
Logical Methods in Computer Science
Vol. 7 (2:19) 2011, pp. 1–21
www.lmcs-online.org

Submitted Jan. 3, 2011
Published Jun. 28, 2011

TURING MACHINES ON REPRESENTED SETS, A MODEL OF

COMPUTATION FOR ANALYSIS

NAZANIN R. TAVANA AND KLAUS WEIHRAUCH

Amirkabir University of Technology, Tehran, Iran
e-mail address: nazanin−t@aut.ac.ir

University of Hagen, Hagen, Germany
e-mail address: Klaus.Weihrauch@FernUni-Hagen.de

Abstract. We introduce a new type of generalized Turing machines (GTMs), which are
intended as a tool for the mathematician who studies computability in Analysis. In a
single tape cell a GTM can store a symbol, a real number, a continuous real function or a
probability measure, for example. The model is based on TTE, the representation approach
for computable analysis. As a main result we prove that the functions that are computable
via given representations are closed under GTM programming. This generalizes the well
known fact that these functions are closed under composition. The theorem allows to
speak about objects themselves instead of names in algorithms and proofs. By using
GTMs for specifying algorithms, many proofs become more rigorous and also simpler and
more transparent since the GTM model is very simple and allows to apply well-known
techniques from Turing machine theory. We also show how finite or infinite sequences
as names can be replaced by sets (generalized representations) on which computability is
already defined via representations. This allows further simplification of proofs. All of
this is done for multi-functions, which are essential in Computable Analysis, and multi-
representations, which often allow more elegant formulations. As a byproduct we show
that the computable functions on finite and infinite sequences of symbols are closed under
programming with GTMs. We conclude with examples of application.

1. Introduction

In 1955 A. Grzegorczyk and D. Lacombe [12, 13, 16] proposed a new definition of computable
real functions. Their idea became the basis of a general approach to computability in
Analysis, TTE (Type-2 Theory of Effectivity), also called the “representation approach to
computable analysis” [15, 20, 18, 9]. TTE supplies a uniform method for defining natural
computability on a variety of spaces considered in Analysis such as Euclidean space, spaces
of continuous real functions, open, closed or compact subsets of Euclidean space, computable
metric spaces, spaces of integrable functions, spaces of probability measures, Sobolev spaces
and spaces of distributions. There are various other approaches for studying computability
in Analysis [20, Chapter 9], but for this purpose, still TTE seems to be the most useful one.

1998 ACM Subject Classification: F.1.1, F.1.m.
Key words and phrases: computable analysis, model of computation, generalized Turing machine.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:19) 2011
c© N. R. Tavana and K. Weihrauch
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. R. TAVANA AND K. WEIHRAUCH

In TTE computability of functions on Σ∗, the set of finite words, and Σω, the set of
infinite sequences over a finite alphabet Σ, is defined explicitly by, for example, “Type-
2 Turing machines”. Via notations ν : Σ∗ → X or representations δ : Σω → X, such
“concrete” finite or infinite sequences are used as “names” for “abstract” objects such as
real numbers, continuous real functions etc. A function on the abstract objects is called
computable, if it can be realized by a computable function on names.

In ordinary computability theory, for proving computability of a word function g :
(Σ∗)n → Σ∗, in general it is not necessary to write a (usually very long) code of a Turing
machine. Instead it suffices to sketch an algorithm that uses some “simpler” functions
already known to be computable. The method can be formalized by introducing an abstract
model of computation, for example, Turing machines (let us call them “P-machines”) that
in addition to the usual statements can use some additional word functions f : (Σ∗)n →
Σ∗ for assignments (“subroutines”). A straightforward proof shows that the computable
functions are closed (not only under composition but) under programming with P-machines.
More precisely, the function fM computed by a P-machine M that uses only computable
functions as subroutines is computable, that is, computable by an ordinary Turing machine.
Therefore, for proving computability of a function g it suffices to describe informally a P-
machine M that uses only computable functions f as subroutines and to prove that fM = g.

In TTE, the situation is similar. For proving computability of a function on “abstract”
sets it must be shown that there is a realization that is computable on a Type-2 Turing
machine. Since usually defining or even sketching a concrete Type-2 machine is much too
cumbersome, in many articles only algorithms are sketched that use functions on “abstract”
sets already known to be computable. For a while this method has been applied although its
soundness has not been proved. In [21] the second author has closed this gap by introducing
an abstract model of computation for TTE, namely flowcharts with indirect addressing
and computable functions on abstract data as subroutines. However, for this model the
technical framework of definitions, theorems and proofs has turned out to be complicated
and nontransparent such that people preferred to continue with informal arguments rather
than applying or mentioning the main results from [21].

In this article we introduce a very simple model of computation for computable analysis,
called here generalized Turing machines. It generalizes the ordinary multi-tape Turing
machines with finitely many tapes numbered from 0 to L, finitely many input tapes and
one output tape as follows: a generalized Turing machine has a finite tape alphabet Γ and
for each tape i a set Xi. Each cell of Tape i contains an element x ∈ Γ ∪Xi. In addition
to the usual Turing machine statements on each tape (move left, move right, write a ∈ Γ,
branch if a ∈ Γ is scanned by the head) two further kinds of statements are allowed (where
xj is the content of the cell scanned by the head on Tape i):

(1) assignments “i := f(i1, . . . , in) ” where f : Xi1 × . . .×Xin ⇒ Xi is a multi-function
(meaning: write some x ∈ f(xi1 , . . . xin) on the cell scanned by the head of Tape i),

(2) branchings “(if f(i1, . . . , in) then l′, else l′′)” where f : ⊆Xi1 × . . . ×Xin → Σ∗ is
a partial function (meaning: if f(xi1 , . . . xin) = 0 then go to Label l′, if f(xi1 , . . . xin) = 1
then go to Label l′′, and loop otherwise). (Σ will be an alphabet with 0, 1 ∈ Σ.)

The model allows to use the universal computational power of Turing machines and for
each set Xj used in a machine the number of elements x ∈ Xj that can be stored during
a computation is not bounded. Generalized Turing machines share these properties with
the flowcharts with indirect addressing [21] and with the WhileCC* programs [19]. Our

COMPUTATION IN ANALYSIS 3

generalized Turing machines can be considered also as a generalization of the BSS-machine
[4, 3, 2]. In the BSS-model for the real numbers the algebraic operations and the test
“x < y” are allowed. But in Computable Analysis the test “x < y” is and should not be
computable [20, Chapter 9][6, 10].

In Section 2 we summarize some mathematical preliminaries, in particular realization
of multi-functions by multi-functions via generalized multi-representations. Generalized
multi-representations allow simpler but still abstract data as names instead of sequences of
symbols. This generalizes [1] where domains are allowed as sets of names.

The new model of generalized Turing machines and their semantics are defined in Sec-
tion 3. In Section 4 we generalize the concept of multi-representation from sets to machines
and prove that realization is not only closed under composition but under programming
with generalized Turing machines. In Section 5 we prove that for a generalized Turing ma-
chine M such that Yi ∈ {Σ

∗,Σω} for all i that contains only computable functions on Σ∗ and
Σω, the function fM on Σ∗ and Σω is computable (accordingly for continuity) (Theorem 5.7
and Corollary 5.8 cf. [21, Theorem 15]).

The main results are proved in Section 6. If P is a generalized Turing machine where
for every tape i the set Zi is equipped with a multi-representation δi : Σ

ω
⇒ Zi and ev-

ery function on the Zi used in the machine is relatively computable via the corresponding
multi-representations, then the function fP computed by the machine is relatively com-
putable via the corresponding multi-representations (Theorem 6.2, cf. [21, Theorem 30]).
Roughly speaking, the relatively computable functions are closed under programming. The
theorem holds accordingly for continuous instead of computable functions. The theorem
holds accordingly if the δi : Yi ⇒ Zi are generalized multi-representations and the functions
on the realizing sets Yi used in the machine are computable w.r.t. a family (γi : Σ

ω
⇒ Yi)i

of multi-representations (Theorem 6.6, cf. [21, Theorem 31]). This theorem allows to use
the concept of realization rigorously in a more abstract and often simpler way. Both the-
orems allow to formulate and argue about algorithms in terms of ordinary analysis and
almost no mentioning of concrete representations. In Section 7 some examples illustrate
the main results. In particular, we present a method for proving the relation ≤W introduced
in [7] for comparing the non-computability theorems in analysis. As an addendum to this
introduction the reader is referred to [21, Section 1].

2. Preliminaries

In this section we summarize some mathematical preliminaries. For more details see [20, 21].
Let Σ be a non-empty finite set which is called alpahabet. We assume 0, 1 ∈ Σ. Classically,
computability is introduced for functions f : ⊆ (Σ∗)n → Σ∗ on the set Σ∗ of finite words
over Σ, for example by means of Turing machines. For computing functions on other sets
M such as natural numbers, rational numbers and finite graphs, words are used as codes
or names of elements of M . Under this view a machine transforms words to words without
understanding the meaning given to them by the user. We can extend this concept by using
infinite sequences of symbols of Σ as names and by defining computability for functions
which transform such infinite sequences. The set Σω of infinite sequences of symbols from
Σ has the same cardinality as the set of real numbers, therefore it can be used as a set of
names for every set with at most continuum cardinality such as real numbers, the set of
open subsets of R and the set C[0, 1] of real continuous functions on the interval [0, 1].

4 N. R. TAVANA AND K. WEIHRAUCH

A multi-function from A to B is a triple f = (A,B,Rf) such that Rf ⊆ A × B (the
graph of f). We will denote it by f : A ⇒ B. (The concept of multi-function can be
considered as a generalization of the concept of partial function. There is no need for a
separate notation for “total” multi-functions.) For a ∈ A, let f(a) := {b ∈ B|(a, b) ∈ Rf}.
For X ⊆ A let f [X] := {b ∈ B|(∃a ∈ X)(a, b) ∈ Rf}, dom(f) := {a ∈ A|f(a) 6= ∅}, and
range(f) := f [A]. If, for every a ∈ A, f(a) contains at most one element, f is a usual
partial function denoted by f : ⊆A → B. We write “f(a) ↓” (f(a) exists) if a ∈ dom(f)
and “f(a) ↑” (f(a) diverges) if a 6∈ dom(f) .

In the intended applications, for a multi-function f : A ⇒ B, f(a) is interpreted as
the set of all results which are “acceptable” on input a ∈ A. Any concrete computation, a
realization of f , will produce on input a ∈ dom(f) some element b ∈ f(a), but often there is
no method to select a specific one (see [17, 5, 20] and the examples in [21, Section 3]). The
following definition of composition g ◦ f : A ⇒ C of multi-functions f : A ⇒ B and g : B ⇒

C is in accordance with this interpretation: a ∈ dom(g◦f) iff (a ∈ dom(f) ∧ f(a)⊆dom(g))
and g ◦f(a) := g[f(a)] for all a ∈ dom(g ◦f). For the composition of multi-representations
we will use the “relational” or “non-deterministic” composition ⊙, see (6.1) in Section 6.

For u, v ∈ Σ∗ ∪ Σω, u ⊑ v (u is a prefix of v) iff v = uw for some w ∈ Σ∗ ∪ Σω. For
vectors over Σ∗∪Σω define (u1, . . . , un) ⊑ (v1, . . . , vn) iff (∀i)ui ⊑ vi. Computable functions
on Σ∗ can be defined by Turing machines [14]. Computable functions on Σ∗ and Σω can
be defined by Type-2 machines [20]. A Type-2 machine M is a multi-tape Turing machine
with k input tapes (for some k ≥ 0), finitely many work tapes and a single one-way output
tape together with a type specification (Y1, . . . , Yk → Y0), Yi ∈ {Σ

ω,Σ∗}.

...

✒✑
✓✏
M

...

...

...

...

...

...

✲

✲

✲✛

 input tapes

 work tapes

...

...

❈
❈
❈❲

✂
✂
✂
✂
✂✂✌

❅
❅❅❘

✛
❄✻

p1

pk

p0 output tape (one-way)

Figure 1: A Type-2 machine

The function fM : ⊆Y1 × · · · × Yk → Y0 computed by the Type-2 machine M is defined as
follows:
Case Y0 = Σ∗: fM(p1, . . . , pk) = w, iff M halts on input (p1, . . . , pk) with w ∈ Σ∗ on the
output tape;
Case Y0 = Σω: fM(p1, . . . , pk) = p0, iff M computes forever on input (p1, . . . , pk) and writes
p0 ∈ Σω on the output tape.
We call a function f : ⊆Y1× · · · × Yk → Y0 Turing computable, iff f = fM for some Type-2
machine M , and deviant from the usual terminology we call it computable, if it has a Turing
computable extension. (Notice that usually “computable” means Turing computable.) The
computable functions are closed under composition.

COMPUTATION IN ANALYSIS 5

On Σ∗ we consider the discrete topology and on Σω the Cantor topology defined by the
basis {uΣω | u ∈ Σ∗} of open sets. As a fundamental result, every computable function on
Σ∗ and Σω is continuous.

A representation of a set M is a surjective function δ : ⊆ Y → M where Y = Σ∗

or Y = Σω. (Often the word “representation” is reserved for the case δ : ⊆ Σω → M
and surjective functions ν : ⊆ Σ∗ → M are called “notations” [20].) We will use multi-
representations δ : Y ⇒ M where M = range(δ) (Y ∈ {Σ∗,Σω}). Here, a name w ∈ y may
be a name of many x ∈ M . Finally we use generalized multi-representations λ : U ⇒ M
such that range(λ) = M where an arbitrary set U is considered as the set of “names”.

If for a generalized multi-representation δ : U ⇒ X, x ∈ δ(u) then we say “u realizes
x (via δ)” or “u is a name of x”. The realization of functions by functions is a central
concept in TTE. We define the most general case: the realization of a multi-function by a
multi-function via generalized multi-representations.

Definition 2.1 (realization). [21] Let f : X1 × . . .×Xn ⇒ X0 and g : Y1 × . . . × Yn ⇒ Y0

be multi-functions and let γi : Xi ⇒ Yi (0 ≤ i ≤ n) be generalized multi-representations.
For x = (x1, . . . , xn) ∈ X1 × . . . ×Xn let γ(x) := γ1(x1)× . . . × γn(xn).

Then “f realizes g via (γ1, . . . , γn, γ0)” or “f is a (γ1, . . . , γn, γ0)-realization of g”, iff
for all x ∈ X1 × . . . ×Xn and y ∈ Y1 × . . .× Yn,

y ∈ γ(x) ∩ dom(g) =⇒
(
f(x) 6= ∅ ∧ (∀x0 ∈ f(x)) g(y) ∩ γ0(x0) 6= ∅

)
. (2.1)

q

q

q

q

✲✘✘✘✿❳❳❳❳③
❄

✄
✄✄✎
❈
❈❲

✲✘✘✘✿❳❳❳③

❄

✄
✄✄✎
❈
❈❈❲

x x0

y y0 ∈ g(y) ∩ γ0(x0)

f

g

γ γ0

Figure 2: f realizes g via (γ1, . . . , γn, γ0).

Figure 2 illustrates the realization of g by f . Roughly speaking, provided x is a γ-name of
y ∈ dom(g) then

f(x) is a name of g(y) if f is single-v. and g is single-v. ,
f(x) is a name of some y0 ∈ g(y) if f is single-v. and g is multi-v. ,

every x0 ∈ f(x) is a name of some y0 ∈ g(y) if f is multi-v. and g is multi-v. .

For further technical details see [20] and [21, Sections 1,2,3,6,8 (until Lemma 28) and 9].

3. Generalized Turing machines

We generalize multi-tape Turing machines [14] to generalized Turing machines as follows.
A generalized Turing machine (GTM) has L + 1 tapes where Tapes 1, . . . , k are the input
tapes, Tapes k + 1, . . . , L are work tapes and Tape 0 is the output tape. There is a finite
work alphabet Γ and the blank symbol b ∈ Γ. For an ordinary Turing machine, there is
a finite input/output alphabet Σ such that Σ ∩ Γ = ∅ and at any time every cell of every
tape contains exactly one element (“symbol”) a ∈ Σ ∪ Γ. We generalize the definition by

6 N. R. TAVANA AND K. WEIHRAUCH

assigning to every tape i a set Xi (which may be empty) such that at any time every cell
of Tape i contains exactly one element a ∈ Xi ∪ Γ.

As for an ordinary Turing machine every tape has a read/write head that scans exactly
one cell and there is a finite set L of labels (usually called states) with an initial label l0 ∈ L
and a final label lf ∈ L. For every label l 6= lf there is a statement defining some action
on some tape and the next label. As for an ordinary Turing machine in one step on some
tape the head can be moved one position to the right or to the left, and for every symbol
a ∈ Γ, a can be written on the cell scanned by the head and it can be tested whether a
is scanned by the head (branching). Figure 3 shows the tapes and heads of a generalized
Turing machine.

−6−5−4−3−2−1 0 1 2 3 4 5 6 cell number
tape

num-
ber

0

1

k

k + 1

L

...

...

set

X0

X1

Xk

Xk+1

XL

...

...

. output
tape

.
.

.

.

.

input
tapes

.
.

.

.

.

additional
work
tapes

Figure 3: A generalized Turing machine.

Generalized Turing machines may have a further kind of assignments and a further kind of
branchings. Let xi be the content of the cell scanned by the head on Tape i (0 ≤ i ≤ L).

(1) “(i := f(i1, . . . , in), l
′) ” for some f : Xi1 × . . . ×Xin ⇒ Xi meaning:

write some y ∈ f(xi1 , . . . xin) on the cell scanned by the head on Tape i and then go to
Label l′;

(2) “(if f(i1, . . . , in) then l′, else l′′)” for some f : ⊆Xi1 × . . .×Xin → Σ∗ meaning:
if f(xi1 , . . . xin) = 0 then go to Label l′, if f(xi1 , . . . xin) = 1 then go to Label l′′ (and
loop otherwise).

Definition 3.1. A generalized Turing machine (GTM) is a tuple
M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,Stm) such that:

(1) L is a finite set (“labels”), l0, lf ∈ L (“initial” and “final” label);
(2) Γ (“work alphabet”) is a finite set, Σ ∩ Γ = ∅ and b ∈ Γ (“blank” symbol);
(3) k, L ∈ N, k ≤ L (0, 1, . . . , L: numbers of the tapes; 1, . . . , k: numbers of the input

tapes; 0: number of the output tape);
(4) Xi is a set such that Xi ∩ Γ = ∅ (0 ≤ i ≤ L);
(5) Stm is a function assigning to every label l ∈ L \ {lf} a statement from the following

list (where {i, i1, . . . , in}⊆{0, 1, . . . , L} and l′, l′′ ∈ L):
(a) (i, right, l′),
(b) (i, left, l′),
(c) (i := a, l′) (for some a ∈ Γ),

COMPUTATION IN ANALYSIS 7

(d) (i, if a then l′, else l′′) (for some a ∈ Γ),
(e) (i := f(i1, . . . , in), l

′) (for some f : Xi1 × . . . ×Xin ⇒ Xi);
(f) (if f(i1, . . . , in) then l′, else l′′) (for some f : ⊆ Xi1 × . . . × Xin → Σ∗ with

range(f)⊆{0, 1}).

Notice that for assignments (5e) we allow multi-valued functions while for tests (5f) the
functions must be single-valued but may still be partial. For defining the semantics we
formalize the tape i with inscription by a function αi : Z → Xi ∪ Γ and the head position
by a number mi ∈ Z. In the branching (5f) we will interpret 0 ∈ Σ∗ as true and 1 ∈ Σ∗ as
false.

Definition 3.2 (semantics). Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,Stm) be a generalized
Turing machine.

(1) Let S :=
∏L

i=0((Xi ∪ Γ)Z × Z) be the set of states and K := L× S be the set of config-
urations. For a configuration κ = (l, (α0,m0), . . . , (αL,mL)) define local modifications
of κ as follows:

κ[label← l1]: in κ replace the label by l1
κ[headi ← m]: in κ move the head on Tape i to Position m,
κ[celli ← x]: in κ write x under the head of Tape i .

(2) We define a successor relation ⊢ ⊆K ×K. Let κ = (l, (α0,m0), . . . , (αL,mL)) and
xj := αj(mj) for 0 ≤ j ≤ L. The successors of κ are determined by the statement
Stm(l) as follows: κ ⊢ κ′ iff:
(a) Stm(l) = (i, right, l′): κ′ = κ[headi ← mi + 1] [label← l′],
(b) Stm(l) = (i, left, l′): κ′ = κ[headi ← mi − 1] [label← l′],
(c) Stm(l) = (i := a, l′): κ′ = κ[celli ← a] [label← l′] ,
(d) Stm(l) = (i, if a then l′, else l′′):

κ′ = κ[label← l′] if xi = a, and κ′ = κ[label← l′′] if xi 6= a,
(e) Stm(l) = (i := f(i1, . . . , in), l

′):
κ′ = κ[celli ← x] [label← l′] for some x ∈ f(xi1 , . . . , xin),

(f) Stm(l) = (if f(i1, . . . , in) then l′, else l′′):
κ′ = κ[label← l′] if f(xi1 , . . . , xin) = 0, and
κ′ = κ[label← l′′] if f(xi1 , . . . , xin) = 1.

(3) A computation is a (finite or infinite) sequence (κ0, κ1, . . .) of configurations such that
κi ⊢ κi+1. A computation is maximal if it is infinite or its last configuration has no
⊢-successor. A configuration κ = (l, (α0,m0), . . . , (αL,mL)) is accepting if l = lf and
α0(0) ∈ X0. An accepting computation is a finite computation (κ0, κ1, . . . , κn) such that
κn is accepting.

(4) For (x1, . . . , xk) ∈ X1 × . . .×Xk define the initial configuration by

IC(x1, . . . , xk) := (l0, (α0
0, 0), . . . , (α

0
L, 0))

where l0 = l0, α
0
i (0) = xi for 1 ≤ i ≤ k and α0

i (j) = b for all other (i, j). For every
configuration κ = (l, (α0,m0), . . . , (αL,mL)) define

OC(κ) :=

{
α0(0) if α0(0) ∈ X0

div otherwise.

Define the multi-function fM : X1 × . . . × Xk ⇒ X0 computed by M as follows: For
xi ∈ Xi (0 ≤ i ≤ k) let x0 ∈ fM (x1, . . . , xk) iff (4a) and (4b):
(a) every maximal computation with first configuration IC(x1, . . . , xk) is accepting,

8 N. R. TAVANA AND K. WEIHRAUCH

(b) there exists an accepting computation (κ0, . . . , κn) with first configuration κ0 =
IC(x1, . . . , xk) such that x0 = OC(κn).

For input (x1, . . . , xk) ∈ X1 × . . . ×Xk, the initial configuration has the label l0, on every
tape the head is on position 0, on the input tape i (1 ≤ i ≤ k) the cell 0 contains the
value xi, and all other tape cells contain the blank symbol b ∈ Γ. In every assignment step
(2e) every x ∈ f(xi1 , . . . , xin) can be chosen. The result of an accepting computation is the
inscription of the cell 0 on Tape 0, which must be in X0. A value x ∈ X0 is in f(x1, . . . , xn),
if there is an accepting computation with result x and every maximal computation on the
same input is accepting.

4. Realization is Closed Under Programming

For multi-functions on multi-represented sets realization is closed under composition, that is,
the composition of realizations realizes the composition [20, Theorem 3.1.6] [21, Lemma 20]
(see Figure 4).

U V W

X Y Z✲

✲

✲

✲

❄ ❄❄ ❄
✲

✲

✲

✲

❄❄

r

g

s

h

β γ δ

U W

X Z✲

✲

✲

✲

❄ ❄❄ ❄
✲

✲

✲

✲

❄❄

s ◦ r

h ◦ g

β δ

Figure 4: s ◦ r realizes h ◦ g, if r realizes g and s realizes h.

Theorem 4.2 generalizes this fact from simple composition to generalized Turing machines.
It is the GTM-version of [21, Theorem 23]. Let id∗ : Σ∗ → Σ∗ be the identity on Σ∗.
Then by (2.1), a branching f : ⊆X1 × . . . ×Xn → Σ∗ is a (γ1, . . . , γn, id∗)-realization of a
branching g : ⊆Y1 × . . .× Yn → Σ∗ iff

y ∈ γ(x) ∩ dom(g) =⇒ f(x) = g(y) . (4.1)

We generalize the concept of realization (Definition 2.1) from functions to generalized Turing
machines as follows:

Definition 4.1. Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,StmM) and
N = (L, l0, lf ,Γ, b, k, L, (Yi)0≤i≤L,StmN) be generalized Turing machines and let γi : Xi ⇒

Yi (0 ≤ i ≤ L) be generalized multi-representations.
Then “M is a (γi)

L
i=0-realization of N” or “M realizes N via (γi)

L
i=0”,

if (1) – (3) for all labels l ∈ L.

(1) if StmM (l) ∈ {(i, right, l′), (i, left, l′), (i := a, l′), (i, if a then l′, else l′′)} then
StmM (l) = StmN (l),

(2) if StmM (l) = (i := f(i1, . . . , in), l
′) then StmN (l) = (i := g(i1, . . . , in), l

′) such that
f : Xi1 × . . .×Xin ⇒ Xi is a (γi1 , . . . , γin , γi)-realization of g : Yi1 × . . .× Yin ⇒ Yi,

(3) if StmM (l) = (if f(i1, . . . , in) then l′, else l′′) then
StmN (l) = (if g(i1, . . . , in) then l′, else l′′) such that
f : ⊆Xi1 × . . .×Xin → Σ∗ is a (γi1 , . . . , γin , id∗)-realization of g : ⊆Y1× . . .× Yk → Σ∗.

COMPUTATION IN ANALYSIS 9

Theorem 4.2. Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,StmM) and
N = (L, l0, lf ,Γ, b, k, L, (Yi)0≤i≤L,StmN) be generalized Turing machines and let γi : Xi ⇒

Yi (0 ≤ i ≤ L) be generalized multi-representations.
If M realizes N via (γi)

L
i=0, then fM : X1×. . .×Xk ⇒ X0 realizes fN : Y1×. . .×Yk ⇒ Y0

via (γ1, . . . , γk, γ0).

First we prove a lemma that considers all the details of the generalized Turing machines.
It extends the concept of realization for multi-functions in Definition 2.1 to the successor
relations ⊢M and ⊢N . For a configuration κ = (l, (α0,m0), . . . , (αL,mL)) of M and a
configuration λ = (l, (α0,m0), . . . , (αL,mL)) of N we say “κ realizes λ” iff (4.2) and (4.3)
are satisfied:

l = l ∧ (∀i ∈ {0, . . . , L})mi = mi , (4.2)

(∀ i ∈ {0, . . . , L}) (∀ j ∈ Z) (αi(j) = αi(j) ∈ Γ ∨ αi(j) ∈ γi ◦ αi(j)) . (4.3)

Lemma 4.3. Let M be a (γi)
L
i=0-realization of N. If κ realizes λ and λ has a ⊢N -successor

λ′′, then

(1) κ has a ⊢M -successor κ′′ and
(2) if κ ⊢M κ′ then there is some λ′ such that λ ⊢N λ′ and κ′ realizes λ′.

Proof. Suppose κ realizes λ. By (4.2) and (4.3) κ and λ can be written as

κ = (l, (α0,m0), . . . , (αL,mL))
λ = (l, (α0,m0), . . . , (αL,mL))

such that αi(j) = αi(j) ∈ Γ or αi(j) ∈ γi◦αi(j)) for all i, j. By assumption, λ has a successor
λ′′. Then l 6= lf . We study successively the 6 cases for StmN (l) from Definition 3.2.2. In
the last two cases below let

x̃ := (αi1(mi1), . . . , αin(min)) and ỹ := (αi1(mi1), . . . , αin(min)).

StmM(l) = (i, right, l′):
Then StmN (l) = (i, right, l′). By Definition 3.2.2a λ′′ = λ[headi ← mi + 1][label ← l′].
Let κ′′ := κ[headi ← mi + 1][label ← l′]. Then κ ⊢M κ′′ and κ′′ realizes λ′′. This proves
Condition (1) for this case. Since κ′′ is the only ⊢M -successor of κ, Lemma 4.3.2 is satisfied
for κ′ = κ′′ and λ′ = λ′′.

StmM(l) ∈ {(i, left, l′), (i := a, l′), (i, if a then l′, else l′′)}:
In these cases the argument is the same as in the first case.

StmM(l) = (i := f(i1, . . . , in), l
′) :

Then StmN (l) = (i := g(i1, . . . , in), l
′) such that f : Xi1×. . .×Xin ⇒ Xi is a (γi1 , . . . , γin , γi)-

realization of g : Yi1 × . . .× Yin ⇒ Yi. Since λ has a successor, g(ỹ) 6= ∅. Since f realizes g
and κ realizes λ, x̃ realizes ỹ, hence f(x̃) 6= ∅ by (2.1). Since f(x̃) 6= ∅, κ has a successor
by Definition 3.2.2e. This proves Condition (1) for this case lemma.

Let κ′ be a successor of κ. Then by Definition 3.2.2e, κ′ = κ[celli ← x0] [label← l′] for
some x0 ∈ f(x̃). Since f realizes g, x̃ realizes ỹ and f(x̃) 6= ∅, there is some y0 ∈ γi(x0)∩g(ỹ)
by (2.1). Let λ′ := λ[celli ← y0] [label ← l′]. Since x0 realizes y0, κ

′ realizes λ′. And since
y0 ∈ g(ỹ), λ ⊢N λ′ by Definition 3.2.2e. This proves Condition (2) for this case.

StmM(l) = (if f(i1, . . . , in) then l′, else l′′) :
Then StmN (l) = (if g(i1, . . . , in) then l′, else l′′) such that f : ⊆Xi1 × . . .×Xin → Σ∗ is a
(γi1 , . . . , γin , id∗)-realization of g : ⊆ Yi1 × . . . × Yin → Σ∗. Since λ has a successor, either

10 N. R. TAVANA AND K. WEIHRAUCH

g(ỹ) = 0 or g(ỹ) = 1. Since f is a (γi1 , . . . , γin , id∗)-realization of g and κ realizes λ, x̃
realizes ỹ and either f(x̃) = 0 or f(x̃) = 1. By Definition 3.2.2f κ has a successor. This
proves Condition (1) for this case.

Let κ ⊢M κ′. Then by Definition 3.2.2f κ′ = κ[label← l′] if f(x̃) = 0 and κ′ = κ[label←
l′′] if f(x̃) = 1. Since f is a (γi1 , . . . , γin , id∗)-realization of g and x̃ realizes ỹ, either g(ỹ) = 0
or g(ỹ) = 1. Let λ′ = λ[label ← l′] if g(ỹ) = 0 and λ′ = λ[label ← l′′] if g(ỹ) = 1. Since x̃
realizes ỹ, κ′ realizes λ′ and λ ⊢ λ′ by Definition 3.2.2f. This proves Condition (2) for this
case.

We apply Lemma 4.3 to prove Theorem 4.2.

Proof. (Theorem 4.2) First we observe that for configurations κ of M and λ of N,

(κ is accepting ⇐⇒ λ is accepting), if κ realizes λ. (4.4)

Let x = (x1, . . . , xk) ∈ X1 × . . . ×Xk, y = (y1, . . . , yk) ∈ Y1 × . . . × Yk and y ∈ γ1 × . . . ×
γk(x) ∩ dom(fN). Let κ0 := ICM (x1, . . . , xk) and λ0 := ICN (y1, . . . , yk). Then κ0 realizes
λ0. Since y ∈ dom(fN),

there is an accepting computation (λ0, . . . , λn) and (4.5)

every maximal computation with first configuration λ0 is accepting. (4.6)

By Definitions 2.1 and 3.2.4 it suffices to prove:

(1) there is an accepting computation on M with first configuration κ0, and
(2) every maximal computation on M with first configuration κ0 is an accepting computa-

tion (κ0, . . . , κn) such that there is an accepting computation (λ0, . . . , λn) such that κn

realizes λn.

Proof of (1): We know that κ0 realizes λ0. For induction suppose (κ0, . . . , κm) is a compu-
tation on M and (λ0, . . . , λm) is a computation on N such that κm realizes λm. Suppose
λm has a successor. By Lemma 4.3.1 κm has a successor κm+1 and by Lemma 4.3.2 there
is some successor λm+1 of λm such that κm+1 realizes λm+1. Then (κ0, . . . , κm+1) and
(λ0, . . . , λm+1) are computations such that κm+1 realizes λm+1. By (4.6) this inductive
process must end with an accepting computation (λ0, . . . , λn). For the corresponding com-
putation (κ0, . . . , κn) on M, κn realizes λn. By (4.4), this computation is accepting.

Proof of (2): Let (κ0, κ1, . . .) be a maximal computation on M . Then κ0 realizes λ0.
Assume, for the computation (κ0, . . . , κm) we have determined a computation (λ0, . . . , λm)
on N such that κm realizes λm.

Suppose, λm has a successor. Then, by Lemma 4.3, κm has a successor as well. There-
fore, (κ0, . . . , κm) is not maximal, hence κm+1 exists. By Lemma 4.3.2, λm has a successor
λm+1 such that κm+1 realizes λm+1.

By (4.6) this process must stop at some n such that (κ0, . . . , κn) is an initial part of our
maximal computation and (λ0, . . . , λn) is accepting. Since κn realizes λn, κn is accepting
by (4.4). This proves 2.

5. Computable Functions on Σ∗ and Σω are Closed Under Programming

Suppose, in Definition 3.1, Xi = Σω for all i and all the functions f in Definitions 3.1.5e
and 3.1.5f are computable. We want to show that fM : ⊆ (Σω)k → Σω is computable. We
solve the problem by reduction to generating functions and sets on Σ∗.

COMPUTATION IN ANALYSIS 11

Computable functions f : ⊆ (Σω)k → Σ∗ or f : ⊆ (Σω)k → Σω can be generated by
monotone computable word functions [20, Def 2.1.10, Lemma 2.1.11]. Here we use the
slightly modified Definition 2 from [21].

Definition 5.1.

(1) Call a function h : ⊆(Σ∗)k → Σ∗ monotone-constant, iff

(h(y) ↓ and y ⊑ y′) =⇒ (h(y′) ↓ and h(y) = h(y′)) .

For a monotone-constant function h define T∗(h) : ⊆(Σω)k → Σ∗ by

T∗(h)(x) = w :⇐⇒ (∃y ∈ (Σ∗)k) (y ⊑ x ∧ h(y) = w). (5.1)

(2) Call a function h : ⊆(Σ∗)k → Σ∗ monotone, iff

(h(y) ↓ and y ⊑ y′) =⇒ (h(y′) ↓ and h(y) ⊑ h(y′)) .

For a monotone function h define Tω(h) : ⊆(Σω)k → Σω by
Tω(h)(x) = q :⇐⇒ q = sup

⊑
{h(y) | y ⊑ x and h(y) ↓} . (5.2)

Notice that T∗(h) and Tω(h) are well-defined by the “generating function” h. By Lemma 5.2,
Turing computable functions f : ⊆ (Σω)k → Σ∗ or f ′ : ⊆ (Σω)k → Σω can be generated by
computable word functions h : ⊆ (Σ∗)k → Σ∗ which are monotone-constant or monotone,
respectively. We include the continuous versions.

Lemma 5.2. [20, 21]

(1) A function f : ⊆ (Σω)k → Σ∗ is continuous with open domain, iff f = T∗(h) for some
monotone-constant function h : ⊆(Σ∗)k → Σ∗.

(2) A function f : ⊆ (Σω)k → Σ∗ is Turing computable, iff f = T∗(h) for some Turing
computable monotone-constant function h : ⊆(Σ∗)k → Σ∗.

(3) A function f : ⊆ (Σω)k → Σω is continuous with Gδ-domain, iff f = Tω(h) for some
monotone function h : ⊆(Σ∗)k → Σ∗.

(4) A function f : ⊆ (Σω)k → Σω is Turing computable, iff f = Tω(h) for some Turing
computable monotone function h : ⊆(Σ∗)k → Σ∗.

Properties 2 and 4 are (essentially) [20, Lemma 2.1.11]. The proofs show how Type-2
machines can be converted to “generating” Turing machines and conversely. For proving
the continuous versions we can use machines with an oracle B⊆Σ∗. For the next proofs we
extend the prefix relation ⊑ on Σ∗∪Σω straightforwardly to Σ∗∪Σω∪Γ and to configurations
of machines operating on the sets Σ∗ or Σω. For u, v ∈ Σ∗ ∪ Σω ∪ Γ and configurations
κ = (l, (α0,m0), . . . , (αL,mL)) and κ′ = (l′, (α′

0,m
′
0), . . . , (α

′
L,m

′
L)) of generalized Turing

machines M and N, respectively, define:

u ⊑1 v :⇐⇒ u = v ∈ Γ or (u, v ∈ Σ∗ ∪ Σω and u ⊑ v) ,

κ ⊑2 κ
′ :⇐⇒ (∀ 1 ≤ i ≤ L)(∀ j ∈ Z))(l = l′, mi = m′

i, αi(j) ⊑1 α
′
i(j)).

Lemma 5.3. Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,StmM) be a generalized Turing ma-
chine such that Xi = Σ∗ for 0 ≤ i ≤ L. For every l ∈ L let f : ⊆ (Σ∗)n → Σ∗ be monotone
if StmM (l) = (i := f(i1, . . . , in), l

′) and let f : ⊆ (Σ∗)n → Σ∗ be monotone constant if
StmM (l) = (if f(i1, . . . , in) then l′, else l′′). Then fM : ⊆(Σ∗)k → Σ∗ is monotone.

12 N. R. TAVANA AND K. WEIHRAUCH

Proof. Since all the functions used in M are single-valued, the successor relation on configu-
rations is a partial function, which we denote by S. First, we prove that for all configurations
κ, κ′ of M:

(S(κ) ↓ ∧ κ ⊑2 κ
′) =⇒ (S(κ′) ↓ ∧ (S(κ) ⊑2 S(κ

′)) . (5.3)

If κ ⊑2 κ
′ then κ and κ′ have the same labels and the same head positions. Therefore, they

can be written as κ = (l, (α0,m0), . . . , (αL,mL)) and κ′ = (l, (α′
0,m0), . . . , (α

′
L,mL)) such

that αi(j) = α′
i(j) ∈ Γ or αi(j) ⊑ α′

i(j) ∈ Σ∗ for all i, j. The successor function S changes
κ and κ′ only locally. We consider the six alternatives from Definition 3.2.

StmM(l) = (i, right, l′):
Then S(κ) = κ[headi ← mi + 1] [label ← l′] and S(κ′) = κ′[headi ← mi + 1] [label ← l′].
Obviously S(κ) ⊑2 S(κ

′).

StmM(l) ∈ {(i, left, l′), (i := a, l′), (i, if a then l′, else l′′)}:
In these cases the argument is the same as in the first case.

StmM(l) = (i := f(i1, . . . , in), l
′):

The statement can change only the label and the inscription under the head of Tape i.
Since S(κ) exists, x := f(xi1 , . . . , xin) exists, where xij = αj(mj) ∈ Σ∗ for 1 ≤ j ≤ n (see
Definition 3.2). Since κ ⊑2 κ

′, xij ⊑ x′ij := α′
j(mj) ∈ Σ∗ (1 ≤ j ≤ n). Since f is monotone,

f(x′i1 , . . . , x
′
in
) exists and x = f(xi1 , . . . , xin) ⊑ f(x′i1 , . . . , x

′
in
) = x′. Since κ ⊑2 κ′ and

S(κ) = κ[celli ← x] [label← l′] and S(κ′) = κ′[celli ← x′] [label← l′], S(κ) ⊑2 S(κ
′).

StmM(l) = (if f(i1, . . . , in) then l′, else l′′):
The statement changes only the labels (or cannot be applied). Since S(κ) exists by as-
sumption, f(xi1 , . . . , xin) ∈ {0, 1}⊆Σ

∗ exists, where xij = αj(mj) ∈ Σ∗ for 1 ≤ j ≤ n (see
Definition 3.2). Since κ ⊑2 κ′, xij ⊑ x′ij := α′

j(mj) ∈ Σ∗ (1 ≤ j ≤ n). Since f is monotone

constant, f(x′i1 , . . . , x
′
in
) exists and f(xi1 , . . . , xin) = f(x′i1 , . . . , x

′
in
). By Definition 3.2, also

the labels of S(κ) and S(κ′) are the same, hence S(κ) ⊑2 S(κ
′).

This proves (5.3).
Now suppose w = (w1, . . . , wk) ⊑ (w′

1, . . . , w
′
k) = w′. Then ICM (w) ⊑2 ICM (w′)

(Definition 3.2). Suppose fM (w) exists. Then for some n, Sn ◦ ICM (w) exists and is an
accepting configuration such that fM(w) = α0(0). From (5.3) by induction for all k ≤ n,
Sk ◦ ICM (w′) exists and Sk ◦ ICM (w) ⊑2 S

k ◦ ICM (w′). Since Sn ◦ ICM (w) ⊑2 S
n ◦ ICM (w′)

and Sn ◦ ICM (w) is accepting, Sn ◦ ICM (w′) is accepting. Then, fM(w), the word on (Tape
0, Cell 0) of Sn◦ICM (w) is a prefix of fM(w′), the word on (Tape 0, Cell 0) of Sn◦ICM (w′),
hence fM(w) ⊑ fM (w′). Therefore, fM is monotone.

Let M be a generalized Turing machine on generating word functions and let N be
the corresponding generalized Turing machine on generated functions on Σω. Then fM : ⊆
(Σ∗)k → Σ∗ generates an extension of fN : ⊆(Σω)k → Σω:

Theorem 5.4. Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,StmM) and
N = (L, l0, lf ,Γ, b, k, L, (Yi)0≤i≤L,StmN) be generalized Turing machines such that Xi = Σ∗

and Yi = Σω for 0 ≤ i ≤ L and all functions occurring in M or N are single-valued. Assume
that for all labels l ∈ L,

(1) if StmM (l) ∈ {(i, right, l′), (i, left, l′), (i := a, l′), (i, if a then l′, else l′′)} then
StmM (l) = StmN (l),

COMPUTATION IN ANALYSIS 13

(2) if StmM (l) = (i := f(i1, . . . , in), l
′) then f is monotone and StmN (l) = (i :=

g(i1, . . . , in), l
′) such that Tω(f) extends g,

(3) if StmM (l) = (if f(i1, . . . , in) then l′, else l′′) then f is monotone-constant and
StmN (l) = (if g(i1, . . . , in) then l′, else l′′) such that T∗(f) extends g.

Then Tω(fM) extends fN : ⊆(Σω)k → Σω.

Proof. We must prove that for all q ∈ dom(fN),

fN (q) = Tω(fM)(q) = sup⊑{fM (u) | u ∈ (Σ∗)k, u ⊑ q and fM(u) ↓} . (5.4)

Since all the functions used in M and N are single-valued, the successor relations on con-
figurations are functions, which we denote by S for both machines. For a word w ∈ Σ∗ let
|w| denote its length. For a configuration κ for M define the precision by

P (κ) := min{|αi(j)| | 0 ≤ i ≤ L, j ∈ Z, αi(j) ∈ Σ∗} .

For q = (q1, . . . , qk) ∈ (Σω)k and e ∈ N let q<e := (w1, . . . , wk) where wi is the prefix of qi
of length e.

Proposition 5.5. Suppose, q = (q1, . . . , qk) ∈ dom(fN)⊆(Σω)k. Then for all m such that
λ := Sm ◦ ICN (q) exists:

(∀d)(∃e)(∀e ≥ e)(κ := Sm ◦ ICM (q<e) ↓, κ ⊑2 λ, P (κ) ≥ d) (5.5)

(where d, e, e ∈ N). This means that for sufficiently precise input, κ exists and approximates
λ with at least precision d.

Proof. (Proposition 5.5) We prove (5.5) by induction on m ∈ N.

m = 0: For d ∈ N choose e := d. Then for e ≥ e by Definition 3.2.4, S0 ◦ ICM (q<e) ⊑2

S0 ◦ ICN (q) and P (S0 ◦ ICM (q<e)) = e ≥ d.

m =⇒ m + 1: Assume that the statement has been proved for m and assume that
Sm+1 ◦ ICN (q) exists. Then Sm ◦ ICN (q) exists and can be written as

λ := Sm ◦ ICN (q) = (l, (β0,m0), . . . , (βL,mL)) . (5.6)

Let d ∈ N. We consider the 6 alternatives for StmN (l) from Definition 3.2. Notice that the
successor functions S of M and N change configurations only locally.

StmN(l) = (i, right, l′):
By assumption, there is some e ∈ N such that for all e ≥ e, κ := Sm ◦ ICM (q<e) exists,
κ ⊑2 λ and P (κ) ≥ d. We show that we can choose this number e for m+ 1 and d as well.
Since κ ⊑2 λ, κ can be written as

κ = Sm ◦ ICM (q<e) = (l, (α0,m0), . . . , (αL,mL))

such that for all i and j, αi(j) = βi(j) ∈ Γ or αi(j) ⊑ βi(j) (where αi(j) ∈ Σ∗ and
βi(j) ∈ Σω). By the condition in Theorem 5.4.1, StmM (l) = StmN (l) = (i, right, l′).
Therefore,

S(λ) = λ[headi ← mi + 1] [label← l′] ,
S(κ) = κ[headi ← mi + 1] [label← l′] .

Since on λ and κ the successors S operate in the same way depending at most on tape cells
containing elements of Γ and changing at most such tape cells, κ ⊑2 λ implies S ◦κ ⊑2 S ◦λ
and P (S ◦ κ) = P (κ) ≥ d.

14 N. R. TAVANA AND K. WEIHRAUCH

StmN(l) ∈ {(i, left, l′), (i := a, l′) (i, if a then l′, else l′′)}:
The arguments in these cases are the same as in the first case.

StmN(l) = (i := g(i1, . . . , in), l
′):

By the condition in Theorem 5.4.2, StmM (l) = (i := f(i1, . . . , in), l
′) such that Tω(f)

extends g.
Let s := (s1, . . . , sn) ∈ (Σω)n such that sj = βij (mij) is the content of the cell under

the head of Tape ij of the configuration λ (see (5.6)). Since Sm+1 ◦ ICN (q) = S(λ) exists,
s ∈ dom(g). Since Tω(f) extends g, by the sup-condition in Definition 5.1.2

(∃b)(∀b ≥ b)(f(s<b) ↓, f(s<b) ⊑ g(s) and |f(s<b)| ≥ d) . (5.7)

By induction as a special case of (5.5), for max(b, d) there is some e such that

(∀e ≥ e)(κ := Sm ◦ ICM (q<e) ↓, κ ⊑2 λ and P (κ) ≥ max(b, d)) . (5.8)

We show that this constant e is appropriate for m + 1 and d in (5.5). Let e ≥ e,
κ := Sm ◦ ICM (q<e) and κ′ := Sm+1 ◦ ICM (q<e) = S(κ). Since κ ⊑2 λ, κ can be written as
(see (5.6))

κ = Sm ◦ ICM (q<e) = (l, (α0,m0), . . . , (αL,mL))

such that for all 0 ≤ j ≤ L and i′, αj(i
′) = βj(i

′) ∈ Γ or αj(i
′) ⊑ βj(i

′) (where αj(i
′) ∈ Σ∗

and βj(i
′) ∈ Σω). Let u := (u1, . . . , uk) where uj := αij (mij). Then u ⊑ s. By Definition 3.2

S(κ) = κ[celli ← v] [label← l′] ,
S(λ) = λ[celli ← q′] [label← l′] ,

(5.9)

where v = f(u) and q′ = g(s). By (5.5) we must prove:

κ′ := Sm+1 ◦ ICM (q<e) ↓, κ′ ⊑2 S(λ) and P (κ′) ≥ d . (5.10)

Since P (κ) ≥ b, s<b ⊑ u. Since f(s<b) ↓ by (5.7) and f is monotone, f(u) exists. Therefore,
κ′ = S(κ) exists. Then S(κ) and S(λ) can be written as

S(κ) = (l′, (α′
0,m0), . . . , (α

′
L,mL)) ,

S(λ) = (l′, (β′
0,m0), . . . , (β

′
L,mL)) .

(5.11)

S(κ) differs from κ only on Cell i, the cell under the head of Tape i, and S(λ) differs from
λ only on Cell i, the cell under the head of Tape i.

Since u ⊑ s and Tω(f) extends g, by (5.9), α′
i(mi) = f(u) ⊑ g(s) = β′

i(mi) . For all
(j, i′) 6= (i,mi) by κ ⊑2 λ (5.8) α′

j(i
′) = αj(i

′) ⊑1 βj(i
′) = β′

j(i
′) . Therefore, S(κ) ⊑2 S(λ).

By (5.8), |uj | ≥ b for 1 ≤ j ≤ n, hence s<b ⊑ u, since u ⊑ s. By (5.7) and monotonicity

of f , |α′
i(mi)| = |f(u)| ≥ |f(s

<b)| ≥ d. For all (j, i′) 6= (i,mi) such that α′
j(i

′) ∈ Σ∗,

|α′
j(i

′)| = |αj(i
′)| ≥ d, since P (κ) ≥ d by (5.8). Therefore, P (κ′) ≥ d.

This proves (5.10) and finishes the case StmN (l) = (i := g(i1, . . . , in), l
′).

StmN(l) = (if g(i1, . . . , in) then l′, else l′′):
The proof can be obtained by straightforward modification of the proof of the previous case.
✷(Proposition 5.5)

It remains to prove (5.4). Suppose, fN (q) exists. Then for some m ∈ N, λ :=
Sm ◦ ICN (q) exists, λ is a final configuration and OC(λ) = fN (q). Let d ∈ N. By Proposi-
tion 5.5 there is some e ∈ N such that κ := Sm ◦ ICM (q<e) exists, κ ⊑2 λ and P (κ) ≥ d.
Since κ ⊑2 λ, also κ is a final configuration and fM (q<e) = OC(κ) ⊑ OC(λ) = fN (q).

COMPUTATION IN ANALYSIS 15

Furthermore, |fM (q<e)| ≥ d, since P (κ) ≥ d. Since fM is monotone by Lemma 5.3,
fN (q) = sup⊑{fM (q<e) | e ∈ N}. Since for all u ∈ (Σ∗)k with u ⊑ q there is some e
such that u ⊑ q<e, sup⊑{fM (q<e) | e ∈ N} = sup⊑{fM (u) | u ⊑ q} = Tω(fM).

Therefore, Tω(fM) extends fN : ⊆(Σω)k → Σω.

If all functions on Σ∗ used in the machine M from Theorem 5.4 are computable, then
fM is a computable word function.

Lemma 5.6. Let M = (L, l0, lf ,Γ, b, k, L, (Xi)0≤i≤L,StmM) be a generalized Turing ma-
chine such that Xi = Σ∗ for 0 ≤ i ≤ L and all functions on Σ∗ used in the machine are
computable. Then fM : ⊆(Σ∗)k → Σ∗ is computable.

Proof. From the generalized Turing machine M an ordinary Turing machine N computing
fM can be constructed by standard techniques.

By the next theorem the continuous as well as the computable functions on Σω are
closed under programming.

Theorem 5.7. Let N = (L, l0, lf ,Γ, b, k, L, (Yi)0≤i≤L,StmN) be a generalized Turing ma-
chine on Σω, that is, Yi = Σω for 0 ≤ i ≤ L. If all the functions on Σω used in the machine
N

(1) are continuous, then fN : ⊆(Σω)k → Σω is continuous,
(2) are computable, then fN : ⊆(Σω)k → Σω is computable.

Proof. (1) Every function used in N is generated by a monotone or monotone constant word
function (Lemma 5.2). Let M be the machine constructed with these word functions that
satisfies the conditions from Theorem 5.4. Then Tω(fM) extends fN . By Lemma 5.2, fN is
continuous.

(2) In addition to Case (1) there are even computable word functions. Again the
function fM generates fN . By Lemma 5.6, fM is computable, hence fN is computable by
Lemma 5.2.

The generalization from Σω to Σ∗ and Σω is straightforward.

Corollary 5.8. Theorem 5.7 holds accordingly, if Yi ∈ {Σ
∗,Σω} for 0 ≤ i ≤ L.

Proof. Define a standard representation β : ⊆ Σω → Σ∗ of Σ∗ by β(ι(w)0ω) := w (where
ι(a1 . . . an) := 110a10 . . . 0an011,[20, Definition 2.1.7]). For Yj let δj := idΣω if Yj = Σω

and δj := β if Yj = Σ∗. Then a function f : ⊆ Yi1 × . . . × Yin → Yi0 is computable, iff it
is (δi1 , . . . , δin , δi0)-computable by a realization on Σω. Let M be a machine obtained from
N by replacing every function f on Σω and Σ∗ by a computable realizing function on Σω.
Then M realizes N, hence fM realizes fN by Theorem 4.2. Since fM is computable by
Theorem 5.7, fN is computable. For “continuous” the argument is the same.

6. Machines on Represented Sets, the Main Results

After the preparations in Sections 4 and 5 we can easily prove our main results, Theo-
rems 6.2 and 6.6. Since the computable functions on Σω are closed under composition, the
composition of computable functions on represented sets is computable [20, Theorem 3.1.6].
The following main result of this article generalizes this observation from single-valued to
multi-valued functions and representations and from composition to generalized Turing ma-
chines.

16 N. R. TAVANA AND K. WEIHRAUCH

Definition 6.1. Let P = (L, l0, lf ,Γ, b, k, L, (Zi)0≤i≤L,StmP) be a generalized Turing ma-
chine and for each i, 0 ≤ i ≤ L, let δi : Σ

ω
⇒ Zi be a multi-representation. The machine is

called (δi)0≤i≤L-computable, iff

(1) for every statement “(i := f(i1, . . . , in), l
′)” in P

the multi-function f is (δi1 , . . . , δin , δi)-computable and
(2) for every statement “(if f(i1, . . . , in) then l′, else l′′)” in P

the partial function f is (δi1 , . . . , δin , id∗)-computable.

“(δi)0≤i≤L-continuous” is defined in the same way with “continuous” replacing “computable”.

Theorem 6.2. Let P be a generalized Turing machine with k input tapes and for 0 ≤ i ≤ L
let δi be a multi-representation of Zi such that the machine is (δi)0≤i≤L-computable. Then
the function fP computed by the machine is (δ1, . . . , δk, δ0)-computable.

Correspondingly with “continuous” instead of “computable”.

Proof. Case “continuous”: There is a generalized Turing machine M on Σω containing only
continuous functions that realizes P via (δi)0≤i≤L (replace every function in P by a realizing
function on Σω). By Theorem 4.2, fM realizes fP via (δ1, . . . , δk, δ0). By Theorem 5.7, fM
is continuous. Therefore, fP is (δ1, . . . , δk, δ0)-continuous.

The case “computable” can be proved in the same way.

Corollary 6.3. Theorem 6.2 remains true if in Definition 6.1 and in the theorem some
multi-representations δj : Σ

ω
⇒ Zj are replaced by multi-notations νj : Σ

∗
⇒ Zj .

Proof. For every multi-notation ν : Σ∗
⇒ X there is a multi-representation δ : Σω

⇒ X
such that ν ≡ δ, and equivalent multi-notations/representations of a set X induce the same
computability and continuity on X [21, Section 8]. Replace every multi-notation by an
equivalent multi-representation and apply Theorem 6.2. In the final result return to the
multi-notations.

In applications, generalized representations are already used informally, whenever defin-
ing explicitly Type-2 Turing machines for realizing functions on Σω is too cumbersome.

Example 6.4. Let SRI be the set of all sequences of intervals [a; b]⊆R with rational end
points a < b. Let γ : ⊆Σω → SRI be a canonical representation and define a generalized
representation δ : ⊆SRI → R of the real numbers by δ(I0, I1, . . .) = x ⇐⇒ {x} =

⋂
n In.

Then δ ◦ γ : ⊆Σω → R is a representation that is equivalent to the standard representation
ρ of the real numbers [20, Chapter 4]. For proving that addition on the real numbers is
computable via δ ◦ γ consider the following binary function f+ on SRI:

f+((I0, I1, . . .), (J0, J1, . . .)) := (I0 + J0, I1 + J1, . . .).

The experienced reader knows that the function f+ is (γ, γ, γ)-computable and a simple
proof shows that f+ is a (δ, δ, δ)-realization of addition. By the next lemma from [21] we
may conclude that addition is computable via δ ◦ γ.

For multi-functions γ : X ⇒ Y and δ : Y ⇒ Z the “relational” composition δ ⊙ γ is
defined by

z ∈ δ ⊙ γ(x) ⇐⇒ (∃ y) (y ∈ γ(x) ∧ z ∈ δ(y)), (6.1)

see [21, Sections 3 and 6]. If γ and δ are multi-representations, an element x ∈ X should
be considered as a name of z via the combination of γ and δ, if there is some y ∈ Y such
that x is a γ-name of y and y is a δ-name of z, that is, y ∈ γ(x) and z ∈ δ(y), hence

COMPUTATION IN ANALYSIS 17

z ∈ (δ ⊙ γ)(x). Therefore, we use relational composition for multi-representations. Notice
that for single-valued γ (as in Example 6.4), δ ⊙ γ = δ ◦ γ.

Realization is downwards transitive. If h realizes g and g realizes f then h realizes f
w.r.t. the composed representations (Figure 5).

Lemma 6.5 ([21]). Let γ : X ⇒ Y , δ : Y ⇒ Z, γ′ : U ⇒ V and δ′ : V ⇒ W be generalized
multi-representations. If h : X ⇒ U is a (γ, γ′)-realization of g : Y ⇒ V and g : Y ⇒ V
is a (δ, δ′)-realization of f : Z ⇒ W , then h : X ⇒ U is a (δ ⊙ γ, δ′ ⊙ γ′)-realization of
f : Z ⇒ W .

X

Y

Z

U

V

W✲

✲

✲

✲

✲

✲

❄ ❄

❄ ❄

❄ ❄

❄ ❄

h

g

f

δ

γ

δ′

γ′ X

Z

U

W✲

✲

✲

✲

❄ ❄❄ ❄

h

f

δ ⊙ γ δ′ ⊙ γ′

Figure 5: Realization is downwards transitive.

In Example 6.4, R can be called the set of “abstract” data, Σω the set of “concrete”
data and SRI the set of data of “intermediate abstraction”. If computability on data of
intermediate abstraction is well understood, it may be of advantage to use them as names in
generalized representations. The following theorem generalizes Theorem 6.2. It shows that
the function fP computed by a generalized Turing machine P containing only functions
realized by computable functions on data of intermediate abstraction is computable.

Theorem 6.6. Let P = (L, l0, lf ,Γ, b, k, L, (Zi)0≤i≤L,StmP) be a generalized Turing ma-
chine. For each i, 0 ≤ i ≤ L, let δi : Yi ⇒ Zi be a generalized multi-representation and let
γi : Σ

ω
⇒ Yi be a multi-representation. Suppose,

(1) for every statement “(i := f(i1, . . . , in), l
′)” in P the multi-function f has a realization

g via (δi1 , . . . , δin , δi) that is (γi1 , . . . , γin , γi)-computable, and
(2) for every statement “(if f(i1, . . . , in) then l′, else l′′)” in P the partial function f has a

realization g via (δi1 , . . . , δin , id∗) that is (γi1 , . . . , γin , id∗)-computable.

Let M be a machine obtained from P by replacing every function f by some function g
computable w.r.t the γj realizing f via the δj as described in (1) and (2). Then

(a) fM is (γ1, . . . , γk, γ0)-computable,
(b) fM realizes fP via (δ1, . . . , δk, δ0),
(c) fP is (δ1 ⊙ γ1, . . . , δk ⊙ γk, δ0 ⊙ γ0)-computable.

Proof.

(a) This follows from Theorem 6.2.
(b) This follows from Theorem 4.2.
(c) This follows from (a) and (b) by Lemma 6.5.

18 N. R. TAVANA AND K. WEIHRAUCH

7. Examples

The feasible real RAM [8], a machine model for real computation, allows approximate multi-
valued branching.

≤k: R× R ⇒ {tt,ff}, ≤k (x, y)

= tt if x < y
∈ {tt,ff} if y ≤ x ≤ y + 2−k

= tt if y + 2−k < x .
This is not allowed in generalized Turing machines but can be simulated by a multi-valued
function followed by a single-valued test.

Theorems 6.2 and 6.6 allow to formulate algorithms and argue about them in a more
abstract way which is closer to ordinary analysis and which usually is simpler and more
transparent. In Example 6.4 we have used sequences of rational intervals as names of real
numbers.

As another example consider C∞(R) the set of all infinitely often differentiable real
functions. There is a canonical representation β of C(R), then γ := [β]ω is a canonical
representation of (C(R))ω [20, Definition 3.3.3]. Define a generalized representation δ : ⊆
(C(R))ω → C∞(R) as follows:

δ(f0, f1, . . .) = g ⇐⇒ (∀i) fi = g(i)

(a name of g is a list of all of its derivatives). This generalized representation may be useful
in the study of distributions [22].

As another example we consider computing the sum s :=
∑∞

j=0 ajz
j of a complex

power series. Let R be the radius of convergence and sn :=
∑n−1

j=0 ajz
j the partial sum of

the first n terms. Let r < R, r ∈ Q, and let M ∈ Q be a Cauchy constant for r, that is,
(∀j) |aj | ≤M · r−j. Then for all |z| < r,

|sn − s| ≤M
(|z|/r)n

1− (|z|/r)

We want to show that the operator H : ((aj)j , r,M, z)→ s is computable via the standard
representations of the occurring sets [20]. In the following we say “computable” instead of
“computable via the standard representations”.

First, from the inputs (aj)j , r, M , z and k we compute some complex number bk ∈ C

such that |bk − s| ≤ 2−k as follows:
– compute c := |z|/r
– find some q ∈ Q such that c < q < 1, (then |sn − s| ≤M · qn/(1− q))
– find some n ∈ N such that M · qn/(1− q) < 2−k, (then |sn − s| ≤ 2−k)
– For m = 0, 1, . . . , n compute in turn zm and sm.
– Let bk := sn be the result.
It is easy to find a generalized Turing machine N for this algorithm that uses the arith-
metical operations on N,Q,R and C and the projection ((aj)j ,m) 7→ am all of which are
computable [20]. Therefore, by Theorem 6.2, fN : ((aj)j , r,M, z, k) |⇒ bk is computable. By
[20, Theorem 35] the multi-function S ◦ fN : ((aj)j , r,M, z) |⇒ (bk)k∈N is computable, where

(bk)k ∈ S ◦ fN ((aj)j , r,M, z) ⇐⇒ (∀k) bk ∈ fN((aj)j, r,M, z, k) .

Since (bk)k is a sequence of complex numbers such that |s − bk| ≤ 2−k and the limit
operator Lim : (bk)k 7→ limk→∞ bk is computable (cf. [20, Theorem 4.3.7], H = Lim◦S ◦fN
is computable.

COMPUTATION IN ANALYSIS 19

Although a multi-function has been used in the determination of q, the function H is
single-valued. Notice that the only informal part in the above proof is the specification of the
generalized Turing machineN. But this method is customary and accepted in computability
theory. Compare this proof with the proof of Theorem 4.3.11 in [20]. Via Lemma 4.3.6 it
uses the closure of computable functions under primitive recursion (Theorem 3.1.7), which
follows easily from Theorem 6.2 in this article.

In mathematical practice, often a function such as addition on Q, is said to be com-
putable “by Church’s Thesis”. In such a case, implicitly fixed “natural”, “effective” or
“canonical” representations by finite or infinite strings are presupposed such that the func-
tion is computable w.r.t. these representations. Usually there is no disagreement about the
meaning of “natural”, “effective” or “canonical”. Often a canonical representation of a set
X can be defined up to equivalence by requiring that the functions and (or) predicates of
the natural structure for X must become computable, and requiring additionally that the
representation is maximal or minimal w.r.t. reducibility ≤ when indicated.

Let us call sets on which computability can be defined by canonical representations
“natural”. Examples of natural sets Y are N, B := NN (Baire space), Γ∗ and ΓN (for finite
Γ), Q, Qn and

⋃
nQ

n. Let us call a multi-representations δ : Y ⇒ X natural if Y is natural.
By Theorem 6.6, Theorem 7.1 can be generalized as follows.

Theorem 7.1 (informal generalization). Let P be a generalized Turing machine on sets
with natural representations. Suppose that every function and test used in the machine has
a realization that is computable by Church’s Thesis. Then the function fP computed by the
machine is computable w.r.t. the natural representations.

Brattka and Gherardi [7] use a reduction ≤W for comparing the non-computability of
theorems in analysis. Formally, ≤W compares the non-computability of multi-functions
on represented sets. We generalize this definition to multi-represented sets (Zi, δi) (i ∈
{1, 2, 3, 4}): For f : Z1 ⇒ Z2 and g : Z3 ⇒ Z4. f ≤W g, if there are computable functions
G,H on Σω such that p 7→ G(p, h ◦H(p)) is a realization of f if h is a realization of g. The
next theorem provides a method to prove f ≤W g. We use the concept of extension for multi-
functions from [21, Definition 7]. f ′ : Z1 ⇒ Z2 extends f : Z1 ⇒ Z2, if dom(f)⊆dom(f ′)
and f ′(x)⊆f(x) for all x ∈ dom(f).

For a generalized Turing machine M from Definition 3.1 let graph(M) := (L, S) where
(l, l′) ∈ S ((l, l′) is an edge), iff Stm(l) has the form (. . . , l′) , (. . . then l′, else l′′) or
(. . . then l′′, else l′).

Theorem 7.2. For multi-functions f, g on multi-represented sets such that g is not com-
putable, f ≤W g if there is a generalized Turing machine N on represented sets such
that

(1) every test in N is computable,
(2) for every statement of the form (i := c(i1, . . . , in), l

′), either c is computable or it is of
the form (i := g(i1), l

′).
(3) every path in graph(N) starting at l0 visits at most once a label l such that Stm(l)

applies the function g.
(4) fN , the function computed by N, extends f .

(where “computable” means computable w.r.t the given multi-representations.)

Condition (3) for the GTM can be enforced easily syntactically. The theorem generalizes
one direction of [11, Lemma 4.5].

20 N. R. TAVANA AND K. WEIHRAUCH

Proof. Let h : ⊆Σω → Σω be a realization of g. There is a generalized Turing machine M on
Σω that realizes N (Definition 4.1) such that in M every test is computable, every function
is computable or equal to h and Condition (3) is true for M and h. By Theorem 4.2, fM
realizes fN and hence fM realizes f .

For computing the functions G and H, from the machine M we construct machines
MG and MH . Let M = (L, l0, lf ,Γ, b, 1, L, (Xi)0≤i≤L,Stm) where Xi = Σω for all i.

Define MH := (L, l0, lf ,Γ, b, 1, L, (Xi)0≤i≤L,StmH) such that for all l, l′, i, i1,

StmH(l) :=

{
(0 := idΣω(i1), lf) if Stm(l) = (i := h(i1), l

′) ,
Stm(l) otherwise .

Then for input p ∈ dom(fM), the machine MH computes the argument for h if a statement
with h is visited during the computation and computes the value fM(p) otherwise.

Define MG := (L, l0, lf ,Γ, b, 1, L+1, (Xi)0≤i≤L+1,StmG) such that XL+1 := Σω and for
all l, l′, i, i1,

StmG(l) :=

{
(i = idΣω(iL+1), l

′) if Stm(l) = (i := h(i1), l
′) ,

Stm(l) otherwise .

Then the machine MG works in the same way as the machine M except for statements
(i := h(i1), l

′) of M where instead of applying h, MG copies the value q scanned by the
head on Tape L + 1 to the cell scanned by the head on Tape i. For avoiding renaming
of tapes we may assume w.l.o.g. that the machine MG has the two input tapes 1 and
L+ 1. Obviously for all p ∈ dom(fM), fM (p) = fMG

(p, h ◦ fMH
(p)). Define H := fMH

and
G := fMG

.

Theorem 7.2 holds accordingly for continuous reducibility instead of computable re-
ducibility.

8. Conclusion

We have introduced the Generalized Turing machine as a simple general model of computa-
tion. This model is not intended for implementation on computers but as a mathematical
tool for proving computability in Analysis. Although the three main theorems 5.7, 6.2 and
6.6 seem to be obvious and hence have already been applied informally without proofs, this
article shows that even for our very meagre model of computation the proofs require some
care.

Acknowledgement

The authors wish to thank the unknown referees for their careful work.

References

[1] Jens Blanck. Domain representations of topological spaces. Theoretical Computer Science, 247:229–255,
2000.

[2] Lenore Blum. Computing over the reals: where Turing meets Newton. Notices of the AMS, 51(9):1024–
1034, 2004.

[3] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation.
Springer, New York, 1998.

COMPUTATION IN ANALYSIS 21

[4] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the
real numbers: NP -completeness, recursive functions and universal machines. Bulletin of the American

Mathematical Society, 21(1):1–46, July 1989.
[5] Hans Boehm and Robert Cartwright. Exact real arithmetic, formulating real numbers as functions. In

D. Turner, editor, Research topics in functional programming, pages 43–64. Addison-Wesley, 1990.
[6] Vasco Brattka. The emperor’s new recursiveness: The epigraph of the exponential function in two models

of computability. In Masami Ito and Teruo Imaoka, editors, Words, Languages & Combinatorics III,
pages 63–72, Singapore, 2003. World Scientific Publishing. ICWLC 2000, Kyoto, Japan, March 14–18,
2000.

[7] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak computability.
Journal of Symbolic Logic, 76:143–176, 2011.

[8] Vasco Brattka and Peter Hertling. Feasible real random access machines. Journal of Complexity,
14(4):490–526, 1998.

[9] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In S. Barry
Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms: Changing Concep-

tions of What is Computable, pages 425–491. Springer, New York, 2008.
[10] Mark Braverman and Stephen Cook. Computing over the reals: Foundations for scientific computing.

Notices of the AMS, 53(3):318–329, 2006.
[11] Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach theorem?

Notre Dame Journal of Formal Logic, 50(4):293–425, 2009.
[12] Andrzej Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.
[13] Andrzej Grzegorczyk. On the definitions of computable real continuous functions. Fundamenta Mathe-

maticae, 44:61–71, 1957.
[14] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, Reading, 1979.
[15] Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical Computer Science, 38:35–

53, 1985.
[16] Daniel Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables

réelles I-III. Comptes Rendus Académie des Sciences Paris, 240,241:2478–2480,13–14,151–153, 1955.
Théorie des fonctions.

[17] Horst Luckhardt. A fundamental effect in computations on real numbers. Theoretical Computer Science,
5(3):321–324, 1977.

[18] Matthias Schröder. Admissible representations for continuous computations. Informatik Berichte 299,
FernUniversität Hagen, Hagen, April 2003. Dissertation.

[19] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric partial algebras. ACM
Transactions on Computational Logic, 5(4):611–668, 2004.

[20] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
[21] Klaus Weihrauch. The computable multi-functions on multi-represented sets are closed under program-

ming. Journal of Universal Computer Science, 14(6):801–844, 2008.
[22] Ning Zhong and Klaus Weihrauch. Computability theory of generalized functions. Journal of the Asso-

ciation for Computing Machinery, 50(4):469–505, 2003.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Generalized Turing machines
	4. Realization is Closed Under Programming
	5. Computable Functions on s and om are Closed Under Programming
	6. Machines on Represented Sets, the Main Results
	7. Examples
	8. Conclusion
	Acknowledgement
	References

