
Logical Methods in Computer Science
Vol. 7 (1:7) 2011, pp. 1–35
www.lmcs-online.org

Submitted Jul. 30, 2009
Published Mar. 23, 2011

A CALCULUS FOR COSTED COMPUTATIONS

MATTHEW HENNESSY

Department of Computer Science, Trinity College Dublin, Ireland
e-mail address: matthew.hennessy@cs.tcd.ie

Abstract. We develop a version of the picalculus Picost where channels are interpreted
as resources which have costs associated with them. Code runs under the financial respon-
sibility of owners; they must pay to use resources, but may profit by providing them.

We provide a proof methodology for processes described in Picost based on bisimula-
tions. The underlying behavioural theory is justified via a contextual characterisation. We
also demonstrate its usefulness via examples.

1. Introduction

The purpose of this paper is to develop a behavioural theory of processes, in which
computations depend on the ability to fund the resources involved. The theory will be
based on the well-known concept of bisimulations, [Mil99], which automatically gives a
powerful co-inductive proof methodology for establishing properties of processes; here these
properties will include the cost of behaviour.

We take as a starting point the well-known picalculus, [SW01, Mil99], a language for
describing mobile processes which has a well-developed behavioural theory. In the picalculus
a process is described in terms of its ability to input and output on communication channels.
Here we interpret these channels as resources, or services, as for example in [CGP08]. So
input along a channel, written as c?(x) .P in the picalculus, is now interpreted as providing
the service c, while output, written c!〈v〉.P , is interpreted as a request to use the service c.
A process is now determined by the manner in which it provides services and uses them.

Viewed from this perspective, we extend the picalculus in two ways. Firstly we associate
a cost with resources; specifically for each resource we assume that a certain amount of
funds ku is charged to use it, and an amount kp is also required to provide it. Secondly
we introduce principals or owners who provide the funds necessary for the functioning of
resources. The novel construct in the language is [P]o, representing the (picalculus) process
P running under the financial responsibility of o. For example in [c!〈v〉.Q]o the use of
the resource c is only possible if o can fund the charges. Similarly with [c?(x) .Q]o, but

1998 ACM Subject Classification: F.3.1, F.3.2, F.3.3.
Key words and phrases: resources, cost, picalculus, bisimulations, amortisation.
The financial support of SFI is gratefully acknowledged.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (1:7) 2011

c© M. Hennessey
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. HENNESSEY

here there is also the potential for gain for owner o; in our formulation o profits from any
difference between the cost in providing the resource and the charge made to use it.

Our language Picost is presented in Section 2, and is essentially a variation on Dpi, a
typed distributed version of the picalculus, [Hen07]. The reduction semantics is given in
terms of judgements of the form

(Γ✄M) −→ (∆✄N)

where Γ,∆ are cost environments. These have a static component, giving the costs associ-
ated with resources, and a dynamic part, which gives the funds available to owners and also
records expenditure. The usefulness of the language is demonstrated by a series of simple
examples.

But the main achievement of the paper is a behavioural theory, expressed as judgements

(Γ✄M) ⊑awgt (∆ ✄N) (1.1)

indicating that, informally speaking,

(i) the process M running relative to the cost environment Γ is bisimilar, in the standard
sense [Mil89], with process N running relative to ∆

(ii) the costs associated with (∆✄N) are no more, and possibly less, than those associated
with (Γ✄M).

Influenced by [KAK05] we first develop a general framework of weighted labelled transition
systems or wLTSs, in which actions, including internal actions, may have multiple weights
associated with them. We then define a notion of amortised weighted bisimulations between
their states, giving rise to a preorder s ⊑awgt t, meaning that s, t are bisimilar but in some
sense the behaviours of t are lighter than those of s. From this we obtain, in the standard
manner, a co-inductive proof methodology for proving that two systems are related; it is
sufficient to find, or construct, a particular amortised weighted bisimulation containing the
pair (s, t).

This proof methodology is applied to Picost by first interpreting the language as an
LTS, in agreement with the reduction semantics, and then interpreting this LTS as a wLTS,
giving rise to (parametrised versions of) the judgements (1.1) above. But as we will see
these judgements can be interpreted in two ways. If the recorded expenditure represents
costs then (∆ ✄N) can be considered an improvement on (Γ ✄M). On the other hand if
it represents profits then we have the reverse; (Γ✄M) is an improvement on (∆✄N) as it
has the potential to be heavier.

The details of this theory are given in Section 3, and the resulting proof methodology
is illustrated by examples. However in Section 4 we re-examine this proof methodology, in
the light of reasonable properties we would expect of it; and these are found wanting. It
turns out that the manner in which we generate the wLTS for Picost from its operational
semantics is too coarse. We show how to generate a somewhat more abstract wLTS, and
prove that the resulting proof methodology is satisfactory, in a precise technical sense, by
adapting the notion of reduction barbed congruence, [HT92, SW01, HR04, Hen07].

2. The language Picost

2.1. Syntax: We assume a set of channel or resource names Chan, ranged over by a, b, c, . . . ,
r, . . . whose use requires some cost, a distinct set of (value) variables Var, ranged over by

COSTED COMPUTATIONS 3

M, N ::=
[T]o Owned code
M |N Composition
(new r :R)M Scoped resource

0 Identity

T, U ::=
u?(x) .T Provide resource u
u!〈v〉.T Use resource u
if v = v then T else U Matching
(new r :R)T Resource creation
T | U Concurrency
rec X. T Recursion
X Recursion variable
stop Termination

Figure 1: Syntax of Picost

x, y, . . ., and a further distinct set of recursion variables, X,Y, . . .; u ranges over identifiers,
which may be either resource names or (value) variables. We also assume a set of principals
or owners Own containing at least two elements, ranged over by o, u, p, who are implicitly
registered for these resources and who finance their provision and use. The syntax of Picost
is then given in Figure 1, and is essentially a very minor variation on Dpi, [Hen07]. The main
syntactic category represents code running under responsibility, with [P]o being the novel
construct. As explained in the Introduction this represents the code P running under the
responsibility of the owner o; intuitively o is financially responsible for the computation P .
Thus in general a system is simply a collection of computation threads each running under
the responsibility of an explicit owner, which may share private resources. The syntax for
these threads is a version of the well-known picalculus, [SW01].

The type R of a resource describes the costs associated with that resource. There is
a cost associated with using a resource, and a cost associated with providing it; therefore
types take the form 〈ku, kp〉 where ku, kp are elements from some cost domain K. Here
we take K simply to be N ordered in the standard manner, but most of our results apply
equally well to variations.

We employ the standard abbreviations associated with the picalculus, and associated
terminology. In particular we assume Barendregt’s convention, which implies that bound
variables used in terms or definitions are distinct, and different from any free variables in
use in the current context. In Figure 1 meta-variable v range over value expressions, whose
specification we omit; but they include at least resource names a ∈ Chan, variables x from
Var, and elements of K. As usual we omit every occurrence of a trailing stop and abbreviate
u?() .T, u!〈〉.T to u?.T, u!.T respectively. We are only interested in closed code terms, those
which contain no free occurrences of variables, which are ranged over by P, Q, . . .; we use
fn(P) to denote the set of names from Chan which occur freely in P . In the sequel we
assume all terms are closed.

4 M. HENNESSEY

2.2. Cost environments: Since computations have financial implications, the execution
of processes is now relative to a cost environment Γ. This records the financial resources
available to principals, and the cost of providing and using resources; in order to be able to
compare the cost of computations we also assume a component which records the expen-
diture as a computation proceeds. Thus judgements of the reduction semantics take the
form

Γ✄M −→ ∆✄N

where Γ, ∆ are cost environments.
There are many possibilities for cost environments; see [HG08] for an example which

directly associates funds with resources. In the present paper we define them in such a way
that the owners retain total control over their own funds.

Definition 2.1 (Cost environments). A cost environment Γ consists of a 4-tuple 〈Γo,Γu,Γp,
Γrec〉 where

• Γu : Chan⇀K
Γu(a) records the cost of using resource a; this is a static component, and will not vary

during computations
• Γp : Chan⇀K

Γp(a) records the cost of providing resource a; again this is a static component
• Γo : Own⇀K

Γo(o) records the funds available to owner o; this will vary as computations proceed,
as owners will need to fund their interactions with resources

• Γrec ∈ K
Γrec keeps an account of the expenditure occurred during a computation; of course this

also will vary as a computation proceeds.

We assume that both functions Γu, Γp have the same finite domain, but not necessarily
that Γu(a) ≥ Γp(a) whenever these are defined. �

We now define some operations on cost environments which will enable us to reflect
their impact on the semantics of our language. The most important is a partial function,

Γ
(u,a,p)
−−−−→∆, which informally means that in Γ owner u has sufficient funds to cover the cost

of using resource a and owner p has sufficient funds to provide it. Then ∆ records the result
of the expenditure of both o and p of those funds. There is also considerable scope as to
what happens to these funds, and how their expenditure is recorded. Here we take the view
that the provider p gains the cost which the user expends, to offset p’s cost in providing the
resource.

Definition 2.2 (Resource charging). Let
(u,a,p)
−−−−→ be the partial function over cost environ-

ments defined as follows: Γ
(u,a,p)
−−−−→∆ if

(i) Γo(u) ≥ Γu(a) and Γo(p) ≥ Γp(a)
(ii) ∆ is the cost environment obtained from Γ by

(a) decreasing Γo(u) by the amount Γu(a)
(b) increasing Γo(p) by the amount Γu(a)− Γp(a), which may of course be negative

(iii) Finally there is considerable flexibility in how this resource expenditure is recorded in
∆rec. We call resource charging for a standard when this is set to Γrec+Γu(a)−Γp(a);
that is we add to the record the gain obtained in using resource a. But in general

COSTED COMPUTATIONS 5

we allow functions reca(−,−), for each resource a, in which case we define ∆rec to be
Γrec + reca(Γ

u(a),Γp(a)). �

In general we allow the owners u and p in this definition to coincide. So, for example if

Γ
(o,a,o)
−−−−→∆, then the effect of performing (a) above, followed by (b), is that ∆o(o) is set to

Γo(o)− Γp(a).
The use of two independent charges for each resource, Γu and Γp, may seem overly

complex. A simpler model can be obtained by having only one combined charge; effec-
tively we could assume Γp(a) to be 0 for every a, and so resource charging simply transfers
the appropriate amount of funds from the user to the provider; this could be achieved by
restricting attention to simple types, resource types R of the form 〈ku, 0〉. Indeed this sim-
plification will be quite useful in order to achieve some theoretical properties of our proof
methodology; see Definition 4.18 and Section 4.2. Nevertheless the use of the two indepen-
dent charges Γp(−) and Γu(−) allows scope for more interesting examples. In particular
it provides considerable scope for variation in the manner in which resource expenditure is
recorded in the component Γrec; see Example 2.8 for an instance.
We also need to extend cost environments with new resources.

Definition 2.3 (Resource registration). The cost environment Γ, a:R, is only defined if a
is fresh to Γ, that is, if a is neither in dom(Γu) nor in dom(Γp). In this case it gives the new
cost environment ∆ obtained by adding the new resource, with the capabilities determined
by R. Formally the dynamic components of ∆, namely ∆o and ∆rec, are inherited directly
from Γ, while the static components have the obvious definition; for example if R is the
type 〈ku, kp〉 then ∆u is given by

∆u(x) =

{
ku if x = a

Γu(x) otherwise

We also assume that the resource charging for a in (Γ, a:R) is always standard. �

Note that every cost environment may be written in the form

Γdyn, a1 :R1, . . . an :Rn

where Γdyn is a basic environment; that is the static components Γu
dyn and Γp

dyn are both
empty, and so it only contains non-trivial dynamic components.

2.3. Reduction semantics: The pair (Γ ✄ M) is called a configuration provided that
fn(M) ⊆ dom(Γu) = dom(Γp), that is every free resource name in M is known to the cost
environment Γ. The reduction semantics for Picost is then defined as the least relation over
configurations which satisfies the rules in Figure 2. The majority of the rules come directly
from the reduction semantics of Dpi, [Hen07], and are housekeeping in nature. The only rule
of interest is (r-comm), representing the communication along the channel a, or in Picost

the use of the resource a by owner u which is provided by owner p. However this reduction

is only possible whenever the premise Γ
(u,a,p)
−−−−→∆ is satisfied. As we have seen, this means

that in Γ owner u has sufficient funds to cover the cost of using resource a and owner p has
sufficient funds to provide it; and further ∆ records the result of the expenditure of both u

and p of those funds.
The remainder of the rules are borrowed directly from the standard reduction semantics

of Dpi; note that (r-struct) requires a structural equivalence between terms; this again is

6 M. HENNESSEY

(r-comm)

Γ
(u,a,p)
−−−−→∆

Γ✄ [a!〈v〉.Q]u | [a?(x) .P]p −→ ∆✄ [Q | P{|v/x|}]p
(r-split)

Γ✄ [M |N]o −→ Γ✄ [M]o | [N]o
(r-export)

Γ✄ [(new r :R)P]o −→ Γ✄ (new r :R)[P]o
(r-unwind)

Γ✄ [rec x. T]o −→ Γ✄ [T{|rec x. T/x|}]o
(r-match)

Γ✄ [if a = a then P else Q]o −→ Γ✄ [P]o
(r-mismatch)

Γ✄ [if a = b then P else Q]o −→ Γ✄ [Q]o a 6= b
(r-struct)

M ≡ M ′, Γ✄M −→ ∆✄N, N ≡ N ′

Γ✄M ′ −→ ∆✄N ′

(r-cntx)

Γ✄M −→ ∆✄M ′

Γ✄M |N −→ ∆✄M ′ |N
(r-new)

Γ, b:R✄M −→ ∆, b:R ✄N

Γ✄ (new b:R)M −→ ∆✄ (new b:R)N

Figure 2: Reduction semantics

(s-extr) (new r :R)(M |N) ≡ M | (new r :R)N, if r 6∈ fn(M)
(s-com) M |N ≡ N |M
(s-assoc) (M |N) | O ≡ M | (N |O)
(s-zero) M | 0 ≡ M

[stop]o ≡ 0
(s-flip) (new r :R)(new r′ :R′)M ≡ (new r′ :R′)(new r :R)M

Figure 3: Structural equivalence of Picost

the standard one from Dpi, the definition of which is given in Figure 3. Also the final rule
(r-new) uses the registration operation on cost environments, given in Definition 2.3.

Proposition 2.4. If (Γ1 ✄ M1) is a configuration and (Γ1 ✄ M1) −→ (Γ2 ✄ M2) then
(Γ2 ✄M2) is also a configuration.

Proof. Straightforward, by induction on the proof that (Γ1 ✄ M1) −→ (Γ2 ✄ M2). When
handling the rule (r-struct) it uses the obvious fact that M ≡ N implies that M and
N have the same set of free names; this in turn means that M ≡ N implies Γ ✄ M is a
configuration if and only if Γ✄N is.

The reductions of a configuration affect its cost environment, and as a sanity check we
can describe precisely the kinds of changes which are possible:

COSTED COMPUTATIONS 7

Sys ⇐ ([Reader]pub | [Library | Store]lib)

where

Reader ⇐ rec R. goLib?(name) .(newr) reqR!〈r, name〉.

r?(b) .goHome!〈b〉.R

Library ⇐ rec L. reqR?(y, z) . y!〈book(z)〉.L

⊕ (newr) reqS!〈r, z〉.r?(b) .y!〈b〉.L

Store ⇐ rec S. reqS?(y, z) .y!〈book(z)〉.S

Figure 4: Running a library

Proposition 2.5. Suppose (Γ1 ✄M1) −→ (Γ2 ✄M2). Then

(i) Γ1 = Γ2, and (∆ ✄M1) −→ (∆✄M2) whenever (∆ ✄M1) is a configuration

(ii) or Γ1
(u,a,p)
−−−−→ Γ2, for some resource a and owners u, p, and whenever (∆ ✄M1) is a

configuration ∆
(u,a,p)
−−−−→∆′ implies (∆✄M1) −→ (∆′

✄M2)

(iii) or Γ1, a:R
(u,a,p)
−−−−→Γ2, a:R, for some (fresh) resource a, resource type R and owners u, p,

and whenever (∆✄M1) is a configuration ∆, a:R
(u,a,p)
−−−−→∆′, a:R implies (∆✄M1) −→

(∆′
✄M2)

Proof. Again this is a simple proof by rule induction on the premise (Γ1✄M1) −→ (Γ2✄M2).
Intuitively possibility (i) corresponds to a move where no communication occurs, (ii) is
when the move is a communication along a channel a known to Γ1, and (iii) when the
communication is along a private internal channel.

2.4. Examples: Formally Picost has only unary communication, but in these examples we
will informally allow the communication of tuples along channels. In addition we will use
the standard abbreviations associated with the picalculus. We also omit types for channels
when they are not relevant; in such cases we assume that they cost nothing to provide, and
that there is no charge for using them. It will be convenient to have an internal choice
operator, with P ⊕Q representing an internal choice between P and Q. This can be taken
to be short-hand notation for (newc)(c!〈〉 | c?() .P | c?() .Q), where c is a fresh channel.

Example 2.6 (Running a library). Consider the system Sys from Figure 4, which consists
of three recursive components, a library user Reader, running under the responsibility of
the principal pub, standing for public, a library interface Library and an auxiliary book
depository Store, both running under some other principal lib.

The programming of these components involves the systematic generation of reply chan-
nels. Thus for example the Reader gets the name of a book with which to go to the library,
generates a new reply channel r and submits this together with the name of the book via
reqR; it awaits the book and then returns home. The Store is also very simple; it recur-
sively awaits a request on reqS, consisting of a reply channel and a name and returns the
appropriate book on the channel. Finally the Library service requests at reqR consisting of

8 M. HENNESSEY

a reply channel and a name. The book may be immediately available, in which case it is
returned, or it may be necessary to send a request to the Store.

Let us now consider the behaviour of these systems relative to two cost environments
Γlocal, Γcentral representing two different strategies for providing library services. To focus
on the relative cost of providing these services let us assume that their use is free, that is
Γu
∗(a) = 0 for every resource a, where ∗ ranges over local, central, and that the amount of

funds available is not an issue, that is Γo
∗(pub) = Γo

∗(lib) = ∞. The cost of providing the
services, Γp

∗ is given in the table below, reflecting on the one hand the relative convenience to
the Reader of the local services, and on the other the relative convenience to the authorities
in providing central services.

local central

goLib 1 5
goHome 1 5
reqR 3 1
reqS 5 1

Finally let us take the counters Γrec
∗ to be initially set to 0. Note that Γlocal can be written

as

Γdyn, goLib :R
g
l , goHome :Rh

l , reqR:R
r
l , reqS:R

s
l

where R
g
l ,R

h
l ,R

r
l ,R

s
l are the types 〈0, 1〉, 〈0, 1〉, 〈0, 3〉, 〈0, 5〉 respectively, and Γdyn is a basic

environment; Γcentral has a similar representation, with a slightly different sequence of types.
To exercise the system we use

Book ⇐ [goLib!〈str〉.goHome?(x) . stop]pub

to prod the Reader into action, where str is the name of some book. Consider the configu-
ration

C1 = Γlocal ✄ (Book | Sys),

and let us ignore the computation steps involved in generating reply channels, and general
housekeeping such as the unwinding of recursive definitions, which in any event cost nothing.
Because of the internal non-determinism in the library service there are essentially two
computations from C1. If the Store is not used then after three computation steps which
require funds it is in the state ∆local ✄ Sys, where ∆rec

local = 5. This represents the overall
cost of this transaction, 2 of which is paid by pub and 3 by lib.

On the other hand if the Store is used, then there are four computation steps which re-
quire funding, after which the state Θlocal✄Sys is reached, where Θrec

local = 10. However using
the central cost environment Γcentral the two possibilities are ∆rec

central = 11 and Θrec
central = 12

respectively. In each eventuality the local implementation is more efficient, in the sense
that the costs are systematically lower. �

The charging regime for resources is such that their use effectively means a transfer of
funds to the provider from the user, provided the cost of providing the resource is less than
the charge for its use. This enables us to implement a systematic way of transferring funds
between owners.

COSTED COMPUTATIONS 9

Sys ⇐ [P]p | [N]n | [A]a | [R]r

where

P ⇐ rec P. (newr1)news!〈r1〉.(newr2)adv!〈r2〉.

r1?(n) .r2?(d) .publish?(z) .z!〈n, d〉.P

N ⇐ rec N. news?(r) (newn)r!〈n〉.N

A ⇐ rec A. adv?(r) .(newd)r!〈d〉.A

R ⇐ rec R. (newr)publish!〈r〉.r?(n, d) .R

Figure 5: Publishing

Example 2.7 (Fund transfer). Consider the systems defined as follows:

Sys ⇐ [D]dad | [K]kate

where

D ⇐ req?(x) .(new s:Rs)x!〈s〉.s!.S

K ⇐ (newr)req!〈r〉.r?(y) .y?.H

The size of the transfer from dad to kate depends on the type Rs at which the new channel
s is declared. Suppose this type is 〈0, k〉, and let Γ be a cost environment in which Γo(dad)
is at least k. Then there is a computation

(Γ✄ Sys) −→∗ (∆✄ [S]dad | [H]kate)

in which ∆o(dad) = Γo(dad)− k and ∆o(kate) = Γo(kate) + k. �

Example 2.8 (Publishing). Consider the system Sys in Figure 5, which has four compo-
nents:

(a) publisher: uses a news service via the resource news, uses an advertising agency via the
resource adv and provides the resource publish

(b) news service: provides a service via news

(c) ad agency: provides a service via adv

(d) reader: uses the resource publish

The viability of publishing depends of course on the cost associated with these resources.
As an example consider an environment Γ327, of the form Γdyn, news:Rn, adv :Ra, publish:Rp,
where these types are 〈3, 1〉, 〈2, 0〉, 〈7, 1〉 respectively, and let us assume Γrec

327 is initialised
to 0. Furthermore, since we are concentrating on the publisher, let us assume that the
resource charging is defined so that only the effect on the owner p is recorded. Refering to
Definition 2.2 this means that resource charging is standard for publish but we need to set
reca(ku, kp) to be −ku, if a is either news or adv.

Now consider a computation from the configuration Γ317 ✄ Sys. Provided the owners
have sufficient funds, specifically Γo(p),Γo(n) and Γo(r) must be at least 5, 1, 7 respectively,
then we have a computation

(Γ317 ✄ Sys) −→∗ (∆1 ✄ Sys)

where ∆rec
1 = 1; the record part of the initial environment was set to 0, during the compu-

tation it was set to −3 after the publisher uses the news resource, then to −5 after using

10 M. HENNESSEY

adv; finally, when the reader uses the publish resource, this is increased by (7− 1) to give 1.
Because we have defined expenditure recording to reflect the point of view of the publisher,
this represents the fact that the publisher has made a profit of 1 as a result of this sequence
of transactions. Note also that at this point ∆o

1(p) is Γ
o
327(p) + 1.

We can also see what happens when the costs of using resources is changed. Let Γ216

be the environment in which the cost of all three resources are decreased by 1. Then we
have the computation

(Γ216 ✄ Sys) −→∗ (∆2 ✄ Sys)

where now ∆rec
2 = 2; this represents an increase in profits for the publisher. �

Example 2.9 (Kickbacks). Suppose in Figure 5 we change the situation so that the pub-
lisher obtains a kickback from the ad agency when an ad is downloaded. The modified code
is given by

PK ⇐ rec P. (newr1)news!〈r1〉.(newr2)(new k :K)adv!〈k, r2〉.

r1?(n) .r2?(d) .publish?(z) .k?.z!〈n, d〉.P

AK ⇐ rec A. adv?(k, r) .(newd)r!〈d〉.(A | k!)

and let SysK denote the revised system. The size of the kickback depends on the parameters
in the type K. In Sys the ad agency receives the benefit 2 for supplying the ad; if we set
K to be 〈1, 0〉 then in SysK this benefit is split equally with the publisher. Under the same
assumptions as in Example 2.8 we have the computations

(Γ327 ✄ SysK) −→∗ (Φ1 ✄ SysK) and (Γ216 ✄ SysK) −→∗ (Φ2 ✄ SysK)

where now Φrec
1 ,Φrec

2 are 2, 3 respectively, indicating more profit in each case for the pub-
lisher. �

3. Compositional reasoning

The aim of this section is to develop a proof methodology for Picost. The idea is to
define a behavioural preorder

(Γ✄M) ⊑ (∆✄N), (3.1)

meaning that in some sense (Γ✄M) and (∆✄N) offer the same behaviour, but the latter
is at least as efficient as the former, and possibly more. We follow the standard approach of
defining the preorder (3.1) as the largest relation between Picost configurations satisfying a
transfer property, associated with the ability of processes to interact with their peers. We
thereby automatically get a co-inductive proof methodology for establishing relationships
between configurations.

In fact, referring to (3.1), it is better to move away from terminology such as efficiency
as the interpretation depends very much on the nature of the units being recorded. In
Example 2.6 these are costs and in such a scenario it is reasonable to interpret (3.1) as
saying (∆ ✄N) is an improvement on (Γ✄M) as it potentially involves less cost. On the
other hand in Example 2.8 the units are profit (for the publisher), and here (Γ✄M) would
be considered to be an improvement on (∆ ✄N), as there is potential for more profit (for
the publisher).

COSTED COMPUTATIONS 11

We therefore move to the more neutral terminology of weights. However we can not
simply base the formulation of (3.1) on the relative weight associated with each individual
action, as the following example shows.

Example 3.1 (Amortising costs). Consider the simple system

UD ⇐ [rec x. up!.down!.x]o

and let Γ25 be an environment in which the unique owner o has unlimited funds, the use of
up costs 2 and the use of down costs 5. If we compare (Γ25✄UD) with (Γ42✄UD), where Γ42

is defined analogously, then intuitively the latter is more efficient than the former, despite
the fact that in the latter the action up is more expensive; this is compensated for by the
relative costs of the other action down. �

The remainder of this section is divided into three subsections. In the first we present a
theory of amortised weighted bisimulations, based on so-called weighted labelled transition
systems, wLTSs. This gives rise to a parametrised behavioural preorder, which we call the
amortised weighted bisimulation preorder. The aim is to apply this theory to Picost; with
this in mind, in the second subsection we present a (detailed) labelled transition semantics
for Picost, and show that it is in agreement with the reduction semantics given in Figure 2.
In the third section we show how this automatically generates a wLTS, which in turn
gives us an amortised weighted bisimulation preorder between Picost configurations. We
demonstrate the usefulness of the resulting proof methodology by re-examining the examples
from Section 2.4.

3.1. Amortised weighted bisimulations: Here we generalise the concepts of [KAK05];
our aim is to apply them to Picost but our formulation is at a more abstract level.

Definition 3.2 (Weighted labelled transition systems). An weighted labelled transition
system or wLTS is a 4-tuple 〈S,Actτ ,W,−−→〉 where S is a set of states, W set of weights,
and −−→ ⊆ S × Actτ × W × S. Here Actτ denotes a set of action names Act to which is
added an extra distinct name τ which will represent internal action. We normally write

s
µ

−−→w s′ to mean (s, µ,w, s′) ∈ −−→. As a default we take the set of weights to be Z, the
set of integers, both negative and positive. �

A wLTS is called standard whenever there is a cost function weight : Act → W with

the property that s
a

−−→w s′ if and only if w = weight(a) for every a ∈ Act. So in a standard
wLTS there is a unique weight associated with external actions, although internal actions
may have multiple possible associated weights, reflecting the different ways in which these
actions may be generated from external moves. The wLTS which we will (eventually)
generate for Picost will be standard, but the development below will not require that we
are working with standard wLTSs.

Relative to a given wLTS weak moves are generated in the standard manner, although

the associated weights need to be accumulated: s
µ

==⇒w s′ is the least relation satisfying:

• s
µ

−−→w s′ implies s
µ

==⇒w s′

• s
µ

==⇒w s′′, s′′
τ

−−→v s
′ implies s

µ
==⇒(w+v) s

′

• s
τ

−−→w s′′, s′′
µ

==⇒v s′ implies s
µ

==⇒(w+v) s
′

12 M. HENNESSEY

We also use a variation on the standard notation s
µ̂

==⇒w t from [Mil89]; when µ is any

action other than τ this denotes s
µ

==⇒w t, but when it is τ it means either that s
τ

==⇒w t or
that s is t and w = 0.

Definition 3.3 (Amortised weighted bisimulations). A family of relations {Rn | n ∈ N }
over the states in a wLTS is called an amortised weighted bisimulation whenever sRn t:

(i) s
µ

−−→v s
′ implies t

µ̂
==⇒w t′ for some t′, w such that s′ R(n+v−w) t′

(ii) conversely, t
µ

−−→w t′ implies s
µ̂

==⇒v s′ for some s′, v such that s′ R(n+v−w) t′ �

Here the parametrisation with respect to N puts an extra requirement on the standard
transfer properties associated with bisimulations. In (i) and (ii) above the index (n+v−w)
must be in N, that is must be non-negative. So for example if the amortisation n is 0 then
v, the weight of the left hand action, must be greater than or equal to w, the weight of the
right hand action. For this reason a standard bisimulation, which ignores the weights, may
not be an amortised weighted bisimulation. But the more general effect of the parameter n
in the definition is to allow a relaxation in the comparison between the actual weights of the
actions in the processes being compared; this point is explained in detail in Example 3.6.

We can mimic the standard development of bisimulations and write s ⊑m
wgt s′ to say

that there is some amortised bisimulation {Rn | n ∈ N } such that s Rm s′. Weighted
bisimulations are (point-wise) closed under unions, and therefore we can mimic the standard
development of bisimulation equivalence, [Mil89], to obtain the following:

Proposition 3.4.

(a) The family of relations {⊑n
wgt | n ∈ N } is an amortised weighted bisimulation.

(b) This family is the largest (point-wise) amortised weighed bisimulation.

(c) If s ⊑m
wgt t and s

µ
==⇒v s′ then t

µ̂
==⇒w t′ for some t′, v such that s′ ⊑

(m+v−w)
wgt t′.

Proof. Straightforward, using standard techniques.

When we are uninterested in the exact amortisation used we write simply s ⊑wgt t,

meaning that there is some k ≥ 0 such that s ⊑k
wgt t, and we refer to this preorder as the

amortised weighted bisimulation preorder.

Proposition 3.5.

(a) The relations ⊑n
wgt are reflexive

(b) s1 ⊑
m
wgt s2, s2 ⊑

n
wgt s3 implies s1 ⊑

(m+n)
wgt s3

(c) ⊑m
wgt ⊆ ⊑n

wgt whenever m ≤ n.

Proof. In each case it is sufficient to exhibit a suitable amortised weighted bisimulation,
that is a suitable family of relations over states. For example to prove (b) we let Rk, for
k ≥ 0, be the set of pairs 〈s1, s2〉 such that s1 ⊑

n
wgt s3 and s3 ⊑

m
wgt s2 for some state s3 and

some numbers n,m such that k = n+m.
To show {Rk | k ∈ N } is an amortised weighted bisimulation let us suppose s1 R

k s2
and s1

µ
−−→v s

′
1; we have to prove

s2
µ̂

==⇒w s′2 for some s′2 satisfying s′1 R
(k+v−w) s′2 (3.2)

(The proof of the symmetric requirement is similar.)

(i) From s1 ⊑
n
wgt s3 we know s3

µ̂
==⇒u s′3 such that s′1 ⊑

(n+v−u)
wgt s′3

COSTED COMPUTATIONS 13

(ii) From s3 ⊑m
wgt s2, and the final part of the previous Proposition, we know s2

µ̂
==⇒w s′2

such that s′3 ⊑
(m+u−w)
wgt s′2.

But since (n+v−u)+(m+u−w) = (k+v−w) we have s′1R
(k+v−w) s′2 and the requirement

(3.2) follows.
The proof of part (c) is similar using the family of relations {Rn | n ∈ N }, where

sRn t whenever s ⊑m
wgt t for some m ≤ n, while the proof of part (a) uses the family where

each Rn is the identity relation.

Example 3.6 (Amortising costs continued). Here we continue with Example 3.1. Shortly
we will see a systematic way of associating weights with actions in Picost. But informally
we can simply say

C25
up!
−−→2 D25

down!
−−−→5 C25

where C25 and D25 are abbreviations for the configurations (Γ25 ✄UD), respectively, (Γ25 ✄

[down!.rec x. up!.down!.x]o), and analogously for (Γ42 ✄ UD). Then relative to this induced
wLTS we can show that the following is a weighted bisimulation:

Rn = {〈D25,D42〉} ∪ { 〈C25, C42〉 | n ≥ 2 }

It follows that

(Γ25 ✄ UD) ⊑2
wgt (Γ42 ✄ UD)

However (Γ42 ✄ UD) 6 ⊑k
wgt(Γ25 ✄ UD) for any k. To see this suppose {Rn | n ≥ 0 } is

a weighted bisimulation; we prove by induction on k that

〈D42,D25〉 6∈ R(k+2) (3.3)

〈C42, C25〉 6∈ Rk

First notice that the pair 〈D42,D25〉 can not be inR2; this is because the move D42
down!
−−−→2C42

can not be matched by a move D42
down!
===⇒w C42 such that C42 R

(2+2−w) C25. The only only

possible candidate is the move D42
down!
===⇒5 C42 and R−1 does not exist.

From this fact it follows immediately that the pair 〈C42, C25〉 can not be in R0; for

matching the move C42
up!
−−→4 D42 would require the impossible, that 〈D42,D25〉 be R2. In

other words we have shown (3.3) in the case when k = 0.
Suppose it is true for k; the proof that it follows for (k + 1) is also straightforward.

This is because

• for 〈D42,D25〉 to be in R(k+3) we would require that 〈C42, C25〉 be in R(k+3+2−5) which
contradicts the induction hypothesis

• for 〈C42, C25〉 to be in R(k+1) we would require 〈D42,D25〉 to be in R(k+3), which we have
just shown not to be possible.

It is important that the set of natural numbersN is used in Definition 3.3, or at least that
the family of relations be parametrised relative to a well-founded order. If instead we allowed
families of relations {Rz | z ∈ Z }, where Z is the set of all integers, positive and negative,
then (Γ42✄UD) ⊑0

wgt (Γ25✄UD) would follow. Simply letting Rz = {〈C42, C25〉, 〈D42,D25〉}
for every z ∈ Z, we would obtain an extended family of relations trivially satisfying the
requirements in Definition 3.3. Indeed in general, using Z in place of N, there would be no

14 M. HENNESSEY

difference between amortised weighted bisimulations and standard bisimulations (where all
weights are ignored). �

3.2. An operational semantics for Picost. As a first step in applying the theory of
amortised weighted bisimulations to Picost we give an operational semantics for the language
in terms of a (standard) LTS.

In Figure 6 and Figure 7 we give a set of rules for deriving judgements of the form

(Γ✄M)
λ
7→ (∆✄N),

where λ can take one of the forms

(i) internal action, τ

(ii) input, (u, (r̃ :R̃)a?v, p): input by resource a of a known or fresh name, or value, where
p is the provider of the resource and u the user

(iii) output: (u, (r̃ :R̃)a!v, p): delivery of a known or fresh name, to resource a, where again
p is the provider of the resource and u the user.

We restrict attention to well-formed λ, that is, in the input and output actions each ri
must occur somewhere in v, and applications of the rules must preserve well-formedness.

However note that because Picost only uses unary communication the vectors ˜(r), ˜(b) will
have length either 0 or 1.

The rules are inherited directly from the corresponding ones for Dpi, [Hen07], and for
the sake of clarity obvious symmetric rules, such as for (l-comm) and (l-cntx), are omitted;
Barendregt’s convention is also liberally applied, for example in omitting side-conditions to

(l-cntx). The only point of interest is the use of the preconditions Γ
(o1,a,o2)
−−−−−→∆ in (l-in)

and (l-out); communication is only deemed to be possible if it can be paid for in some
manner. Note that u in (l-in), and p in (l-out) are free meta-variables. So for example

the simple process [a!〈v〉.P]o can perform the actions [a!〈v〉.P]o
(o,a!v,o′)

7→ ∆ ✄ [P]o for every

owner o′ ∈ Own such that Γ
(o,a,o′)
−−−−→∆. Also in the communication rule (l-comm) any new

resources used in the communication, r̃ : R̃ remain private but in general the resulting cost
environment ∆ will be different from Γ; the internal communication involves the use of a
resource, and the change from Γ to ∆ will reflect the associated costs.

We can perform a number of sanity checks on these rules. For example one can show

that if (Γ1 ✄ P1)
(b:R)α
7→ (Γ2 ✄ P2) then Γ2 = ∆, b:R for some ∆ such that Γ1

(u,a,p)
−−−−→ ∆,

for some u, p, where a is the channel used in α; a more detailed analysis of the possible
judgements is given in the two lemmas below. The actions also preserve configurations:

Proposition 3.7. If (Γ1✄M1) is a configuration and (Γ1✄M1)
λ
7→ (Γ2✄M2) then (Γ2✄M2)

is also a configuration.

Proof. A straightforward induction on the inference of the judgements.

We also have a consistency check with respect to the reduction semantics of Section 2,
stated in the theorem below; the proof requires two technical lemmas.

Lemma 3.8 (Deriv-output). Suppose Γ✄M
(u,(r̃:R̃)a!v,p)

7→ ∆✄N . Then

(i) ∆ = (Γ′, r̃ :R̃) for some Γ′

COSTED COMPUTATIONS 15

(l-in)

Γ
(u,a,o)
−−−−→∆

Γ✄ [a?(x) .P]o
(u,a?v,o)

7→ ∆✄ [P{|v/x|}]o

v ∈ dom(Γu) or v not a channel

Γ
(u,a,o)
−−−−→∆

Γ✄ [a?(x) .P]o
(u,(b:R)a?b,o)

7→ ∆, b : R✄ [P{|b/x|}]o

b 6∈ dom(Γu)

(l-out)

Γ
(o,a,p)
−−−−→∆

Γ✄ [a!〈v〉.P]o
(o,a!v,p)
7→ ∆✄ [P]o

(l-comm)

Γ✄M
(u,(r̃:R̃)a?v,p)

7→ ∆, r̃ :R̃✄M ′, Γ✄N
(u,(r̃:R̃)a!v,p)

7→ ∆, r̃ :R̃✄N ′

Γ✄M |N
τ
7→ ∆✄ (new r̃ :R̃)(M ′ |N ′)

Figure 6: An action semantics for Picost: main rules

(l-open)

Γ, b:R ✄M
(u,a!b,p)
7→ Γ′

✄M ′

Γ✄ (new b:R)M
(u,(b:R)a!b,p)

7→ Γ′
✄M ′

a 6= b
(l-export)

Γ✄ [(new r :R)P]o
τ
7→ Γ✄ (new r :R)[P]o

(l-split)

Γ✄ [M |N]o
τ
7→ Γ✄ [M]o | [N]o

(l-unwind)

Γ✄ [rec x. T]o
τ
7→ Γ✄ [T{|rec x. T/x|}]o

(l-match)

Γ✄ [if a = a then P else Q]o
τ
7→ Γ✄ [P]o

(l-mismatch)

Γ✄ [if a = b then P else Q]o
τ
7→ Γ✄ [Q]o

a 6= b

(l-cntx)

Γ✄M
λ
7→ Γ′

✄M ′

Γ✄M |N
λ
7→ Γ′

✄M ′ |N

(l-cntx)

Γ, b:R✄M
λ
7→ Γ′, b:R✄M ′

Γ✄ (new b:R)M
λ
7→ Γ′

✄ (new b:R)M ′
b 6∈ n(λ)

Figure 7: An action semantics for Picost: more rules

(ii) Γ
(u,a,p)
−−−−→ Γ′

(iii) M ≡ (new r̃ :R̃)(M ′ | [a!〈v〉.Q]u)
(iv) N ≡ (M ′ | [Q]u)

(v) Θ✄M
(u,(r̃:R̃)α,p′)

7→ Θ′, r̃ :R̃✄N whenever Θ
(u,a,p′)
−−−−→Θ′, for any owner p′.

16 M. HENNESSEY

Proof. By induction on the derivation of Γ✄M
(u,(r̃:R̃)a!v,p)

7→ ∆✄N .

Lemma 3.9 (Deriv-input). Suppose Γ✄M
(u,(r̃:R̃)a?v,p)

7→ ∆✄N . Then

(i) ∆ = (Γ′, r̃ :R̃) for some Γ′

(ii) Γ
(u,a,p)
−−−−→ Γ′

(iii) M ≡ (new c̃:C)([a?(x) .T]p |M
′)

(iv) N ≡ (new c̃:C)([T{|v/x|}]p |M
′)

(v) Θ ✄ M
(u′,(r̃:R̃′)α,p)

7→ Θ′, r̃ :R̃′ ✄ N whenever Θ
(u′,a,p)
−−−−→ Θ′, for any owner u′, and types

(R̃′).

Proof. Again a straightforward induction on the derivation Γ✄M
(u,(r̃:R̃)a?v,p)

7→ ∆✄N . Note
that in part (v) arbitrary types (R̃′) can be used because there is no restriction on the type
R in the second part of the rule (l-in) in Figure 6.

Theorem 3.10. Γ✄M −→ ∆✄N if and only if Γ✄M
τ
7→ ∆✄N ′ for some N ′ such that

N ≡ N ′.

(Outline). First we need to show the auxiliary result that structural equivalence is preserved

by actions. That is Γ ✄ M
λ
7→ ∆ ✄ M ′ and M ≡ N implies Γ ✄ N

λ
7→ ∆ ✄ N ′ for some

N ′ such that M ′ ≡ N ′; this is proved by induction on the proof of the fact that M ≡ N
from the rules in Figure 3. Then a straightforward proof by induction on the derivation of

Γ✄M −→ ∆✄N from the rules in Figure 2 will show that this implies Γ✄M
τ
7→ ∆✄N ′

with N ≡ N ′; the auxiliary result is required when considering the rule (r-struct).
To prove the converse we also employ the two previous lemmas, giving the structure

of input and output actions. Suppose Γ ✄ M
τ
7→ ∆ ✄ N ; we prove by rule induction that

Γ✄M −→ ∆ ✄N . The only non-trivial case is when this judgement is inferred using the
rule (l-comm), or its dual. So without loss of generality we know

• M = M1 |M2

• N = (new r̃ :R̃)(N1 |N2)

• Γ✄M1
(u,(r̃:R̃)a?v,p)

7→ ∆, r̃ :R̃ ✄N1

• Γ✄M2
(u,(r̃:R̃)a!v,p)

7→ ∆, r̃ :R̃✄N2

The previous two lemmas can now be applied to obtain the structure of M1, M2, N1 and N2,
up to structural equivalence; by rearranging M1 |M2, again using the structural equivalence
rules, an application of (r-comm) followed by one of (r-struct) gives the required Γ ✄

M −→ ∆✄N .

3.3. A proof methodology for Picost. The operational semantics given in the previous
subsection can be used in a straightforward way to obtain a wLTS for Picost configurations.
It suffices to attach a weight to the actions, which can be done in a systematic manner: we
write

(Γ✄M)
µ

−−→w (∆✄N)

whenever

• (Γ✄M)
µ
7→ (∆✄N) can be deduced from the rules in Figure 6 and Figure 7

COSTED COMPUTATIONS 17

• w = (∆rec − Γrec)

Note that the weight associated with an action is ultimately determined by the manner in
which expenditure is recorded in the cost environments; this may reflect the cost of providing
the resource in question, as in Example 2.6, the profit to be gained by a particular owner
in the use of the resource, as in Example 2.8, or combinations of such concerns.

We can now apply Definition 3.3 to this wLTS to obtain a family of preorders

(Γ✄M) ⊑n
wgt (∆✄N) (3.4)

between Picost configurations. However we must be somewhat careful here, as some of
the actions used involve bound names; but by a systematic application of Barendregt’s
convention, mentioned on page 3, confusions between these and free names can be avoided.

As is well-known, the relations (3.4) come equipped with a powerful co-inductive proof
methodology. In order to prove (Γ ✄ M) ⊑k

wgt (∆ ✄ N) for a particular k it is sufficient
to exhibit a family of relations {Rn | n ∈ N } which satisfy the transfer properties of
Definition 3.3, such that Rk contains the pair (Γ ✄ M,∆ ✄ N). In the remainder of this
section we apply this proof methodology to the examples in Section 2. This allows us to
now reason about the behaviour of systems, how they interact with other systems, rather
than reason simply about their computation runs.

Example 3.11 (Running a library, revisited). Refering to the definitions in Example 2.6,
by exhibiting a witness weighted bisimulation it is possible to show

(Γcentral ✄ [Reader]pub) ⊑
0
wgt (Γlocal ✄ [Reader]pub)

This is despite the fact that the local use of the service reqR is more expensive than the
central use; this is compensated for by the fact that both goLib and goHome are less ex-
pensive locally. It is also worth noting that although the use of resources in both Γcentral

and Γlocal is free, in the generated wLTS the output actions actually have non-zero weights
associated with them. For example, a typical run in this wLTS from (Γcentral ✄ [Reader]pub)
takes the form

(Γcentral ✄ [Reader]pub)
goLib?n
−−−−−→5 . . .

(r)reqR!(r,n)
−−−−−−−−→1 . . .

goHome!b
−−−−−−→5 . . .

whereas the corresponding local run is

(Γlocal ✄ [Reader]pub)
goLib?n
−−−−−→1 . . .

(r)reqR!(r,n)
−−−−−−−−→3 . . .

goHome!b
−−−−−−→1 . . .

To compare the efficiency of the library service itself we consider the following definitions

Liblocal ⇐ (new reqS:Rl
s)([Library | Store]lib)

Libcentral ⇐ (new reqS:Rc
s)([Library | Store]lib)

where, as explained in Example 2.6, Rs
l , R

s
c, are the types 〈0, 5〉, 〈0, 1〉 respectively; here the

interaction between the library and the store has been internalised, with types reflecting
the relative cost of local and central access. Both these configurations simply provide the
service reqR, and viewed in isolation the local service is not more efficient than the central
one; no matter what n we choose, we have

(Γcentral ✄ Libcentral) 6 ⊑
n
wgt(Γlocal ✄ Liblocal) (3.5)

18 M. HENNESSEY

However if we combine the library service with the reader then the overall systems is locally
more efficient than the centralised one:

(Γcentral ✄ Syscentral) ⊑
2
wgt (Γlocal ✄ Syslocal) (3.6)

where

Syslocal ⇐ (new reqR:Rl
r)([Reader]pub | Liblocal)

Syscentral ⇐ (new reqR:Rc
r)([Reader]pub | Libcentral)

We should point out that in (3.5) and (3.6) we have used the full cost environments
Γlocal, Γcentral, despite the fact that some of the resources have been restricted in the systems;
this is simply in order to avoid the definition of even more environments.

As an example of how such statements can be proved see the Section A.1 in the appendix
for a witness bisimulation which establishes (3.6). �

4. Contextual characterisation

In the previous section we have demonstrated that the preorders ⊑n
wgt provide a useful

co-inductive methodology for comparing the behaviour of processes, relative to resource
costs. In this section we critically review its formulation, revealing some significant inade-
quacies, and offer a revised version where these are addressed.

Informally we would expect at least the following two properties of a proof methodology:

(a) It should support compositional reasoning, whereby the analysis of process behaviour
can be carried out structurally.

(b) Soundness: Any relationship established between the behaviour of processes using the
proof methodology should be justifiable in some independent manner.

Further we could hope for:

(c) Completeness: any pair of processes which are intuitively behaviourally related, should
be provably related using our methodology.

Relative to our language Picost the first criteria, (a), is straightforward to formalise, as
a property of the preorders ⊑n

wgt.

Definition 4.1 (Compositional). A relation R over Picost configurations is said to be
compositional whenever (Γ✄M) R (∆ ✄N) implies

(i) (Γ✄M |O) Rm (∆✄N |O), provided (Γ✄M |O) and (∆✄N |O) are configurations
(ii) (Γ, r :R✄M) Rm (∆, r :R✄N). �

We could of course demand that the relation R should be preserved by all the operators
in the language, but for the purposes of the discussion to follow it is sufficient to concentrate
on the two most important ones.

Our first remark is that the relations ⊑n
wgt are not compositional, and therefore our

proposed proof methodology does not support compositional reasoning.

Example 4.2 (Non-compositionality). Let Γ be a cost environment with two owners o, p
and two resources a, b. Suppose further that Γo(o) = Γo(p) = ∞, while Γu(a) = 20, Γu(b) =
10; the remaining fields in Γ are unimportant, but to be definite let us say that Γp(a) =
Γp(b) = 0. Let ∆ be another cost environment with the same resources, with both usage

COSTED COMPUTATIONS 19

costs being 10, and the same owners, but with the difference that ∆o(o) = 10. Then it is
easy to check that

Γ✄ [a!]o ⊑
0
wgt ∆✄ [a!]o

However one can also show that

Γ✄ [a!]o | [b!]o 6 ⊑
0
wgt∆✄ [a!]o | [b!]o

The problem occurs when we consider the action (Γ✄ [a!]o | [b!]o)
(o,b!,p)
7→ 10 (Γ1✄ [a!]o | [stop]o).

This can be matched by the action (∆ ✄ [a!]o | [b!]o)
(o,b!,p)
7→ 10 (∆1 ✄ [a!]o | [stop]o) but at

the expense of exhausting all of o’s funds. ∆o
1(o) is now set to 0 and therefore the action

(Γ1 ✄ [a!]o | [stop]o)
(o,a!,p)
7→ 20 (Γ1 ✄ [stop]o | [stop]o) can not be matched by any action from

(∆1 ✄ [a!]o | [stop]o).

The other criteria, (b) and (c) above, are more difficult to formalise. But even in the
absence of a precise formalisation we can also show that our proof methodology runs into
difficulties with them, by considering a proposed touchstone family of preorders ⊑n

behav
, n ≥ 0, which incorporate some intuitive properties which we would expect. First an easy
example, essentially taken from [HR04].

Example 4.3 (Problem with output types). Consider the two configurations C and D,
denoted by

Γ✄ (new r :R1)([a!〈r〉. stop]o), Γ✄ (new r :R2)([a!〈r〉. stop]o)

respectively, where the types R1, R2 are different, and Γ has sufficient resources for a to be

exercised; that is Γ
(o,a,p)
−−−−→ Γ′ for some owner p and some Γ′.

Then it is easy to see that C 6 ⊑k
wgtD for any k because the only actions which the con-

figurations can perform are different; they are labelled (p, (r :R1)a!r, o) and (p, (r :R2)a!r, o)
respectively.

However it is difficult to envisage any context in which these two configurations can
be distinguished; for any reasonable definition of the touchstone relations we would expect
C ⊑k

behav D to be true. Thus our proof methodology will not be complete. �

Our next example focuses on some of the novel features of Picost.

Example 4.4 (Problem with owner identification). Let C, D denote the configurations

Γ✄ [a!]o1 , Γ✄ [a!]o2

respectively, where o1, o2 are two different owners, and Γo(o1) = Γo(o2).
Here again we would expect C ⊑k

behav D to be true because there is no mechanism in
Picost which would enable an observer to discover who was funding the use of the resource
a. However assuming some owner p has sufficient funds in Γ to provide the resource a, we
have C 6 ⊑0

wgtD again because the configurations perform different actions, labelled (o1, a!, p)
and (o2, a!, p) respectively. �

20 M. HENNESSEY

4.1. Behavioural preorders. In order to address the inadequacies with our proof method-
ology let us first give one possible formalisation of the touchstone family of behavioural
preorders which we have been refering to as ⊑n

behav, n ≥ 0; we adapt the theory of reduction
barbed congruences, [HT92, SW01, HR04] to Picost, often refered to informally as contextual
equivalences. For simplicity we assume that resource charging is always standard, and that
the only values used are channel/resource names.

We first need to introduce into the reduction semantics some record of the costs being
expended. Let us write Γ✄M −→c ∆✄N whenever Γ✄M −→ ∆✄N can be deduced from
the reduction rules, in Figure 2, and (∆rec − Γrec) = c. This is generalised in the obvious
manner to Γ✄M −→∗

d ∆✄N by the accumulation of costs.

Definition 4.5 (Cost improving). We say that the family of relations {Rn | n ∈ N } over
configurations is cost improving whenever C Rm D for any m, then

(i) C −→c C
′ implies D −→∗

d D′ such that C′ R(m+c−d) D′

(ii) conversely, D −→d D′ implies C −→∗
c C

′ such that C′ R(m+c−d) D′. �

This is a natural generalisation of the notion of reduction closure or reduction bisimulation
from LTSs to weighted LTSs; for a justification of its use in defining behavioural preorders
see Chapter 2 of [SW01].

Definition 4.6 (Observations). Let us write (Γ✄M) ⇓ a? whenever (Γ✄M) −→∗ (∆✄N)
where for some owner o

(i) N ≡ (newc̃)([a?(x) .T]o |N
′), and a does not occur in (c̃)

(ii) ∆
(u,a,o)
−−−−→∆′ for some u and ∆′.

The predicate (Γ✄M) ⇓ a! is defined in an analogous manner. Note that here the owner o
has to be able to pay the appropriate costs for the barb.

Then we say that the family of relations {Rn | n ∈ N } over configurations preserves
observations whenever, for any n, C1 R

n C2 C1 ⇓ o if and only if C2 ⇓ o. �

Note that unlike [HG08] we do not record the cost of making observations; nor do we
observe the owner responsible for the observation. This means that our notion of barb is
more elementary.

Example 4.2 demonstrates that demanding a behavioural preorder to be compositional,
in particular that it be preserved by arbitrary parallel contexts, is very problematic as
intuitively it gives observers or external users of a system access to all the funds available
to owners of the system. Here we address this issue by defining a relativised version of
compositionality, relativised to the set of owners whose funds are available to external
users.

Definition 4.7 (O-contextual). Let O be a subset of the owners Own. A relation R over
Picost configurations is said to be O-contextual whenever (Γ✄M) R (∆✄N) implies

(i) (Γ ✄ M | [P]o) R (∆ ✄ N | [P]o) for every o ∈ O , provided (Γ ✄ M | [P]o) and
(∆✄N | [P]o) are configurations.

(ii) (Γ, r :R✄M) R (∆, r :R ✄N). �

Combining these three properties we obtain:

Definition 4.8 (The contextual improvement preorder). Let {⊑n
O:cxt | n ∈ N } be the

largest family (point-wise) of O-contextual relations over configurations which preserves
observations, and is cost improving. �

COSTED COMPUTATIONS 21

The idea here is that we only consider the behaviour of systems relative to contexts in
which observers, or users of the systems, can use code running under the financial authority
of the owners in O. At one extreme we can take O to be the entire set of owners Own and
then observers have access to all owners, and their funds; this gives Compositionality, as
expressed in Definition 4.1. The other extreme is when observers have access to none of the
owners users in the systems under observation; in this case the observers have to provide
their own funds, to support observations.

We now set ourselves the task of modifying the proof methodology of Section 3.3 so that
the informal properties (a), (b), and (c) are enforced, relative to the touchstone preorders
⊑n

O:cxt. First note that Example 4.4 and Example 4.3 still apply when the informal relations
⊑n

behav are instantiated by the formal ⊑n
O:cxt. But the problems presented in Example 4.2

depend on the choice of observers O:

Example 4.9 (Unsoundness). Let Γ, ∆ be as defined in Example 4.2. Then we have
already argued that Γ✄ [a!]o ⊑0

wgt ∆ ✄ [a!]o. Here we argue that Γ✄ [a!]o 6 ⊑0
O:cxt∆✄ [a!]o.

whenever o ∈ O. For otherwise, this would imply

Γ✄ [a!]o | [P]o ⊑
0
O:cxt ∆✄ [a!]o | [P]o

for any process P which ensures that the configurations are still well-formed.
However for a contradiction take P to be a?.(b! | b?.ω!) where ω is some cost-free fresh

channel. Then we can make the observation ω! on the left hand configuration but not on
the right hand one. �

This example shows that in general O-observers can deplete the resources of any owner
in O, which is important if those owners have only finite funds. A significant consequence
is given in the next proposition, which limits the applicability of this behavioural preorder
for arbitrary O.

Proposition 4.10. If (Γ✄M) ⊑n
O:cxt (∆ ✄N) for any n, then Γo(o) = ∆o(o) for every o

in O.

Proof. Suppose (Γ✄M) ⊑n
O:cxt (∆ ✄N) for some n, with o an owner in O. We prove that

k ≤ Γo(o) if and only if k ≤ ∆o(o).
Consider the process O = [(new r :R)r! | r?.ω!〈〉]o, where ω is a fresh cost-free channel,

where R is the resource type 〈k, 0〉; so r costs k to use but is free to provide. Then by
compositionality we know

Γ, ω : E✄M |O ⊑n
O:cxt ∆, ω : E✄N | O

where E denotes the trivial type 〈0, 0〉.
If k ≤ Γo(o), we have Γ, ω : E ✄ M | O ⇓ ω! and therefore, by the preservation of

observations, ∆, ω : E✄N |O ⇓ ω!. But this is only possible if k ≤ ∆o(o).
The converse argument is similar.

In effect this means that the behavioural preorders⊑n
O:cxt can not be used to differentiate

between configurations in which owners from O accrue different levels of funds; a typical case
in point occurs with the systems in Example 2.9. For this reason we are primarily interested
in the extreme case, when the observers have no access to the funds of the owners in the
systems under investigation. Let us introduce some special notation for these situations.

Let e denote some arbitrary owner, intuitively taken to be external to the systems
under observation. For an arbitrary cost environment Γ we use Γe to denote the extended

22 M. HENNESSEY

cost environment obtained by adding e to the domain of Γo and setting Γo(e) to be ∞; in
particular Γe is only defined whenever e is new to the domain of Γo. Finally we use the
notation

Γ✄M ⊑n
ecxt ∆✄N

as an abbreviation for

Γe
✄M ⊑n

{e}:cxt ∆
e
✄N

Here the observer has no access to the owners’ resources used in the configurations C, D
but has an infinite amount of resources with which to run experiments.

Our revised proof methodology is based on endowing Picost with the structure of a
different, more abstract, wLTS, which takes into account the set of owners whose funds are
available to observers, and employing Definition 3.3 to obtain a more abstract family of
co-inductive preorders. In order to obtain our more abstract wLTS we forget some of the
details in the labels of the actions of the operational semantics for Picost, given in Figure 6
and Figure 7, so that they reflect not what processes can do, but rather what external
observers with access to the funds in O can observe them doing. This leads to abstract
labels of the following form, ranged over by µ:

(a) internal label τ as before

(b) input label (u, (r̃ : R̃)a?v)
(c) output label ((r̃)a!v, p)

Here only one owner is recorded in the external actions; for input we note the user of the
resource u while for output it is the producer p.

Definition 4.11 (O-actions). For each abstract label µ let the corresponding O-action
C

µ
−→O

w D be defined by

(a) (Γ1✄M)
τ

−→O
w (Γ2✄N) whenever (Γ1✄M)

τ
7→ (Γ2✄N) can be deduced from the rules,

where (Γrec
2 − Γrec

1) = w.

(b) (Γ1 ✄M)
((r̃)a!b,p)
−−−−−→O

w (Γ2 ✄ N) whenever p ∈ O and (Γ1 ✄M)
(u,(r̃:R̃)a!b,p)

7→ (Γ2 ✄ N) can

be deduced from the rules for some (R̃), and some owner u, where (Γrec
2 − Γrec

1) = w.

(c) (Γ1 ✄M)
(u,(r̃:R̃)a?b)
−−−−−−−→O

w (Γ2 ✄N) whenever u ∈ O and (Γ1 ✄M)
(u,(r̃:R̃)a?b)

7→ (Γ2 ✄N) can

be deduced from the rules for some owner p, where (Γrec
2 − Γrec

1) = w.

Note that in (a) the set of owners O plays no role, but we leave it there for the sake of
uniformity. �

This endows Picost configurations with the structure of a more abstract wLTS, whose actions
depend on the set of owners O. We refer to this as the O-wLTS and we write C ⊑n

Owgt D

whenever there is an amortised weighted bisimulation {Rn | n ∈ N } in this O-wLTS such
that C Rn D. When O is the singleton set {e} where the owner e is fresh, that is external
to the configurations being compared, we abbreviate this to C ⊑n

ewgt D.

Example 4.12 (Publishing, revisited). Here we use the notation and definitions from
Example 2.8 and Example 2.9.

First we can compare the profits gained by running the publishing system in differ-
ent cost environments. As before let Γ327 represent any cost environment of the form
Γdyn, news :Rn, adv :Ra, publish:Rp, where these types are 〈3, 1〉, 〈2, 0〉, 〈7, 1〉 respectively, and

COSTED COMPUTATIONS 23

let Γ216 be the same environment but with these types changed to 〈2, 1〉, 〈1, 0〉, 〈6, 1〉. Then
it is straightforward to exhibit a witness bisimulation to establish

(Γ216 ✄ [P]p) ⊑
0
ewgt (Γ327 ✄ [P]p)

Recall from Example 2.8 that in these cost environments we record the costs of the actions
relative to their effect on the funds of p the publisher. So this means that that more profit
can be gained by the publisher p by using the cost regime underlying the environment Γ216.

To investigate the effect of implementing the kickback we consider the two systems

PA ⇐ (new adv :Ra)([P]p | [A]a)

PAK ⇐ (new adv :Ra)([PK]p | [AK]a)

Both these systems use the news resource and provide the publish resource. Here we can
show, for example, that

(Γ327 ✄ PAK) ⊑0
ewgt (Γ327 ✄ PA)

provided Γo
327(p) is at least 5. See Section A.2 of the appendix for a description of a witness

bisimulation. Again because of the way in which we have set up the accounting in the cost
environments this means that the code PAK is more profitable for the publisher than PA.
�

The abstract O-wLTS has precisely enough information about actions to characterise
the touchstone contextual behavioural preorder, at least in the extreme case of O = {e}.

Theorem 4.13 (Full-abstraction, external case). For every n ∈ N, (Γ✄M) ⊑n
ecxt (∆✄N)

if and only if (Γ✄M) ⊑n
ewgt (∆✄N).

Proof. This will follow from the more general full-abstraction result, given in Theorem 4.19.

Unfortunately this result is not true for an arbitrary set of external owners O. Ex-
ample 4.9 can be used to show that the O-wLTS has not taken into account the fact that
observers have access to the funds of arbitrary owners in O.

Example 4.14. We use the notation from Example 4.9, which in turn is inherited from
Example 4.2. Let O be a set of owners which includes o and the fresh e. Then it is easy
to check that Γ ✄ [a!]o ⊑0

Owgt ∆ ✄ [a!]o. But we have already argued in Example 4.9 that

Γ✄ [a!]o 6 ⊑
0
O:cxt∆✄ [a!]o. �

So we have to revise the O-wLTS to take into account the access which observers may
have to funds being used by the systems under investigation.

Definition 4.15 (Fund transfer). For every k ∈ N let
(u,k,p)
−−−−→ be the partial function over

cost environments defined by letting Γ
(u,k,p)
−−−−→ ∆ whenever ∆ can be obtained from Γ by

transferring k funds from owner u to owner p. Formally this partial function is only defined
when Γo(u) ≥ k, in which case ∆o(u) = Γo(u) − k, ∆o(p) = Γo(p) + k, when p 6= u and
all other components of ∆ are inherited directly from Γ; when p = u the operation leaves
∆ unchanged. This leads to a new action over configurations, with a new abstract label
ext(u, k, p): we let

(Γ1 ✄M)
ext(u,k,p)
−−−−−→O

w (Γ2 ✄M)

whenever Γ1
(u,k,p)
−−−−→ Γ2, and u, p are owners in O, where w = (Γrec

2 − Γrec
1). �

24 M. HENNESSEY

This gives rise to yet another LTS whose states are Picost configurations, which we
refer to as O-awLTS, which induces another bisimulation preorder. But we also need to
take Proposition 4.10 into account.

Definition 4.16 (Abstract weighted bisimulation preorder). A family of relations over
Picost configurations {Rn | n ∈ N } is said to be a O-abstract amortised weighted bisimu-
lation whenever

(i) Γ✄M Rn ∆✄M ′ implies Γo(o) = ∆o(o) for every o in O

(ii) {Rn | n ∈ N } is an amortised weighted bisimulation in O-awLTS.

We write C ⊑n
Oawgt D to denote the maximal family of such relations. �

Note that these relations {⊑n
Oawgt | n ∈ N } actually coincide with {⊑n

ewgt | n ∈ N }

when O is the singleton external observer {e}; this follows because the extra fund transfer
actions have no effect: (Γe

1 ✄M)
ext(u,k,p)
−−−−−→{e}

w (Γe
2 ✄M) if and only if Γe

1 = Γe
2.

It also coincides with the preorders used in Section 3.3, under certain conditions.

Proposition 4.17. Let O be the set of owners used in the two configurations Γ and ∆ and
suppose that all owners in O have indefinite funds; that is Γ(o) = ∆(o) = ∞ for every
owner o ∈ O. Then Γ✄M ⊑n

wgt ∆✄N implies Γ✄M ⊑n
Oawgt ∆✄N .

Proof. Straightforward. When funds are unlimited the constraint (i) in Definition 4.16 is
vacuous, as is the requirement to match the fund actions labelled ext(u, k, p). The result
now follows because every concrete action in the wLTS used in Section 3.3 is automatically
also an abstract action in O-awLTS.

It follows that the work of Section 3.3 has not been in vain; the proofs in the examples
can be taken to be about the more abstract preorders ⊑n

Oawgt.
The remainder of this section is devoted to showing that, subject to a minor restriction,

the co-inductive proof methodology based on {⊑n
Oawgt | n ∈ N } satisfies the informal criteria

(a), (b), and (c) set out at the begining of this section. It has certain advantages over that
used in Section 3.3; in matching input and output moves the principles involved do not
have to match up exactly. However in the general case it also has a disadvantage with cost
environments in which certain owners have finite funds. If the observer has access to such
owners then is necessary to establish that the proposed relations between configurations are
invariant under the transfer of funds between them. Of course in the particular case of a
purely external observer, where O is taken to be {e}, which is possibly the most interesting
case, then this requirement is vacuous.

Definition 4.18 (Simple types). The type R = 〈ku, kp〉 is simple whenever kp = 0, meaning
that resources of type R cost nothing to provide. A cost environment is called simple
whenever it can be written as Γdyn, a1 :R1, . . . an :Rn where Γdyn is a basic environment and
all Ri are simple.

Restricting attention to simple types we know that for every resource name a there is

some k ∈ N such that Γ
(u,a,p)
−−−−→∆ if and only if Γ

(u,k,p)
−−−−→∆. �

Theorem 4.19 (Full-abstraction). Assuming simple cost environments, for every set of
observers O and every n ∈ N, (Γ✄M) ⊑n

O:cxt (∆✄N) if and only if (Γ✄M) ⊑n
Oawgt (∆✄N).

The proof of this result is the subject of the remainder of this section; we will also see
how the restriction to simple types can be lifted, at the expense of a generalisation of the
fund action from Definition 4.15.

COSTED COMPUTATIONS 25

4.2. Full abstraction. First let us consider criteria (a) above, Compositionality. In fact
we now have a parametrised version of this, O-contextuality from Definition 4.7, which we
tackle in two steps. First we require a lemma.

Lemma 4.20.

(i) Suppose Γ✄M
λ
7→ ∆✄N . Then Γ, r :R✄M

λ
7→ ∆, r :R ✄N .

(ii) Conversely, suppose Γ, r :R ✄M
λ
7→ ∆, r :R ✄N , where the label λ does not describe a

communication along the channel r. Then

(a) Γ✄M
λ
7→ ∆✄N

(b) or the concrete action label λ is of the form (u, a?r, p), in which case Γ✄M
(u,(r:R)a?r,p)

7→
∆, r :R ✄N .

(iii) Γ✄M
(u,(r:R)a?r,p)

7→ ∆, r :R✄N implies Γ, r :R✄M
(u,a?r,p)

7→ ∆, r :R✄N

Proof. Each statement is proved by induction on the derivation of the judgement. Note

that for any a in the domain of Γ, Γ
(u,a,p)
−−−−→∆ if and only if Γ, r :R

(u,a,p)
−−−−→∆, r :R.

Proposition 4.21 (O-contextual). (Γ✄M) ⊑n
Oawgt (∆✄N) implies (Γ, r :R ✄M) ⊑n

Oawgt

(∆, r :R ✄N).

Proof. Let {Rn | n ∈ N } be the family of relations over Picost configurations defined by
letting (Γ, r :R✄M)Rn (∆, r :R✄N) whenever

(i) either (Γ✄M) ⊑n
Oawgt (∆✄N)

(ii) or (Γ, r :R✄M) ⊑n
Oawgt (∆, r :R ✄N).

It is sufficient to show that this satisfies the conditions in Definition 4.16. Note that condi-
tion (i) of this definition is trivial.

So suppose (Γ, r :R ✄M)Rn (∆, r :R ✄N) and (Γ, r :R ✄M)
µ

−→O
v (Γ′, r :R ✄M ′) is an

abstract action. We have to find a matching abstract move (∆, r :R✄N)
µ̂

=⇒O
w (∆′, r :R✄N ′).

Let us look at the concrete action underlying this abstract action, (Γ, r :R✄M)
λ
7→ (Γ′, r :R✄

M ′). Since we know (Γ✄M) is a configuration λ can not describe a communication along
r, and so we can apply part (2) of the previous lemma, to obtain two cases:

(a) Γ ✄ M
λ
7→ Γ′

✄ M ′. In this case the required matching move can be obtained using
the fact that (Γ ✄ M) ⊑n

Oawgt (∆ ✄ N), together with an application of part (1) of
Lemma 4.20.

(b) λ is the input action (u, a?r, p), and Γ✄M
(u,(r:R)a?r,p)

7→ Γ′, r :R✄N . Here we again use
the fact that (Γ ✄ M) ⊑n

Oawgt (∆ ✄ N) to find a matching weak concrete move from

(∆✄N) labelled (u, (r : R)a?r, p′) for some owner p′. Part (3) of Lemma 4.20 can now
be used to transform this into a required matching move from (∆, r :R ✄ N). In this
case the matching will be because of clause (ii) in the definition of the family Rn.

Theorem 4.22 (O-contextual). Suppose (Γ✄M |[P]o) and (∆✄N |[P]o) are both configura-
tions, where o ∈ O. Then (Γ✄M) ⊑k

Oawgt (∆✄N) implies (Γ✄M |[P]o) ⊑
k
Oawgt (∆✄N |[P]o).

Proof. We follow the standard proof structure, see Section 2.3 of [SW01], Proposition 6.4
of [HR04], Proposition 2.21 of [Hen07]; however the precise details are somewhat different.
Let {Rn | n ∈ N } be the smallest family of relations which satisfies:

(i) Γ✄M ⊑n
awgt ∆✄N implies Γ✄M Rn ∆✄N

26 M. HENNESSEY

(ii) Γ✄M Rn ∆✄N implies (Γ✄M | [P]o)R
n (∆✄N | [P]o), whenever o ∈ O and both

(Γ✄M | [P]o) and (∆✄N | [P]o) are configurations
(iii) Γ, r : R1 ✄M Rn ∆, r : R2 ✄N implies Γ✄ (new r :R1)M Rn ∆✄ (new r :R2)N .

We show that this family satisfies the requirements of Definition 4.16, up to structural
equivalence, from which the result will follow.

First note that for any n,

Γ✄M Rn ∆✄N implies Γ, r :R✄M Rn ∆, r :R✄N (4.1)

This can be proved by induction on why Γ✄MRn∆✄N , with the base case being provided
by Proposition 4.21.

So suppose Γ ✄ M Rn ∆ ✄ N and Γ ✄ M
µ

−→O
v Γ′

✄ Md; we have to find a matching

abstract move ∆ ✄ N
µ̂

=⇒O
w ∆′

✄ Nd such that Γ′
✄ Md R

(n+v−w) ∆′
✄ Nd; the symmetric

requirement, of matching a move from ∆✄N by a corresponding one from Γ✄M , is treated
in an analogous fashion.

We proceed by induction on why Γ ✄M Rn ∆ ✄N , there being three cases, (i), (ii)
and (iii) above, to consider. In the first case the requirement comes from Proposition 3.4.
We concentrate on case (ii), where we know M,N have the form (M ′ | [P]o), (N

′ | [P]o)
respectively, where o ∈ O and we know by induction that Γ✄M ′Rn∆✄N ′. We now examine
why Γ✄M ′|[P]o

µ
−→O

v Γ′
✄Md, and to start let us assume that µ is the label ext(u, k, p), where

the reasoning is straightforward. This means, by definition, that Md is M | [P]o, u, p are in O

and Γ
(u,k,p)
−−−−→Γ′, which in turn implies Γ✄M ′ ext(u,k,p)

−−−−−→O
v Γ✄M ′; moreover incidently k and v

must coincide, although this fact is not required here. By induction this can be matched by
an action ∆✄N ′ ext(u,k,p)

=====⇒O
w ∆′

✄N ′′ such that (Γ✄M ′)R(n+v−w) (∆✄N ′′). This matching

action can now be transformed into an action of the form ∆✄N ′|[P]o
ext(u,k,p)
=====⇒O

w ∆′
✄N ′′|[P]o

which is easily seen to be the required matching abstract move.
Having disposed of this simple case we now know that there is a derivation using the

rules from Figure 6, Figure 7 of the underlying action

Γ✄M ′ | [P]o
λ
7→ Γ′

✄Md, (4.2)

where v = (Γ
′rec−Γrec), and λ is the more concrete version of the label µ. IfM ′ is responsible

for the concrete action (4.2), then a straightforward application of the induction hypothesis
will provide the required corresponding move. Suppose instead that [P]o is responsible,
that is (4.2) takes the form

Γ✄M ′ | [P]o
λ
7→ Γ′

✄M ′ | [P ′]o (4.3)

because Γ✄ [P]o
λ
7→ Γ′

✄ [P ′]o; here the reasoning needs to be more involved.

(a) First suppose this move is external, say an output with label λ being (o, (r̃ :R̃)a!v, p)
for some owner p. Because we are actually matching O-actions we know that this p is
actually in O.

Applying Lemma 3.8 we know that Γ′ has the form Γ′′, r̃ :R̃, where Γ
(u,a,p)
−−−−→ Γ′′. The

use of simple types means that Γp(a) = 0 and Γu(a) = k for some k, and standard
resource charging implies that this k is actually v. Thus we have the external move
Γ ✄ M ′ ext(u,k,p)

−−−−−→O
v Γ′′

✄ M ′ and we know by induction this move can be matched by

COSTED COMPUTATIONS 27

some ∆✄N ′ ext(u,k,p)
=====⇒O

w ∆′′
✄N ′ such that Γ′′

✄M ′ R(n+v−w) ∆′′
✄N ′. This matching

move actually has the form

∆✄N ′ τ
=⇒O

w1
∆1 ✄N ′

1
ext(u,k,p)
−−−−−→O

k
∆2 ✄N ′

1
τ

=⇒O
w3

∆′′
✄N ′ (4.4)

with w = w1 + k +w3.
An application of part (iv) of Lemma 3.9 or Lemma 3.8 gives the move ∆1 ✄

[P]o
(u,(r̃:R̃)α,p)

7→ ∆2, r̃ :R̃✄ [P ′]o which can be combined with the pre- and post- τ moves in

(4.4) to give ∆✄N ′ | [P]o
λ

==⇒w ∆′′, r̃ :R̃✄N ′ | [P ′]o. This is the required matching move

since we know Γ′′
✄M ′ R(n+v−w) ∆′′

✄ N ′, from which Γ′′, r̃ :R̃ ✄M ′ | [P ′]o R(n+v−w)

∆′′, r̃ :R̃ ✄N ′ | [P ′]o follows by the remark (4.1) above and the definition of the family
{Rk | k ≥ 0 }.

When the label λ in the move (4.3) above is an input the argument is very much
the same but with an application of Lemma 3.9 in place of Lemma 3.8; it is therefore
omitted.

(b) Now suppose the move from [P]o we are examining is an internal move, taking the form

Γ✄[P]o
τ
7→ Γ′

✄[P ′]o. Here we apply Theorem 3.10 and Proposition 2.5, which tell us that
there are in principle three possibilities, (i), (ii) or (iii). But an analysis of the proof will
show that for processes of the form [P]o case (i) is actually the only possibility. Here Γ′

coincides with Γ, implying incidently that v = 0. As we know ∆✄[P]o is a configuration

we also get ∆✄ [P]o
τ
7→ ∆ ✄ [P ′]o and therefore that ∆✄N ′ | [P]o

τ
−−→0 ∆✄N ′ | [P ′]o.

It is easy to now check that this is the required matching move, since by definition
Γ✄M | [P]o R

n ∆✄N | [P ′]o.

We are left with the possibility that the underlying action to be matched, (4.2) above,
involves communication and therefore takes the form

Γ✄M ′ | [P]o
τ
7→ Γ′

✄ (new r̃ :R̃)(M ′′ | [P ′]o)

There are two cases, depending on whether M ′ performs an input or an output. Let us
consider the latter, the former being similar but slightly easier. So we have

Γ✄M ′ λ
7→ Γ′, r̃ :R̃✄M ′′

Γ✄ [P]o
λ
7→ Γ′, r̃ :R̃✄ [P ′]o (4.5)

with λ, λ taking the forms (u, (r̃ :R̃)a!v, o), (u, (r̃ :R̃)a?v, o) respectively, for some owner u.
By induction the first move, or rather its abstract version, can be matched because o is an
owner in O, giving

∆✄N ′ τ
7→∗ ∆1 ✄N ′

1
(u′,(r̃:R̃′)a!v,o)

7→ ∆2, r̃ :R̃′
✄N ′

2
τ
7→∗ ∆′, r̃ :R̃′

✄N ′′ (4.6)

for some owner u′, such that (Γ′, r̃ :R̃✄M ′′) R(n+v−w) (∆′, r̃ :R̃′ ✄N ′′), where w = (∆
′rec −

∆
′rec). Note that the type of the extruded names, R̃′, may in general be different than the

types at which they were extruded by M ′, and the owner u′ may also be different, thereby
a priori complicating matters when we try to combine this action with that from [P]o, in
(4.5) above.

However an application of part (ii) of Lemma 3.8, gives ∆1
(u′,a,o)
−−−−→∆2, and therefore

from (4.5) and part (v) of Lemma 3.9 we get ∆1 ✄ [P]o
(u′,(r̃:R̃′)a?v,o)

7→ ∆2, r̃ :R̃′ ✄ [P ′]o. This

28 M. HENNESSEY

concrete move can now be combined with the concrete move (4.6) to give the required

matching abstract move ∆✄N ′ | [P]o
τ

==⇒w (new r̃ :R̃′)(N ′ | [P ′]o).

The attentive reader will have noticed that the restriction to simple types was necessary
in order to be able to model the use of a resource by the observers using actions based on

the transfer function Γ
ext(u,k,p)
−−−−−−→∆, which records the transfer of k funds, the cost of using

the resource, from the user to the provider. If we drop the restriction to simple types,
then the effect of using a resource is more complicated; a certain amount will be debited
to the user, while another amount, possibly negative, will be credited to the user. This

can be accommodated by a more general transfer function Γ
ext(u,(k1,k2),p)
−−−−−−−−−→ ∆, leading in

turn to a more general abstract arrow in part (d) of Definition 4.11. With this adjustment
compositionality can also be established for arbitrary types.

This contextual results leads in a straightforward manner to establishing the second
informal criteria, (b):

Theorem 4.23 (Soundness). For every n ∈ N and every set of owners O, (Γ✄M) ⊑n
Oawgt

(∆✄N) implies (Γ✄M) ⊑n
O:cxt (∆ ✄N).

Proof. (Outline) It is sufficient to show that the family of relations {⊑n
awgt | n ∈ N } satisfies

the three defining properties of the family of contextual equivalences. Cost improving follows
by definition, at least up to structural induction, in view of Theorem 3.10, and the two
preceding results establish O-contextuality. The final property, Preservation of observations,
is also straightforward, since, for example, the ability to observe a! from a configuration
coincides with its ability to perform some output action on the resource a.

The final criteria (c), Completeness, depends as usual on the ability to define contexts
which capture the effect of each of the abstract O-actions described in Definition 4.11. We
first make this precise.

We use two fresh cost-free resources, succ, fail to record the success or failure of tests,
and a third req for housekeeping purposes. For any Γ we use Γt to denote the cost envi-
ronment obtained by adding on these resources. Now let µ be an abstract action which
uses the bound names (r̃). Then we say µ is definable relative to O if for every finite set of
names F there exists a system TF

µ using only the owners from O such that

(i) if dom(Γu) ⊆ F and Γ✄M
µ

−→O
w ∆, r̃ :R̃ ✄N then

Γt
✄M | TF

µ

τ
=⇒O

w ∆t
✄ (new r :R)(succ!〈r̃〉 |N)

where M ′ ⇓ succ! and R 6⇓ fail!

(ii) conversely, Γt
✄M | Tµ

τ
=⇒O

w ∆t
✄M ′ where M ′ ⇓ succ! and M ′ 6⇓ fail! implies M ′ ≡

(new r̃ :R̃)(succ!〈r̃〉 |N), where Γ✄M
µ

=⇒O
w ∆, r̃ :R̃✄N , whenever dom(Γu) ⊆ F .

Theorem 4.24 (Definability). All input, output and external actions are definable.

Proof. (Outline) Let us look at two examples. First suppose that µ is the label ext(u, k, p)
where u and p are both in O; here (r̃) is empty and the set of names F plays no role. The
definition of TF

µ uses a variation on Example 2.7. We use

[fail! | (new r :Rk)req!〈r〉.r!. stop]u | [req?(x) .y?.fail?.succ!]p

COSTED COMPUTATIONS 29

where Rk is the type (k, 0). This ensures that whenever (Γ✄M | TF
µ) evolves at cost w to

a configuration C such that C ⇓ succ but C 6⇓ fail then the newly generated resource r must
have been used by u and provided by p. This is only possible if Γt

✄ M can evolve to a
configuration in which a transfer of k can be made from u to p; that is a configuration Γt′

✄M ′

such that Γt′ (u,k,p)
−−−−→ Γt′′ . This in turns implies that we must have Γ✄M

ext(u,k,p)
=====⇒O

w ∆✄N

for some configuration ∆✄N . Note the cost here is w because all of the resources used by
the test TF

µ are cost-free.
For the second example consider the abstract output action label ((r)a!r, p), where we

know p is in O. Here we let TF
µ be

[fail! | a?(x) .if x ∈ F then stop else fail?.succ!]p

where x ∈ F is an abbreviation for a series of tests deciding whether or not x is in the
finite set of names F . Intuitively whenever this is used in a cost environment Γ satisfying
dom(Γu) ⊆ F this test will fail only when x is instantiated by a fresh name.

Once more it is easy to say that the ability of Γt
✄M | TF

m to evolve to a configuration
C satisfying C ⇓ succ but C 6⇓ fail coincides with the ability of Γ✄M to do a weak concrete
move labelled (u, (r : R)a!r, p) for some owner u and type R. Moreover the cost of this weak
concrete action will be exactly the same as the evolution from Γt

✄ M | TF
m , because the

interactions with the test TF
µ is free.

Theorem 4.25 (Completeness). For every n ∈ N and every set of owners O, (Γ✄M) ⊑n
O:cxt

(∆✄N) implies (Γ✄M) ⊑n
Oawgt (∆✄N).

Proof. (Outline) It suffices to show that the family {⊑n
O:cxt | n ∈ N } satisfies the conditions

in Definition 4.16. Note that condition (i) is already established by Proposition 4.10. Now
suppose Γ✄M ⊑n

O:cxt ∆✄N and Γ✄M
µ

−→O
v Γ′

✄M ′. We have to find a matching move

from ∆ ✄ N, which is relatively straightforward because of Theorem 4.24. As an example
suppose µ is the output label ((r)a!r, p), and so Γ′ has the structure Γ′′, r :R for some R.
Because of Compositionality we know Γt

✄M | Tµ ⊑n
cxt ∆

t
✄N | Tµ. Using the first part of

the Definability Theorem we know that, up to structural equivalence,

Γt
✄M | TF

µ −→∗
v Γt′′

✄ (new r :R)(succ!〈r〉 |M ′).

Using the properties of the family {⊑n
O:cxt | n ∈ N } this move must be matched by

move
∆t

✄N | TF
µ −→∗

w ∆t′′
✄N ′′

where

Γt′′
✄ (new r :R)(succ!〈r〉 |M ′) ⊑

(n+v−w)
cxt ∆t′′

✄N ′′ (4.7)

Moreover we know N ′′ ⇓ succ! and N ′′ 6⇓ fail! and so the Definability theorem tells us that
N ′′ ≡ (new r :R′)(succ!〈r〉 |N ′) where

∆✄N
µ

=⇒O
w ∆′′, r :R′

✄N ′

This would be the required matching move, if we had

Γ′′, r :R✄M ′ ⊑
(n+v−w)
O:cxt ∆′′, r :R✄N ′ (4.8)

whereas (4.7) only gives us, up to structural equivalence,

Γt′′
✄ (new r :R)(succ!〈r〉 |M ′) ⊑

(n+v−w)
cxt ∆t′′

✄ (new r :R′)(succ!〈r〉 |N ′) (4.9)

30 M. HENNESSEY

However the so-called Extrusion Lemma, see Proposition 6.7 of [HR04] and Lemma 2.38 of
[Hen07], can easily be adapted to Picost, to show that the required (4.8) does indeed follow
from (4.9)

5. Conclusion

In this paper we have developed a behavioural theory based on bisimulations for a
version of the picalculus, Picost, in which

• resources have costs associated with them
• code runs under the financial responsibility of owners, or principals
• code can only be executed if the owner responsible for it can finance the available trans-
actions.

The behavioural theory gives rise to a co-inductive proof methodology for comparing the
costed behaviour of systems. We have demonstrated the usefulness of the methodology
by treating some examples, and we have offered at least a preliminary justification for
the theory in terms of contextual requirements, parametrised on sets of owners. We have
provided some evidence that the most appropriate theory emerges when this set of observers
is taken to be some single external observer, external to the owners funding the systems
being investigated. In particular with this particular set of observers there is no need to
consider the extra actions ext(u, k, p) when establishing bisimulations.

The language could be extended in many ways without unduely affecting the underlying
theory. Perhaps the most obvious extension would be the introduction of ownership types,
to control which owners can use which resources; this would help in the modularisation
of systems. One could also introduce a scoping mechanism for owners, limiting the range
within systems of their financial responsibility. One effect of such extensions would be
that owners would play a much more significant role in the (abstract) actions on which
bisimulations are based. Such investigations we leave for future work.

The language could also be extended with mechanisms whereby processes could be
aware of which owners are funding which resources, and more importantly base their be-
haviour on such knowledge. More ambitiously the semantics of the language could be
generalised so that behaviour is now dependent on some dynamic cost model. There is
considerable scope here for inventing more realistic cost models, whereby for example costs
associated with producing/consuming resources could vary according to market dynamics.
It is likely that a probabilistic setting would be most appropriate for developing such models.

The underlying theory of weighted bisimulations also deserves attention. For example
it is not clear if the theory is decidable, even for finite-state systems. More generally it
would be interesting to have techniques which would calculate the costs necessary to assign
to actions in order to ensure the equivalence of two systems. There is already an extensive
literature on weighted automata [DKV09] and decidability issues concerned with them,
which may help in this regard.

Related work: The research reported in the current paper grew out of preliminary work
reported in [HG08]. There a language πcost was defined and also given a semantics relative to
cost environments. But there are significant differences. At the language level the construct
central to Picost, [P]o, is absent in πcost; indeed in the latter there is no representation
of owners being responsible for specific computations. The cost environments used are

COSTED COMPUTATIONS 31

Reader: R1 ⇐ goLib?(name) .(newr) R2(r, name)

R2(r, name) ⇐ reqR!〈r, name〉.R3(r)

R3(r) ⇐ r?(b) .R4(b)

R4(b) ⇐ goHome!〈b〉.R1

Library: L1 ⇐ reqR?(y, z) .L2(y, z)

L2(y, z) ⇐ L3(y, z)⊕ (newr)L4(r, y, z)

L3(y, z) ⇐ y!〈book(z)〉.L1

L4(r, y, z) ⇐ reqS!〈r, z〉.L5(y)

L5(y) ⇐ r?(b) .L6(y, b)

L6(y, b) ⇐ y!〈b〉.L1

Store: S1 ⇐ reqS?(y, z) .S2(y, z)

S2(y, z) ⇐ y!〈book(z)〉.S1

Figure 8: Notation for library code

also quite different; in πcost funds are associated directly with resources, which complicates
considerably the reduction semantics as the resource types need to be dynamic. Here all
funds are retained by owners, which simplifies matters considerably, and this facilities the
introduction of charges for resource usage and benefits for resource provision. Finally the
behavioural theories are different. The concept of weighted bisimulation is considerably
more flexible than the cost bisimulations of [HG08], as the latter simply compares the
relative cost of performing each particular action.

Weighted bisimulations are a direct generalisation of the notion of amortised bisimula-
tions from [KAK05]; these were originally defined for a version of CCS, [Mil89], in which
only external actions have associated with them a cost. Nevertheless we believe that our
generalisation is significant, at least in that it will make the concepts more generally appli-
cable. However similar ideas have a long history in the field of timed process calculi; see
for example [Tof94]. A good survey of the use of amortisation for timed processes can be
found in [LV06].

Other resource-aware calculi have already appeared in the literature. A typical example
is the variant of mobile ambients [CG00] from [BBDCS03] in which the resource in question
is space, and the processes in the calculi have a bounded capacity to host incoming ambi-
ents. Another interesting example may be found in [Tel04], and related publications, which
develops a version of the picalculus in which unused resources/channels may be garbage
collected. Of particular interest to us is the general theory of resource-based computation
being developed in [CP07], and related publications. In future work we hope to adapt their
resource-based modal logic to Picost.

Appendix A. Some witness bisimulations

32 M. HENNESSEY

N1 ⇐ (new reqR :Rc
r)([R1]pub | (new reqS:Rc

s)([L1]lib | [S1]lib))

N2(n) ⇐ (newreqR, r)([R2(r, n)]pub | (newreqS)([L1]lib | [S1]lib))

N3(n) ⇐ (newreqR, r)([R3(r)]pub | (newreqS)([L2(r, n)]lib | [S1]lib))

N41(n) ⇐ (newreqR, r)([R3(r)]pub | (newreqS)([L3(r, n)]lib | [S1]lib))

N51(b) ⇐ (newreqR, r)([R4(b)]pub | (newreqS)([L1]lib | [S1]lib))

N42(n) ⇐ (newreqR, r, r′)([R3(r)]pub | (newreqS)([L4(r, r
′, n)]lib | [S1]lib))

N52(n) ⇐ (newreqR, r, r′)([R3(r)]pub | (newreqS)([L5(r, r
′)]lib | [S2(r

′, n)]lib))

N53(b) ⇐ (newreqR, r, r′)([R3(r)]pub | (newreqS)([L6(r, b
′)]lib | [S1]lib))

Figure 9: Library systems

A.1. The library. Here we revisit the example on running a library, discussed in Exam-
ple 2.6 and Example 3.11, and prove

(Γcentral ✄ Syscentral) ⊑
2
wgt (Γlocal ✄ Syslocal) (A.1)

by exhibiting a witness bisimulation. For convenience we work up to structural equiva-
lence and modulo β-moves; essentially these are moves which have no effect on the overall
behaviour of systems; see [Hen07, GS96] for details. In Picost these include the actions
generated by the rules (l-export), (l-unwind), (l-split), (l-match), (l-mismatch). Let
us assume a set of book names BN, ranged over by n and a set of books BK, ranged over
by b.

Let us write Γ ∼ ∆ whenever

(a) Γ has the form Γdyn, goLib:〈0, 5〉, goHome :〈0, 5〉, reqR:〈0, 1〉, reqS:〈0, 1〉 for some basic
environment Γdyn

(b) ∆ has the form ∆dyn, goLib :〈0, 1〉, goHome :〈0, 1〉, reqR:〈0, 3〉, reqS:〈0, 5〉 where again
∆dyn is some basic environment.

(c) dom(Γo) = dom(∆o) = {pub, lib}, with Γo(α) = ∆o(α) = ∞, for every α in its domain.

So effectively Γ must be like Γcentral with perhaps a different record filed Γrec, and ∆ must
be like Γlocal. Our witness bisimulation will contain pairs of the form

Γ✄N ↔ ∆✄M where Γ ∼ ∆

The allowed forms of N are described in Figure 9, where for convenience we have omitted
the explicit occurrence of the local types Rc

r, Rc
s after the first line. These in turn use

notation given in Figure 8 for the various processes. The allowed forms for M are identical
except for the use of the local types Rl

r, R
l
s in place of Rc

r, R
c
s.

COSTED COMPUTATIONS 33

Let the family of relations over configurations {Rk | k ∈ N } be determined by the
following constraints, where we assume in each clause that Γ ∼ ∆:

Γ✄N1 R
k ∆✄M1 whenever k ≥ 2

Γ✄N2(n)R
k ∆✄M2(n) whenever k ≥ 6, n ∈ BN

Γ✄Ni(n)R
k ∆✄Mi(n) whenever k ≥ 4, n ∈ BN, i = 3, 41, 51, 42

Γ✄Ni(n)R
k ∆✄Mi(n) whenever k ≥ 4, n ∈ BN, i = 3, 41, 42

Γ✄Ni(b)R
k ∆✄Mi(b) whenever k ≥ 0, b ∈ BK, i = 51, 52, 53

It is fairly straightforward, although tedious, to prove that {Rk | k ∈ N } satisfies the
requirements of being a weak bisimulation in the wLTS of Section 3.3, up to structural
equivalence and β-moves. This is facilitated by the fact that the code in each component
of the pairs is identical.

Note that the configuration Γcentral ✄ Syscentral β-reduces to a configuration of the form
Γ✄N1 and (Γlocal ✄ Syslocal) β-reduces to one of the form ∆✄M1, where Γ ∼ ∆, and thus
(A.1) above follows.

A.2. The publisher. Here we revisit the publishing example developed in Example 2.8,
Example 2.9 and Example 4.12; by exhibiting a witness bisimulation, again up to structural
equivalence and β-moves, we show that

(Γ327 ✄ PAK) ⊑0
ewgt (Γ327 ✄ PA) (A.2)

subject to minor constraints on Γ; these constraints allow Γo(p) to be finite. The systems
PA and PAK , in addition to cost-free communications,

• use resource news; in the definition of the cost environment from Example 2.8 this is
recorded as a loss of 3, the cost of using news. In the abstract wLTS we are using this
loss is paid for by the funds in Γo

327(p), while it costs nothing to provide
• provide resource publish; in the cost environment this is recorded as a gain of 6, namely
the difference between providing it 7 and using it 1. Also this gain is added to the funds
of Γo

327(p).

There are also internal communications which have costs associated with them, namely the
use and provision of adv; again this is recorded as a loss of 2 which must be funded by
Γo
327(p).

In order to describe the witness bisimulation we use the code abbreviations in Fig-
ure 10 and the system definitions in Figure 11. All environments we use have the form
Γdyn, news :Rn, publish:Rp, and in order to fund the advertising we assume Γo(a) = ∞. In

the witness bisimulation {Rk | k ∈ N } all Rk are identical and this unique relation R is
characterised by the following constraints:

Γe
✄ PAK1 R ∆e

✄ PA1 5 ≤ Γo(p), 5 ≤ ∆o(p)

Γe
✄ PAK2(r) R ∆e

✄ PA2(r) 2 ≤ Γo(p), 2 ≤ ∆o(p), r ∈ Chan

Γe
✄ PAK3(r) R ∆e

✄ PA3(r) r ∈ Chan

Γe
✄ PAKi(n) R ∆e

✄ PAi(n) 4 ≤ i ≤ 6, n ∈ News

Γe
✄ PAK7(n) R ∆e

✄ PA6(n) n ∈ News

34 M. HENNESSEY

Publisher: P1(r1) ⇐ news!〈r1〉.(newr2)P2(r1, r2)

P2(r1, r2) ⇐ adv!〈r2〉.P3(r1, r2)

P3(r1, r2) ⇐ r1?(n) .P4(n, r2)

P4(n, r2) ⇐ r2?(d) .P5(n, d)

P5(n, d) ⇐ publish?(z) .P6(n, d, z)

P6(n, d, z) ⇐ z!〈n, d〉.(newr1)P1(r1)

Advertiser: A1 ⇐ adv?(r) .(newd)A2(r, d)

A2 ⇐ r!〈d〉.A1

Publisher with kickback: PK1(r1) ⇐ news!〈r1〉(newr2, k)PK2(r1, r2, k)

PK2(r1, r2, k) ⇐ adv!〈k, r2〉.PK3(r1, r2, k)

PK3(r1, r2, k) ⇐ r1?(n) .PK4(n, r2, k)

PK4(n, r2, k) ⇐ r2?(d) .PK5(n, d, k)

PK5(n, d, k) ⇐ publish?(z) .PK6(n, d, k, z)

PK6(n, d, k, z) ⇐ k?.PK7(n, d, z)

PK7(n, d, z) ⇐ z!〈n, d〉.(newr1)PK1(r1)

Advertiser with kickback: AK1 ⇐ adv?(k, r) .(newd)AK2(k, r, d)

AK2(k, r, d) ⇐ r!〈d〉.(AK1 | k!)

Figure 10: Notation for publisher code

Here we use News to denote some set of news stories.
It is straightforward to show that this is indeed a weak amortised bisimulation in the

abstract wLTS relative to the single external observer e. Since Γ327 ✄ PAK β-reduces to
Γ327 ✄PAK1 and Γ327 ✄PA β-reduces to Γ327 ✄PA1, and Γ327 ✄PAK1 R Γ327 ✄PA1, the
required (A.2) above follows.

Acknowledgments

The author would like to thank the referees for their very useful comments.

References

[BBDCS03] Franco Barbanera, Michele Bugliesi, Mariangiola Dezani-Ciancaglini, and Vladimiro Sassone.
A calculus of bounded capacities. In Vijay A. Saraswat, editor, ASIAN, volume 2896 of Lecture
Notes in Computer Science, pages 205–223. Springer, 2003.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213,
2000.

COSTED COMPUTATIONS 35

Standard publisher: PA1 ⇐ (newadv, r1)([P1(r1)]p | [A1]a)

PA2(r1) ⇐ (newadv, r2)([P2(r1, r2)]p | [A1]a)

PA3(r1) ⇐ (newadv, r2, d)([P3(r1, r2)]p | [A2(r2, d)]a)

PA4(n) ⇐ (newadv, r2, d)([P4(n, r2)]p | [A2(r2, d)]a)

PA5(n) ⇐ (newadv, d)([P5(n, d)]p | [A1]a)

PA6(n) ⇐ (newadv, d)([P6(n, d, r)]p | [AK1]a)

Publisher with kickback: PAK1 ⇐ (newadv, r1)([PK1(r1)]p | [AK1]a)

PAK2(r1) ⇐ (newadv, r2, k)([PK2(r1, r2, k)]p | [AK1]a)

PAK3(r1) ⇐ (newadv, k, r2, d)([PK3(r1, r2, k)]p | [AK2(k, r2, d)]a)

PAK4(n) ⇐ (newadv, k, r2, d)([PK4(n, r2, k)]p | [AK2(k, r2, d)]a)

PAK5(n) ⇐ (newadv, k, r2, d)([PK5(n, d, k)]p | [AK1 | k!]a)

PAK6(n) ⇐ (newadv, k, r2, d)([PK6(n, d, r, k)]p | [AK1 | k!]a)

PAK7(n) ⇐ (newadv, d)([PK7(n, d, r)]p | [AK1]a)

Figure 11: Publishing systems

[CGP08] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.
In POPL ’08, 35th ACM Symposium on Principles of Programming Languages, Jan 2008.

[CP07] Matthew Collinson and David Pym. Algebra and logic for resource-based systems modelling.
Technical report, Hewlett-Packard Laboratories, 2007. Submitted for Publication.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer-Verlag, 2009.

[GS96] Jan Friso Groote and M. P. A. Sellink. Confluence for process verification. Theor. Comput. Sci.,
170(1-2):47–81, 1996.

[Hen07] Matthew Hennessy. A distributed picalculus. Cambridge University Press, 2007.
[HG08] Matthew Hennessy and Manish Gaur. Counting the cost in the picalculus (extended abstract).

Electr. Notes Theor. Comput. Sci., 2008. To appear. Preliminary version presented at First
Interaction and Concurrency Expierience (ICE’08), Reykjavik, July 2008.

[HR04] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684, 2004.

[HT92] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In P. Wegner
M. Tokoro, O. Nierstrasz, editor, Proceedings of the ECOOP ’91 Workshop on Object-Based
Concurrent Computing, volume 612 of LNCS 612. Springer-Verlag, 1992.

[KAK05] Astrid Kiehn and Sak Arun-Kumar. Amortised bisimulations. In Farn Wang, editor, FORTE,
volume 3731 of Lecture Notes in Computer Science, pages 320–334. Springer, 2005.

[LV06] Gerald Lüttgen and Walter Vogler. Bisimulation on speed: a unified approach. Theor. Comput.
Sci., 360(1):209–227, 2006.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mil99] Robin Milner. Comunicating and mobile systems: the π-calculus. Cambridge University Press,

1999.

36 M. HENNESSEY

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

[Tel04] David Teller. Recollecting resources in the pi-calculus. In Proceedings of IFIP TCS 2004, pages
605–618. Kluwer Academic Publishing, 2004.

[Tof94] Chris M. N. Tofts. Processes with probablities, priority and time. Formal Asp. Comput.,
6(5):536–564, 1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The language Picost
	2.1. Syntax:
	2.2. Cost environments:
	2.3. Reduction semantics:
	2.4. Examples:

	3. Compositional reasoning
	3.1. Amortised weighted bisimulations:
	3.2. An operational semantics for Picost
	3.3. A proof methodology for Picost

	4. Contextual characterisation
	4.1. Behavioural preorders
	4.2. Full abstraction

	5. Conclusion
	Appendix A. Some witness bisimulations
	A.1. The library
	A.2. The publisher

	Acknowledgments
	References

