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EXTRACTING PROGRAMS FROM CONSTRUCTIVE HOL PROOFS
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Abstract. Church’s Higher Order Logic is a basis for influential proof assistants — HOL
and PVS. Church’s logic has a simple set-theoretic semantics, making it trustworthy and
extensible. We factor HOL into a constructive core plus axioms of excluded middle and
choice. We similarly factor standard set theory, ZFC, into a constructive core, IZF, and
axioms of excluded middle and choice. Then we provide the standard set-theoretic se-
mantics in such a way that the constructive core of HOL is mapped into IZF. We use the
disjunction, numerical existence and term existence properties of IZF to provide a program
extraction capability from proofs in the constructive core.

We can implement the disjunction and numerical existence properties in two different
ways: one using Rathjen’s realizability for IZF and the other using a new direct weak
normalization result for IZF by Moczyd lowski. The latter can also be used for the term
existence property.

1. Introduction

Church’s Higher-Order logic [Chu40, Lei94] has been remarkably successful at capturing
the intuitive reasoning of mathematicians. It was distilled from Principia Mathematica, and
is sometimes called the Simple Theory of Types based on that legacy. It incorporates the
λ calculus as its notation for functions, including propositional functions, thus interfacing
well with computer science, where the λ calculus is fundamental.

One of the reasons Higher-Order logic is successful is that its axiomatic basis is very
small, and it has a clean set-theoretic semantics at a low level of the cummulative hierarchy
of sets (up to ω+ω) and can thus be formalized in a small fragment of ZFC set theory. This
means it interfaces well with standard mathematics and provides a strong basis for trust.
Moreover, the set theory semantics is the basis for many extensions of the core logic; for
example, it is straightforward to add arrays, recursive data types, and records to the logic.

Church’s theory is the logical basis of two of the most successful interactive provers
used in hardware and software verification, HOL [GM93] and PVS [ORS92]. This is due in
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part to the two characteristics mentioned above in addition to its elegant automation based
on Milner’s tactic mechanism and its elegant formulation in the ML metalanguage.

Until recently, one of the few drawbacks of HOL was that its logical base did not
allow a way to express a constructive subset of the logic. This issue was considered by
Harrison for HOL-light [Har96], and recently Berghofer implemented a constructive version
of HOL in the Isabelle implementation [Ber04, BN02] in large part to enable the extraction
of programs from constructive proofs. This raises the question of finding a semantics for
HOL that justifies this intuitively sound extraction.

The standard justification for program extraction is based on logics that embedded
extraction deeply into their semantics; this is the case for the Calculus of Inductive Con-
structions (CIC) [CPM90, BC04], Minlog [BBS+98], Computational Type Theory (CTT)
[ABC+06, C+86] or the closely related Intuitionistic Type Theory (ITT) [ML82, NPS90].
The mechanism of extraction is built deeply into logic and the provers based on it, e.g.
Agda [ACN90] on ITT, Coq [The04] on CIC, MetaPRL [HNC+03] and Nuprl [ACE+00] on
CTT.

In this paper we show that there is a way to provide a clean set-theoretic semantics
for HOL and at the same time use it to semantically justify program extraction. The idea
is to first factor HOL into its constructive core, say Constructive HOL, plus the axioms of
excluded middle and choice. The semantics for this language can be given in ZFC set theory,
and if that logic is factored into its constructive core, called IZF, plus excluded middle and
choice (choice is sufficient to give excluded middle), then in the standard semantics, IZF
provides the semantics for Constructive HOL. Moreover, we can base program extraction
on the IZF semantics.

The constructive content of IZF is not as transparent as in the constructive set theory
CZF of Aczel [Acz78], as he is able to interpret CZF in Type Theory, while no such interpre-
tation is known for IZF. However, it is not possible to express the impredicative nature of
Higher-Order Logic in CZF. Also, IZF is not as expressive as Howe’s ZFC [How96, How98]
with inaccessible cardinals and computational primitives, but this makes IZF a more stan-
dard theory.

Our semantics is appealing not only because it factors so elegantly, but also because the
computational issues and program extraction can be reduced to the standard constructive
properties of IZF — the disjunction, numerical existence and term existence properties.

We can implement the disjunction and numerical existence properties in two differ-
ent ways: one using Rathjen’s realizability for CZF [Rat05], recently extended to IZF
[Rat06], and the other using a new direct weak normalization result for IZF by Moczyd lowski
[Moc06a, Moc06b]. The latter can also be used for the term existence property.

In this paper, we provide a set-theoretic semantics for HOL which has the following
properties:

• It is as simple as the standard semantics, presented in Gordon and Melham’s [GM93].
• It works in constructive set-theory.
• It provides a semantical basis for program extraction.
• It can be applied to the constructive version of HOL recently implemented in Isabelle-

HOL as a means of using constructive HOL proofs as programs.

This paper is organized as follows. In section 2 we present a version of HOL. In section
3 we define set-theoretic semantics. Section 4 defines constructive set theory IZF and states



its main properties. We show how these properties can be used for program extraction in
section 5.

2. Higher-order logic

In this section, we present in detail higher-order logic. There are two syntactic cate-
gories: terms and types. The types are generated by the following abstract grammar:

τ ::= nat | bool | prop | τ → τ | τ × τ

The distinction between bool and prop corresponds to the distinction between the two-
element type and the type of propositions in type theory, or between the two-element
object and the subobject classifier in category theory or, as we shall see, between 2 and the
set of all subsets of 1 in constructive set theory.

The terms of HOL are generated by the following abstract grammar:

t ::= xτ | cτ | (tτ→σ uτ )σ | (λxτ . tσ)τ→σ | (tτ , sσ)τ×σ

Thus each term tα in HOL is annotated with a type α, which we call the type of t. We
will often skip annotating of terms with types, this practice should not lead to confusion,
as the implicit type system is very simple. Terms of type prop are called formulas.

The free variables of a term t are denoted by FV (t) and defined as usual. We consider
α-equivalent terms equal. The notation t[x := u] stands for a capture-avoiding substitution
and denotes the result of substituting u for x in the term t.

Our version of HOL has a set of built-in constants. To increase readability, we write
c : τ instead of cτ to provide the information about the type of c. If the type of a constant
involves α, it is a constant schema, there is one constant for each type τ substituted for α.
There are thus constants =bool, =nat and so on.

⊥ : prop ⊤ : prop =α: α× α→ prop

→: prop× prop→ prop ∧ : prop× prop→ prop ∨ : prop× prop→ prop

∀α : (α→ prop) → prop ∃α : (α→ prop) → prop εα : (α→ prop) → α

0 : nat S : nat→ nat false : bool true : bool

We present the proof rules for HOL in a sequent-based natural deduction style. A
sequent is a pair (Γ, t), where Γ is a list of formulas and t is a formula. The free variables of
a context are the free variables of all its formulas. A sequent (Γ, t) is written as Γ ⊢ t. We
write binary constants (equality, implication, etc.) using infix notation. We use standard
abbreviations for quantifiers: ∀a : τ. φ abbreviates ∀τ (λaτ . φ), similarly with ∃a : τ. φ. The
proof rules for HOL are as follows:

Γ ⊢ t
t ∈ Γ

Γ ⊢ t = t
Γ ⊢ t = s

Γ ⊢ λxτ . t = λxτ . s
xτ /∈ FV (Γ)

Γ ⊢ t Γ ⊢ s
Γ ⊢ t ∧ s

Γ ⊢ t ∧ s
Γ ⊢ t

Γ ⊢ t ∧ s
Γ ⊢ s Γ ⊢ ⊤

Γ ⊢ t
Γ ⊢ t ∨ s

Γ ⊢ s
Γ ⊢ t ∨ s

Γ ⊢ t ∨ s Γ, t ⊢ u Γ, s ⊢ u

Γ ⊢ u
Γ, t ⊢ s

Γ ⊢ t→ s
Γ ⊢ s→ t Γ ⊢ s

Γ ⊢ t

Γ ⊢ s = u Γ ⊢ t[x := u]

Γ ⊢ t[x := s]
Γ ⊢ fα→prop tα

Γ ⊢ ∃α(fα→prop)

Γ ⊢ ∃α(fα→prop) Γ, fα→prop xα ⊢ u

Γ ⊢ u
xα new



Finally, we list HOL axioms.

(1) (FALSE) ⊥ = ∀b : prop. b.
(2) (FALSENOTTRUE) false = true→ ⊥.
(3) (BETA) (λxτ . tσ)sτ = tσ[xτ := sτ ].
(4) (ETA) (λxτ . fτ→σ xτ ) = fτ→σ, where x /∈ FV (f).
(5) (FORALL) ∀α = λPα→prop. (P = λxα. ⊤).
(6) (P3) ∀n : nat. (0 = S(n)) → ⊥.
(7) (P4) ∀n,m : nat. S(n) = S(m) → n = m.
(8) (P5) ∀P : nat→ prop. P (0) ∧ (∀n : nat. P (n) → P (S(n))) → ∀n : nat. P (n).
(9) (BOOL) ∀x : bool. (x = false) ∨ (x = true).

(10) (EM) ∀x : prop. (x = ⊥) ∨ (x = ⊤).
(11) (CHOICE) ∀P : α→ prop. ∀x : α. P x→ P (ε(α→prop)→α(P )).

Our choice of rules and axioms is redundant. Propositional connectives, for example,
could be defined in terms of quantifiers and bool. However, we believe that this makes
the account of the semantics clearer and shows how easy it is to define a sound semantics
for such system. Our presentation is based on the core part of the theory of [GM93]. It
does not include type definitions and parametric polymorphism. We believe extending it to
incorporate these features should not be very difficult.

The theory CHOL (Constructive HOL) arises by taking away from HOL the axioms
(CHOICE) and (EM).

We write ⊢H φ and ⊢C φ to denote that HOL and CHOL, respectively, proves φ. We
will generally use letters P,Q to denote proof trees. A notation P ⊢C φ means that P is a
proof tree in CHOL of φ.

3. Semantics

3.1. Set theory. The set-theoretic semantics needs a small part of the cumulative hierarchy
— Rω+ω is sufficient to carry out all the constructions. The Axiom of Choice is necessary in
order to define the meaning of the ε constant. For this purpose, C will denote a1 necessarily
non-constructive function such that for any X,Y ∈ Rω+ω:

• If X is non-empty, then C(X,Y ) ∈ X.
• If X is empty and Y is non-empty, then C(X,Y ) ∈ Y .
• Otherwise, C(X,Y ) is ∅.

Recall that in the world of set theory, 0 = ∅, 1 = {0} and 2 = {0, 1}. Classically P (1),
the set of all subsets of 1, is equal to 2. This is not the case constructively; there is no
uniform way of transforming an arbitrary subset of 1 into an element of 2. In fact, it is easy
to see that P (1) = 2 entails the law of excluded middle:

Lemma 3.1. If P (1) = 2, then for any φ, φ or ¬φ.

Proof. Suppose P (1) = 2 and take a formula φ. Consider A = {x ∈ 1 | φ} and B = {x ∈
1 | ¬φ}. Since A ∪B ∈ P (1), A ∪B ∈ 2, so either A ∪ B = 0 or A ∪B = 1. In the former
case, 0 /∈ A and 0 /∈ B. Then we have ¬φ because from φ we obtain 0 ∈ A, which is a
contradiction. But we also have ¬¬φ because from ¬φ we obtain 0 ∈ B, which is also a

1Note that if we want to pinpoint C, we need to assume more than AC, as the existence of a definable
choice function for Rω+ω is not provable in ZFC.



contradiction. Thus we have refuted the assumption A ∪ B = 0, so A ∪ B = 1. Therefore
0 ∈ A∪B, so either 0 ∈ A in which case φ, or 0 ∈ B in which case ¬φ. So either φ or ¬φ.

The following helpful lemma, however, does hold in a constructive world:

Lemma 3.2. If A ∈ P (1), then A = 1 iff 0 ∈ A.

Let us also define precisely the function application operation in set theory. We borrow
the definition from [Acz99].

App(f, x) = {z | ∃y. z ∈ y ∧ (x, y) ∈ f}

The advantage of using this definition over an intuitive one (“the unique y such that (x, y) ∈
f”) is that it is defined for all sets f and x. Partiality of App would entail serious problems
in the constructive setting. This definition is equivalent to the standard one when f is a
function:

Lemma 3.3. If f is a function from A to B and x ∈ A, then App(f, x) is the unique y such
that (x, y) ∈ f .

Proof. Let y be the unique element of B such that (x, y) ∈ f . If z ∈ App(f, x) then there
is y′ such that z ∈ y′ and (x, y′) ∈ f . Since y′ = y, z ∈ y. For the other direction, if z ∈ y,
then obviously z ∈ App(f, x).

From now on, the notation f(x) means App(f, x). We will also use a lambda notation
in set theory to define functions: λx ∈ A. B(x) means {(x,B(x)) | x ∈ A}.

3.2. The definition of the semantics. We first define a meaning [[τ ]] of a type τ by
structural induction on τ .

• [[nat]] = N.
• [[bool]] = 2.
• [[prop]] = P (1).
• [[τ × σ]] = [[τ ]] × [[σ]], where A×B denotes the cartesian product of sets A and B.
• [[τ1 → τ2]] = [[τ1]] → [[τ2]], where A→ B denotes the set of all functions from A to B.

The meaning of a constant cα is denoted by [[cα]] and is defined as follows.

• [[=α]] = λ(x1, x2) ∈ [[α]] × [[α]]. {x ∈ 1 | x1 = x2}.
• [[→]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. {x ∈ 1 | x ∈ b1 → x ∈ b2}.
• [[∨]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. b1 ∪ b2.
• [[∧]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. b1 ∩ b2.
• [[false]] = [[⊥]] = 0.
• [[true]] = [[⊤]] = 1.
• [[∀α]] = λf ∈ [[α]] → [[prop]].

⋂
a∈[[α]] f(a).

• [[∃α]] = λf ∈ [[α]] → [[prop]].
⋃

a∈[[α]] f(a).

• [[εα]] = λP ∈ [[α]] → [[prop]]. C(P−1({1}), [[α]]).
• [[0]] = 0.
• [[S]] = λn ∈ N. n+ 1

Standard semantics, presented for example by Gordon and Melham in [GM93], uses a
truth table approach — implication φ→ ψ is false iff φ is true and ψ is false etc. It is easy
to see that with excluded middle, our semantics is equivalent to the standard one.

Lemma 3.4 (ZF). For any A,B ∈ P (1), [[→]](A,B) = 0 iff A = 1 and B = 0.



Proof. Suppose [[→]](A,B) = 0. Then {x ∈ 1 | x ∈ A → x ∈ B} = 0, so 0 /∈ {x ∈ 1 | x ∈
A → x ∈ B}, so it is not the case that 0 ∈ A → 0 ∈ B, so 0 ∈ A and 0 /∈ B. Thus, A = 1
and B = 0. The other direction is easy.

The definition of our semantics is not original. The meaning of logical constants is
essentially a combination of the fact that any complete lattice with pseudo-complements is
a model for higher-order logic and that P (1) is a complete lattice with pseudo-complement
defined in the clause for → [RS63]. Similar semantics for HOL have also been provided in
category-theoretical setting [LS86]. The novelty of our approach lies in utilizing this kind
of semantics for the purpose of program extraction in Section 5.

To present the rest of the semantics, we need to introduce environments. An envi-

ronment is a function from HOL variables to sets such that ρ(xτ ) ∈ [[τ ]]. We will use the
symbol ρ exclusively for environments. The meaning [[t]]ρ of a term t is parameterized by
an environment ρ and defined by structural induction on t:

• [[cτ ]]ρ = [[cτ ]].
• [[xτ ]]ρ = ρ(xτ ).
• [[s u]]ρ = App([[s]]ρ, [[u]]ρ).
• [[λxτ . u]]ρ = {(a, [[u]]ρ[xτ :=a]) | a ∈ [[τ ]]}.
• [[(s, u)]]ρ = ([[s]]ρ, [[u]]ρ).

3.3. The properties of the semantics. There are several standard properties of the
semantics we have defined.

Lemma 3.5 (Substitution Lemma). For any terms t, s and environments ρ, [[t]]ρ[x:=[[s]]ρ] =
[[t[x := s]]]ρ.

Proof. By structural induction on t. Case t of:

• c — the claim is obvious.
• x. Then [[x]]ρ[x:=[[s]]ρ] = [[s]]ρ = [[x[x := s]]]ρ.
• u v. Then [[u v]]ρ[x:=[[s]]] = App([[u]]ρ[x:=[[s]]ρ], [[v]]ρ[x:=[[s]]ρ]). By the inductive hypothesis,

this is equal to App([[u[x := s]]]ρ, [[v[x := s]]]ρ) = [[u[x := s] v[x := s]]]ρ = [[t[x := s]]]ρ.
• (u, v). Similar to the previous case.
• λyτ . u. Without loss of generality we may assume that y /∈ {x}∪FV (s). Then [[t]]ρ[x:=s] =
{(a, [[u]]ρ[x:=[[s]]ρ][y:=a]) | a ∈ [[τ ]]}. By the inductive hypothesis, this is equal to {(a, [[u[x :=
s]]]ρ[y:=a]) | a ∈ [[τ ]]} = [[(λyτ . u[x := s])]]ρ = [[t[x := s]]]ρ.

Lemma 3.6. For any type α, ∃x. x ∈ [[α]].

Proof. Easy.

Lemma 3.7. If xσ /∈ FV (t), then for any b ∈ [[σ]], [[t]]ρ = [[t]]ρ[xσ:=b].

Proof. Straightforward induction on t. We only show the case when t = λyτ . u. Without
loss of generality we can assume that y 6= x. We have [[t]]ρ = {(a, [[u]]ρ[y:=a]) | a ∈ [[τ ]]}.
Since x /∈ FV (u), by the inductive hypothesis this is equal to {(a, [[u]]ρ[y:=a][x:=b]) | a ∈ [[τ ]]}.
Since x 6= y, this is also equal to {(a, [[u]]ρ[x:=b][y:=a]) | a ∈ [[τ ]]} = [[λyτ . u]]ρ[x:=b].



Lemma 3.8. For any ρ, [[tα]]ρ ∈ [[α]].

By induction on t. Case t of:

• xτ . The claim follows by the definition of environments.
• cτ . We proceed by case analysis of c. We show the interesting cases.
− ∀α. The type of c is (α→ prop) → prop. We need to show that if f is a function from

[[α]] to P (1), then
⋂

a∈[[α]] f(a) is in P (1). Since for any a ∈ [[α]], f(a) ∈ P (1) and P (1)

is closed under intersections, the claim follows.
− ∃α. The proof is similar and follows by the fact that P (1) is closed under unions.
− εα. The type of εα is (α → prop) → α. Take any function F from [[α]] to P (1). Then
F−1({1}) ⊆ [[α]]. By the definition of C, if F−1({1}) 6= ∅, then [[εα]](F ) ∈ [[α]]. So
suppose F−1({1}) = ∅. By Lemma 3.6, [[α]] is not empty, so by the definition of C,
[[εα]](F ) ∈ [[α]] as well.

In particular, this implies that for any formula t, [[t]]ρ ⊆ 1. So if we want to prove that
[[t]]ρ = 1, then by Lemma 3.2 it suffices to show that 0 ∈ [[t]]ρ.

3.4. Soundness. The soundness theorem establishes validity of the proof rules and axioms
with respect to the semantics.

Definition 3.9. We write [[Γ]]ρ = 1 if [[t1]]ρ = 1, . . ., [[tn]]ρ = 1, where Γ = t1, t2, . . ., tn.

Theorem 3.10 (Soundness). If Γ ⊢ t then for any ρ, if [[Γ]]ρ = 1, then [[t]]ρ = 1.

Proof. Straightforward induction on Γ ⊢ t. We show several interesting cases.

•

Γ ⊢ t
t ∈ Γ

The claim is trivial.
•

Γ ⊢ t = s
Γ ⊢ λxτ . t = λxτ . s

We need to show that {(a, [[t]]ρ[xτ :=a]) | a ∈ [[τ ]]} = {(a, [[s]]ρ[xτ :=a]) | a ∈ [[τ ]]}. That is,
that for any a ∈ [[τ ]], [[t]]ρ[xτ :=a] = [[s]]ρ[xτ :=a]. Let ρ′ = ρ[xτ := a]. We get the claim by
the inductive hypothesis.

•
Γ, t ⊢ s

Γ ⊢ t→ s

Suppose [[Γ]]ρ = 1. We need to show that 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈ [[s]]ρ}. Since
0 ∈ 1, assume 0 ∈ [[t]]ρ. Then [[Γ, t]]ρ = 1. By the inductive hypothesis [[s]]ρ = 1 thus also
0 ∈ [[s]]ρ.

•
Γ ⊢ t→ s Γ ⊢ t

Γ ⊢ s

Suppose [[Γ]]ρ = 1. By the inductive hypothesis, 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈ [[s]]ρ} and
0 ∈ [[t]]ρ, so easily 0 ∈ [[s]]ρ.

•
Γ ⊢ s = u Γ ⊢ t[x := u]

Γ ⊢ t[x := s]

Assume [[Γ]]ρ = 1. By the inductive hypothesis, [[s]]ρ = [[u]]ρ and [[t[x := u]]]ρ = 1. Using
the Substitution Lemma we get [[t[x := u]]]ρ = [[t]]ρ[x:=[[u]]ρ] = [[t]]ρ[x:=[[s]]ρ] = [[t[x := s]]]ρ.



•
Γ ⊢ f tα

Γ ⊢ ∃α(fα→prop)

Assume [[Γ]]ρ = 1. We have to show that 0 ∈
⋃

a∈[[α]]([[f ]]ρ(a)), so that there is a ∈ [[α]]

such that 0 ∈ [[f ]]ρ(a). By Lemma 3.8, [[tα]]ρ ∈ [[α]], so taking a = [[tα]]ρ we get the claim
by the inductive hypothesis.

•
Γ ⊢ ∃α(fα→prop) Γ, f xα ⊢ u

Γ ⊢ u
xα new

Suppose [[Γ]]ρ = 1. By the inductive hypothesis, there is a ∈ [[α]] such that 0 ∈ [[f ]]ρ(a).
Let ρ′ = ρ[xα := a]. By the inductive hypothesis we get 0 ∈ [[u]]ρ′ . As xα /∈ FV (u), by
Lemma 3.7 [[u]]ρ = 1.

Having verified the soundness of the HOL proof rules, we proceed to verify the soundness
of the axioms.

Theorem 3.11. For any axiom t of HOL and any ρ defined on FV (t), 0 ∈ [[t]]ρ.

Proof. We proceed axiom by axiom and sketch the respective proofs.

• (FALSE) [[⊥]]ρ = ∅ =
⋂

a∈P (1) a = [[∀b : prop. b]]ρ. The second equality follows by

0 ∈ P (1).
• (BETA) We have [[(λxτ . tσ) sτ ]]ρ = App([[λxτ . tσ]]ρ, [[sτ ]]ρ) = App({(a, [[t]]ρ[x:=a]) | a ∈

[[τ ]]}, [[sτ ]]ρ) = [[t]]ρ[xτ :=[[sτ ]]ρ] = (by the Substitution Lemma) = [[tσ[xτ := sτ ]]]ρ.
• (ETA) [[λxτ . fτ→σxτ ]]ρ = {(a, [[f xτ ]]ρ[xτ :=a]) | a ∈ [[τ ]]} = {(a,App([[f ]]ρ[xτ :=a], a)) | a ∈

[[τ ]]} = (since xτ /∈ FV (f)) = {(a, [[f ]]ρ(a)) | a ∈ [[τ ]]} = [[f ]]ρ, as by Lemma 3.8, [[f ]]ρ ∈
[[τ ]] → [[σ]] and functions in set theory are represented by their graphs.

• (FORALL) We have:

[[∀α]]ρ = {(F,
⋂

a∈[[α]]

F (a)) | F ∈ [[α]] → P (1)}

Furthermore:

[[λFα→prop. F = λxα. ⊤]]ρ = {(F, {z ∈ 1 | F = λx ∈ [[α]]. 1}) | F ∈ [[α]] → P (1)}

So take any F ∈ [[α]] → P (1). It suffices to show that
⋂

a∈[[α]] F (a) = {z ∈ 1 | F =

λx ∈ [[α]]. 1}. We have x ∈
⋂

a∈[[α]] F (a) iff for all a ∈ [[α]], x ∈ F (a) and x = 0. This

happens if and only if x = 0 and for all a ∈ [[α]], F (a) = 1 which is equivalent to
x ∈ {z ∈ 1 | P = λx ∈ [[α]]. 1}. The claim follows.

• The axioms P3, P4, P5 follow by the fact that natural numbers satisfy the respective
Peano axioms.

• (BOOL) We need to show that [[∀bool. (λxbool. x = false ∨ x = true)]]ρ = 1. Unwinding
the definition, this is equivalent to

⋂
x∈2({z ∈ 1 | x = 0} ∪ {z ∈ 1 | x = 1}) = 1.

and furthermore to: for all x ∈ 2 and y, y ∈ {z ∈ 1 | x = 0} ∪ {z ∈ 1 | x = 1} iff
y = 0. Take any x ∈ 2 and y. The left-to-right direction is obvious, for the right-to-left
direction, either x = 0 or x = 1. In the former case, 0 ∈ {z ∈ 1 | x = 0}, in the latter
0 ∈ {z ∈ 1 | x = 1}.

• (EM) We need to show that [[∀prop. (λxprop. x = ⊥ ∨ x = ⊤)]]ρ = 1. Reasoning as in
the case of (BOOL), we find that this is equivalent to: for all x ∈ P (1) and y, y ∈ {z ∈
1 | x = 0} ∪ {z ∈ 1 | x = 1} iff y = 0. Suppose x ∈ P (1). At this point, it is impossible



• Extensionality Two sets are equal if they have the same elements.
• Empty Set There is an empty set.
• Pairing For any sets a, b, there is a set consisting of a and b.
• Infinity There is a set closed under the successor operation and containing the empty

set.
• Union For any set a, there is a set

⋃
a which is a union of all elements of a.

• Power Set For any set a, there is a set of all subsets of a.
• Separation For any formula φ, for any set a, there is a set of all elements of a satisfying
φ.

• Replacement For any formula φ(x, y, z), for any set a, if for all x ∈ a there is exactly
one y such that φ(x, y, z) holds, then there is a set b such that for all x ∈ a there is y ∈ b
such that φ(x, y, z) holds.

• ∈-Induction For any formula φ(a, z), if for all sets b (∀x ∈ b.φ(x, z)) implies φ(b, z), then
for all a, φ(a, z) holds.

Figure 1: The axioms of IZF with Replacement

to proceed further constructively, all we know is that x is a subset of 1, which does not
provide enough information to decide whether x = 0 or x = 1. However, classically, using
the rule of excluded middle, P (1) = 2 and we proceed as in the previous case.

• (CHOICE) We argue classically, so in particular P (1) = 2. We need to show that:

[[∀α→prop(λPα→prop. ∀α(λxα. Px→ P (ε(α→prop)→α(P ))]] = 1, which is equivalent to⋂
P∈[[α]]→2[[∀α(λxα. Px→ P (ε(α→prop)→α(P ))]] = 1, which is equivalent to⋂
P∈[[α]]→2

⋂
x∈[[α]][[Px→ P (ε(α→prop)→α(P ))]] = 1, which is equivalent to
⋂

P∈[[α]]→2

⋂

x∈[[α]]

{a ∈ 1 | a ∈ P (x) → a ∈ P (C(P−1({1}), [[α]]))} = 1.

To show this, it suffices to show that for all P ∈ [[α]] → 2, for all x ∈ [[α]], if 0 ∈ P (x)
then 0 ∈ P (C(P−1({1}), [[α]])). Take any P and x. Suppose 0 ∈ P (x). Then P (x) = 1,
so x ∈ P−1({1}). Therefore C(P−1({1}), [[α]])) ∈ P−1({1}), so P (C(P−1({1}), [[α]]) = 1,
which shows the claim.

Corollary 3.12. HOL is consistent: it is not the case that ⊢H ⊥.

Proof. Otherwise we would have [[⊥]] = [[⊤]], that is 0 = 1.

4. IZF

The essential advantage of the semantics in the previous section over a standard one
is that for the constructive part of HOL this semantics can be defined in constructive set
theory IZF.

An obvious approach to creating a constructive version of ZFC set theory is to replace
the underlying first-order logic with intuitionistic first-order logic. As many authors have
explained [Myh73, Bee85, McC86, Š85], the ZF axioms need to be reformulated so that they
do not imply the law of excluded middle.

In a nutshell, to get IZF from ZFC, the Axiom of Choice and Excluded Middle are
taken away and Foundation is reformulated as ∈-induction. The axioms of IZF are thus



Extensionality, Union, Infinity, Power Set, Separation, Replacement or Collection2 and ∈-
Induction. The list of axioms for the version with Replacement can be found in Figure 1.
A detailed account of the theory can be found for example in Friedman [Fri73]. Besoon’s
book [Bee85] and Ščedrov’s paper [Š85] contain a lot of information on metamathematical
properties of IZF and related set theories. For convenience, we assume that the first-order
logic has built-in bounded quantifiers (∀x ∈ a. φ and ∃x ∈ a. φ), defined as abbreviations
in the standard way. We also include in the signature all the set terms corresponding to
the axioms of IZF — N,

⋃
t, P (a) etc. For the full list, see [Moc07].

Myhill [Myh73] have proved several important properties of IZF:

• Disjunction Property (DP) : If IZF ⊢ φ ∨ ψ, then IZF ⊢ φ or IZF ⊢ ψ.
• Numerical Existence Property (NEP) : If IZF ⊢ ∃x ∈ N. φ(x), then there is a natural

number n such that IZF ⊢ φ(n), where n = S(S(. . .(0))) and S(x) = x ∪ {x}.
• Term Existence Property (TEP) : If IZF ⊢ ∃x. φ(x), then for some term t, IZF ⊢ φ(t).

Moreover, the semantics and the soundness theorem for CHOL work in IZF, as neither
Choice nor Excluded Middle are necessary to carry out these developments. Note that the
existence of P (1) is crucial for the semantics.

All the properties are constructive — there is a recursive procedure extracting a natural
number, a disjunct or a term from a proof. A trivial one is to look through all the proofs
for the correct one. For example, if IZF ⊢ φ∨ψ, a procedure could enumerate all theorems
of IZF looking for either φ or ψ; its termination would be ensured by DP. We discuss more
efficient alternatives in section 5.3.

5. Extraction

We will show that the semantics we have defined can serve as a basis for program
extraction from proofs. All that is necessary for program extraction from constructive HOL
proofs is provided by the semantics and the soundness proof. Therefore, if one wants to
provide an extraction mechanism for the constructive part of the logic, it may be sufficient
to carefully define set-theoretic semantics, prove the soundness theorem and the extraction
mechanism for IZF would take care of the rest. We speculate on practical uses of this
approach in section 6.

5.1. IZF Extraction. We first describe extraction from IZF proofs. To facilitate the
description, we will use a very simple fragment of type theory, which we call TT 0.

The types of TT 0 are generated by the following abstract grammar. They should not
be confused with HOL types; the context will make it clear which types we refer to.

τ ::= ∗ | Pφ | nat | bool | τ × τ | τ + τ | τ → τ

We associate with each type τ of TT 0 a set of its elements, which are finitistic objects.
The set of elements of τ is denoted by El(τ) and defined by structural induction on τ :

• El(∗) = {∗}.
• El(Pφ) is the set of all IZF proofs of the formula φ.
• El(nat) = N, the set of natural numbers.
• El(bool) = {true, false}.

2There is a difference, in particular the version with Collection does not satisfy Term Existence Property
(TEP), defined on the next page. A concerned reader can replace IZF with IZFR whenever TEP is used.



• El(τ1 × τ2) = El(τ1) × El(τ2).
• M ∈ El(τ1 + τ2) iff either M = inl(M1) and M1 ∈ El(τ1) or M = inr(M1) and M1 ∈
El(τ2).

• M ∈ El(τ1 → τ2) iff M is a method which given any element of El(τ1) returns an element
of El(τ2).

In the last clause, we use an abstract notion of “method”. It will not be necessary
to formalize this notion, but for the interested reader, all “methods“ we use are functions
provably recursive in ZF + Con(ZF ), where Con(ZF ) denotes consistency of ZF.

The notation M : τ stands for M ∈ El(τ).
We call a TT 0 type pure if it does not contain ∗ and Pφ. There is a natural mapping

of pure types TT 0 to sets. It is so similar to the meaning of the HOL types that we will
use the same notation.

• [[nat]] = N.
• [[bool]] = 2.
• [[τ × σ]] = [[τ ]] × [[σ]].
• [[τ + σ]] = [[τ ]] + [[σ]], the disjoint union of [[τ ]] and [[σ]].
• [[τ → σ]] = [[τ ]] → [[σ]].

If a set (and a corresponding IZF term) is in a codomain of the map above, we call it
type-like. If a set A is type-like, then there is a unique pure type τ such that [[τ ]] = A. We
denote this type Type(A). Thus, type-like sets are these “generated” by pure TT 0 types
via natural semantics. Formally, we define a recursive set TL of IZF terms such that for
any t ∈ TL, t is type-like and we can find effectively Type(A). The definition of TL follows
the definition above: TL is the smallest set such that N, 2 ∈ TL and if t, u ∈ TL, then t×u,
t + u and t → u are also elements of TL. Thus, the sentence “A is type-like” stands for
“A ∈ TL”. Note that for any term t ∈ TL we can find a term t′ such that IZF ⊢ t = t′ and
t′ /∈ TL — it suffices to take t′ ≡ t ∪ ∅.

Before we proceed further, let us extend TT 0 with a new type Qτ , where τ is any pure
type of TT 0. Intuitively, Qτ is the provable counterpart of [[τ ]]. Formally, the members of
El(Qτ ) are pairs (t,P) such that P ⊢IZF t ∈ [[τ ]] (P is an IZF proof of t ∈ [[τ ]]). Note that
there is a natural mapping from closed HOL terms M of type τ into Qτ — it is easy to
construct using Lemma 3.8 a proof P of the fact that [[M ]]ρ ∈ [[τ ]], so the pair ([[M ]]ρ, P ) : Qτ .
In particular, any natural number n can be injected into Qnat. The set of pure types stays
unchanged.

We are going to tailor extraction from IZF proofs to the HOL logic. For this purpose, we
will specify which elements of IZF proofs/formulas carry interesting computational content
for us. We will use the type ∗ to mark the parts of proofs we are not interested in.

We first define a helper function T , which takes a pure type τ and returns another type.
Intuitively, T (τ) is the type of the extract from a statement ∃x. x ∈ [[τ ]]. The function T is
defined by induction on τ :

• T (bool) = bool.
• T (nat) = nat.
• T (τ × σ) = T (τ) × T (σ).
• T (τ + σ) = T (τ) + T (σ).
• T (τ → σ) = Qτ → T (σ). The rationale for this definition is that in order to utilize

an IZF function from [[τ ]] to [[σ]] we need to supply an element of a set [[τ ]], which is an
element of Qτ .



Furthermore, we assign to each formula φ of IZF a TT 0 type φ, which intuitively
describes the computational content of an IZF proof of φ. We do it by induction on φ:

• a ∈ b = ∗.
• a = b = ∗ (atomic formulas carry no useful computational content).
• φ1 ∨ φ2 = φ1 + φ2.
• φ1 ∧ φ2 = φ1 × φ2.
• φ1 → φ2 = Pφ1

→ φ2.

• ∃a ∈ A. φ1 = T (Type(A)) × φ1, if A is type-like.
• ∃a ∈ A. φ1 = ∗, if A is not type-like.
• ∃a. φ1 = ∗.
• ∀a ∈ A. φ1 = QType(A) → φ1, if A is type-like.

• ∀a ∈ A. φ1 = ∗, if A is not type-like.
• ∀a. φ1 = ∗.

The definition is tailored for HOL logic and could be extended to allow meaningful
extraction from a larger class of formulas. For example, we could extract a term from
∃a. φ1 using Term Existence Property.

We present several natural examples of our translation in action:

(1) ∃x ∈ N. x = x = nat× ∗.
(2) ∀x ∈ N. ∃y ∈ N. φ = Qnat → nat× φ.

(3) ∀f ∈ N → N. ∃x ∈ N. f(x) = 0 = Qnat→nat → nat× ∗.

These types are richer than what we intuitively would expect — nat in the first case,
nat → nat in the second and (nat → nat) → nat in the third, because any closed HOL
term of type nat or nat → nat can be injected into Qnat or Qnat→nat via the soundness
theorem. The extra ∗ can be easily discarded from types (and extracts).

Lemma 5.1. For any IZF term t, which is not type-like, φ[a := t] = φ.

Proof. Straightforward induction on φ.

Lemma 5.2 (IZF). (∃a ∈ 2. φ(a)) iff φ(0) ∨ φ(1).

We are now ready to describe the extraction function E, which takes an IZF proof P
of a formula φ and returns an object of TT 0 type φ. We do it by induction on φ, checking
on the way that the object returned is of type φ. Recall that DP, TEP and NEP denote
Disjunction, Term and Numerical Existence Property, respectively. Case φ of:

• a ∈ b — return ∗. We have ∗ : ∗.
• a = b — return ∗. We have ∗ : ∗, too.
• φ1 ∨ φ2. Apply DP to P to get a proof P1 of either φ1 or φ2. In the former case return
inl(E(P1)), in the latter return inr(E(P1)). By the inductive hypothesis, E(P1) : φ1 (or
E(P1) : φ2), so E(P) : φ follows.

• φ1 ∧ φ2. Then there are proofs P1 and P2 such that P1 ⊢ φ1 and P2 ⊢ φ2. Return
a pair (E(P1), E(P2)). By the inductive hypothesis, E(P1) : φ1 and E(P2) : φ2, so
(E(P1), E(P2)) : φ1 ∧ φ2.

• φ1 → φ2. Return a function G which takes an IZF proof Q of φ1, applies P to Q (using
the modus-ponens rule of the first-order logic) to get a proof R of φ2 and returns E(R).
By the inductive hypothesis, any such E(R) is in El(φ2), so G : Pφ1

→ φ2.
• ∃a ∈ A. φ1(a), where A is type-like. Let T = Type(A). We proceed by induction on T .

Case T of:



− bool. By Lemma 5.2, we have φ1(0) ∨ φ1(1). Apply DP to get a proof Q of either
φ1(0) or φ1(1). Let b be false or true, respectively. Return a pair (b,E(Q)). By

the inductive hypothesis, E(Q) : φ1([[b]]). By Lemma 5.1, since [[b]]ρ is not type-like,

E(Q) : φ1, so (b,E(Q)) : T (bool) × φ = ∃a ∈ 2. φ1(a).
− nat. Apply NEP to P to get a natural number n and a proof Q of φ1(n). Return a

pair (n,E(Q)). By the inductive hypothesis, E(Q) : φ1(n). By Lemma 5.1, since we
can assume without loss of generality that n is not type-like, E(Q) : φ1, so (n,E(Q)) :
T (nat) × φ1.

− (τ, σ). Construct a proof Q of ∃a1 ∈ [[τ ]]∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1. Let M =
E(Q). By the inductive hypothesis M is a pair 〈M1,M2〉 such that M1 : T (τ) and

M2 : ∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1. Therefore M2 is a pair 〈M21,M22〉, M21 : T (σ) and

M22 : a = 〈a1, a2〉 ∧ φ1. Therefore M22 is a pair 〈N,O〉, where O : φ1. Therefore
〈M1,M21〉 : T (τ × σ), so 〈〈M1,M21〉, O〉 : T (τ × σ) × φ1 and we are justified to return
〈〈M1,M21〉, O〉.

− τ+σ. Construct a proof Q of (∃a ∈ [[τ ]]. φ1)∨(∃a ∈ [[σ]]. φ1). Apply DP to get the proof
Q1 of (without loss of generality) ∃a ∈ [[τ ]]. φ1. Let M = E(Q1). By the inductive
hypothesis, M = 〈M1,M2〉, where M1 : T (τ) and M2 : φ1. Return 〈inl(M1),M2〉,
which is of type (T (τ + σ), φ1).

− τ → σ. Use TEP to get a term f such that (f ∈ [[τ ]] → [[σ]]) ∧ φ1(f). Construct
proofs Q1 of ∀x ∈ [[τ ]]∃y ∈ [[σ]].f(x) = y and Q2 of φ1(f). Without loss of generality,
we can assume that f is not type-like. By the inductive hypothesis and Lemma 5.1,
E(Q2) : φ. Let G be a function which works as follows: G takes a pair (t,R) such
that R ⊢ t ∈ [[τ ]], applies Q1 to t,R to get a proof R1 of ∃y ∈ [[σ]]. f(t) = y and

calls E(R1) to get a term M . By the inductive hypothesis, M : ∃y ∈ [[σ]]. f(t) = y,
so M = 〈M1,M2〉, where M1 : T (σ). The function G returns M1. Our extraction
procedure E(P) returns 〈G,E(Q2)〉. The type of 〈G,E(Q2〉) is (Qτ → T (σ)) × φ1

which is exactly (T (τ → σ)) × φ1.
• ∃a ∈ A. φ1(a), where A is not type-like. Return ∗.
• ∃a. φ1(a). Return ∗.
• ∀a ∈ A. φ1(a), where A is type-like. Return a function G which takes an element (t,Q)

of QType(A), applies P to t and Q to get a proof R of φ1(t), and returns E(R). Without
loss of generality, we can assume that t is not type-like. By the inductive hypothesis and
Lemma 5.1, E(R) : φ1, so G : QType(A) → φ1 = ∀a ∈ A. φ1(a).

• ∀a ∈ A. φ1(a), where A is not type-like. Return ∗.
• ∀a. φ1(a). Return ∗.

5.2. HOL extraction. As in case of IZF, we will show how to do extraction from a subclass
of CHOL proofs. The choice of the subclass is largely arbitrary, our choice illustrates the
method and can be easily extended.

We say that a CHOL formula is extractable if it is generated by the following abstract
grammar, where τ varies over pure TT 0 types and ⊕ ∈ {∧,∨,→}.

φ ::= ∀x : τ. φ | ∃x : τ. φ | φ⊕ φ | ⊥ | t = t

We will define extraction for CHOL proofs of extractable formulas. By Theorem 3.11,
if CHOL ⊢ φ, then IZF ⊢ 0 ∈ [[φ]]. We need to slightly transform this IZF proof in
order to come up with a valid input to E from the previous section. To this means,



for any extractable φ(a1, . . ., an) we define an IZF formula φ′(b1, . . ., bn) such that IZF
⊢ 0 ∈ [[φ(a1, . . ., an)]]ρ[a1:=b1,...,an:=bn] ↔ φ′. The formula φ′ is essentially φ with type

membership information replaced by set membership information. We define φ′ by induction
on φ, checking the correctness on the way. We work in IZF. Let ρ′ = ρ[a1 := b1, . . ., an := bn].
Thus we want to show IZF ⊢ 0 ∈ [[φ]]ρ′ ↔ φ′. Case φ of:

• ⊥. Take φ′ ≡ 0 ∈ [[⊥]]ρ′ . The correctness is trivial.
• t = s. Take φ′ ≡ 0 ∈ [[t = s]]ρ′ . The correctness is trivial.
• φ1 ∨ φ2. By the inductive hypothesis we get φ′1 and φ′2 such that 0 ∈ [[φ1]]ρ′ ↔ φ′1 and

0 ∈ [[φ2]]ρ′ ↔ φ′2. Take φ′ ≡ φ′1 ∨ φ
′

2. We have 0 ∈ [[φ1 ∨ φ2]]ρ′ iff 0 ∈ [[φ1]]ρ′ or 0 ∈ [[φ2]]ρ′
iff φ′1 ∨ φ

′

2, which shows the claim.
• φ1 ∧ φ2. By the inductive hypothesis we get φ′1 and φ′2 such that 0 ∈ [[φ1]]ρ′ ↔ φ′1 and

0 ∈ [[φ2]]ρ′ ↔ φ′2. Set φ′ ≡ φ′1 ∧ φ
′

2. The correctness follows easily.
• φ1 → φ2. By the inductive hypothesis we get φ′1 such that 0 ∈ [[φ1]]ρ′ ↔ φ′1 and φ′2 such

that 0 ∈ [[φ2]]ρ′ ↔ φ′2. Set φ′ = φ′1 → φ′2. The correctness follows easily.
• ∀a : τ. φ1(a, a1, . . ., an). By the inductive hypothesis we get φ′1(b, b1, . . ., bn) such that
∀b, b1, . . ., bn, 0 ∈ [[φ′1]]ρ′[a:=b] ↔ φ′1. Set φ′ ≡ ∀a ∈ [[τ ]]. φ′1(a, b1, . . ., bn). For the cor-
rectness, we have 0 ∈ [[∀a : τ. φ1(a, a1, . . ., an)]]ρ′ iff ∀A ∈ [[τ ]], 0 ∈ [[φ1]]ρ′[a:=A]. By the

inductive hypothesis, this is equivalent to ∀A ∈ [[τ ]]. φ′1(A, b1, . . ., bn) which is precisely
φ′1.

• ∃a : τ. φ1. By the inductive hypothesis we get φ′1(b, b1, . . ., bn) such that

∀b, b1, . . ., bn. 0 ∈ [[φ′1]]ρ′[a:=b] ↔ φ1.

Set φ′ ≡ ∃a ∈ [[τ ]]. φ′1(a, b1, . . ., bn). The correctness follows as in the previous case.

Now we can finally define the extraction process. Suppose CHOL ⊢ φ, where φ is
closed and extractable. Let ρ be the empty environment. Using the soundness theorem,
construct an IZF proof P that 0 ∈ [[φ]]ρ. Use the definition above to get φ′ such that IZF
⊢ 0 ∈ [[φ]]ρ ↔ φ′ and using P obtain a proof R of φ′. Finally, apply the extraction function
E to R to get the computational extract.

5.3. Implementation issues. The extraction process is parameterized by the implemen-
tation of NEP, DP and TEP for IZF. Obviously, searching through all IZF proofs to get a
witnessing natural number, term or a disjunct would not be a very effective method. We
discuss two alternative approaches.

The first approach is based on realizability. Rathjen defines a realizability relation
in [Rat05] for weaker, predicative constructive set theory CZF. For any CZF proof of a
formula φ, there is a realizer e such that the realizability relation e 
 φ holds, moreover,
this realizer can be found constructively from the proof. Realizers provide the information
for DP and NEP — which of the disjuncts holds and the witnessing number. They could
be implemented using lambda terms. These results have been also recently extended to IZF
[Rat06]. The approach has the drawback of not providing the proof of TEP, which would
restrict the extraction process from statements of the form ∃x ∈ [[τ ]]. φ to atomic types τ .
Moreover, the gap between the existing theoretical result and possible implementation is
quite wide.

The second, more direct approach is based on Moczyd lowski’s proof in [Moc06a] of weak
normalization of the lambda calculus λZ corresponding to proofs in IZF. The normalization
is used to prove NEP, DP and TEP for the theory and the necessary information is extracted



from the normal form of the lambda term corresponding to the IZF proof. Thus in order
to provide the implementation of DP, NEP and TEP for IZF, it would suffice to implement
λZ, which is specified completely in [Moc06a, Moc06b].

An alternative approach has been presented by Berghofer [Ber04]. He defines extraction
for a constructive variant of HOL logic directly in the generic theorem prover Isabelle and
uses realizability to justify its correctness. His approach could likely be tailored to our
CHOL, so that it would yield extracts equivalent to ours. An exciting project would be to
formalize IZF and both methods of extraction in Isabelle and show their equivalence and
correctness.

6. Conclusion

We have presented a computational semantics for HOL via standard interpretation in
intuitionistic set theory. The semantics is clean, simple and agrees with the standard one.

The advantage of this approach is that the extraction mechanism is completely external
to Constructive HOL. Using only the semantics, we can take any constructive HOL proof
and extract from it computational information. No enrichment of the logic in normalizing
proof terms is necessary.

The separation of the extraction mechanism from the logic makes the logic very easily
extendable. For example, inductive datatypes and subtyping have clean set-theoretic se-
mantics, so can easily be added to HOL preserving consistency, as witnessed in PVS. As
the semantics would work constructively, the extraction mechanisms from section 5 could
be easily adapted to incorporate them. Similarly, one could define a set-theoretic semantics
for the constructive version of HOL implemented in Isabelle ([Ber04, BN02]) in the same
spirit, with the same advantages.

The modularity of our approach and the fact that it is much easier to give set-theoretic
semantics for the logic than to prove normalization, could make the development of new
trustworthy provers with extraction capabilities much easier and faster.

We would like to thank anonymous reviewers for their helpful comments.
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