′ 7→ 0 ∨ (ℓ′ 7→ 1 ∗ ℓ 7→ 0)) =⇒ ℓ 7→ 0 ∗ ℓ′ 7→ 0

which is implicitly used in the instance of the rule (L-Consequence) below. Consequently,
as the process enters a critical region protected by r, it gains ownership of location ℓ′. If the
process sets the value of ℓ′ to 1, when the process leaves the critical region it must restore
the invariant to the resource, and so relinquish ownership of both ℓ′ and ℓ. This is seen in
the derivation of the following judgement, in which we take Γ = r :χ.
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(L-Act)
Γ ⊢ {ℓ 7→ 0 ∗ ℓ′ 7→ 0} [ℓ′] := 1 {ℓ 7→ 0 ∗ ℓ′ 7→ 1}

(L-Consequence)
Γ ⊢ {ℓ 7→ 0 ∗ χ} [ℓ′] := 1 {empty ∗ χ}

(L-CR)
Γ ⊢ {ℓ 7→ 0} with r do [ℓ′] := 1 od {empty}

With this derivation, we can derive

Γ ⊢ {ℓ 7→ 2} [ℓ] := 0; with r do [ℓ′] := 1 {empty}.

It is also possible to acquire ownership of locations through an invariant. Let the action
diverge have the same semantics as that of the boolean guard false, which is an action
that can never occur i.e. the process is stuck. We have the following derivation:

Γ ⊢ {χ} [ℓ′] = 0 {ℓ′ 7→ 0}
Γ ⊢ {ℓ′ 7→ 0} diverge {ℓ′ 7→ 0 ∗ ℓ 7→ 0}
Γ ⊢ {χ} [ℓ′] = 1 {ℓ′ 7→ 1 ∗ ℓ 7→ 0}
Γ ⊢ {ℓ′ 7→ 1 ∗ ℓ 7→ 0} [ℓ′] := 0 {ℓ′ 7→ 0 ∗ ℓ 7→ 0}

(L-Sum)
Γ ⊢ {χ} ([ℓ′] = 0.diverge) + ([ℓ′] = 1.[ℓ′] := 0) {ℓ 7→ 0 ∗ ℓ′ 7→ 0}

(L-Consequence)
Γ ⊢ {empty ∗ χ} ([ℓ′] = 0.diverge) + ([ℓ′] = 1.[ℓ′] := 0) {ℓ 7→ 0 ∗ χ}

(L-CR)
Γ ⊢ {empty} with r do ([ℓ′] = 0.diverge) + ([ℓ′] = 1.[ℓ′] := 0) od {ℓ 7→ 0}

The undischarged hypotheses at the top of the derivation are all proved by the rule (L-Act).
Let t0 denote the process ([ℓ′] = 0.diverge) + ([ℓ′] = 1.[ℓ′] := 0). Observe that the process
with r do t0 od is considered to own no part of the initial heap. As the process enters
the critical region, it is considered to take ownership of the part of the heap satisfying the
invariant for r, viz χ. There are two ways in which χ might be satisfied:

(1) It may be that the process gains ownership of the location ℓ′ which holds value
0. In this case, only the guard [ℓ′] = 0 of t0 can pass, so the process must evolve
to diverge and therefore never terminates. It is therefore trivially true that the
remainder of the derivation, that if the process t0 terminates then the part of the
heap that it owns satisfies ℓ 7→ 0 ∗ χ and therefore after leaving the critical region
and losing ownership of the locations satisfying χ that the process owns location ℓ,
is sound.

(2) The process might have taken control of the locations ℓ, holding value 0, and ℓ′,
holding value 1. Inside the critical region, the process t0 can be seen to change the
value of ℓ′ from 1 to 0. The only way that the invariant χ can then be satisfied is by
the location ℓ′ holding 0, so ownership of ℓ′ is lost as the process leaves the critical
region. Importantly, the process retains ownership of location ℓ.

Using the derivations given above, we can give an example of ownership of ℓ, as exhibited
by the right to write to ℓ, being transferred (we have annotated internal assertions arising
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from the proofs above inside the program):

Γ ⊢

{ℓ 7→ 2}
{ℓ 7→ 2} {empty}
[ℓ] := 0; with r do
{ℓ 7→ 0} [ℓ′] = 0. diverge
with r do + [ℓ′] = 1. [ℓ′] := 0

[ℓ′] := 1 od;
od {ℓ 7→ 0}
{empty} [ℓ] := 1

{ℓ 7→ 1}
{ℓ 7→ 1}

We also see that, in any terminating run of this process, it must be the case that the process
on the left terminates strictly before the process on the right begins.

The final remark to be made on the rules of the logic is that (L-Res) allows invariants
to be established for newly declared resources. We reason about the closed term [r/w]t, for
an arbitrary ‘fresh’ resource r; it is sufficient to consider only one such resource, as shall be
seen in Lemma 4.25. The resource r is known not to occur in the domain of Γ and hence
does not occur in the term t thanks to the following lemma, proved straightforwardly by
induction on the judgement.

Lemma 4.2. If Γ ⊢ {ϕ} t {ψ} then res(t) ⊆ dom(Γ).

4.1. Ownership model. We now progress to give a formal interpretation of the rules
presented in the previous section. The key idea is that the judgement Γ ⊢ {ϕ} t {ψ}
is robust against the operation of other ‘external’ processes (which have themselves been
subject to a judgement in the logic) on the state, so that the rule for parallel composition is
valid. From the account presented earlier, external processes may act on the heap providing
they do not access the locations ‘owned’ by the process t, and they may act to acquire and
release resources providing they respect the invariants in Γ. External processes may also
make non-current resources current through the instantiation of a resource variable and
might make such resources non-current. The semantics of judgements must therefore keep a
record of how each current location in the heap and each current resource is owned: whether
the process might access the location, whether it forms part of an invariant protected by
a resource, or whether external processes might act on that location, along with a similar
record for resources. The semantics will include interference events to represent such forms
of action by external processes.

Capturing these requirements, we construct an interference net with respect to the
environment Γ to represent the execution of suitable external processes proved against Γ.
This involves creating ownership conditions ωproc(ℓ), ωinv(ℓ) and ωoth(ℓ) for each location ℓ.
The intuition is that ωproc(ℓ) is marked if ℓ is owned by the process, ωinv(ℓ) if ℓ is used to
satisfy the invariant for an available open resource, and ωoth(ℓ) is marked if ℓ is current but
owned by another process.

To give an example, suppose that we have the judgement

Γ ⊢ {k 7→ 1} [k] := 0 {k 7→ 0}.
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The proof can be composed with the judgement Γ ⊢ {ℓ 7→ 0} [ℓ] := 0 {ℓ 7→ 1} to obtain

Γ ⊢ {k 7→ 1 ∗ ℓ 7→ 0} [k] := 0 ‖ [ℓ] := 1 {k 7→ 0 ∗ ℓ 7→ 1}.

The first proof, that the assignment [k] := 0 changes the value at k from 1 to 0, must
take into account the possibility that the values held at other locations may change. In
particular, it must take into account the possibility that the value at ℓ (not to equal k)
changes from 0 to 1. We therefore reason about the net N J[k] := 0K in the presence of the
following interference event, which changes the value held at ℓ from 0 to 1:

evolves to

ωproc(ℓ)

ωinv(ℓ)

ωoth(ℓ)

ℓ 7→ 0

ℓ 7→ 1

ωproc(ℓ)

ωinv(ℓ)

ωoth(ℓ)

ℓ 7→ 0

ℓ 7→ 1

act({ℓ 7→ 0}, {ℓ 7→ 1})

Notably, the above event requires that the location ℓ is owned by an external process, i.e.
the condition ωoth(ℓ) is marked.

Since we do not know with which other judgements Γ ⊢ {k 7→ 1} [k] := 0 {k 7→ 0} may
be composed, there are interference events present in the net for all the forms of interference
permissible according to the notion of ownership. For instance, the interference event which
changes the value of k from 0 to 1

act({k 7→ 0}, {k 7→ 1})

ωproc(k)

ωinv(k)

ωoth(k)

k 7→ 0

k 7→ 1

is present in the net. However, the judgement asserts that k is owned by the process, so
this interference event (and indeed any other interference event that affects k) will not be
able to occur because the condition ωproc(k) will be marked, not ωoth(k).

As mentioned above, we introduce interference events to mimic the action of external
processes on resources. The notion of ownership is therefore extended in this setting to
resources, for example so that an external process cannot be allowed to release a resource
held by the current process. It is important to make a distinction between resources in the
domain of the environment Γ (called open resources) and those that are not (called closed
resources): Open resources have invariants associated with them, so the ownership of the
heap is affected by events that acquire or release them, as presented earlier in this section;
this is not the case for closed resources. Closed resources are those resources made current
to instantiate a local resource variable. They may either be used by the process being
considered if it declared the resource, or be used by some external process if some external
process declared the resource. We shall introduce conditions ωproc(r), ωinv(r) and ωoth(r)
for each resource r. The condition ωproc(r) will be marked if either the resource is closed
and was made current by the process or if the resource is open and is held by the process.
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The condition ωinv(r) will be marked if r is open and available. The condition ωoth(r) will
be marked if either the resource is closed and was made current by an external process or
if the resource is both open and the external process holds it.

The set of ownership conditions is denoted W:

W
def
= {ωproc(ℓ), ωinv(ℓ), ωoth(ℓ) | ℓ ∈ Loc}

∪{ωproc(r), ωinv(r), ωoth(r) | r ∈ Res}.

We use W to range over markings of ownership conditions and introduce the notations
We and eW, as before, for the sets of pre-ownership conditions of e and post-ownership
conditions of e, respectively. For a set of locations L, we define the notation

ωproc(L)
def
= {ωproc(ℓ) | ℓ ∈ L},

and define ωinv(L) and ωoth(L) similarly. Only certain markings of ownership conditions are
consistent with a state σ:

Definition 4.3 (Consistent marking). The marking of state and ownership conditions
(σ,W ) of WJtKΓ is consistent if:

(1) σ is a consistent state in N JtK,
(2) for each z ∈ Loc ∪ Res, at most one of {ωproc(z), ωinv(z), ωoth(z)} is marked,
(3) for each z ∈ Loc ∪ Res, the ownership condition curr(z) is in σ iff precisely one of

{ωproc(z), ωinv(z), ωoth(z)} is in W ,
(4) if r ∈ dom(Γ) and r ∈ R then ωinv(r) ∈ R,
(5) if r ∈ dom(Γ) and r 6∈ R then either ωproc(r) ∈W or ωoth(r) ∈W , and
(6) if curr(r) ∈ σ and r 6∈ dom(Γ) then either ωproc(r) ∈W or ωoth(r) ∈W .

Requirements (2) and (3) assert that W is essentially a function from the set of cur-
rent locations and resources to describe their ownership. Requirement (4) states that any
available open resource is owned as an invariant: it can be accessed either by the process
being considered or by an external process, and there is an invariant associated with r.
Requirement (5) states that any unavailable open resource is either held by the process or
by an external process. Requirement (6) asserts that any closed resource is owned either
by the current process or by an external process.

Table 1 defines a number of notations for events corresponding to the permitted inter-
ference described. To summarize, there will be interference events to represent the following
kinds of action by external processes:

• act(D1,D2): Arbitrary action on the heap (excluding allocation or deallocation) owned
by external processes.

• alloc(ℓ, v, ℓ′, v′): Allocation of a new location ℓ′ by an external process, storing the result
in the location ℓ. The location ℓ must initially have been owned by an external process.
Ownership of the new location ℓ′ is taken by the external process.

• dealloc(ℓ, v, ℓ′, v′): Disposal of the location ℓ′ pointed to by ℓ. Both locations are initially
owned by external processes, so ωoth(ℓ) and ωoth(ℓ

′) are preconditions to the event.
• decl(r): Declaration of a resource r. The condition curr(r) is marked by the event, so the
resource was not initially current. Ownership of r is taken by the external process, so
ωoth(r) is in the postconditions of the event.

• end(r): End of scope of a resource r, only permissible if the resource was initially declared
by an external process and therefore ωoth(r) is marked.
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Abbreviation Preconditions Postconditions
u Su Wu uS uW

act(D1, D2) D1 ωoth(dom(D1)) D2 ωoth(dom(D2))

alloc(ℓ, v, ℓ′, v′) {ℓ 7→ v} {ωoth(ℓ)} {curr(ℓ′)}∪ {ωoth(ℓ), ωoth(ℓ
′)}

{ℓ 7→ ℓ′, ℓ′ 7→ v′}

dealloc(ℓ, ℓ′, v′) {curr(ℓ′)}∪ {ωoth(ℓ), ωoth(ℓ
′)} {ℓ 7→ ℓ′} {ωoth(ℓ)}

{ℓ 7→ ℓ′, ℓ′ 7→ v′}

decl(r) {} {} {curr(r), r} {ωoth(r)}

end(r) {curr(r), r} {ωoth(r)} {} {}

acq(r) {r} {ωoth(r)} {} {ωoth(r)}

rel(r) {} {ωoth(r)} {r} {ωoth(r)}

acq(r,D0) D0 ∪ {r} ωinv(dom(D0))∪ D0 ωoth(dom(D0))∪
{ωinv(r)} {ωoth(r)}

rel(r,D0) D0 {ωoth(r)}∪ D0 ∪ {r} {ωinv(r)}∪
ωoth(dom(D0)) ωinv(dom(D0))

Table 1: Interference events

• acq(r): For a closed resource r, the external process may acquire the resource if it is not
local to the process being considered and therefore ωoth(r) is marked.

• rel(r): For a closed resource r, the external process may release the resource if it is not
local to the process being considered and therefore ωoth(r) is marked.

• acq(r,D0): For an open resource r with an invariant χ in Γ, if D0 |= χ and D0 is part
of the current heap then ownership of the locations in the domain of D0 is changed from
being protected by the resource to being owned by the external process, i.e. un-marking
ωinv(ℓ) and marking ωoth(ℓ) for each location ℓ ∈ dom(D0). The ownership of r also
changes, from ωinv(r) being marked to ωoth(r) being marked.

• rel(r,D0): The corresponding release action.

Definition 4.4 (Interference net). The interference net for Γ has conditions S, the state
conditions, and W, the ownership conditions. It has the following events:

• act(D1,D2) for all D1 and D2 forming partial functions with the same domain
• alloc(ℓ, v, ℓ′, v′) and dealloc(ℓ, ℓ′, v′) for all locations ℓ and ℓ′ and values v and v′

• decl(r) and end(r) for all resources r
• acq(r) and rel(r) for all closed resources r
• acq(r,D0) and rel(r,D0) for all r ∈ dom(Γ) and D0 such that D0 |= χ, for χ the unique
formula such that r :χ ∈ Γ

We use the symbol u to range over interference events.
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The interference events illustrate how the ownership of locations is dynamic and how
this constrains the possible forms of interference. The rule for parallel composition requires
that the behaviour of the process being reasoned about itself conforms to these constraints,
allowing its action to be seen as interference when reasoning about the other process. This
requirement may be captured by synchronizing the events of the process with those from
the interference net in the following way:

• The process event act(C,C′)(D,D
′) synchronizes with act(D,D′)

• The process event alloc(C,C′)(ℓ, v, ℓ
′, v′) synchronizes with alloc(ℓ, v, ℓ′, v′)

• The process event dealloc(C,C′)(ℓ, ℓ
′, v′) synchronizes with dealloc(ℓ, ℓ′, v′)

• The process event decl(C,C′)(r) synchronizes with decl(r)

• The process event end(C,C′)(r) synchronizes with end(r)
• The process event acq(C,C′)(r) synchronizes with acq(r) for any closed resource r, i.e. for

any r 6∈ dom(Γ)
• The process event rel(C,C′)(r) synchronizes with rel(r) for any closed resource r
• If r is an open resource with r :χ ∈ Γ, the process event acq(C,C′)(r) synchronizes with ev-

ery acq(r,D0) such that D0 |= χ. Similarly, rel(C,C′)(r) synchronizes with every rel(r,D0)
such that D0 |= χ.

Suppose that two events synchronize, e from the process and u from the interference net.
The event u is the event that would fire in the net for the other parallel process to simulate
the event e; it is its dual. Let e · u be the event formed by taking the union of the pre-
and postconditions of e and u, other than using ωproc(ℓ) in place of ωoth(ℓ), and similarly
ωproc(r) in place of ωoth(r).

•(e · u)
def
= {b | b ∈ •e ∪ •u and 6 ∃z.b = ωoth(z)} ∪ {ωproc(z) | ωoth(z) ∈

•u}

(e · u)•
def
= {b | b ∈ e• ∪ u• and 6 ∃z.b = ωoth(z)} ∪ {ωproc(z) | ωoth(z) ∈ u•}

Example 4.5 (Synchronization of heap actions). Define the following events:

C C′

ℓ 7→ 1ℓ 7→ 0

C C′

ℓ 7→ 1

ωproc(ℓ)

ℓ 7→ 0

ℓ 7→ 0 ℓ 7→ 1

ωoth(ℓ)

e = act(C,C′)({ℓ 7→ 0}, {ℓ 7→ 1}) u = act({ℓ 7→ 0}, {ℓ 7→ 1}) e · u

The event e is an event inside the process net, with pre-control conditions C and post-
control conditions C ′, that changes the value of ℓ from 0 to 1. It synchronizes with only one
event, u, which performs the corresponding interference action. For the event u to occur,
the condition ωoth(ℓ) must be marked i.e. the location ℓ must be seen as owned by an
‘external’ process. The event formed by synchronizing e and u is e · u, which requires the
location ℓ to be owned by the current process for it to occur.

Example 4.6 (Synchronization of critical regions). Define the following events, where the
event e is an event inside the process net, with pre-control conditions C and post-control
conditions C ′, that acquires the open resource r.
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r ωoth(ℓ
′)

ωinv(ℓ
′)

ωinv(r) ωoth(r)

r

ωinv(ℓ
′) ωoth(ℓ

′)

ωoth(ℓ)ωinv(ℓ)

ωinv(r) ωoth(r)

C

r ωproc(ℓ
′)

C′

ωinv(ℓ
′)

ωinv(r) ωproc(r)

C′

r

ωinv(ℓ
′)

ωinv(ℓ) ωproc(ℓ)

ωproc(ℓ
′)

C

ωinv(r)

ωproc(r)

r

C′C

u1 = acq(r,D1)

ℓ′ 7→ 0

u2 = acq(r,D2)

ℓ′ 7→ 1

ℓ 7→ 0

ℓ′ 7→ 0

s1 = e · u1

ℓ′ 7→ 1

ℓ 7→ 0

s2 = e · u2

e = acq(C,C′)(r)

Recall the invariant ℓ′ 7→ 0 ∨ (ℓ′ 7→ 1 ∗ ℓ 7→ 0) used above. There are two heaps, D1 =
{ℓ′ 7→ 0} and D2 = {ℓ′ 7→ 1, ℓ 7→ 0} that satisfy this formula. There are correspondingly two
interference events u1 and u2 that synchronize with e: the event u1 acquires the resource r
and transfers the ownership of ℓ′ and r to the external process from the invariant, whereas
the event u2 acquires the resource r and transfers ownership of ℓ, ℓ′ and r to the external
process from the invariant. The event u1 requires that the heap initially has value 0 at ℓ′;
the event u2 requires that the heap initially has value 1 at ℓ′ and 0 at ℓ. The synchronized
events e · u1 and e · u2 are similar, transferring ownership from the invariant to the process
being considered.

The semantics of judgements made using the rules of concurrent separation logic will
consider a net WJtKΓ with both interference events to represent external processes running
and synchronized events to represent the process t.

Definition 4.7 (Ownership net). The ownership net for t in Γ, denoted WJtKΓ, is the
net formed with the previous definitions of control conditions C, state conditions S and
ownership conditions W, and events:
• Every event u from the interference net for Γ, and
• Every event e ·u where e is an event of N JtK and u from the interference net such that

e and u synchronize.

We shall continue to use the symbol e to refer to any kind of event in ownership nets,
but shall reserve the symbol s for those events known in particular to be synchronized
events.

A consequence of the precision of invariants is that at most one of the synchronized
events corresponding to an event in N JtK may be enabled in any marking of the ownership
net WJtKΓ.

Lemma 4.8. For any marking σ of state conditions, let (C, σ,W ) and (C ′, σ,W ′) be con-
sistent markings of the net WJtKΓ. For any event e in N JtK and any interference events u
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and u′ in WJtKΓ, if e · u has concession in (C, σ,W ) and e · u′ has concession in (C ′, σ,W ′)
then u = u′.

Proof. Straightforwardly seen to follow from precision by an analysis of the possible forms
of the event e.

The occurrence of a synchronized event e · u in a marking (C, σ,W ) of the net WJtKΓ
clearly gives rise to the occurrence of the event e in N JtK. The earlier results describing
the behaviour of N JtK in terms of the behaviour of the nets representing its subterms can
therefore be applied to the net WJtKΓ.

Lemma 4.9. IfM = (C, σ,W ) andM ′ = (C ′, σ′,W ′) are markings of WJtKΓ andM
e

−։M ′

then either e is an interference event and C = C ′ or e = e1 · u for an event e1 of N JtK and

an interference event u and (C, σ)
e1
−։ (C ′, σ′) in N JtK.

Proof. The events of WJtKΓ are, by definition, only interference events or synchronized
events. If e is an interference event, C = C ′ because Ce = ∅ and eC = ∅. For a synchronized
event e1 · u, observe that C(e1 · u) = Ce1 and that (e1 · u)

C = e1
C, and similarly for Le1,

Re1,
Ne1, e1

L, e1
R and e1

N. The only cases where either D(e1 · u) 6=
De1 or (e1 · u)

D 6= e1
D

are acquisition or release of an open resource, but in these cases De1 = ∅ = e1
D and

D(e1 · u) = (e1 · u)
D. The result follows as a straightforward calculation.

The proof that consistent markings are preserved in the net WJtKΓ is similar to that
of Lemma 3.25; the additional requirements on the marking of ownership conditions are
readily seen to be preserved by both interference and synchronized events.

Lemma 4.10 (Preservation of consistent markings). For any closed term t, if in the net
WJtKΓ it is the case that (Ic(t), σ0,W0)−։

∗
(C, σ,W ) and (σ0,W0) is consistent then (σ,W )

is consistent.

The formulation of the ownership net permits a fundamental understanding of when
a process acts in a way that cannot be seen as any form of interference; that is, when the
process has violated its guarantees.

Definition 4.11 (Violating marking). Let (C, σ,W ) be a consistent marking of WJtKΓ. We
say that M is violating if there exists an event e of N JtK that has concession in marking
(C, σ) but there is no event u from the interference net that synchronizes with e such that
e · u has concession in (C, σ,W ).

We shall give two examples of violating markings. The first shall be an example of
action on an unowned location, and the second shows how release of an open resource will
cause a violation if the invariant is not restored.

Example 4.12. Let ({i}, σ,W ) be a consistent marking of WJ[ℓ] := 1KΓ with ℓ 7→ 0 ∈ σ
and ωoth(ℓ) ∈ W . The event e = act({i},{t})({ℓ 7→ 0}, {ℓ 7→ 1}) has concession in (C, σ),

but the only interference event that can synchronize with e is u = act({ℓ 7→ 0}, {ℓ 7→ 1}).
We have ωoth(ℓ) ∈ Wu and therefore ωproc(ℓ) ∈ W(e · u), so the event e · u does not have
concession in the marking (C, σ,W ) which is therefore violating: the process acted on the
unowned location ℓ′.
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Example 4.13. Let r be an open resource with the invariant χ = ℓ′ 7→ 0∨ (ℓ′ 7→ 1∗ ℓ 7→ 0),
and let (C, σ,W ) be a consistent marking of WJtKΓ,r :χ with {ℓ 7→ 1, ℓ′ 7→ 1} ⊆ σ and
ωproc(ℓ), ωproc(ℓ

′) ∈ W . Suppose further that the event e = rel(C1,C2)(r) has concession in
(C, σ) in the net N JtK. The only two interference events in WJtKΓ,r :χ that synchronize with
e are

u1 = rel(r, {ℓ′ 7→ 0})

u2 = rel(r, {ℓ′ 7→ 1, ℓ 7→ 0}),

corresponding to the two ways in which χ can be satisfied. The invariant is not satisfied in
the heap component of σ, so the preconditions of the two events

•(e · u1) = C ∪ {ℓ′ 7→ 0, ωproc(ℓ
′)}

•(e · u2) = C ∪ {ℓ′ 7→ 1, ℓ 7→ 0, ωproc(ℓ
′), ωproc(ℓ)}

are not contained in the marking (C, σ,W ), which is therefore therefore a violating marking
because there was no part of the owned heap that satisfied the invariant yet the resource
was released.

If no violating marking is ever encountered, the behaviour of WJtKΓ encapsulates all
that of N JtK.

Lemma 4.14. For any consistent marking (C, σ,W ) of the net WJtKΓ and any event e ∈

Ev(t), if (C, σ)
e

−։ (C ′, σ′) in N JtK then either (C, σ,W ) is violating or there exists a
marking of ownership conditions W ′ and an interference event u that synchronizes with e

such that (C, σ,W )
e·u
−։ (C ′, σ′,W ′) in WJtKΓ.

Proof. Immediate from the definition of violating marking and the fact that, for any e and
u that synchronize and any state σ

C(e · u) = Ce (e · u)C = eC σ \ S(e · u) ∪ (e · u)S = σ \ Se ∪ eS

which is easily proved by inspection of the forms that e · u may take.

4.2. Soundness and validity. The rule for parallel composition permits the view that the
ownership of the heap is initially split between the two processes, so that what one process
owns is seen as owned by an external process by the other.

Definition 4.15 (Ownership split). LetW be a marking of ownership conditions. Markings
of ownership conditions W1 and W2 form an ownership split of W if for all z ∈ Loc ∪ Res:

• ωoth(z) ∈W iff ωoth(z) ∈W1 and ωoth(z) ∈W2,
• ωinv(z) ∈W iff ωinv(z) ∈W1 and ωinv(z) ∈W2, and
• ωproc(z) ∈W iff either ωproc(z) ∈W1 and ωoth(z) ∈W2,

or ωproc(z) ∈W2 and ωoth(z) ∈W1.

If W1 and W2 form an ownership split of W , then fewer locations and resources are
owned by the process in W1 than in W , and similarly for W2. As one would expect, a
process can act in the same way without causing a violation if it owns more, and more
interference can occur if the process owns less. This is the essence of the frame property
referred to earlier.
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Lemma 4.16. Consider markings of the net WJtKΓ. Let W1 and W2 form an ownership
split of W .

• For any synchronized event s = e ·u, if (C, σ,W1)
s

−։ (C ′, σ′,W ′
1) then there exist W ′ and

W ′
2 such that (C, σ,W )

s
−։ (C ′, σ′,W ′) and (C, σ,W2)

u
−։ (C, σ′,W ′

2), and furthermore
W ′

1 and W ′
2 form an ownership split of W ′.

• For any interference event u, if (C, σ,W )
u

−։ (C, σ′,W ′) then there exist W ′
1 and W ′

2 such

that (C, σ,W1)
u

−։ (C, σ,W ′
1) and (C, σ,W2)

u
−։ (C, σ′,W ′

2), and furthermore W ′
1 and W ′

2

form an ownership split of W ′.

Proof. A straightforward (but long) analysis of the possible forms of s and u.

Following Brookes’ lead, we are now able to prove the key lemma upon which the
proof of soundness lies. The effect of this lemma is that the the terminal states of parallel
processes may be determined simply by observing the terminal markings of the net of each
parallel process running in isolation if we split the ownership of the initial state correctly.
For convenience, the lemma is stated without intimating the particular event that takes
place on the net transition relation.

Lemma 4.17 (Parallel decomposition). Let M = (1:C1∪ 2:C2, σ,W ) be a consistent mark-
ing of the net WJt1 ‖ t2KΓ, and let W1 and W2 form an ownership split of W . The markings
M1 = (C1, σ,W1) and M2 = (C2, σ,W2) are consistent, and furthermore:

• If the marking M is violating in WJt1 ‖ t2KΓ then either M1 is violating in WJt1KΓ or M2

is violating in WJt2KΓ.
• If neither M1 nor M2 is violating and (1:C1 ∪ 2:C2, σ,W ) −։ (1:C ′

1 ∪ 2:C ′
2, σ

′,W ′) in
WJt1 ‖ t2KΓ then there exist W ′

1 and W ′
2 forming an ownership split of W ′ such that

(C1, σ,W1)−։ (C ′
1, σ

′,W ′
1) in WJt1KΓ and (C2, σ,W2)−։ (C ′

2, σ
′,W ′

2) in WJt2KΓ.

Proof. It is straightforward from Definition 4.3 to see that Mi is a consistent marking for
both i ∈ {1, 2}.

(1) Suppose that the marking M is violating in WJt1 ‖ t2KΓ. Without loss of generality,
assume that this is because there exists an event 1:e1 of N Jt1 ‖ t2K that has concession
in marking (1:C1 ∪ 2:C2, σ) but there is no event interference event u such that 1:e1
synchronizes with u and (1:e1) ·u has concession in M . Assume, for contradiction, that
the marking M1 is non-violating in WJt1KΓ. The event e1 has concession in marking
(C1, σ) of N Jt1K by the first part of Lemma 3.6, so there must exist u1 an interference
event of WJt1KΓ such that e1 · u1 has concession in M1. The interference events of
WJt1KΓ are precisely the interference events of WJt1 ‖ t2KΓ and the tagging of control
conditions has no effect on whether events may synchronize, so the event (1:e1) ·u1 is in
WJt1 ‖ t2KΓ. From Lemmas 4.16 and 3.6, the event 1:e1 · u1 has concession in marking
M , which is therefore not violating — a contradiction.

(2) It is a straightforward consequence of Lemma 4.16 that the second property holds if
the transition (1:C1 ∪ 2:C2, σ,W )−։ (1:C ′

1 ∪ 2:C ′
2, σ

′,W ′) is induced by the occurrence
of an interference event. Suppose instead that it is induced by a synchronized event.

Without loss of generality, suppose that in WJt1 ‖ t2KΓ we have M
(1:e1)·u
−։ M ′ for M ′ =

(1:C ′
1∪2:C

′
2, σ

′,W ′), for some event e1 in N Jt1K. We shall show thatM1
e1·u
−։ (C1, σ

′,W ′
1)

in WJt1KΓ and M2
u

−։ (C ′
2, σ

′,W ′
2) in WJt2KΓ for some W ′

1,W
′
2 such that W ′

1 and W ′
2



44 J. HAYMAN AND G. WINSKEL

form an ownership split of W ′. Since we have M
(1:e1)·u
−։ M ′ in WJt1 ‖ t2KΓ, it is easy

to see that we have (1:C1 ∪ 2:C2, σ)
1:e1
−։ (1:C ′

1 ∪ 2:C ′
2, σ

′) in N Jt1 ‖ t2K and C2 = C ′
2.

Hence in N Jt1K we have (C1, σ)
e1
−։ (C ′

1, σ
′). By assumption, the marking (C1, σ,W1)

is not a violating marking of WJt1KΓ, so there exists an interference event u1 that

synchronizes with e1 such that (C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′′

1 ) for some W ′′
1 in WJt1KΓ,

so in WJt1 ‖ t2KΓ we therefore have (1:C1 ∪ 2:C2, σ,W1)
(1:e1)·u1

−։ (1:C ′
1 ∪ 2:C2, σ

′,W ′′
1 ).

By Lemma 4.8, we have u1 = u and therefore W ′′
1 = W1 because the occurrence of an

event in a marking yields a unique marking. Now, by Lemma 4.16 there exist W ′′ and

W ′
2 such that W ′

1 and W ′
2 form an ownership split of W ′′ and (1:C1 ∪ 2:C2, σ,W )

(1:e1)·u
−։

(1:C ′
1 ∪ 2:C2, σ

′,W ′′) and (1:C1 ∪ 2:C2, σ,W2)
u

−։ (1:C1 ∪ 2:C2, σ
′,W ′

2). The occurrence
of an event in a marking leads to a unique marking, so W ′′ =W ′. It is easy to see that

(C1, σ,W1)
e1·u
−։ (C ′

1, σ
′,W ′

1) in WJt1KΓ and that (C2, σ,W2)
u

−։ (C2, σ,W
′
2) in WJt2KΓ,

so the proof is complete.

The ownership semantics described above has been carefully defined to explicitly take
into account the intuitions behind the rule for parallel composition, resulting in the short
proof of the parallel decomposition lemma above. The remaining complexity in the proof
of soundness lies in the rule for establishing an invariant associated with a resource:

(L-Res) :
Γ, r :χ ⊢ {ϕ} [r/w]t {ψ}

Γ ⊢ {ϕ ∗ χ} resource w do t od {ψ ∗ χ}

(

χ precise
r 6∈ dom(Γ)

)

It is quite easy to see why this rule follows the intuitive semantics for judgements presented
above: Any run of the net WJresource w do t odKΓ to a terminal marking from a state with
the heap owned by the process initially satisfying ϕ ∗ χ can be seen, in conjunction with
Lemma 3.21, as consisting first of an event that declares a fresh resource r current, then a
run of WJ[r/w]tKΓ, followed by an event that makes r non-current. The run of WJ[r/w]tKΓ
from a state where the part of the heap that the process owns satisfies ϕ∗χ is simulated by
a run of WJ[r/w]tKΓ,r :χ along which the locations satisfying χ are owned by the invariant
χ in an environment where r is an open resource. In particular, the run obtained has no
interference on the resource r or the locations that it protects and r is available in the
terminal state of the run. Assuming the validity of the judgement Γ, r :χ ⊢ {ϕ} [r/w]t {ψ},
the resulting state owned by the process is therefore seen to satisfy the formula ϕ ∗ χ.
Similarly, if there were a reachable marking in WJresource w do t odKΓ where the process
accesses a location or resource that it does not own would result in there being a reachable
marking in WJ[r/w]tKΓ,r :χ where the process accesses an unowned location or resource.
The more formal presentation of this intuition follows.

We shall begin by explicitly characterizing the runs of the netWJresource w do t0 odKΓ.
The result is again a little technical, as is the following lemma, Lemma 4.21; they are used
in the proof of soundness of the rule (L-Res). The reader may wish to pass through this
result and Lemma 4.21 and only take note of the following definitions of inv(Γ, R) and
D ↾W proc, D ↾W inv and D ↾W oth.

Lemma 4.18. Suppose that σ0 and W0 form a consistent marking of state and ownership
conditions and let t ≡ resource w do t0 od. For a resource r, define the synchronized
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events

sr = decl({i},r:Ic([r/w]t0))(r) · decl(r)

s′r = end(r:Tc([r/w]t0),{t})(r) · end(r)

If in the net WJtKΓ we have π :(Ic(t), σ0,W0)−։
∗
(C, σ,W ) then either:

• C = Ic(t) and π consists only of interference events, or
• there exist r, C ′, σ′,W ′, π0 and π1 such that π0 comprises only interference events, C =
r:C ′ and

π = π0 · sr · (r:π1)

and
π0 · sr : (Ic(t), σ0,W0)−։

∗
(r:Ic([r/w]t0), σ

′,W ′) in WJtKΓ and
π1 : (Ic([r/w]t0), σ

′,W ′)−։
∗
(C ′, σ,W ) in WJ[r/w]t0KΓ, or

• C = Tc(t) and there exist r, σ′, σ′′,W ′,W ′′, π0, π1, π2 such that π0 and π2 comprise only
interference events,

π = π0 · sr · (r:π1) · s
′
r · π2,

and
π0 · sr : (Ic(t), σ0,W0)−։

∗
(r:Ic([r/w]t0), σ

′,W ′) in WJtKΓ,
π1 : (Ic([r/w]t0), σ

′,W ′)−։
∗
(Tc([r/w]t0), σ

′′,W ′′) in WJ[r/w]t0KΓ, and
s′r · π2 : (r:Tc([r/w]t0), σ

′′,W ′′)−։
∗
(Tc(t), σ,W ) in WJtKΓ.

Proof. Readily seen to be a consequence of Lemmas 3.23, 3.21, 3.10 and 4.9.

It can be shown, as a consequence of the preceding lemma, that during the run of the
net following the declaration event, the resource r chosen for w is owned by the process
until it is made non-current at the end of the variable w’s scope.

Lemma 4.19. Let t≡ resource w do t0 od. If (r:C0, σ,W ) is reachable from (Ic(t), σ0,W0),
which is a consistent marking of WJtKΓ, then ωproc(r) ∈W .

We write inv(Γ, R) for the formula χ1 ∗ . . . ∗χn formed as the separating conjunction of
the invariants of all the available, according to R, open resources. It is defined by induction
on the size of the domain of Γ:

inv(∅, R)
def
= empty

inv((Γ, r :χ), R)
def
=

{

inv(Γ, R), if r 6∈ R
χ ∗ inv(Γ, R), if r ∈ R.

Define the notations

D ↾W proc
def
= {ℓ 7→ v ∈ D | ωproc(ℓ) ∈W}

D ↾W inv
def
= {ℓ 7→ v ∈ D | ωinv(ℓ) ∈W}

D ↾W oth
def
= {ℓ 7→ v ∈ D | ωoth(ℓ) ∈W}

to represent the heap at locations owned by the process, invariants and other processes,
respectively. In any state that we consider, we would expect D ↾W inv |= inv(Γ, R). A
marking of the net WJtKΓ can be converted to a marking of WJtKΓ,r :χ by, if r is avail-
able, regarding ownership of the locations satisfying the invariant χ as being owned by the
invariant rather than by the process.
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Definition 4.20. Suppose that χ is a precise heap formula. Let M = (C, (D,L,R,N),W )
be a consistent marking of WJtKΓ such that if r ∈ R then there exists (necessarily unique)
D0 ⊆ D ↾W proc such that D0 |= χ. Define the projection of M into the net WJtKΓ,r :χ to
be

πχr (M)
def
= (C, (D,L,R,N),W ′),

where:

• if r 6∈ R: W ′ =W
• if r ∈ R: Let D0 ⊆ D be such that D0 |= χ.

W ′ = {ωoth(ℓ) |ωoth(ℓ) ∈W}
∪ {ωoth(r

′) |ωoth(r
′) ∈W}

∪ {ωinv(ℓ) |ωinv(ℓ) ∈W or ℓ ∈ dom(D0)}
∪ {ωinv(r

′) |ωinv(r
′) ∈W or r′ = r}

∪ {ωproc(ℓ) |ωproc(ℓ) ∈W and ℓ 6∈ dom(D0)}
∪ {ωproc(r

′) |ωproc(r
′) ∈W and r′ 6= r}

It is clear that ifM is a consistent marking ofWJtKΓ then πχr (M) is a consistent marking
of WJtKΓ,r :χ. They key lemma representing the account above, that behaviour in the net
where a resource is closed is simulated by the net where the resource is open, is now stated,
though we shall not show its proof here.

Lemma 4.21. Let r be a resource such that r 6∈ dom(Γ) and let χ be a precise heap logic
formula. Let M = (C, (D,L,R,N),W ) be a consistent marking of WJtKΓ such that:

• ωproc(r) ∈W ,
• D ↾W inv |= inv(Γ, R), and
• if r ∈ R then there exists D0 ⊆ D ↾W proc such that D0 |= χ.

Then

(1) If M is a violating marking in WJtKΓ then πχr (M) is a violating marking in WJtKΓ,r :χ.
(2) For any event u of WJtKΓ that is an interference event, if M is not a violating marking

and M
u

−։M ′ where M ′ = (C ′, (D′, L′, R′, N ′),W ′) and ωproc(r) ∈W ′ then:

• πχr (M)
u

−։ πχr (M ′) in WJtKΓ,r :χ and:
− D′ ↾W ′ inv |= inv(Γ, R′)
− if r ∈ R′ then there exists D0 ⊆ D′ ↾W ′ proc such that D0 |= χ.

(3) For any synchronized event s = e1 · u of WJtKΓ, if M is not a violating marking and

M
s

−։M ′ where M ′ = (C ′, (D′, L′, R′, N ′),W ′) and ωproc(r) ∈W ′ then either:
• πχr (M) is violating in WJtKΓ,r :χ, or

• there exists u′ such that πχr (M)
e1·u′

−։ πχr (M ′) in WJtKΓ,r :χ and:
− D′ ↾W ′ inv |= inv(Γ, R′)
− if r ∈ R′ then there exists D0 ⊆ D′ ↾W ′ proc such that D0 |= χ.

We shall say that a state σ with an ownership markingW satisfies the formula ϕ and the
invariants in Γ if the heap restricted to the owned locations satisfies ϕ and the invariants
are met for all the available resources. The rest of the heap, seen as owned by external
processes, is unconstrained.

Definition 4.22. A marking (C, σ,W ) of WJtKΓ satisfies ϕ in Γ if:

• the marking (C, σ,W ) is consistent,
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• D ↾W proc |= ϕ, and
• D ↾W inv |= inv(Γ, R),

where σ = (D,L,R,N).

We now attach a notion of validity to judgements Γ ⊢ {ϕ} t {ψ}. It shall assert that no
violating marking is ever reached and that whenever the process t runs to completion from
a state where the part of the heap that it owns satisfies ϕ then the part of the resulting
heap that it owns satisfies ψ.

Definition 4.23 (Validity). Let t be a closed term. Define Γ |= {ϕ} t {ψ} if, for any σ
and W such that the marking (Ic(t), σ,W ) satisfies ϕ in Γ:

• any marking reachable in WJtKΓ from (Ic(t), σ,W ) is non-violating, and
• for any σ′ and W ′, if the marking (Tc(t), σ′,W ′) is reachable in WJtKΓ from (Ic(t), σ,W )
then (Tc(t), σ′,W ′) satisfies ψ in Γ.

It is useful to note that the occurrence of an interference event does not affect whether a
marking satisfies ϕ in Γ or whether it is violating. Consequently, when considering validity
it is unnecessary to account for runs of the net WJtKΓ that start or end with an interference
event.

Lemma 4.24. Let M be a consistent marking of WJtKΓ that satisfies ϕ in Γ and is non-

violating. If u is an interference event and M
u

−։ M ′ then M ′ satisfies ϕ in Γ and is
non-violating.

Proof. Straightforward from the definition of satisfaction of ϕ in Γ by considering the pos-
sible forms of u.

In the rule (L-Res) which allows invariants to be established for resources, only one
resource is considered for substitution for the variable. The following lemma shows that
this is sufficient; the semantics of judgements is unaffected by the choice of resource.

Lemma 4.25. For any resources r, r′ such that r, r′ 6∈ dom(Γ) and any term t with fv(t) ⊆
{w} and res(t) ⊆ dom(Γ),

Γ, r :χ |= {ϕ} [r/w]t {ψ} iff Γ, r′ :χ |= {ϕ} [r′/w]t {ψ}.

Proof. The net WJ[r/w]tKΓ,r :χ is clearly isomorphic toWJ[r′/w]tKΓ,r′ :χ through interchang-
ing the conditions

r ↔ r′ curr(r) ↔ curr(r′)
ωproc(r) ↔ ωproc(r

′) ωinv(r) ↔ ωinv(r
′) ωoth(r) ↔ ωoth(r

′).

The result follows from the definition of validity being insensitive to such permutations.

We are now in a position where we the rules of concurrent separation logic can be
proved sound. Only two important cases of the proof shall be presented here; full details
will be available in the first author’s PhD thesis.
Theorem 4.26 (Soundness). For any closed term t, if Γ ⊢ {ϕ} t {ψ} then Γ |= {ϕ} t {ψ}.

Proof. By rule induction on the judgement Γ ⊢ {ϕ} t {ψ}. Note that, due to Lemma 4.24,
we shall only consider runs of WJtKΓ that do not start or end with an interference event.

(L-Par): Suppose that we have Γ ⊢ {ϕ1 ∗ ϕ2} t1 ‖ t2 {ψ1 ∗ ψ2} because Γ ⊢ {ϕ1} t1 {ψ1}

and Γ ⊢ {ϕ2} t2 {ψ2}. Assume that marking M = (Ic(t1 ‖ t2), σ,W ) satisfies ϕ1 ∗ ϕ2 in Γ.
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It can be seen from the definitions that there existW1 andW2 forming an ownership split of
W such that (Ic(t1), σ,W1) is a marking of WJt1KΓ that satisfies ϕ1 in Γ and (Ic(t2), σ,W2)
satisfies ϕ2 in Γ. Let marking M ′ = (C ′, σ′,W ′) be reachable from M ; a simple induction
on the length of path to M using Lemma 4.17 and Lemma 3.17 shows that there exist
C ′
1, C

′
2,W

′
1 and W ′

2 such that C ′ = 1:C ′
1 ∪ 2:C ′

2 and W ′
1 and W ′

2 form an ownership split of
W ′. Furthermore, the marking (C ′

1, σ
′,W ′

1) is reachable from (Ic(t1), σ,W1) in WJt1KΓ and
(C ′

2, σ
′,W ′

2) is reachable from (Ic(t2), σ,W2) in WJt2KΓ.
Suppose that the marking M ′ is violating. Using Lemma 4.17, it follows that either

(C ′
1, σ

′,W ′
1) or (C ′

2, σ
′,W ′

2) is a violating marking. This contradicts either the induction
hypothesis for Γ ⊢ {ϕ1} t1 {ψ1} or the induction hypothesis for Γ ⊢ {ϕ2} t2 {ψ2}, so M

′

cannot be violating.
Now suppose that the marking M ′ is terminal: we have C ′

1 = Tc(t1) and C
′
2 = Tc(t2).

From the induction hypotheses, we obtain that (C ′
1, σ

′,W ′
1) satisfies ψ1 in Γ and that

(C ′
2, σ

′,W ′
2) satisfies ψ2 in Γ. It is easy to see from the definition of ownership split that

therefore (C ′, σ′,W ′) satisfies ψ1 ∗ ψ2 in Γ.

(L-Res): Let t ≡ resource w do t0 od. Suppose that Γ ⊢ {ϕ∗χ} t {ψ∗χ} because Γ, r0 :χ ⊢

{ϕ} [r0/w]t0 {ψ} for some r0 6∈ dom(Γ). Assume that the marking M = (Ic(t), σ,W )
satisfies ϕ ∗ χ in Γ, and let M ′ = (C ′, σ′,W ′) be reachable from M in WJtKΓ. According to
Lemma 4.18, there are three cases to consider for the marking M ′.

• The first case has M = M ′ (we need not consider runs starting with an interference
event according to Lemma 4.24). Since Ic(t) 6= Tc(t), all that we must show is that M
is non-violating. Using Lemma 3.21, we can infer that the only events with concession in
the marking (Ic(t), σ) of N JtK are equal to decl(Ic(t),r:Ic([r/w]t0))(r) for some r ∈ Res such
that curr(r) 6∈ σ. The marking M is assumed to be consistent, so for each such r we
have ωproc(r) 6∈ W and hence the synchronized event decl(Ic(t),r:Ic([r/w]t0))(r) · decl(r) has
concession in M . The marking M ′ cannot therefore be violating.

• Secondly, there exists a resource r, markings σ0,W0, C1 and a path π1 such that C ′ = r:C1

and
sr : (C, σ,W ) −։ (r:Ic([r/w]t0), σ0,W0) in WJtKΓ
π1 : (Ic([r/w]t0), σ0,W0) −։

∗
(C1, σ

′,W ′) in WJ[r/w]t0KΓ,

where sr = decl(Ic(t),r:Ic([r/w]t0))(r) ·decl(r). The marking (C ′, σ′,W ′) cannot be a terminal
marking of the net WJtKΓ, so all that we must show is that it is non-violating. We have
r, curr(r) ∈ σ0 and ωproc(r) ∈ W0 since they are in the postconditions of sr. A simple
induction on the length of π using Lemmas 4.19 and 4.21 informs that πχr (C1, σ

′,W ′) is
reachable from πχr (Ic([r/w]t0), σ0,W0) in WJ[r/w]t0KΓ,r :χ. We have curr(r) 6∈ σ because
the event sr has concession in M , so r 6∈ dom(Γ) because the marking M is consistent.
Since res(t) ⊆ dom(Γ) by Lemma 4.2, we may use Lemma 4.25 in conjunction with
the induction hypothesis to obtain Γ, r :χ |= {ϕ} [r/w]t0 {ψ}. It is an easy calculation
to show that πχr (Ic([r/w]t0), σ0,W0) satisfies ϕ in Γ, r :χ, so the marking πχr (C1, σ

′,W ′)
is non-violating. By Lemma 4.21, the marking (C1, σ

′,W ′) of WJ[r/w]t0KΓ is therefore
non-violating. According to Lemma 3.21, there are two possible ways in which the mark-
ing (C ′, σ′,W ′) of WJtKΓ might be violating. Firstly, there might exist an event e of
N J[r/w]t0K that has concession in the marking (C1, σ

′) but there is no interference event
u that synchronizes with e such that e · u has concession in the marking (C1, σ

′,W ′).
We have shown, however, that this is not the case since the marking (C1, σ

′,W ′) is non-
violating. Alternatively, the event e′r = end(r:Tc([r/w]t0),Tc(t))(r) might have concession in
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the marking (C ′, σ′) of N JtK but the event s′r = e′r · end(r) might not have concession
in (C ′, σ′,W ′); that is, ωproc(r) 6∈ W ′. However, we have ωproc(r) ∈ σ0 so by applying
Lemma 4.19 along path π1 we obtain ωproc(r) ∈ W ′. So the event s′r has concession in
the marking, which is therefore not violating.

• The final case is where C ′ = Tc(t) and there exist σ0, σ1,W0,W1 and a path π1 such that

sr : (Ic(t), σ,W ) −։ (r:Ic([r/w]t), σ0,W0) in WJtKΓ
π1 : (Ic([r/w]t0), σ0,W0) −։

∗
(Tc([r/w]t0), σ1,W,1 ) in WJ[r/w]t0KΓ

s′r : (r:Tc([r/w]t0), σ1,W1) −։ (Tc(t), σ′,W ′) =M ′ in WJtKΓ,

where sr = decl(Ic(t),r:Ic([r/w]t0))(r) · decl(r). The marking M ′ is readily seen to be non-
violating since no event of N JtK has concession if the marking of control conditions is
Tc(t). All that remains is to show that M ′ satisfies ψ in Γ. As in the previous case,
we have r, curr(r) ∈ σ0 and ωproc(r) ∈ W0 and r 6∈ dom(Γ). It is easily seen that the
marking πχr (Ic([r/w]t0), σ0,W0) of WJ[r/w]t0KΓ,r :χ satisfies ϕ in Γ, r :χ. A simple induc-
tion on the length of the path π using Lemmas 4.19 and 4.21 shows that the marking
πχr (Tc([r/w]t0), σ1,W1) is reachable in WJ[r/w]t0KΓ,r :χ from πχr (Ic([r/w]t0), σ0,W0). Us-
ing Lemmas 4.25 and 4.2, from the induction hypothesis Γ, r0 :χ |= {ϕ} [r0/w]t0 {ψ}, the
marking πχr (Tc([r/w]t0), σ1,W1) satisfies ψ in Γ, r :χ. We have r ∈ σ1 since the event s′r
has concession in the marking (r:Tc([r/w]t0), σ1,W1), so the marking (Tc([r/w]t0), σ1,W1)
satisfies ψ ∗ χ in Γ, from which it is easily seen that (Tc(t), σ′,W ′) also satisfies ψ ∗ χ in
Γ.

The following result connects the definition of validity to the execution of processes
without interference or ownership.

Corollary 4.27 (Connection). Let t be a closed term with res(t) = ∅ and let σ = (D,L, ∅, ∅)
be a consistent marking of state conditions for which D |= ϕ. If ∅ |= {ϕ} t {ψ} then
whenever a terminal marking (Tc(t), σ′) is reachable from (Ic(t), σ) in N JtK, the resulting
heap D′ satisfies ψ, where σ′ = (D′, L′, R′, N ′).

Proof. A consequence of soundness and Lemma 4.14.

4.3. Fault. It can be seen that the rules of concurrent separation logic ensure that pro-
cesses, running from suitable initial states, only access current locations. The syntax of
the language ensures that processes only access current resources and that they are never
blocked when releasing a resource through it already being available. We shall now demon-
strate that processes avoid such ‘faults’, in which we shall say that an event e is control-

enabled in a marking C of control conditions if there exists a marking C ′ such that C
e

−։C C
′.

Definition 4.28 (Fault). There is a fault in a marking M = (C, σ) of the net N JtK if there
exists a control-enabled event e in N JtK with Ce = C1 and eC = C2 for some C1, C2 such
that either:

(1) there exist D,D′ such that e = act(C1,C2)(D,D
′) and there exists ℓ ∈ dom(D) with

curr(ℓ) 6∈ σ,
(2) there exist ℓ, v, ℓ′, v′ such that e = alloc(C1,C2)(ℓ, v, ℓ

′, v′) and curr(ℓ) 6∈ σ,
(3) there exist ℓ, v, ℓ′, v′ such that e = dealloc(C1,C2)(ℓ, v, ℓ

′) and either curr(ℓ) 6∈ σ or
curr(ℓ′) 6∈ σ,

(4) there exists r such that either e = acq(C1,C2)(r) or e = rel(C1,C2)(r) and curr(r) 6∈ σ, or
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(5) there exists r such that e = rel(C1,C2)(r) and r ∈ σ.

This definition also applies to markings (C, σ,W ) of WJtKΓ in the by ignoring the
marking of ownership conditions W and considering synchronized events e · u.

Theorem 4.29 (Fault avoidance). Suppose that Γ ⊢ {ϕ} t {ψ} and that the marking
(Ic(t), σ0,W0) satisfies ϕ in Γ. If (C, σ,W ) is reachable from (Ic(t), σ0,W0) then there is
not a fault in (C, σ,W ).

Proof. By rule induction on the judgement Γ ⊢ {ϕ} t {ψ}.

A corollary of this result and Lemma 4.14 is that if ∅ ⊢ {ϕ} t {ψ} then no fault is
reachable from an initial marking of N JtK if the heap initially satisfies ϕ.

5. Separation

As mentioned in the introduction, the logic discriminates between the parallel compo-
sition of processes and their interleaved expansion. In Brookes’ trace semantics [Bro07],
this was accounted for by making the notion of a race primitive within the semantics:
when forming the parallel composition of processes, if two processes concurrently write to
the same location, a special ‘race’ action occurs and the trace proceeds no further. Our
approach when defining the semantics has been different; we do not regard a race as ‘cata-
strophic’ and have not embellished our semantics with special race states. Instead, we shall
prove, using the semantics directly, that races do not occur for proved processes running
from suitable initial states.

Generally, a race can be said to occur when two interacting heap actions occur concur-
rently. Recall that a heap action is represented in the net semantics by a set of events, with
common pre- and post-control conditions, representing each way in which the action can
affect the heap. According to the net model, two actions may be allowed to run concurrently
if their events do not overlap on their pre- or post-control conditions. In such a situation,
where Ce1

C ∩ Ce2
C = ∅, we shall say that e1 and e2 are control-independent.

One way of capturing the race freedom of a process running from an initial state is to
show that there is no reachable marking in the net where two control-independent events are
control-enabled but access a common heap location, except interaction through allocation.
We, however, shall prove a result based on the behaviour of processes: that whenever two
events are control-independent and can occur, then either they are independent or they lie
within a form of prescribed class of action.

Definition 5.1 (Separation of synchronized events). Let M be a marking of WJtKΓ and
let s1 = e1 · u1 and s2 = e2 · u2 be control-independent synchronized events of WJtKΓ. The
separation property of s1 and s2 at M is defined as:

(1) If M
s1
−։M1 and M

s2
−։M2 and s1 and s2 are not independent then either:

• s1 and s2 compete to allocate the same location: e1 = alloc(C1,C′
1)
(ℓ, v, ℓ′, v′) and

e2 = alloc(C2,C′
2)
(k,w, ℓ′, w′) for some ℓ, ℓ′, k, v, v′, w′;

• s1 and s2 compete to make the same resource current: e1 = decl(C1,C′
1)
(r) and e2 =

decl(C2,C′
2)
(r) for some r; or

• s1 and s2 compete to acquire the same resource: e1 = acq(C1,C′
1)
(r) and e2 =

acq(C2,C′
2)
(r) for some r.
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(2) If M
s1
−։M1

s2
−։M2 and s1 and s2 are not independent then either:

• s1 deallocates a location that s2 allocates: e1 = dealloc(C1,C2)(ℓ, v, ℓ
′, v′) and e2 =

alloc(C2,C′
2)
(k,w, ℓ′, w′) for some ℓ, ℓ′, k, v, v′, w′;

• s1 makes a resource non-current that s2 makes current: e1 = end(C1,C′
1)
(r) and e2 =

decl(C2,C′
2)
(r) for some r; or

• s1 releases a resource that s2 takes: e1 = rel(C1,C′
1)
(r) and e2 = acq(C2,C′

2)
(r) for some

r.
(3) The symmetric statement for M

s2
−։M2

s1
−։M1.

The first part of the property above tells us how the enabled events of parallel processes
conflict with each other in a state: the way in which one parallel process can prevent the
other acting in a particular way on the global state. The second part dictates how the
event occurrences of parallel processes causally depend on each other: the way in which the
ability of one process to affect the global state in a particular way is dependent on events
of the other process.

Importantly, whenever the two events s1 and s2 arise from heap actions, they neither
conflict nor causally depend on each other. This is our net analogue of race freedom.
Theorem 5.4 shows that processes proved by the logic are race free when running from
suitable initial states. We shall make use of the following rather technical lemmas in the
proof.

For a synchronized event s and an interference event u, define the separation prop-
erty for s and u at M similarly, recalling that any synchronized event is trivially control-
independent from any interference event because CuC = ∅ for any interference event u. It is
always the case that a synchronized event and an interference event satisfy the separation
property in any consistent marking.

Lemma 5.2. If M is a consistent marking of WJtKΓ and s is a synchronized event and u
is an interference event then s and u satisfy the separation property in M .

Proof. A straightforward analysis of the many cases for s and u.

The following lemma relates independence from an interference event to independence
from any corresponding synchronized event. Recall that we write eIe′ if e and e′ are
independent.

Lemma 5.3. Let s be any synchronized event of WJtKΓ and u be an interference event of
WJtKΓ. Suppose that M is a consistent marking in which they both have concession. If e1
is an event of N JtK that synchronizes with u and sIu and s is control-independent from e1
then sI(e1 · u).

Proof. It is easy to see that the preconditions of e1 · u are simply the preconditions of u
along with the pre-control conditions of e1 apart from replacing ωoth(ℓ) with ωproc(ℓ) and
replacing ωoth(r) with ωproc(r). The postconditions of e1 · u are similar.

Suppose, for contradiction, that ¬(sI(e1 · u)). Since sIu and s is control-independent
from e1, it follows that there must exist z ∈ Loc ∪Res such that ωproc(z) ∈

•s• ∩ •(e1 · u)
•.

From the definition of synchronization, we therefore have ωoth(z) ∈ •u•. The proof is
completed by analysis of the cases for how ωproc(z) ∈

•s•; we shall show only one illustrative
case, that where z is a location ℓ such that ωproc(ℓ) ∈

•s but ωproc(ℓ) 6∈ s•.
In this case, the event s must either deallocate the location ℓ or must release a resource

r with r ∈ dom(Γ) and ℓ forms part of the heap used to satisfy the invariant for r. As the
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event s has concession in M , we have ωproc(ℓ) ∈ M . By assumption, u has concession in
M and ωoth(ℓ) ∈ •u•. We cannot have ωoth(ℓ) ∈ •u since ωproc(ℓ) ∈ M , so ωoth(ℓ) ∈ u•.
Therefore, the event u is an interference event that either allocates the location ℓ or acquires
an open resource r and ℓ is part of the heap that satisfies the invariant for r. If u is such an
event, that acquires r, it must be the case that ωinv(ℓ) ∈

•u so ωinv(ℓ) ∈ M , contradicting
that M is a consistent marking with ωproc(ℓ) ∈ M . Consequently, u must in fact be an
event that allocates the location ℓ, so therefore curr(ℓ) 6∈ M . We then arrive at another
contradiction since it must then be the case that ωproc(ℓ) 6∈M because M is consistent.

We may now show that the separation property does indeed hold for any two events
s1 and s2 in WJtKΓ for any term t and environment Γ such that Γ ⊢ {ϕ} t {ψ} in any
marking M = (C, σ,W ) reachable from an initial marking of t that satisfies ϕ in Γ. The
proof is most interesting in the case where t ≡ t1 ‖ t2 and s1 is an event of t1 and s2 is
an event of t2. The case proceeds by establishing, as in Theorem 4.26, that there exists
an ownership split W1 and W2 of W for which s1 has concession in (C1, σ,W1), where
C1 is the marking of control conditions in C for t1, and there exist e2 and u2 such that
s2 = (2:e2) ·u2 and u2 also has concession in the marking (C1, σ,W1) of WJt1KΓ. By Lemma
5.2, the separation property therefore holds for s1 and u2 in the marking (C1, σ,W1). It
follows that the separation property holds for s1 and s2 in M since, by Lemma 5.3, if the
events s1 and u2 are independent then so are s1 and s2.

Theorem 5.4 (Separation). Suppose that Γ ⊢ {ϕ} t {ψ} and that (Ic(t), σ0,W0) satisfies
ϕ in Γ. For any events s1 and s2 in WJtKΓ and any marking (C, σ,W ) reachable from
(Ic(t), σ0,W0), the separation property holds for s1 and s2 at (C, σ,W ).

Proof. By induction on the derivation of Γ ⊢ {ϕ} t {ψ}. We shall show only one case:

(L-Par): Assume that the marking (Ic(t1 ‖ t2), σ0,W0) of WJt1 ‖ t2KΓ satisfies ϕ1 ∗ϕ2 in Γ

and that M = (1:C1∪2:C2, σ,W ) is reachable from this marking. There exist W01 and W02

forming an ownership split of W0 such that the marking (Ic(t1), σ0,W01) of WJt1KΓ satisfies
ϕ1 in Γ and the marking (Ic(t2), σ0,W02) of WJt2KΓ satisfies ϕ2 in Γ. By assumption,
Γ ⊢ {ϕ1} t1 {ψ1} and Γ ⊢ {ϕ2} t2 {ψ2}, so according to Theorem 4.26 no violating marking
is reachable from either of these markings.

Let s1 and s2 be synchronized events inWJt1 ‖ t2KΓ. If s1 = (1:e1)·u1 and s2 = (1:e2)·u2
for some e1, e2 ∈ Ev(t1) and interference events u1 and u2 in WJt1KΓ, the result follows
routinely from the induction hypothesis, and similarly if s1 and s2 both arise from events
of N Jt2K. Suppose instead that there exist e1 ∈ Ev(t1), e2 ∈ Ev(t2) and interference events
u1 and u2 such that s1 = (1:e1) · u1 and s2 = (2:e2) · u2.

Suppose first that in the net WJt1 ‖ t2KΓ we have

M
s1
−։ (1:C ′

1 ∪ 2:C ′
2, σ

′,W ′)
s2
−։ (1:C ′′

1 ∪ 2:C ′′
2 , σ

′′,W ′′).

A simple induction applying the parallel decomposition lemma (Lemma 4.17) along the
path to M shows that there exist W1 and W2 that form an ownership split of W such that

(C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′

1)
u2
−։ (C ′′

1 , σ
′′,W ′′

1 )

in WJt1KΓ for some W ′
1,W

′′
1 . By Lemma 5.2, the separation property holds for e1 · u1 and

u2 in (C1, σ,W1); consider how it might hold. If e1 · u1 deallocates a location that u2
allocates, then s1 deallocates a location that s2 allocates, so the separation property holds
for s1 and s2. The argument is similar for all the other cases where e1 · u1 and u2 are not
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independent. Suppose instead that e1 · u1Iu2. The event u2 has concession in the marking
(C1, σ,W1) by virtue of the fact that the occurrence of independent events in a run can be
interchanged (Proposition 3.4). Consider the marking (1:C1 ∪ 2:C2, σ,W1) of WJt1 ‖ t2KΓ;
this is straightforwardly seen to be consistent. The event s1 is readily seen using Lemma
3.6 to have concession in this marking, as does u2. The event 2:e2 is control-independent
from 1:e1, so by Lemma 5.3 we have s1Is2, as required.

Now suppose that in the net WJt1 ‖ t2KΓ we have

M
s1
−։ (1:C ′

1 ∪ 2:C ′
2, σ

′,W ′) and M
s2
−։ (1:C ′′

1 ∪ 2:C ′′
2 , σ

′′,W ′′).

A simple induction applying the parallel decomposition lemma (Lemma 4.17) along the
path to M shows that there exist W1 and W2 that form an ownership split of W such that

(C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′

1) and (C1, σ,W1)
u2
−։ (C ′′

1 , σ
′′,W ′′

1 )

in WJt1KΓ for some W ′
1,W

′′
1 . By Lemma 5.2, the separation property holds for e1 · u1 and

u2 in (C1, σ,W1); consider how it might hold. If e1 · u1 allocates a location that u2 also
allocates, then s1 allocates a location that s2 allocates, so the separation property holds
for s1 and s2. The argument is similar for all the other cases where e1 · u1 and u2 are not
independent. Suppose instead that e1 · u1Iu2. Consider the marking (1:C1 ∪ 2:C2, σ,W1)
of WJt1 ‖ t2KΓ; this is readily seen to be consistent. The event s1 has concession in this
marking as does u2. The event 2:e2 is control-independent from 1:e1, so by Lemma 5.3 we
have s1Is2, as required.

The remaining cases of the proof follow relatively straightforwardly by induction. The case
for (L-Res) requires an observation along the lines of Lemma 4.25; that, for any term t
with fv(t) ⊆ {w} and resources r, r′ 6∈ dom(Γ), if the separation property holds for any
two synchronized events of WJ[r/w]tKΓ in any marking reachable from any initial marking
satisfying ϕ in Γ then it also holds for WJ[r′/w]tKΓ.

The proof for the rule (L-Seq) follows straightforwardly by induction using Lemma
3.15 except in the second (and symmetric third) cases of the definition of the separation

property, where there are reachable markings M,M ′,M ′′ such that M
s1
−։ M ′

s2
−։ M ′′ and

there exist events e1 ∈ Ev(t1) and e2 ∈ Ev(t2) and interference events u1, u2 such that
s1 = (P ⊳1:e1) ·u1 and s2 = (P ⊲2:e2) ·u2 for P = 1:Tc(t1)×2:Ic(t2). In this case, it follows
from Lemma 3.15 and Lemma 3.12 that the events s1 and s2 are not control-independent.

The result can be applied, using Lemma 4.14 and the observation that e1 · u1Ie2 ·
u2 implies that e1Ie2, to obtain a similar result for the net semantics of terms without
ownership.

Corollary 5.5. Let t be a closed term. Suppose that ∅ ⊢ {ϕ} t {ψ} and that σ0 =
(D0, L0, ∅, ∅) is a state for which D0 |= ϕ. If M is a marking reachable from (Ic(t), σ0)
in N JtK and e1 and e2 are control-independent events then:

• If M
e1
−։ M1

e2
−։ M ′ then either e1 and e2 are independent or e1 releases a resource or

a location that e2 correspondingly takes or allocates, or e1 makes non-current a resource
that e2 makes current.

• If M
e1
−։ M1 and M

e2
−։ M2 then either e1 and e2 are independent or e1 and e2 compete

either to make current the same resource, acquire the same resource or to allocate the
same location.
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5.1. Incompleteness. The separation result highlights an important form of possible in-
teraction between concurrent processes. Observe that, although there is neither conflict
nor causal dependence arising from heap events (and hence the processes are race-free in
the sense of Brookes), there may be interaction through the occurrence of allocation and
deallocation events. One may therefore give judgements for parallel processes that interact
without using critical regions. Suppose, for example, that we have a heap

D = {ℓ0 7→ ℓ1, ℓ1 7→ 1, ℓ2 7→ 2, ℓ3 7→ 3, ℓ4 7→ 4}.

For any processes t1 and t2 such that t1 does not deallocate ℓ1, if we place the process

t1; dealloc(ℓ0)

in parallel with
alloc(ℓ2); while [ℓ2] 6= ℓ1 do alloc(ℓ2) od; t2,

the process t2 only takes place once t1 has terminated, and possibly never, even if t1 ter-
minates. This arises from the fact that the loop in the second process will only exit when
location ℓ1 is allocated by the command alloc(ℓ2); this can only occur once dealloc(ℓ0)
makes ℓ1 non-current and therefore available for allocation by alloc(ℓ2). Denote this pro-
cess seq(t1, t2).

We can use this to show that concurrent separation logic is incomplete with respect to
our definition of validity: Let t1 be the assignment [ℓ3] := 1 and t2 be [ℓ3] := 2. Define the
formula

δ
def
= ℓ0 7→ ℓ1 ∗ ℓ1 7→ − ∗ ℓ2 7→ − ∗ ℓ3 7→ − ∗ ℓ4 7→ −.

We have ∅ |= {δ} seq(t1, t2) {ℓ3 7→ 2 ∗ ⊤} since, whenever seq(t1, t2) terminates, the assign-
ment [ℓ3] := 2 always occurs after the assignment [ℓ3] := 1. The separation property holds
in any marking reachable from any heap initially satisfying δ. It can be shown that

∅ 6⊢ {δ} seq(t1, t2) {ℓ3 7→ 2 ∗ ⊤},

so the logic is incomplete, even for processes satisfying the separation property.
There are also examples of incompleteness where neither process accesses a common

heap location along any run: Let

t′1 = alloc(ℓ3); while [ℓ3] 6= ℓ5 do alloc(ℓ3) od

t′2 = alloc(ℓ4); ([ℓ4] = ℓ5).skip+ ([ℓ4] 6= ℓ5).diverge,

for the previous definition of diverge and the obvious definition of skip, AJskipK = {(∅, ∅)}.
Since the location ℓ5 is always current following termination of t′1 from D, process t′2 always
diverges. We have

∅ |= {δ} seq(t′1, t
′
2) {⊥}.

However, there are no δ1, δ2 such that δ is logically equivalent to δ1∗δ2 and ∅ |= {δ2} t
′
2 {⊥},

which would be necessary if it were possible to prove ∅ ⊢ {δ} seq(t′1, t
′
2) {⊥}.
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6. Refinement

As we remarked in the introduction, the atomicity assumed of primitive actions, also
called their granularity, is of significance when considering parallel programs. For example,
suppose that the concurrent program

[ℓ] := [ℓ′] + 1
‖ ([ℓ]′ 6= [ℓ]).diverge+ ([ℓ]′ = [ℓ]).skip

runs from the heap {ℓ 7→ 0, ℓ′ 7→ 1}. Given the prior interpretations of skip and diverge,
we might conclude that the program never terminates since the assignment [ℓ] := [ℓ′] + 1
maintains the property through execution that ℓ and ℓ′ hold different values.

It may not, however, be reasonable to assume that the assignment is executed atomi-
cally. For instance, the processor on which the process runs might have primitive actions
for copying the values held in memory locations and for incrementing them, but not for
copying and incrementing in one clock step. The process [ℓ] := [ℓ′] + 1 might therefore be
compiled to execute as [ℓ] := [ℓ′]; [ℓ] := [ℓ] + 1. Quite clearly, the process

[ℓ] := [ℓ′]; [ℓ] := [ℓ] + 1
‖ ([ℓ]′ 6= [ℓ]).diverge+ ([ℓ]′ = [ℓ]).skip

may terminate, so we failed to exhibit a proper degree of caution when asserting that it
would fail to terminate.

In [Rey04], Reynolds proposes a form of trace semantics that regards the occurrence of
uncontrolled interference between concurrent processes as ‘catastrophic’. The motivation
behind this is the race freedom property arising from concurrent separation logic [Bro04]:
in the semantics of a proved process running from a suitable initial state, no uncontrolled
interference may occur. Reynolds’ observation is that, in this situation, judgements may be
made that are insensitive to atomicity.

Within our net model we can provide a form of refinement, similar to that of [vGG89]
but suited to processes executing in a shared environment, that begins to capture these ideas.
Importantly, the property required to apply the refinement operation may be captured
directly in terms of independence, with no changes to our semantics. We will relate the
nets representing processes with different levels of atomicity by regarding them as alternative
substitutions into a context. We will then give a condition on substitutions led by Theorem
5.4 to show that any partial correctness assertion made for one of the nets also holds for
the other.

The treatment of substitution requires some restrictions to be placed on the nets we
consider. In the remainder of this section and in Appendix A where we present the technical
details of this section, we require that all embedded nets satisfy the structural properties
described in Lemma 3.11 and Definition 3.13.

Definition 6.1 (Context). Define a context K to be a embedded net with a distinguished
event [−]. The event [−] is such that •[−]• ⊆ C and its pre- and postconditions form
disjoint, nonempty sets.

We may now construct the net representing the substitution of a net N for the hole in
a context K. We shall assume that, as in the semantics for terms, the two nets are formed
with the same sets of conditions. As the nets are extensional (we regard an event simply as
its set of preconditions paired with its set of postconditions), all that we need to specify is
the events of the net and its initial and terminal markings of control conditions.
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Definition 6.2 (Substitution). Let K be a context and N an embedded net. Define the
sets

Pi
def
= 1 : •[−]× 2 : Ic(N) Pt

def
= 1 : [−]• × 2 : Tc(N).

The substitution K[N ] is defined to be the embedded net with:

Ev(K[N ])
def
= (Pi ∪ Pt) ⊳ 1 :(Ev(K) \ {[−]}) ∪ (Pi ∪ Pt) ⊲ 2 : Ev(N)

Ic(K[N ])
def
= (Pi ∪ Pt) ⊳ 1 : Ic(K)

Tc(K[N ])
def
= (Pi ∪ Pt) ⊳ 1 : Tc(K)

To see the definition at work, consider the following example. We elide details of the
action of events on state conditions, which is unaffected by the substitution operation.

Example 6.3. In the following example substitution, we depict the hole [−] as a hollow
rectangle.

e1

c1

c2

e2

a1

a2

x
[−]

=

i1

i2

t1

t2

e4

e3

1 : c1

1 : c2

(1 :x, 2 : t1)

(1 :x, 2 : t2)

(1 : a1, 2 : i2)
(1 : a2, 2 : i1)

(1 : a2, 2 : i2)

P ⊲ 2 : e3

P ⊲ 2 : e4

(1 : a1, 2 : i1)

P ⊳ 1 : e2

P ⊳ 1 : e1

KIc(K) Tc(K) Ic(N) N
Ic(K[N ]) K[N ]

Tc(N)
Tc(K[N ])

Definition 6.4. Let π be a sequence of events of the net N . Sequence π is said to be
complete from σ to σ′ if

π :(Ic(N), σ)−։
∗
(Tc(N), σ′).

Write N :σ ⇓σ′ if there exists a complete sequence from σ to σ′ in N .

Using this definition, we can define a notion of complete trace equivalence ≃ as:

N1 ≃ N2 iff (∀σ, σ′)N1 :σ ⇓σ
′ ⇐⇒ N2 : σ ⇓σ

′.

We wish to constrain K, N1 and N2 appropriately so that if N1 ≃ N2 then K[N1] ≃ K[N2].

Example 6.5. Write, in the obvious way, − for the action term that will be interpreted as
forming the hole of a context. Define

K
def
= N J− ‖ ([ℓ]′ 6= [ℓ]).diverge+ ([ℓ]′ = [ℓ]).skipK

N1
def
= N J[ℓ] := [ℓ′] + 1K

N2
def
= N J[ℓ] := [ℓ′]; [ℓ] := [ℓ] + 1K.

We clearly have N1 ≃ N2, but K[N1] 6≃ K[N2] since

K[N1] :{ℓ 7→ 0, ℓ′ 7→ 1} 6⇓{ℓ 7→ 2, ℓ′ 7→ 1}

but
K[N2] :{ℓ 7→ 0, ℓ′ 7→ 1}⇓{ℓ 7→ 2, ℓ′ 7→ 1}.

Return to the general case for a substitution K[N ]. Intuitively, if the substituend N
were an atomic event, it would start running only if the conditions Pi were marked and Pt

were not. There are two distinct ways in which the context K can affect the execution of N .
Firstly, it might affect the marking of conditions in Pi or Pt whilst N is running. Secondly,
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it might change the marking of state conditions in a way that affects the execution of N .
An instance of the latter form of interference is seen in the preceding example. We now
define a form of constrained substitution, guided by Theorem 5.4, so that N is not subject
to these forms of interference.

Say that a control condition c of K[N ] is internal to N if c = 2 : c2 where c2 is a pre-
or a postcondition of an event of N that is not in Ic(N) or Tc(N). Given a marking M of
K[N ], say that N is active if Pi ⊆M or there exists an internal condition of N in M .

Definition 6.6. For a given marking of state conditions σ, we say that K[N ] is a non-
interfering substitution if, for all markings M reachable from (Ic(K[N ]), σ):

(1) if Pi ⊆M then Pt ∩M = ∅, and
(2) if N is active in M then no enabled event of K has a pre- or postcondition in Pi or

Pt, and

(3) if M
e1
−։ M1

e2
−։ M ′, one of e1 and e2 is from N and the other is from K and N is

active in M and M1, then e1 and e2 are independent.

Theorem 6.7. If N1 ≃ N2 and K[N1] and K[N2] are non-interfering substitutions from
state σ, then, for any σ′:

K[N1] : σ ⇓σ
′ iff K[N2] :σ ⇓σ

′.

Proof. Appendix A, Theorem A.12.

The refinement operation defined in this section allows us to change the granularity
of heap actions by substituting the occurrence of an action in the original net with a net
representing the actual implementation of the action, but only once it has been shown that
the noninterference property holds for both the original net and for the net formed. The
operation might be a key to proving Reynolds’ observation that an occurrence of an action
α in the term t can be replaced by a term with the same overall behaviour as α without
affecting the validity of the judgement Γ ⊢ {ϕ} t {ψ}.

7. Related work and conclusions

The first component of this work provides an inductive definition of the semantics as a
net of programs operating in a (shared) state. This is a relatively novel technique, but has
in the past been applied to give the semantics of a language for investigating security pro-
tocols, SPL [CW01], though our language involves a richer collection of constructs. Other
independence models for terms include the Box calculus [BDH92] and the event structure
and net semantics of CCS [Stu80, Win82, WN95] ([Stu80] was, to our knowledge, the first
Petri net denotational semantics of CCS), though these model interaction as synchronized
communication rather than occurring through shared state. We hope that the novel Petri
net semantics presented here and in [CW01] can be the start of systematic and comprehen-
sive methods to attribute structural Petri net semantics to a full variety of programming
languages, resulting in a Petri net companion to Plotkin’s structural operational semantics
(SOS) based on transition systems [Plo81]. Paralleling the (inductive) definitions of data
and transitions of SOS would be (inductive) definitions of conditions and events of Petri
nets.

The proof of soundness of separation logic here is led by Brookes’ earlier work [Bro07].
There are a few minor differences in the syntax of processes, including that we allow the
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dynamic binding of resource variables. Another minor difference between the programming
language and logic considered here and that introduced by O’Hearn and proved sound by
Brookes is that we do not distinguish stack variables. These may be seen as locations to
which other locations may not point and are the only locations that terms can directly
address. In Brookes’ model, as in [O’H07], interference of parallel processes through stack
variables is constrained by the use of a side condition on the rule rather than using the con-
cept of ownership (the area of current research on ‘permissions’ [BCOP05, BCY05, Bro06]
promises a uniform approach). In particular, the rule allows the concurrent reading of stack
locations. Though we have chosen not to include stack variables in our model in order
to highlight the concept of ownership, our model and proofs could be easily extended to
deal with them. Concurrent reading of memory would be at the cost of a more sophisti-
cated notion of independence that allowed independent events to access the same condition
providing that neither affects the marking of that condition.

More notably, at the core of Brookes’ work is a ‘local enabling relation’, which gives
the semantics of programs over a restricted set of ‘owned’ locations. Our notion of validity
involves maintaining a record of ownership and using this to constrain the occurrence of
events in the interference net augmented to the process. This allows the intuition of own-
ership in O’Hearn’s introduction of concurrent separation logic [O’H07] to be seen directly
as constraining interference. Though the relationship between our model and Brookes’ is
fairly obvious, we believe that our approach leads to a clearer parallel decomposition lemma,
upon which the proof of soundness of the logic critically stands.

The most significant difference between our work and Brookes’ is that the net model
captures, as a primitive property, the independence of parallel processes enforced by the
logic. We have used this property to define a straightforward, yet general, form of refinement
suited to changing the atomicity of commands within the semantics of a term. This is in
contrast to [Bro05], which gives a new semantics to race-free processes that abstracts entirely
away from attaching any form of atomicity to the semantics of heap actions. As said at the
end of the previous section, we hope to show that the refinement operation can be applied
to change the atomicity of any action occurring within any process running from a suitable
initial state proved using to the rules of concurrent separation logic.

Our characterization of ‘separation’ arising from the logic is much finer than that ob-
tained from the existing proof of race freedom, for example showing that interaction between
parallel processes may occur through allocation and deallocation. This is significant, as such
interaction leads to examples of the incompleteness of concurrent separation logic.

There are a number of other areas for further research in addition to those mentioned
above. One interesting consideration is the necessity (or otherwise) of precision in the proof
of soundness of the logic. In forthcoming work, we hope to give a form of game semantics
for the logic and a soundness proof without precision in the absence of the Hoare’s Law of
Conjunction (L-Conjunction). Another area of interest is whether symmetry present in
our semantics for allocation and resource declaration might be exploited properly to obtain
more compact nets to represent processes.
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Appendix A. Refinement

A sequence of events π = (e1, . . . , en) considered from a marking M can be thought

of equivalently as a sequence M
e1
−։ M1 . . .

en
−։ Mn. To describe the structure of such

sequences, we shall say that π from marking M is of form Π1 · Π2 if there exist π1 and π2
such that π = π1 · π2, where · denotes the obvious concatenation of sequences, and π1 is of
form Π1 from marking M and π2 is of form Π2 from the marking obtained by following π1
from M . Sequence π is of form Π∗ if it is the concatenation of a finite number of sequences,
each of form Π.

Throughout this section, when we consider the substitution K[N ] let Pi and Pt be
defined as in Definition 6.2:

Pi
def
= 1 : •[−]× 2 : Ic(N)

Pt
def
= 1 : [−]• × 2 : Tc(N).

Any reachable marking of conditions of the net can be partitioned into two sets: conditions
that occur solely withinK and conditions that are either N -internal or in Pi or Pt. Formally,
a condition c is a K-condition if c = 1 : c1 for some condition c1 of K not in •[−]•. A
condition c is an N -condition if either c ∈ Pi ∪ Pt or c = 2 : c2 for some condition c2 of
N not in Ic(N) ∪ Tc(N). Recall that we call 2 : c2 an N -internal condition. It is easy to
see that, for any σ0, from the marking (Ic(K[N ]), σ0) only K- or N -control conditions may
be marked: If (C, σ) is a reachable marking of K[N ], we have C = CN ∪ CK for some
marking CN of N -conditions and some marking CK of K-conditions. We shall frequently
use the notation (CN , CK) for a marking of control conditions, where CN comprises only
N -conditions and CK comprises only K-conditions.

Henceforth, when considering a substitution K[N ], we shall refer to an event e as being
an N -event if it is equal to (Pi ∪ Pt) ⊲ 2 : e2 for some e2 in N . Otherwise, it is a K-event.
A little care is necessary since an event in the net K[N ] might arise from both K and N
if there are events e and e′ 6= [−] of N and K, respectively, with the same effect on state
conditions and:

Ce = Ic(N), eC = Tc(N)
Ce′ = •[−], e′C = [−]•.

Throughout the remainder of this section, for simplicity we shall require that the substi-
tution K[N ] has no such events. This restriction may be lifted with little effect on the
development so-far by allowing the net formed to be non-extensional, or by considering this
as a special case when demonstrating properties of the net K[N ]

Lemma A.1. In K[N ], no K event has as a either a pre- or a postcondition an N -internal
condition.

Proof. Immediate from the definition of substitution K[N ].

Recall that a marking (CN , CK , σ) reachable from (Ic(K[N ]), σ0) is N -active if either
there is an N -internal condition in CN or if CN = Pi. It is useful to further classify the
markings of conditions in CN according to whether they support the occurrence of N - or
K-events on the conditions Pi and Pt:

Definition A.2. A marking (CN , CK , σ) of K[N ] is an N -marking if for all a, a′ ∈ •[−],
x, x′ ∈ [−]•, i ∈ Ic(N) and t ∈ Tc(N):

• if (1 : a, 2 : i) ∈ CN then (1 : a′, 2 : i) ∈ CN , and
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• if (1 : x, 2 : t) ∈ CN then (1 : x′, 2 : t) ∈ CN .

A marking (CN ∪CK , σ) of K[N ] is a K-marking if there is no N -internal condition marked,
and furthermore, for all a ∈ •[−], x ∈ [−]•, i, i′ ∈ Ic(N) and t, t′ ∈ Tc(N):

• if (1 : a, 2 : i) ∈ CN then (1 : a, 2 : i′) ∈ CN , and
• if (1 : x, 2 : t) ∈ CN then (1 : x, 2 : t′) ∈ CN .

From a marking of control conditions (CN , CK), we can extract markings of control
conditions for the nets N and K. We define ρN (CN ) to be the marking of N obtained from
(CN , CK), which is not dependent on the marking CK of K-conditions, and ρK(CN , CK)
for the marking of K obtained from (CN , CK), which is dependent on the marking of N -
conditions (namely, the marking of N -conditions in Pi ∪ Pt).

For a marking C of the context K, we define θK(C) to be the corresponding marking of
K[N ]. For a marking C ′ of the net N , we define θN (C ′) to be the marking of N -conditions
in the net K[N ] corresponding to C ′.

Definition A.3. Let K[N ] be any substitution. For any marking CN of N -conditions and
CK of K-conditions, define

ρK(CN , CK)
def
=

{ a ∈ •[−] | ∀i ∈ Ic(N).(1 : a, 2 : i) ∈ CN }
∪{ x ∈ [−]• | ∀t ∈ Tc(N).(1 : x, 2 : t) ∈ CN }
∪{ c 6∈ •[−] ∪ [−]• | 1 : c ∈ CK }

ρN (CN )
def
=

{ i ∈ Ic(N) | ∀a ∈ •[−].(1 : a, 2 : i) ∈ CN }
∪{ t ∈ Tc(N) | ∀x ∈ [−]•.(1 : x, 2 : t) ∈ CN }
∪{ c 6∈ Ic(N) ∪ Tc(N) | 2 : c ∈ CN }.

For any marking C of control conditions of the net K and marking C ′ of control conditions
of the net N , define

θK(C)
def
= P ⊳ 1 :C

θN (C)
def
= P ⊲ 2 :C.

For an event e of K[N ], define ρN (e) = e′ for the unique e′ such that e = (Pi ∪ Pt) ⊲ 2 : e
′.

For an event e of N , define θN (e) = (Pi ∪Pt) ⊲2 : e. Define ρK(e) and θK(e) similarly, apart
from having θK([−]) undefined.

Lemma A.4. For any marking C of control conditions of K, the marking θK(C) is a K-
marking in K[N ]. For any marking C ′ of control conditions of N , the marking θN (C ′) is
an N -marking in K[N ].

Proof. Immediate from the definitions.

It is clear that ρN and θN form a bijection between N -events and Ev(N). It is also
clear that ρK and θK form a bijection between K-events and Ev(K) \ {[−]}. On markings,
the situation is a little more intricate:

Lemma A.5. Let K[N ] be a substitution. For any marking of control conditions CK ∪CN

of K[N ] that is a K-marking and any marking C of control conditions of K:

θK(ρK(CK ∪CN )) = CK ∪ CN and ρK(θK(C)) = C.

For any marking of control conditions CK ∪ CN of K[N ] that is an N -marking and any
marking C of control conditions of N :

θN (ρN (CN )) = CN and ρN (θN (C)) = C.
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Proof. First, let C be any marking of control conditions ofK. We shall show that ρK(θK(C)) =
C. Let c be any control condition of the net K. Since K is an embedded net, by the re-
strictions imposed in Lemma 3.11 there are three distinct cases: c 6∈ •[−]•, c ∈ •[−] or
c ∈ [−]•. The first case is straightforward since the operation of θK on such conditions is
to add a ‘1 :’-tag which is removed by ρK . Now consider c ∈ •[−]; the case for c ∈ [−]• will
be similar. By the definition of θK , since Ic(N) is nonempty (again by Lemma 3.11):

c ∈ C iff ∀i ∈ Ic(N).(1 : c, 2 : i) ∈ θK(C).

From the definition of ρK , we have ∀i ∈ Ic(N).(1 : c, 2 : i) ∈ θK(C) iff c ∈ ρK(θK(C)). So
c ∈ C iff c ∈ ρK(θK(C)).

Now suppose that (CK , CN ) is a K-marking of the substitution K[N ]. Let c be any
condition of the net K[N ]. There are three distinct possible cases: c 6∈ Pi ∪ Pt, c ∈ Pi or
c ∈ Pt. First, suppose that c 6∈ Pi ∪ Pt:

c ∈ CN ∪ CK iff c ∈ CK (def. of K-marking)
iff ∃c1.(c1 ∈ ρK(CN , CK) and c = 1 : c1) (def. of ρK)
iff c ∈ θK(ρK(CN ∪ CK)) (def. of θK)

Now suppose that c ∈ Pi, so c = (1 : a, 2 : i) for some a ∈ •[−] and i ∈ Ic(N):

c ∈ CN ∪CK iff ∀i′ ∈ Ic(N). (1 : a, 2i′) ∈ CN ∪ CK (def. of K-marking)
iff a ∈ ρK(CN ∪ CK) (def. of ρK)
iff c ∈ θK(ρK(CN ∪ CK)) (def. of θK)

We have a similar analysis if c ∈ Pt. Hence (CK , CN ) = θK(ρK(CK , CN )).
For any marking of control conditions C of the net N and any N -marking (CK , CN ),

θN (ρN (CN )) = CN and ρN (θN (C)) = C

are shown similarly, this time with the first analysis considering conditions in Ic(N), Tc(N)
and conditions not in either set.

Lemma A.6. Let (CK , CN , σ) and (C ′
K , C

′
N , σ

′) be markings of K[N ]. Suppose that e is

an event such that (CK , CN , σ)
e

−։ (C ′
K , C

′
N , σ

′).

(1) If e is a K-event and (CK , CN ) and (C ′
K , C

′
N ) are K-markings then

(ρK(CK , CN ), σ)
ρK(e)
−։ (ρK(C ′

K , C
′
N ), σ′) in K.

(2) If e is an N -event and (CK , CN ) and (C ′
K , C

′
N ) are N -markings then CK = C ′

K and

(ρN (CN ), σ)
ρN (e)
−։ (ρN (C ′

N ), σ′) in N .

Proof. First consider (1). The event e is a K-event, so there is an event e1 of K such that
e1 6= [−] and e = (Pi ∪ Pt) ⊳ 1 : e1. We have

(CN , CK , σ)
e

−։ (C ′
N , C

′
K , σ

′)

in K[N ]. By Lemma A.5, we have θK(ρK(CN , CK)) = (CN , CK) and θK(ρK(C ′
N , C

′
K)) =

(C ′
N , C

′
K). From the definition of θK , we therefore have

((Pi ∪ Pt) ⊳ 1 : ρK(CN , CK), σ)
(Pi∪Pt)⊳1 : e1

−։ ((Pi ∪ Pt) ⊳ 1 : ρK(C ′
N , C

′
K), σ′).

Using Lemma 3.6, we may therefore conclude that

(ρK(CN , CK), σ)
e1
−։ (ρK(C ′

N , C
′
K), σ′)

in K. The proof of (2) is similar.
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Lemma A.7. (1) Let C and C ′ be markings of control conditions of K. If (C, σ)
e

−։

(C ′, σ′) in K then (θK(C), σ)
θK(e)
−։ (θK(C ′), σ′) in K[N ].

(2) Now let C and C ′ be markings of control conditions of N . If (C, σ)
e

−։ (C ′, σ′)

in N then (θN (C), CK , σ)
θN (e)
−։ (θN (C ′), CK , σ

′) in K[N ] for any marking CK of
K-conditions.

Proof. First consider (1). Suppose that (C, σ)
e

−։ (C ′, σ′) in K for some event e 6= [−]. By
Lemma 3.6, we have

((Pi ∪ Pt) ⊳ 1 :C, σ)
(Pi∪Pt)⊳1 : e

−։ ((Pi ∪ Pt) ⊳ 1 :C
′, σ′)

in K[N ]. Since θK(C) = (Pi ∪ Pt) ⊳ 1 :C, and similarly for C ′ and e, we therefore have

(θK(C), σ)
θK(e)
−։ (θK(C ′), σ′),

as required. The proof of (2) is similar.

We are now able to characterize the runs of the net K[N ] when a non-interfering
substitution is formed.

Lemma A.8. Let K[N ] be a non-interfering substitution from σ0. Any complete sequence
π from (Ic(K[N ]), σ0) is of the form Π0 · (Π1 · Π0)

∗, where:

• Π0 ranges over sequences consisting of K-events between K-markings.
• Π1 ranges over nonempty sequences π1 of any events between N -markings, where
no K-event uses any condition in Pi or Pt. If (CN ∪CK , σ) and (C ′

N ∪C ′
K , σ

′) are
the initial and final markings of π1, respectively, then CN = Pi and C

′
N = Pt. The

first event of π1 is an N -event and the final event of π1 is also an N -event.

Proof. We first show that any sequence π in N from (Ic(K[N ]), σ0) is of the form Π0 · (Π1 ·
Π0)

∗ or Π0 · (Π1 · Π0)
∗ · Π′

1 by induction on the length of sequence, where a sequence is of
form Π′

1 if:

• it is a sequence of K- and N -events between N -markings where no K-event uses
any condition in Pi or Pt, and

• if (CN , CK , σ) is the initial marking of π1 then CN = Pi, and the first event of π1 is
an N -event.

We shall simultaneously show that if π :(Ic(K[N ]), σ0) −։
∗
(CN , CK , σ) and (CN , CK , σ)

is an N -marking then either it is N -active or CN = Pt. Furthermore, if Pt ⊆ CN then
Pt = CN .

The base case for the induction is straightforward. Suppose that π :(Ic(K[N ]), σ0)−։
∗

M where M = (CN , CK , σ) and that e is an event such that M
e

−։ M ′. Let M ′ =
(C ′

N , C
′
K , σ

′). We shall show that π · e from marking (Ic(K[N ]), σ0) is of the correct form
and that M ′ satisfies the required properties.

Suppose that M ′ is an N -marking but C ′
N 6= Pt and M

′ is not N -active. As M ′ is not
N -active, we must have C ′

N 6= Pi. From the induction hypothesis, there must exist a path
π′ and markings C ′′

K and σ′′ such that

π′ :(Pi, C
′′
K , σ

′′)−։
∗
(C ′

N , C
′
K , σ

′)

and (Pi, C
′′
K , σ

′′) is reachable from (Ic(K[N ]), σ0). Furthermore, from (Pi, C
′′
K , σ

′′) the path
π′ is between N -active markings. Since K[N ] is a non-interfering substitution from state
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σ0, it follows from the requirement that consecutive K- and N -events must be independent
that there must exist paths π1 and π2 made exclusively of N - and K-events, respectively,
such that π1 · π2 :(Pi, C

′′
K , σ

′′) −։
∗
(C ′

N , C
′
K , σ

′′). Since N -events do not affect the mark-
ing of K-conditions and from the requirement that K-events do not affect the marking of
N -conditions along the path π2 because K[N ] is a non-interfering substitution from σ0,
there exists a state σ1 such that π1 :(Pi, C

′′
K , σ

′′)−։
∗
(C ′

N , C
′′
K , σ1). Since ρN (Pi) = Ic(N), a

simple induction on the length of this sequence using Lemma A.6 shows that the marking
(ρN (C ′

N ), σ1) is reachable from (Ic(N), σ′′) in N . Consider the ways in which the N -marking
(C ′

N , C
′
K , σ

′) may fail to be N -active: Firstly, if C ′
N ( Pi, it follows that ρN (C ′

N ) ( Ic(N).
Since (ρN (C ′

N ), σ1) is reachable from (Ic(N), σ′), this contradicts the requirement of Defini-
tion 3.13. The proof is similar in the other cases, C ′

N ( Pt and Pt ( C ′
N , which may cause

the marking to fail to be N -active without C ′
N = Pt.

To complete the proof, it suffices to show the following properties:

(1) K-events preserve K-markings: If M is a K-marking and e is a K-event and M
e

−։
M ′ then M ′ is a K-marking.

(2) N -events preserve N -markings: If M is an N -marking and e is an N -event and

M
e

−։M ′ then M ′ is an N -marking.
(3) If e is a K-event with no pre- or postcondition inside Pi∪Pt andM is an N -marking

and M
e

−։M ′ then M ′ is an N -marking.
(4) The only markings that are both N - and K-markings are of the form (Pi, CK , σ) or

(Pt, CK , σ) or (Pi ∪ Pt, CK , σ) for some CK and σ.
(5) No N -event has concession in any reachable marking that is not N -active.

Properties (1) and (2) are straightforward calculations using Lemmas A.4, A.5 and A.6.
Property (3) follows immediately from Lemma A.1. Property (4) is obvious from the defini-
tions of N - and K-markings. Property (5) is straightforward from the induction hypotheses
and the fact that no event has concession in the terminal marking of N according to the
requirements of Lemma 3.11.

Finally, to see that any complete run is of the form Π0 · (Π1 · Π0)
∗, observe that the

terminal marking of control conditions Tc(K[N ]) is a K-marking. There are no CK and σ
such that the marking (Pi, CK , σ) is terminal since then •[−] ∩ Tc(K) 6= ∅, contradicting
the requirement that K should be an embedded net satisfying the requirements of Lemma
3.11. Hence the terminal marking is not N -active.

Having now dealt with the control structure of contexts, we return to the idea that,
given a net K[N1] which is a non-interfering substitution from state σ, the events in any
sequence may be reordered in a way that ensures that events of N1 occur consecutively and
form a “complete run” of the net N1. As N1 ≃ N2, the net K[N2] will therefore have a
path between the same sets of state conditions.

To formalize this, let π be any sequential run of a non-interfering substitutionK[N ] from
marking M . The set PK[N ](π,M) is defined to be the least set of sequences from marking
M of K[N ] closed under the operation of swapping consecutive independent events that
contains the sequence π. It is easy to see that if π :M−։

∗
M ′ and π′ ∈ PK[N ](π,M) then

π′ :M−։
∗
M ′ for any paths π and π′. Define the order ≺ on PK[N ](π,M) as follows:

Definition A.9. Let π, π′ ∈ PK[N ](π0,M). Define ≺ to be the transitive closure of ≺1,
where π ≺1 π

′ iff there exist sequences π1 and π2, an N -event e and a K-event e′ such that
eIe′ and π = π1 · e · e

′ · π2 and π′ = π1 · e
′ · e · π2.



66 J. HAYMAN AND G. WINSKEL

It is clear that the order ≺ is well-founded since any path is, by definition, of finite
length.

Definition A.10. Say that a sequence π of K[N ] from marking M is N -complete if M =
(Pi, CK , σ) for some CK and σ, every event of π is an N -event, and

π :(Pi, CK , σ)−։
∗
(Pt, CK , σ

′).

Lemma A.11. Let K[N ] be a non-interfering substitution from state σ0 and let M0 =
(Ic(K[N ]), σ0). Suppose that π0 is a complete sequence of K[N ] from M0. The ≺-minimal
elements of PK[N ](π0,M0) are of the form

Π0 · (ΠN ·Π0)
∗,

where ΠN matches N -complete paths and Π0 is as in Lemma A.8.

Proof. Suppose that π is a ≺-minimal element of PK[N ](π0,M0) but not of the form above.
The sequence π is of the form of Lemma A.8 because π is a complete path of K[N ].
Consequently, there are π1, π2 and π3 such that π = π1 · π2 · π3 and π2 = (e · e′) where e is
a K-event and e′ is an N -event. Furthermore, the marking M1 such that π1 :M0 −։

∗
M1

is N -active. Now, from the definition of non-interfering substitution, the events e and e′

are independent. Hence the sequence π1 · e
′ · e · π3 is in PK[N ](π0,M0) and is beneath π,

contradicting its minimality.

This gives us the ability to prove Theorem 6.7 by induction on paths of K[N1].

Theorem A.12. If K[N1] and K[N2] are non-interfering substitutions from σ0 and N1 ≃
N2 then, for all states σ:

K[N1] : σ0 ⇓σ iff K[N2] : σ0 ⇓σ.

Proof. Suppose that π is a complete sequence of K[N1] from σ0 to σ′. We shall show
that, for all π1 ∈ PK[N1](π, (Ic(K[N1]), σ0)), if π1 is a complete sequence from σ0 to σ′

then there exists a complete sequence π2 of K[N2] from σ0 to σ′. The proof shall proceed
by induction on the well-founded order ≺. In particular π ∈ PK[N1](π, (Ic(K[N ]), σ0)), so,
with the symmetric proof for the other direction, this will complete the proof of the required
property.

(π1 minimal) The sequence π1 is minimal within PK[N1](π, σ0), so, by Lemma A.11, there
exists an n ∈ N such that there exist sequences π0, π01, π11, . . . π0n, π1n with

π1 = π0 · π11 · π01 . . . π1n · π0n.

Furthermore, for each i ≤ n, the sequence π0i is of the form Π0 defined in Lemma A.8,
as is the sequence π0; and, for each i ≤ n, the sequence π1i is of the form ΠN1 , which
matches N1-complete subpaths of K[N1] as defined in Definition A.10. Define:

P
(1)
i

def
= 1 : •[−]× 2 : Ic(N1) P

(2)
i

def
= 1 : •[−]× 2 : Ic(N2)

P
(1)
t

def
= 1 : [−]• × 2 : Tc(N1) P

(2)
t

def
= 1 : [−]• × 2 : Tc(N2).

Let ρ
(1)
K be ρK from Definition A.3 for K[N1] and let ρ

(2)
K be ρK from Definition A.3

for K[N2], and similarly for ρ
(1)
N1

, ρ
(2)
N2

, θ
(1)
K , etc. We shall show, by induction on n,

that if π1 is a sequence of this form in K[N1] from (Ic(K[N1]), σ0) to the marking
(C ′

1, σ
′) then there exists a path π2 from (Ic(K[N2]), σ0) to (C ′

2, σ
′) for some C ′

2 such

that ρ
(1)
K (C ′

1) = ρ
(2)
K (C ′

2).
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• n = 0: Assume that π1 is of the form Π0. Let π1 = (e1 · . . . · em) and suppose that
in K[N1] we have

(Ic(K[N1]), σ0)
e1
−։ (C1, σ1)

e2
−։ . . .

em
−։ (Cm, σm).

By assumption, π1 is a path from (Ic(K[N1]), σ0) to (C ′
1, σ

′), so C ′
1 = Cm and

σ′ = σm. Now, Ic(K[N1]) is a K-marking, and, since π1 is of the form Π0, for
every i such that 0 < i ≤ m, the marking Ci is a K-marking and ei is a K-event.
By Lemma A.6, in the net K we have

(ρ
(1)
K (Ic(K[N1])), σ)

ρ
(1)
K

(e1)
−։ (ρ

(1)
K (C1), σ1)

ρ
(1)
K

(e2)
−։ . . .

ρ
(1)
K

(em)
−։ (ρ

(1)
K (Cm), σm).

In the net K[N2], by Lemma A.7, we therefore have

(θ
(2)
K ρ

(1)
K (Ic(K[N1])), σ)

θ
(2)
K

ρ
(1)
K

(e1)
−։ (θ

(2)
K ρ

(1)
K (C1), σ1)

θ
(2)
K

ρ
(1)
K

(e2)
−։ . . .

θ
(2)
K

ρ
(1)
K

(em)
−։ (θ

(2)
K ρ

(1)
K (Cm), σm).

Let C ′
2 = θ

(2)
K ρ

(1)
K (Cm). From Lemma A.4, θ

(2)
K generates K-markings of K[N2]

from markings of K. By Lemma A.5, we therefore have ρ
(2)
K (C ′

2) = ρ
(1)
K (C ′

1)
since C ′

1 = Cm, which is a K-marking. It is an easy calculation to show that

ρ
(1)
K (Ic(K[N1])) = Ic(K) and θ

(2)
K (Ic(K)) = Ic(K[N2]). There therefore exists a

path from (Ic(K[N2]), σ0) to (C ′
2, σm) in K[N2] and ρ

(2)
K (C ′

2) = ρ
(1)
K (C ′

1) , which is
all that is required since σm = σ′.

• n > 0: Assume that π1 = π11 · π12 · π13 for some sequence π11 of form Π0 · (ΠN1 ·
Π0)

n−1, some sequence π12 of form ΠN1 and some sequence π13 of form Π0. Let
(C ′

1, σ
′) be the marking obtained by following π1 from (Ic(K[N1]), σ0) in K[N1].

We wish to show that there is a path π2 of K[N2] from (Ic(K[N2]), σ0) to (C ′
2, σ

′)

for some C ′
2 such that ρ

(1)
K (C ′

1) = ρ
(2)
K (C ′

2).
Let (C11, σ1) be the marking obtained by following path π11 from (Ic(K[N1]), σ0).
Since π12 follows π11 and π12 is of form ΠN1 , it must be the case that C11 =

(P
(1)
i , CK) for some marking CK of K-conditions.

By induction, there is a path π21 in K[N2] from (Ic(K[N2]), σ0) to (C21, σ1) for

some C21 such that ρ
(1)
K (C11) = ρ

(2)
K (C21). Now, C11 = (P

(1)
i , CK), so ρ

(1)
K (C11) =

•[−] ∪ {c | 1 : c ∈ CK}. From the definition of ρ
(2)
K , we must therefore have

C21 = (P
(2)
i , CK). Hence

π21 :(Ic(K[N2]), σ0)−։
∗
(P

(2)
i , CK , σ1).

Suppose that in K[N1] we have π12 :(P
(1)
i , CK , σ1)−։

∗
(C ′

N1
, C ′

K , σ2). Since π12

is of the form ΠN1 , it is an N1-complete path, so C ′
N1

= P
(1)
t . The events of π12

are all N -events. Using Lemma A.6, a simple induction shows that CK = C ′
K

and that there is a path from (ρ
(1)
N1

(P
(1)
i ), σ1) to (ρ

(1)
N1

(P
(1)
t ), σ2) in N1. Observe

that ρ
(1)
N1

(P
(1)
i ) = Ic(N1) and ρ

(1)
N1

(P
(1)
t ) = Tc(N1), so N1 :σ1 ⇓σ2. As N1 ≃ N2,

there is therefore a path of N2 from (Ic(N2), σ1) to (Tc(N2), σ2). By Lemma A.7,
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a simple induction on the length of this sequence shows that there is a sequence

π22 from (θ
(2)
N2

(Ic(N2)), CK , σ1) to (θ
(2)
N2

(Tc(N2)), CK , σ2) in K[N2]. Observe that

θ
(2)
N2

(Ic(N2)) = P
(2)
i and θ

(2)
N2

(Tc(N2)) = P
(2)
t , so

π22 :(P
(2)
i , CK , σ1)−։

∗
(P

(2)
t , CK , σ2).

As π13 follows path π12 in π1, the sequence π13 is from (P
(1)
t , CK , σ2) to (C ′

1, σ
′)

and contains only K-events. Using Lemma A.6, a simple induction on the length

of π13 shows that there is a path from (ρ
(1)
K (P

(1)
t , CK), σ2) to (ρ

(1)
K (C ′

1), σ
′) in K.

A simple induction on the length of this path, using Lemma A.7 shows that there

is a path π23 of K[N2] such that π23 :(θ
(2)
K ρ

(1)
K (P

(1)
t , CK), σ2)−։

∗
(θ

(2)
K ρ

(1)
K (C ′

1), σ
′).

From the definition of ρ
(1)
K , we have ρ

(1)
K (P

(1)
t , CK) = [−]•∪{c | 1 : c ∈ CK}. From

the definition of θ
(2)
K , we have θ

(2)
K ([−]• ∪ {c | 1 : c ∈ CK}) = P

(2)
t ∪ CK . Hence

π23 :(P
(2)
t , CK , σ2)−։

∗
(θ

(2)
K ρ

(1)
K (C ′

1), σ
′).

Take C ′
2 = (θ

(2)
K ρ

(1)
K (C ′

1), σ
′). By Lemma A.5, we have ρ

(2)
K (C ′

2) = ρ
(1)
K (C ′

1). Con-
sequently, the path π2 = π21 · π22 · π23 satisfies

π2 :(Ic(K[N2]), σ0)−։
∗
(C ′

2, σ
′),

for some C ′
2 such that ρK(C ′

1) = ρK(C ′
2), which is all that is required to complete

this inner induction.
Now, recall that π1 is a complete sequence of K[N1], so

π1 :(Ic(K[N1]), σ0)−։
∗
(Tc(K[N1]), σ

′).

From the immediately preceding induction, there exists a path π2 of K[N2] such that

π2 :(Ic(K[N2]), σ0) −։
∗
(C ′

2, σ
′) for some C ′

2 such that ρ
(1)
K (Tc(K[N1])) = ρ

(2)
K (C ′

2).

Now, clearly ρ
(1)
K (Tc(K[N1])) = Tc(K) by the definitions of ρ and K[N1]. Hence

Tc(K) = ρ
(2)
K (C ′

2), so by Lemma A.5 we have θ
(2)
K (Tc(K)) = C ′

2. The definition of

K[N2] and θ gives θ
(2)
K (Tc(K)) = Tc(K[N2]). Hence

π2 :(Ic(K[N2]), σ0)−։
∗
(Tc(K[N2]), σ

′),

as required.
(π1 not minimal) Suppose that the path π1 is not minimal and that π1 is a complete

path of K[N1] with π1 :(Ic(K[N1]), σ0)−։
∗
(Tc(K[N1]), σ

′). It is easy to see that the
order ≺ is irreflexive, so there exists a path π′1 such that π′1 ≺1 π1. Hence there exist
paths π2 and π3 and a K-event e and an N -event e′ such that π1 = π2 · e · e

′ · π3 and
π′1 = π2 · e

′ · e · π3. Furthermore, the events e and e′ are independent, so π′1 must also
be a path π′1 :(Ic(K[N1]), σ0)−։

∗
(Tc(K[N1]), σ

′). By induction, there exists a path
π′2 :(Ic(K[N1]), σ0)−։

∗
(Tc(K[N1]), σ

′), as required to complete the case.

Hence, ifK[N1] :σ0 ⇓σ
′, there exists a path π :(Ic(K[N1]), σ0)−։

∗
(Tc(K[N1]), σ

′) inK[N1].
Since π ∈ PK[N1](π, σ0), we have a path π2 :(Ic(K[N2]), σ0)−։

∗
(Tc(K[N2]), σ

′) in K[N2],
so K[N2] : σ0 ⇓σ

′. The proof for the reverse implication is symmetric.
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