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Abstract. We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions. The games are
concurrent in that at each turn, both players independently propose a time delay and an
action, and the action with the shorter delay is chosen. To prevent a player from winning by
blocking time, we restrict each player to play strategies that ensure that the player cannot
be responsible for causing a zeno run. First, we present an efficient reduction of these
games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our
reduction improves the best known complexity for solving timed parity games. Moreover,
the rich class of algorithms for classical parity games can now be applied to timed parity
games. The states of the resulting game are based on clock regions of the original game,
and the state space of the finite game is linear in the size of the region graph.

Second, we consider two restricted classes of strategies for the player that represents
the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust
winning strategies. Using a limit-robust winning strategy, the controller cannot choose an
exact real-valued time delay but must allow for some nonzero jitter in each of its actions.
If there is a given lower bound on the jitter, then the strategy is bounded-robust winning.
We show that exact strategies are more powerful than limit-robust strategies, which are
more powerful than bounded-robust winning strategies for any bound. For both kinds
of robust strategies, we present efficient reductions to standard timed automaton games.
These reductions provide algorithms for the synthesis of robust real-time controllers.

1. Introduction

Timed automata [AD94] are models of real-time systems in which states consist of discrete
locations and values for real-time clocks. The transitions between locations are dependent
on the clock values. Timed automaton games, introduced in [MPS95], and explored fur-
ther in [dAFH+03, AdAF05, CDF+05, FTM02b, FTM02a] (amongst others), are played by
two players on timed automata, e.g., a “controller” and a “plant” for modeling real-time
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Figure 1: A timed automaton game T.

controller synthesis problems. We consider timed automaton games with ω-regular objec-
tives specified as parity conditions. The class of ω-regular objectives can express all safety
and liveness specifications that arise in the synthesis and verification of reactive systems,
and parity conditions are a canonical form to express ω-regular objectives [Tho97]. The
construction of a winning strategy for player 1 in such games corresponds to the controller-
synthesis problem for real-time systems [DM02, MPS95, WH91] with respect to achieving
a desired ω-regular objective.

Timed automaton games proceed in an infinite sequence of rounds. In each round, both
players simultaneously propose moves, with each move consisting of an action and a time
delay after which the player wants the proposed action to take place. Of the two proposed
moves, the move with the shorter time delay “wins” the round and determines the next
state of the game. Let a set Φ of runs be the desired objective for player 1. Then player 1
has a winning strategy for Φ if it has a strategy to ensure that, no matter what player 2
does, one of the following two conditions holds: (1) time diverges and the resulting run
belongs to Φ, or (2) time does not diverge but player-1’s moves are chosen only finitely
often (and thus it is not to be blamed for the convergence of time) [dAFH+03, HP06]. This
definition of winning is equivalent to restricting both players to play according to receptive
strategies [AH97, SGSAL98], which do not allow a player to win by blocking time.

In timed automaton games, there are cases where a player can win by proposing a
certain strategy of moves, but where moves that deviate in the timing by an arbitrarily
small amount from the winning strategy result in a strategy that does not ensure winning
any more. If this is the case, then the synthesized controller needs to work with infinite
precision in order to achieve the control objective. As this requirement is unrealistic, we
propose two notions of robust winning strategies. In the first robust model, each move of
player 1 (the “controller”) must allow some jitter when the action of the move is taken.
The jitter may be arbitrarily small, but it must be greater than 0. We call such strategies
limit-robust. In the second robust model, we give a lower bound on the jitter, i.e., every
move of player 1 must allow for a fixed jitter, which is specified as a parameter of the game.
We call these strategies bounded-robust. The strategies of player 2 (the “plant”) are left
unrestricted (apart from being receptive). We show that (1) general strategies are strictly
more powerful than limit-robust strategies; and (2) limit-robust strategies are strictly more
powerful than bounded-robust strategies for any lower bound on the jitter, i.e., there are
games in which player 1 can win with a limit-robust strategy, but there does not exist any
nonzero bound on the jitter for which player 1 can win with a bounded-robust strategy.
The following example illustrates this issue.
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Example 1.1. Consider the timed automaton T in Fig. 1. The edges denoted ak1 for

k ∈ {1, 2, 3, 4} are controlled by player 1, and the edges denoted aj2 for j ∈ {1, 2, 3} are
controlled by player 2. The objective of player 1 is ✷(¬l3), i.e., to avoid the location l3.
The important part of the automaton is the cycle l0, l1. The only way to avoid l3 in a time
divergent run is to cycle between l0 and l1 infinitely often. In addition, player 1 may choose
to also cycle between l0 and l2, but that does not help (or harm) it. Due to strategies being
required to be receptive, player 1 cannot just cycle between l0 and l2 forever, it must also
cycle between l0 and l1; that is, to satisfy ✷(¬l3) player 1 must ensure (✷✸l0) ∧ (✷✸l1),
where ✷✸ denotes “infinitely often”. But note that player 1 may cycle between l0 and l2

any finite number of times as it wants between an l0, l1 cycle.
In our analysis below, we omit such l0, l2 cycles for simplicity. Let the game start from

the location l0 at time 0, and let l1 be visited at time t0 for the first time. Also, let αj

denote the difference between times when l0 is visited for the (j+1)-th time, and when l1 is
visited for the j-th time. We can have at most 1 time unit between two successive visits to
l0, and we must have strictly more than 1 time unit elapse between two successive visits to
l1. Thus, αj must be in a strictly decreasing sequence. Also, for player 1 to cycle between
l0 and l1 infinitely often, we must have αj ≥ 0 for all j as the (j + 1)-th a11 transition must
always happen after the j-th a21 transition. Consider any bounded-robust strategy. Since
the jitter is some fixed εj, for any strategy of player 1 that tries to cycle between l0 and l1,
there are executions where the transition labeled a11 is taken when x is less than or equal
to 1− εj, and the transition labeled a21 is taken when y is greater than 1. This means that
there are executions where αj decreases by at least εj in each cycle. But, this implies that
we cannot have an infinite decreasing sequence of αj ’s for any εj and for any starting value
of t0.

With a limit-robust strategy, however, player 1 can cycle between the two locations
infinitely often, provided that the starting value of x is strictly less than 1. This is because
at each step of the game, player 1 can choose moves that are such that the clocks x and y
are closer and closer to 1. A general strategy allows player 1 to win even when the starting
value of x is 1. The details will be presented later in Example 4.9 in Subsection 4.2.

Contributions. Our contributions are two-fold: we present improved complexity results
to solve timed automaton parity games, and we present two notions of robust winning in
timed automaton parity games and present solutions of them.

Improved complexity. We first show that timed automaton parity games can be reduced
to classical turn-based finite-state (untimed) parity games. Even though the timed games
are concurrent, in that in each turn both players simultaneously propose moves before one
of the moves is chosen, our reduction to the untimed finite-state game is turn-based. The
concurrency in timed games is limited (only in proposal of time), and we exploit this in
the reduction to obtain turn-based games. In general the reduction of concurrent games to
turn-based games is only known for Büchi and coBüchi objectives (and only for qualitative
analysis) [JKH02]. The turn-based game we obtain as result of the reduction has a state
space that is linear in the number of clock regions. There is a rich literature of algorithms as
well much ongoing research to solve finite-state turn-based parity games, and our reduction
allows all these algorithms to be used to solve timed automaton parity games. A solution
for timed automaton games with parity objectives was already presented in [dAFH+03] and
the solution works in

O
(
(M · |C| · |A1| · |A2|)

2 ·
(
|S∗

Reg|
)d+2

)
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time, where M is the maximum constant in the timed automaton; C is the set of clocks; Ai

is the set of player-i edges; L is the set of locations; d is the number of priorities in the parity
index function; and S∗

Reg is the set of states in the region graph of the timed automaton

expanded to handle receptiveness and we have |S∗
Reg| = |SReg| · 32 · |C| · d, where SReg is the

set of regions of the timed automaton (which is bounded by |L| ·
∏

x∈C(cx + 1) · |C|! · 4|C|,
with cx being the maximum constant that clock x is compared to in the timed automaton
game). We show that timed automaton games can be solved in

O

((
|S∗

Reg| · (|A1|+ |A2|)
)
·
(
|S∗

Reg| · 8
) d+2

3
+ 1

2

)

time. Our reduction has two steps: first we show that certain restrictions can be applied to
strategies without changing the winning set; then we show that the timed game with clocks
under the strategy restrictions can be transformed into a finite-state turn-based game with
8 · |S∗

Reg| states, O(|S∗
Reg| ·(|A1|+ |A2|)) edges, and d+2 priorities. Our improved complexity

follows from the above reduction, and the fact that a finite-state turn-based parity game

with m edges, n states and d parity indices can be solved in O(m · n
d
3
+ 1

2 ) time [Sch07].
The restriction to receptive strategies is handled by our reduction with the following two
modifications: (1) the number of regions of the timed automaton parity game needs to be
enlarged by a factor of 32 · |C| ·d, and (2) the number of indices of the parity function needs
to be increased by 2. The modifications are similar to those in [dAFH+03].

Robust winning. Second, we show that timed automaton games with limit-robust and
bounded-robust strategies can be solved by reductions to general timed automaton games
(with exact strategies). In the reduction for limit-robust games, the jitter is controlled by
player 1, as the jitter is only required to be greater than 0, with no other restriction. For
bounded-robust games, the jitter is controlled by player 2, as there is an uncertainty interval
of constant length εj (which is fixed for the game). The reduction for the limit-robust case
is obtained by changing the winning condition so that moves are only to states where all the
clock values are non-integral. The reduction for the bounded-robust case is by a syntactic
transformation of the game graph. The limit-robust game can be solved in time

O

((
|S∗

Reg| · (|A1|+ |A2|)
)
·
(
|S∗

Reg| · 16
) d+2

3
+ 1

2

)
.

Given a rational valued jitter of ε = εn
εd
, the bounded-robust game can be solved in time

O

((
|S∗

Reg| · |A1|
2 · |A2| · |C| · εn · ε

|C|+2
d

)
·
(
|S∗

Reg| · 32 · |C| · |A1| · εn · ε
|C|+2
d

) d+2

3
+ 1

2

)
.

The reductions provide algorithms for synthesizing robust controllers for real-time systems,
where the controller is guaranteed to achieve the control objective even if its time delays
are subject to jitter. The question of the existence of a non-zero jitter for which a game
can be won with a bounded-robust strategy remains open.

Comparison to the preliminary version [CHP08]. Our present submission extends and
improves upon the results of [CHP08]. The state space of the finite game of the reduction
in [CHP08] had size O(|S∗

Reg| · |C| ·M · |A1|); the present finite-state game has size O(|S∗
Reg|).

The correctness proof of the present reduction is based on several new non-trivial results
that are not present in [CHP08].
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Related work. Timed automaton games have been explored before for controller synthesis,
e.g, in [PAMS98, DM02, MPS95, WH91]. In most previous work, time-divergence has not
been handled properly. For example, the formulations of [PAMS98, FTM02b, JT07, Tri09]
assume that the syntactic structure of the game is such that it is not possible for the players
to block time. The work of [AH97] looks at safety objectives, and correctly requires that
a player might not stay safe simply by blocking time. It however also requires that the
controller achieve its objective even if the opponent blocks time, and hence is deficient for
reachability objectives. In [DM02] the authors require player 1 to always allow player 2
moves, thus, in particular, player 2 can foil a reachability objective of player 1 by blocking
time. The strategies of player 1 are also assumed to be region strategies by definition, that
is, player-1 strategies can only specify regions in its moves (and not an exact desired state),
and can only be dependent on the history of the observed regions in a play (and not on the
history of exact states in a play). A solution for timed automaton games with receptive
strategies and parity objectives was first presented in [dAFH+03], where the solution is
obtained by first demonstrating that the winning set can be characterized by a µ-calculus
fixpoint expression, and then showing that only unions of clock regions arise in its fixpoint
iteration.

It has been recognized by many researchers that an important shortcoming of timed
automata is that clock values are assumed to be available as real numbers with infinite pre-
cision. Our notion of bounded-robustness is closely related to the Almost-ASAP semantics
of [WDR05]. The work there is done in a one-player setting where the controller is already
known, and one wants the know if the composition of the controller and the system satisfies
a safety property in the presence of bounded jitter and observation delay. A similar model
for hybrid automata is considered in [AT04]. The solution for the existence of bounded
jitter and observation delay for which a timed system stays safe is presented in [WDMR04].
Various models of robustness in timed automata (the one-player case) are also considered
in [ATM05, BMR08, GHJ97, HR00].

Outline. In Section 2 we present the definitions of timed game structures, objectives,
strategies, and review some basic results for timed automaton games. In Section 3 we
present a restriction of strategies of the two players, which does not change the winning set,
and which allows an efficient reduction to finite-state turn-based games. We also derive the
complexity bound obtained from the new reduction to finite-state games. In Section 4 we
define limit-robust and bounded-robust strategies, and show how winning sets for both can
be computed by reductions to timed automaton games.

2. Timed Games

In this section we present the definitions of timed game structures, runs, objectives, and
strategies in timed game structures.

Timed game structures. A timed game structure is a tuple G = 〈S,A1,A2,Γ1,Γ2, δ〉
with the following components.

• S is a set of states.
• A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively. We assume
that {⊥1,⊥2,⊥∗} ∩ Ai = ∅, and write A⊥

1 for A1 ∪{⊥1,⊥∗}, and A⊥
2 for A2 ∪{⊥2}. The

set of moves for player i is Mi = IR≥0 × A⊥
i . Intuitively, a move 〈∆, ai〉 by player i

indicates a waiting period of ∆ time units followed by a discrete transition labeled with
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action ai. The move 〈∆,⊥i〉 is used to represent the move where player-i just lets time
elapse for ∆ time units without taking any of the discrete actions from Ai. The action
⊥∗ is used to represent the fact that player 1 is relinquishing control to player 2 in the
given stage of the game.

• Γi : S 7→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s) contains the
moves that are available to player i. We require that 〈0,⊥i〉 ∈ Γi(s) for all states s ∈ S
and i ∈ {1, 2}. Intuitively, 〈0,⊥i〉 is a time-blocking stutter move.

• δ : S × (M1 ∪ M2) 7→ S is the transition function. We require that for all time delays
∆,∆′ ∈ IR≥0 with ∆′ ≤ ∆, and all actions ai ∈ A⊥

i , we have
(i) 〈∆, ai〉 ∈ Γi(s) iff both 〈∆′,⊥i〉 ∈ Γi(s) and 〈∆ −∆′, ai〉 ∈ Γi(δ(s, 〈∆

′,⊥i〉)); and
(ii) if δ(s, 〈∆′,⊥i〉) = s′ and δ(s′, 〈∆ −∆′, ai〉) = s′′, then δ(s, 〈∆, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both players
simultaneously propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s). If a1 6= ⊥∗, the move
with the shorter duration “wins” in determining the next state of the game. If both moves
have the same duration, then the next state is chosen non-deterministically. If a1 = ⊥∗, then
the move of player 2 determines the next state, regardless of ∆1. We give this special power
to player 1 for modeling convenience as (1) the controller always has the option of letting the
state evolve in a controller-plant framework, without always having to provide inputs to the
plant, and (2) it allows a natural model for systems where controller actions are disabled in
certain modes1. Formally, we define the joint destination function δjd : S ×M1 ×M2 7→ 2S

by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =





{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2 and a1 6= ⊥∗;
{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1 or a1 = ⊥∗;
{δ(s, 〈∆2, a2〉), δ(s, 〈∆1, a1〉)} if ∆2 = ∆1 and a1 6= ⊥∗.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are proposed is given
by

delay(m1,m2) =

{
min(∆1,∆2) if a1 6= ⊥∗

∆2 if a1 = ⊥∗

The boolean predicate blamei(s,m1,m2, s
′) indicates whether player i is “responsible” for

the state change from s to s′ when the moves m1 and m2 are proposed. Denoting the
opponent of player i by ∼i = 3− i, for i ∈ {1, 2}, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

{(
∆1 ≤ ∆2 ∧ δ(s, 〈∆1, a1〉) = s′

) ∧
(a1 6= ⊥∗) if i = 1(

∆2 ≤ ∆1 ∧ δ(s, 〈∆2, a2〉) = s′
) ∨

(a1 = ⊥∗) if i = 2

Runs. A run r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . of the timed game structure G is an infinite

sequence such that sk ∈ S and mk
i ∈ Γi(sk) and sk+1 ∈ δjd(sk,m

k
1 ,m

k
2) for all k ≥ 0 and

i ∈ {1, 2}. For k ≥ 0, let time(r, k) denote the “time” at position k of the run, namely,

time(r, k) =
∑k−1

j=0 delay(m
j
1,m

j
2) (we let time(r, 0) = 0). By r[k] we denote the (k + 1)-th

state sk of r. The run prefix r[0..k] is the finite prefix of the run r that ends in the state sk.
Let Runs be the set of all runs of G, and let FinRuns be the set of run prefixes.

Objectives. An objective for the timed game structure G is a set Φ ⊆ Runs of runs. We
will be interested in parity objectives. Parity objectives are canonical forms for ω-regular
properties that can express all commonly used specifications that arise in verification.

1We illustrate the usefulness of ⊥∗ in Example 2.2. The results of this paper do not change if ⊥∗ is not
present in the framework.
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Let Ω : S 7→ {0, . . . , k−1} be a parity index function. The parity objective for Ω requires
that the maximal index visited infinitely often be even. Formally, let InfOften(Ω(r)) denote
the set of indices visited infinitely often along a run r. Then the parity objective defines
the following set of runs: Parity(Ω) = {r | max(InfOften(Ω(r))) is even }. A timed game
structure G together with the index function Ω constitute a parity timed game (of order k)
in which the objective of player 1 is Parity(Ω).

Strategies. A strategy for a player is a recipe that specifies how to extend a run. Formally,
a strategy πi for player i ∈ {1, 2} is a function πi that assigns to every run prefix r[0..k] a
move mi in the set of moves available to player i at the state r[k]. For i ∈ {1, 2}, let Πi

be the set of strategies for player i. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of
possible outcomes of the game starting from a state s ∈ S is the set of possible runs denoted
by Outcomes(s, π1, π2).

Receptive strategies. We will be interested in strategies that are meaningful (in the
sense that they do not block time). To define them formally we first present the following
two sets of runs.

• A run r is time-divergent if limk→∞ time(r, k) = ∞. We denote by Timediv the set of all
time-divergent runs.

• The set Blamelessi ⊆ Runs consists of the set of runs in which player i is responsible
only for finitely many transitions. A run s0, 〈m

0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . belongs to the

set Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k, we have

¬ blamei(sj,m
j
1,m

j
2, sj+1).

A strategy πi is receptive if for all strategies π∼i, all states s ∈ S, and all runs r ∈
Outcomes(s, π1, π2), either r ∈ Timediv or r ∈ Blamelessi. Thus, no matter what the
opponent does, a receptive strategy of player i cannot be responsible for blocking time.
Strategies that are not receptive are not physically meaningful. A timed game structure
G is well-formed if both players have receptive strategies. We restrict our attention to
well-formed timed game structures. We denote ΠR

i to be the set of receptive strategies for
player i. Note that for π1 ∈ ΠR

1 , π2 ∈ ΠR
2 , we have Outcomes(s, π1, π2) ⊆ Timediv.

Winning sets. Given an objective Φ, let WinTimeDivG1(Φ) denote the set of states s in G

such that player 1 has a receptive strategy π1 ∈ ΠR
1 such that for all receptive strategies

π2 ∈ ΠR
2 , we have Outcomes(s, π1, π2) ⊆ Φ. The strategy π1 is said to be a winning strategy.

In computing the winning sets, we shall quantify over all strategies, but modify the objective
to take care of time divergence. Given an objective Φ, let

TimeDivBl1(Φ) = (Timediv∩ Φ) ∪ (Blameless1 \Timediv)

i.e., TimeDivBl1(Φ) denotes the set of runs such that either time diverges and Φ holds, or

else time converges and player 1 is not responsible for time to converge. Let WinG1(Φ) be

the set of states in G such that for all s ∈ WinG1(Φ), player 1 has a (possibly non-receptive)
strategy π1 ∈ Π1 such that for all (possibly non-receptive) strategies π2 ∈ Π2, we have
Outcomes(s, π1, π2) ⊆ Φ. The strategy π1 is said to be winning for the non-receptive game.
The following result establishes the connection between Win and WinTimeDiv sets.

Theorem 2.1 ([HP06]). For all well-formed timed game structures G, and for all ω-regular

objectives Φ, we have WinG1(TimeDivBl1(Φ)) = WinTimeDivG1(Φ).

We now define a special class of timed game structures, namely, timed automaton
games.
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Timed automaton games. Timed automata [AD94] suggest a finite syntax for spec-
ifying infinite-state timed game structures. A timed automaton game is a tuple T =
〈L,C,A1,A2, E, γ〉 with the following components:

• L is a finite set of locations.
• C is a finite set of clocks.
• A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
• E ⊆ L× (A1 ∪A2)× Constr(C)×L× 2C is the edge relation, where the set Constr(C) of
clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d.
For an edge e = 〈l, ai, θ, l

′, λ〉, the clock constraint θ acts as a guard on the clock values
which specifies when the edge e can be taken, and by taking the edge e, the clocks in the set
λ ⊆ C are reset to 0. We require that for all edges 〈l, ai, θ

′, l′, λ′〉 6= 〈l, a′i, θ
′′, l′′, λ′′〉 ∈ E,

we have ai 6= a′i. This requirement ensures that a state and a move together uniquely
determine a successor state.

• γ : L 7→ Constr(C) is a function that assigns to every location an invariant for both
players. All clocks increase uniformly at the same rate. When at location l, each player i
must propose a move out of l before the invariant γ(l) expires. Thus, the game can stay
at a location only as long as the invariant is satisfied by the clock values.

A clock valuation is a function κ : C 7→ IR≥0 that maps every clock to a nonnegative real.
The set of all clock valuations for C is denoted by K(C). Given a clock valuation κ ∈ K(C)
and a time delay ∆ ∈ IR≥0, we write κ + ∆ for the clock valuation in K(C) defined by
(κ + ∆)(x) = κ(x) + ∆ for all clocks x ∈ C. For a subset λ ⊆ C of the clocks, we write
κ[λ := 0] for the clock valuation in K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and
(κ[λ := 0])(x) = κ(x) if x 6∈ λ. A clock valuation κ ∈ K(C) satisfies the clock constraint
θ ∈ Constr(C), written κ |= θ, if the condition θ holds when all clocks in C take on the
values specified by κ. A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L
together with a clock valuation κ ∈ K(C) such that the invariant at the location is satisfied,
that is, κ |= γ(l). We let S be the set of all states of T.

In a state, each player i proposes a time delay allowed by the invariant map γ, together
either with the action ⊥i (player 1 can also propose ⊥∗), or with an action ai ∈ Ai such
that an edge labeled ai is enabled after the proposed time delay. We require that for all
states s = 〈l, κ〉, either

(a) κ+∆ |= γ(l) for all ∆ ∈ IR≥0, or
(b) there exist a time delay ∆ ∈ IR≥0 and an edge 〈l, a2, θ, l

′, λ〉 ∈ E such that
(1) a2 ∈ A2 and
(2) κ+∆ |= θ and for all 0 ≤ ∆′ ≤ ∆, we have κ+∆′ |= γ(l), and
(3) (κ+∆)[λ := 0] |= γ(l′).

Informally, these conditions ensure that, for a legal state, either the invariant at the location
is satisfied at all time points in the future; or there is some time point in the future at which
a discrete action can be taken by the plant (with the location invariant being satisfied up
to that time point). This requirement is necessary (but not sufficient) for well-formedness
of the game.

The timed automaton game T defines a timed game structure [[T]] = 〈S,A1,A2,Γ1,Γ2, δ〉
as follows:
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x < ∆ → a2

x ≥ ∆

a∗
1

x ≥ ∆

a∗
2

l1

l∗

l x ≤ ∆
θ → x := 0

Figure 2: Player-1 actions disabled for ∆ time
units (⊥∗ absent in model).

x < ∆ → a2

l1
l x < ∆

θ → x := 0

Figure 3: Player-1 actions disabled for ∆ time
units (⊥∗ present in model).

• S = {〈l, κ〉 | l ∈ L and κ(l) satisfies γ(l)}.
• For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

(a) 〈∆,⊥i〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ+∆′ |= γ(l).
(b) 〈∆, ai〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), ai ∈ Ai, and there exists an

edge 〈l, ai, θ, l
′, λ〉 ∈ E such that κ+∆ |= θ.

(c) 〈0,⊥∗〉 if i = 1.
• The transition function δ is specified by:

(a) δ(s, 〈∆,⊥∗〉) = s
(b) δ(〈l, κ〉, 〈∆,⊥i〉) = 〈l, κ +∆〉.
(c) δ(〈l, κ〉, 〈∆, ai〉) = 〈l′, (κ + ∆)[λ := 0]〉 for the unique edge 〈l, ai, θ, l

′, λ〉 ∈ E with
κ+∆ |= θ.

The timed game structure [[T]] is not necessarily well-formed, because it may contain cy-
cles along which time cannot diverge. Well-formedness of timed automaton games can
be checked in EXPTIME [HP06]. We restrict our focus to well-formed timed automaton
games in this paper.

Example 2.2 (Utility of the action ⊥∗). Suppose we did not have the action ⊥∗. Then
in every timed game, we need to require that from every location, there needs to be an
outgoing player-1 edge before the invariant of the location expires; this requirement needs
to be present as now player 1 cannot simply relinquish active control to player 2.

Consider a timed automaton game T with a location l in which we want to model the
following. We want that if a clock condition θ is met at location l, then the moves of the
controller (player 1) are disabled for the next ∆ time units (the disabled time interval is
right open); and that player 2 (the plant) is to take a particular action a′2 within these
∆ time units. Let x be a clock used just for guarding the ∆ condition. The system can
be modeled as in Figure 2. The incoming player-1 and player-2 edges to l1 have the same
guard and reset condition. Without the ⊥∗ action, we need special player-1 and player-2
actions a∗1 and a∗2 which go to a dummy sink accepting location from the location l1. The
objective Φ of player 1 also needs to be modified to Φ ∧ (¬✸l∗) (where ✸ is the standard
LTL operator for reachability). With the implicit presence of the relinquishing action ⊥∗,
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the situation can be modeled more naturally as in Figure 3 without having to add dummy
sink locations and edges; or having to change the objective. Note that replicating the a′2
action to a similar player-1 action from l1 does not work in a ⊥∗-less model, as we want the
time at which the a′2 action is taken to be under the control of player 2.

Clock regions. Timed automaton games can be solved using a region construction from the
theory of timed automata [AD94]. For a real t ≥ 0, let frac(t) = t−⌊t⌋ denote the fractional
part of t. Given a timed automaton game T, for each clock x ∈ C, let cx denote the largest
integer constant that appears in any clock constraint involving x in T (let cx = 1 if there is no
clock constraint involving x). Two states 〈l1, κ1〉 and 〈l1, κ1〉 are said to be region equivalent
if all the following conditions are satisfied: (a) l1 = l2, (b) for all clocks x, κ1(x) ≤ cx iff
κ2(x) ≤ cx, (c) for all clocks x with κ1(x) ≤ cx, ⌊κ1(x)⌋ = ⌊κ2(x)⌋, (d) for all clocks x, y
with κ1(x) ≤ cx and κ1(y) ≤ cy, frac(κ1(x)) ≤ frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)),
and (e) for all clocks x with κ1(x) ≤ cx, frac(κ1(x)) = 0 iff frac(κ2(x)) = 0. A region is
an equivalence class of states with respect to the region equivalence relation. There are
finitely many clock regions; more precisely, the number of clock regions is bounded by
|L| ·

∏
x∈C(cx + 1) · |C|! · 22|C|.

Representing regions. A region of a timed automaton game T can be represented as a
tuple R = 〈l, h,P(C)〉 where (a) l is a location of T; (b) h is a function which specifies the
integral part of clocks h : C → (IN ∩ [0,M ]) (M is the largest constant in T); and (c) P(C)
is a ordered disjoint partition of the clocks 〈C−1, C0, . . . Cn〉 such that ⊎Ci = C, with Ci 6= ∅
for i > 0. Then, a state s with clock valuation κ is in the region corresponding to R when
all the following conditions hold: (a) the location of s corresponds to the location of R;
(b) for all clocks x with κ(x) ≤ cx, ⌊κ(x)⌋ = h(x); (c) for κ(x) > cx, h(x) = cx; (d) for
all pair of clocks (x, y), with κ(x) ≤ cx and κ(y) ≤ cy, we have frac(κ(x)) < frac(κ(y)) iff
x ∈ Ci and y ∈ Cj with 0 ≤ i < j (so, x, y ∈ Ck with k ≥ 0 implies frac(κ(x)) = frac(κ(y)));
(e) for κ(x) ≤ cx, frac(κ(x)) = 0 iff x ∈ C0; and (f) x ∈ C−1 iff κ(x) > cx.

Region strategies and objectives. For a state s ∈ S, we write Reg(s) ⊆ S for the clock
region containing s. For a run r, we let the region sequence Reg(r) = Reg(r[0]),Reg(r[1]), · · · .
Two runs r, r′ are region equivalent if their region sequences are the same. An ω-regular ob-
jective Φ is a region objective if for all region-equivalent runs r, r′, we have r ∈ Φ iff r′ ∈ Φ. A
strategy π1 is a region strategy, if for all runs r1 and r2 and all k ≥ 0 such that Reg(r1[0..k]) =
Reg(r2[0..k]), we have that if π1(r1[0..k]) = 〈∆, a1〉, then π1(r2[0..k]) = 〈∆′, a1〉 with
Reg(r1[k] + ∆) = Reg(r2[k] + ∆′). The definition for player 2 strategies is analogous. Two
region strategies π1 and π′

1 are region-equivalent if for all runs r and all k ≥ 0 we have that
if π1(r[0..k]) = 〈∆, a1〉, then π′

1(r[0..k]) = 〈∆′, a1〉 with Reg(r[k] + ∆) = Reg(r[k] + ∆′). A
parity index function Ω is a region (resp. location) parity index function if Ω(s1) = Ω(s2)
whenever Reg(s1) = Reg(s2) (resp. s1, s2 have the same location). Henceforth, we shall
restrict our attention to region and location objectives.

Encoding time-divergence by enlarging the game structure. Given a timed au-

tomaton game T, consider the enlarged game structure T̂ (based mostly on the construction

in [dAFH+03]) with the state space ST̂ ⊆ S × IR[0,1) × {true, false}2, and an augmented

transition relation δT̂ : ST̂ × (M1 ∪M2) 7→ ST̂. In an augmented state 〈s, z, tick , bl1〉 ∈ ST̂,
the component s ∈ S is a state of the original game structure [[T]], z is the value of a ficti-
tious clock z which gets reset to 0 every time it hits 1, tick is true iff z hit 1 during the last
transition, and bl1 is true if player 1 is to blame for the last transition (i.e., blame1 is true
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for the last transition). Note that any strategy πi in [[T]], can be considered a strategy in T̂.
The values of the clock z, tick and bl1 correspond to the values each player keeps in memory
in constructing his strategy. Given any initial value of z = z

∗, tick = tick∗, bl1 = bl∗1; any

run r in T has a corresponding unique run r̂ in T̂ with r̂[0] = 〈r[0], z∗, tick∗, bl∗1〉 such that r
is a projection of r̂ onto T. For an objective Φ, we can now encode time-divergence as the
objective:

TimeDivBl1(Φ) = (✷✸ tick → Φ) ∧ (¬✷✸ tick → ✸✷¬ bl1)

where ✷ and ✸ are the standard LTL modalities (“always” and “eventually” respectively),
the combinations ✷✸ and ✸✷ denoting “infinitely often” and “all but for a finite number
of steps” respectively. This is formalized in the following proposition.

Proposition 2.3. Let T be a timed automaton game and T̂ be the corresponding enlarged
game structure. Let Φ be an objective on T. Consider a run r=s0, 〈m0

1,m
0
2〉, s

1, 〈m1
1,m

1
2〉, . . .

in T. Let r̂ denote the corresponding run in T̂ such that z0 = 0, tick 0 = false, bl01 = false

and r̂ = 〈s0, z0, tick0, bl01〉, 〈m
0
1,m

0
2〉, 〈s

1, z1, tick1, bl11〉, 〈m
1
1,m

1
2〉, . . . .

Then, r ∈ TimeDivBl1(Φ) iff r̂ ∈ ((✷✸ tick → Φ) ∧ (¬✷✸ tick → ✸✷¬ bl1)).

Proof. Time diverges in the run r iff it diverges in the corresponding run r̂. Moreover, time
diverges in r̂ iff time crosses integer boundaries infinitely often, i.e., ✷✸ tick holds. Also, the
run r̂ belongs to Blameless1 iff player 1 is blamed only finitely often, i.e., ✸✷¬ bl1 holds.

The following lemma states that because of the correspondence between T and T̂, we

can obtain the winning sets of T by obtaining the winning sets in T̂.

Lemma 2.4. Let T be a timed automaton game and T̂ be the corresponding enlarged game
structure. Let Φ be an objective on T. Any state s of T satisfies s ∈ WinT1 (TimeDivBl1(Φ))

iff 〈s, 0, false, false〉 ∈ WinT̂1 ((✷✸ tick → Φ) ∧ (¬✷✸ tick → ✸✷¬ bl1)).

Proof. Consider a state s of T, and a corresponding state 〈s, 0, false, false〉 of T̂. The

variables z, tick and bl1 only “observe” properties in T̂, they do not restrict transitions.

Thus, given a run r of T from s, there is a unique run r̂ of T̂ from 〈s, 0, false, false〉 and

vice versa. Similarly, any player-i strategy πi in T corresponds to a strategy π̂i in T̂; and

any strategy π̂i in T̂ corresponds to a strategy πi in T such that both strategies propose the
same moves for corresponding runs. The result then follows from Proposition 2.3.

Encoding TimeDivBl1(Parity(Ω)) as a parity objective. If Φ is a parity objective, then

TimeDivBl1(Φ) can be specified as a parity objective in a related game structure T̂Ωtd

. The
following encoding is based on a construction in [dAFH+03]. Given Φ = Parity(Ω) where

Ω is a parity index function of order d, the structure T̂Ωtd

has the state space ST̂Ω
td

⊆
S × IR[0,1) × {true, false}2 × {0, 1, . . . , d− 1}. Given a state ŝ = 〈s, z, tick , bl1, p〉, the set

of available moves ΓT̂Ωtd

i (ŝ) is equal to ΓT
i (s). The transition relation δT̂

Ωtd

is specified as

follows. For 〈∆, ai〉 ∈ ΓT
i (s), we have δT̂

Ω
td

(〈s, z, tick , bl1, p〉, 〈∆, ai〉) = 〈s′, z′, tick ′, bl ′1, p
′〉

where

• s′ = δT(s, 〈∆, ai〉).
• z

′ = frac(z+∆).
• tick ′ = true iff z+∆ ≥ 1.
• bl ′1 = true iff i = 1 (i.e., its a player-1 move).
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• p′ =

{
max(p,Ω(s′)) if tick = false

Ω(s′) if tick = true

The following lemma states that a parity index function Ωtd can be defined on T̂Ωtd

such that the time divergence conditions are encoded. The proof of the lemma is technical
and is presented in the appendix.

Lemma 2.5. Let T be a timed automaton game, Parity(Ω) an objective on T, and T̂Ωtd

the corresponding enlarged game structure. Consider the parity index function Ωtd for T̂Ωtd

defined as

Ωtd(〈s, z, tick , bl1, p〉) =





0 if tick = bl1 = false

1 if tick = false, bl1 = true

p+ 2 if tick = true

Extend the parity function Ω to states of T̂Ωtd

, such that the parity Ω(〈s, z, tick , bl1, p〉) is

the same as the parity Ω(s) in T. Then in the game structure T̂Ωtd

, we have

TimeDivBl1(Parity(Ω)) = ((✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1)) = Parity(Ωtd).

The next lemma states that we can consider games on T̂Ωtd

with the parity index
function Ωtd to obtain the winning states of T for the objective Parity(Ω). The proof of the
lemma follows from the results of Lemma 2.4 (the result of the lemma also holds for the

structure T̂Ωtd

) and Lemma 2.5.

Lemma 2.6. Let T be a timed automaton game, Ω a parity index function on states

of T, T̂Ωtd

the corresponding enlarged game structure, and Ωtd the parity index function

on states of T̂Ωtd

defined in Lemma 2.5. Let Ω be extended to states of T̂Ωtd

such that
Ω(〈s, z, tick , bl1, p〉) = Ω(s). Any state s of T satisfies s ∈ WinT1(TimeDivBl1(Parity(Ω)))

iff 〈s, 0, false, false, 0〉 ∈ WinT̂
Ω
td

1 ((✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1))

iff 〈s, 0, false, false, 0〉 ∈ WinT̂
Ω
td

1 (Parity(Ωtd)).

Let κ̂ be a valuation for the clocks in Ĉ = C∪{z}. A state of T̂Ωtd

can then be considered
as 〈〈l, κ̂〉, tick , bl1, p〉. We extend the clock equivalence relation to these expanded states:
〈〈l, κ̂〉, tick , bl1, p〉 ∼= 〈〈l′, κ̂′〉, tick ′, bl ′1, p

′〉 iff l = l′, tick = tick ′, bl1 = bl ′1, p = p′ and κ̂ ∼= κ̂′.

We let 〈l, tick , bl1, p〉 be the “locations” in T̂Ωtd

. If Ω is a location parity index function for

T, we have Ωtd to be a location parity index function for T̂Ωtd

A µ-calculus formulation for describing the winning set. A µ-calculus formula ϕ

to describe the winning set WinT̂
Ω
td

1 (Parity(Ωtd)) is given in [dAFH+03]. The µ-calculus

formula uses the controllable predecessor operator for player 1, CPre1 : 2Ŝ 7→ 2Ŝ (where

Ŝ = ST̂Ω
td

), defined formally by

ŝ ∈ CPre1(Z) iff ∃m1 ∈ ΓT̂Ω
td

1 (ŝ) ∀m2 ∈ ΓT̂Ω
td

2 (ŝ) . δT̂
Ω
td

jd (ŝ,m1,m2) ⊆ Z.

Informally, CPre1(Z) consists of the set of states from which player 1 can ensure that the
next state will be in Z, no matter what player 2 does. The operator CPre1 preserves regions

of T̂Ωtd

(this follows from the results of Lemma 3.1). It follows from [dAFH+03] that given
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a parity index function Ω̂ : Ŝ 7→ {0, 1, . . . , d− 1}, the winning set WinT̂
Ωtd

1 (Parity(Ω̂)) can be
described by the following µ-calculus formula in case d− 1 is odd:

µXd−1 · νYd−2 · µXd−3 . . . νY2 · µX1 · νY0




Ω̂−1(0) ∩ CPre1(Y0)
∪

Ω̂−1(1) ∩ CPre1(X1)
∪

Ω̂−1(2) ∩ CPre1(Y2)
...

Ω̂−1(d− 2) ∩ CPre1(Yd−2)
∪

Ω̂−1(d− 1) ∩ CPre1(Xd−1)




where µ and ν denote the least fixpoint and the greatest fixpoint operators respectively, and

Ω̂−1(j) denotes the set of states of parity j. In case d− 1 is even, the µ-calculus formula is

νYd−1 · µXd−2 · νXd−3 . . . µY2 · νX1 · µY0




Ω̂−1(0) ∩ CPre1(Y0)
∪

Ω̂−1(1) ∩ CPre1(X1)
∪

Ω̂−1(2) ∩ CPre1(Y2)
...

Ω̂−1(d− 2) ∩ CPre1(Xd−2)
∪

Ω̂−1(d− 1) ∩ CPre1(Yd−1)




We now present a lemma which states that in the structure T̂Ωtd

, for location ω-regular
objectives, (1) memoryless region strategies suffice for winning, and (2) from states in the
winning set there exists a winning memoryless region strategy π1 such that all strategies
region-equivalent to π1 are also winning. The proof of the lemma can be found in the
appendix.

Lemma 2.7. Let T be a timed automaton game, Ω a location parity index function on states

of T, and T̂Ωtd

the corresponding enlarged game structure with the parity index function
Ωtd. Then, (1) there exists a memoryless region winning strategy π1 for Parity(Ωtd) from

WinT̂
Ω
td

1 (Parity(Ωtd)), and (2) if π′
1 is a strategy that is region-equivalent to π1, then π′

1 is a

winning strategy for Parity(Ωtd) from WinT̂
Ωtd

1 (Parity(Ωtd)).

We say a strategy πi is move-independent if for any two runs r, r′ such that r[k] = r′[k]
for all k ≥ 0 we have πi(r[0..j]) = π(r′[0..j]) for all j ≥ 0. A move-independent region
strategy is a region strategy that is move-independent. The following corollary follows
from Lemma 2.7 observing that a memoryless strategy is a move independent strategy. A

memoryless strategy in T̂Ωtd

does not always have a corresponding memoryless strategy in T.
It may not even have a move-independent strategy in T. This is because to infer the values
of z, tick , bl1 in T, we need the values of the previous moves taken. The following proposition
states that if player 1 has access to a global clock then move-independent strategies suffice
in T (the proof can be found in the appendix).
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Proposition 2.8. Let T be a timed automaton game such that the set of clocks includes a
global clock z that is never reset and let Φ = Parity(Ω) be an ω-regular location objective of
T. Then, move-independent strategies in T suffice for winning TimeDivBl1(Φ).

The next lemma states that memoryless strategies of player 2 suffice as spoiling strate-
gies (the proof is in the appendix).

Lemma 2.9. Let T be a timed automaton game, Ω a location parity index function on states

of T, and T̂Ωtd

the corresponding enlarged game structure with the parity index function Ωtd.

Then, memoryless region strategies of player 2 in T̂Ωtd

suffice for preventing player 1 from

winning Parity(Ωtd) from a state ŝ /∈ WinT̂
Ω
td

1 (Parity(Ωtd)) .

3. Exact Winning of Timed Parity Games

In this section we will present a reduction of infinite-state timed automaton games with
parity objectives to finite-state turn-based games with parity objectives. The reduction
gives us several results related to complexity and algorithms to solve timed automata parity
games: (a) we obtain algorithms to solve timed automaton parity games with better time
complexity than the algorithm presented in [dAFH+03]; (b) our reduction allows us to use
the rich literature on algorithms for finite-state parity games for solving timed automaton
parity games.

Finite-state turn-based games. A finite-state turn-based game G consists of the tuple
〈(S,E), (S1, S2)〉, where (S1, S2) forms a partition of the finite set S of states, E is the set
of edges, S1 is the set of states from which only player 1 can make a move to choose an
outgoing edge, and S2 is the set of states from which only player 2 can make a move. The
game is bipartite if every outgoing edge from a player-1 state leads to a player-2 state and
vice-versa.

First idea of the reduction. Let T be a timed automaton game, and let T̂Ωtd

be the
corresponding enlarged timed game structure that encodes time divergence. We shall con-

struct a finite-state turn-based game structure Tf based on the regions of T̂Ωtd

which can
be used to compute winning states for parity objectives for the timed automaton game T.

In this finite-state game, first player 1 proposes a destination region R̂1 together with a

discrete action a1 (intuitively, this can be taken to mean that in the game T̂Ωtd

, player 1

wants to first let time elapse to get to the region R̂1, and then take the discrete action a1).
The finite-state game then moves to an intermediate state which remembers the proposed

action of player 1 in the game T̂Ωtd

. Let us denote this intermediate state in Tf which spec-

ifies the desired destination region and action of player 1 in T̂Ωtd

by the tuple 〈R̂, R̂1, a1〉.

From this state in Tf , player 2 similarly also proposes a move consisting of a region R̂2

together with a discrete action a2. These two moves in Tf signify that in the game in T̂Ωtd

player i proposed a move 〈∆i, ai〉 from a state ŝ ∈ R̂ such that ŝ+∆i ∈ R̂i. Depending on

the move 〈∆2, a2〉, the game in Tf will then proceed from 〈R̂, R̂1, a1〉 to destination states

Reg
(
δT̂

Ω
td

(ŝ, 〈∆1, a1〉)
)
, or Reg

(
δT̂

Ω
td

(ŝ, 〈∆2, a2〉)
)
, or both, after the move of player 2

depending on whether ∆1 < ∆2, or, ∆1 > ∆2, or, ∆1 = ∆2, respectively. The following
lemma indicates that only the regions of ŝ+∆i are important in determining whether the
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move of player 1 or player 2 determines the successors after this two-step process. The proof
is technical and is presented in the appendix.

Lemma 3.1. Let T be a timed automaton game, Ω a parity index function on states of T

and let Y, Y ′
1 , Y

′
2 be regions in the enlarged timed game structure T̂Ωtd

. Suppose player-i has
a move 〈∆i,⊥i〉 from some ŝ ∈ Y to ŝi ∈ Y ′

i , for i ∈ {1, 2}. Then, for all states ŝ ∈ Y and

for all player-1 moves mŝ
1 = 〈∆1, a1〉 with ŝ +∆1 ∈ Y ′

1 and a1 6= ⊥∗, one of the following
cases must hold.

(1) Y ′
1 6= Y ′

2 and for all moves mŝ
2 = 〈∆2, a2〉 of player-2 with ŝ +∆2 ∈ Y ′

2, we have ∆1 <

∆2 (and hence blame1(ŝ,m
ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
1)) = true and blame2(ŝ,m

ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
2)) =

false).
(2) Y ′

1 6= Y ′
2 and for all player-2 moves mŝ

2 = 〈∆2, a2〉 with ŝ + ∆2 ∈ Y ′
2, we have ∆2 <

∆1 (and hence blame2(ŝ,m
ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
2)) = true and blame1(ŝ,m

ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
1)) =

false).
(3) Y ′

1 = Y ′
2 and there exists a player 2 move mŝ

2 = 〈∆2, a2〉 with ŝ+∆2 ∈ Y ′
2 such that ∆1 =

∆2 (and hence blame1(ŝ,m
ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
1)) = true and blame2(ŝ,m

ŝ
1,m

ŝ
2, δ̂(ŝ,m

ŝ
2)) =

true).

Lemma 3.1 states that given an initial state in R̂, for moves of both players to some fixed

R̂1, R̂2, either the move of player 1 is always chosen, or player 2 can always pick a move
such that player-1’s move is foiled.

Let ST̂Ω
td

Reg = {X | X is a region of T̂Ωtd

}, and let S† = ST̂Ω
td

Reg × ST̂Ω
td

Reg × A⊥
1 . Using

Lemma 3.1, a bipartite turn-based finite game Tf = 〈(Sf , Ef ), (ST̂Ω
td

Reg ×{1}, S† ×{2})〉 can
be constructed to capture the timed game T as follows.

• The state space Sf is equal to ST̂Ωtd

Reg × {1} ∪ S† × {2}.

• Each 〈R̂, 1〉 ∈ ST̂Ω
td

Reg × {1} encodes states in the timed game T̂Ωtd

that belongs to the

region R̂. ST̂Ω
td

Reg × {1} are player-1 states.

• Each 〈Y, 2〉 ∈ S† × {2} encodes the following information: (a) the previous state of Tf

(which corresponds to a region R̂ of T̂Ωtd

), (b) a region R̂′ of T̂Ωtd

(representing an

intermediate state which results from time passage in T̂Ωtd

from the state in the previous

region R̂ to a state in R̂′), and (c) the desired discrete action of player 1 to be taken from

the intermediate state in R̂′. S† × {2} are player-2 states.

• An edge from 〈R̂, 1〉 to 〈Y, 2〉 = 〈R̂, R̂′, a1, 2〉 would represent the fact that in the timed

game T̂Ωtd

, from some state ŝ ∈ R̂, player 1 has a move 〈∆, a1〉 such that ŝ + ∆ is in

the intermediate region component R̂′ of 〈Y, 2〉, with a1 being the desired final discrete

action. From the state 〈Y, 2〉, player 2 would have moves to ST̂Ω
td

Reg × {1} depending on

what moves of player 2 in the timed game T̂Ωtd

can beat the player-1 moves from R̂ to

R̂′ according to Lemma 3.1.

The construction alluded to above requires having a state space that has size roughly

|ST̂Ω
td

Reg |2 ·|A1|, where |S
T̂Ω

td

Reg | is the number of regions of T̂Ωtd

. An optimized construction was

presented in [CHP08] such that the size of the state space was roughly O(|ST̂Ω
td

Reg |·M ·|C|·|A1|)

where M is the largest constant and C the set of clocks in ÂΩtd

. The optimization was due
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to the observation that a state in a region R̂ does not have transitions to every region, but
only to a few restricted ones.

Second idea of the reduction. We will show in subsection 3.2 that the strategies of

both players in the timed game T̂Ωtd

can be be restricted so that from any state ŝ, each
player can only propose moves 〈∆i, ai〉 such that the discrete action ai is taken either from
the current region, or from the two following successor regions. That is, the cardinality of
the set {Reg(ŝ + ∆) | 0 ≤ ∆ ≤ ∆i} is at most 3. The winning set remains the set with
strategies being restricted in this manner. This result allows us to restrict the size of the

state space in the region pair construction mentioned above to O(|ST̂Ω
td

Reg | · |A1|). A further

optimization allows us to have a state space linear in |ST̂Ω
td

Reg |.

Outline of Section 3. In subsection 3.1, we show that the strategies of both players can be
restricted so that the edges of the timed automaton game are taken from the current region,
or from the two following successor regions; with the restriction not changing the winning

set WinT̂
Ω
td

1 (Parity(Ωtd)). We call these restricted games 3-region timed parity games. Then
in subsection 3.2, we reduce these 3-region timed parity games to finite-state turn-based

games, the state space of the turn-based game being linear in the number of regions of T̂Ωtd

.

3.1. Reduction to 3-Region Timed Parity Games.

3.1.1. 3-Region strategies. We define the boolean functions SuccrT̂
Ω
td

j : ST̂Ω
td

× IR≥0 7→
{true, false} for j ∈ {2, 3} as

SuccrT̂
Ω
td

j (ŝ,∆) =

{
true if |{Reg(ŝ +∆′) | 0 ≤ ∆′ ≤ ∆}| ≤ j
false otherwise

For player i, with i ∈ {1, 2}, we say a strategy πi is a 3-region strategy of T̂Ωtd

if for any run
prefix r[0..k], we have that πi plays a move of duration ∆ such that r[k]+∆ is at most in the

second following region. Formally, πi(r[0..k]) = 〈∆k
i , a

k
i 〉 with SuccrT̂

Ω
td

3 (r[k],∆k
i ) = true.

We wish to show that in the game T̂Ωtd

, we can restrict both players to using only 3-region
strategies. Consider 3-region strategies of player 1. Informally, they suffice for winning as
a) 3-region strategies allow time to diverge, and b) if π1 is a player-1 winning strategy, then
we can obtain a winning 3-region strategy π∗

1 that plays the same moves as π1 whenever π1
proposes moves within two successor regions; and plays simple time moves to the second suc-
cessor region whenever π1 plays a move to outside the second following region. The strategy
π∗
1 works in general because for a run r̂[0..k] such that π1 proposes moves outside two succes-

sor regions, a player-2 strategy π2 can counter π1 by playing similar pure time move as π∗
1 .

Unfortunately this argument does not formally work, as a player-1 move makes the bl1 com-
ponent true, and a player-2 move makes bl1 false, that is, δ(r[k], 〈∆,⊥1〉) 6= δ(r[k], 〈∆,⊥2〉),
the only difference being in the bl1 components. We get around this roadblock by working
in another expanded game structure where the bl1 component is true only if a move of
player 1 is chosen, and the move is either to the originating region, or to the immediately
succeeding region. It turns out that this modification does not change the time divergence
condition. We present this new game structure next.
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3.1.2. The expanded game structure T̂Ωtd

3bl . Analogous to the definition of T̂Ωtd

, let T̂Ωtd

3bl be a

similar enlarged game structure, the only difference from T̂Ωtd

being in the bl1 component
(we will refer to the new bl1 component in the new game structure as 3bl). We denote the

transition relation by δT̂
Ωtd

3bl , and the joint transition relation by δ
T̂Ω

td

3bl

jd . In an augmented

state 〈s, z, tick , 3bl1, p〉 ∈ ST̂Ω
td

3bl , the component 3bl1 is true only if both of the following
conditions are satisfied:

(a) player 1 is to blame for the last transition, and

(b)
if δT̂

Ω
td

3bl (〈s∗, z∗, tick∗, 3bl ∗1, p
∗〉, 〈∆, a1〉) = 〈s, z, tick , 3bl1, p〉

then Succr
T̂Ω

td

3bl

2 (〈s∗, z∗, tick∗, 3bl ∗1, p〉,∆) = true.

A run r of T has corresponding unique run r̂ in T̂Ωtd

and r̂3 in T̂Ωtd

3bl such that r is a projection
of r̂ and r̂3 onto T, given the starting values of z, tick , bl1, 3bl 1 and p. The reverse also holds
— for any run in the expanded game structures starting from 〈s, z, tick , bl1, p〉, we have a
corresponding unique run in T from s. Observe that the available moves are the same in all
game structures, and we may view the additional components of the states in the expanded
game structures as being kept in memory by the two players in T. A similar correspondence
between strategies also holds, thus a strategy πi in T has corresponding matching strategies

in T̂Ωtd

and in T̂Ωtd

3bl ; and vice versa.

The next lemma states that time diverges in a run r̂ of T̂Ωtd

3bl when the run has infinitely
many winning moves such that the moves allow a time elapse to a region farther than the
immediate successor region.

Lemma 3.2. Consider a run r ∈ T such that r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . and the

corresponding runs r̂ and r̂3 in T̂Ωtd

and T̂Ωtd

3bl respectively. Suppose for infinitely many k

we have SuccrT̂
Ω
td

2 (r̂[k], delay(mk
1 ,m

k
2)) to be false

(
or SuccrT̂

Ω
td

2 (r̂3[k], delay(m
k
1 ,m

k
2)) to be

false
)
. Then time diverges in the run r (and hence also in r̂, r̂3).

Proof. We have that for all k ≥ 0, except for the blame component, the remaining four
corresponding components of the 5-tuples r̂[k] and of r̂3[k] match. Thus,

SuccrT̂
Ω
td

2 (r̂[k], delay(mk
1 ,m

k
2)) = SuccrT̂

Ω
td

2 (r̂3[k], delay(m
k
1,m

k
2)).

A region of T̂Ωtd

can be represented as a tuple R̂ = 〈l, tick , bl1, p, ĥ,P(Ĉ)〉 (similar to
clock regions in T) where (a) h is a function which specifies the integer values of clocks

h : Ĉ → (IN ∩ [0,M ]) (M is the largest constant in T); and (b) P(Ĉ) is a disjoint partition

of the clocks 〈Ĉ−1, Ĉ0, . . . Ĉn〉 such that ⊎Ĉi = Ĉ, and
̂̂
Ci 6= ∅ for i > 0 (see Section 2 for

details on regions and this representation).

Consider the clock partitions Pk(Ĉ) = 〈Ĉk
−1, Ĉ

k
0 , . . . Ĉ

k
nk〉 of the regions Reg(r̂[k]). Sup-

pose Ĉk
−1 6= ∅. Then, the immediate time successor of the region will have Ĉ−1 = ∅, and

Ĉj = Ĉk
j−1 for nk + 1 ≥ j ≥ 0. Suppose Ĉk

−1 = ∅, then the immediate time successor

of the region will have Ĉ−1 6= ∅; this happens because all the clock values in Ĉk
nk reach

an integer boundary. Suppose SuccrT̂
Ωtd

2 (r̂[k], delay(mk
1 ,m

k
2)) = false. This means that

Reg(r̂[k] + delay(mk
1 ,m

k
2)) is at least two region successors away from Reg(r̂[k]). Thus,

some clock must be crossing an integer boundary (greater than 0) between time(r̂, k) and
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time(r̂, k + 1). Since SuccrT̂
Ωtd

2 (r̂[k], delay(mk
1 ,m

k
2)) = false for infinitely many k, we must

have that some clock crosses an integer boundary greater than 1 infinitely often. Observing
that at least one time unit must pass between any two such crossings, we have that time
diverges in the run r̂ (and hence also in r, r̂3).

We next show that the change in the bl1 component in T̂Ωtd

3bl does not change the
time divergence condition. Given an objective Φ, let TimeDiv3Bl1(Φ) denote the objective
(✷✸ tick → Φ) ∧ (¬✷✸ tick → ✸✷¬3bl1).

Lemma 3.3. Let T be a timed automaton game, Ω a location parity index function on

states of T, and T̂Ωtd

the corresponding enlarged game. Consider a run r ∈ T and the

corresponding runs r̂ and r̂3 in T̂Ωtd

and T̂Ωtd

3bl respectively. The run r̂ belongs to the objective
TimeDivBl1(Parity(Ω)) = (✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1) iff the run r̂3
belongs to the objective TimeDiv3Bl1(Parity(Ω)) = (✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick →
✸✷¬3bl1).

Proof. We have that for all k ≥ 0, except for the blame component, the remaining four
corresponding components of the 5-tuples r̂[k] and of r̂3[k] match. Hence the membership
of the run r̂ in the objective TimeDivBl1(Parity(Ω)) differs from the membership of the run
r̂3 in the objective TimeDiv3Bl1(Parity(Ω)) only when both of the following conditions hold:
(a) time converges on both runs (i.e., (✷✸ tick) = false), and (b) bl1 is true infinitely often
in r̂ and 3bl 1 is true only finitely often in r̂3; or vice versa. Observe that as the first four
components of r̂[k] and in r̂3[k] match, and both runs correspond to a run r in T, we have

blk1 to be true whenever 3blk1 is true. Thus, we cannot have 3bl 1 to be true infinitely often in
r̂3 and bl1 to be true only finitely often in r̂. Thus, we can restrict our attention to the case
where bl1 is true infinitely often, but 3bl 1 is only true finitely often. The blk1 component

of r̂[k] differs from the 3blk1 component in r̂3[k] for k ≥ 1 only when a move 〈∆k−1, ak−1
1 〉

of player 1 is chosen from the state r[k − 1] (and correspondingly from r̂[k] and r̂3[k]),

and we have Succr
T̂Ω

td

3bl

2 (r̂3[k − 1],∆k−1) = false (note that Succr
T̂Ω

td

3bl

2 (r̂3[k − 1],∆k−1) =

SuccrT̂
Ωtd

2 (r̂[k − 1],∆k−1)). Thus, we must have that player-1 moves 〈∆k, ak1〉 were chosen

from the state r̂3[k] such that SuccrT̂
Ω
td

2 (r̂3[k],∆
k) = false for infinitely many k. Thus,

from Lemma 3.2, we have the runs r̂3 and r̂ to be time divergent. Hence, the membership
of the run r̂ in the objective TimeDivBl1(Parity(Ω)) must be the same as the membership of
the run r̂3 in the objective TimeDiv3Bl1(Parity(Ω)),

As in Lemma 2.5, the objective TimeDiv3Bl1(Parity(Ω)) can be expressed as a parity
objective Parity(Ωtd

3bl ). Proposition 2.3 and Lemma 3.3 give us the following proposition

which states that we can consider games in T̂Ωtd

3bl to compute winning sets in T.

Proposition 3.4. Consider a timed automaton game T and a location parity objective Ω on

states of T with T̂Ωtd

3bl being the corresponding expanded game structure. Consider a run r =

s0, 〈m0
1,m

0
2〉, s

1, 〈m1
1,m

1
2〉, . . . in T. Let r̂3 be the corresponding run in T̂Ωtd

3bl such that r̂3 =

〈s0, z0, tick0, bl01, p
0〉, 〈m0

1,m
0
2〉, 〈s

1, z1, tick1, bl11, p
1〉, 〈m1

1,m
1
2〉 with z

0 = 0, tick 0 = false,
bl01 = false, p0 = 0. Then r ∈ TimeDivBl1(Parity(Ω)) iff r̂3 ∈ TimeDiv3Bl1(Parity(Ω)) (i.e.,
r̂3 ∈= Parity(Ωtd

3bl ), or equivalently, r̂3 ∈ (✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬3bl1).
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3.1.3. Sufficiency of 3-region strategies. We next show that we can restrict both players to

use only 3-region strategies in the game structure T̂Ωtd

3bl without changing the winning sets.
We first consider 3-region strategies of player 1. The following lemma is a key lemma of the
paper and an example is presented after the proof to help illustrate its workings.

Lemma 3.5. Consider a timed automaton game T with Ω a location parity function on

states of T and T̂Ωtd

3bl the corresponding expanded game structure. Then, 3-region memoryless

region strategies of player 1 suffice for winning from Win
T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))).

Proof. As in Lemma 2.7, let π1 be a player-1 winning memoryless region strategy in T̂Ωtd

3bl

for TimeDiv3Bl1(Parity(Ω)) (the results of Lemma 2.7, also hold for the structure T̂Ωtd

3bl ).
We construct a 3-region memoryless region strategy π∗

1 of player 1 which wins against
all strategies of player 2. Intuitively, from a state ŝ, the strategy π∗

1 prescribes (a) the
same move as π1 when π1 prescribes a move to either the current region or to the two
immediately succeeding regions (b) prescribes a relinquishing move ⊥∗ when π prescribes a
relinquishing move, and (c) prescribes a time blocking move to the second region following
Reg(ŝ) whenever π1 proposes a move to outside the second succeeding region. Formally, let

r̂3 be any run in T̂Ωtd

3bl . The strategy π∗
1 is specified by:

π∗
1(r̂3[0..k]) =





〈∆, a1〉 if π1(r̂3[0..k]) = 〈∆, a1〉 and Succr
T̂Ω

td

3bl

3 (r̂3[k],∆) = true,
and a1 6= ⊥∗

〈0,⊥∗〉 if π1(r̂3[0..k]) = 〈∆,⊥∗〉
〈∆,⊥1〉 if π1(r̂3[0..k]) = 〈∆1, a1〉, a1 6= ⊥∗, and

Succr
T̂Ω

td

3bl

3 (r̂3[k],∆1) = false; where ∆ is any real number
such that |{Reg(r̂3[k] + ∆′) | 0 ≤ ∆′ ≤ ∆}| = 3.

Note that π∗
1 is a memoryless region strategy as π1 is a memoryless region strategy.

We claim π∗
1 wins against all strategies of player 2 for every state ŝ ∈ Win

T̂Ω
td

3bl

1 . Sup-
pose this is not true. Let π∗

2 be a spoiling move-independent region strategy of player 2

against π∗
1 from ŝ ∈ Win

T̂Ω
td

3bl

1 (move-independent region strategies suffice as spoiling strate-

gies by a lemma corresponding to Lemma 2.9 for the structure T̂Ωtd

3bl ). Suppose r̂∗3 ∈
Outcomes(ŝ, π∗

1 , π
∗
2) and r̂∗3 /∈ TimeDiv3Bl1(Parity(Ω)). We show that in that case we can

construct a player-2 spoiling strategy for π1, contrary to the assumption that π1 was a
winning strategy. Intuitively, given a finite run r̂3[0..k] the strategy π2:

(1) Acts like π∗
2 when π1 proposes a relinquishing move.

(2) Acts like π∗
2 when π1 proposes moves within three regions.

(3) Acts like π∗
2 when π1 proposes moves outside three regions and π∗

2 proposes moves of
shorter duration than π∗

1 (observe that π
∗
1 moves are pure time moves in case π1 proposes

moves outside three regions).
(4) Proposes the same time delay moves as π∗

1 when π1 proposes moves outside three regions,
and π∗

2 proposes moves longer than π∗
1;

(5) Proposes the same moves as π∗
2 when π1 proposes moves outside three regions, π∗

2
proposes moves of exactly the same duration as π∗

1, and the move of π∗
2 is chosen at

r̂∗3[k + 1].
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(6) Proposes the same time delay moves as π∗
1 when π1 proposes moves outside three regions

and when π∗
2 proposes moves of exactly the same duration as π∗

1 if the move of π∗
1 is

chosen at r̂∗3[k + 1].

Formally, the player-2 strategy π2 (dependent on the strategies π1, π
∗
1 and π∗

2) is defined to
be:

π2(r̂3[0..k]) =





π∗
2(r̂3[0..k]) if π1(r̂3[0..k]) = 〈∆, a1〉, and

a1 = ⊥∗

π∗
2(r̂3[0..k]) if π1(r̂3[0..k]) = 〈∆, a1〉, and

SuccrT̂
Ω
td

3 (r̂3[k],∆) = true

π∗
2(r̂3[0..k]) if π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗, and

SuccrT̂
Ω
td

3 (r̂3[k],∆) = false;
π∗
1(r̂3[0..k]) = 〈∆′,⊥1〉, and

π∗
2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ < ∆′

〈∆′,⊥2〉 if π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗, and

SuccrT̂
Ω
td

3 (r̂3[k],∆) = false;
π∗
1(r̂3[0..k]) = 〈∆′,⊥1〉, and

π∗
2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ > ∆′

π∗
2(r̂3[0..k]) if π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗, and

SuccrT̂
Ωtd

3 (r̂3[k],∆) = false;
π∗
1(r̂3[0..k]) = 〈∆′,⊥1〉, and

π∗
2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ = ∆′; and

δT̂
Ωtd

3bl (r̂∗3[k], π
∗
2(r̂

∗
3 [0..k])) = r̂∗3[k + 1], and

δT̂
Ω
td

3bl (r̂∗3[k], π
∗
1(r̂

∗
3 [0..k])) 6= r̂∗3[k + 1]

〈∆′,⊥2〉 if π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗, and

SuccrT̂
Ω
td

3 (r̂3[k],∆) = false;
π∗
1(r̂3[0..k]) = 〈∆′,⊥1〉, and

π∗
2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ = ∆′; and

δT̂
Ω
td

3bl (r̂∗3[k], π
∗
1(r̂

∗
3 [0..k])) = r̂∗3[k + 1]

Note that π2 is a memoryless strategy (as π1, π
∗
1 , π

∗
2 are all memoryless). We show that

π2 is a spoiling strategy for π1 from ŝ ∈ Win
T̂Ω

td

3bl

1 . This is a contradiction since π1 was as-
sumed to be a player-1 winning strategy. We show there exists a run r̂3 ∈ Outcomes(ŝ, π1, π2)
such that r̂3[k] = r̂∗3[k] for all k ≥ 0 (recall that r̂∗3 is the run used in defining π2, and is
such that r̂∗3 ∈ Outcomes(ŝ, π∗

1 , π
∗
2) and r̂∗3 /∈ TimeDiv3Bl1(Parity(Ω))).

We proceed by induction on k. For k = 0 the claim is trivially true. Suppose the
claim is true for all j ≤ k. Thus, we have a run r̂3 such that r̂3[j] = r̂∗3[j] for all j ≤ k.
We show that the run r̂3[0..k] can be extended to r̂3[0..k + 1] according to π1, π2 such that
r̂3[k+1] = r̂∗3[k+1]. Informally, we have the following cases (we can ignore the moves taken
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and only focus on the states in the runs r̂3[0..k], which is the same as the states in the run
r̂∗3[0..k] since π1, π2, π

∗
1, π

∗
2 are all memoryless and hence move independent):

(1) The strategies π1 and π∗
1 propose a relinquishing move for the state sequence of r̂3[0..k]

(which is the same as the state sequence r̂∗3[0..k] by the inductive hypothesis). In this
case the move proposed by player 2 is the same for π2 and for π∗

2 , so the next state
r̂3[k + 1] is the same as r̂∗3[k + 1].

(2) For the state sequence r̂3[0..k], the strategies π1 and π∗
1 propose the same non-relinquish-

ing move to either the current region, or the next two immediately succeeding regions.
In this case the move proposed by player 2 is the same for π2 and for π∗

2, so the next
state r̂3[k + 1] is the same as r̂∗3[k + 1].

(3) The strategy π1 proposes a move outside the second succeeding region, π∗
1 proposes a

delay move to the second succeeding region, and π∗
2 proposes a move shorter than π∗

1 .
In this case, the strategy π2 proposes the same move as π∗

2 , and hence the same move
of player 2 determines both r̂3[k + 1] and r̂∗3[k + 1]. Thus, the two states are equal.

(4) The strategy π1 proposes a move outside the second succeeding region, π∗
1 proposes a

delay move to the second succeeding region, and π∗
2 proposes a move longer than π∗

1 .
In this case, the strategy π2 proposes the same delay move as π∗

1, and hence the state
r̂3[k+1] is the same as r̂∗3[k+1] as both states are determined by delay moves of equal
duration. The 3bl1 component remains false in both r̂3[k + 1] and r̂∗3[k + 1] as the
transition is outside the immediately succeeding region.

(5) The strategy π1 proposes a move outside the second succeeding region, π∗
1 proposes a

delay move to the second succeeding region, π∗
2 proposes a move of exactly the same

duration as π∗
1, and the move of player 2 according to the strategy π∗

2 determines
r̂∗3[k + 1]. In this case π2 behaves like π∗

2, and hence the state r̂3[k + 1] is the same as
r̂∗3[k + 1] as both are determined by the same move of player 2.

(6) The strategy π1 proposes a move outside the second succeeding region, π∗
1 proposes a

delay move to the second succeeding region, π∗
2 proposes a move of exactly the same

duration as π∗
1, and the delay move of player 1 according to π∗

1 determines the next
state r̂∗3[k + 1]. In this case π2 proposes a delay move of the same duration as π∗

1 and
hence the state r̂3[k+1] is the same as r̂∗3[k+1] as both are determined by delay moves
of equal duration. The 3bl1 component remains false in both r̂3[k + 1] and r̂∗3[k + 1]
as the transition is outside the immediately succeeding region.

The full details can be found in the appendix.
Thus, in all cases, we have that r̂3[0..k] can be extended to r̂3[0..k + 1] according to

π1, π2 such that r̂3[0..k + 1] = r̂∗3[0..k + 1]. Hence, we have r̂3 ∈ Outcomes(ŝ, π1, π2) and
r̂3 /∈ TimeDiv3Bl1(Parity(Ω)) as r̂∗3 /∈ TimeDiv3Bl1(Parity(Ω)), a contradiction since π1 was
assumed to be a winning strategy. Hence, we cannot have the existence of the strategy π∗

2

from which r̂∗3 and π2 were derived, i.e., π∗
1 is a winning strategy for player 1 from ŝ.

The next example illustrates the above lemma and the usefulness of the structure T̂Ωtd

3bl .

Example 3.6. Consider the timed automaton T in Figure 4. Suppose the objective of
player 1 is to reach the location l1 starting from l0. Player 1 controls only the edge a1.
Player 2 controls the other edges a12 and a22. Player 1 wins from l0 so long as x < 4. Let
r[0..k] be a run such that αx < 4 where αx is the value of clock x in state r[k]. A winning
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l0

a1, x ≥ 3a2
2, x ≥ 4

a1
2, y ≤ 2 −→ x := 0 l1l2

Figure 4: A timed automaton game T.

strategy for player 1 is given by

π1(r[0..k]) =
〈3− αx, a1〉 if αx ≤ 3
〈0, a1〉 otherwise

Based on π1, a 3-region winning strategy π∗
1 can be obtained as in Lemma 3.5. Intuitively,

from a state ŝ, the strategy π∗
1 prescribes (a) the same move as π1 when π1 prescribes a move

to either the current region or to the two immediately succeeding regions, and (b) prescribes
a time elapsing move to the second region following Reg(ŝ) whenever π1 proposes a move
to outside the second succeeding region.

Let the initial state be ŝ0 = 〈l0, z = x = y = 0, tick = false, 3bl 1 = false〉 (we skip
the parity component for simplicity). We consider a sample play from this state. Initially,
π∗
1 proposes the move 〈1,⊥1〉 from ŝ0. Suppose it is allowed by player 2. The resulting state

is then ŝ1 = 〈l0, z = 0, x = y = 1, tick = true, 3bl1 = false〉. In the second step, π∗
1 again

proposes the move 〈1,⊥1〉 from ŝ1. the resulting state is ŝ2 = 〈l0, z = 0, x = y = 2, tick =
true, 3bl 1 = false〉. In the third step, π∗

1 proposes the move 〈1, a1〉 which is blocked by the
player-2 move 〈0, a12〉, leading to the state ŝ3 = 〈l0, z = 0, x = 0, y = 2, tick = false, 3bl 1 =
false〉. Player 2 can then take the action a12 a finite number of times, but eventually it
must let time elapse. When it does, player 1 is able to take the action a1 in three steps.

Now we show that there exists a player-2 strategy π2 such that π1 and π2 result in
the same sequence of states ŝ0, ŝ1, ŝ2, . . . . The strategy π2 proposes a time elapsing move
〈1,⊥2〉 from ŝ0 and then again from ŝ1. It then proposes 〈0, a12〉 from ŝ2 as against π∗

1 , and
then again 〈1,⊥2〉 for one more step. It can be verified that this leads to the same sequence
of states as with π∗

1.

Suppose we had been working in the structure T̂Ωtd

. Then the states ŝ1 and ŝ2 would
have had bl1 = true. Thus, in reaching l1, the strategy π∗

1 would have resulted in some
states having bl1 = true, in contrast to the strategy π1 which manages to have bl1 = false

until l1 is reached. Thus π1 and π∗
1 would on the surface appear to be inherently incompatible

with respect to objectives. In this example however, it can be seen that we may as well
work with 3bl1 as player-1 time-elapsing moves can be chosen only finitely often, thus 3bl 1
and bl1 differ only finitely often.

Next, we show that 3-region memoryless strategies of player 2 suffice as spoiling strate-
gies. An example will be presented after the lemma to illustrate the sufficiency of 3-region
strategies.

Lemma 3.7. Consider a timed automaton game T and a location parity objective Ω on

states of T with T̂Ωtd

3bl being the corresponding expanded game structure. Suppose ŝ /∈

Win
T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))). Then, 3-region memoryless region strategies of player 2
suffice for preventing player 1 from satisfying the objective TimeDiv3Bl1(Parity(Ω)) from ŝ.
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Proof. The objective TimeDiv3Bl1(Parity(Ω)) corresponds to the parity objective Parity(Ωtd)
by Lemma 2.5 (replacing bl1 by 3bl1). As mentioned in Section 2, there exists a game µ-

calculus formula which precisely characterizes the winning set Win
T̂Ω

td

3bl

1 (Parity(Ωtd)). The
winning sets can be obtained by a µ-calculus iteration. The iteration uses the controllable

predecessor operator for player 1, CPre1 : 2Ŝ 7→ 2Ŝ (where Ŝ is the state space of T̂Ωtd

3bl ),

defined formally by ŝ ∈ CPre1(Z) iff ∃m1 ∈ Γ
T̂Ω

td

3bl

1 (ŝ) ∀m2 ∈ Γ
T̂Ω

td

3bl

2 (ŝ) . δ
T̂Ω

td

3bl

jd (ŝ,m1,m2) ⊆ Z.

Informally, CPre1(Z) consists of the set of states from which player 1 can ensure that the
next state will be in Z, no matter what player 2 does. It can be shown that CPre1 preserves

regions of T̂Ωtd

3bl using Lemma 3.1. The iteration also suggests winning strategies for player 1
based on the sets that arise in the iteration. The sets that arise depend on the parity
labeling, the CPre1 and the fixpoint operators. If we have a location parity objective, it
can be shown that only unions of regions arise as sets in the fixpoint iteration. To prove
that 3-region memoryless region strategies of player 2 suffice as spoiling strategies, it hence
suffices to show that the CPre1 sets of unions of regions remains unchanged if we restrict
player-2 strategies to be 3-region memoryless region strategies.

Let CPre1,3(Z) denote the set of states from which player 1 can ensure that the next
state will be in Z, no matter what move player 2 takes within 3 regions. Also, clearly
CPre1,3(Z) depends only on Z, and not on the history of the game (hence we shall have
memoryless 3-region spoiling strategies). We show CPre1,3(Z) = CPre1(Z) for Z a union
of regions. Clearly CPre1(Z) ⊆ CPre1,3(Z) as player 2 has fewer moves to counter with in
CPre1,3(Z). To prove the other direction, we show if ŝ ∈ CPre1,3(Z), then ŝ ∈ CPre1(Z).
We first characterize the CPre1 sets. A state ŝ ∈ CPre1(Z) iff either one of the following
conditions is met:

(1) {δ(ŝ, 〈∆, a2〉) | 〈∆, a2〉 ∈ Γ2(ŝ)} ⊆ Z.
(2) There exists 〈∆, a1〉 ∈ Γ1(ŝ) with a1 6= ⊥∗ such that

(a) δ(ŝ, 〈∆, a1〉) ∈ Z, and
(b) {δ(ŝ, 〈∆′, a2〉) | ∆

′ ≤ ∆, and 〈∆′, a2〉 ∈ Γ2(ŝ)} ⊆ Z.

The first condition corresponds to the case when player 1 proposes a move 〈∆,⊥∗〉 from
ŝ. In this case, the move of player 2 will be chosen, no matter the move. Thus, we must
have that no matter the move of player 2, the resultant state must be in Z. The second
condition corresponds to the case when player 1 proposes a move 〈∆, a1〉 from ŝ with
a1 6= ⊥∗. In this case, every move 〈∆′, a1〉 of player 2 with ∆′ ≤ ∆ must lead to Z. A
similar characterization exists for CPre1,3(Z), the only difference being that player-2 moves
are restricted to be within 3 regions: a state ŝ ∈ CPre1,3(Z) iff either one of the following
conditions is met:

(1) {δ(ŝ, 〈∆, a2〉) | 〈∆, a2〉 ∈ Γ2(ŝ) and Succr3(ŝ,∆) = true} ⊆ Z.
(2) There exists 〈∆, a1〉 ∈ Γ1(ŝ) with a1 6= ⊥∗ such that

(a) δ(ŝ, 〈∆, a1〉) ∈ Z, and
(b) {δ(ŝ, 〈∆′, a2〉) | ∆

′ ≤ ∆, Succr3(ŝ
∗,∆′) = true, and 〈∆′, a2〉 ∈ Γ2(ŝ)} ⊆ Z.

Now we show that if ŝ ∈ CPre1,3(Z), then ŝ ∈ CPre1(Z). Suppose ŝ ∈ CPre1,3(Z). Infor-
mally, we can have the following cases (the formal details are in the appendix):

• The available moves of player 2 are only until the second immediately succeeding
region. In this case, the restriction of player-2 strategies to be 3-region strategies
has no effect, hence ŝ ∈ CPre1(Z).
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↑

2 3

2

1

41x →
y

Figure 5: Regions of the timed automaton game T of Figure 4.

• Player 2 has a move from ŝ to a state that is farther than the second succeeding
region. This means that it has a delay move to the second succeeding region. In this
case, player 1 can play the same delay move to the second succeeding region. The
resulting state will be the same as due to the delay move of player 2 to the second
succeeding region, because 3bl1 will be false in both cases. Moreover, all moves of
player 2 which lie in the current or the next two regions result in a state in Z by
assumption. In particular, the delay move of player 1 will also result in a state in
Z. Thus, ŝ ∈ CPre1(Z).

Thus, in all cases ŝ ∈ CPre1(Z) whenever ŝ ∈ CPre1,3(Z).

Example 3.8. Consider the timed automaton game in Figure 4 and the following regions.

R̂5 = {〈l1, z = 0, x = 3, y, tick = true, 3bl1 = false〉 | y > 2}

R̂4 = {〈l0, z = 0, x = y = 1, tick = true, 3bl1 = false〉}

R̂3 = {〈l0, z = x = y, tick = false, 3bl 1 = false〉 | 0 < x < 1}

R̂2 = {〈l0, z = 0, x = 0, y = 1, tick = true, 3bl 1 = false〉}

R̂1 = {〈l0, z = y, x = 0, tick = false, 3bl 1 = false〉 | 0 < y < 1}

R̂0 = {〈l0, z = 0, x = y = 0, tick = false, 3bl 1 = false〉}

The regions can be seen as the thick lines and dots in Figure 5 (the clock z is not shown

for simplicity). Let Z =
⋃5

j=0 R̂j.

The state ŝ0 = 〈l0, z = 0, x = y = 0, tick = false, 3bl 1 = false〉 belongs to CPre1,3(Z).
This can be seen as follows. From state ŝ0, player 1 proposes the move 〈3, a1〉. Player 2 can
only propose a counter move 〈∆, a∗〉 such that 0 ≤ ∆ ≤ 1 and a∗ ∈ {⊥2, a

1
2}. Now observe

that ŝ0 also belongs to CPre1(Z). To see this, we have to consider a different player-1 move,

namely 〈1,⊥1〉. If player 2 allows this move of player 1, the next state will be in R̂4 (the
variable 3bl1 remains false as the allowed move of player 1 is not in the immediate successor
region of ŝ0). If player 2 instead proposes a shorter (or equal) duration move, the next state

will be in
⋃4

j=0 R̂j .

Let Z∗ be any set of states which includes R̂5. Suppose ŝ0 ∈ CPre1,3(Z
∗) or ŝ0 ∈

CPre1(Z
∗). Then it can be seen that Z∗ must contain the states from Z. Hence, we have

ŝ0 ∈ CPre1,3(Z
∗) iff ŝ0 ∈ CPre1(Z

∗). In general, 3-region strategies of player 2 suffice as if
there exists a move of player 2 beyond the two immediately succeeding regions, then both
player 1 and player 2 have simple time passage moves to the second succeeding region, with
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the variable 3bl 1 remaining false if any of these two moves is chosen. To mimic a general
player-2 counter move, a 3-region strategy of player 2 can play simple time passage moves
to the second successor regions till it gets to a state from which a desired player-2 edge lies
within two successor regions.

Given an objective Parity(Ω), let Win
3,T̂3
1 (Parity(Ω)) denote the states in the expanded

game structure T̂3 such that for all states ŝ ∈ Win
3,T̂3
1 (Parity(Ω)), player 1 has a 3-region

strategy π1 such that for all 3-region strategies π2 of player 2, we have Outcomes(ŝ, π1, π2) ⊆
Parity(Ω). The following theorem, which follows from Lemmas 3.5, 3.7, and 3.3 states that

to solve for TimeDiv3Bl1(Parity(Ω)) in T̂Ωtd

3bl , we can restrict both players to use only 3-region
strategies. We call such games 3-region parity games.

Theorem 3.9. Consider a timed automaton game T and a location parity objective Ω on

states of T with T̂Ωtd

3bl being the corresponding expanded game structure. We have

Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))) = Win
T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω)))

= Win
T̂Ω

td

3bl

1 (TimeDivBl1(Parity(Ω))).

3.2. Reduction from 3-Region Parity Games to Finite-State Turn-Based Parity

Games. We gave a rough construction of a bipartite turn-based game to capture the win-
ning sets of timed parity games at the beginning of this section . The idea of the construction
being that first player 1 proposes a move representing its intention to let time pass to get

to an intermediate region of T̂Ωtd

3bl and then take a discrete action from that region. This
intermediate region together with the action and the originating region can be encoded as

a player-2 state in the finite game as 〈R̂, R̂′, a1〉 with R̂ denoting the originating region, R̂′

representing the intermediate region to let time pass to, and a1 the player-1 action to take

from R̂′. Note that this player-2 state 〈R̂, R̂′, a1〉 corresponds to an intermediate step in the

game T̂Ωtd

3bl , where from a state ŝ ∈ R̂ player 1 has just proposed its move (say 〈∆1, a1〉 with

the time delay ∆ leading to the region R̂′ from which the discrete action a1 will be taken.

The game of T̂Ωtd

3bl is still in the state ŝ, waiting for the move from player 2. In the finite-

state game, from the player-2 state 〈R̂, R̂′, a1〉, player 2 then takes an action depending on
whether it would allow the previously proposed player-1 move from the originating region

R̂ in T̂Ωtd

3bl or not. This corresponds to the move of player 2 in T̂Ωtd

3bl where it allows or dis-
allows the player-1 move 〈∆1, a1〉 from ŝ (hence the element of “surprise” from [dAFH+03]
remains in this finite-state game). From Theorem 3.9, we can consider parity games where
each player is restricted to use only 3-region strategies. This allows us to restrict the pairs
of regions that can occur as player-2 states in the finite game.

Outline of subsection 3.2. We first present a finite-state turn-based game T
f
Ω which can

be used to compute the winning sets of T. The size of the state space will be O(|S
T̂Ω

td

3bl

Reg | · |A1|)

where S
T̂Ω

td

3bl

Reg is the set of regions in T̂Ωtd

3bl and A1 is the set of actions of player 1 in T. We then
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present a finite-state turn-based game Tf
Ω

∗
such that (1) the winning set of Tf

Ω

∗
corresponds

to that for Tf
Ω, and (2) the size of the state space of Tf

Ω

∗
is O(|S

T̂Ω
td

3bl

Reg |).

3.2.1. Construction of the finite turn-based bipartite game T
f
Ω. Given a timed automaton T,

and a location parity index function Ω on states of T, the bipartite finite turn-based game

T
f
Ω consists of a tuple 〈Sf , Ef , Sf

1 , S
f
2 〉 where,

• Sf = Sf
1 ∪ Sf

2 is the state space. The states in Sf
i are controlled by player-i for i ∈ {1, 2}.

• Sf
1 = ŜReg × {1}, where ŜReg is the set of regions in T̂Ωtd

3bl .

• Sf
2 = ŜTup × {2}, where ŜTup = ŜReg × {0, 1, 2} ×A⊥

1 .

• Ef contains the following edges:

− For sf1 = 〈R̂, 1〉 ∈ Sf
1 , the set Ef contains the outgoing edges (〈R̂, 1〉, 〈R̂, j, a1, 2〉)

such that in the structure T̂Ωtd

3bl , there exists ŝ ∈ R̂ and 〈∆, a1〉 ∈ Γ
T̂Ω

td

3bl

1 (ŝ) with

|{Reg(ŝ+∆′) | ∆′ ≤ ∆}| = j + 1. These types of edges encode in Tf the fact that in

the game structure T̂Ωtd

3bl there exists a state in R̂ such that player 1 has a move such
that time passes to the j-th following region from where the discrete action a1 is taken.

− For sf2 = 〈R̂, j, a1, 2〉 in Sf
2 , the set E

f contains the outgoing edges (〈R̂, j, a1, 2〉, 〈R̂
′, 1〉)

such that in the structure T̂Ωtd

3bl , there exists ŝ ∈ R̂, 〈∆1, a1〉 ∈ Γ1(ŝ) and 〈∆2, a2〉 ∈
Γ2(ŝ) with |{Reg(ŝ+∆′) | ∆′ ≤ ∆1}| = j + 1 such that either

(1) a1 6= ⊥∗, |{Reg(ŝ +∆′) | ∆′ ≤ ∆2}| ≤ j + 1 and δ(ŝ, 〈∆2, a2〉) ∈ R̂′.
This edge corresponds to the case when player 2 does not allow a player-1 move

〈∆1, a1〉 from a state ŝ ∈ R̂ by proposing its own move 〈∆2, a2〉 such that ∆2 ≤ ∆1.

(2) a1 6= ⊥∗, 3 ≥ |{Reg(ŝ+∆′) | ∆′ ≤ ∆2}| ≥ j + 1 and δ(ŝ, 〈∆1, a1〉) ∈ R̂′.
This edge corresponds to the case when player 2 allows a player-1 move 〈∆1, a1〉

from a state ŝ ∈ R̂ by proposing a move of duration ∆2 ≥ ∆1.

(3) a1 = ⊥∗ and δ(ŝ, 〈∆2, a2〉) ∈ R̂′.
This edge corresponds to the case when player 1 plays a ⊥∗ move so the move of
player 2 is chosen.

Note that we can pick any states in R̂ and R̂′ to check the satisfiability of the above
conditions by Lemma 3.1.

In the construction for T
f
Ω above, the states in ŜTup × {2} contain player-1 actions as

components. The actions are used only for determining the destination states, so instead

of player-1 actions as components of states in ŜTup we can as well use a tuple from L× 2C ,
with 〈l, α〉 denoting an action in T such that the destination location is l, and which resets
the clocks in α.

Each sf ∈ Sf is a tuple, with the first component being a region of T. Given the

location parity index function Ωtd
3bl on T̂Ωtd

3bl , we let Ωf be the parity index function on T
f
Ω

such that Ωf (〈R̂, ·〉) = Ωtd
3bl (ŝ) where ŝ is any state in the region R̂ (all states in a region

have the same parity as Ωtd
3bl is a location parity index function on T̂Ωtd

3bl ). Note that if

the parity index function Ω is of order d, then Ωtd
3bl and Ωf are of order d + 2. Given a

set X = X1 × {1} ∪ X2 × {2} ⊆ Sf , we let RegStates(X) = {ŝ ∈ ST̂Ω
td

3bl | Reg(ŝ) ∈ X1}.

Theorem 3.10 shows that the turn-based game T
f
Ω captures the game T̂Ωtd

3bl .
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Theorem 3.10. Let T be a timed automaton game, Ω a location parity index function on

states of T, with T̂Ωtd

3bl being the corresponding enlarged game, and Tf the corresponding

finite game structure with the parity index function Ωf . Then, we have

Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))) = RegStates(WinT
f

1 (Parity(Ωf ))).

Proof. Recall the µ-calculus formulation for obtaining the winning set

Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω)))

in T̂Ωtd

3bl . We use the Pre1 operator in turn-based games:

Pre1(X) =
{s ∈ ŜReg × {1} | ∃s′ ∈ X such that (s, s′) ∈ Ef}

∪

{s ∈ ŜTup × {2} | ∀(s, s′) ∈ Ef we have s′ ∈ X}

Given X = X1 × {1} ∪X2 × {2} ⊆ Sf , we have

RegStates
(
PreT

f

1

(
PreT

f

1 (X)
))

= RegStates
(
PreT

f

1

(
PreT

f

1 (X1 × {1})
))

(3.1)

This is because the structure of the games T
f
Ω is such that a state with 1 as the last

component of the tuple can reach X = X1 × {1} ∪ X2 × {2} in exactly two steps iff it can
reach X1 × {1} in exactly two steps (the game is bipartite).

From Lemma 3.1, it follows that

RegStates
(
PreT

f

1

(
PreT

f

1 (X1 × {1})
))

= CPre
T̂Ω

td

3bl

1 (RegStates (X1 × {1})) (3.2)

Let φc be the µ-calculus formula using the CPre1 operator describing the winning set for
Parity(Ωtd

3bl ) = TimeDiv3Bl1(Parity(Ω)) . Let φt be the µ-calculus formula using the Pre1
operator in a turn-based game describing the winning set for Parity(Ωf ) . As Ωf and Ωtd

3bl
contain the same number of priorities, the formula φt can be obtained from φc by syntacti-

cally replacing every CPre1 by Pre1 (see [dAHM01]). Let the winning set for Parity(Ωf ) in T
f
Ω

beW1×{1} ∪W2×{2}. It is described by φt. The game in Tf proceeds in a bipartite fashion
— player 1 and player 2 alternate moves, with the state resulting from the move of player 1
having the same parity index as the originating state. Note that the objective Parity(Ωf )
depends only on the infinitely often occurring indices in the trace. Thus, W1 × {1} can be
also be described by the µ-calculus formula φ′

t obtained by replacing each Pre1 in φt with
Pre1 ◦Pre1, and taking states of the form s× {1} in the result. Consider the fixpoint itera-
tion Iφ′

t
for computing the set φ′

t. Since we are only interested in the set W1×{1}, and since

we have a bipartite game, the set W1×{1} can also be described by an iteration I∗ in which

each set in the iteration Iφ′
t
is intersected with ŜReg ×{1}. This is because each step in the

iteration Iφ′
t
applies Pre1 ◦Pre1, and if X1×{1}∪X2×{2} = Pre1 ◦Pre1(Z1×{1}∪Z2×{2}),

then X1×{1} = Pre1 ◦Pre1(Z1×{1}). Now, this new iteration I∗ describes the winning sets

of the µ-calculus formula φ′′
t obtained from φ′

t by intersecting every variable with ŜReg×{1}.
Using the identity 3.2, we have that the sets in the fixpoint iteration computation of φ′′

t

correspond to the sets in the fixpoint iteration computation of φc, that is, if X×{1} occurs
in the computation of φ′′

t at stage j, then RegStates(X) occurs in the computation of φc at
the same stage j. This implies that the sets are the same on termination for both φ′′

t and

φc. Thus, Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))) = RegStates(WinT
f

1 (Parity(Ωf ))).
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From Theorem 3.10, we can solve the finite-state game Tf to compute winning sets
for all ω-regular region parity objectives Parity(Ω) for a timed automaton game T, using
any algorithm for finite state turn-based games, e.g., strategy improvement, small-progress
algorithms [VJ00, Jur00].

3.2.2. Construction of the finite turn-based game T
f
Ω

∗
. We now present the turn-based game

T
f
Ω

∗
which can be used to compute the sets RegStates(Win

T
f
Ω

1 (Parity(Ωf ))) of Tf
Ω, with the

state space of Tf
Ω

∗
being linear in the number of regions of T̂Ωtd

3bl . The idea behind this

construction is that when player 1 proposes a move 〈∆, a1〉 in T̂Ωtd

3bl from state ŝ, player 2
can ignore the discrete component a1 of the move. Intuitively this is because player 2 should
only care about the moves it can make before time ∆ from state ŝ. If there is a move it
would like to make before time ∆, then player 2 should preempt the move of player 1. If
there is no such move, then it should allow the move of player 1, irrespective of a1. The
exact value of a1 (other than whether it is ⊥∗ or not) is irrelevant in determining the moves
for which player 2 “wins” in a round. Since the value of a1 is irrelevant, there is no need
to explicitly remember the discrete component of the moves of player 1 as was done in the

game structure T
f
Ω. This allows us to bring the state space down, so that it is linear in

the number of regions of T̂Ωtd

3bl . In the game T
f
Ω, we broke a step of the game in T̂Ωtd

3bl into

two steps. In the game T
f
Ω

∗
, we break a step of T̂Ωtd

3bl into three steps: first player 1 makes
a move, then, player 2, then player 1 and then the sequence repeats, i.e., the sequence of
players making moves is (121)ω . Note that this game is not bipartite as player 1 is making
two consecutive moves. Informally, the three steps are as follows.

(1) First, player 1 proposes either a
• Relinquishing move, or
• A move which corresponds to time elapsing to a desired region. The discrete part of
the move is left for later.

(2) Then, player 2 moves according to one of the following:
• If player 1 had relinquished in the previous step, then it transitions to a player 1
state such that the region component is the new region. In addition, this is a special
player 1 state (we shall see what this means in a while).

• If player 1 had proposed a non-relinquishing move to a region, then player 2 either
− Blocks the player 1 move by proposing a move that corresponds to a shorter dura-

tion move in T̂Ωtd

3bl . With this move, it transitions to a player 1 state such that the
region component is the new region. In addition, this is again a special player 1
state.

− Decides to allow the player 1 move. But remember that we only know the time
elapse part of the player 1 move till now. Thus, this move of player 2 transitions
the game into an intermediate state from which player 1 can only propose the
remaining discrete part of the move.

(3) In the third stage of the game, if the state is not special, then player 1 proposes the
remaining discrete part of its original move. If the state is special, then it only has one
dummy move, which makes the special state non-special without changing the region
component. The special states thus allow us to maintain a three stage game.

Formally, given a timed automaton T, and a location parity index function Ω on states of

T, the finite turn-based game T
f
Ω

∗
consists of a tuple 〈Sf ∗, Ef ∗, Sf

1

∗
, Sf

2

∗
〉 where,
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• Sf ∗ = Sf
1

∗
∪ Sf

2

∗
is the state space. The states in Sf

i

∗
are controlled by player-i for

i ∈ {1, 2}.

• Sf
1

∗
= ŜReg × {1a, 1

dum
c } ∪ ŜReg × {0, 1, 2} × {1c}, where ŜReg is the set of regions in

T̂Ωtd

3bl . Informally, the sequence of the players making moves is (121)ω ; the moves from
states labelled with 1a as the last component will correspond to the first “1” and from
states labelled with 1dumc or 1c as the last component will correspond to the second “1”
in (121)ω .

• Sf
2

∗
= ŜReg × {2} ∪ ŜReg × {0, 1, 2} × {2}.

• Ef ∗ contains the following edges:

− For sf1 = 〈R̂, 1a〉, the set Ef ∗ contains the following outgoing edges

(1) (〈R̂, 1a〉, 〈R̂, 2〉). These edges correspond to player 1 playing a relinquishing move

from states in R̂ in the game structure T̂Ωtd

3bl .

(2) (〈R̂, 1a〉, 〈R̂, j, 2〉) such that in the structure T̂Ωtd

3bl , there exists ŝ ∈ R̂ and 〈∆, a1〉 ∈

Γ
T̂Ω

td

3bl

1 (ŝ) with |{Reg(ŝ + ∆′) | ∆′ ≤ ∆}| = j + 1. These types of edges encode in

Tf ∗ the fact that in the game structure T̂Ωtd

3bl there exists a state in R̂ such that
player 1 has a move such that time passes to the j-th following region from where
the discrete action a1 is taken.

− For sf2 = 〈R̂, 2〉, the set Ef ∗ contains the outgoing edges (〈R̂, 2〉, 〈R̂′, 1dumc 〉) such

that in the structure T̂Ωtd

3bl , there exists a state ŝ ∈ R̂ and 〈∆, a2〉 ∈ Γ
T̂Ω

td

3bl

2 (ŝ) with

δ(ŝ, 〈∆, a2〉) ∈ R̂ ′ and Succr3(ŝ,∆) = true. These edges correspond to the fact in the

game structure T̂Ωtd

3bl , player 1 had played a relinquishing move from some state ŝ in R̂,
and player 2 had played a move according to its 3-region strategy.

− For sf2 = 〈R̂, j, 2〉, the set Ef ∗ contains the following outgoing edges:

(1) (〈R̂, j, 2〉, 〈R̂′, 1dumc 〉) such that in the structure T̂Ωtd

3bl , there exists a state ŝ ∈ R̂ and

〈∆, a2〉 ∈ Γ
T̂Ω

td

3bl

2 (ŝ) with δ(ŝ, 〈∆, a2〉) ∈ R̂ ′ and |{Reg(ŝ + ∆′) | ∆′ ≤ ∆}| ≤ j + 1.

These types of edges encode in Tf ∗ the fact that in the game structure T̂Ωtd

3bl there

exists a state in R̂ such that from ŝ player 1 proposes a move such that time would
pass to the j-th following region from where some discrete action would be taken,
and player 2 is countering this player 1 move with a move of shorter(or equal)
delay.

(2) (〈R̂, j, 2〉, 〈R̂, j, 1dumc 〉). This edge encode in Tf ∗ the fact that in the game structure

T̂Ωtd

3bl there exists a state in R̂ such that from ŝ player 1 proposes a move such that
time would pass to the j-th following region from where some discrete action would
be taken, and player 2 is “allowing” this move of player 1.

− For sf1 = 〈R̂, j, 1c〉, the set Ef ∗ contains the outgoing edges (〈R̂, j, 1c〉, 〈R̂
′, 1〉) such

that in the structure T̂Ωtd

3bl , there exists a state ŝ ∈ R̂ and 〈∆, a1〉 ∈ Γ
T̂Ω

td

3bl

1 (ŝ) with

δ(ŝ, 〈∆, a1〉) ∈ R̂ ′ and |{Reg(ŝ+∆′) | ∆′ ≤ ∆}| = j +1. This edge corresponds to the

fact that in the game T̂Ωtd

3bl player 2 has allowed player 1 to take a move from a state ŝ

in R̂ such that time passes to the j-th following region from where the discrete action
a1 is taken.

− For sf1 = 〈R̂, 1dumc 〉, the set Ef ∗ contains the single outgoing edge (〈R̂, 1dumc 〉, 〈R̂, 1a〉).
This is just a dummy edge, to preserve the (121)ω move pattern.
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Given a set X = X1a×{1a} ∪X1c×{1c, 1
dum
c } ∪X2×{2} ⊆ Sf ∗, we let RegStates(X) =

{ŝ ∈ ST̂Ω
td

3bl | Reg(ŝ) ∈ X1a}. Given the location parity index function Ωtd
3bl on T̂Ωtd

3bl , we let

Ωf ∗ be the parity index function on Tf such that Ωf ∗(〈R̂, ·〉) = Ωtd
3bl (ŝ) where ŝ is any state

in the region R̂ (all states in a region have the same parity as Ωtd
3bl is a location parity index

function on T̂Ωtd

3bl ).

The following lemma shows that two steps in the bipartite game Tf
Ω correspond to three

steps in the game T
f
Ω

∗
. The proof is presented in the appendix.

Lemma 3.11. Let T be a timed automaton game, Ω a location parity index function on

states of T, with T̂Ωtd

3bl being the corresponding enlarged game, and Tf , Tf ∗ being the cor-

responding finite game structures with the parity index functions Ωf and Ωf ∗ respectively.
Suppose X ⊆ Sf and X∗ ⊆ Sf are such that RegStates(X) = RegStates(X∗). Then,

RegStates
(
PreT

f

1

(
PreT

f

1 (X)
))

= RegStates
(
PreT

f∗

1

(
PreT

f ∗

1

(
PreT

f∗

1 (X∗)
)))

.

Using the fact that two steps in the bipartite game T
f
Ω correspond to three steps in the

game T
f
Ω

∗
, we have the following theorem which shows that we can use the game structure

T
f
Ω

∗
to compute the winning sets for T.

Theorem 3.12. Let T be a timed automaton game, Ω a location parity index function

on states of T, with T̂Ωtd

3bl being the corresponding enlarged game, and Tf , Tf ∗ being the

corresponding finite game structures with the parity index functions Ωf and Ωf ∗ respec-

tively. Then, we have RegStates(WinT
f

1 (Parity(Ωf ))) = RegStates(WinT
f∗

1 (Parity(Ωf ∗))) =

Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))).

Proof. Let the winning set in T
f
Ω be W1 × {1} ∪ W2 × {2}; and the winning set in T

f
Ω

∗
be

W1a
∗×{1a} ∪ W1c

∗×{1c, 1
dum
c } ∪ W2

∗×{2}. As proved in the proof of Theorem 3.10, the
set W1 × {1} is also described by the µ-calculus formula φ′′

t obtained from the µ-calculus
formula φc, which describes the winning set for Parity(Ωtd

3bl ), by (1) syntactically replacing
each occurrence of CPre1 in φc by Pre1 ◦Pre1, and, (2) intersecting each variable in φc with

ŜReg (where ŜReg is the set of regions of T̂
Ωtd

3bl ). Using a similar argument, the setW1a
∗×{1a}

can be described by a µ-calculus formula φ∗
t obtained from φc by (1) syntactically replacing

each occurrence of CPre1 in φc by Pre1 ◦Pre1 ◦Pre1, and, (2) intersecting each variable in φc

with ŜReg. By Lemma 3.11, we have that the sets in the fixpoint iteration computation of φ′′
t

correspond to the sets in the fixpoint iteration computation of φ∗
t , that is, ifX×{1} occurs in

the computation of φ′′
t at stage j, then X×{1a} occurs in the computation of φ∗

t at the same
stage j. This implies that the sets are the same on termination for both φ′′

t and φ∗
t . Thus,

W1 = W1a
∗, and hence RegStates(WinT

f

1 (Parity(Ωf ))) = RegStates(WinT
f ∗

1 (Parity(Ωf ∗))) =

Win
3,T̂Ω

td

3bl

1 (TimeDiv3Bl1(Parity(Ω))).

Eliminating redundant states in Tf ∗. The states with 1dumc as the last component are
redundant and were introduced just to have a three stage game to prove Theorem 3.12 using
Lemma 3.11. These redundant states can be removed as follows. The objective Parity(Ωf ∗)

depends only on the infinitely often occurring indices in traces. Consider the states in Tf ∗

of the form 〈R̂, 1dumc 〉. Player 1 has only one move from such a state, to 〈R̂, 1a〉. The parity

of 〈R̂, 1dumc 〉 is the same as the parity of 〈R̂, 1a〉. Thus, these kinds of states can be removed,
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and the incoming edges made to point to the destination of these states without changing

the part of the winning set with 1a as the last component. That is, given a state 〈R̂, 1dumc 〉

with m incoming edges (sf
∗
j , 〈R̂, 1dumc 〉) for 1 ≤ j ≤ m, we can remove the state 〈R̂, 1dumc 〉

and add m edges (sf
∗
j , 〈R̂, 1a〉) for 1 ≤ j ≤ m without changing the part of the winning set

with 1a as the last component.

3.2.3. Complexity of reduction. Recall that for a timed automaton game T, Ai is the set of
actions for player i and C is the set of clocks. Let |A1|

∗ = 1+min
{
|A1|+ 1, |L| · 2|C|

}
(the

+1 outside is due to the relinquishing move of player 1, the min is because we can either
use player-1 actions, including pure time moves; or use tuples of locations with clock reset
sets as actions), and let |A2|

∗ = min
{
|A2|+ 1, |L| · 2|C|

}
. Let |TConstr| denote the length of

the clock constraints in T and d be the order of the parity index function Ω. The size of the

state space of Tf ∗ (with the 1dumc states eliminated) is bounded by 8 · |S
T̂Ω

td

3bl

Reg | where S
T̂Ω

td

3bl

Reg

is the set of regions of T̂Ωtd

3bl . The number of edges originating from player-1 states is at

most |ST̂Ω
td

Reg | · (4 + 3|A1|
∗). The number of edges originating from player-2 states is at most

|ST̂Ω
td

Reg | · 6 · |A2|
∗. The total number of edges is thus at most |ST̂Ω

td

Reg | · (4 + 3|A1|
∗ + 6|A2|

∗).

We also have |ST̂Ω
td

Reg | to be bounded by 32 · d · |L| ·
∏

x∈C(cx + 1) · |C + 1|! · 4|C|.

Theorem 3.13. Let T be a timed automaton game, and let Ω be a location parity index
function of order d. The set WinTimeDivT1 (Parity(Ω)) can be computed in time

O

(
|S

T̂Ω
td

3bl

Reg | · |TConstr|+

[
(|A1|

∗ + |A2|
∗) ·

(
8 · |S

T̂Ω
td

3bl

Reg |

) d+2

3
+ 3

2

])

which equals

O

(
|ST

Reg| · d · |C| · |TConstr|+

[
(|A1|

∗ + |A2|
∗) ·
(
|ST

Reg| · d · 256 · |C|
) d+2

3
+ 3

2

])

where

• ST
Reg is the set of regions of T, with |ST

Reg| = |L| ·
∏

x∈C(cx + 1) · |C|! · 4|C|,

• S
T̂Ω

td

3bl

Reg is the set of regions of T̂Ωtd

3bl , with |S
T̂Ω

td

3bl

Reg | = 32 · (|C|+ 1) · d · |ST
Reg|,

• |TConstr| is the length of the clock constraints in T,

• |A1|
∗ = 1 + min

{
|A1|+ 1, |L| · 2|C|

}
and |A2|

∗ = min
{
|A2|+ 1, |L| · 2|C|

}
with Ai being

the set of discrete actions of player i for i ∈ {1, 2},
• L is the set of locations, and C is the set of clocks in T.

Proof. To solve for WinTimeDivT1 (Parity(Ω)), we solve the turn-based game Af by Theo-

rems 3.9 and 3.12, and Lemma 3.3. For constructing Tf ∗, we need to check which regions
satisfy clock constraints from T. For this, we build a list of regions with valid invariants

together with edge constraints satisfied at the region. This takes O(|S
T̂Ωtd

3bl

Reg | · |TConstr|) time

(we assume a region can be represented in constant space in our analysis). From [Sch07],
we have that a turn-based parity game with m edges, n states and d parity indices can be
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solved in O(m · n
d
3
+ 1

2 ) time. The turn-based game Af can hence be solved in time

O

([
|S

T̂Ω
td

3bl

Reg | · (4 + 3|A1|
∗ + 6|A2|

∗)

]
·

[(
8 · |S

T̂Ω
td

3bl

Reg |

) d+2

3
+ 1

2

])

which is equal to

O

(
(|A1|

∗ + |A2|
∗) ·

[(
8 · |S

T̂Ω
td

3bl

Reg |

) d+2

3
+ 3

2

])

Remark 3.14 (Effects of receptive formulation). In the complexity, we multiply |ST
Reg| by

d as we go from Parity(Ω) to Parity(Ωtd) = TimeDivBl1(Parity(Ω)) (this also increases the
value of the exponent from d

3 +
3
2 to d+2

3 + 3
2 ). Multiplication of |ST

Reg| by 32 · |C| comes in
due to the extra clock z which measures global time, and introduction of the variables tick
and 3bl1.

Usefulness of the finite turn-based game Tf ∗. The reduction allows us to solve the
finite-state game Tf ∗ to compute winning sets for all ω-regular region parity objectives
Parity(Ω) for a timed automaton game T, using any algorithm for finite state turn-based
games, e.g., strategy improvement, small-progress algorithms [VJ00, Jur00]. It also allows
us to leverage any future improvements in algorithms for finite-state games for solving timed
parity games. The reduction to a finite-state game that is linear in the number of regions

of T̂Ωtd

3bl also shows that we do not pay any complexity penalty due to the concurrent nature
of the timed game where both players simultaneously propose moves.

4. Robust Winning of Timed Parity Games

In this section we study restrictions on player-1 strategies to model robust winning, and
show how the winning sets can be obtained by reductions to general timed automaton
games. The results of Section 3 can then be used to obtain algorithms for computing the
robust winning sets.

There is inherent uncertainty in real-time systems. In a physical system, an action
may be prescribed by a controller, but the controller can never prescribe a single timepoint
where that action will be taken with probability 1. There is usually some jitter when the
specified action is taken, the jitter being non-deterministic. The model of general timed
automaton games, where player 1 can specify exact moves of the form 〈∆, a1〉 consisting of
an action together with a precise delay ∆, assumes that the jitter is 0. In subsection 4.1, we
obtain robust winning sets for player 1 in the presence of non-zero jitter (which are assumed
to be arbitrarily small) for each of its proposed moves. In subsection 4.2, we assume the
jitter to be some fixed εj ≥ 0 for every move that is known. The strategies of player 2 are
left unrestricted. In the case of lower-bounded jitter, we also introduce a response time for
player-1 strategies. The response time is the minimum delay between a discrete action, and
a discrete action of the controller. We note that the set of moves with a jitter of εj > 0
around 〈∆, a1〉 contains the set of moves with a jitter of εj/2 and a response time of εj/2
around 〈∆, a1〉 (as {〈∆′, a1〉 | ∆ + εj/2 ≤ ∆′ ≤ ∆ + εj} ⊆ {〈∆′, a1〉 | ∆ ≤ ∆′ ≤ ∆ + εj}.
Thus, the strategies of subsection 4.1 may be considered to have a response time greater
than 0. The winning sets in both sections are hence robust towards the presence of jitter
and response times.
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4.1. Winning in the Presence of Jitter. In this subsection, we model games where the
jitter is assumed to be greater than 0, but arbitrarily small in each round of the game.

Given a state s, a limit-robust move for player 1 is either the move 〈∆,⊥∗〉; or it is a
tuple 〈[α, β], a1〉 for some 0 ≤ α < β such that for every ∆ ∈ [α, β] we have 〈∆, a1〉 ∈ Γ1(s)
2 (|β − α| does not have a lower bound, it just needs to be greater than 0 — hence the
term limit-robust). Note that a move 〈∆,⊥∗〉 for player 1 implies that it is relinquishing
the current round to player 2, as the move of player 2 will always be chosen, and hence we
allow a singleton time move. Given a limit-robust move mrob1 for player 1, and a move m2

for player 2, the set of possible outcomes is the set{
δjd(s,m1,m2)

∣∣∣∣ either
(a) mrob1 = 〈∆,⊥∗〉 and m1 = mrob1; or
(b) mrob1 = 〈[α, β], a1〉 and m1 = 〈∆, a1〉 with ∆ ∈ [α, β]

}
.

A limit-robust strategy πrob
1 for player 1 prescribes limit-robust moves to finite run

prefixes. A limit-robust strategy πrob
1 is receptive if for all player-2 strategies π2, all states

s ∈ S, and all runs r ∈ Outcomes(s, πrob
1 , π2), either r ∈ Timediv or r ∈ Blamelessi. We let

Πrob
1 denote the set of limit-robust strategies for player-1 and Πrob,R

1 the set of limit-robust

receptive strategies. Given an objective Φ, let RobWinTimeDivT1 (Φ) denote the set of states

s in T such that player 1 has a limit-robust receptive strategy πrob
1 ∈ Πrob,R

1 such that for
all receptive strategies π2 ∈ ΠR

2 , we have Outcomes(s, πrob
1 , π2) ⊆ Φ. We say a limit-robust

strategy πrob
1 is region equivalent to a (non-robust) strategy π1 if for all runs r and for all

k ≥ 0, the following conditions hold:

(i) if π1(r[0..k]) = 〈∆,⊥∗〉, then πrob
1 (r[0..k]) = 〈∆′,⊥∗〉 with Reg(r[k] + ∆) = Reg(r[k] +

∆′); and
(ii) if π1(r[0..k]) = 〈∆, a1〉 with a1 6= ⊥∗, then πrob

1 (r[0..k]) = 〈[α, β], a1〉 with Reg(r[k] +
∆) = Reg(r[k] + ∆′) for all ∆′ ∈ [α, β].

Note that for any limit-robust move 〈[α, β], a1〉 with a1 6= ⊥∗ from a state s, we must have
that the set {s +∆ | ∆ ∈ [α, β]} contains an open region of T.

We first present an extension to Lemma 2.7.

Lemma 4.1. Let T be a timed automaton game and T̂ be the corresponding enlarged game

structure. Let Φ̂ be an ω-regular region objective of T̂. If π1 is a region strategy that is

winning for Φ̂ from WinT̂1(Φ̂) and πrob
1 is a robust strategy that is region-equivalent to π1,

then πrob
1 is a winning strategy for Φ̂ from WinT̂1 (Φ̂).

Proof. Consider any strategy π2 for player 2, and a state ŝ ∈ WinT̂1(Φ̂). We observe that
the set Outcomes(s, πrob

1 , π2) consists of runs r such that for all k ≥ 0, either

(1) πrob
1 (r[0..k]) = 〈∆,⊥1〉 and r[k + 1] ∈ δ̂jd(r[k], 〈∆,⊥1〉, π2(r[0..k])); or

(2) πrob
1 (r[0..k]) = 〈[α, β], a1〉 for some β > α ≥ 0

with r[k + 1] ∈ δ̂jd(r[k], 〈∆, a1〉, π2(r[0..k])) for some ∆ ∈ [α, β].

It can be observed that

Outcomes(s, πrob
1 , π2) =

⋃

π′
1

Outcomes(ŝ, π′
1, π2)

2We can alternatively have an open, or half-open time interval, the results do not change.
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where π′
1 ranges over all those (non-robust) player-1 strategies such that for runs r ∈

Outcomes(ŝ, π′
1, π2) and for all k ≥ 0 we have

π′
1(r[0..k]) =

{
〈∆,⊥1〉 if πrob

1 (r[0..k]) = 〈∆,⊥1〉

〈∆, a1〉 if πrob
1 (r[0..k]) = 〈[α, β], a1〉

for some ∆ ∈ [α, β]; and π′
1 acts like π1 otherwise (note that the runs r and the strategies

π′
1 are defined inductively with respect to k, with r[0] = ŝ). Each player-1 strategy π′

1 in
the preceding union is region equivalent to π1 since π

rob
1 is region equivalent to π1 and hence

each π′
1 is a winning strategy for player 1 by Lemma 2.7. Thus, Outcomes(s, πrob

1 , π2) =⋃
π′
1
Outcomes(ŝ, π′

1, π2) is a subset of Φ̂, and hence πrob
1 is a winning strategy for player 1.

We now show how to compute the set RobWinTimeDivT1 (Φ). Given a timed automa-

ton game T, we have the corresponding enlarged game structure T̂3 which encodes time-
divergence (we use the modified blame variable bl1,3 as in Lemma 3.3). We add another

boolean variable to T̂3 to obtain another game structure T̂rob. The state space of T̂rob is

ST̂ × {true, false}. The transition relation δT̂rob is such that

δT̂rob(〈ŝ, rb1〉, 〈∆, ai〉) = 〈δ̂(ŝ, 〈∆, ai〉), rb
′
1〉

where rb ′1 = true iff rb1 = true and one of the following hold:

(i) ai ∈ A⊥
2 ; or

(ii) ai = ⊥∗; or

(iii) ai ∈ A⊥1

1 and s+∆ belongs to an open region of T̂.

A region R̂ of T̂ is said to be open if for all states ŝ ∈ R̂ we have all the clock values in
ŝ to be non-integral. Given a location parity index function Ω on T of order d, we define

another game structure T̂Ωtd
rob (based on T̂rob) with the parity index function Ωtd

rob encoding

TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true) as follows. The state space of T̂Ωtd
rob is ST̂

Ω
td
rob =

ST̂rob ×{0, . . . , d− 1}. The transition relation δT̂
Ωtd
rob is specified as follows (similar to T̂Ωtd

).

For 〈∆, ai〉 ∈ ΓT
i (s), we have δT̂

Ω
td
rob (〈s, z, tick , bl1, rb1, p〉, 〈∆, ai〉) = 〈s′, z′, tick ′, bl ′1, rb

′
1, p

′〉
where

• s′ = δT(s, 〈∆, ai〉).
• z

′ = (z+∆) mod 1.
• tick ′ = true iff z+∆ ≥ 1.
• bl ′1 = true iff i = 1 (i.e., its a player-1 move).

• rb ′1 =





true if rb1 = true, ai ∈ A1 ∪ {⊥1}
and all clock values in C ∪ {z} are non-integral

true if rb1 = true and ai ∈ A⊥
2 ∪ {⊥∗}

false otherwise

• p′ =

{
max(p,Ω(s′)) if tick = false

Ω(s′) if tick = true
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The parity index function Ωtd
rob is defined as

Ωtd
rob(〈s, z, tick , bl1,3, rb1, p〉) =





1 if rb1 = false

0 if rb1 = true and tick = bl1,3 = false

1 if rb1 = true and tick = false, bl1,3 = true

p+ 2 if rb1 = true and tick = true

Lemma 4.2. Let T be a timed automaton game, Parity(Ω) an objective on T, and T̂Ωtd
rob

the corresponding enlarged game structure with the parity index function Ωtd
rob. Then in the

structure T̂Ωtd
rob , we have Parity(Ωtd

rob) = TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true).

Proof. The proof follows along similar lines to the proof of Lemma 2.5. We also observe

than once rb1 becomes false, it stays false in T̂Ωtd
rob and hence the parity also stays odd for

all the following states. Thus, if the maximum of InfOften(Ωtd
rob(r̂)) is even for a run r̂, then

we must have ✷(rb1 = true) in the run.

Theorem 4.3. Given a state s in a timed automaton game T and an ω-regular location
parity index function Ω, we have s ∈ RobWinTimeDivT1 (Parity(Ω)) iff

〈s, ·, ·, ·, rb1 = true, ·〉 ∈ WinT̂
Ω
td
rob

1

(
TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true)

)
.

Proof.

⇒ Suppose player-1 has a winning limit-robust receptive strategy π1 for Parity(Ω), starting
from a state s in T. We show

〈s, ·, ·, ·, rb1 = true, ·〉 ∈ WinT̂
Ω
td
rob

1

(
TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true)

)
.

We may consider π1 to be a strategy in T̂Ωtd
rob . Since π1 is a limit-robust strategy, player-1

proposes limit-robust moves at each step of the game. Given a state ŝ, and a limit-robust
move 〈[α, β], a1〉, there always exists α < α′ < β′ < β such that for every ∆ ∈ [α′, β′],

we have ŝ+∆ belonging to an open region of T̂. Thus, given the limit-robust strategy

π1, we can obtain another limit-robust strategy π′
1 in T̂, such that for every run r̂ and

every k ≥ 0,
(a) if π1(r̂[0..k]) = 〈∆,⊥∗〉, then π′

1(r̂[0..k]) = π1(r̂[0..k]); and
(b) if π1(r̂[0..k]) = 〈[α, β], a1〉, then π′

1(r̂[0..k]) = 〈([α′, β′], a1〉 with [α′, β′] ⊆ [α, β], and

{r̂[k] + ∆′ | ∆′ ∈ [α′, β′]} being a subset of an open region of T̂Ωtd
rob .

Thus for any player-2 strategy π2, and for any run r̂ ∈ Outcomes(〈s, ·, ·, ·,true, ·〉, π′
1, π2),

we have that r̂ satisfies ✷(rb1 = true). Since π1 was a receptive winning strategy for
Parity(Ω), π′

1 is also a receptive winning strategy for Parity(Ω) as Outcomes(ŝ, π1, π2) ⊆
Outcomes(ŝ, π′

1, π2) for any player-2 strategy π2. Thus, π′
1 enables player-1 to satisfy

TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true).

⇐ Suppose ŝ = 〈s, ·, ·, ·, rb1 = true, ·〉 ∈ WinT̂
Ω
td
rob

1 (TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 =
true)). We show that player-1 has a limit-robust receptive winning strategy from
state ŝ (and hence from s). Let π1 be a winning region strategy for player-1 for the

objective TimeDivBl1,3(Parity(Ω)) ∧ ✷(rb1 = true) in T̂Ωtd
rob . Since the strategy ensures

rb1 = true for all states in all runs from ŝ, we have that for every run r̂ starting from
state ŝ, the strategy π1 is such that π1(r̂[0..k]) = 〈∆k, ak1〉 where either ak1 = ⊥∗, or

r̂[k] + ∆k belongs to an open region R̂ of T̂Ωtd
rob Since R̂ is an open region, there always

exists some α < β such that for every ∆ ∈ [α, β], we have r̂[k] + ∆ ∈ R̂. Consider
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the strategy πrob
1 that prescribes a limit-robust move 〈[α, β], ak1〉 for the history r[0..k] if

π1(r[0..k]) = 〈∆k, ak1〉 with ak1 6= ⊥∗, and πrob
1 (r[0..k]) = π1(r[0..k]) otherwise. The strat-

egy πrob
1 is region-equivalent to π1, and hence is also winning for player-1 by Lemma 4.1.

Since it only prescribes limit-robust moves, it is a limit-robust strategy. It is also a
receptive strategy as it is region equivalent to the receptive strategy π1.

Theorem 4.4. Let T be a timed automaton game, and let Ω be a location parity index func-
tion of order d. The limit-robust winning set RobWinTimeDivT1(Parity(Ω))) can be computed
in time

O

(
|ST̂

Ω
td
rob

Reg | · |TConstr|+ (|A1|
∗ + |A2|

∗) ·

(
8 · |ST̂

Ω
td
rob

Reg |

) d+2

3
+ 3

2

)

Proof. Using reductions similar to those in Section 3, the game on T̂Ωtd
rob can be solved in

time O((|A1|
∗ + |A2|

∗) · (8 · |ST̂
Ω
td
rob

Reg |)
d+2

3
+ 3

2 ) where ST̂
Ω
td
rob

Reg is the set of regions of T̂Ωtd
rob , with

|T̂
Ωtd

rob

Reg | = 64 · (|C|+1) ·d · |ST
Reg |. We also need to build a list of regions with valid invariants

together with edge constraints satisfied at the region. This takes O(|ST̂
Ω
td
rob

Reg | · |TConstr|) time.

We say a timed automaton T is open if all the guards and invariants in T are from
Constr∗(C). Note that even though all the guards and invariants are open, a player might
still propose moves to closed regions, e.g., consider an edge between two locations l1 and l2
with the guard 0 < x < 2; a player might propose a move from 〈l1, x = 0.2〉 to 〈l2, x = 1〉.
The following example shows that player 1 might not have a robust winning strategy in an
open timed automaton.

Example 4.5. There exists an open timed automaton game T such that for a reachability
objective Φ, player 1 has a receptive winning strategy for Φ from a state s, but does not
have a limit-robust receptive strategy for Φ from s.

Consider the open timed automaton game T of Figure 6. The invariants of all the
locations are true everywhere. The objective of player 1 is to reach l2. The set of player-1
actions is {a01, a

1
1} and the set of player-2 actions is {a02, a

1
2, a

2
2}. The location l3 and l4 are

absorbing locations. Consider the location l1. If x 6= 1, then player 2 can propose a 0 time
duration move to either l4 or l5, and hence prevent player 1 from reaching l2. If x = 1, then
player 1 can propose a 0 time duration move to l2, which a receptive strategy of player 2
must eventually allow. Now consider the location l0. If x > 1 then player 2 can propose a 0
time duration move to l3. If x ≤ 1, player 1 wins provided that it moves to the location l1

exactly when x = 1. Thus, no limit-robust winning strategy exists from any location (other
than trivially from l2).

4.2. Winning with Bounded Jitter and Response Time. The limit-robust winning
strategies described in subsection 4.1 did not have a lower bound on the jitter: player 1 could
propose a move 〈[α,α + ε], a1〉 for arbitrarily small α and ε. In some cases, the controller
may be required to work with a known jitter, and also a finite response time. Intuitively,
the response time is the minimum delay between a discrete action (of either the controller
or the environment) and a discrete action of the controller. The response time models the
delay between a location change in a timed game, and when the controller is allowed to
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a1
1, x > 0a0

1, x > 0

a2
2, x > 1

l0 l2

l3

l4

a0
2, x > 1

a1
2, x < 1

l1

Figure 6: An open timed automaton game T with no player-1 limit-robust winning strategy.

take an action based on the location change. We incorporate the response time in timed
automaton games by restricting player 1 strategies. The jitter is modeled by expanding
the set of resulting states to include all the states which lie in a jitter interval around the
proposed player-1 delay.

Strategies compatible for εj-jitter εr-response bounded-robust winning. Given a
finite response time εr, player 2 can always propose pure time moves of duration εr/2. Thus,
if player 1 is restricted to only playing moves of duration longer than εr, player 2 can ensure
that player-1 moves are never chosen (by repeatedly playing pure time moves, and action
moves of duration less than εr). To allow for such blocking player 2 pure time moves, we
only restrict player-1 strategies to contain moves that are of duration greater than εr from
the last time a non-pure time move was chosen. In case either player proposes moves such
that only time advances, without any discrete action being taken, we adjust the remainder
of the response time.

Let εj ≥ 0 and εr ≥ 0 be given bounded jitter and response time (we assume both
are rational). Formally, a strategy π1 compatible for εj-jitter εr-response bounded-robust
winning of player 1 proposes a move π1(r[0..k]) = 〈∆, a1〉 such that if

r[0..k] = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . , sk

then at least one of the following conditions holds.

• For all 0 ≤ j < k, we have

− if blamei(sj,m
j
1,m

j
2, sj+1) = true, then mj

i = 〈∆j
i ,⊥i〉 for i ∈ {1, 2}.

− ∆ ≥ εr −
∑k−1

j=0 ∆
j

g(j), where g(j) =

{
1 if blame1(sj ,m

j
1,m

j
2, sj+1) = true

2 otherwise.

− {mk
1 + ǫ | ǫ ∈ [0, εj]} ⊆ Γ1(sk).

This corresponds to the case where in the entire run r[0..k], (a) no discrete actions have
been taken, only simple time moves; (b) player 1 can take a non-pure time move only
after εr time units from the start of the run; and (c) the moves mk

1 + ǫ must be legal
player-1 moves for all ǫ ∈ [0, εj].

• There exists a p with 1 ≤ p ≤ k such that all of the following hold.
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− blamei(sp−1,m
p−1
1 ,mp−1

2 , sp) = true, for i ∈ {1, 2}, and mp−1
i = 〈∆p−1

i , ap−1
i 〉 with

ap−1
i 6= ⊥i (i.e., the state r[p] arises in the run r due to a non pure-time move).

− For all p ≤ j < k, if blamei(sj,m
j
1,m

j
2, sj+1) = true then we have mj

i = 〈∆j
i ,⊥i〉 for

i ∈ {1, 2} (i.e., only simple time passage moves are taken after the p− 1-th stage).

− ∆ ≥ εr −
∑k−1

j=p ∆
j

g(j), where g(j) =

{
1 if blame1(sj ,m

j
1,m

j
2, sj+1) = true

2 otherwise.

− {mk
1 + ǫ | ǫ ∈ [0, εj]} ⊆ Γ1(sk).

This corresponds to the case where in the run r[0..k], (a) the last non-pure move was
taken at r[p − 1]; (b) only simple time passage moves are taken from r[p − 1] till r[k];
(c) player 1 has to wait εr time units after the discrete action at r[p − 1] to propose a
new discrete action at r[k]; and (c) the moves mk

1 + ǫ must be legal player-1 moves for all
ǫ ∈ [0, εj].

εj-jitter εr-response bounded-robust winning. Given a move m1 = 〈∆, a1〉 of player 1
and a move m2 of player 2, the set of εj-jittered states is given by {δjd(s,m1 + ǫ,m2) |
ǫ ∈ [0, εj]}. Given a player-1 strategy π1 compatible for εj-jitter εr-response bounded-robust
winning of player 1, and a strategy π2 of player 2, the set of possible outcomes in the present
semantics is denoted by Outcomesjr (s, π1, π2). Each run r in Outcomesjr (s, π1, π2) is such
that for all k ≥ 0, the state r[k + 1] belongs to the set of εj-jittered states arising due to
the moves π1(r[0..k]) and π2(r[0..k]) of player 1 and player 2 respectively. We denote the
εj-jitter εr-response bounded-robust winning set for player 1 for an objective Φ given finite

εj and εr by JRWinTimeDiv
T,εj,εr
1 (Φ).

The timed automaton Tεj,εr for computing JRWinTimeDiv
T,εj,εr
1 (Φ). We now show

that JRWinTimeDiv
T,εj,εr
1 (Φ) can be computed by obtaining a timed automaton Tεj,εr from

T such that WinTimeDivT
εj,εr

1 (Φ) = JRWinTimeDiv
T,εj,εr
1 (Φ). Given a clock constraint ϕ we

make the clocks appearing in ϕ explicit by denoting the constraint as ϕ(−→x ) for −→x =
[x1, . . . , xn]. Given a real number δ, we let ϕ(−→x + δ) denote the clock constraint ϕ′

where ϕ′ is obtained from ϕ by syntactically substituting xj + δ for every occurrence
of xj in ϕ. Let f εj : Constr(C) 7→ Constr(C) be a function defined by f εj (ϕ(−→x )) =
ElimQuant (∀δ (0 ≤ δ ≤ εj → ϕ(−→x + δ))), where ElimQuant is a function that eliminates
quantifiers (this function exists as we are working in the theory of reals with addition,
which admits quantifier elimination). The formula f εj(ϕ) ensures that ϕ holds at all the
points in {−→x +∆ | ∆ ≤ εj}.

We now describe the timed automaton Tεj,εr such that

WinTimeDivT
εj,εr

1 (Φ) = JRWinTimeDiv
T,εj,εr
1 (Φ).

The automaton has an extra clock z in addition to the clocks of T.

Locations: Corresponding to each location l of T with outgoing player-1 edges e11, . . . , e
m
1 ,

the automaton Tεj,εr has m + 1 locations: l, le1
1
, . . . , lem

1
. The invariant for l is the same

as the invariant for l in T. The invariant for lek
1
is z ≤ εj for all k.

Actions: The automaton Tεj,εr has the following actions:
• The set of actions for player 1 is {〈1, e〉 | e is a player-1 edge in T}.
• The set of actions for player 2 is AT

2∪{〈a2, e〉 | a2 ∈ AT
2 and e is a player-1 edge in T} ∪

{〈2, e〉 | e is a player-1 edge in T} (we assume the unions are disjoint).
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Edges: The automaton Tεj,εr has the following edges (every edge includes z in the reset
set):
• For 〈l, a2, ϕ, l

′, λ〉 a player-2 edge of T, the automaton Tεj,εr contains the player-2 edge
〈l, a2, ϕ, l

′, λ ∪ {z}〉.

• For every player-1 edge ej = 〈l, aj1, ϕ, l
′, λ〉 of T, the location l of Tεj,εr has the outgoing

player-1 edge 〈l, 〈1, ej〉, f
εj
(
γT(l)

)
∧ (z ≥ εr) ∧ f εj(ϕ), lej , λ ∪ {z} 〉.

• For 〈l, a2, ϕ2, l
′, λ〉 a player-2 edge of T and ej a player-1 edge from l, the location lej

of the automaton Tεj,εr has a player-2 edge 〈lej , 〈a2, ej〉, ϕ2, l
′, λ ∪ {z}〉.

• For every player-1 edge ej = 〈l, aj1, ϕ1, l
′, λ〉 of T, the location lej of Tεj,εr also has an

additional outgoing player-2 edge 〈lej , 〈2, ej〉, ϕ1, l
′, λ ∪ {z}〉.

The automaton Tεj,εr as described above contains the rational constants εr and εj. We can
change the timescale by multiplying every constant by the least common multiple of the
denominators of εr and εj to get a timed automaton with only integer constants.

The role of the different edges in Tεj,εr is described below.

• A player-2 edge in Tεj,εr labelled with a2 such that a2 ∈ AT
2 corresponds to the player-2

edge labelled a2 in T.
• Player 1 moving from l to lej with the edge labelled 〈1, ej〉 indicates the desire of player 1
to pick the edge ej from location l in the game T. This is possible in T iff the following
conditions hold.
(a) More that εr time has passed since the last discrete action.
(b) The edge ej is enabled for at least εj more time units.
(c) The invariant of l is satisfied for at least εj more time units.
These three requirements are captured by the new guard in Tεj,εr , namely (z ≥ εr) ∧
f εj(ϕ) ∧ f εj

(
γT(l)

)
.

• Consider a location lej in Tεj,εr . If the game is at lej , then it corresponds to the situation
in T where player 1 has picked the edge labelled ej from location l, and it is up to player 2
to allow it or not. The presence of jitter in T causes uncertainty in when exactly the edge
ej is taken. This is modeled in Tεj,εr by having the location lej be controlled entirely by
player 2 for a duration of εj time units. Within εj time units, player 2 must either:
− propose a move 〈a2, ej〉 (corresponding to one of its own moves a2 in T), or,
− allow the action 〈2, ej〉 (corresponding to the original player-1 edge ej) to be taken.

Given a parity function ΩT on T, the parity function ΩT
εj,εr

on Tεj,εr is given by ΩT
εj,εr

(l) =

ΩT
εj,εr

(lej ) = ΩT(l). In computing the winning set for player 1, we need to modify blame1 for
technical reasons. Whenever an action of the form 〈1, ej〉 is taken, we blame player 2 (even
though the action is controlled by player 1); and whenever an action of the form 〈2, ej〉 is
taken, we blame player 1 (even though the action is controlled by player 2). Player 2 is
blamed as usual for the actions 〈a2, ej〉. This modification is needed because player 1 taking
the edge ej in T is broken down into two stages in Tεj,εr . If player 1 were to be blamed for
the edge 〈1, ej〉, then the following could happen:

(a) player 1 takes the edge 〈1, ej〉 in Tεj,εr corresponding to its intention to take the edge ej
in T, and

(b) player 2 then proposes its own move 〈a2, ej〉 from lej , corresponding to it blocking the
move ej by a2 in T.

If the preceding scenario happens infinitely often, player 1 gets blamed infinitely often even
though all it has done is signal its intentions infinitely often, but its actions have not been
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l3

l1e10
z ≤ εj

z ≤ εj

z ≥ εr → z := 0
〈1, e10〉, f

εj (y > 1)∧

l0e01 〈2, e01〉, x ≤ 1 → x := z := 0

〈a1
2, e01〉, x > 2 → z := 0

〈1, e01〉, f
εj (x ≤ 1) ∧ z ≥ εr → z := 0

a2
2, y > 2 → z := 0

y > 1 → y := z := 0

〈2, e10〉

l2 a3
2, x > 2 → z : −0

z ≥ εr → z := 0

〈a3
2, e20〉, x > 2 → z := 0

〈a1
2, e10〉, y > 2 → z := 0

l1

l3

〈2, e20〉, x ≤ 1 → z := 0 z ≤ εj

〈1, e02〉, f
εj (x ≤ 1)∧

〈2, e02〉, x ≤ 1 → z := 0

〈1, e20〉, f
εj (x ≤ 1)∧
z ≥ εr → z := 0

l0

l0e02
z ≤ εj

a1
2, x > 2 → z := 0

l2e20

〈a3
2, e02〉, x > 2 → z := 0

Figure 7: The timed automaton game Tεj,εr obtained from T.

chosen. Hence player 2 is blamed for the edge 〈1, ej〉. If player 2 allows the intended player 1
edge by taking 〈2, ej〉, then we must blame player 1. We note that this modification is not
required if εr > 0, as in this case player-1 signalling its moves infinitely often via moves
of the type 〈1, ej〉 can only happen if time progresses by εr infinitely often, which implies
time divergence. The construction of Tεj,εr can be simplified if εj = 0 (then we do not need
locations of the form lej).

Example 4.6 (Construction of Tεj,εr). An example of the construction is given in Figure 7,
corresponding to the timed automaton of Figure 1. For the automaton T, we have A1 =
{a11, a

2
1, a

3
1, a

4
1} and A2 = {a12, a

2
2, a

3
2}. The invariants of the locations of T are all true.

Since T has at most a single edge from any location lj to lk, all edges can be denoted as ejk.
The set of player-1 edges is then {e01, e02, e20, e10}. The location l3 has been replicated for
ease of drawing in Tεj,εr . The location l3 is also an absorbing location — it only has self-loops
(we omit these self loops in the figures for simplicity). Observe that f εj(x ≤ 1) = x ≤ 1−εj
and f εj(y > 1) = y > 1.

Given a set of states S̃ of Tεj,εr , let JStates(S̃) denote the projection of states to T, de-

fined formally by JStates(S̃) = {〈l, κ〉 | l is a location of T and 〈l, κ̃〉 ∈ S̃ such that κ(x) =
κ̃(x) for all x ∈ C}, where C is the set of clocks of T. The next theorem states that the
timed automaton game Tεj,εr can be used to compute the winning states in T from which
player 1 has an εj-jitter εr-response bounded-robust winning strategy. The proof of correct-
ness of the construction follows from the arguments given in the description of Tεj,εr .
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Theorem 4.7. Let T be a timed automaton game, εr ≥ 0 the response time of player 1, and
εj ≥ 0 the jitter of player 1 actions such that both εr and εj are rational constants. Then,

for any ω-regular location objective Parity(ΩT) of T, we have

JStates
(
[[z = 0]] ∩ WinTimeDivT

εj,εr

1 (Parity(ΩT
εj,εr

))
)
= JRWinTimeDiv

T,εj,εr
1 (Parity(ΩT)),

where JRWinTimeDiv
T,εj,εr
1 (Φ) is the winning set in the jitter-response semantics, Tεj,εr is

the timed automaton with the parity function ΩT
εj,εr

described above,and [[z = 0]] is the set
of states of Tεj,εr with κ̃(z) = 0.

Theorem 4.8. Let T be a timed automaton game, εr ≥ 0 the response time of player 1, and
εj ≥ 0 the jitter of player 1 actions such that both εr and εj are rational constants. Then,

for any ω-regular location objective Parity(ΩT) of T, the winning set

JRWinTimeDiv
T,εj,εr
1 (Parity(ΩT))

can be computed in time

O

((
|S

T,εj,εr,Ω
Reg | · |TConstr |

2)
)
+ |A1| · |A2| ·

(
8 · |S

T,εj,εr,Ω
Reg |

) d+2

3
+ 3

2

)

where S
T,εj,εr,Ω
Reg is the set of regions of Tεj,εr with

|S
T,εj,εr,Ω
Reg | = |ST

Reg| · 128 · (|C|+ 1) · (|C|+ 2) · d · (|A1|+ 1)·

·max
(
num(εj), num(εr)

)
·
(
lcm(denom(εr), denom(εj))

)|C|+1

in which

• ST
Reg is the set of regions of T;

• lcm() is the least common multiple function, denom() and num() are the denominator and
numerator functions respectively;

• |TConstr| is the length of the clock constraints in T.

Proof. Let the timed automaton game T have |L| locations and |Ai| player-i edges for
i ∈ {1, 2}. The automaton Tεj,εr has |L| · (1 + |A1|) locations, (|A1| + |A2| + |A1| · |A2|)
player-2 edges, and |A1| player-1 edges. Given rational constants εj and εr, all the constants
in the system need to be multiplied by the least common multiple of the denominators of
εj and εr. The timed parity game Tεj,εr can hence be solved in time

O

(
|A1| · |A2| ·

(
8 · S

T,εj,εr,Ω
Reg

) d+2

3
+ 3

2

)

For every player-1 edge ej = 〈l, aj1, ϕ, l
′, λ〉 we need to obtain f εj·lcm({denom(εr),denom(εj)})(ϕ).

This takes time O(|ϕ|2) (see [BPR03]). We observe that f εj·lcm({denom(εr),denom(εj)})(ϕ) can-
not have any constants other than those in ϕ, and εr, εr (this can be seen by putting ϕ in
a disjunctive normal form and applying a Fourier-Motzkin like quantifier elimination pro-
cedure [Sch86]). Thus, building a list of regions of Tεj,εr with valid invariants together with

edge constraints satisfied at the regions takes time O(|S
T,εj,εr,Ω
Reg | · |TConstr|

2)
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Figure 8: General timeline of a run in the game of Fig. 1 (decreasing sequence of timegaps
αj).

Example 4.9 (Differences between various winning modes). Consider the timed automaton
T in Fig. 1. Let the objective of player 1 be ✷(¬l3), i.e., to avoid l3. The relevant part of the
automaton for this example is the cycle l0, l1. The only way to avoid l3 in a time divergent
run is to cycle in between l0 and l1 infinitely often. In additional player 1 may choose to
also cycle in between l0 and l2, but that does not help (or harm) it. In our analysis, we
omit such l0, l2 cycles, noting that our receptive formulation correctly allows any number
of l0, l2 cycles. We present an intuitive explanation here, a detailed analysis can be found
in the appendix.

Let the game start from the location l0. In a run r, let tj1 and tj2 be the times when the
a11 transition and the a21 transitions respectively are taken for the j-th time. The timeline
is depicted in Figure 8. The guards x ≤ 1 on a11 and y > 1 on a21 ensure that the distance
between the j + 1-th a11 transition, and the j-th a21 transition keeps on strictly decreasing

with increasing j. To see this, observe that tj+1
1 − tj1 ≤ 1 because of the guard x ≤ 1, and

tj2−tj−1
2 > 1 because of the guard y > 1. Rearranging, we get tj+1

1 −tj2 < tj1−tj−1
2 . Consider

the time gap sequence αj+1 = tj+1
1 − tj2, i.e., the sequence of time gaps between the j+1-th

a11 transition, and the j-th a21 transition. For any ǫ-jitter strategy of player 1 with ǫ > 0, this
sequence must decrease by more than ǫ for each step, which clearly cannot happen infinitely
often since αj must be positive for all j, as the j + 1-th a11 transition must always happen
after the j-th a21 transition. Thus, player 1 has no ǫ-jitter bounded-robust winning strategy
from l0. Player 1 does however have a limit-robust strategy, as a limit-robust strategy can
be such that the time gap sequence αj decreases, but by a smaller and smaller amount at
each step, ensuring that αj stays positive for all j. This shows that ǫ-jitter bounded-robust
winning strategies for ǫ > 0 are strictly less powerful than limit-robust strategies.

To see that limit-robust strategies are strictly less powerful than general receptive strate-
gies, observe that player 1 does not have a winning limit-robust strategy from 〈l0, x = y = 1〉
as it would have to take the first a11 transition immediately. It can be shown that there
exists a winning player-1 receptive strategy from 〈l0, x = y = 1〉.

The following theorem follows from the fact that bounded-robust winning strategies
are no more powerful than limit-robust strategies, which are in turn no more powerful than
general receptive strategies. The strictness of the inclusions can be observed in Example 4.9.

Theorem 4.10. Let T be a timed automaton and Φ an objective. For all εj > 0 and εr ≥ 0,

we have JRWinTimeDiv
εj,εr
1 (Φ) ⊆ RobWinTimeDiv1(Φ) ⊆ WinTimeDiv1(Φ). All the subset

inclusions are strict in general.
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Sampling semantics. Instead of having a response time for actions of player 1, we can
have a model where player 1 is only able to take actions in an εj interval around sampling
times, with a given time period εsample. A timed automaton can be constructed along similar
lines to that of Tεj,εr to obtain the winning set.
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5. Appendix

5.1. Proofs of Section 2. Proof of Lemma 2.5.

Proof. Consider a run r̂ of T̂Ωtd

. We show that the maximum index visited infinitely often
is even iff the run r̂ satisfies ((✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1))

⇒ Suppose the run r̂ satisfies ((✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1)) We show
the maximum index visited infinitely often is even. The following cases can arise.
(a) The run r̂ satisfies ¬✷✸ tick and ✸✷¬ bl1, i.e., r̂[j] has tick = bl1 = false for all

j ≥ n for some n. In this case the parity seen infinitely often is 0 (even).
(b) The run r̂ satisfies ✷✸ tick and also belongs to Parity(Ω). The component p of the

state in T̂Ωtd

remembers the maximum Ω index seen since the state following the
last occurrence of tick = true. That is, in a run r̂, if r̂[j] has tick = true, and
r̂[j + 1], . . . r̂[j + m] all have tick = false (except possibly for r̂[j + m]), then for
j + 1 ≤ k ≤ j +m the value of p in r̂[k] is equal to max{Ω(r̂[i]) | j + 1 ≤ i ≤ k}.
Since tick is true infinitely often, the maximum Ωtd index seen infinitely often is
m+ 2 where m is the maximum Ω index seen infinitely often in r̂. Since r̂ belongs
to Parity(Ω), m is even. Thus the parity seen infinitely often is m+ 2 (even).

⇐ Suppose the run r̂ does not satisfy ((✷✸ tick → Parity(Ω)) ∧ (¬✷✸ tick → ✸✷¬ bl1)).
We show the maximum index visited infinitely often is odd. The following cases can
arise.
(a) The run r̂ satisfies ¬✷✸ tick and ✷✸ bl1. In this case tick = false for all j ≥ n for

some n; and bl1 = true infinitely often. Thus, the maximum index seen infinitely
often is 1.

(b) The run r̂ satisfies ✷✸ tick and also belongs to Parity(Ω). As above, the maximum
Ωtd index seen infinitely often in r̂ is m+ 2 where m is the maximum Ω index seen
infinitely often in r̂. Since r̂ does not belong to Parity(Ω), m is odd. Thus the parity
seen infinitely often is m+ 2 (odd).

Proof of Lemma 2.7.

Proof. Consider the µ-calculus formula ϕ for describing the winning setWinT̂
Ω
td

1 (Parity(Ωtd)).
The formula contains the CPre1 operator. The set CPre1(Z) remains unchanged (for Z a

union of regions of T̂Ωtd

) if player 1 is restricted to use only memoryless strategies. Suppose
ŝ ∈ CPre1(Z), and let mŝ

1 be the winning move of player 1 from ŝ such that no matter

what player 2 does, the next state lies in Z. Let R̂1 = Reg(δ(ŝ,mŝ
1)), and let the available

moves of player 2 from ŝ be to regions R̂1
2, . . . , R̂

n
2 . We have that from any state in Reg(ŝ),

player 1 has a move to R̂1, and that player 2 can only take moves to R̂1
2, . . . , R̂

n
2 . From

Lemma 3.1, it then follows that if player 1 proposes a move to R̂1 from any state in Reg(ŝ),
then no matter what player 2 does, the resulting state will lie in Z. Thus, memoryless
region strategies suffice as winning strategies. Moreover, again from Lemma 3.1, any move

of player 1 to the region R̂1 is a winning move. Thus, we have that there is a memoryless
region winning strategy π1 from winning states, and that any strategy region equivalent to
π1 is also a winning strategy.
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Proof of Proposition 2.8.

Proof. Intuitively, in the structure T, we want player 1 to be able to infer the values corre-

sponding to z, tick , bl1, p. If player 1 can do this, then it can maintain the structure T̂Ωtd

in memory, and thus it can use a winning memoryless strategy of T̂Ωtd

(by Lemma 2.7

memoryless strategies suffice in T̂Ωtd

). This strategy will then be move-independent. The
values of z and tick can be inferred from the value of the global clock z. And given a
state r[k] in a run r, and a move 〈∆1, a1〉 of player 1, the bl1 component will be true iff
(time(r[k+ 1])− time(r[k])) = ∆1 and δ(r[k], 〈∆1, a1〉) = r[k+ 1]. The value of the compo-
nent p can be inferred from the parity values of Ω, and the values of tick , bl1.

Proof of Lemma 2.9.

Proof. Consider the CPre1 operator in the µ-calculus formula for describing the winning

set WinT̂
Ω
td

1 (Parity(Ωtd)). The set CPre1(Z) remains unchanged (for Z a union of regions

of T̂Ωtd

) if player 2 is restricted to playing only move-independent region strategies. This
is because from it can be shown from Lemma 3.1 that from any state ŝ, the ability of
player 2 to prevent player 1 from reaching Z in the next step depends only on Reg(ŝ), the
regions in Z, and the current move of player 1. Moreover, if player 2 can prevent player 1

from reaching Z from ŝ for all player 1 moves, then there is a unique region R̂∗ such that

for all ŝ ′ ∈ Reg(ŝ), against any player 1 move mŝ ′

1 , player 2 has a counter-move m
ŝ ′,mŝ ′

1

2

with δT̂
Ω
td

(ŝ ′,m
ŝ ′,mŝ ′

1

2 ) ∈ R̂∗ such that the move m
ŝ ′,mŝ ′

1

2 prevents the player-1 move mŝ ′

1

from reaching Z. Thus, move-independent region strategies of player 2 suffice as spoiling
strategies.

5.2. Proofs of Section 3. We start with the statement of a classical result of [AD94] that
the region equivalence relation induces a time abstract bisimulation on the regions.

Lemma 5.1 ([AD94]). Let Y, Y ′ be regions in the timed game structure T. Suppose player i
has a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, for any s2 ∈ Y , player i has a
move from s2 to some s′2 ∈ Y ′.

Proof of Lemma 3.1.

Proof. From Lemma 5.1, if player i has a move from some s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}.
Then, for any s2 ∈ Y , player i has a move from s2 to some s′2 ∈ Y ′.

Consider the case when Y ′
1 6= Y ′

2 . The proof follows from the fact that each region has
a unique first time-successor region. Thus, if Y ′

1 is “closer” to Y than Y ′
2 , then the move of

player 1 wins, otherwise, the move of player 2 wins. A region R′ is a first time-successor of
R 6= R′ if for all states s ∈ R, there exists ∆ > 0 such that s+∆ ∈ R′ and for all ∆′ < ∆,
we have s+∆′ ∈ R ∪R′. The time-successor of 〈l, h,P(C)〉 is 〈l, h′,P ′(C)〉 when

• h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C−1, C
′
0 = ∅, C ′

1, . . . , C
′
n+1〉

where C ′
i = Ci−1, and h(x) < cx for every x ∈ C0.

• h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C ′
−1 = C−1 ∪ C0, C

′
0 =

∅, C1, . . . , Cn〉, and h(x) ≥ cx for every x ∈ C0.
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• h = h′, P(C) = 〈C−1, C0 6= ∅, C1, . . . , Cn〉, and P ′(C) = 〈C ′
−1, C

′
0 = ∅, C ′

1, . . . , C
′
n+1〉

where C ′
i = Ci−1 for i ≥ 2, h(x) < cx for every x ∈ C ′

1 ⊆ C0, and h(x) ≥ cx for every
x ∈ C0 \ C

′
1, and C ′

−1 = C−1 ∪ C0 \ C
′
1.

• P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P
′(C) = 〈C−1, C

′
0 = Cn, C1, . . . , Cn−1〉, and h′(x) =

h(x) + 1 ≤ cx for every x ∈ Cn, and h′(x) = h(x) otherwise.
• P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P

′(C) = 〈C ′
−1 = C−1 ∪ Cn, C0, C1, . . . , Cn−1〉, and

h′(x) = h(x) = cx for every x ∈ Cn, and h′(x) = h(x) otherwise.
• P(C) = 〈C−1, C0 = ∅, C1, . . . , Cn〉, P

′(C) = 〈C ′
−1 = C−1∪Cn \C

′
0, C

′
0, C1, . . . , Cn−1〉, and

h′(x) = h(x) + 1 ≤ cx for every x ∈ C ′
1 ⊆ Cn, h

′(x) = h(x) = cx for every x ∈ Cn \ C ′
1,

and h′(x) = h(x) otherwise.

In case Y ′
1 = Y ′

2 , then player 2 can pick the same time to elapse as player 1, and ensure that
the conditions of the lemma hold.

Completion of proof of Lemma 3.5.

Proof. (Continued).
We constructed the 3-region strategy π∗

1 from π1, and we claimed π∗
1 was a winning strategy.

We were proving it by contradiction. We assumed a spoiling strategy π∗
2 for π∗

1 , and we
constructed a player-2 strategy π2 that we claimed was spoiling for π1. We were showing
by induction that there exists a run r̂3 ∈ Outcomes(ŝ, π1, π2) such that r̂3[k] = r̂∗3[k] for all
k ≥ 0 (r̂∗3 was the run used in defining π2, and is such that r̂∗3 ∈ Outcomes(ŝ, π∗

1 , π
∗
2) and

r̂∗3 /∈ TimeDiv3Bl1(Parity(Ω))). We present the details of the induction proof. The proof of
the above claim is by induction on k. For k = 0 the claim is trivially true. Suppose the
claim is true for all j ≤ k. Thus, we have a run r̂3 such that r̂3[j] = r̂∗3[j] for all j ≤ k.
We show that the run r̂3[0..k] can be extended to r̂3[0..k + 1] according to π1, π2 such that
r̂3[k + 1] = r̂∗3[k + 1]. We have the following cases:

(1) The following hold.
• π1(r̂3[0..k]) = 〈∆, a1〉, and
• a1 = ⊥∗.
Since π1 is a memoryless strategy of T̂Ωtd

3bl , we have π1(r̂
∗
3 [0..k]) = 〈∆,⊥∗〉. Sup-

pose π∗
2(r̂

∗
3[0..k]) has the form 〈∆2, a2〉. By definition of π2, we have π2(r̂3[0..k]) =

π∗
2(r̂3[0..k]) = π∗

2(r̂
∗
3[0..k]) = 〈∆2, a2〉 (π∗

2 is a memoryless strategy). Hence, we have

r̂∗3[k + 1] = δT̂
Ω
td

3bl (r̂∗3[k], 〈∆2, a2〉) = δT̂
Ω
td

3bl (r̂3[k], 〈∆2, a2〉) = r̂3[k + 1].
(2) The following hold.

• π1(r̂3[0..k]) = 〈∆, a1〉,
• a1 6= ⊥∗, and

• SuccrT̂
Ω
td

3 (r̂3[k],∆) = true

Since π1 is a memoryless strategy, we have π1(r̂
∗
3[0..k]) = 〈∆, a1〉. Combining this

with SuccrT̂
Ω
td

3 (r̂∗3[k],∆) = true, yields π∗
1(r̂

∗
3[0..k]) = π1(r̂

∗
3[0..k]) = 〈∆, a1〉. Let

π∗
2(r̂

∗
3 [0..k]) = 〈∆2, a2〉. By definition of π2, we have π2(r̂3[0..k]) = π∗

2(r̂3[0..k]) =
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π∗
2(r̂

∗
3 [0..k]) = 〈∆2, a2〉 (π

∗
2 is a memoryless strategy). Thus,

δ
T̂Ωtd

3bl

jd (r̂3[k], π1(r̂3[0..k]), π2(r̂3[0..k])) = δ
T̂Ωtd

3bl

jd (r̂3[k], 〈∆, a1〉, 〈∆2, a2〉)

= δ
T̂Ω

td

3bl

jd (r̂∗3[k], 〈∆, a1〉, 〈∆2, a2〉)

= δ
T̂Ω

td

3bl

jd (r̂∗3[k], π
∗
1(r̂

∗
3[0..k]), π

∗
2(r̂

∗
3[0..k])).

Hence r̂3[0..k] can be extended to r̂3[0..k+1] according to π1, π2 such that r̂3[0..k+1] =
r̂∗3[0..k + 1].

(3) The following hold.
• π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗,

• SuccrT̂
Ω
td

3 (r̂3[k],∆) = false,
• π∗

1(r̂3[0..k]) = 〈∆′,⊥1〉, and
• π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ < ∆′.
We have π2(r̂3[0..k]) = π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉. Since ∆′ < ∆ (by definition of π∗
1), we

have ∆∗ < ∆, hence

r̂3[k + 1] ∈ δ
T̂Ω

td

3bl

jd (r̂3[k], 〈∆, a1〉, 〈∆
∗, a2〉) = {δT̂

Ω
td

3bl (r̂3[k], 〈∆
∗, a2〉)}.

Since π∗
1 , π

∗
2 are memoryless, we have

π∗
1(r̂

∗
3 [0..k]) = π∗

1(r̂3[0..k]) = 〈∆′,⊥1〉

π∗
2(r̂

∗
3 [0..k]) = π∗

2(r̂3[0..k]) = 〈∆∗, a2〉.

Thus, r̂∗3[k + 1] belongs to

δ
T̂Ω

td

3bl

jd (r̂∗3[k], 〈∆
′,⊥1〉, 〈∆

∗, a2〉) = {δT̂
Ω
td

3bl (r̂∗3[k], 〈∆
∗, a2〉)} = {δT̂

Ω
td

3bl (r̂3[k], 〈∆
∗, a2〉)}.

(4) The following hold.
• π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗,

• SuccrT̂
Ω
td

3 (r̂3[k],∆) = false,
• π∗

1(r̂3[0..k]) = 〈∆′,⊥1〉, and
• π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ > ∆′.
We have π2(r̂3[0..k]) = 〈∆′,⊥2〉 by definition. Since ∆′ < ∆(by definition of π∗

1), we
have

r̂3[k + 1] ∈ δ
T̂Ω

td

3bl

jd (r̂3[k], 〈∆, a1〉, 〈∆
′,⊥2〉) = {δT̂

Ωtd

3bl (r̂3[k], 〈∆
′,⊥2〉)}.

Also, since π∗
1 and π∗

2 are memoryless, we have

r̂∗3[k + 1] ∈ δ
T̂Ω

td

3bl

jd (r̂∗3[k], 〈∆
′,⊥1〉, 〈∆

∗, a2〉)

= {δT̂
Ωtd

3bl (r̂∗3[k], 〈∆
′,⊥1〉)}

= {δT̂
Ω
td

3bl (r̂3[k], 〈∆
′,⊥1〉)}.

Thus, r̂3[k+1] and r̂∗3[k+1] are the same except for perhaps the 3bl 1 component. Since

SuccrT̂
Ω
td

2 (r̂3[k],∆
′) = false (by definition of π∗

1), we must have 3bl1 = false in both
r̂3[k + 1] and r̂∗3[k + 1]. Hence r̂3[k + 1] = r̂∗3[k + 1].

(5) The following hold.



TIMED PARITY GAMES: COMPLEXITY AND ROBUSTNESS 49

• π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗,

• SuccrT̂
Ω
td

3 (r̂3[k],∆) = false,
• π∗

1(r̂3[0..k]) = 〈∆′,⊥1〉,
• π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ = ∆′,

• δT̂
Ω
td

3bl (r̂∗3[k], π
∗
2(r̂

∗
3[0..k])) = r̂∗3[k + 1], and

• δT̂
Ω
td

3bl (r̂∗3[k], π
∗
1(r̂

∗
3[0..k])) 6= r̂∗3[k + 1].

We have π2(r̂3[0..k]) = π∗
2(r̂3[0..k]) = 〈∆∗, a∗2〉 by definition. Also π∗

1(r̂
∗
3 [0..k]) =

π∗
1(r̂3[0..k]) = 〈∆′,⊥1〉; and π∗

2(r̂
∗
3[0..k]) = π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 since π∗
1 and π∗

2

are both memoryless. Now, r̂3[k + 1] belongs to δ
T̂Ω

td

3bl

jd (r̂3[k], π1(r̂3[0..k]), π2(r̂3[0..k])),

and

δ
T̂Ω

td

3bl

jd (r̂3[k], π1(r̂3[0..k]), π2(r̂3[0..k])) = δ
T̂Ω

td

3bl

jd (r̂3[k], 〈∆, a1〉, 〈∆
∗, a∗2〉)

= {δT̂
Ωtd

3bl (r̂3[k], 〈∆
∗, a∗2〉)}

= {δT̂
Ω
td

3bl (r̂∗3[k], 〈∆
∗, a∗2〉)}

= {r̂∗3[k + 1]}.

Thus, we have r̂3[k + 1] = r̂∗3[k + 1].
(6) The following hold.

• π1(r̂3[0..k]) = 〈∆, a1〉, a1 6= ⊥∗,

• SuccrT̂
Ω
td

3 (r̂3[k],∆) = false,
• π∗

1(r̂3[0..k]) = 〈∆′,⊥1〉,
• π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 with ∆∗ = ∆′; and

• δT̂
Ω
td

3bl (r̂∗3[k], π
∗
1(r̂

∗
3[0..k])) = r̂∗3[k + 1].

We have π2(r̂3[0..k]) = 〈∆∗,⊥2〉 by definition. Also π∗
1(r̂

∗
3 [0..k]) = π∗

1(r̂3[0..k]) =
〈∆′,⊥1〉; and π∗

2(r̂
∗
3 [0..k]) = π∗

2(r̂3[0..k]) = 〈∆∗, a∗2〉 since π∗
1 and π∗

2 are both memo-

ryless. Then, r̂3[k + 1] ∈ δ
T̂Ω

td

3bl

jd (r̂3[k], π1(r̂3[0..k]), π2(r̂3[0..k])) and

δ
T̂Ω

td

3bl

jd (r̂3[k], π1(r̂3[0..k]), π2(r̂3[0..k])) = δ
T̂Ω

td

3bl

jd (r̂3[k], 〈∆, a1〉, 〈∆
∗,⊥2〉)

= {δT̂
Ω
td

3bl (r̂3[k], 〈∆
∗,⊥2〉)}

= {δT̂
Ω
td

3bl (r̂∗3[k], 〈∆
∗,⊥1〉)}

since SuccrT̂
Ω
td

3 (r̂∗3[k],∆) = SuccrT̂
Ω
td

3 (r̂3[k],∆) = false, and ∆′ = ∆∗ and

SuccrT̂
Ω
td

3 (r̂∗3 [k],∆
′) = true.

We have ,

r̂∗3[k + 1] = δT̂
Ω
td

3bl (r̂∗3[k], 〈∆
∗,⊥1〉) = δT̂

Ω
td

3bl (r̂∗3 [k], 〈∆
′,⊥1〉)
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and

δT̂
Ω
td

3bl (r̂∗3 [k], 〈∆
∗,⊥1〉) ∈ δ

T̂Ω
td

3bl

jd (r̂∗3[k], π
∗
1(r̂

∗
3[0..k]), π

∗
2(r̂

∗
3[0..k]))

= δ
T̂Ω

td

3bl

jd (r̂∗3[k], 〈∆
′,⊥1〉, 〈∆

∗, a∗2〉)

= δ
T̂Ω

td

3bl

jd (r̂3[k], 〈∆
′,⊥1〉, 〈∆

∗, a∗2〉)

∋ r̂3[k + 1]

Thus, the run r̂3[0..k] can be extended such that r̂3[k + 1] = r̂∗3[k + 1].

Thus, in all cases, we have that r̂3[0..k] can be extended to r̂3[0..k + 1] according to
π1, π2 such that r̂3[0..k + 1] = r̂∗3[0..k + 1]. Hence, we have r̂3 ∈ Outcomes(ŝ, π1, π2) and
r̂3 /∈ TimeDiv3Bl1(Parity(Ω)) as r̂∗3 /∈ TimeDiv3Bl1(Parity(Ω)), a contradiction since π1 was
assumed to be a winning strategy. Hence, we cannot have the existence of the strategy π∗

2
from which r̂∗3 and π2 were derived, i.e., π∗

1 is a winning strategy for player 1 from ŝ.

Completion of proof of Lemma 3.7.

Proof. (Continued).
We continue to show that if ŝ ∈ CPre1,3(Z), then ŝ ∈ CPre1(Z). Suppose ŝ ∈ CPre1,3(Z).

We can have the following cases.

(1) {δ(ŝ, 〈∆, a2〉) | 〈∆, a2〉 ∈ Γ2(ŝ) and Succr3(ŝ,∆) = true} ⊆ Z.
Consider the cardinality of the set B = {Reg(δ(ŝ, 〈∆,⊥2〉) | 〈∆,⊥2〉 ∈ Γ2(ŝ))}.
• If |B| ≤ 3 then we have

{δ(ŝ, 〈∆, a2〉) | 〈∆, a2〉 ∈ Γ2(ŝ) and Succr3(ŝ,∆) = true}

={δ(ŝ, 〈∆, a2〉) | 〈∆, a2〉 ∈ Γ2(ŝ)}.

Hence ŝ ∈ CPre1(Z) in this case (when |B| ≤ 3).
• Suppose |B| > 3. Then, there exists ∆ such that 〈∆, a2〉 ∈ Γ2(ŝ) (and hence 〈∆,⊥1〉 ∈
Γ1(ŝ)) with |{Reg(ŝ +∆′) | ∆′ ≤ ∆}| = 3.
Consider the player-1 move 〈∆,⊥1〉. Since 〈∆, a2〉 ∈ Γ2(ŝ), we must have 〈∆,⊥2〉 ∈
Γ2(ŝ). By assumption, we have

δ(ŝ, 〈∆,⊥2〉) ∈ Z

(the assumption being

{
δ(ŝ, 〈∆, a2〉)

∣∣∣∣
〈∆, a2〉 ∈ Γ2(ŝ) and
Succr3(ŝ,∆) = true

}
⊆ Z).

Since ∆ is such that Succr2(ŝ,∆) = false, we have δ(ŝ, 〈∆,⊥2〉) = δ(ŝ, 〈∆,⊥1〉) (the
3bl1 component is false in both cases). Hence, δ(ŝ, 〈∆,⊥1〉) ∈ Z. Also, since
⋆ {δ(ŝ, 〈∆′, a2〉) | 〈∆

′, a2〉 ∈ Γ2(ŝ) and Succr3(ŝ,∆
′) = true} ⊆ Z and

⋆ |{Reg(ŝ+∆′) | ∆′ ≤ ∆}| = 3
we have

{δ(ŝ, 〈∆′, a2〉) | ∆
′ ≤ ∆, and 〈∆′, a2〉 ∈ Γ2(ŝ)} ⊆ Z.

Hence ŝ ∈ CPre1(Z) in this case by the second condition of CPre1(Z) (the winning
move of player 1 being 〈∆,⊥1〉).

(2) There exists 〈∆, a1〉 ∈ Γ1(ŝ) with a1 6= ⊥∗ such that
(a) δ(ŝ, 〈∆, a1〉) ∈ Z, and
(b) {δ(ŝ, 〈∆′, a2〉) | ∆

′ ≤ ∆, Succr3(ŝ,∆
′) = true, and 〈∆′, a2〉 ∈ Γ2(ŝ)} ⊆ Z.

Consider the cardinality of the set D = {Reg(ŝ+∆′) | ∆′ ≤ ∆}.
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• If |D| ≤ 3 then

{δ(ŝ, 〈∆′, a2〉) | ∆
′ ≤ ∆, Succr3(ŝ,∆

′) = true, and 〈∆′, a2〉 ∈ Γ2(ŝ)}

={δ(ŝ, 〈∆′, a2〉) | ∆
′ ≤ ∆, and 〈∆′, a2〉 ∈ Γ2(ŝ)}.

Hence ŝ ∈ CPre1(Z) in this case (when |D| ≤ 3) by the second condition of CPre1(Z).
• Suppose |D| > 3. Since 〈∆, a1〉 ∈ Γ1(ŝ), we must have that there exists ∆′ < ∆ such
that 〈∆,⊥1〉 ∈ Γ1(ŝ) and |{Reg(ŝ+∆′′) | ∆′′ ≤ ∆′}| = 3.
Consider the player-1 move 〈∆′,⊥1〉. As 〈∆, a1〉 ∈ Γ1(ŝ), we must have 〈∆′,⊥2〉 ∈
Γ2(ŝ). Also, since

{δ(ŝ, 〈∆′′, a2〉) | ∆
′′ ≤ ∆, Succr3(ŝ,∆

′′) = true, and 〈∆′′, a2〉 ∈ Γ2(ŝ)} ⊆ Z,

we must have δ(ŝ, 〈∆′,⊥2〉) ∈ Z. Since ∆′ is such that Succr2(ŝ,∆) = false, we
have δ(ŝ, 〈∆′,⊥2〉) = δ(ŝ, 〈∆′,⊥1〉) (the bl1 component is false in both cases). Hence
δ(ŝ, 〈∆′,⊥1〉) ∈ Z. Also, since
⋆ {δ(ŝ, 〈∆′′, a2〉) | ∆

′′ ≤ ∆, 〈∆′′, a2〉 ∈ Γ2(ŝ) and Succr3(ŝ,∆
′′) = true} ⊆ Z and

⋆ |{Reg(ŝ+∆′′) | ∆′′ ≤ ∆′}| = 3,
we have

{δ(ŝ, 〈∆′′, a2〉) | ∆
′′ ≤ ∆′, and 〈∆′′, a2〉 ∈ Γ2(ŝ)} ⊆ Z.

Hence ŝ ∈ CPre1(Z) in this case by the second condition of CPre1(Z) (the winning
move of player 1 being 〈∆′,⊥1〉).

Thus, in all cases ŝ ∈ CPre1(Z) whenever ŝ ∈ CPre1,3(Z).

Proof of Lemma 3.11.

Proof. Recall that by Equation 3.1 mentioned in Theorem 3.10, given X = X1×{1}∪X2×
{2} ⊆ Sf , we have

RegStates
(
PreT

f

1

(
PreT

f

1 (X)
))

= RegStates
(
PreT

f

1

(
PreT

f

1 (X1 × {1})
))

Similarly for the structure Tf ∗, given X∗ = X∗
1a × {1a} ∪ X∗

1c × {1c} ∪ X∗
2 × {2} ⊆ Sf ∗,

we have

RegStates
(
PreT

f ∗

1

(
PreT

f∗

1

(
PreT

f ∗

1 (X∗)
)))

= RegStates
(
PreT

f ∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a

))))

(5.1)

Thus, it suffices to show that if X1 × {1} ⊆ Sf and X∗
1a × {1a} ⊆ Sf ∗ are such that

RegStates(X1 × {1}) = RegStates(X∗
1a × {1}), then

RegStates
(
PreT

f

1

(
PreT

f

1 (X1 × {1})
))

= RegStates
(
PreT

f ∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
))))

.

Note that RegStates(X1×{1}) = RegStates(X∗
1a×{1}) implies X1 = X∗

1a ⊆ ŜReg, where

ŜReg is the set of regions of T̂Ωtd

3bl .

(⇒) For

sf = 〈R̂, 1〉 ∈ PreT
f

1

(
PreT

f

1 (X1 × {1})
)

we show

sf
∗
= 〈R̂, 1a〉 ∈ PreT

f∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
)))

.

Let player 1 choose to go to 〈R̂, j, a1, 2〉 from sf . We can have have two cases:
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− a1 = ⊥∗.

If this is the move of player 1 for demonstrating that sf ∈ PreT
f

1

(
PreT

f

1 (X1 × {1})
)
,

it means that every player-2 move from 〈R̂, j, a1, 2〉 goes to X1 × {1}. For this to

happen, we must have that in the game structure T̂Ωtd

3bl , for every state ŝ ∈ R̂, for

every player-2 move 〈∆, a2〉 such that Succr
T̂Ω

td

3bl

3 (ŝ,∆) = true and 〈∆, a2〉 ∈ Γ2(ŝ),

we have δ(ŝ, 〈∆, a2〉) ∈ R̂ ′ with 〈R̂ ′, 1〉 ∈ X1 × {1}.

Consider sf
∗
= 〈R̂, 1a〉 in Sf ∗. Let player 1 choose to go to sf

∗
2 = 〈R̂, 2〉. Because

of the restriction of player-2 moves from R̂ proved above (that every player-2 move
within two successor regions must lead to a state such that the region corresponds
to a region in X1 and hence in X∗

1a), we must have that in Tf ∗ every player-2 edge

from sf
∗
2 leads to a state 〈R̂ ′, 1dumc 〉 such that R̂ ′ ∈ X1 = X∗

1a . Let X∗
1c = X1.

We now have that every player 2 edge from sf
∗
2 leads to a state in X∗

1c × {1dumc }.
The next state in the game will obviously be in X1 × {1a} = X∗

1a × {1a}. Thus,

sf
∗
= 〈R̂, 1a〉 ∈ PreT

f ∗

1

(
PreT

f∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
)))

if the first move of player 1

corresponds to ⊥∗.
− a1 6= ⊥∗.

This case can have two subcases according to the available move for player 2.
− This subcase corresponds to the case where player 2 does not “allow” the player-1

move in a corresponding stage in T̂Ωtd

3bl . We must have fact 1: that for every ŝ ∈

R̂, for every player-2 move 〈∆, a2〉 such that 〈∆, a2〉 ∈ Γ
T̂Ω

td

3bl

2 (ŝ) and |{Reg ŝ+∆′ |

∆′ ≤ ∆}| ≤ j + 1, we have that δT̂
Ω
td

3bl (ŝ, 〈∆, a2〉) ∈ R̂ ′ such that Reg(R̂ ′) ∈ X1.
− This subcase corresponds to the case where player 2 “allows” the player-1 move.

We must have fact 2: that for every ŝ ∈ R̂, there exists a player-1 move 〈∆, a1〉

such that 〈∆, a1〉 ∈ Γ
T̂Ω

td

3bl

1 (ŝ) and |{Reg ŝ+∆′ | ∆′ ≤ ∆}| = j + 1, we have that

δT̂
Ω
td

3bl (ŝ, 〈∆, a1〉) ∈ R̂ ′ such that Reg(R̂ ′) ∈ X1.

Let X∗
1c = X1 = X∗

1a . Consider sf
∗
= 〈R̂, 1a〉 in Sf ∗. Let player 1 choose to go

to 〈R̂, j, 2〉. we show player 1 can ensure going to X∗
1a × {11a} with this choice.

Player 2 can do two things from 〈R̂, j, 2〉.
• Player 2 decides to “not allow” the player-1 move in a corresponding stage in

T̂Ωtd

3bl . This corresponds to player 2 taking an edge to a state 〈R̂ ′, 1dumc 〉 in T
f
Ω

∗

from sf
∗
which can happen if for every ŝ ∈ R̂, there exists a player-2 move 〈∆, a2〉

such that 〈∆, a2〉 ∈ Γ
T̂Ω

td

3bl

2 (ŝ) and |{Reg ŝ+∆′ | ∆′ ≤ ∆}| ≤ j+1. By fact 1, we

must have that for every such 〈∆, a2〉, we must have δT̂
Ω
td

3bl (ŝ, 〈∆, a2〉) ∈ R̂ ′ such

that Reg(R̂ ′) ∈ X1. Hence, every “not allow” player-2 edge in T
f
Ω

∗
from sf

∗
leads

a state in X∗
1c × {1dumc }, the next state from which will lie in X∗

1a × {1a}.

• Player 2 decides to “allow” the player-1 move in a corresponding stage in T̂Ωtd

3bl .

This corresponds to player 2 taking the edge from sf
∗
in T

f
Ω

∗
to the state 〈R̂, j, 1c〉.

From 〈R̂, j, 1c〉, because of fact 2, player 1 can pick the edge corresponding to
the action a1 which will lead it to a state in X1 × {1a} = X∗

1a × {1a}.
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Thus, if a1 6= ⊥∗, player1 has a strategy to go from sf
∗
to X∗

1a ×{1a} in three steps.

sf
∗
= 〈R̂, 1a〉 ∈ PreT

f∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
)))

.

Hence in both cases, we have that

sf
∗
= 〈R̂, 1a〉 ∈ PreT

f∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
)))

.

(⇐) For

sf
∗
= 〈R̂, 1a〉 ∈ PreT

f∗

1

(
PreT

f ∗

1

(
PreT

f∗

1

(
X∗

1a × {1a}
)))

we show
sf = 〈R̂, 1〉 ∈ PreT

f

1

(
PreT

f

1 (X1 × {1})
)
.

The following cases arise depending on the move of player 1 from sf
∗
which witnesses

sf
∗
∈ PreT

f ∗

1

(
PreT

f∗

1

(
PreT

f ∗

1

(
X∗

1a × {1a}
)))

.

• Player 1 moves to 〈R̂, 2〉 (this corresponds to a move a1 = ⊥∗ in T).

This means that every player 2 move from 〈R̂, 2〉 goes toX∗
1a×{1a}. SinceX

∗
1a = X1,

we have 〈R̂, 1〉 ∈ PreT
f

1 (PreT
f

1 (X1 × {1})) if the first move of player 1 from sf
∗

corresponds to ⊥∗.

• Player 1 moves to 〈R̂, j, 2〉. This case has two subcases.

− Suppose we have fact 3: every player 2 move from 〈R̂, j, 2〉 to 〈R̂ ′, 1dumc 〉 is such

that R̂ ′ ∈ X∗
1a .

Consider the situation in Tf where player 1 moves to some 〈R̂, j, a1, 2〉 with a1 6=
⊥∗ and player 2 takes an edge corresponding to it not allowing player 1 in T.
Because of fact 3, all such edges must go to X1 × {1}, no matter the action a1.

− Suppose we have fact 4: every player 2 move from 〈R̂, j, 2〉 to 〈R̂, j, 1c〉 is such

that 〈R̂, j, 1c〉 ∈ PreT
f ∗

1 (X∗
1a × {1a}). This means that in T, from any state in

R̂, if player 1 is allowed to let time elapse to get to the j-th successor from R̂,
then it can take a discrete action a1 such that the resultant state will be in some
region in X1 = X∗

1a . Thus, there must exist a player-1 action a1 such that from

the state 〈R̂, j, a1, 2〉 in Tf , all player-2 edges, which correspond to it allowing a
move in T, end up in X1 × {1}.

Because of the two above subcases, if the witness for

sf
∗
∈ PreT

f ∗

1

(
PreT

f∗

1

(
PreT

f ∗

1

(
X∗

1a × {1a}
)))

in the structure Tf ∗ is a move to 〈R̂, j, 2〉, then in the structure Tf , there exists a

move of player 1 to a state 〈R̂, j, a1, 2〉 such that 〈R̂, j, a1, 2〉 ∈ PreT
f

1 (X1 × {1}).
Thus in both cases of player-1 winning moves in Tf ∗ from sf

∗
, we have the existence of

a player-1 move from sf which witnesses that sf = 〈R̂, 1〉 ∈ PreT
f

1

(
PreT

f

1 (X1 × {1})
)
.
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5.3. Proofs of Section 4. Completion of analysis of Example 4.9

Example 4.9 (continued). Let the game start from the location l0. In a run r, let tj1
and tj2 be the times when the a11-th transition and the a21-th transitions respectively are

taken for the j-th time. The constraints are tj1 − tj−1
1 ≤ 1 and tj2 − tj−1

2 > 1. If the game

cycles infinitely often in between l0 and l1 we must also have that for all j ≥ 0, tj+1
1 ≥

tj2 ≥ tj1. Conversely, we also have that if this condition holds then we can construct an
infinite time divergent cycle of l0, l1 for some suitable initial clock values. Observe that

tji = t0i + (t1i − t0i ) + (t2i − t1i ) + · · ·+ (tji − tj−1
i ) for i ∈ {1, 2}. We need

tm+1
1 − tm2 = (tm+1

1 − tm1 ) +
m∑

j=1

{
(tj1 − tj−1

1 )− (tj2 − tj−1
2 )

}
+ (t01 − t02) ≥ 0 for all m ≥ 0.

Rearranging, we get the requirement
m∑

j=1

{
(tj2 − tj−1

2 )− (tj1 − tj−1
1 )

}
≤ (tm+1

1 − tm1 ) + (t01 − t02).

Consider the initial state 〈l0, x = y = 0〉. Let t01 = 1, t02 = 1.1, tj1 − tj−1
1 = 1, tj2 − tj−1

2 =

1 + 10−(j+1). We have
m∑

j=1

{
(tj2 − tj−1

2 )− (tj1 − tj−1
1 )

}
≤

∞∑

j=1

10−(j+1) = 10−2∗
1

0.9
≤ 1−0.1 = (tm+1

1 −tm1 )+(t01−t02).

Thus, we have an infinite time divergent trace with the given values. Hence 〈l0, x =

y = 0〉 ∈ WinTimeDivT1 (✷(¬l
3)). It can also be similarly seen that 〈l0, x = y = 1〉 ∈

WinTimeDiv1(✷(¬l
3)) (taking t01 = 0 and t02 = 0.1). We also have 〈l0, x = y = 1〉 /∈

RobWinTimeDiv1(✷(¬l
3)) as player 1 would have to take the first a11 transition immediately

from this state.
We now show 〈l0, x = y = 0〉 ∈ RobWinTimeDiv1(✷(¬l

3)). Consider

t01 ∈ [0.9, 1], tj1 − tj−1
1 ∈ [1− 10−(j+1), 1]

t02 ∈ [1.05, 1.1]

tj2 − tj−1
2 ∈ [1 + 0.5 ∗ 10−(j+1), 1 + 10−(j+1)].

We have
m∑

j=1

{
(tj2 − tj−1

2 )− (tj1 − tj−1
1 )

}
≤

m∑

j=1

10−(j+1) − (−10−(j+1))

≤ 2 ∗
∞∑

j=1

10−(j+1)

= 2 ∗ 10−2 ∗
1

0.9
.
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We also have (tm+1
1 − tm1 ) + (t01 − t02) ≥ 1− 10−(m+2) + (0.9 − 1.1) ≥ 0.7. Thus, we have

m∑

j=1

{
(tj2 − tj−1

2 )− (tj1 − tj−1
1 )

}
< 2 ∗ 10−2 ∗

1

0.9

< 0.7

≤ (tm+1
1 − tm1 ) + (t01 − t02).

This shows that we can construct an infinite cycle in between l0 and l1 for all the values in
our chosen intervals, and hence that 〈l0, x = y = 0〉 ∈ RobWinTimeDiv1(✷(¬l

3)).
We next show that 〈l0, x = y = 0〉 /∈ JRWinTimeDiv

εj,εr
1 (✷(¬l3)) for any εj > 0. Observe

that for any objective Φ, we have JRWinTimeDiv
εj,εr
1 (Φ) ⊆ JRWinTimeDiv

εj,0
1 (Φ). Let εj = ǫ

and let εr = 0. Consider any player-1 strategy π1, for ǫ-jitter 0-response time bounded-
robust winning, that makes the game cycle in between l0 and l1. Player 2 then has a
strategy which “jitters” the player-1 moves by ǫ. Thus, the player-1 strategy π1 can only
propose a11 moves with the value of x being less than or equal to 1− ǫ (else the jitter would

make the move invalid). Thus, player 2 can ensure that tj1 − tj−1
1 ≤ 1 − ǫ for all j for

some run (since x has the value tj1 − tj−1
1 when a11 is taken for the j-th time for j > 0).

We then have that for any player-1 strategy that is a candidate for ǫ-jitter 0-response time
bounded-robust winning, player 2 has a strategy such that for some resulting run, we have

tj1 − tj−1
1 ≤ 1− ǫ and tj2 − tj−1

2 > 1. Thus,
∑m

j=1

{
(tj2 − tj−1

2 )− (tj1 − tj−1
1 )

}
> m ∗ ǫ, which

can be made arbitrarily large for a sufficiently large m for any ǫ and hence greater than
(tm+1

1 − tm1 ) + (t01 − t02) ≤ 1 + (t01 − t02) for any initial values of t01 and t02. This violates the

requirement for an infinite l0, l1 cycle. Thus, 〈l0, x = y = 0〉 /∈ JRWinTimeDiv
ǫ,0
1 (✷(¬l3))

for any ǫ > 0.
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