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ABSTRACT. We show that alternating Turing machines, with a novel aatdnal definition of accep-
tance, accept precisely the inductiu@}] languages. Total alternating machines, that either accep
or reject each input, accept precisely the hyper-elemgiits}l) languages. Moreover, bounding the
permissible number of alternations yields a charactéamaif the levels of the arithmetical hierar-
chy. Notably, these results use simple finite computingadsyiwith finitary and discrete operational
semantics, and neither the results nor their proofs makeisepf transfinite ordinals.

Our characterizations elucidate the analogy between tlyagmial-time hierarchy and the arith-
metical hierarchy, as well as between their respectivedimiamely polynomial-space afff .

1. INTRODUCTION

Inductive definitions via first-order positive operatorsistitute a broad computation paradigm. A
fundamental result of computation theory, formulated inous guises over the last century, identi-
fies the languages obtained by such definitions with thoskcékpdefinable byII} formulas, that

is where second order quantification, over functions otimaa, is restricted to positive occurrences
of V. This central link was first discovered by Suslin in 1916 fetssof real numbers [16]. Kleene
independently rediscovered the correspondence for setstofal numbers (and so for languages)
[6,5]. Spector formulated the basic notions more explidil5], and Moschovakis, Barwise, and
Gandy established the characterization for near-arpittauntable first-order structures in 1971.
This characterization dil} in terms of inductive definability endows it with many of theustural
properties of the computably enumerable (RE) sets, andestggn analogy between computability
based on finite processes, capturedfyand a generalized form of computability based on infinite
processes.

Our aim here is to capture the full power of inductive defiligbby a novel and natural defi-
nition of acceptance for alternating Turing machines. Thisnrelated to notions of “infinite-time
computations” that have been investigated repeatedlythealecades.

Alternation in computational and definitional processeanisdea that has appeared and reap-
peared in various guises over the last 50 odd years. Kledgnéfsition of the arithmetical hierarchy
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in terms of quantifier alternation was an early manifestatextended by Kleene, Spector, Gandy
and others to the transfinite hyper-arithmetical hierafddy[1]. An explicit link with alternation
was discovered by Moschovakis [13] L2, 7], who charactéribe inductive sets by a game quanti-
fier [12, Theorem 5C2]. Harel and Kozen [3] showed how thigatizrization can be expressed in
terms of an idealized programming language with randomeniisl and universal assignments.

Alternating control made an entry into Computation Theorthwhe definition, by Chandra,
Kozen and Stockmeyer, of alternating Turing machihés [2gm existential and universal variants
of non-determinism mesh. A state declared existential@soghen some child-configuration ac-
cepts, whereas a universal state accepts if all child-corgigpns accept. A computation can thus
alternate between existential and universal phases. Tikagtresult of [2], which has become a
classic and has made its way into humerous textbooks, isatteahating Turing machines eluci-
date a powerful and elegant interplay between time and spaoplexity. Namely, for reasonable
functions f the languages accepted by alternating Turing machinesmd( f) are precisely the
languages accepted by deterministic machines in spdg¢e, and the languages accepted by al-
ternating machines in spacf) are those accepted by deterministic machines in ffé). In
particular, alternating polynomial time is precisely pubynial space. Moreover, when only fewer
thank alternations are allowed, one obtains i level of the polynomial time hierarchy.

We establish here a formal parallel between the logical baccomplexity-theoretic develop-
ments of alternation. Our point of departure is a simple atdnal modification of the definition of
acceptance by an alternating Turing machine, where aguaptay a universal configuratianwill
now refer to all configurations that end the universal corafonn-phase spawned lay rather than
just to the immediate children ef We prove that a language is accepted by such a machine iff it
is inductive {I1). Moreover, when up té alternations are allowed, we obtain thiéh levels of the
arithmetical hierarchy. Also, if a languadeis accepted by a machine which is total, in the sense
that every input is either accepted or rejected, thes hyper-arithmetical 41).

Note that our machines are no different from traditionadralating Turing machines: the differ-
ence lies only in the definition of acceptance. In partigutarinfinitary rules, such as game quan-
tifiers or random assignments, are used. We thus obtain hdirec correspondence betweHﬁl
and polynomial space, and between the arithmetical hieyaaod the polynomial-time hierarchy.
The two sides of this correspondence are characterizedebgaime alternating Turing machines,
but with a global (potentially infinitary) definition of agetance for the former, and a local one for
the latter.

The author is grateful to Yiannis Moschovakis for importeotnments on an early draft of this
paper.

2. GLOBAL SEMANTICS FOR ALTERNATING COMPUTATIONS

2.1. Alternating Turing machines. The following will be used as reserved symbols, which we

posit to occur only when explicitly referred ta: for the blank symbol#+ for the cursor-forward

command, and- for cursor-backward. We consider primarily single-tapechiiaes. Given a finite

alphabet’, analternating Turing machine (ATM) ovét is a deviceM consisting of

(1) Disjoint finite setsE (existential states) and (universal states). Elements @ = E U U are
thestates.

(2) Anelementsy € (Q, dubbed thestart state

(3) Afinite alphabel” O ¥ U {u} (themachine alphabégt
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(4) Arelationd C (Q xT') x (A x Q), whereA = T'U {—,+} is the set ofactiond] § may
be construed as a multi-valued function, with dom@irx I and co-domaird x Q. We write
q % q for (q,7v,a,q) € §,and omit the subscript/ when in no danger of confusion.
A configuration (cfg)of M) is a tuple(q, u,~,v) with ¢ € Q, u,v € I'*, andy € T'. A cfg is said
to beexistentialor universalaccording to the state therein. The definition of a yieldtietec = ¢/
between configurations is defined as usual; that is, it isrgée inductively by the conditioffs:

o lf ¢ LSO then (q,u,v,7v) = (¢',uy,7,v) and (q,u,v,s)é(q',uv,u,s)ﬁ

o If qﬂw then (q,ur,v,v) = (¢',u,7,7v) and (q,&,v,v) = (¢,€,7,v) (i.e.

the cursor does not move); and

o lf ¢ L ¢ then (q,u,v,v)= (¢,u,T,v).

FoIIowmg [8] we dispense here with accepting and rejecsitages: when no transition applies
to a universal cfg then it has no children, and so the conditio acceptance is satisfied vacuously.
Dually, a dead-end existential cfg is rejecting. For brsewe also write configuration&g, u,~, v)
as a pairgq, w), where the understanding is thats a “cursored string#yv.

2.2. Acceptance and rejection. The computation tree of\/ for cfg c is a finitely-branching (but
potentially infinite) treel’s/(c) of cfg-occurrencesa, ¢), o being the node-address andhe cfg,
where the children ofa, ¢) are (i, ¢;) with ¢; thei-th cfg ¢ such thaic = ¢ (under some fixed
ordering of the transition rules @).

We write c?c’ whenc = ¢ andc is existential,c—a»c/ if c?*c’ and( is universal. (As
usual,?* is the reflexive and transitive closure e£—>.) In other words, the universal cfg can

be reached from the cigby successive applications of the yield relatisn where all intermediate
states are existential.
The definitions Ofc—>c andc—v»c are similar. We call a cfg’ as above, for elthe{—» or

—» analternation-pivot (forc)

The setAC of accepted configuratioris generated inductively by the following closure condi-
tions:

(1) If cis existential and’ € AC for somec’ such that:—a»c/, thenc € AC.
(2) If cis universal an@d’ € AC for all ¢ such that:—v»c’, thenc € AC.

If S is any set of configurations, we wri@C[S] for the conjunction of the conditions above f&r
That is,

(1) If cis existential and’ € S for somec’ such that—a»c’, thenc € S.
(2) If cis universal and’ € S for all ¢ such that—v»c’, thenc € S.
Thus, AC is generated by the closure conditioBE[AC]. Note thatCC[S] is aII3 formula. For
instance, (2) can be expressed as
Vcfg ¢ ((V traces witnessing a relaticm?»c’) e —ceS

IWe follow here the convention whereby Turing machines eith@ve their cursor or overwrite it, but not both.
2Note that inductive definitions posit implicitly an excluisy condition, so the “only if” direction is not needed.
SWe writec for the empty string.
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Thus, the sefAC of accepted configurations is explicitly definable as theosebnfigurations:
satisfying thell} formula
VS (CC[S] — c€S)
Similarly, the seRC of rejected configurationgs generated inductively by closure conditions dual
to the ones above:

(1) If cis existential and’ € RC for all ¢/ such that:—a»c’, thenc € RC.
(2) If cis universal and’ € RC for somec’ such that—v»c’, thenc € RC.

Again, RCis explicitly definable by dli formula.

We say that a state dead-endf no transition rule applies to it. A universal dead-endesta
anaccept-stateand an existential dead-end statejact-state.

The initial configuration of the machine)M for input w is (sg,e,u,w). M accepts an input
string w if the initial cfg for w is in the setAC of accepted configurations, as defined above. Dually,
M rejectsw if that cfg is InRC. For example, iftM has only universal states, then no computation
tree can have an alternation-pivot, and so every accepted. The computation tree fomay well
have leaves, that is dead-end configurations, but sincethese are all universal configurations
with no children, they are accepted. Dually,Mf has only existential states, then no input can
be accepted. These examples are merely consequences d¢fome to represent acceptance and
rejection by dead-end universal and existential configumat respectively. For example, a usual
non-deterministic Turing machine can be obtained simplycbgsidering each accept-state as a
universal state with no applicable transition rule.

Thelanguage accepted by an ATM is

L(M) ={w e ¥* | M acceptav}
and thelanguage rejected by/ is
L(M) = {w € X* | M rejectsw}

It is easy to see that (M) N L(M) = (). Our definitions of acceptance and rejection of configu-
rations conform to the local closure conditions of acceggai@and rejection) of usual ATMs, as we
point out in the next Proposition. However, those condgicannot be used tefineacceptance
and rejection, because we allow infinite computation trees.

Proposition 2.1. Let M be an ATM;I" a computation tree af/ for inputw. If cis a cfg in the tree,

with childrenc; . .. ¢, then

(1) If c is existential, thert is accepted iff some; is accepted, and is rejected iff allc;’s are
rejected.

(2) If ¢ is universal, therc is accepted iff allc;’s are accepted, and is rejected iff some; is
rejected.

Proof. Letc be existential. It is an accepted cfg, i.e.—a»c’ for some accept-staté, thenci—a»*c’

for someg;, sincec itself is existential. If that; is existential, then it is accepted, by definition; and
if it is not, thenc; = ¢, which is accepted by assumption.

Conversely, suppose that someis accepted. It; is universal, then:—a»c’, and soc is ac-
cepted, by definition of acceptance.cffis existential, then there must be an accepteslich that
Ci—ﬂ»*d; but thenc—a»*c’, Soc is accepted.

Other cases are proved similarly. L]
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2.3. Divergence and totality. An ATM may well neither accept nor reject an input stritag For
example, if the computation tree aff for a given inputw has infinitely many alternation-pivots
along each computation-trace (a situation that we can eaghairly easily), thed/ neither accepts
nor rejects that input. Indeed, the empty set satisfies it conditions for acceptancewof as
well as the closure conditions for rejection.

We say that an ATMV/ is total if every input is either accepted or rejected/My Let us identify
a simple condition that guarantees totality. We say thatrapctation tree isalternation well-
foundedif no branch has infinitely many alternation-pivots. An ATBailternation well-foundedf
all its computations are alternation well-founded.

Proposition 2.2. If an ATM is alternation well-founded then it is total.

Proof. We prove the contra-positive: if a ctgs neither accepted nor rejected, then the computation
treeT that it spawns has a branch with infinitely many alternapomots.
Supposer is universal. Since is not accepted, we must have— ¢’ for some alternation-

v
pivot ¢ which is not accepted. And sineeis also not rejected, all of its alternation-pivots, and
in particularc/, are not rejected. I¢ is existential, a dual argument shows that\;»c’ for some

alternation-pivot’ which is neither accepted nor rejected.
Iterating the argument we obtain a branch with an infiniteusegecy = c,c; = ¢, ... of
successive alternation-pivots, all of which are neitheeated nor rejected. []

The converse of Propositign 2.2 fails. Indeed, it is easyotwstruct a total ATM that is not al-
ternation well-founded, by inserting innocuous compotatraces with infinitely many alternation-
pivots, with no impact on the acceptance or rejection of tipeii. See the proof of Propositibn P.4
below.

2.4. Duality and one-sidedness Thedual of an ATM M is the machiné\/ whose transition rela-
tion is that of M, but with the sets of universal and existential states ¢hi@nged, that is witli/’s
setsU and E' as the sets of existential and universal states, resphrctive

Directly from the definitions we have

Proposition 2.3. Let M be the dual of\/. Thenl(M) = L(M), whence alsa (M) = L(M). [J

A machineM is one-sidedf it either has no accepted configurations, or no rejectedigora-
tions.

Proposition 2.4. For every machinel/ there are one-sided machinéd ™ and M~ such that
L(M)=L(M"),andL(M) = L(M™).

Proof. The proof is analogous to the conversion of a determinidtidcd a TM that diverges for any
input it does not accept.

Let M+ be obtained from\/ by expanding its transition relation as follows. Using diaxy
states and transitions, we add for every existential stafnaition into an auxiliary universal state
that starts an infinite trace (using auxiliary states) afrafation-pivots. That is, we create a fresh
alternation-pivot following each existential cfg, whehat alternation-pivot is neither accepted nor
rejected. Each state acceptedlifi is accepted ilM/ ™, because no existential configuration is
loosing any pivot by the modification. And if a state is aceepih M+, then it is accepted i/,
because the set of configurations of\/ ™ that consists just of the accepting configurations\bf
satisfies the closure conditioA€ for M T, and therefore contains the set of configurations accepted
by M (which is the minimal such set).
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But M has no rejected configurations: existential configuraticarmot be rejected because
they have an alternation-pivot, namely the one introdugethb definition of A/, which is not
rejected. And then universal configurations cannot be t&jedecause all their alternation-pivots,
which are existential, are non-rejected.

The construction oft/ ~ is dual. []

2.5. The Arithmetical Hierarchy. We say that an ATMV/ is X, if its initial state is existential,

and for everyw € ¥*, all branches of the computation-tree fohave< k alternation-pivots. The
definition of IT;, machines is similar, but with a universal initial state. &lagain we posit that the
existential states dil; machines have no applicable transition rules.

Theorem 2.5. Letk > 1. A language i<} (I19) iff it is accepted by &, (I1;, respectively) ATM.

Proof. The proof is by induction oft. For the base casg!, let L be a language defined by>s
formula, that is
L = A{zeX|ypfz]}

where

elx] = FJws,...,w, @yl z]
with ¢, a bounded formula, i.e. with all quantifiers bounded (unterdubstring relation). Define
a X1 machineM that acceptd., as follows. M branches existentially to choose a string=
w1 # - - - #w,, then proceeds to check deterministically tgfw; ... w,]. (We classify the states
for that deterministic process to be universal, so that gewatistates are accepted.)

For the converse, note first that inYa computation tree the universal configuration are all
accepted, since they have no pivots. So acceptance by an@achinel is definable by theo?
formula that states, for input, the existence of a finite tree of configurations, relatedheyrtiles
of M, with the initial configuration foww as root, of which the internal nodes are existential and the
leaves are universal.

For the base cad@!, supposéd. is defined by d19 formula

olx] = Ywy ... w, golws, ..., w1z

Define all; machineM that acceptd,, as follows. M generates strings, # - - - #w, in successive
lexicographic order. After each such choitgbranches universally to the next string as well as to
a deterministic module that acceptsff o[, z] for the current value ofv1# - - - #w,..

Conversely, ifL = £(M) whereM is anIl; machine, therl is definable by a formula that
states that for all (finite) computation traces, the tra¢&s configuration is not existential (i.e.
rejected).

The induction step generalizes the induction basis: Thpeagties above are proved for level
k+1 of the Arithmetical Hierarchy by referring to sub-compidgat at levelk, rather than to deter-
ministic sub-computations. L]

3. ALTERNATION AND INDUCTIVE LANGUAGES

3.1. Accepted languages are inductiveFix an alphabeE. Consider formulas over the vocabulary
(i.e. similarity type) with an identifier for each letter ihas well as for the empty-string, a binary
function-identifier for concatenation, and a binary r@atfor the substring relation.

Proposition 3.1. The following conditions are equivalent for a languafeC X*.



ALTERNATION AND PI-1-1 7

I1: L is defined by a formula of the foriif ¢[w, f], wherey is first-order andf ranges over
DI DI

12: L is defined by a formula of the forf 3z ¢,[w, f, x|, wherey, is a bounded formula, i.e.
with each quantifier restricted to substrings of some string B

I3: L is defined by a formula of the forwyf 3z ¢,[w, f(x),x], wheref(x) abbreviates the string
F(0)#---#f(Jx|) (with # a fresh symbol, used as a textual separator).

14: L is defined by a formula of the forits 3z Yy ¢, [w, f, x, y], whereS ranges over subsets of
DI

Proof. 11 implies 12 by the Kuratowski-Tarski algorithm [[11]. 12 phies 13 by the boundedness of

vo- 11 implies 14 by an interpretation of functions by relatsoand hence sets, since we are talking

about languages), and 13 and 14 each implies I1 trivially. L]

Note that the use of a set quantifier in 14 necessitates amalien of first-order quantifiers,
which is not needed in I1. This is essential: without the @neg of the first-order universal quanti-
fier vy we get Kreisel'sstrict-II} formulas, which are no more expressive thzh[9, [10].

A languagel, C ¥* is inductive(IT}) when it satisfies the equivalent conditions of Proposition
3.7 (see e.gl 14]).

Recall that our definition above of acceptance by an ATM eeferthe setAC of accepted
configurations, which iﬂ} definable. We therefore have:

Proposition 3.2. Every language accepted by an ATM is inductive.

3.2. Inductive languages are accepted.
Proposition 3.3. Every inductive language is accepted by an ATM.

Proof. We refer to characterization (13) &f} languages. As usual;” stands for the set of strings
overY of lengthn. Let L be a language defined by

Vf3z olw, f(2), 2]
which we write momentarily as

Vi 3x golw, z0# - - #2n, 7]
wheren = |z| andz; = f(i). This is equivalent to the following infinite formula (wheies usual,
3" is the set of strings of length).

¥o [w7 € E]
VVzy 3z € 2t pplw, 20, x])
V Vz1 3z € 22 polw, 2o # 21, x])
V Vzo (Fz € B3 pg[w, 20 # 21 # 22, x])
V Vzg (Fx € % po[w, 20 # 21 # 22 # 23, x])
AV
We use here infinitary formulas for informal expository pasp; compare [12, 13].
Formula(3.1) is captured by an ATM which, on input

(1) checks deterministically,[w, ¢, <]; if this fails,
(2) chooses by universal nondeterminism a v

(3.1)

4Recall from the introduction that such a choice, for our éilyitbranching machine, involves a computation tree with
an infinite branch.
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(3) for each such choice fag), branches by existential nondeterminism to
(@) guess (by existential nondeterminism)aa X, then check (deterministically),[w, zo, ];
if this fails
(b) choose by universal nondeterminism;a
(c) etc. L]

Combining Propositions 3.2 afd B.3 we conclude:

Theorem 3.4. L is inductive iff it is accepted by an ATM.

4. TOTAL MACHINES AND HYPER-ARITHMETICAL LANGUAGES

A basic result of computation theory is the characteriratid decidable languages in terms of
semi-decidability:

Theorem 4.1. A languagel C X* is accepted by a Turing machine that terminates for all inffut
both L. and its complement are accepted by a Turing machine.

The analog of Theorem 4.1 is

Theorem 4.2. A languageL C X* is accepted by a total ATM iff both and its complement
L =Y* — L are accepted by an ATM.

The forward implication of the Theorem is easy: If a langudgis accepted by a total ATM
M then the dual maching/ acceptsl, by by Propositiof 2]3.

Towards proving below the converse implication, assumeftha £(My) andL = L(N). By
Propositior 24 we may assume that neither machine hasaéjeonfigurations. Thuk is rejected
by the machine\/; = N, which has no accepted cfg. We wish to construct outfgfand M, a
total machineV/ that acceptd. and rejects. A naive emulation of the standard proof of Theorem
[4.7 would swap control betweeW, and M/, after each computation step. Thatid, is defined as
a two-tape machine, whose states are tupjesq1, j), with ¢; a state ofM;, and wherej € {0,1}
indicates which machine is to make a move. The typ&;efqi, j) (existential or universal) is the
type ofg;. SinceM; has no accepted cfg, a cfgpf M would be accepted when ifg, component
is accepted byiy; and sincell, has no rejected configurationsywould be rejected i/ if its M,
component is rejected by/;.

However, the construction above does not work for our ATMse tb the global definition
of acceptance. Consider a universal efgof My, which is accepted inV/, because it has no
pivots. Whencg is coupled inM with a universal cfg-; of M7, the combined cfg may spawn a
computation tree with pivots af/;, whoseM,-component is not accepted i,. The combined
cfg is not accepted then i/, even thougle, is accepted in.

We consider instead a merge &y and M; where control swap from a universal phase\af
to M is delayed until that phase has ended, and dually for aregtiat phase ofi/;.

Note that for simple Turing machines (deterministic or netedministic) phases coincide with
computation steps, since no universal configurations a&scpt.

More precisely, we posit, without loss of generality, tidy and M, are single-tape ATM’s
over a common input alphabét, and using a common extended alphabett > U {u}. The
combined machind/ is then defined as follows.

e M is a two-tape ATM, whose states of interest are tuptgsq:, j), with ¢; a state ofM;, (i =
0,1). The type of(qo, ¢1, j) (existential or universal) is the type @f (in A/;).
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e |n addition, M has auxiliary states and (deterministic) transitions fhh@tprocess its computation
by copying the input into the second tape, reinitializing tursor positions, and passing control
to a statgsg, s1,0), wheres; is the initial state of\/;.

e Fory,6el, ae{+,—}UT,
if  qo po Is arule of My then
— If both ¢¢ andpg are universal, then

,0(a,0)
<q07q170> l) <p07q170>

i.e. on readingy on the first tape, and on the second) performs actionx on component O
of the cfg, actiory (i.e. no-op) on component 1, and leaves control to compdhent
— Otherwise, i.e. if at least one 9§, py is existential, then

7,0(e,6)
<q07 qi1, 0> - <p07 q1, 1>

o If g 2y isarule ofM,, then
— If both ¢; andp are existential, then

,0(a,d
<QO7Q171> M <QO,p1,1>

— Otherwise, i.e. if at least one of, p; is universal, then

7,0(e,6)
<q07q171> - <q07p170>

Proposition 4.3. Assume that no string is both accepted lfy and rejected byM;. TheniM
accepts every string accepted .

Proof. We prove that ifM accepts a cfgqo, uo) then, for every non-rejected cfagy, u;) of My,
M accepts{qo, q1,0), (ug,u1)). If My acceptsu, then (by assumption)/; does not reject it, and
so the Proposition follows by considering the ¢fgso, s1, 0), (u, u)).

Define the setd of My-configurations by

A ={(qo,u0) | ({go,q1,0), (ug,u1)) isaccepted i/
for all non-rejected configuration(g;, u1) of M; }

We show thatd satisfies the closure conditions defining the set of configura accepted by/,.
e The existential closure condition: Suppose tha(tqo,uo)—a»(po,wo), where(pg, wy) € A, and

the reduction sequence is of length> 18 we prove that(qp, ug) € A by induction onn.
Let (qo,uo)?(ro,’uo)—a»(po,wo). Note, first, that we must haveo, vg) € A: if n = 1 then

(ro,vo) = (po,wp) € A, and ifn > 1 then(rg,vg) € A by IH.
Towards proving thatqo, ug) € A let (¢1,u1) be a non-rejected cfg af/;. We have

(g0, 91,0), (w0, u1)) —» ({ro, a1, 1), (vo,u1))

We show that (rg, q1, 1), (vg,uq1)) is accepted inV/, whence so i${(qo, q1,0), (ug,u1)).
We have the following cases.
— ¢ is universal. Eacld/;-cfg (r1,v1) such thal(ql,ul)T)(rl,vl) must be non-rejected, since

(q1,u1) is non-rejected. We have

((ro, q1,1), (vo,u1)) i ((ro,71,0), (vo,v1))

5,=0is excluded, since by definition efa—» the statey is existential anghy is universal.
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and the latter cfg is accepted, singg, vy) € A and(ry,v1) is non-rejected. It follows that
({(ro,q1,1), {vo,u1)) is accepted inV/.
— ¢ is existential. Sincéq;,u;) is non-rejected, it follows tha(tql,ul)—a»(rl,vl) for some

non-rejected cfdr, v1) of M;. By definition of M, we have
((ro,q1,1), (vo,u1)) = ({ro,71,0), (vo,v1))

The latter cfg is accepted, sin¢ey,vy) € A, and(ry,v1) is non-rejected. It follows that
((ro,q1,1), (vo,u1)) is accepted inV/.
We have thus shown that i(fqo,uo)—a»(po,wo), where(pg, wp) € A, then(qp, ug) € A.

e The universal closure condition: Suppose that for al(pg, wy), if (qo,uo)—v»(po,wo) then

(po, wp) € A. Towards showing thdly, ug) € A, let(q1,u1) be a non-rejected cfg aff; .
By definition of M, if ({go,q1,0), (uo,u1)) gl C, whereC is a cfg of M, thenC =

(<p07 q1, 1>7 <w07 ’LL1>), Where(q()v uO)_v»(p07 wO)'

We show that({(pg, g1, 1), (wo, u1)) is accepted inV/ for each suchpg, wg), implying that
(<q07 q1, 0>7 (’LL(], ’LL1>) is accepted'

We have the following cases.
— ¢1 is universal. Suppos(eh,ul)T(pl,vl). Then

(po, g1, 1), (wo,u1)) —= ((po, 1,0), (wo, v1))

The cfg (p1,v1) must be non-rejected, singe;, «;) is non-rejected. Sincég, wy) € A, it
follows that((po, p1,0), (wp,v1)) is accepted. This being the case for ev@ry, v ) as above,
we conclude that(po, g1, 1), (wo,u1)) is accepted.

— qi is existential. Sincéq;,u;) is non-rejected, it follows tha(tql,ul)—a»(pl,vl) for some

non-rejected configuratiofp,, v1) of M. By definition of M, we have
((Pos g1, 1), (wo,u1)) = ({po,p1,0), (wo,v1))

The latter configuration is accepted i, since(pg, wg) € A and(p1,v1) is non-rejected. It
follows that((pg, ¢1, 1), (wo,u1)) is also accepted,
We have thus shown that [pg, wg) € A whenever (qo,uo)—v»(po,wo), then(go, uo) € A, that

is A satisfies the universal closure condition for acceptanddgn

Since A satisfies both the existential and the universal closuréitions for acceptance i/, it
follows that A contains every accepting cfg 8f,, proving the Proposition. L]

Proof of Theorem[4.2 — Concluded.We have noted already the forward implication. We show
that if L and L are accepted by ATM’s, theh is accepted by a total ATM.

Let L = £L(My) andL = L(N), and refer to the machinéd; and M of the discussion above.
By Propositiori 4.B)M accepts every string accepted hf;.

An argument dual to that in the proof of Proposition]4.3 shahat M rejects every cfg
({qo, q1), (ug, u1)), wherelM; rejects(q, u;) andM, does not accefdtyy, ug). In particular, assum-
ing M, rejects an input string, M rejects((to, s1, 1), (v,u)) whenever(ty, v) is a non-accepted
configuration ofMj.

A small extra step is needed to account for the fact dgtand notM, has the initial control
in M. Posit, without loss of generality, that the initial stageof M, is existential and deterministic
(i.e. at most one transition applies). Sintg does not accept, we must have{so,u)?(to,v)



ALTERNATION AND PI-1-1 11

where(ty, v) is a non-accepted cfg. But then the unique initial transiGb)/ (past the initialization
phase) is
(<307 S1, 0>a <u7 u>)_5|_>(<t07 S1, 1>7 <’U, U>)

SinceM; rejects(sy, u) and M, does not acceft,, v), M must reject(to, s1, 1), (v, u)), as noted
above, and therefore must also rejé@b, s1,0), (u, u)).

In conclusion,M accepts every string accepted hly, and rejects every string rejected b .
So M is a total machine that acceptsand rejectd.. L]

5. CONCLUSION

The combined use of existential and universal nondetesmirtias been of interest primarily in
Computational Complexity theory, but has not been consitiéiius far as a tool in the foundations
of computing. This is because the semantics of acceptarebden defined “locally”, that is in
terms of the relation between computational configuratenms their immediate descendants. That
semantics implies that acceptance (and rejection) aressad by finite computation trees, and thus
cannot lead us beyond the semi-decidable (RE) languagesiedifrom another angle, the closure
properties involved ar&l?, and so the accepted languages are defined by Btfidormulas (see
43.7 above).

We showed here that a very natural alternative semantiegifeersal nondeterminism changes
the picture radically, as the languages accepted are phedieIIl ones. This further illustrates
the foundational analogy between alternation in feasiinhe with local semantics, which yields
PSpace as a limit of the PTime Hierarchy (starting with PTand NP), and alternation for arbi-
trary computations with global semantics, which yieléisas a limit of the arithmetical hierarchy
(starting withx?).

Generalized models of computation that go beyond comgditabave been studied exten-
sively, of course. The novelty of the approach here is thetfdrs to the very same hardware as
traditional Turing machines (albeit with both modes of netedminism), but redefines the notion
of acceptance, in a way that remains consistent with therlymadg, intuitive, intent.

The ability to refer to both computational complexity angher recursion theory using the
same machine models has the potential of suggesting aeslbgiween results, and thereby transfer
of results. We believe that this will provide insights andigéidnal machine-based proofs for Higher
Recursion Theory.

The approach developed here seems to also break with pdst indhis area in that it dispenses
with transfinite recurrence and induction over Kleene'sstauttive ordinals, and does not use any
transfinite stage-comparison technique. Instead, thdpt@e inductive definitions directly.

Directly dealing with inductive definitions, without cafdding them by ordinals provides, in
fact, a closer analogy with finite computing. Computaticecés of machines and of programs
are construed intuitively as finite objects, without diregference to the natural numbers, either as
clocking computation steps or as codes for computatiorjactd Wit the frequent use of “structural
induction” and “structural recurrence.” It is, thereforgtural to expect that higher-order compu-
tation traces can be studied directly, without a detourughotransfinite clocking by constructive
ordinals. The proof of Theorem 4.2 achieves precisely that.
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