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Abstract. The symmetric interaction combinators are an equally expressive variant of
Lafont’s interaction combinators. They are a graph-rewriting model of deterministic com-
putation. We define two notions of observational equivalence for them, analogous to normal
form and head normal form equivalence in the lambda-calculus. Then, we prove a full ab-
straction result for each of the two equivalences. This is obtained by interpreting nets as
certain subsets of the Cantor space, called edifices, which play the same role as Böhm trees
in the theory of the lambda-calculus.

Introduction

A foundational study of interaction nets. Lafont’s interaction nets [Laf90] are a power-
ful and versatile model of deterministic computation, derived from the proof nets of Girard’s
linear logic [Gir87, Gir96, Laf95]. Interaction nets are characterized by the atomicity and
locality of their rewriting rules. As in Turing machines, computational steps are elementary
enough to be considered as constant-time operations, but, unlike Turing machines, several
steps can be executed in parallel, i.e., interaction nets actually model a kind of distributed
computation.

Several interesting applications of interaction nets exist. The most notable ones are
implementations of optimal evaluators for the λ-calculus [?, Mac04], but efficient evaluation
of other functional programming languages using richer data structures is also possible with
interaction nets [Mac05].

However, so far the practical aspects of this computational model have arguably received
much more attention than the strictly theoretical ones. With the exception of Lafont’s work
on the interaction combinators [Laf97] and Fernández and Mackie’s work on operational
equivalence [FM03], no foundational study of interaction nets can be found in the existing
literature. For example, until very recently [Maz07a], no denotational semantics had been
proposed for interaction nets.
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This work aims precisely at studying and expanding the theory of interaction nets, in
particular of the symmetric interaction combinators. These latter are especially interesting
because of their universality : any interaction net system can be translated in the symmet-
ric interaction combinators [Laf97]. Therefore, within the graph-rewriting paradigm given
by interaction nets, the symmetric interaction combinators stand out as a prototypical
language, just like the λ-calculus is the prototypical language of the functional paradigm.

More specifically, the contribution of this work is twofold, and can be seen as a method-
ology for addressing the following two questions:

Observational equivalence: Given two nets in the system of the symmetric interaction
combinators, when can we say that they behave in the same way?

Denotational semantics and full abstraction: Any answer to the above question yields
an equivalence on nets; can we denotationally characterize this equivalence? In other
words, can we find an abstract interpretation of the syntax so that such equivalence
becomes an equality?

Observations and contexts. The first question is a central one in all programming lan-
guages. Indeed, any programmer is aware that, given two syntactically different programs,
it may as well be that they “do the same thing”, i.e., that one can be replaced by the other
without anyone noticing the difference. Of course, the heart of the question lies in what
differences we judge worth noticing: the final result of executing a program, the time it
takes to obtain such result, etc. Different choices will of course lead to different notions of
“doing the same thing”.

In any case, the key notion is that of observation: the program interacts with an
environment, and we observe the outcome, based on our choice of what we consider relevant
to be observed. If our two programs yield the same observations upon interacting with all
possible environments, it is fair to say that, as far as we are concerned, they “do the same
thing”; more formally, we say that they are observationally equivalent, according to our
chosen notion of observation.

For functional programming languages, and in particular for the λ-calculus, Mor-
ris [Mor68] was the first to propose the now widely accepted idea that an environment
is a context. In this way, observations are internalized, i.e., they may be made directly on
programs, because, given a program P and a context C, C[P ] is still a program.

In interaction nets, there is a very natural notion of context for a net µ: it is simply
another net C whose interface is big enough so that µ can be plugged into it, forming a
new net C[µ]. Morris’ idea can therefore be straightforwardly applied in our framework.

Internal separation and observable axioms. In order to choose what to observe in our
nets, we draw inspiration from our previous work on internal separation [Maz07b], in which
we proved a result similar to the celebrated Böhm’s theorem for the λ-calculus [Böh68].
Böhm’s theorem states the following: given two βη-normal λ-terms T,U , T 6= U implies
that there exists a context C such that C[T ] →∗

β x and C[U ] →∗
β y, where x and y are two

different variables.
A consequence of Böhm’s result is that it is impossible to equate two distinct βη-normal

forms, unless one equates all λ-terms. This makes us better understand the importance of
Böhm’s theorem, because it brings forth its negative content: as underscored for example
by Giuseppe Longo [Lon05], negative results are crucial in the development of a theory,



INTERACTION COMBINATORS: OBSERVATIONAL EQUIVALENCE AND FULL ABSTRACTION 3

since they witness the presence of a structure in the underlying objects. If “everything is
possible”, then the objects of our theory are shapeless, we can tamper with them at will,
and the theory looses any scientific interest.

In the case of the symmetric interaction combinators, internal separation (cf. Theo-
rem 1.18) cannot be realized using two arbitrary nets (by contrast, in the λ-calculus, x and
y may be replaced by two arbitrary distinct λ-terms). Indeed, one of the two nets used
contains a special kind of connection, which we call observable axiom, while the other does
not. Since identifying these two nets induces the identification of all nets, we are led to take
the presence of observable axioms as the key phenomenon to observe.

Axiom-equivalences. The discovery of observable axioms in interaction nets is the back-
bone of the development of our theory of observational equivalence. Indeed, we have several
results hinting to the fact that observable axioms are analogous to head variables; these oc-
cupy an arguably important place in the theory of the λ-calculus, so it is perhaps not
surprising that we give observable axioms a central role in interaction nets too.

Furthermore, observable axioms are related to a certain kind of paths of Girard’s ge-
ometry of interaction [Gir89], as reformulated by Lafont for the (symmetric) interaction
combinators [Laf97]. In particular, it is possible to show (cf. Sect. 2.2) that the observ-
able axioms generated by a net in the course of its reduction correspond to its execution
paths [DR95]; these are the paths which are preserved by reduction, and are hence present
in every reduct. In some sense, each execution path describes a portion of information pro-
duced by the computation of a net; in particular, if a net is normalizable, then its execution
paths describe exactly its normal form. This idea of approximation, which is also already
present in Böhm trees, is another way of looking at observable axioms as meaningful objects
to study the behavior of a net (cf. Sect. 5.2).

We thus introduce observable nets and finitarily observable nets: the first are nets
which, in the course of their reduction, develop at least one observable axiom; the second
are observable nets which develop only finitely many of them. It is useful to keep in mind an
analogy with the λ-calculus: observable nets are similar to λ-terms having a head normal
form, and finitarily observable nets are akin to normalizable λ-terms. In the first case, we
may additionally introduce the notion of solvable net, and prove that solvable and observable
nets coincide, just like solvable λ-terms coincide with λ-terms having a head normal form. In
the second case, the correspondence is somewhat looser, because the symmetric combinators
already have a notion of normalizable net, and it does not coincide with that of finitarily
observable net. Nevertheless, there are several facts supporting this analogy.

The notions of observable and finitarily observable net can be used to define two ob-
servational equivalences on nets: axiom-equivalence and finitary axiom-equivalence. The
first one is similar to head normal form equivalence (hnf-equivalence) in the λ-calculus (two
λ-terms T,U are hnf-equivalent iff, for every context C, C[T ] is head-normalizable iff C[U ]
is). The second one is similar to normal form equivalence (nf-equivalence) in the λ-calculus
(two λ-terms T,U are nf-equivalent iff, for every context C, C[T ] is normalizable iff C[U ]
is). By “similar” we mean that finitary axiom-equivalence is strictly included in axiom-
equivalence, as nf-equivalence is strictly included in hnf-equivalence in the λ-calculus, and
that the examples proving strict inclusion are all related to a phenomenon similar to infinite
η-expansion [Wad76], as is the case for the λ-calculus. Moreover, after transporting from
the λ-calculus to the symmetric interaction combinators the concepts of theory and sensible
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theory (cf. Sect. 5.3), axiom-equivalence can be shown to be a maximal consistent theory,
indeed the greatest consistent sensible theory, just like hnf-equivalence.

Our axiom-equivalences are not the only existing observational equivalences for the
symmetric interaction combinators; in particular, Fernández and Mackie [FM03] proposed
another notion of observational equivalence, based on visible nets. This equivalence, which
seems to correspond to weak head normal form equivalence (whnf-equivalence) in the
λ-calculus, can be proved to be strictly stronger, i.e., more discriminative, than our finitary
axiom-equivalence, and hence than axiom-equivalence (cf. Sect. 5.1). This is in accord with
the λ-calculus analogy: whnf-equivalence is strictly included in nf- and hnf-equivalence.

Equivalence as equality. The second part of our work starts with the development of a
denotational semantics of the symmetric interaction combinators. Denotational semantics
originated in the late 1960’s with the work of Scott and Strachey [SS71, Sco76]. Its goal is
to model the syntax of a programming language by means of a more abstract mathematical
structure, on which a broader range of tools and proof techniques are available. In this way,
one may be able to prove results about the language which would be very difficult, or even
impossible, to prove by syntactic methods only.

In a nutshell, we could say that the ultimate goal of denotational semantics is to trans-
form equivalences into equalities. A typical example is precisely that of observational equiv-
alence, as discussed above. If a denotational semantics gives the same interpretation to two
programs exactly when they are observationally equivalent, then it is said to be fully abstract
with respect to the given observational equivalence. Finding a fully abstract denotational
semantics can be a very hard problem: a notable example is that of PCF, a λ-calculus-like
functional language for which completely new game-semantic models had to be developed
to achieve full abstraction [AJM00, HO00].

In the λ-calculus, both nf- and hnf-equivalence have been abstractly characterized in
several different ways: Hyland [Hyl76] proved that two terms are nf-equivalent iff their Böhm
trees are equal up to η-equivalence, and went on to prove that nf-equivalence coincides with
equality in Plotkin’s Pω model [Plo72]; Wadsworth [Wad76] obtained similar results for
hnf-equivalence, showing that two terms are hnf-equivalent iff their Böhm trees are equal
up to infinite η-expansion, and that this equivalence corresponds to equality in Scott’s D∞

model [Sco76]. Shortly after, Nakajima [Nak75] introduced a similar characterization of
hnf-equivalence in terms of what are now known as Nakajima trees.

Edifices, the Cantor topology, and full abstraction. Besides the description of a new
theory of observational equivalence for interaction nets, the other principal contribution
of the present work is the introduction of edifices, which play the same role as Böhm or
Nakajima trees, in that they provide a fully abstract model of the two axiom-equivalences
mentioned above.

The starting point for defining edifices is the same as that of Böhm trees, reflecting
the analogy between observable axioms and head variables: just like the Böhm tree of
a λ-term T is basically the collection of the head variables appearing in the reducts of T
(with the additional information concerning their hierarchical structure and the abstractions
preceding them), the edifice of a net µ is built from the collection of all observable axioms
appearing in the reducts of µ.
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Nevertheless, the parallelism of interaction nets, unmatched in the λ-calculus, induces
some fundamental differences between the two contructions: in fact, apart from collecting
the information concerning the position of observable axioms within the net in which they
appear (analogous to the abstractions preceding a head variable), no evident hierarchical
structure emerges for observable axioms (although some kind of structure might be attached
to them, as briefly discussed in Sect. 5.4). This is why edifices are not at all trees. Still,
just like the Böhm tree of a λ-term, the edifice of a net is an invariant of reduction in the
symmetric interaction combinators (Proposition 3.19).

To achieve full abstraction, we endow edifices with a topological structure, which turns
them into subsets of the Cantor space. In the case of finitary axiom-equivalence, this is
needed for technical purposes: in fact, edifices characterize this equivalence as plain sets,
i.e., two nets are finitarily axiom-equivalent iff their edifice is the same, independently of
any topology attached to it; however, the only way we are able to prove this is through a
topological property, namely the compactness of the edifices interpreting a certain class of
nets (Proposition 4.3). In the case of axiom-equivalence, topology plays a more fundamen-
tal role: in fact, we prove that two nets are axiom-equivalent iff the topological closure of
their edifices is the same; obviously, the notion of closure is meaningless without referring
to a topology. This last result is particularly nice, because the phenomenon of infinite
η-expansion (which, as mentioned above, is also present in the symmetric interaction com-
binators) receives a precise topological explanation.

Another nice aspect of edifices is that they are quite interesting in their own right,
independently of the symmetric interaction combinators. In fact, several results in our
theory hold for wider classes of edifices than those which interpret nets. In particular, there
is a notion of trace defined on edifices (Sect. 3.1), which is completely general, and which
reminds of the notion of composition of strategies in games semantics [AJM00, HO00].
When applied to the special case of edifices which interpret nets, the trace can be seen
as an extension of the execution formula of the geometry of interaction, which works in
all cases (cf. Proposition 3.16); by contrast, Girard’s original execution formula, and its
rephrasing developed by Lafont for the symmetric interaction combinators, is only defined
under certain normalizability assumptions.

Acknowledgments. Many thanks to the anonymous referees for their useful comments
and suggestions, and a special thanks to the editor Simona Ronchi della Rocca for her
patience in waiting for the revised version of this paper.

1. The Symmetric Interaction Combinators

1.1. Nets. The symmetric interaction combinators, or, more simply, the symmetric com-
binators, are an interaction net system [Laf90, Laf97]. An interaction net is built out of
cells and wires. Each cell has a number of ports, exactly one of which is principal, the other
being auxiliary. In the case of the symmetric combinators, there are three kinds of cells:
cells of type δ and ζ, which have two auxiliary ports, numbered by the integers 1 and 2,
and cells of type ε, which have no auxiliary ports. Cells of the first two kinds are called
binary, while those of the latter kind are called nullary.
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Figure 1: A net.

Each wire has two extremities; each extremity may be attached to the port of a cell,
so we can use wires to connect cells together. We also allow loops, which are wires whose
extremities are attached one to the other. Wires which are not loops are called proper.

A net is any configuration of cells and wires, such that each port of each cell is attached
to the extremity of a wire. Note that a net may contain wires with one or both extremities
not attached to any port of any cell; these unattached extremities will be called the free
ports of the net.

Nets are usually presented in graphical form, as in Fig. 1. Binary cells are represented
by triangles, nullary cells by circles; in both cases, the symbol denoting the kind of cell is
written inside the figure representing it. For a binary cell, the principal port is depicted
as one of the “tips” of the triangle representing it. The numbering of the auxiliary ports
of binary cells is assigned clockwise: in particular, the auxiliary port number 1 of a binary
cell is the left one if the cell is drawn with its principal port pointing towards the bottom
of the picture, and it is the right one if the cell is drawn with its principal port pointing
“up”. Wires and loops are represented as. . . wires and loops, and the free ports appear
as extremities of “pending” wires. For example, the net in Fig. 1 has 11 cells, of which 4
nullary, 1 loop, 16 proper wires, and 7 free ports.

The above description is precise enough to develop the rest of the paper, and almost all
of the theory of interaction nets. However, a more formal definition can be given, by con-
sidering an interaction net as the union of two structures: a labelled, directed hypergraph,
and an undirected graph. The idea is that labelled and directed hyperedges correspond to
cells, and undirected edges to wires. In what follows, we fix a denumerably infinite set of
ports, which we assume contains the positive integers.

Definition 1.1 (Wire, cell, net). A wire is a set of ports of cardinality 1 or 2; in the first
case, we speak of a loop, in the second case of a proper wire. We fix three symbols δ, ε, ζ;
we say that δ and ζ are binary, while ε is nullary. A cell is a tuple (α, p0, p1, . . . , pn) where
α is a symbol, p0, p1, . . . , pn are ports, and n = 2 if α binary, or n = 0 if α is nullary. In
both cases, p0 is the principal port of the cell, while p1, . . . , pn are the auxiliary ports.

A net µ is a couple (Cells(µ),Wires(µ)), where Cells(µ) is a finite set of cells and Wires(µ)
is a finite set of wires, satisfying the following:

• each port appears at most twice in Cells(µ) ∪ Wires(µ);
• if a port appears in Cells(µ) ∪ Wires(µ), then it appears in exactly one wire.

The set of ports appearing in µ is denoted by Ports(µ). A port appearing only once in
Cells(µ) ∪ Wires(µ) is called free; the set of all free ports of µ is referred to as its interface.
We shall always assume that if a net has n free ports, then its interface is {1, . . . , n}.
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Figure 2: A generic active pair (left) and an example of vicious circle (right).

Definition 1.2 (α-equivalence). A renaming for a net with n free ports is an injective
function from ports to ports which is the identity on {1, . . . , n}. Two nets are α-equivalent
iff they are equal modulo a renaming.

Nets are always considered modulo α-equivalence. In fact, observe that graphical rep-
resentations equate exactly α-equivalent nets. As in most of the existing literature on
interaction nets, we shall preferentially disregard Definition 1.1, in favor of more intuitive
graphical notations. This is especially convenient for treating the dynamic aspects of nets,
such as reduction (cf. Sect. 1.2); however, for static aspects, it is sometimes quite convenient
to use Definition 1.1, because it gives succinct, formal descriptions of the components of a
net (e.g. ports, wires as sets of ports, etc.).

Let us introduce some remarkable nets, which will be useful in the sequel:

Wirings: A net containing no cell and no loop is called a wiring. Wirings are permutations
of free ports; they are ranged over by ω. We shall often use ω also to denote a single
wire.

E-nets: The ε-net with n free ports, denoted by En, is the net consisting of n ε cells;
Trees: A tree is a net defined by induction as follows. A single ε cell is a tree with no

leaf, denoted by ε; a proper wire is a tree with one leaf (it is arbitrary which of the two
extremities is the root and which is the leaf), denoted by •; if τ1, τ2 are two trees with
resp. n1, n2 leaves, and if α is a binary symbol, the net

. . .. . .

τ1 τ2

α

is a tree with n1 + n2 leaves, denoted by α(τ1, τ2).
As the reader may have noticed, in the above picture we represented trees adopting

the same graphical notations as cells. We shall avoid possible ambiguities by never using
δ, ε, ζ to denote trees, and by using α, β exclusively to range over cell symbols, so that a
triangle annotated with α or β will unambiguously represent a cell (or a tree consisting
of a single cell, if the reader prefers).

Active pairs: An active pair (Fig. 2, left) is a net consisting of two cells whose principal
ports are connected by a wire.

Vicious circles:— A vicious circle is either a loop, or a net consisting of n binary cells
c1, . . . , cn such that, for all i ∈ {1, . . . , n − 1}, the principal port of ci is connected to an
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auxiliary port of ci+1, and the principal port of cn is connected to an auxiliary port of
c1. An example is given in Fig. 2 (right).

It is also useful to identify two special sorts of wires in nets:

Definition 1.3 (Axiom, cut, cut-free net). Let µ be a net, and ω = {p, q} a wire of µ.

Proper axiom: We say that ω is a proper axiom if it is a proper wire and none of p, q is
the principal port of a cell of µ.

Proper cut: We say that ω is a proper cut if it is a proper wire and both p and q are
principal ports of cells of µ.

Axiom-cut: We say that ω is an axiom-cut if it is a loop, or if µ contains a tree τ such
that p is the root of τ , and q one of its leaves.

An axiom (resp. cut) of µ is either a proper axiom (resp. proper cut) or an axiom-cut; in
the latter case, we refer to it as an improper axiom (resp. improper cut). We say that µ is
cut-free if it contains no cuts.

As an example, consider the net in Fig. 1, in which the reader should find 7 proper
axioms, 2 proper cuts, and 2 axiom-cuts. Note that proper cuts are in one-to-one correspon-
dence with active pairs. On the other hand, axiom-cuts are in many-to-one correspondence
with vicious circles, i.e., an axiom-cut implies the presence of exactly one vicious circle, but
a vicious circle implies the presence of at least one axiom-cut. Although the correspondence
is one-to-one for the net in Fig. 1, we have for instance that, despite having a single vicious
circle, the net on the left in Fig. 2 contains 4 axiom-cuts.

The following gives us a general understanding of the structure of cut-free nets:

Lemma 1.4 (Canonical form of a cut-free net). Let ν be a cut-free net with n free ports.
Then, for each 1 ≤ i ≤ n there exist a unique tree τi, and there exists a unique wiring ω
such that

. . . . . .

. . .

τ1 τn

ω

=ν

Proof. By induction on the number of cells of ν.

Note the wiring drawn as a rectangle; in the sequel, this graphical notation will be used
also to represent generic nets, but ω will always denote a wiring. Observe that all wires in ω
are proper axioms; in fact, the above is the shape of a generic cut-free multiplicative proof
net, with the axiom links in ω and the logical links in τ1, . . . , τn, whence our terminology.

A fundamental notion for developing the rest of the paper is that of context:

Definition 1.5 (Context, test, feedback). Let µ be a net with n free ports. A context for µ
is a net C with at least n free ports. We denote by C[µ] the application of C to µ, which is
the net obtained by plugging the free port i of µ to the free port i of C, with i ∈ {1, . . . , n}.
A test for µ is a particular context consisting of n trees τ1, . . . , τn such that the root of each
τi is the free port i. A feedback context for µ is a context σ consisting of a wiring connecting
some of the free ports of µ between them.

In the sequel, when we use the notation C[µ] we implicitly assume that C is a context
for µ, i.e., that it has enough ports so that µ can be plugged into it. Moreover, we shall say
that µ′ is a subnet of µ if there exists C such that µ = C[µ′]. Using the above definitions, we
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→β

α

α
. . .

. . .

. . .

. . .

→β

α

α

β β

β α
. . .

. . .

. . . . . .

. . . . . .

. . .

. . .

Figure 3: The interaction rules: annihilation (left) and commutation (right). In the anni-
hilation, the right member is empty in case α = ε.

can concisely formulate a decomposition result which, combined with Lemma 1.4, uncovers
the structure of a generic net:

Lemma 1.6 (Decomposition). Let µ be a net. Then, there exists a cut-free net ν and a
feedback context σ such that µ = σ[ν].

Proof. Simply let σ contain all the proper cuts of µ, plus one axiom-cut for each vicious
circle of µ, and let ν be the subnet of µ obtained by removing σ.

Observe that the net ν of Lemma 1.6 is unique as soon as µ does not contain vicious
circles (or, equivalently, axiom-cuts).

1.2. β-reduction and η-equivalence. The dynamics of interaction nets is based on the
contextual rewriting of active pairs, which are thus analogous to redexes in the λ-calculus.
In the case of the symmetric combinators, the active pairs are rewritten according to the
interaction rules of Fig. 3: the annihilations, concerning the interaction of two cells of the
same type, and the commutations, concerning the interaction of two cells of different type.

Definition 1.7 (β-reduction and β-equivalence). β-reduction is the reflexive-transitive clo-
sure of the relation defined as follows: given two nets µ, µ′, we set µ →β µ′ iff there exists
C such that µ = C[µ0], µ′ = C[µ′

0], and µ0, µ
′
0 match the left and right members of one of

the rules of Fig. 3, respectively. We define µ ≃β ν iff there exists o such that µ →∗
β o and

ν →∗
β o.

Proposition 1.8 (Strong confluence). If µ →β µ′ and µ →β µ′′ with µ′ 6= µ′′, there exists
ν such that µ′ →β ν and µ′′ →β ν. Hence, the relation →∗

β is confluent, and ≃β is an
equivalence relation.

Proof. Immediate: there are no critical pairs, because active pairs are always disjoint.

We now give a few basic results concerning β-reduction. The first two are generalizations
of the annihilation and commutation rules:

Lemma 1.9. Let τ be a tree. Then, we have

→∗

β

τ

τ
. . .

. . .

. . .

. . .
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Proof. By induction on the structure of τ .

Lemma 1.10. Let α, β range over binary symbols, with α 6= β. Let A be a tree not
containing β cells, and let B be a tree not containing α cells. Then, we have

→∗

β

A

A

B B

B A
. . .

. . .

. . . . . .

. . . . . .

. . .

. . .

Proof. By double induction on the structures of A and B.

The following is an easy corollary of Lemmas 1.4, 1.9 and 1.10:

Lemma 1.11 (Duplication). Let α be a binary symbol, let ν be a cut-free net containing
no α cell, and let τ be a tree containing only α cells. Then, we have

τ τ

ν

→∗

β
. . .

. . . . . . . . .

. . .

ν

. . .

. . .

. . . ν

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

n︷ ︸︸ ︷

Observe that the only cut-free net with an empty interface is the empty net. Then, the
next result shows, as a special case, that cut-free nets can be freely erased:

Lemma 1.12 (Erasing). Let ν be a cut-free net, and let µ be any net obtained from ν by
plugging any number of ε cells to its free ports, as follows:

. . .

ε ε. . .

ν
=µ

Then, there exists a cut-free net ν ′ such that µ →∗
β ν ′.

Proof. An immediate consequence of Lemmas 1.4 and 1.10.

We now introduce η-equivalence, which is similar to the homonymous relation in the
λ-calculus, with an essential difference: in the symmetric combinators η-equivalence cannot
be presented as the symmetrization of a rewriting relation, like β-equivalence. In fact, one
of the equations defining it (namely the η1 equation applied to binary cells, cf. Fig. 4)
cannot be meaningfully oriented and transformed into a rewriting step. The η1 equation
was already known to Lafont [Laf97]; the η0 equation was introduced by Fernández and
Mackie [FM03].

Definition 1.13 (η- and βη-equivalence). We define the relations ≃η0
and ≃η1

as the
reflexive, transitive, and contextual closure of respectively the left and right equation of
Fig. 4, which we call η0 and η1 equation, respectively. Then, we define η- and βη-equivalence
respectively as ≃η= (≃η0

∪ ≃η1
)+ and ≃βη= (≃β ∪ ≃η)

+.

The following results are the counterparts of Lemmas 1.9 and 1.10 for η-equivalence.
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α

α

α

α αβ β

β

≃η1

. . . . . .

. . . . . .

. . . . . .

≃η0

Figure 4: The equations defining η-equivalence. In both equations, α, β range over cell
symbols. In the left equation, α is binary; in the right equation, α 6= β.

Lemma 1.14. Let τ be a tree without ε cells. Then, we have

τ
. . .

τ

. . . ≃η0

Proof. By induction on the structure of τ .

Lemma 1.15. Let α, β range over binary symbols, with α 6= β. Let A be a tree not
containing β cells, and let B be a tree not containing α cells. Then, we have

A

A AB B

B

≃η1

. . . . . .

. . . . . .

. . . . . .

Proof. By double induction on the structure of A and B.

An easy corollary of Lemma 1.14 is that, modulo η-equivalence, the trees rooted at the
free ports of a net in the decomposition given by Lemmas 1.4 and 1.6 can “look like” almost
anything we want:

Lemma 1.16. For any net ν and for any trees without ε cells τ1, . . . , τn, there exists a net
ν ′ such that

. . . . . .

. . .

τ1 τn

ν′

≃ην

Proof. Simply “η-expand” the wires connected to the free ports of ν as in Lemma 1.14.
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When oriented from right to left, the η0 equation is formally identical to the standard
η-expansion rule in multiplicative proof nets (see for example the work of Pagani [Pag07]),
except that it may be applied to any wire in a net, while η-expansion in proof nets concerns
only axioms. Actually, it is possible to show that, when combined with β-equivalence, the
η0 equation still generates βη-equivalence even if its application is limited to axioms.

Lemma 1.17. Let µ →−
η0

ν iff µ = C[µ0] and ν = C[ω], where µ0 is a net matching the

left member of the η0 equation of Fig. 4, and ω is an axiom of ν. Let ≃−
η0

be the reflexive-

transitive closure of the symmetric closure of →−
η0

, and let ≃−
η = (≃−

η0
∪ ≃η1

)+. Then,

(≃β ∪ ≃−
η )+ = ≃βη.

Proof. Let us set ≃−
βη = (≃β ∪ ≃−

η )+. The inclusion ≃−
βη ⊆≃βη is obvious, because by

definition ≃−
η ⊆≃η. For what concerns the reverse inclusion, it is enough to show that if

ν is obtained from µ by a single application of the η0 equation on a wire which is not an
axiom, then µ ≃−

βη ν. We can assume witout loss of generality that such a wire is in ν.

Then, we must have µ = C[µ0] and ν = C[τ ], where τ is a tree and

τ

. . .

αµ0 =

α

We need to prove that C[µ0] ≃
−
βη C[τ ]. If τ = ε, we leave it to the reader to check that

C[µ0] →β C[µ′
0] ≃η1

C[ε]. Otherwise, we can assume τ to be “maximal”, i.e., its leaves are
either free or connected to an auxiliary port. In fact, this is not possible only if one of the
leaves of τ is connected to the principal port of the α cell of µ0 shown at the bottom of the
picture; but in this case the wire in ν obtained after applying the η0 equation would be an
axiom, against our hypothesis. Now, τ can always be decomposed as follows:

. . . . . . . . . . . .

. . . . . .

τ ′

1 τ ′′

1 τ ′

k τ ′′

k

α α
τ =

. . .

B

where B is a tree not containing α cells (we may have B = •), and τ ′
1, . . . , τ

′
k, τ ′′

1 , . . . , τ ′′
k are

trees (k may be equal to zero). By Lemma 1.10, we have
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α α

α

B B

. . . . . . . . . . . .

τ ′

1 τ ′′

1 τ ′

k τ ′′

k
. . .

. . . . . . . . . . . .

. . .

→∗

β = µ′

0µ0

By Lemma 1.15, we have

. . . . . . . . . . . .

. . .

τ ′

1 τ ′′

1 τ ′

k τ ′′

k

α α
≃η1

µ′

0

α

α α

α

. . .

B

Now, if we apply the η0 equation to the nets on the upper right of the above picture, the
resulting wires will be axioms, because of the “maximality” of τ . Hence, C[µ′

0] ≃
−
η C[τ ], as

desired.

As recalled in the introduction, a fundamental result due to Böhm [Böh68] implies that
no non-trivial congruence on λ-terms may equate two distinct βη-normal forms. In the
symmetric combinators there is a similar result [Maz07b], except that one cannot speak of
βη-normal forms, because, as discussed above, the symmetric combinators lack a notion of
η-reduction.

There is actually a deeper difference between the symmetric combinators and the
λ-calculus, given by the existence of vicious circles. Observe that such configurations are
stable under β-reduction, because cells can interact only through their principal port: they
are sort of deadlocks. Although diverging computations certainly exist in the λ-calculus,
deadlocks are something completely new. Because of this, the notion of normalizable net
(which, thanks to strong confluence, is the same as that of strongly normalizable net) does
not play a central role in the theory of the symmetric combinators. Instead, cut-free nets are
closer to a concept of “true” normal form: a net having no cut-free form represents either
a diverging or an error-bound computation, i.e., one that generates deadlocks. Other inter-
esting notions of convergence will be introduced in Sect. 2, but none of them will coincide
with simple normalization.

In the following, we say that a net is total if it β-reduces to a cut-free net.

Theorem 1.18 (Separation [Maz07b]). Let µ, ν be two total nets with the same interface,
such that µ 6≃βη ν. Then, there exists a test θ such that

ε ε
θ[ν]→∗

βθ[µ] →∗

β
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or vice versa.

The net on the right in Theorem 1.18 is the one we denoted by E2; we denote the other,
i.e., a single wire, by ω. The following makes us understand the strength of the Separation
Theorem:

Proposition 1.19. Let ∼ be a congruence on nets, such that ≃β ⊆∼. Then, ω ∼ E2

implies that, for all µ, ν with the same interface, µ ∼ ν.

Proof. Let µ be a net with n free ports. By the Decomposition Lemma 1.6, we have µ = σ[ν]
for some feedback context σ and some cut-free net ν. Since ∼ is a congruence, we can write

∼=µ

ν

. . .

. . .

ε

ε ε

ε

ε ε ε ε

ν

. . .

. . .

. . .

But by Lemma 1.12, the net on the right β-reduces to En, where En is a net with n free
ports containing n ε cells. Since ∼ contains β-reduction, we have proved that µ ∼ En for
any µ with n free ports, and we may conclude by symmetry and transitivity of ∼.

Therefore, the Separation Theorem implies that any non-trivial congruence containing
β-equivalence cannot equate two total βη-different nets. In particular, on total nets, such
a congruence must be contained in ≃βη. The Separation Theorem will be fundamental in
guiding us towards a definition of observational equivalence (Sect. 2).

1.3. Expressiveness. In strictly computational terms, the interest of the symmetric com-
binators is given by the following result:

Theorem 1.20 (Lafont [Laf97]). Any interaction net system can be translated in the sym-
metric combinators.

The definitions of interaction net system and of the notion of translation are out of the
scope of this paper. We shall only say that, modulo an encoding, Turing machines, cellular
automata, and the SK combinators are all examples of interaction net systems [Laf97,
Maz07a]. An example of encoding of linear logic and the λ-calculus in the symmetric
combinators1 is given by Mackie and Pinto [MP02]. We refer the reader to Lafont’s paper
[Laf97] for a proper formulation and proof of Theorem 1.20.

However, to give an idea of the expressive power of the symmetric combinators, we
shall show how general recursion can be implemented in the system, i.e., we shall see how
all recursive relations of the form

µ
. . .

µ
. . .

µ
. . .

→∗

β ν
. . .

. . .

1Actually these encodings use the interaction combinators, but they can be adapted with very minor
changes to the symmetric combinators.
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. . . µ′δ δµ = !µ =

. . .

. . . . . .

. . .

Zn Zn

Zn

Z4

µ′

µ′ contains no δ cell.

Figure 5: The Lafont code of a net.

D

!µ

→∗

β µ

Z4

δ

D =

Figure 6: The universal decoder for the Lafont code.

may be solved. In the λ-calculus, the above relation would correspond to

M →∗
β N [M/x]

where x appears free in N . It is well known that a general solution can be given by resorting
to a fixpoint combinator, i.e., a term Θ such that, for all T , ΘT →∗

β T (ΘT ). Then, a solution

to the above recursive relation would be M = Θ(λx.N).
A necessary condition for having a fixpoint combinator is the ability of duplicating

any term. In the symmetric combinators, we are only able to duplicate cut-free nets as in
Lemma 1.11, so we do not have a fixpoint combinator at our disposal. To compensate for
this, we use a fundamental construction due to Lafont [Laf97], and a generalization of it,
first considered by Fernandez and Mackie [FM01].

Given a net µ with one free port and containing n cells of type δ, we build a net !µ,
called the Lafont code of µ, as in Fig. 5. The Zk are trees of ζ cells, having k leaves. We
take Z0 to be equal to one ε cell; the actual shape of Zk for k > 0 is not important, as long
as one tree is fixed for each k. Observe then that, by construction, a Lafont code never
contains δ cells. The net µ can be recovered from its Lafont code by means of a “universal
decoder”, i.e., independent of µ, as in Fig. 6.

A similar construction removes active pairs and vicious circles, and is given in Fig. 7.
This construction uses the Decomposition Lemma 1.6, and the trees ∆k are defined as the
trees Zk, but using δ cells instead of ζ cells. The net §µ is called the cut-free code of µ.
Recovering µ from its cut-free code can be done as in Fig. 8. Rigorously speaking, §µ is not
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§µ =

ν cut-free

νµ =
. . .

ν

∆k

Z2 Z2

Z2

. . .

. . .

Figure 7: The cut-free code of a net.

Z2

Z2

R
→∗

β

§µ

R

µ

=

Figure 8: The universal decoder for the cut-free code.

well defined because, given a net µ, the cut-free net ν is not unique in general. However,
the recovery process works regardless of the particular ν we chose for the cut-free code, so
the abuse of notation is not problematic.

We shall take the net !§µ as the code of µ. Decoding is done by composing the nets D

and R of Fig. 6 and 8, respectively; we denote by U the net resulting from their composition.
Observe that the code of a net is cut-free and does not contain δ cells. Hence, Lemma 1.11
applies to it, and it can be freely duplicated by means of trees of δ cells.

We leave it as an instructive exercise for the reader to check that, using Lemmas 1.9,
1.10, and 1.11, the net µ of Fig. 9 is a solution to the recursive relation introduced above
(we have supposed that µ has n free ports and that there are k copies of µ on the right
hand side of the relation).

2. Observational Equivalence

2.1. Observable axioms. We already discussed in the introduction that in the λ-calculus,
and in functional programming in general, there is a standard way of defining an observa-
tional equivalence, which was first proposed by Morris [Mor68]. The key idea is to put a
term (i.e., a program) in a context (i.e., an environment) and to observe its behavior with
respect to some interesting property (for example, termination).

In a more abstract way, once we have a language with an internal notion of context,
we may take any set S of objects of the language and define S-equivalence as follows: two
objects a, b of the language are S-equivalent iff, for every context C, C[a] ∈ S iff C[b] ∈ S.
In other words, we partition the set of all objects into two classes, and we observe the
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Zn+1

U

Zn+1

U

Zn+1

. . .. . .

ν

=

∆2k

. . .

ϕ

Zn+1

. . .

. . .

ϕ µ
. . .

=

!§ϕ

Figure 9: Solving recursive relations.

contextual behavior of objects with respect to these two classes. Usually, the property
defining S (and thus its complementary set) is referred to as an “observable”.

As anticipated above, a typical observable is termination. In fact, Morris himself con-
sidered what we shall call nf-equivalence, which is obtained by taking S to be the set of
normalizable λ-terms. Another fundamental observable is head-termination, i.e., we may
define hnf-equivalence by taking S to be the set of head-normalizable λ-terms, which is the
same as the set of solvable λ-terms. For other examples of observables and for an account of
Morris-like observational equivalences in the context of the λ-calculus, we refer the reader
to Dezani-Ciancaglini and Giovannetti’s survey [DCG01].

We have shown that in the symmetric combinators, and in interaction nets in general,
we have an internal notion of context, and we can therefore hope of applying the above ideas
to generate interesting notions of observational equivalence: all we need is finding the right
observables. We have already remarked in Sect. 1.2 that termination is not an interesting
observable in interaction nets, because of vicious circles. However, the Separation Theorem
may give us a hint: in fact, it distinguishes two nets by sending one to a net presenting
a direct connection between its free ports, and the other to a net in which no such direct
connection will ever form. This points out that the appropriate notion of “connection” may
be the right thing to observe.

Intuitively, an axiom in a net is observable when it can be “extracted” from the net
through interaction, as in the Separation Theorem 1.18. We formalize this intuition as
follows.

Definition 2.1 (Observable axiom). Let µ be a net, and let ω = {p, q} be a proper axiom
of µ. We say that ω is observable iff µ contains two trees τi, τj , of respective roots i, j, such
that p is a leaf of τi, q is a leaf of τj, and i, j are both free ports of µ. We say that such
observable axiom is based at i, j.

It is perhaps useful to visualize observable axioms. A net µ contains an observable
axiom ω iff it is of the shape given in Fig. 10. If i = j, then τi = τj, and ω connects two
leaves of the same tree. Note also that one or both of τi, τj may be equal to •; in particular,
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i j

τi τj

. . . . . . . . .

. . .. . .. . .

µ0

. . .

ω

Figure 10: An observable axiom.

a wire whose both extremities are free (as in the Separation Theorem 1.18) is an observable
axiom.

Observable axioms may be succinctly described by assigning them an address. In the
following, we let a, b range over the set W = {p,q}∗ of finite binary words, and we denote
by 1 the empty word. Pairs of finite words are denoted by a ⊗ b, and ranged over by s, t.
The concatenation of two finite words a, b is denoted by simple juxtaposition, i.e., as ab.
The concatenation of two pairs of finite words a ⊗ b, a′ ⊗ b′ is defined as aa′ ⊗ bb′, and is
also denoted by juxtaposition.

Definition 2.2 (Address). An address is an unordered pair of elements of W × W × N,
denoted by a⊗ b@ i ⌢ c⊗ d@ j, and ranged over by x, y. Let τ be a tree, and l a leaf of τ .
We associate with l an element of W ×W, denoted by brτ (l), by induction on τ :

• τ = •: brτ (l) = 1 ⊗ 1;
• τ = δ(τ1, τ2): brτ (l) = (p⊗ 1)brτ1(l) if l is a leaf of τ1, brτ (l) = (q⊗ 1)brτ2(l) if l is a leaf

of τ2;
• τ = ζ(τ1, τ2): brτ (l) = (1⊗ p)brτ1(l) if l is a leaf of τ1, brτ (l) = (1⊗ q)brτ2(l) if l is a leaf

of τ2.

Let now ω = {p, q} be an observable axiom of a net µ; we define its address to be

addrµ(ω) = brτi
(p)@ i ⌢ brτj

(q)@ j,

where τi, τj are the trees among whose leaves there is p, q, respectively, and i, j are the roots
of τi, τj , respectively, which are free ports of µ (hence i, j ∈ N by our convention on free
ports of Definition 1.1).

In the following, we denote by ax(µ) the set of all addresses of the observable axioms
of a net µ, and we define

ax∗(µ) =
⋃

µ→∗
β
µ′

ax(µ′).

Proposition 2.3. Let µ →∗
β µ′. Then, ax(µ) ⊆ ax(µ′), and ax∗(µ) = ax∗(µ′).

Proof. Simply look at Fig. 10, which represents the generic form of µ: any active pair must
be inside µ0, and, after reducing it, since interaction rules are completely local, the “same”
axiom as ω is still present in µ′, with the same address. The invariance of ax∗(·) is a
consequence of the confluence of β-reduction.
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ζ

ζ

δ

ζ

ε

ζ

ζ ζ

ε δ

ζ

ε

→∗

β →∗

β · · ·

Figure 11: A non-normalizable net producing a finite number of observable axioms.

Note that a net can only have a finite number of observable axioms; then, by Propo-
sition 2.3, ax∗(µ) is finite whenever µ is normalizable. However, normalizability is not
necessary: non-normalizable nets producing a finite number of observable axioms exist, as
shown by the example in Fig. 11: the only observable axiom ever to be found is the one
already present in the net starting the reduction sequence, i.e., 1⊗ pp@ 1 ⌢ 1⊗ pq@ 1.

We now have two interesting notions of observable: the appearance of observable axioms
during reduction, and the fact that these are only produced in finite number.

Definition 2.4 (Observability predicates). We say that µ is immediately observable, and
we write µ↓, iff ax(µ) 6= ∅. We say that µ is observable, and we write µ⇓, iff ax∗(µ) 6= ∅, or,
equivalently, µ →∗

β µ′↓. We say that µ is finitarily observable, and we write µ ⇚ , iff ax∗(µ)

is non-empty and finite. We write µ⇑ and µ ⇛ for the negations of µ⇓ and µ ⇚ , respectively.
In particular, if µ⇑ we say that µ is blind.

Definition 2.5 (Observational equivalences). Two nets µ, ν with the same interface are
axiom-equivalent (resp. finitarily axiom-equivalent), and we write µ ≃ ν (resp. µ ∼= ν), iff
for all contexts C, C[µ]⇓ iff C[ν]⇓ (resp. C[µ] ⇚ iff C[ν] ⇚ ).

It helps thinking of an immediately observable net as a head normal form in the
λ-calculus. This analogy can be made more precise: our definition of observable net
can in fact be extended to any interaction net system [Maz06], in particular to sharing
graphs [?, GAL92]; then, one can see that the head variable of a head normal form T
corresponds to an observable axiom in the sharing graph of T .

Observe that, once we think of observable axioms as head variables, we are naturally
led to see ax∗(µ) as nothing but a sort of “Böhm tree” of µ. For instance, ax∗(·) is an
invariant of reduction (Proposition 2.3), just like the Böhm tree of a λ-term. In Sect. 3.1,
we shall develop an abstract interpretation of nets starting from this intuition.

2.2. Observable axioms and the geometry of interaction. The geometry of interac-
tion (GoI) was introduced by Girard [Gir89] as a mathematical formulation, using functional
analysis and operator algebras, of the cut-elimination process in linear logic. Later, it was
reformulated using much less sophisticated tools by Danos and Regnier [DR95], and it was
also transported to the interaction combinators (symmetric and not) by Lafont [Laf97].
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c∗c ≻ 1 c∗f ≻ fc∗ f∗c ≻ cf∗

d∗d ≻ 1 c∗g ≻ gc∗ f∗d ≻ df∗

f∗f ≻ 1 d∗f ≻ fd∗ g∗c ≻ cg∗

g∗g ≻ 1 d∗g ≻ gd∗ g∗d ≻ gd∗

Figure 12: Word rewriting on monomials.

As a rough approximation, we can say that the GoI interprets nets as collections of paths
which are stable under β-reduction; we shall see that these paths ultimately correspond to
observable axioms.

Definition 2.6 (Monomial, rewriting and value of monomials). An atom is an element
of {c,d, f ,g, c∗ ,d∗, f∗,g∗}; and atom is positive if it belongs to {c,d, f ,g}, otherwise it is
negative. A monomial is a finite word on the set of atoms. The set of monomials is denoted
by M, and ranged over by A,B; the empty monomial will be denoted by 1. A monomial is
positive if it is empty or contains only positive atoms. We define an involution (·)∗ on M
by setting (c)∗ = c∗, (d)∗ = d∗, and similarly for f ,g; (c∗)∗ = c, (d∗)∗ = d, and similarly
for f∗,g∗; 1∗ = 1, and (AB)∗ = B∗A∗.

We define a word rewriting relation ≻ on M as in Fig. 12. We say that A′ ∈ M is
clash-free iff A′ ≻∗ AB∗, where A,B are positive monomials.

Let A ∈ M, and let A∗
0 be an occurrence of negative atom in A, i.e., A = A′A∗

0A
′′ for

some A′, A′′ ∈ M. The value of A∗
0 in A, denoted by vA(A∗

0), is the number of positive
atoms in A′′. We define the value of A to be v(A) =

∑
A∗

0

vA(A∗
0), where A∗

0 ranges over

the occurrences of negative atoms in A.

Lemma 2.7. Let A ≻ B. Then, v(A) > v(B).

Proof. By simple inspection of Fig. 12.

Proposition 2.8. Rewriting of monomials is confluent and strongly normalizing.

Proof. For what concerns confluence, simply observe that there are no critical pairs. Strong
normalization is a consequence of Lemma 2.7.

Definition 2.9 (Port graph). The port graph of a net µ, denoted by PG(µ), is an undirected
multigraph whose edges are weighed in the positive monomials, defined as follows: its
vertices are the elements of Ports(µ), and there is an edge between two ports p, q iff one of
the following (non mutually exclusive) conditions hold:

external edge: {p, q} ∈ Wires(µ); the weight in this case is 1;
internal edge: p and q are principal and auxiliary ports of a cell of µ; the weight in this

case depends on the auxiliary port q: it is c (resp. d) if q is port number 1 (resp. 2) of a
δ cell, and it is f (resp. g) if q is port number 1 (resp. 2) of a ζ cell.

As an example, in Fig. 13 we give the port graph of the net of Fig. 1.

Definition 2.10 (Paths, weights [DR95, Laf97], values). A straight path of a net µ is a path
of PG(µ) which does not contain two consecutive internal edges. We say that a straight
path crosses an active pair iff it contains an external edge corresponding to a proper cut.
A maximal path is a non-empty straight path connecting two free ports of µ. An observable
path is a maximal path crossing no active pair. We denote by mpi,j(µ) the set of maximal
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Figure 13: The port graph of the net of Fig. 1. Internal edges are dotted, and their weight
annotated beside them; the other weights are omitted, and are all equal to 1.

paths of a net µ from its free port i to its free port j, and we denote by mp(µ) the set of
all maximal paths of µ.

Let φ ∈ mp(µ), and let e be an internal edge of PG(µ) used by φ. Note that e must
correspond to a binary cell c of µ; hence, there is no ambiguity in saying that φ “enters”
c, uses the internal edge, and then “exits” c. We say that e is crossed downwards (resp.
upwards) by φ if φ enters c through an auxiliary port (resp. through its principal port) and
exists c through its principal port (resp. through one of its auxiliary ports). Let A be the
weight of e in PG(µ). The weight of e in φ, denoted by wφ(e), is A if e is crossed downwards;
otherwise, it is A∗. If e is an external edge, we fix wφ(e) = 1.

Now let φ = e1, . . . , en be a maximal path of a net; we define the weight of φ to be the
following monomial:

w(φ) = wφ(en) · · ·wφ(e1)

(note the reversal of the order of edges). Moreover, we define the value of φ, abusively
denoted by v(φ), as v(w(φ)).

In the sequel, we shall speak of paths in a net µ without explicitly referring to PG(µ).
This will not be a source of confusion, because all edges of PG(µ) correspond to either wires
of µ or “internal connections” represented by the cells of µ; hence, given a straight path of
µ, we can easily trace it directly on its graphical representation, and vice versa.

Note that the presence of an observable path in a net µ implies the presence of exactly
one observable axiom in µ, and vice versa (modulo orientation of paths, i.e., an observable
axiom actually induces two observable paths, which are the reversal of each other). In
fact, if we look at Fig. 10, we find an observable path by entering the net through its free
port i, “going up” τi through the branch leading to ω, following ω itself, and “descending”
τj through the only branch leading us to its root, which is the free port j. Conversely, it is
easy to see that any observable path must be of this form (with τi, τj which may be equal
to •), because of the absence of active pairs.

Definition 2.11 (Residue and lift of a maximal path). Let µ →β µ′, and let φ ∈ mp(µ).
The residue φ′ of φ in µ′ is, if it exists, the maximal path of µ′ defined as follows. If φ does
not cross the active pair reduced, then by the locality of interaction rules, “the same” path
as φ is found in µ′, and this is taken to be φ′. Otherwise, we call 1, 2 and 3, 4 the auxiliary
ports of the cells (which must be binary, because φ is maximal) composing the active pair
reduced, and we distinguish two cases:

• the two cells have the same symbol:
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− if φ connects 1 to 3 or 2 to 4, then this connection becomes a wire in µ′, so φ′ is equal
to what is left of φ with the active pair replaced by a wire;

− if φ connects 1 to 4 or 2 to 3, then φ has no residue;
• the two cells have different symbols; then, whatever ports are connected by φ, the con-

nection is still present in µ′, so φ′ is equal to what is left of φ with the active pair replaced
by this new connection.

Of course φ may cross the active pair more than once, but this is not problematic: its residue
is still defined as above, replacing every crossing with the appropriate path described above.
Conversely, if φ′ ∈ mp(µ′), then it is the residue of exactly one maximal path of µ, which is
called the lift of φ′ in µ.

Remark that the notions of residue and lift can be extended to reductions of arbitrary
length: if µ →∗

β µ′, and if φ is a maximal path of µ, we can look for its residue (if it exists) by

tracing the successive residues of φ along the reduction; conversely, if φ′ is a maximal path
of µ′, by successively lifting φ′ along the reduction, we obtain the lift of φ′ in µ. Remark
also that residues connect the same free ports as their lifts: if φ ∈ mpi,j(µ), and if φ′ is the
residue of φ in a reduct µ′ of µ, then φ′ ∈ mpi,j(µ

′).
The following shows that monomial rewriting is related to β-reduction:

Proposition 2.12. Let µ →β µ′, let φ′ ∈ mp(µ′), and let φ be the lift of φ′ in µ. Then,
w(φ) ≻∗ w(φ′).

Proof. If φ does not cross the active pair reduced, we have φ′ = φ, and the result trivially
holds. So suppose that φ crosses the active pair reduced. We start by observing that,
since φ is maximal, the active pair reduced must concern two binary cells c, c′. We set
i1, i2 to be the auxiliary port number 1 and number 2 of c, respectively, and i′1, i

′
2 to be

the auxiliary port number 1 and number 2 of c′, respectively. We have two cases: an
annihilation, or a commutation. Suppose we are in the first case. Since φ has a reduct in
µ′, each time φ crosses the active pair made by c, c′, it must do so by using the pairs of
ports i1, i

′
1 or i2, i

′
2. Hence, if φ crosses the active pair n times, there exist n occurrences

of positive atoms A1, . . . , An such that w(φ) = . . . A∗
1A1 . . . A∗

nAn . . ., i.e., the weight of φ
contains a word A∗

kAk for each crossing of the active pair. Now, by Definition 2.11, all such
crossings are replaced by wires in φ′, so w(φ′) = . . . 1 . . . 1 . . ., and we thus clearly have
w(φ) ≻∗ w(φ′). Suppose now that we are in the case of a commutation, with φ crossing n
times the active pair made of c, c′. This time, we must have n negative atoms A∗

1, . . . , A
∗
n

and n positive atoms B1, . . . , Bn such that w(φ) = . . . A∗
1B1 . . . A∗

nBn . . ., and, for each
1 ≤ k ≤ n, the atoms satisfy that, if A∗

k ∈ {c∗,d∗}, then Bk ∈ {f ,g}, and if A∗
k ∈ {f∗,g∗},

then Bk ∈ {c,d}. Hence, again by Definition 2.11, we have w(φ) = . . . B1A
∗
1 . . . BnA∗

n . . .,
and, by looking at Fig. 12, w(φ) ≻∗ w(φ′).

Proposition 2.12 is the basis of the GoI. In fact, the above result basically transforms
β-reduction into a word rewriting system; the idea then is to take a model of this rewriting
system and build from it a model of β-reduction. By “model”, we mean a function J·K
interpreting monomials in some mathematical structure such that, for all A,B ∈ M, A ≻ B
implies JAK = JBK. The following construction, given by Lafont [Laf97] and inspired by
previous work of Girard [Gir89], does precisely this.

In the following, an involutive monoid is a couple (M, (·)∗) where M is a multiplicative
monoid, and (·)∗ an involutive antiautomorphism of M . A homomorphism f between
two involutive monoids (M, (·)∗), (M ′, (·)†) is a homomorphism of monoids preserving the
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involution, i.e., such that, for all a ∈ M , f(a∗) = f(a)†. Similarly, an involutive unit
semiring is a couple (S, (·)∗) where S is a unit semiring, whose additive and multiplicative
units are denoted by 0 and 1, respectively, and (·)∗ is an involutive antiautomorphism of S.

Let R be the involutive unit semiring generated by the set {p,q} and by the relations

p∗p = 1 p∗q = 0,
q∗q = 1 q∗p = 0.

Consider now the semiring R⊗R; this is still an involutive unit semiring, the multiplicative
unit being 1 ⊗ 1 and the involution being defined by (

∑n
i=1 ai ⊗ bi)

∗ =
∑n

i=1 a∗i ⊗ b∗i . Our
model will interpret monomials in R ⊗ R, as follows. By definition, the set M is a free
involutive monoid, and R ⊗ R may also be seen as an involutive monoid, by taking its
multiplicative part; hence, we can define a homomorphism J·K by setting

JcK = p⊗ 1 JfK = 1 ⊗ p,
JdK = q⊗ 1 JgK = 1⊗ q.

The fact that M is free ensures that J·K is defined everywhere once it is defined on its
generators.

Proposition 2.13. For all A,B ∈ M, A ≻ B implies JAK = JBK.

Proof. The rules of Fig. 12 of the form A∗A ≻ 1 are modelled by the annihilation relations
a∗a = 1 defining R; the rules of the form A∗B ≻ BA∗ are modelled by the commutations
(a ⊗ 1)(1 ⊗ b) = (a ⊗ b) = (1⊗ b)(a ⊗ 1) in R⊗R.

Now, given a cut-free net ν with n free ports, the GoI assigns to it a formal n×n matrix
JνK with coefficients belonging to R⊗R and defined as follows:

JνKj,i =
∑

φ∈mpi,j(ν)

Jw(φ)K

Note that mpi,j(µ) coincides with the set of observable paths from i to j, because ν is
cut-free; there are obviously finitely many of these, so the above sum is finite and defines
an element of R⊗R.

If µ is a net, we know by the Decomposition Lemma 1.6 that we can always write
µ = σ[ν0] with ν0 cut-free and σ a feedback context; the key result of the GoI is that, if µ
is total of cut-free form ν, we can compute JνK starting from Jν0K. For this, we use a formal
matrix associated with σ, which we denote by JσK, defined as follows: if ν0 has n + 2k free
ports, then JσK is a (n + 2k) × (n + 2k) matrix, such that JσKi,j = 1 if σ connects the free

ports i and j of ν0, and JσKi,j = 0 otherwise.

Theorem 2.14. Let µ = σ[ν0] be a net with n free ports, with ν0 having n + 2k free ports.
Then, µ is total iff JσKJν0K is nilpotent, and in that case, if ν is the cut-free form of µ, we
have

JνK = πt

(
∞∑

h=0

Jν0K(JσKJν0K)
h

)
π,

where π is the formal matrix of the inclusion morphism of (R⊗R)n into (R⊗R)n+2k, and
πt its transpose.
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Proof. This was originally proved by Girard for linear logic2 [Gir89], with nilpotency only
as a necessary condition for strong normalization (i.e., totality); Danos and Regnier later
proved the converse [DR95]. For the symmetric combinators, the result with nilpotency as
a necessary condition is due to Lafont [Laf97]; a proof that nilpotency is also sufficient for
totality can be found in the author’s Ph.D. thesis [Maz06] (as the proof of Theorem 3.70).

The formula for computing JνK from Jν0K and JσK given in Theorem 2.14 is known as
the execution formula. For total nets, the execution formula is an invariant of β-reduction,
and therefore gives a model of ≃β. However, this does not work for non-total nets, because
in that case the sum in the execution formula has an infinite number of terms. To handle
it, one solution would be to put some topology on R⊗R (or rather, on its algebra of formal
matrices), and study the convergence of the execution formula in this topology. Another
solution, which is the one we chose in this paper, is to deal directly with possibly infinite
objects, just like one deals with possibly infinite Böhm trees in the λ-calculus.

In fact, even when it “diverges”, the execution formula is not completely meaningless:
it computes the interpretations of the weights of those maximal paths which are never
“destroyed” by reduction. We shall see that these correspond to the observable axioms
generated during reduction. This gives a further justification for our definitions of Sect. 2.1.

Definition 2.15 (Execution path [DR95]). Let µ be a net. An execution path of µ is a
maximal path φ of µ such that, whenever µ →∗

β µ′, φ has a residue in µ′.

Remark that, as an immediate consequence of the definition, any residue of an execu-
tion path is itself an execution path. As we said above, execution paths are those which
are preserved by reduction, and which eventually generate observable paths (and hence
observable axioms).

Lemma 2.16. Let µ be a net, and let φ be an execution path of µ. Then:

(1) v(φ) = 0 implies that φ is observable;
(2) v(φ) > 0 implies that φ crosses an active pair, reducing which we obtain µ →β µ′, and

the residue φ′ of φ in µ′ is such that v(φ′) < v(φ).

Proof. For part (1), observe that v(φ) = 0 implies w(φ) = AB∗ for some positive monomials
A,B, which is clearly the weight of an observable path. For part (2), note that v(φ) > 0
implies w(φ) = A′A∗

0B0B
′ for some A′, B′ ∈ M and some positive atoms A0, B0. Then, φ

crosses an active pair, so we apply Proposition 2.12 (or rather its proof) and Lemma 2.7.

Lemma 2.17. Let µ be a net, and let φ ∈ mp(µ). Then, the following are equivalent:

(1) φ is an execution path;
(2) µ →∗

β µ′ such that the residue of φ in µ′ is an observable path;

(3) w(φ) is clash-free;
(4) Jw(φ)K 6= 0.

Proof. (1) implies (2) is proved by induction on v(φ), using Lemma 2.16.
For (2) implies (3), let φ′ be the residue of φ in µ′. Since it is an observable path, we

have w(φ′) = AB∗ for some positive monomials A,B, and we conclude by Proposition 2.12.

2Actually, as formulated here, this result holds only for multiplicative linear logic; some technical con-
straints are needed in full linear logic, because the execution formula does not model cut-elimination in the
general case.
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For (3) implies (4), observe that normal form of w(φ) is by definition of the form AB∗,
so by Proposition 2.13 Jw(φ)K = JAB∗K = JAKJBK∗, which is never equal to 0 by definition
of J·K.

For (4) implies (1), we prove the contrapositive. Suppose φ is a maximal path of µ
which is not an execution path. This means that µ →∗

β µ′ →β µ′′, and the residue φ′ of

φ in µ′ has no residue in µ′′. By Definition 2.11, the only possibility is that φ′ crosses an
active pair made of two binary cells c, c′ of the same kind, using auxiliary port 1 of c and
auxiliary port 2 of c′. Hence, we have, for some A′, B′ ∈ M, w(φ′) = A′A∗

0B0B
′, and either

A0, B0 ∈ {c,d}, or A0, B0 ∈ {f ,g}, but in both cases A0 6= B0. Hence, by Proposition 2.13
and by definition of R, we have Jw(φ)K = Jw(φ′)K = JA′KJA0K

∗JB0KJB
′K = JA′K0JB′K = 0.

Now, we invite the reader to check that, if a net ν has an observable axiom ω whose
address is s @ i ⌢ t @ j, and if φ is the observable path from i to j induced by ω, we
have Jw(φ)K = ts∗. Vice versa, if ν has an observable path φ from free port i to free
port j such that w(φ) = BA∗, then the corresponding observable axiom will have address
JAK @ i ⌢ JBK @ j. This is the reason behind our choice of notations for the addresses of
observable axioms; moreover, it allows us to state the following:

Proposition 2.18. For every net µ, we have

ax∗(µ) =
{
s @ i ⌢ t @ j

∣∣ φ ∈ mpi,j(µ), Jw(φ)K = ts∗
}

.

Proof. For what concerns the inclusion from left to right, we have µ →∗
β µ′ such that µ′

contains an observable axiom of address s @ i ⌢ t @ j. By the remark made above, we know
that this observable axiom induces an observable path φ′ of µ′ from free port i to free port
j such that Jw(φ′)K = ts∗; then, we take its lift φ in µ, and conclude by Propositions 2.12
and 2.13.

For the other inclusion, by hypothesis Jw(φ)K 6= 0, so by Lemma 2.17 we have µ →∗
β µ′

such that the residue φ′ of φ in µ is observable. By Propositions 2.12 and 2.13, Jw(φ′)K =
Jw(φ)K, and, as remarked above, we know that φ′ induces an observable axiom of address
s @ i ⌢ t @ j, which is in ax∗(µ) by definition.

We encourage the reader to compare Proposition 2.18 with the definition of JνK given
above: basically, we can see ax∗(·) as the extension of J·K to arbitrary nets. In fact, if we
tried to define JµK in the general case, the sum ranging over mpi,j(µ) might be infinite; as
mentioned above, instead of introducing a topology to handle series, we opted for a “Böhm-
tree” approach: we reduce µ, and collect the observable axioms showing up along the way,
accepting that there may be an infinity of them. Using formal matrices does not make much
sense at this point, but we still need to retain the information concerning the free ports
connected by the observable paths: this is the reason behind the presence of integers in
addresses. The fact that addresses are unordered pairs reflects the fact that an observable
path carries the same information as its reversal; indeed, in the GoI interpretation of a
cut-free net ν one can show that JνKi,j = JνK∗j,i (all operators are “Hermitian” [Gir89]).

The question of what can be done by taking the topological approach instead of the
“Böhm tree” approach is left open, and is out of the scope of this work. We shall see that
topology will eventually play a fundamental role in our approach too, but for quite different
purposes.



26 D. MAZZA

µ

Figure 14: A quasi-wire; µ is an arbitrary net with an empty interface.

2.3. Solvability and ε-reduction. The analogy “an immediately observable net is like a
λ-term in head normal form” can be given a justification within the theory of the symmetric
combinators. In the following, we call a net of the form given in Fig. 14 a quasi-wire.

Definition 2.19 (Solvable net). A net µ is solvable iff there exist a test θ such that
θ[µ] →∗

β W , where W is a quasi-wire.

We shall see that, just as λ-terms having a head normal form coincide with solvable
λ-terms, so in the symmetric combinators observable nets and solvable nets coincide. Fur-
thermore, in Sect. 5.2 we shall give evidence supporting the fact that the above notion of
solvable net is indeed analogous to that of a solvable λ-term.

Let C be a net, and let I be a subset of its interface. We say that C is relatively blind on
I iff, whenever s @ i ⌢ t @ j ∈ ax∗(C), i ∈ I implies j 6∈ I, i.e., C generates no observable
axiom all based within I. A context C for nets with n free ports will be said to be relatively
blind if its interface is {1, . . . , n} ⊎ I and C is relatively blind on I.

Lemma 2.20. For every net µ and relatively blind context C, µ⇑ implies C[µ]⇑.

Proof. Let µ⇑, and suppose for the sake of absurdity that C[µ] →∗
β µ′↓. The observable

axiom in µ′ induces an observable path φ′ in µ′, which has a lift φ in C[µ], connecting two
free ports of the relatively blind interface of C. Suppose that φ ∈ mp(C). By looking at
the proof of Proposition 2.12, we see that φ can be transformed into an observable path
by reducing only the active pairs it crosses; hence, we would have C →∗

β C ′, with φ′ an

observable path of C ′, which would contradict the fact that C is relatively blind. Then, we
must have the following situation

. . .. . . . . .

=

µ

C

C[µ] . . . . . .. . .
φ0

φ

where we drew φ as a dashed line. As a consequence, we can write φ = φ′φ0φ
′′, where

φ0 ∈ mp(µ). We thus have w(φ) = w(φ′′)w(φ0)w(φ′), which means that w(φ0) is a subword
of w(φ). But, by Lemma 2.17, w(φ) is clash-free, so w(φ0) is clash-free too; if we apply
Lemma 2.17 again, we obtain that φ0 has an observable residue, which, by the above
remark, can be obtained by reducing only the active pairs it crosses, which are all within
µ. Therefore, we obtain µ⇓, a contradiction.

Lemma 2.21. Let µ be a net. Then, µ⇑ implies θ[µ]⇑ for any test θ.

Proof. Simply observe that a test is a relatively blind context.

Now, the forward implication of the equivalence “observable iff solvable” holds because
observable axioms are defined precisely with the intuition that we can “extract” a wire from
µ by means of a test; the converse is a consequence of Lemma 2.21:

Proposition 2.22. A net µ is observable iff it is solvable.



INTERACTION COMBINATORS: OBSERVATIONAL EQUIVALENCE AND FULL ABSTRACTION 27

Proof. Let µ⇓; by Definition 2.4, we know that µ reduces to a net of the shape given in
Fig. 10. Then, consider the test

ε

ε

ε ε ε

ε

. . . . . . . . .

. . . . . .. . .. . .

τi τj

where we leave free exactly the two leaves of τi, τj corresponding to those connected by the
observable axiom ω of Fig. 10. By Lemma 1.9, we have that θ[µ] β-reduces to a quasi-wire,
as desired. Suppose now µ⇑. Remark that quasi-wires are immediately observable, so if µ
were solvable, we would have a test θ such that θ[µ]⇓, contradicting Lemma 2.21.

Another interesting consequence of Lemma 2.21 is that finitary axiom-equivalence is
stronger than axiom-equivalence:

Proposition 2.23. For all µ, ν, µ ∼= ν implies µ ≃ ν.

Proof. Assume µ ∼= ν, and let C be a context such that C[µ]⇓. We need to show that C[ν]⇓;
by symmetry of ∼=, this will be enough to prove the result. By Proposition 2.22, C[µ] is
solvable, so we have a test θ such that θ[C[µ]] β-reduces to a quasi-wire. But quasi-wires
generate exactly one observable axiom, so θ[C[µ]] ⇚ , which by µ ∼= ν implies θ[C[ν]] ⇚ , which
by Definition 2.4 implies θ[C[ν]]⇓, which implies C[ν]⇓ thanks to Lemma 2.21.

The λ-calculus has an interesting notion of Ω-reduction, which is defined by the re-
duction rule M →Ω Ω iff M is unsolvable and different from Ω, where Ω is itself some
fixed unsolvable term (usually one takes Ω = (λx.xx)(λx.xx)). Added to other reduc-
tions, Ω-reduction has interesting properties: βΩ-reduction and βηΩ-reduction characterize
provability in the theory H (the smallest sensible theory, cf. Sect. 5.3) and Hη, respec-
tively [Bar84]. This latter coincides with nf-equivalence, defined in Sect. 2.1.

Since we have our own notion of unsolvable net, it may be interesting to study the
behavior of the following rewriting rule, directly inspired by Ω-reduction:

ε ε

. . .. . .

µ⇑ →ε = En

where µ has n free ports and µ 6= En.

Definition 2.24 (ε- and βε-reduction). We write →ε for the contextual closure of the
above rule, and we define →βε= (→β ∪ →ε).

Of course the rewriting rule defining ε-reduction is not recursive, because it is unde-
cidable whether a net is blind (intuitively, this is a consequence of the Turing-completeness
of the symmetric combinators, and of Rice’s theorem—any non-trivial class of recursive
functions, hence of nets, is undecidable). This is exactly the same situation as Ω-reduction,
where it is undecidable whether a λ-term is unsolvable. We shall see that the interest of
βε-reduction is in its relationship with finitary axiom-equivalence (Corollary 2.31).

We say that a binary relation on nets  has the quasi-diamond property iff µ  µ1

and µ µ2 implies that there exists ν such that µ1  ν or µ1 = ν, and µ2  ν or µ2 = ν.

Lemma 2.25. Let  be a binary relation on nets satisfying the quasi-diamond property.
Then, its reflexive transitive closure  ∗ satisfies the diamond property, i.e., it is confluent.

Proof. A standard diagram-chasing argument.
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Lemma 2.26. The relation →βε satisfies the quasi-diamond property.

Proof. Let µ →βε µ1 and µ →βε µ2. We may suppose µ1 6= µ2, otherwise there is nothing
to prove. If the two reductions come from two active pairs, we conclude by applying
Proposition 1.8. Otherwise, suppose without loss of generality that µ →β µ1 and µ →ε µ2,
i.e., we have µ = C[ν] and µ2 = C[En], where ν is a blind net with n free ports. We have
three cases:

• ν →β ν ′ and µ1 = C[ν ′], i.e., the active pair reduced to obtain µ1 is contained in ν. In
that case, we still have ν ′⇑, so µ1 →ε µ2.

• The active pair reduced to obtain µ1 is “between” ν and C, i.e., one of its cells is in ν
and the other, call it c, is in C. We suppose c to be binary; the nullary case is easier,
and left to the reader. Then, the cell c together with a suitable identity wiring (which
may be empty in case n = 1) forms a test θ, and we can write µ = C ′[θ[ν]] for a suitable
context C ′. Now θ[ν] →β ν ′ and µ1 = C ′[ν ′], while µ2 = C ′[θ[En]]. By Lemma 2.21, we
have both θ[ν]⇑ and θ[En]⇑, so both µ1 and µ2 ε-reduce in one step to C ′[En+1].

• The active pair reduced is completely disjoint from ν. This case is trivial.

We are left with the situation in which both µ1 and µ2 are obtained by means of ε-steps.
Let ν1, ν2 be the blind subnets of µ reduced to obtain µ1 and µ2, respectively. If ν1 and
ν2 are disjoint, then the diamond property holds trivially. Otherwise, we have µ = C[ν],
where ν is the net

. . . . . . . . .

. . .

. . .
ν′

1 ν′

2

ν0

and ν1 is equal to ν ′
1 plus ν0, while ν2 is equal to ν ′

2 plus ν0. Now, if we put

. . . . . .
ν′

2
. . . . . .

ν′

1

εε

. . .. . .

ε ε ε ε

. . .. . .

ε ε ε ε εε

o1 = o2 =

︸ ︷︷ ︸
I2

︸ ︷︷ ︸
I1

we have µ1 = C[o1] and µ2 = C[o2]. But ν ′
1 and ν ′

2 must be relatively blind on I1 and I2,
respectively, because ν1 and ν2 are blind. Hence, by Lemma 2.20, the subnets marked by
the dashed rectangles in the above picture are both blind, so µ1 and µ2 both reduce in at
most one ε-step to C[En], where n is the number of free ports of ν.

Proposition 2.27 (Confluence of βε-reduction). The relation →∗
βε is confluent.

Proof. Apply Lemmas 2.25 and 2.26.

The confluence of βε-reduction allows us to introduce the following congruences:

Definition 2.28 (βε- and βηε-equivalence). βε-equivalence is defined by µ ≃βε ν iff there
exists o such that µ →∗

βε o and ν →∗
βε o; βεη-equivalence is defined by ≃βηε = (≃βε ∪ ≃η)

+.

Note that βε-normal forms are always cut-free. In particular, we have the following
characterization, whose proof is left to the reader. In the following, an ε-tree is a tree with
no leaves; the ε-tree ε is called trivial.

Proposition 2.29 (βε-normal forms). A net µ is βε-normal iff it is cut-free, and each
ε-tree contained in µ is trivial.
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The following result shows that βε-reduction is related to finitary axiom-equivalence.
We first need to extend Proposition 2.3 to βε-reduction, which is unproblematic:

Proposition 2.30. µ →∗
βε ν implies ax(µ) ⊆ ax(ν) and ax∗(µ) = ax∗(ν).

Proof. It is enough to check one-step reductions. If µ →β ν, we conclude by Proposition 2.3.
If µ →ε ν, we have that µ = C[µ0] and ν = C[En] for some context C and blind net µ0

with n free ports; precisely because µ0 is blind, the axioms disappearing from µ are not
observable; moreover, ν does not contain new observable axioms, so ax(µ) = ax(ν), and we
conclude ax∗(µ) = ax∗(ν) by confluence of βε-reduction (Proposition 2.27).

Corollary 2.31. µ is βε-normalizable iff ax∗(µ) is finite.

Proof. The forward implication is an immediate consequence of Proposition 2.30. For the
converse, ax∗(µ) finite and Proposition 2.30 imply that any reduction starting from µ stum-
bles upon a net µ′ such that ax(µ′) = ax∗(µ). This means that all subnets of µ′ containing
active pairs are blind, i.e., they do not produce further observable axioms. There is of
course at most a finite number of such subnets, so µ′ reduces in finitely many ε-steps to a
βε-normal net.

Up to now we have five congruences strictly extending β-equivalence: ≃βη, ≃βε, ≃βηε,
∼=, and ≃ (the fact that these last two strictly extend ≃β is an immediate consequence
of Definition 2.5). We shall see that the last four congruences form a sequence of strictly
stronger equivalences:

≃β  ≃βε  ≃βηε  ∼=  ≃ .

The first two strict inclusions are obvious. We shall give a semantic proof of the third
inclusion (Corollary 4.20 of the full abstraction Theorem 4.14); Fig. 19 shows that it is
strict. We already established the fourth inclusion in Proposition 2.23; Fig. 15 shows that
the inclusion is strict, as an application of the full abstraction Theorem 4.18.

3. Denotational Semantics

3.1. Edifices. In what follows, C = {p,q}N is the set of infinite binary words, ranged over
by x, y. As in the case of finite words, the elements of C × C will be denoted by x ⊗ y, and
ranged over by u, v,w. Given two words or pairs of words s, u, where s is finite and u may
be infinite, we say that s is prefix of u iff there exists u′ such that u = su′.

Definition 3.1 (Pillar, arch, edifice, vault). Let I ⊆ N, and set PI = C ×C × I. A pillar is
an element of P = PN. Pillars are denoted by u@ i, and are ranged over by ξ, υ. The pillar
u@ i is said to be based at i.

Set
−→
A I = PI ×PI , and, given (ξ, υ), (ξ′, υ′) ∈

−→
A I , define (ξ, υ)⇌ (ξ′, υ′) iff ξ′ = υ and

υ′ = ξ, or ξ′ = ξ and υ′ = υ. We then set AI =
−→
AI/⇌. An arch is an element of A = AN.

Arches are denoted by ξ ⌢ υ (which is the same as υ ⌢ ξ), and ranged over by a, b. An
arch is said to be based at the unordered pair where its two pillars are based.

An edifice is a set of arches; edifices are ranged over by E,F. A vault is an edifice A

such that there exists an address x = s @ i ⌢ t @ j such that

A = {sw @ i ⌢ tw @ j | w ∈ C × C} .

The address x is said to generate A. We denoted by A(x) the vault generated by x.
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We now introduce two special kinds of edifices, which will be useful in the sequel.

Definition 3.2 (Uniform edifice). If E is an edifice and a ∈ E, a is said to be uniform in E

iff there exists a vault A ⊆ E such that a ∈ A. An edifice is uniform if all of its arches are
uniform.

Proposition 3.3. An edifice is uniform iff it is a union of vaults.

Proof. That a union of vaults is uniform is obvious. For the converse, take a uniform edifice
E, and let a ∈ E. By definition, there exists a vault contained in E which contains a; we
call such vault Aa. Then, it is easy to check that E =

⋃
a∈E Aa.

Definition 3.4 (Coherence, simple edifice). If a = ξ ⌢ υ is an arch, we define its support
to be |a| = {ξ, υ}. Then, given a, a′ ∈ A, we say that a and a′ are coherent, and we write
a Ξ a′, iff |a| ∩ |a′| is either empty or of cardinality 2. An edifice E is simple iff it is a clique
with respect to coherence, i.e., for all a, a′ ∈ E, a Ξ a′.

Note that, although obviously symmetric, coherence is not reflexive: all arches of the
form ξ ⌢ ξ, which we may refer to as degenerated, are not coherent with themselves.

Edifices are naturally endowed with a trace operation. We shall see that this operation
closely corresponds to the execution formula of the GoI (cf. Sect. 2.2); it is also reminiscent
of the notion of composition of strategies in games semantics.

Definition 3.5 (Feedback function, trace sequence). A feedback function σ is a fixpoint-free
partial involution on N of finite domain. In other words, σ(i) is defined for finitely many
i ∈ N, and in that case σ(i) 6= i, and σ2(i) = i. We denote by domσ the domain of σ.

Let σ be a feedback function, let E be an edifice, and let s = s1, . . . , sn be a non-empty
finite sequence of arches of E, for which we set, for 1 ≤ k ≤ n, sk = uk @ ik ⌢ vk @ jk. We
say that s is a trace sequence of E along σ iff:

chain: for all 2 ≤ k ≤ n, jk−1 ∈ dom σ and ik = σ(jk−1);
match: for all 2 ≤ k ≤ n, uk = vk−1.

A trace sequence is visible if it further satisfies i1, jn 6∈ dom σ.
The length of a trace sequence s is denoted by |s|. We denote by seqσ(E) the set of

trace sequences of E along σ. If s ∈ seqσ(E) such that |s| = n, we define the arch generated
by s as a(s) = u1 @ i1 ⌢ vn @ jn.

Observe that, if E is an edifice and σ a feedback function, then s = s1, . . . , sn ∈ seqσ(E)
implies s′ = sn, . . . , s1 ∈ seqσ(E), a(s′) = a(s), and s′ is visible iff s is. Intuitively, this
reflects the fact that a maximal path in a net can always be “reversed”. In Sect. 3.2 we
shall formalize the relation between visible trace sequences and maximal paths. We also
remark that the role of non-visible trace sequences will be purely technical: their purpose is
to allow proofs by induction on the length of sequences. In fact, visible trace sequences are
not suitable for such proof technique, because an initial or final segment of a visible trace
sequence is never visible.

Definition 3.6 (Trace). Let E be a set of arches, and σ a feedback function. We define
the trace of E along σ as

Trσ(E) = {a(s) | s ∈ seqσ(E), s visible}.

The trace is obviously monotonic:
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Lemma 3.7 (Monotonicity of the trace). Let E,F be edifices, and let σ be a feedback
function. Then, E ⊆ F implies Trσ(E) ⊆ Trσ(F).

Proof. Obvious.

In the following, if σ, σ′ are feedback functions of disjoint domain, we denote by σ ⊎ σ′

the function defined by

(σ ⊎ σ′)(i) =





σ(i) if i ∈ domσ
σ′(i) if i ∈ dom σ′

undefined otherwise
,

which is obviously a feedback function.

Lemma 3.8 (Associativity of the trace). Let E be an edifice, and let σ, σ′ be feedback
functions of disjoint domain. Then,

Trσ(Trσ′(E)) = Trσ⊎σ′(E).

Proof. We start by establishing the inclusion from left to right. Let a ∈ Trσ(Trσ′(E)), and
let s ∈ seqσ(Trσ′(E)) be the trace sequence generating a, with |s| = m. By definition, if
we let 1 ≤ k ≤ m, each sk is generated by a trace sequence sk ∈ seqσ′(E), with |sk| = nk.
Then, it is not hard to see that s′ = s1

1, . . . , s
1
n1

, s2
1 . . . sm−1

nm−1
, sm

1 , . . . , sm
nm

is a visible trace

sequence of E along σ ⊎ σ′, such that a(s′) = a(s).
For the reverse inclusion, let a ∈ Trσ⊎σ′(E) and let s ∈ seqσ⊎σ′(E) be the trace sequence

generating a, with |s| = n, and sk = uk @ ik ⌢ vk @ jk for 1 ≤ k ≤ n. We say that k is a
breaking point of s if jk 6∈ dom σ′. Let now B = {k1 < · · · < km} be the set of breaking points
of s, ordered from the smallest to the greatest. We partition s into m sequences, as follows:
s1 = s1, . . . sk1

, and, for 2 ≤ h ≤ m, sh = skh−1
, . . . , skh

. Once again, it is not hard to check

that, for all 1 ≤ h ≤ m, sh ∈ seqσ′(E), and that s′ = a(s1), . . . , a(sm) ∈ seqσ(Trσ′(E)), with
a(s′) = a(s).

The trace of a simple edifice has a very nice property, namely that each arch in it is
generated by a unique trace sequence:

Lemma 3.9. Let E be a simple edifice, let σ be a feedback function, and let s, s′ ∈ seqσ(E),
such that a(s) = ζ1 ⌢ ζ2 and a(s′) = ζ ′1 ⌢ ζ ′2. Then, ζ1 = ζ ′1 implies s = s′; in particular,
a(s) = a(s′) implies s = s′.

Proof. Let k be the smallest integer such that sk 6= s′k, and let sk = ξ ⌢ υ, s′k = ξ′ ⌢ υ′. If
k = 0, ξ = ζ1 and ξ′ = ζ ′1, so ξ = ξ′ by hypothesis; if k > 0, the chain and match conditions
also imply ξ = ξ′, because we supposed sk−1 = s′k−1. But E is simple, so sk Ξ s′k, which
further implies υ = υ′. Then, sk = s′k, a contradiction.

On the other hand, uniform edifices are preserved by the trace:

Proposition 3.10. Let E be a uniform edifice, and let σ be a feedback function. Then,
Trσ(E) is uniform.

Proof. Let F = {a(s) | s ∈ seqσ(E)}. Let s be a trace sequence; we shall prove, by induction
on |s|, that a(s) is uniform in F, i.e., that there exists x = s @ i ⌢ t @ j such that a ∈ A(x) ⊆
F. This will be enough to prove the result; in fact, the trace sequences generating the arches
of A(x) are all visible if s is visible, i.e., A(x) ⊆ Trσ(E), because this depends only on i and
j, which are the same in all such sequences.
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For the base case, |s| = 1, so s consists of a single arch, and the result is a trivial
consequence of the uniformity of E. The inductive case is |s| = n > 1. Let s′ = s1, . . . , sn−1.
By induction hypothesis, a(s′) is uniform in F: we have an address x′ such that a(s′) ∈
A(x′) ⊆ F. In particular, there exist s, r0 ∈ W ×W and w0 ∈ C × C such that the first and
last arches of s′ are respectively of the form

sw0 @ i ⌢ υ,

ξ ⌢ r0w0 @ h,

and, for all w ∈ C × C, there exists a trace sequence sw whose first and last arches are
respectively of the form

sw @ i ⌢ υ,

ξ ⌢ r0w @h.

Similarly, E is uniform, so there exist r1, t ∈ W ×W and w1 ∈ C × C such that

sn = r1w1 @ l ⌢ tw1 @ j,

with σ(h) = l, and, for all w ∈ C × C, the arch

aw = r1w @ l ⌢ tw @ j

is also in E. Now, by the match condition, we have r0w0 = r1w1, which means that r0, r1

are one prefix of the other. Suppose r0 = r1r
′, and consider the trace sequences obtained by

appending ar′w to sw; these generate all the arches of the form r0w @ i ⌢ tr′w @ j, among
which there is a(s), which is therefore uniform in F. The other case is r1 = r0r

′; then,

consider the sequences obtained by appending aw to sr′w. As above, these prove that a(s)
is unifrom in F.

3.2. Nets as edifices. The basic idea to assign an edifice to a net is that arches model
observable axioms/paths.3 In fact, we have already seen that an observable axiom may be
conveniently represented by an unordered pair of couples of the form s @ i, where s is the
address of a leaf and i a free port. A pillar contains the same information; the need for
infinite words arises from η-expansion (the η0 equation of Fig. 4), which can be applied
indefinitely, as in the pure λ-calculus.

Definition 3.11 (Edifice of a net). Let µ be a net. We associate an edifice with µ, denoted
by E(µ), as follows:

E(µ) =
⋃

x∈ax∗(µ)

A(x).

The union of Definition 3.11 is actually disjoint, and the resulting edifice is simple:

Lemma 3.12. Let µ be a net, and let x, x′ ∈ ax∗(µ). Then

(1) A(x) ∪ A(x′) is simple, and hence E(µ) is simple;
(2) x 6= x′ implies A(x) ∩ A(x′) = ∅.

3Graphically (Fig. 10), observable axioms/paths look like arches, hence the terminology.
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Proof. We start by observing that two arches in the same vault are coherent, because in
an address s @ i ⌢ t @ j we always have s 6= t. This proves point (1) in case x = x′, so we
may suppose x 6= x′. By confluence of β-reduction and by Proposition 2.3, x, x′ ∈ ax∗(µ)
implies that there exists a net µ′ such that µ →∗

β µ′ and µ′ contains two observable axioms

of address x, x′, respectively, which are distinct because x 6= x′. Now, put x = s @ i ⌢ t @ j
and x′ = s′ @ i′ ⌢ t′ @ j′, and take a ∈ A(x), a′ ∈ A(x′). By definition of vault, we
have a = sw @ i ⌢ tw @ j, a′ = s′w′ @ i′ ⌢ t′w′ @ j′, for some w,w′ ∈ C × C. Suppose
sw @ i = s′w′ @ i′; we would obtain that s is a prefix of s′, or vice versa. But this is absurd,
because s, s′ are addresses of distinct leaves of µ′. This proves point (2); for point (1),
simply note that the same holds for t, t′. To see that E(µ) is itself is simple, note that a
union of pairwise coherent simple edifices is obviously simple.

Note that if µ has n free ports and σ is a feedback function whose domain is included in
{1, . . . , n}, then σ defines a feedback context for µ: it is the one connecting the free port i to
the free port σ(i), or leaving it free if σ(i) is undefined. Conversely, each feedback context
for a net with n free ports defines a feedback function of domain included in {1, . . . , n}.
Hence, we shall use σ to range over both feedback functions and feedback contexts, and
make no distinction between the two, speaking more generally of a “feedback” σ for a net µ.

The next result shows how the trace construction is related to the execution formula of
the GoI. In fact, in Sect. 2.2 we mentioned that this latter is invariant under reduction: if
µ = σ[ν] →β σ′[ν ′] = µ′ with ν, ν ′ cut-free and µ, µ′ total, then the formula of Theorem 2.14
applied to JσK, JνK or Jσ′K, Jν ′K yields the same result. Once again, our work generalizes this
to non-total nets.

Proposition 3.13 (Invariance of the trace). Let µ →β µ′, and let µ = σ[ν] and µ′ = σ′[ν ′]
according to the Decomposition Lemma 1.6. Then, Trσ(E(ν)) = Trσ′(E(ν ′)).

Proof. The proof is a bit too long and not interesting enough to be included here. We prefer
to give it in Appendix A.

Let ν be a cut-free net, let σ be a feedback for ν, and let a ∈ Trσ(E(ν)). Part (1) of
Lemma 3.12 and Lemma 3.9 guarantee us that a induces a unique s ∈ seqσ(E(ν)) such that
a(s) = a. If we let s = s1, . . . , sn, we see that each sk determines an axiom of ν, which is
unique by part (2) of Lemma 3.12. Hence, s induces a sequence of observable paths; thanks
to the chain condition, these are all composable through σ, and, by the visibility condition,
the first and last paths start and end at a free port of σ[ν]. Therefore, their composition
forms a maximal path of σ[ν].

To sum up, we found out that each arch a of the trace of E(ν) along σ determines a
unique maximal path of σ[ν]; in what follows, we shall denote this path by φ(a).

Lemma 3.14. Let ν be a cut-free net, let σ be a feedback for ν, let x be an address, and let
a, a′ ∈ A(x) ⊆ Trσ(E(ν)). Then, φ(a) = φ(a′).

Proof. Let s1, . . . , sn and s′1, . . . , s
′
n′ be the trace sequences generating a and a′, respectively.

We decompose φ(a) and φ(a′) into observable paths of ν, following the sk, s
′
k, as described

in the remarks above, and we obtain φ1, . . . , φn, φ′
1, . . . , φ

′
n′ . Let k be the smallest integer

such that φk 6= φ′
k, and let sk = u@ i ⌢ v @ j, s′k = u′ @ i′ ⌢ v′ @ j′. Suppose k = 0; if

we put x = s @ i ⌢ t@ j, we have, for some w,w′ ∈ C × C, u = sw, u′ = sw′, i = i′, and
moreover for all w0 ∈ C × C we have an arch of the form sw0 @ i ⌢ tw0 @ j in Trσ(E(ν)).
By Definition 3.5, this latter implies that, for all w0 ∈ C × C, there is some arch of the
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form sw0 @ i ⌢ υ in E(ν). But, by looking at Definition 3.11, we see that this is possible
only if there is an axiom of ν of address s0 @ i ⌢ t′ @ j′, with s0 a prefix of s. Then, the
arches s0 and s′0 correspond to the same observable axiom, and φ0 = φ′

0. Therefore, we
must have k > 0. In this case, since φk−1 = φ′

k−1, we have sk−1 = ξ ⌢ vk−1 @ p and
s′k−1 = ξ′ ⌢ v′k−1 @ p, and the chain condition implies i = i′ = σ(p). But vk−1, v

′
k−1 come

from the same observable axiom, so they have a common prefix. By the match condition,
u, u′ have a common prefix too; but this would be impossible if φk 6= φ′

k, because two
distinct observable path generate pillars which have no common prefix (cf. the proof of
Lemma 3.12). So we must conclude φk = φ′

k, a contradiction.

Lemma 3.15. Let ν be a cut-free net, let σ be a feedback for ν, and let i, j be free ports of
σ[ν]. Then, the following are equivalent:

(1) φ ∈ mpi,j(σ[ν]), Jw(φ)K = ts∗;
(2) A(s @ i ⌢ t @ j) ⊆ Trσ(E(ν)).

Proof. We start with (1) implies (2), noting first that Jw(φ)K = ts∗ implies, by Lemma 2.17,
that φ is an execution path; therefore, we reason by induction on v(φ) (the value of φ,
Definition 2.10), using Lemma 2.16.

• v(φ) = 0. We know that φ is an observable path. The situation can be schematically
depicted as follows:

ω1 ω2 ωn

i j︸ ︷︷ ︸
σ

In the above picture, φ goes “from left to right”, and ω1, . . . , ωn are n proper axioms of
ν. If, for 1 ≤ k ≤ n, we put addrν(ωk) = xk = sk @ ik ⌢ tk @ jk, from the above picture
we deduce that i1 = i, jn = j, i, j 6∈ dom σ, ik+1 = σ(jk) for all 1 ≤ k < n, sk = 1⊗ 1 for
all 2 ≤ k ≤ n, s1 = s, and tn · · · t1 = t. Now, given any w ∈ C × C and 1 < k < n, define
wk = tk−1 · · · t1w, and put

s1 = sw @ i ⌢ t1w @ j1,

sk = wk @ ik ⌢ tkwk @ jk, for 2 ≤ k ≤ n.

It is easy to check that s = s1, . . . , sn is a trace sequence of E(ν) along σ such that
a(s) = sw @ i ⌢ tw @ j, as desired.

• v(φ) > 0. We β-reduce σ[ν] along φ and obtain σ′[ν ′] in which the residue φ′ of φ is such
that v(φ′) < v(φ), so that the induction hypothesis applies to φ′. By Propositions 2.12
and 2.13, we have Jw(φ′)K = ts∗, so the induction hypothesis and Proposition 3.13 give
us A(s @ i ⌢ t @ j) ⊆ Trσ′(ν ′) = Trσ(ν).

We now consider (2) implies (1). By Lemma 3.14, any arch of A(s @ i ⌢ t @ j) yields
the same φ ∈ mpi,j(σ[ν]). Hence, we need only check that Jw(φ)K = ts∗; we do this again
by induction on v(φ).

• v(φ) = 0. We know that φ is an observable path of σ[ν], which we may decompose in
several observable paths φ1, . . . , φn of ν, as above. Now, as we remarked in the proof
of Lemma 3.14, A(s @ i ⌢ t@ j) ⊆ Trσ(ν) is only possible if s @ i and t @ j are the
addresses of the leaves of the trees resulting in the composition of φ1, . . . , φn, similarly to
the drawing above used in the previous part of the proof. So Jw(φ)K = ts∗, as desired.
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• v(φ) > 0. We know that φ crosses an active pair; however, this time we must prove that,
by reducing it, we obtain a net in which φ has a residue. If this were not the case, by
Lemma 2.17 and Proposition 2.12 the only possibility is that the active pair corresponds
to a clash in w(φ), i.e., we have w(φ) = A′A∗

0B0B
′ for some monomials A′, B′ and some

positive atoms A0, B0, such that, for example, A0 = c and B0 = d. This would yield
the presence of two observable axioms of ν of addresses x = s @ p ⌢ qb ⊗ b′ @ q and
x′ = pa ⊗ a′ @ q′ ⌢ t @ p′, such that σ(q) = q′, i.e., the free ports q, q′ of ν are connected
by σ in σ[ν]. Then, it is easy to see that no arch of E(ν) generated by x and x′ could
match: indeed, there are no x, y, x′, y′ ∈ C such that qbx ⊗ b′y = pax′ ⊗ a′y′. But this
is absurd, because by hypothesis φ comes from an arch of Trσ(ν), which in turn comes
from a unique trace sequence, and trace sequences satisfy the match condition.

Therefore, we now know that we may reduce the active pair crossed by φ, obtaining
σ[ν] →β σ′[ν ′] such that φ has a residue φ′ in σ′[ν ′]. Now, by Proposition 3.13, we have
Trσ′(E(ν ′)) = Trσ(E(ν)), so A(s @ i ⌢ t @ j) ⊆ Trσ′(E(ν ′)). Thanks to Proposition 2.12
and Lemma 2.7, we can apply the induction hypothesis to φ′, and obtain Jw(φ′)K = ts∗.
But, by Proposition 2.13, Jw(φ)K = Jw(φ′)K, and we are done.

Proposition 3.16. Let ν be a cut-free net, and σ a feedback for ν. Then

E(σ[ν]) = Trσ(E(ν)).

Proof. We start with the inclusion from left to right. Let a ∈ E(σ[ν]). By Definition 3.11,
there is an address x = s @ i ⌢ t @ j ∈ ax∗(σ[ν]) (which is also unique by Lemma 3.12) such
that a ∈ A(x); by Proposition 2.18, there exists φ ∈ mpi,j(σ[ν]) such that Jw(φ)K = ts∗, and
by Lemma 3.15 A(x) ⊆ Trσ(E(ν)).

For the inclusion from right to left, let a ∈ Trσ(E(ν)). By Lemma 3.3, E(ν) is uniform, so
by Proposition 3.10 Trσ(E(ν)) is also uniform. Then, there must be an address x = s @ i ⌢
t @ j such that a ∈ A(x) ⊆ Trσ(E(ν)). We can thus apply Lemma 3.15 and Proposition 2.18,
which, by Definition 3.11, give us A(x) ⊆ E(σ[ν]).

Compare Proposition 3.16 with Theorem 2.14: basically, the trace construction can be
seen as an extension of the execution formula, which works in all cases, even when σ[ν] is not
total. Something similar happens when one formulates the GoI in categorical terms, using
certain traced monoidal categories, as shown by Haghverdi and Scott [HS04]. Thanks to
the associativity of the trace, we can straightforwardly extend Proposition 3.16 to arbitrary
nets:

Corollary 3.17. For any net µ and feedback σ for µ, E(σ[µ]) = Trσ(E(µ)).

Proof. By the Decomposition Lemma 1.6, we know that µ = σ′[ν] for some cut-free net ν
and feedback context σ′. Then, using Proposition 3.16 and Lemma 3.8, we have

E(σ[µ]) = E(σ[σ′[ν]]) = E((σ ⊎ σ′)[ν]) = Trσ⊎σ′(E(ν)) =

= Trσ(Trσ′(E(ν))) = Trσ(E(σ′[ν]))) = Trσ(E(µ)),

where we used the notation σ ⊎ σ′ also to denote the “union” of the nets σ, σ′.
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3.3. A denotational semantics. As explained in the introduction, a denotational seman-
tics is an interpretation of the syntax transforming certain given syntactic equivalences into
denotational equalities. In a syntax such as the λ-calculus, or the symmetric combinators,
the typical equivalence to be modelled is that induced by β-reduction. As proposed for
example by Girard [Gir91], we may describe a denotational semantics of a syntax with a
reduction relation  and an internal notion of context as an interpretation satisfying at
least the following:

invariance: for any two syntactic objects a, b, a  b implies that a and b are deno-
tationally equal;

contextuality: the semantics induces a congruence on the syntax, i.e., if two syntactic
objects a, b are denotationally equal, then for every context C, C[a] and C[b] are
also denotationally equal.

In this section, we shall prove that our interpretation of nets as edifices satisfies these two
requirements. Actually, we shall see that, instead of just β-reduction, edifices model ≃βηε.

Lemma 3.18. Let →η0
be the relation of Lemma 1.17, i.e., a single application of the η0

equation (Fig. 4), oriented from left to right, in which the wire on the right member is an
axiom. Moreover, let ≃1

η1
be the contextual closure of the η1 equation (Fig. 4), i.e., the

restriction of ≃η1
to just one application of the equation. For all nets µ, ν, we have:

(1) µ →βε ν implies E(µ) = E(ν);
(2) µ →η0

ν implies E(µ) = E(ν);
(3) µ ≃1

η1
ν implies E(µ) = E(ν).

Proof. Point (1) is an immediate consequence of Proposition 2.30 and of Definition 3.11.
For what concerns point (2), considering the Decomposition Lemma 1.6 we obtain

µ = σ[µ0] and ν = σ[ν0] such that µ0, ν0 are cut-free and µ0 = C[o], ν0 = C[ω], where o
is a net matching the left member of the η0 equation of Fig. 4, and ω is an axiom of ν0.
We suppose that o consists of two δ cells, the case of two ζ cells being perfectly analogous.
Now, remark that, if x0 = addrν0

(ω) = a ⊗ b@ i ⌢ c ⊗ d@ j, we have

ax(µ0) = {x ∈ ax(ν0) | x 6= x0} ∪ {ap ⊗ b@ i ⌢ cp ⊗ d@ j, aq ⊗ b@ i ⌢ cq ⊗ d@ j}.

Moreover, note that, since µ,ν0 are cut-free, ax∗(µ0) = ax(µ0) and ax∗(ν0) = ax(ν0). So
take a ∈ E(µ0). If a is generated by an address in the left term of the above union, then we
clearly have a ∈ E(ν0). Otherwise, we have for example a = apx ⊗ by @ i ⌢ cpx ⊗ dy @ j
for some x, y ∈ C. But in this case too a ∈ E(ν0), because x0 ∈ ax(ν0). Of course a
similar reasoning applies if we had chosen q instad of p, so E(µ0) ⊆ E(ν0). Conversely, let
a ∈ E(ν0). Again, if a is generated by x 6= x0, then clearly a ∈ E(µ0). Otherwise, we have
a = ax ⊗ by @ i ⌢ cx ⊗ dy @ j for some x, y ∈ C. But x must be of the form px′ or qx′; in
either case, we see that ax(µ0) contains an address generating a, so E(ν0) ⊆ E(µ0). Point
(2) can now be obtained by applying Proposition 3.16: E(µ) = E(σ[µ0]) = Trσ(E(µ0)) =
Trσ(E(ν0)) = E(σ[ν0]) = E(ν).

For point (3), we apply again the Decomposition Lemma 1.6 and write µ = σ[µ0],
ν = σ[ν0] with µ0, ν0 cut-free and such that µ0 ≃1

η1
ν0. Observe now that the addresses

of leaves are invariant under the η1 equation of Fig. 4; hence, ax(µ0) = ax(ν0). Again,
ax∗(µ0) = ax(µ0) and ax∗(ν0) = ax(ν0), because µ0, ν0 are cut-free. So we have E(µ0) =
E(ν0), and we can conclude once more by applying Proposition 3.16.



INTERACTION COMBINATORS: OBSERVATIONAL EQUIVALENCE AND FULL ABSTRACTION 37

Proposition 3.19. For all nets µ, ν, µ ≃βηε ν implies E(µ) = E(ν).

Proof. A straightforward consequence of Lemma 3.18, using Lemma 1.17.

Proposition 3.20. Let µ, ν be two nets such that E(µ) = E(ν). Then, for every context C,
E(C[µ]) = E(C[ν]).

Proof. Observe that applying a context C to net µ with n free ports can be done in two
steps: first, we juxtapose C and µ, forming the net which we denote by C •µ. We stipulate
that, in C • µ, the free ports of µ are labelled by 1, . . . , n, whereas the free ports of C are
“shifted” by n, i.e., they are labelled starting from n + 1. Then, we consider the feedback
σ such that σ(i) = i + n for i ∈ {1, . . . , n}, σ(i) = i − n for i ∈ {n + 1, . . . , 2n}, and σ
is undefined everywhere else. We clearly obtain σ[C • µ] = C[µ]. Note furthermore that
E(C • µ) = E(C) ∪ E(µ), since the two nets are disjoint and do not share free ports by our
assumption. The result is then an easy consequence of Corollary 3.17:

E(C[µ]) = E(σ[C • µ]) = Trσ(E(C • µ)) = Trσ(E(C) ∪ E(µ)) =

= Trσ(E(C) ∪ E(ν)) = Trσ(E(C • ν)) = E(σ[C • µ]) = E(C[ν]).

4. Full Abstraction

4.1. Edifices and the Cantor topology. Our aim now is to show that edifices are able
to fully characterize the observational equivalences introduced in Sect. 2.1. For this, we
shall take the sets introduced in Definition 3.1 and equip them with topological structures
based on the Cantor topology. This will be needed for two reasons: first, to characterize the
edifices which are interpretations of βε-normalizable nets, a result which will be fundamental
in characterizing finitary axiom-equivalence; second, to obtain a characterization of axiom-
equivalence itself.

The idea of using topology for semantic purposes is of course far from being new: it
is enough to think that the very basis of the denotational semantics of the λ-calculus is
Scott’s intuition that computability should be interpreted by topological continuity [Sco76].
Moreover, also non-Scott topologies have been attached to λ-terms to obtain various kinds
of results (Visser’s topology is an example [Vis80]). Closer to our work, we can mention the
work of Kennaway et al. [KKSdV97], who also used a Cantor-like topology, very similar to
our own, to define the infinitary λ-calculus.

Definition 4.1 (Arch topology). The set C = {p,q}N may be equipped with the Cantor
topology. This is well known to be metrizable, with the distance defined for example by
dC(x, y) = 2−k, where k is the length of the longest common prefix of x, y. We denote by
B(x, r) the open ball of center x and radius r.

As well known, C × C is also a Cantor space; if we equip N with the discrete topology,
we can endow the set P of pillars with the product topology. This is also metrizable: if
ξ = x ⊗ y @ i and υ = x′ ⊗ y′ @ i′, we shall consider the distance

d(ξ, υ) = max{dC(x, x′), dC(y, y′), ddisc(i, i
′)},

where ddisc is the discrete metric, defined as ddisc(i, i
′) = 0 if i = i′, and ddisc(i, i

′) = 2 if
i 6= i′. Therefore, to be “close”, two pillars must be based at the same integer.
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Similarly, we equip
−→
A with the product topology; the arch topology, applied on the set

A of arches, is the quotient topology with respect to the relation ⇌ of Definition 3.1.

The following helps understanding the arch topology:

Proposition 4.2. The space A is metrizable; if a = ξ ⌢ υ and a′ = ξ′ ⌢ υ′, the func-
tion D(a, a′) = min{max{d(ξ, ξ′), d(υ, υ′)},max{d(ξ, υ′), d(υ, ξ′)}} is a distance inducing its
topology.

In other words, to compare two arches, we overlap them in both possible ways, and we
take the way that “fits best”. The distance D is in fact the standard quotient metric; in
this case, it collapses to this simple form.

The space A is not a Cantor space, because it is not compact. In fact, we can give a
characterization of its compact subsets. Recall from Definition 3.1 that, if I ⊆ N, AI is the
set of arches based within I. Then, we have

Proposition 4.3. E ⊆ A is compact iff it is a closed subset of AI for some finite I.

Proof. If E is compact, then it must be closed; suppose however that E 6⊆ AI for all finite I.
Then, let ai,j be a sequence of arches spanning all of the i, j where the arches of E are based,
and set Ui,j = E∩B(ai,j , 2). These are all open sets in the relative topology, and since, for
all i, j, D(ai,j , a) < 2 iff a is based at i, j, they form an open cover of E. Now observe that,
by the same remark on the distance, if we remove any Um,n we loose all arches of E based
at m,n. But we have supposed the sequence ai,j to be infinite, so Ui,j is an infinite open
cover of E admitting no finite subcover, in contradiction with the compactness of E.

For the converse, I being finite, it is not hard to show that PI is homeomorphic to
C. Therefore, PI is a Cantor space, hence compact. So AI is compact, because it is the
quotient of a product of compact spaces. But a closed subset of a compact space is compact,
hence the result.

It can be shown that each AI is also perfect and totally disconnected, which means that
actually these are all Cantor spaces whenever I is finite. What really matters to us though is
compactness, which implies completeness (with respect to the metric D of Proposition 4.2):
when I is finite, there is identity between closed, compact, and complete subsets of AI .

Vaults are examples of compact edifices:

Lemma 4.4. Vaults are compact.

Proof. Let A = A(x) be a vault, with x = s @ i ⌢ t @ j. Clearly A(x) ⊆ A{i,j}. Now take an
arch a = u@ i′ ⌢ v @ j′ not belonging to A(x). If i′ 6= i or j′ 6= j, then obviously B(a, 1) is
all outside of A(x). Otherwise, either s is not a prefix of u, or t is not a prefix of v; suppose
we are in the first situation, and let k be the length of the longest common prefix between
u and s. Then, it is easy to see that B(a, 2−(k+1)) is all outside of A(x). So A(x) is a closed
subset of A{i,j}, and we conclude by Proposition 4.3.

Observe that vaults are not open: given an arch a ∈ A(s @ i ⌢ t @ j), any non-empty
open ball centered at a contains arches of the form su@ i ⌢ tv @ j, with u 6= v.

It turns out that the edifice of a net is compact exactly when the net is βε-normalizable.
This result, which we shall now prove, shows why we are interested in the compact sets of
the arch topology. If a is a finite binary word, we denote by |a| its length. If k ≥ |a|, we
denote by Ck(a) the set of words b of length k such that b = ab′ for some word b′, i.e., all
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possible “extensions” of a to length k. Let now x = a0 ⊗ b0 @ i ⌢ c0 ⊗ d0 @ j be an address,
and let kx = max{|a0|, |b0|, |c0|, |d0|}. We define the set of centers of x as

Ctr(φ) = {ax0 ⊗ bx0 @ i ⌢ cx0 ⊗ dx0 @ j |

a ∈ Ckx
(a0), b ∈ Ckx

(b0), c ∈ Ckx
(c0), d ∈ Ckx

(d0)},

where x0 is some fixed infinite word, whose value is irrelevant. Then we set

O(x) =
⋃

a∈Ctr(x)

B(a, 2−kx+1).

The set O(x) is clearly open; additionally, we have

Lemma 4.5. For every address x, A(x) ⊆ O(x).

Proof. Let x = a ⊗ b@ i ⌢ c ⊗ d@ j. We assume without loss of generality that a is the
longest of a, b, c, d. Then, given a = ax ⊗ by @ i ⌢ cx ⊗ dy @ j ∈ A(x), we can always write,
for some a1, a2, a3 ∈ W, y1, x2, y3 ∈ C, by = ba1y1, cx = ca2x2, dy = da3y3, such that
|ba1| = |ca2| = |da3| = |a| = kx. By definition, a0 = ax0 ⊗ ba1x0 @ i ⌢ ca2x0 ⊗ da3x0 @ j is

a center of x, and we have D(a0, a) = 2−kx < 2−kx+1, so a ∈ B(a0, 2
−kx+1).

A version of part (2) of Lemma 3.12 can be given for the sets O(x):

Lemma 4.6. Let µ be a net, and let x, x′ ∈ ax(µ), with x 6= x′. Then, O(x) ∩O(x′) = ∅.

Proof. Let x = s @ i ⌢ t@ j, x = s′ @ i′ ⌢ t′ @ j′, and let x, x′ ∈ ax(µ). If i 6= i′ or
j 6= j′, then the result is obvious. Otherwise, by the same arguments given in the proof of
Lemma 3.12, s and t cannot be prefixes of s′ or t′, and vice versa. Now, the sets O(x),O(x′)
are built precisely so that, whenever u@ i ⌢ v @ j ∈ A(x) and u′ @ i ⌢ v′ @ j ∈ A(x′), s, t
are prefixes of resp. u, v, and s′, t′ are prefixes of resp. u′, v′; hence, the two sets cannot have
any arch in common.

Proposition 4.7. For all µ, E(µ) is compact iff µ is βε-normalizable.

Proof. The backward implication is a straightforward consequence of Corollary 2.31 and
Lemma 4.4 (a finite union of compact sets is compact). Suppose now that µ is not βε-
normalizable. Again thanks to Corollary 2.31, we know that ax∗(µ) is infinite. Consider
now the family of sets O(x) ∩ E(µ) as x varies over ax∗(µ); by Lemma 4.5, this forms an
infinite open cover of E(µ). By Lemma 4.6, removing any of these sets causes the family
not to cover E(µ) anymore; hence, E(µ) is not compact.

4.2. Closed edifices. Since the edifice of a net is always a subset of AI with I finite, by
Proposition 4.3 we have a standard way to “compactify” it: we simply take its topological
closure, denoted by (·).

Proposition 4.8. Let I be a finite subset of N. Then, for every E ⊆ AI , E is compact.

Proof. The arches based outside of I are “too far” to be adherent to E, therefore its closure
is still in AI . By Proposition 4.3, this is enough to ensure compactness.
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Definition 4.9 (Closed edifice of a net, closed trace). Let µ be a net. The closed edifice

of µ is defined as E•(µ) = E(µ). Similarly, if E is an edifice and σ is a feedback, the closed

trace of E along σ is defined as Tr•σ(E) = Trσ(E).

Closed edifices also define a denotational semantics of the symmetric combinators. The
fact that they model ≃βηε is an immediate consequence of Proposition 3.19, because E(µ) =
E(ν) quite obviously implies E•(µ) = E•(ν). What is left to prove, is that they yield a
congruence, which we do next.

The following result, which is proved by a slightly tricky induction, tells us that if the
closure of a uniform edifice F contains a uniform edifice E, then the trace sequences of E

along any feedback may be arbitrarily approximated by trace sequences of F along the same
feedback. The hypothesis that E,F ⊆ AI for I finite is needed so that Proposition 4.8 can
be tacitly applied.

Lemma 4.10. Let E,F ⊆ AI be uniform edifices, with I finite, such that E ⊆ F, and let σ
be a feedback. Then, for all a ∈ Trσ(E) and for all ǫ > 0, there exists b ∈ Trσ(F) such that
D(a, b) < ǫ.

Proof. Let Ẽ = {a(s) | s ∈ seqσ(E)}, and similarly F̃ = {a(s) | s ∈ seqσ(F)}. Given ǫ > 0
and a trace sequence s = s1, . . . , sn of E along σ, we shall prove by induction on n that there

exists a vault A ⊆ F̃ such that A ⊆ B(a(s), ǫ). This will be enough to conclude, because
whenever s is visible, we have A ⊆ Trσ(F), and any arch in A satisfies the thesis.

In the base case, n = 1, so s consists of a single arch a ∈ E ⊆ F. By definition, a can be
arbitrarily approximated in F, i.e., given arbitrarily long s, t such that a = su@ i ⌢ tv @ j,
there exists b ∈ F such that b = su′ @ i ⌢ tv′ @ j. It will then be enough to show that
F contains a vault contained in A(s @ i ⌢ t@ j), because s, t are arbitrarily long, and

F ⊆ F̃. Now, by uniformity of F, we must have b ∈ A(s0 @ t ⌢ t0 @ j) ⊆ F for some
s0, t0, and b = s0w @ i ⌢ t0w @ j for some w ∈ C × C. Observe that s0, s and t0, t must
then be prefixes of each other. Therefore, we have four cases, depending on the possible
combinations of which is prefix of which:

• s = s0s
′ and t = t0t

′. Then both s′ and t′ are prefixes of w, which means that they are
prefixes of each other. Suppose that t′ = s′t′′; then, b = s0s

′w′ @ i ⌢ t0s
′t′′w′ @ j for

some w′, and A(s @ i ⌢ t @ j) ⊆ F. The case s′ = t′s′′ is symmetric.
• s = s0s

′ and t0 = tt′. We have w = s′w′, and b = s0s
′w′ @ i ⌢ tt′s′w′ @ j, which means

that A(s @ i ⌢ tt′s′ @ j) ⊆ F.
• s0 = ss′ and t = t0t

′. This case is symmetric to the one above.
• s0 = ss′ and t0 = tt′. Then we may conclude, because A(s0w @ i ⌢ t0w @ j) ⊆ A(s @ i ⌢

t @ j).

Let now n ≥ 1, and let s = s1, . . . , sn, sn+1. If we put s′ = s1, . . . , sn, by Proposi-

tion 3.10, we have that a(s′) is uniform in Ẽ; furthermore, by hypothesis, sn+1 is uniform
in E. Hence, there exist r0, s0, s1, t0 and h, i, j, l such that

a(s′) ∈ A(r0 @ h ⌢ s0 @ i) ⊆ Ẽ,

sn+1 ∈ A(s1 @ j ⌢ t0 @ l) ⊆ E,

with σ(i) = j. Actually, we may always suppose s1 = s0. In fact, by the match condition,
s0, s1 are prefixes of each other; suppose for instance that s0 = s1s

′; then, we have a(s′) ∈

A(r0s
′ @ h ⌢ s1 @ i), which is still contained in Ẽ. A symmetric argument applies in case

s1 = s0s
′.
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Let us now apply the induction hypothesis, obtaining A(r @ h ⌢ s @ i) ⊆ F̃, with
r = r0r

′ and s = s0s
′. The length of r′, s′ depends on how much we want to approximate

a(s′); in fact, we know that the induction hypothesis allows us to use any approximation,
as precise as we want. Now, observe that, thanks to the match condition, s0s

′ and t0s
′

are prefixes of the words in sn+1; therefore, because our ultimate goal is to approach a(s)
within distance ǫ, we apply the induction hypothesis with an ǫ′ small enough so that r and
t0s

′ are long enough prefixes of the words contained in a(s) to satisfy the requirement, i.e.,
so that, for all u, v ∈ C × C, we have D(a(s), ru@ h ⌢ t0s

′v @) < ǫ.
Now, observe that A(s0 @ j ⌢ t0 @ l) ⊆ E ⊆ F means that all of the arches of

this vault can be arbitrarily approximated in F; this applies in particular to the arches
of the vault A(s0s

′ @ j ⌢ t0s
′ @ l), which implies, by uniformity of F, that there exist

s′′, t′′ such that A1 = A(s0s
′s′′ @ j ⌢ t0s

′t′′ @ l) ⊆ F. But remark now that we have

A0 = A(rs′′ @ h ⌢ ss′′ @ i) = A(rs′′ @ h ⌢ s0s
′s′′ @ i) ⊆ F̃, so, given any w ∈ C × C, a trace

sequence t′ generating the arch rs′′w @ h ⌢ s0s
′s′′w @ i of A0 may be extended with the

arch s0s
′s′′w @ j ⌢ t0s

′t′′w @ l of A1, yielding a trace sequence t of F along σ, such that

a(t) = rs′′w @h ⌢ t0s
′t′′w @ l,

which satisfies D(a(s), a(t)) < ǫ, because we chose r, s′ appropriately when we applied the
induction hypothesis.

Thanks to Lemma 4.10, we can prove that if two uniform edifices have the same closure,
then their closed traces coincide, with respect to any feedback. The congruence property of
closed edifices is obtained as an easy corollary, with the help of Corollary 3.17.

Proposition 4.11. Let E,F ⊆ AI be uniform edifices, with I finite, and let σ be a feedback.
Then, E = F implies Tr•σ(E) = Tr•σ(F).

Proof. By symmetry, and since E ⊆ E, it is enough to show that E ⊆ F implies Tr•σ(E) ⊆
Tr•σ(F). So suppose that E is a subset of the closure of F, and let a ∈ Tr•σ(E). By definition,
there exists a sequence (an)n∈N ∈ Trσ(E) such that an → a. Let now ǫm = 2−m, for m ∈ N.
If we apply Lemma 4.10 to each an and for each ǫm, we obtain a sequence (bn

m)m,n∈N ∈
Trσ(F) such that, for all m,n ∈ N, D(an, bn

m) < ǫm. Consider now the diagonalization of
such sequence, i.e., the sequence (a′n)n∈N ∈ Trσ(F) defined by setting a′n = bn

n, for all n ∈ N.
We contend that a′n → a, which is enough to conclude. So let ǫ > 0. Since an → a, there
exists N ∈ N such that, for all n ≥ N , D(a, an) < ǫ/2. Similarly, let M be smallest integer
such that ǫM < ǫ/2, and let K = max(M,N). We then have, for all n ≥ K,

D(a, a′n) ≤ D(a, an) + D(an, a′n) = D(a, an) + D(an, bn
n) < ǫ,

which proves that a′n tends to a as n grows to infinity, as desired.

Corollary 4.12. Let µ, ν be two nets such that E•(µ) = E•(ν). Then, for every context C,
E•(C[µ]) = E•(C[ν]).

Proof. We use the notation of the proof of Proposition 3.20 for juxtaposing nets, i.e., we
denote by C •µ the juxtaposition of C and µ, so that C[µ] may be written as σ[C •µ] for a
suitable feedback σ. Now, observe that the arches of E(C) and E(µ) are based at different
integers, so that the closure of these two edifices is completely disjoint. The same remark
applies to E(C) and E(ν); hence, we have E•(C • µ) = E•(C) ∪ E•(µ) = E•(C) ∪ E•(ν) =
E•(C • ν). Then, using Corollary 3.17 and Proposition 4.11, we may write

E•(C[µ]) = E•(σ[C • µ]) = Tr•σ(E(C • µ)) = Tr•σ(E(C • ν)) = E•(σ[C • ν]) = E•(C[ν]).
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4.3. Characterizing observational equivalence. Obtaining a semantic characterization
of an observational equivalence involves two results: the proof of a first statement, usually
referred to as the adequacy of the semantics, establishing that denotational equality implies
observational equivalence; and the proof of the converse, i.e., that observational equivalence
implies denotational equality, which is usually known as full abstraction.

The presence of both results is often simply referred to as a “full abstraction result”,
because the second property is in most cases harder to obtain, and is thus the fundamental
one. In fact, adequacy is an immediate consequence of the following two properties:

contextuality: the semantics induces a congruence on the syntax, i.e., if two syntactic
objects a, b are denotationally equal, then for every context C, C[a] and C[b] are
also denotationally equal;

discrimination: the semantics is able to discriminate between the two classes of syn-
tactic objects used to define the observational equivalence, i.e., if the set S is the
basis of the equivalence, as described in Sect. 2.1, then for any a ∈ S and b 6∈ S,
one must have that a and b are denotationally different.

To see that adequacy follows from the above two properties, consider the contrapositive
statement: let a, b be observationally different, i.e., suppose there exists C such that C[a] ∈
S and C[b] 6∈ S; by discrimination, we obtain that C[a] and C[b] are denotationally different,
so we conclude by contextuality. Note that this latter property is usually taken as a basic
property of denotational semantics, i.e., all semantics are assumed to verify it, as described
in Sect. 3.3. Hence, all that is left to verify is the discrimination property, which is often
not so hard to obtain. This is why, in most cases, full abstraction receives all the attention.
Nevertheless, this does not mean that adequacy itself is banal: for instance, our proofs of the
contextuality property for edifices and closed edifices (Proposition 3.20 and Corollary 4.12,
respectively) are far from being trivial.

So, we start by ensuring that edifices enjoy the discrimination property with respect
to finitary axiom-equivalence. For this, we use the topological characterization based on
compactness (Proposition 4.7):

Lemma 4.13. For all nets µ, ν, µ ⇚ and ν ⇛ implies E(µ) 6= E(ν).

Proof. Simply observe that, by Proposition 4.7, E(µ) is non-empty and compact, while E(ν)
is either empty, or not compact.

We now have our first full abstraction result:

Theorem 4.14 (Full abstraction for ∼=). For all nets µ, ν, µ ∼= ν iff E(µ) = E(ν).

Proof. As discussed above, the implication from right to left, or the adequacy property, is a
consequence of Proposition 3.20 and Lemma 4.13; so let us examine directly the converse,
or rather its contrapositive. Suppose that E(µ) 6= E(ν), and let a ∈ E(µ) \ E(ν) (we are
supposing without loss of generality that E(µ) is not contained in E(ν)). We then have

µ′

τ1 τ2

. . . . . .

. . .
→∗

βµ
ji
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where the observable axiom shown generates a, whereas, by Lemma 1.16,

ν′

τ1 τ2

. . . . . .

. . .
≃ην

i j

and no reduct of ν ′ develops a connection between the ports i, j generating a. Now consider
the test

ε ε

ε ε ε ε

τ1 τ2

i j

. . . . . .

. . .

=θ

By Lemma 1.9, θ[µ] ε-reduces to a quasi-wire (cf. Fig. 14), so θ[µ] ⇚ . On the contrary, θ[ν]
reduces to a net with 2 free ports which cannot be βη-equivalent to a wire, otherwise we
would have a ∈ E(ν). We have two possibilities: either θ[ν] is βε-normalizable, or it is not.
In the latter case, by Corollary 2.31, we have θ[ν] ⇛ , so we are done. In the former case,
we take the βε-normal forms of θ[µ] and θ[ν], which are cut-free by Proposition 2.29, and
conclude by applying the Separation Theorem 1.18.

The fact that closed edifices enjoy the discrimination property with respect to axiom-
equivalence is trivial, and no special topological property is needed to prove it:

Lemma 4.15. For all nets µ, ν, µ⇓ and ν⇑ implies E•(µ) 6= E•(ν).

Proof. E(µ) is non-empty (it contains at least one vault), and the closure of a non-empty
set is non-empty; on the contrary, E(ν) is empty, and so is its closure.

By contrast, in the case of axiom-equivalence, compactness (and hence completeness)
becomes essential for yielding a fully-abstract denotational semantics. It is crucial in the
proof of the following result:

Lemma 4.16. Let µ, ν be such that E•(µ) 6= E•(ν). Then, one of the following holds:

• there exists an observable axiom x ∈ ax∗(µ) such that A(x) ⊆ E(µ) \ E•(ν);
• there exists an observable axiom y ∈ ax∗(ν) such that A(y) ⊆ E(ν) \ E•(µ).

Proof. Let µ have n free ports, and suppose, without loss of generality, that there exists
a ∈ E•(µ) \ E•(ν), based at i, j ∈ {1, . . . , n}. Remember that E•(µ) and E•(ν) are defined
as the closures of resp. E(µ) and E(ν), and that by Proposition 4.8 they are both compact,
hence complete. Then, if a ∈ E•(µ)\E(µ), a must be a “missing limit” of a Cauchy sequence
(an)n∈N of E(µ). Since a subsequence of a Cauchy sequence is still a Cauchy sequence, there
must exists an integer m such that, for all n ≥ m, an ∈ E(µ) \ E•(ν), otherwise a would
belong to E•(ν) because of its completeness. Therefore, modulo replacing it by one of
these an, we can always assume that a ∈ E(µ) \ E•(ν). If it is so, then by Definition 3.11
there exists x = s @ i ⌢ t @ j ∈ ax∗(µ) such that a ∈ A(x) ⊆ E(µ), which means that
a = sw0 @ i ⌢ tw0 @ j and, for every w ∈ C × C, sw @ i ⌢ tw @ j ∈ E(µ). Now let
s′1, . . . , s

′
n, . . . be a sequence of prefixes of increasing length of w0, and set, for all n, sn = ss′n

and tn = ts′n. Suppose that, for all n, there exist two pairs of infinite words un, vn such
that an = snun @ i ⌢ tnvn @ j ∈ E•(ν); it is not hard to verify that the arches an would
form a Cauchy sequence of limit a, and thus, by the completeness of E•(ν), we would obtain
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a ∈ E•(ν), a contradiction. Therefore, there must exist an integer n such that, for all w,
snw @ i ⌢ tnw @ j ∈ E(µ) \ E•(ν).

To prove full abstraction for ≃, we first need the following separation result:

Lemma 4.17. Let W be a quasi-wire (Fig. 14), and let µ be a net with two free ports, such
that s @ i ⌢ t @ j ∈ ax∗(µ) implies i = j. Then, there exists a test θ such that θ[W ]⇓ and
θ[µ]⇑.

Proof. If µ⇑, the identity test suffices, so suppose µ⇓. By hypothesis, all observable paths
appearing in the reducts of µ connect one of the free ports to itself. Therefore, there exists
µ′ such that µ →∗

β µ′, and

=µ′

. . .

µ′′

τ

In the above picture, we have supposed that the observable path connects the free port 1 to
itself, and that the leaves connected by the observable axiom are the two “leftmost” leaves
of τ . These are just graphically convenient assumptions, causing no loss of generality: the
observable path may as well connect port 2 to itself, and the leaves connected may be any
two leaves of τ . Now, if we define

=θ

ε ε

. . .

ε ε

. . .

ε

τ τ

ε

we have that, thanks to Lemma 1.9, θ[W ] →∗
β W , while θ[µ] reduces to a net whose free

port 1 is connected to an ε cell. If this net is blind, we are done; otherwise, there is a reduct
of θ[µ] containing an observable path between the free port 2 and itself. This observable
path can be “eliminated” with the same technique, while the ε cell on port 1 will “eat” any
tree fed to it, so in the end we obtain a test θ′ such that θ′[W ] →∗

β W ↓, while θ′[µ]⇑, as

desired.

We are now ready to prove our second full abstraction theorem:

Theorem 4.18 (Full abstraction for ≃). For all nets µ, ν, µ ≃ ν iff E•(µ) = E•(ν).

Proof. Once again, the adequacy property, i.e., the backward implication, is a consequence
of Corollary 4.12 and Lemma 4.15, so let us turn to the actual full abstraction property.
For this, we consider the contrapositive statement, and assume E•(µ) 6= E•(ν). Let I
be the interface of µ and ν. By Lemma 4.16, we know that there exist i, j ∈ I and
x = s @ i ⌢ t @ j ∈ ax∗(µ) such that, for all w, sw @ i ⌢ tw @ j ∈ A(x) \ E•(ν) (it could
actually be that these arches belong to A(y) \ E•(µ), where y ∈ ax∗(ν), but obviously our
assumption causes no loss of generality). We shall suppose i 6= j; the reader is invited to
check that the argument can be adapted to the case i = j. Since x ∈ ax∗(µ), we have
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. . . . . . . . . . . .
s t

τi τj

i j

→∗

βµ

. . .

µ′

where we have explicitly drawn the observable axiom of address x. On the other hand, by
Lemma 1.16, we have

. . . . . . . . . . . .
k l

τi τj

i j

≃ην

. . .

ν′

where we have called k and l the two free ports of ν ′ corresponding resp. to the addresses t
and s in τi and τj. Observe that, by the fact that closed edifices model ≃βηε, the edifice of the
net on the right is still E•(ν). Now if, in any reduct of ν ′, there appeared an observable path
between k and l, then we would contradict the fact that, for all w, sw @ i ⌢ tw @ j 6∈ E•(ν).
Therefore, no observable path ever appears between k and l in any reduct of ν ′.

Consider then the test
i j

. . .

. . . . . . . . . . . .

ε ε ε ε ε ε

s t

=θ τi τj

where we have left free only the leaves corresponding to the addresses s and t of τi and τj .
Now, by Lemma 1.9, θ[µ] β-reduces to a quasi-wire; on the other hand, we have

ε ε ε ε ε ε

lk

ν′

≃βη
. . . . . . . . . . . . . . .θ[ν]

But ν ′ never develops observable paths between k and l, so Lemma 4.17 applies, and we
obtain µ 6≃ ν.

By inspecting the proofs of Theorems 4.14 and 4.18, we see that only tests are used to
discriminate nets. Since those two results say precisely that equality of edifices and closed
edifices coincides with finitary axiom-equivalence and axiom-equivalence, respectively, we
get the following Context Lemma for free:

Lemma 4.19 (Context). µ ∼= ν (resp. µ ≃ ν) iff, for every test θ, θ[µ] ⇚ iff θ[ν] ⇚ (resp.
θ[µ]⇓ iff θ[ν]⇓).
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ι

δ δ

ι →∗

β

Figure 15: A non-βε-normalizable net observationally equivalent to a wire.

Furthermore, combined with Proposition 3.19, Theorem 4.14 gives us that βηε-
equivalence is included in finitary axiom-equivalence (and hence in axiom-equivalence, by
Proposition 2.23); in Sect. 5.3 we shall see that this inclusion is strict (cf. Fig. 19).

Corollary 4.20. For every nets µ, ν, µ ≃βηε ν implies µ ∼= ν.

On the other hand, as an application of Theorem 4.18 we give an example showing
that the inclusion of Proposition 2.23 is strict, i.e., that there exist axiom-equivalent nets
which are not finitarily axiom-equivalent. Such example is based on a net which is not
βε-normalizable, and yet is observationally equivalent to a wire. This is analogous to
Wadsworth’s “infinitely η-expanding” term J = RR, where R = λxzy.z(xxy), which is well
known to be hnf-equivalent to λz.z.

Consider a net ι reducing as in Fig. 15. Such a net exists by what we have shown in
Sect. 1.3; furthermore, after constructing it, one can see that ι is not immediately observable,
and that x ∈ ax∗(ι) iff x = qnp⊗ 1@ 1 ⌢ qnp⊗ 1@ 2 for some non-negative integer n. On
the other hand, if ω denotes a wire, we have

E•(ω) = E(ω) = {u@ 1 ⌢ u@ 2 ; ∀u ∈ C × C}.

Now, if q∞ denotes an infinite sequence of q’s, all arches of the form

ay = q∞ ⊗ y @ 1 ⌢ q∞ ⊗ y @ 2

are missing from E(ι), hence E(ι)  E(ω). But these arches are all adherent to E(ι): in fact,
it is very easy to construct a Cauchy sequence in E(ι) of limit ay, for any y. Therefore,
E•(ι) = E•(ω), and ι ≃ W . On the other hand, ι 6∼= ω, and we do not need Theorem 4.14
to prove that: in fact, the identity is a context discriminating between the two nets.

Note that the reducts of ι are “almost” η-equivalent to a wire: there is just one missing
connection. We can say that this connection forms “in the limit”, when the reduction is
carried on forever. When one interprets nets as edifices, this informal remark becomes a
precise topological fact, i.e., we have a true limit.

5. Concluding Remarks

5.1. Comparison with previous work. The first notion of observational equivalence for
interaction nets introduced in the literature is due to Bechet [Bec92]. In his work, the
author mentions a notion of behavioral equivalence based on Girard’s coherence spaces
[Gir87]. However, we have not been able to reformulate this equivalence so as to compare
it to the ones studied in the present paper.

The situation is different with Fernández and Mackie’s work [FM03], the only other
existing work on observational equivalence for interaction nets, for which we have precise
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µ′

α
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. . .

µ′

τ

. . . . . . . . .

i

. . . . . .

Figure 16: Visible ports; α is any symbol, and τ any tree.

results. First of all, we may note that Fernández and Mackie’s approach is more general,
i.e., it applies to all systems of interaction nets, not just to the symmetric interaction com-
binators. However, we have already mentioned that our notion of observable and finitarily
observable net can also be generalized to arbitrary systems of interaction nets, as shown in
the author’s Ph.D. thesis [Maz06]; the details of this generalization are out of the scope of
this paper though.

What is more interesting is to compare our notions of observational equivalence with
the specialization of Fernández and Mackie’s observational equivalence to the symmetric
interaction combinators, which we shall call here visible equivalence. It can be formulated
as follows:

Definition 5.1 (Visible port, visible equivalence [FM03]). Let µ be a net with n free ports,
and let 1 ≤ i ≤ n. We say that i is immediately visible in µ iff µ has one of the shapes

given in Fig. 16. We say that i is visible in µ, and we write µ
∼
⇓i, iff µ →∗

β µ′ such that i is

immediately visible in µ′. We write µ
∼
⇑i for the negation of µ

∼
⇓i.

Given two nets µ, ν with n free ports, we say that µ and ν are visibly equivalent, and

we write µ ≈ ν, iff, for every 1 ≤ i ≤ n and for every context C, C[µ]
∼
⇓i iff C[ν]

∼
⇓i.

Fernández and Mackie [FM03] also give, in case a port i is visible, a notion of visible
agent at i, and require furthermore that either the visible agents at i of C[µ] and C[ν]
are the same, or that one of such visible agents is not a constructor. In interaction net
systems, a constructor is simply a symbol declared to be such, i.e., it is not an intrinsic
notion. Declaring symbols to be constructors may be useful from an “intentional” point
view, when one has in mind a particular semantics for the given interaction net system.
In the symmetric combinators, because cells with the same symbol may interact, there are
arguably no constructors, hence the simplified definition we give here.

Note that, as defined above, visible equivalence does not quite fit in the general pattern
of Morris-like observational equivalences discussed in Sect. 2.1, because it is defined “port-
wise”, i.e., it takes free ports into account. In other words, visibility is a property of free
ports, not of nets. However, Fernández and Mackie’s definition can easily be adjusted so as
to conform to Morris’ pattern.

Definition 5.2 (Visible net). Let µ be a net with n free ports. We say that µ is visible,

and we write µ
∼
⇓, iff µ

∼
⇓i for some 1 ≤ i ≤ n.

Lemma 5.3. Let µ be a net with n free ports, let 1 ≤ i ≤ n, and let
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µ

ε ε

i

. . . . . .=ν

Then, ν
∼
⇓ iff µ

∼
⇓i.

Proof. For the backward implication, by definition µ reduces to a net of one of the shapes
given in Fig. 16. In the case on the left, the appearance of the α cell is not modified by the
ε cells in ν; in the case on the right, simply observe that the ε cell plugged at the root of τ
will “eat” the tree until arriving at free port i. For the forward implication, we have that
only the left case of Fig. 16 is possible, i.e., there is a reduct of ν in which the principal
port of a cell c appears at its only free port. Note that ε cells only produce ε cells through
interaction. Hence, if c is not an ε cell, it already appears in µ; if c is an ε cell, either it
already appears in µ, or c “comes from” one of the ε cells plugged to µ in ν. Then, it is not
hard to see that µ must reduce to a net of the shape at the right of Fig. 16, with the ε cell
“producing” c being the one plugged to the root of τ .

Proposition 5.4. For all nets µ, ν, µ ≈ ν iff, for every context C, C[µ]
∼
⇓ iff C[ν]

∼
⇓.

Proof. The forward implication is trivial; for what concerns the converse, consider the

contrapositive statement: there exist C and 1 ≤ i ≤ n such that, for instance, C[µ]
∼
⇓i

and C[ν]
∼
⇑i. Then, let E be the context plugging ε cells to all free ports of C[µ] and C[ν]

except i; by Lemma 5.3, we have E[C[µ]]
∼
⇓ and E[C[ν]]

∼
⇑, as desired.

In their paper [FM03], the authors prove that ≃βη ⊆≈, so, by Proposition 1.19, we
have that ≈ coincides with ≃βη on total nets, just like all the other equivalences introduced
in this paper (except of course ≃β). However, the situation is quite different if we consider
non-total nets; indeed, we can show that visible equivalence is strictly stronger than finitary
axiom-equivalence (and, by Proposition 2.23, than axiom-equivalence).

Lemma 5.5. Let µ, ν be two nets with the same interface, and let C be a context such that
C[µ] reduces to a quasi-wire, while C[ν] reduces to a net whose one of the two free ports is
connected to a principal port. Then, µ 6≈ ν.

Proof. Simply consider the context

. . .

C

α=C′

where α is any binary symbol, and we have supposed, without loss of generality, that the
free port of the reduct of C[ν] which is connected to the principal port is the one on the left
in the above picture (while the free ports drawn at the top of the picture are those that are
connected to µ and ν in C[µ] and C[ν], respectively). Then, we have, for some net without
interface o, some symbol β, and some net ν0,
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o→∗

βC′[µ] α →∗

βC′[ν] α

. . .

β

ν0

so that C ′[µ]
∼
⇑, whereas C ′[ν]

∼
⇓.

Lemma 5.6. Let µ⇓ and ν⇑. Then, µ 6≈ ν.

Proof. By Proposition 2.22, there exists a test θ such that θ[µ] reduced to a quasi-wire. On
the other hand, by Lemma 2.21 we still have θ[ν]⇑. Observe that, if i is any of the two free

ports of θ[µ], we have θ[µ]
∼
⇓i. Now, if one of the two free ports of θ[ν] is not visible, we are

done. We may then assume θ[ν] →∗
β ν ′, where both free ports of ν ′ are immediately visible;

then, they must both be connected to a principal port, otherwise ν ′ would be immediately
observable (cf. Fig. 16, right), whereas we know it to be blind. We may therefore conclude
by applying Lemma 5.5.

The fact that visible equivalence is stronger than finitary axiom-equivalence is a trivial
corollary of the following:

Proposition 5.7. Let µ ⇚ and ν ⇛ . Then, µ 6≈ ν.

Proof. Let µ and ν have n free ports. We have two possibilities: either ν⇑, or ax∗(ν) is
infinite. In the first case, observe that µ ⇚ implies µ⇓, so we conclude by Lemma 5.6. In
the second case, since ax∗(µ) is finite, there must exist 1 ≤ i, j ≤ n and pairs of words s, t
such that s @ i ⌢ t@ j ∈ ax∗(ν) \ ax∗(µ). Now, s and t describe two trees τs, τt and a leaf
in each of them, such that

i j

τs τt

. . . . . . . . .

. . .. . .. . .

µ0

. . .→∗

βµ

where the wire shown connects the two leaves of τs, τt described by s, t, respectively. Con-
sider then the test

ε

ε

ε ε ε

ε

. . . . . . . . .

. . . . . .. . .. . .

τs τt
=θ

where the only leaves of τs, τt left free are again those described by s, t, respectively. We
obviously have that θ[ν] β-reduces to a quasi-wire; on the contrary, because of the way we
have chosen s and t, θ[µ] is not βη-equivalent to a wire. Observe however that ax∗(θ[µ]) is
still finite (although it may now be empty). Then, we may consider the βε-normal forms
of θ[ν] and θ[µ], which exist by Corollary 2.31, and apply the Separation Theorem 1.18
to them. We thus obtain a further test θ′ such that θ′[θ[µ]] β-reduces to a quasi-wire and
θ′[θ[ν]]⇑, or vice versa. In any case, we reason as in the proof of Lemma 5.6: if one of the
ports of the blind net is not visible, we conclude; otherwise, we apply Lemma 5.5.
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µ = E1 =

ε

ν = α

Figure 17: Two nets showing that visible equivalence is more discriminative than finitary
axiom-equivalence; α is any binary symbol.

. . .. . . ν=Pν

1 n

Figure 18: The parallelizing context for nets with n free ports; ν is an arbitrary net.

Corollary 5.8. For all nets µ, ν, µ ≈ ν implies µ ∼= ν.

Proof. Consider the contrapositive statement: µ 6∼= ν implies that there exists C such that,
for example, C[µ] ⇚ and C[ν] ⇛ ; by Proposition 5.7, we have C[µ] 6≈ C[ν], so we conclude
µ 6≈ ν by using the fact that ≈ is a congruence.

To see that visible equivalence is strictly stronger than finitary equivalence, consider
the nets of Fig. 17: the only free port of µ = E1 is visible, while the only free port of ν is
not visible, so µ 6≈ ν; on the contrary, the edifice of both nets is empty, so by Theorem 4.14
we have µ ∼= ν.

An intuitive justification to Corollary 5.8 and to the example of Fig. 17 is that the
difference between a visible and an observable net is seemingly akin to the difference between
a head-normalizable and a weak -head-normalizable λ-term. In fact, the two cases of Fig. 16
are strikingly similar to the cases λx.M (left) and xM1 . . . Mn (right) defining weak head
normal forms: the latter case is a special case of observable net, just like xM1 . . . Mn is
a special case of head-normal-form; the former case guarantees that a net visible on port
i is “reactive” when we plug the principal port of a cell to i itself, i.e., an active pair is
created, just like λx.M is “reactive” to application (a redex is created). In the λ-calculus,
whnf-equivalence is strictly stronger than nf- and hnf-equivalence [DCG01]; this is in accord
with our intuition about visible equivalence and (finitary) axiom-equivalence.

5.2. Approximations and the Genericity Lemma. In the λ-calculus, unsolvable terms
are important because they represent meaningless data. One of the main formal arguments
in favor of this intuition is the so-called Genericity Lemma [Bar84]: let M be an unsolvable
λ-term, and let C be such that C[M ] is normalizable; then, C[X] ≃β C[M ] for every λ-term
X. In other words, if we see C[·] as a function, the only functions which are able to produce
something meaningful (a normal form) out of unsolvable terms are the constant functions,
confirming the fact that unsolvable terms are meaningless.

In the symmetric interaction combinators, a word-by-word rephrasing of the Genericity
Lemma fails; this is because of two interesting differences with respect to the λ-calculus:

• the intrinsic parallelism of interaction nets, which has no equivalent in the λ-calculus;
• the fact that, for every n ∈ N, there is an unsolvable net with n free ports which is

cut-free, hence normal (namely, the net we called En); by contrast, no normal λ-term can
be unsolvable.
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Indeed, consider the context Pν given in Fig. 18. We may refer to this context as the
“parallelizing” context: in fact, for every net µ with n free ports, Pν [µ] = µ • ν, i.e.,
the juxtaposition of µ and ν. Now, let ν be a net which is normalizable, or total, or
finitarily observable, and take the unsolvable net En. Clearly Pν [En] is normalizable, or
total, or finitarily observable, but there always exists a net ξ such that Pν [ξ] need not be
normalizable, or total, or finitarily observable, let alone β-equivalent to Pν [En]. This is
because ξ and ν do not interact, so the properties of Pν [ξ] basically depend solely on ξ.

However, there is a reformulation of the Genericity Lemma which holds for the sym-
metric interaction combinators, and which supports the fact that our notion of unsolvable
net coincides indeed with that of meaningless data. Take an unsolvable net µ, and take a
context C. Then, we can prove that, whenever

→∗

β

µ0

C0

. . .

. . .

µ

C

. . .

. . .

=C[µ]

such that C0 is cut-free and none of the wires connecting C0 to µ0 is a cut, we have that,
for every net ξ with the same number of free ports as µ, there exists ξ0 such that

→∗

β

ξ0

C0

. . .

. . .

ξ

C

. . .

. . .

=C[ξ]

In other words, every bit of information in the result of the computation represented by
C[µ] is also present in C[ξ], for all ξ, which means that µ actually does not produce any
information, and is thus meaningless.

The above concept of “bit of information” may be formalized by the notion of approx-
imation:

Definition 5.9 (Approximation). Let µ be a net. An approximation of µ is a cut-free net
ν such that:

• ν = C[En] for some context C and n ∈ N;
• µ →∗

β C[µ0] for some µ0 with n free ports.

If ν is an approximation of µ, we write ν ⊑ µ.

Intuitively, an approximation of µ is a “piece” of the hypothetical cut-free form of µ,
i.e., it gives a partial information on the result of the computation represented by µ. The
least information, or the lack thereof, is En, which is an approximation of every net with n
free ports. If a net is total, then its cut-free form is also an approximation of it, the most
complete one indeed.

Approximations and edifices are related by the following, whose proof is left to the
reader:

Proposition 5.10. Let µ be a net, and let ν be a cut-free net with the same interface as
µ. Then, ν ⊑ µ iff E(ν) ⊆ E(µ).
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The above result confirms in particular the idea that the edifice of a net may be seen
as its “infinite cut-free form”. Indeed, the relation ⊑ can be made a partial order, and the
set of approximations of a net can be shown to be a directed set. However, the order given
by ⊑ is not complete, so this set has no least upper bound in general; to make it complete,
one should introduce infinite cut-free nets, which is more or less what edifices are.

We may then state the Genericity Lemma as follows:

Lemma 5.11 (Genericity). Let µ be an unsolvable net with n free ports. Then, for every
context C and for every net ξ with n free ports, ν ⊑ C[µ] implies ν ⊑ C[ξ].

Proof. By Proposition 2.22, we have µ⇑, so E(µ) = ∅. Hence, we can write, using Corol-
lary 3.17, Lemma 3.7, and the decomposition C[µ] = σ[C • µ] for a suitable feedback σ,

E(C[µ]) = Trσ(E(C) ∪ E(µ)) = Trσ(E(C)) ⊆ Trσ(E(C) ∪ E(ξ)) = E(C[ξ]).

Now, by Proposition 5.10, ν ⊑ C[µ] implies E(ν) ⊆ E(C[µ]), so E(ν) ⊆ E(C[ξ]), and we
conclude ν ⊑ C[ξ] again by Proposition 5.10.

5.3. Theories for the symmetric interaction combinators. In the foundational stud-
ies concerning the λ-calculus, an important role is played by λ-theories [Bar84, LS04]. These
can be straight-forwardly be reformulated in the context of the symmetric interaction com-
binators:

Definition 5.12 (Theory). A theory is a binary relation ∼ on nets such that:

(1) ∼ relates nets with the same interface;
(2) ∼ is a congruence;
(3) ≃β ⊆∼.

The set of theories T is a complete bounded lattice with respect to inclusion: given any
family of theories (∼i)i∈I , the least upper bound (lub) is defined by (

⋃
i∈I ∼i)

+, and the
greatest lower bound (glb) by

⋂
i∈I ∼i; the least element is ≃β, and the greatest element is

the inconsistent theory ⊤, which equates all nets with the same interface.
Much effort has been put forth in order to understand the structure of the lattice of

λ-theories; quite a few things are known about it [Vis80, Bar84, LS04], and many more are
the subject of ongoing research [BMS07, BS08, BMS09, CS09]. In the case of the symmetric
combinators, we suspect the structure of T to be at least as intricate as in the case of the
λ-calculus. In this section, we gather everything we presently know about it (which is
arguably not much!), leaving several questions open for further work.

As in the case of the λ-calculus, we may define sensible and semi-sensible theories, based
on the fact that unsolvable nets are meaningless, and it is therefore sensible to identify all
of them:

Definition 5.13 (Sensible and semi-sensible theory). A theory ∼ is sensible iff, for all µ, ν
unsolvable, µ ∼ ν. A theory ∼ is semi-sensible iff µ ∼ ν implies µ solvable iff ν solvable.

Note that any theory containing a sensible theory is sensible, while any theory contained
in a semi-sensible theory is semi-sensible (these are both immediate consequences of the
definition). The two notions are related as follows.

Lemma 5.14. Let ∼ be a sensible theory. Then:

(1) for every blind net µ with n free ports, µ ∼ En;
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(2) for every quasi-wire W , W ∼ ω, where ω is a wire.

Proof. Point (1) is obvious (modulo Proposition 2.22). For point (2), observe that W = ω[o],
where o is some net without interface, necessarily blind; moreover, note that ω = ω[E0],
where E0 is the empty net. Now, by point (1), o ∼ E0; but then we can conclude, because
∼ is a congruence.

Proposition 5.15. A consistent sensible theory is semi-sensible.

Proof. Let ∼ be a sensible theory, and let µ⇓ and ν⇑. We shall prove that µ ∼ ν implies
∼= ⊤. First of all, by Proposition 2.22, by the fact that ∼ includes β-equivalence, and by
point (2) of Lemma 5.14, there exists a test θ such that θ[µ] ∼ ω. On the other hand, by
Lemma 2.21, and by point (1) of Lemma 5.14, we have θ[ν] ∼ E2. But ∼ is a congruence,
so ω ∼ E2, and we may conclude by Proposition 1.19.

Apart from ≃β, in the course of this paper we introduced several theories: ≃βη, ≃βε,
≃βηε, ∼=, ≃, and ≈ (the first and the last were actually introduced by Fernández and Mackie,
cf. Sect. 5.1). All of them are semi-sensible, because they are all included in ≃, which is
semi-sensible by definition. Furthermore, since ≃βε is sensible by definition (ε-reduction
equates precisely all unsolvable nets), all the theories including it are also sensible, namely
≃βηε, ∼=, and ≃. On the contrary, ≃β, ≃βη, and ≈ are not sensible: Fig. 17 gives an example
of two unsolvable nets which are distinguished by all of these theories.

Indeed, Fernández and Mackie’s equivalence is an example of non-sensible theory which
strictly extends βη-equivalence, and stands quite on its own with respect to the other
theories discussed in this paper. For instance, it is completely orthogonal to βε-equivalence:
this latter is not included in ≈, as shown again by the example of Fig. 17; and ≈ is not
included in ≃βε, because the former includes η-equivalence. On the other hand, although
the example of Fig. 17 tells us that ≃βηε is not included in ≈, we know nothing about the
converse. All we know is that ≈ is strictly contained in ∼= (Corollary 5.8 and Fig. 17).

What about consistent sensible theories in general? First of all, observe that the lub
and glb of a family of sensible theories is sensible, so the set of sensible theories is a complete
sub-lattice of T, which is actually bounded. The least element is obviously ≃βε, because it
is defined so as to validate exactly β-equivalence plus equality of every unsolvable net. The
greatest element turns out to be ≃; in fact, this can be shown to be a coatom of T, i.e., a
maximal consistent theory (so ≃ is also the greatest semi-sensible theory).

Proposition 5.16. Let ∼ be a theory such that ≃ ∼. Then, ∼= ⊤.

Proof. We start by observing that ∼ is sensible, because it includes ≃. Now, let µ ∼ ν,
with µ 6≃ ν. We then have a context C such that, for example, C[µ]⇓ and C[ν]⇑. But ∼ is a
congruence, so C[µ] ∼ C[ν], which proves that ∼ is not semi-sensible. By Proposition 5.15,
the only sensible theory which is not semi-sensible is ⊤.

So far, the situation is identical to the case of the λ-calculus, in which the lattice of
consistent sensible λ-theories has least element ≃βΩ (also known as H) and greatest element
hnf-equivalence (also known as H∗).

In between the two, there is ≃βηΩ, which coincides with nf-equivalence (also denoted
by Hη). Here we find the first sharp difference with respect to the λ-calculus: ≃βηε, which
is analogous to ≃βηΩ, does not coincide with ∼=, which, morally, is the counterpart of nf-
equivalence. In fact, the converse of Corollary 4.20 fails: the two nets of Fig. 19 give an
interesting example of this. They can be built by slightly twisting the constructions given
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δ

δ
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µ2

δ

µ1

δ

Figure 19: Nets showing that µ ∼= ν does not imply µ ≃βηε ν.

in Sect. 1.3. It is not hard to show that µ1 6≃βηε µ2; in some sense, the two nets endlessly
“chase” each other in their reduction, never managing to meet. And yet, it is evident
that they generate exactly the same observable axioms, i.e., ax∗(µ1) = ax∗(µ2). Therefore,
E(µ1) = E(µ2), and µ1

∼= µ2 by Theorem 4.14. Note how the parallelism of interaction
nets, absent in the λ-calculus, plays once again a crucial role in this example. If we use the
analogy that observable axioms are head variables, here we are clearly exploiting the fact
that interaction nets allow several head variables in parallel: although µ1 and µ2 have the
same “head variables”, they “produce” them in a different order.

In the λ-calculus, it is possible to show that between Hη and H∗ there is a continuum
of sensible theories [Bar84]; we ignore whether this is the case for the symmetric interaction
combinators. Indeed, a related open question is the existence of easy nets, i.e., nets which
can be consistently equated with any other net with the same interface. A first difference
with the λ-calculus is that E2, which is the prototypical unsolvable net with 2 free ports, is
not easy (Proposition 1.19 shows that there is no consistent theory equating it with a wire);
on the contrary, the λ-term Ω, which is the prototypical unsolvable term, can be shown to
be easy.

Finally, we give an example of a consistent non-semi-sensible theory. Define total equiv-
alence as µ ∼t ν iff, for every context C, C[µ] is total iff C[ν] is total. It can be shown that
η-equivalence does not alter totality, so ≃βη ⊆∼t. Moreover, observe that total equivalence
is the only theory we introduced which distinguishes between the empty net E0 (which is
total) from all other nets with no interface not reducing to E0 (which are not total). This
proves in particular that the theory is consistent.

However, consider the net ξ obtained by juxtaposing two copies of the net ν given in
Fig. 17, and let ι be the net of Fig. 15. Both nets have 2 free ports, and are thus comparable;
furthermore, none of the two nets is total (ι is not normalizable, ξ contains vicious circles),
and we clearly have ι⇓ and ξ⇑. Now, non-totality has a quite singular behavior if compared
to non-normalizability in the λ-calculus, in that it is “resistant” to contexts: in fact, by
the locality of interaction rules, neither active pairs nor vicious circles can be eliminated
through interaction; thus, if µ is not total, so is C[µ], for any C. Therefore, we have ι ∼t ξ,
which proves that total equivalence is not semi-sensible. So the only possible relationship
with the other known theories is ≈ ∼t; we ignore whether this is the case.

5.4. More open questions and further work. In Fig. 20 we graphically resume what
we know about theories in the symmetric interaction combinators. A solid line represents
inclusion, from bottom to top; a thick solid line represents atomic inclusion, i.e., there is no
theory in between. The main open questions concerning Fig. 20 discussed up to now may
be resumed as follows:
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⊤
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Figure 20: The lattice of theories for the symmetric interaction combinators.

• Is ≈ included in ≃βηε? (We know that the converse does not hold).
• Is ≈ included in ∼t? (We know that the converse does not hold).
• Does the lattice of consistent sensible theories have the cardinality of the continuum?
• Related to the above question: do easy nets exist?

The list does not stop here, though: there are a few more open questions about theories
for the symmetric interaction combinators, and, more in general, about the mathematical
objects presented in this work.

In the light of the author’s previous work on denotational semantics for the symmetric
combinators [Maz07a], and still drawing inspiration from the λ-calculus, a first question we
ask is: what about the theories generated by the models of the symmetric combinators? In
particular, is any of the theories of Fig. 20 the theory of a model? Indeed, when we have a
denotational semantics of the symmetric combinators (in the sense of Sect. 3.3), we auto-
matically have a theory, given by denotational equality. Our full abstraction Theorems 4.14
and 4.18 tell us for example that the theory of edifices and closed edifices is exactly ∼= and
≃, respectively. What about the denotational semantics based on interaction sets [Maz07a]?
The examples we gave in that work can actually be shown to induce theories which are in
between ∼= and ≃. However, we know that there exist interaction sets yielding fully abstract
models for both of these theories; we prefer to keep this for further publication though.

What about the other theories of Fig. 20? In the λ-calculus, no non-syntactic model
whose theory is β- or βη-equivalence is known. Ongoing work by Berline, Manzonetto and
Salibra [BMS07, BMS09] suggests that there is a good reason for this: there is a sort of
duality between the complexity of certain classes of non-syntactic models of the λ-calculus
and the complexity of the λ-theory that they generate: in particular, for such classes of
models, recursively enumerable theories like β- or βη-equivalence may be obtained only by
non-recursively-enumerable models. Of course we have no formal reason to believe that a
similar phenomenon takes place in the case of the symmetric interaction combinators, but
we suspect that finding non-syntactic fully abstract models of ≃β and ≃βη is not an easy
task.
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The situation may be different for ≃βε (or ≃βηε). Fig. 19 shows that there exists nets
such that µ1 6≃βε µ2 and yet ax∗(µ1) = ax∗(µ2), so any semantics based on simply collecting
observable axioms will not work. What would be needed is an additional structure to ax∗(µ),
which takes into account the causal relationship between observable axioms. For instance,
we may think of endowing ax∗(µ) with a poset structure, in the style of Winskel’s event
structures [Win82]: given x, y ∈ ax∗(µ), x ≤ y iff µ →∗

β µ′ and y ∈ ax(µ′) imply x ∈ ax(µ′).
For example, consider the nets µ1, µ2 of Fig. 19. The observable axioms generated by these
two nets fall within one of two categories: those based at free port 1, whose addresses we
denote by x11, x

1
2, . . ., and those based at free port 2, whose addresses we denote by x21, x

2
2, . . ..

Then, the structure of ax∗(µ1) as a poset would be x11 < x21 < x12 < x22 < · · · , while the
structure of ax∗(µ2) would be x21 < x11 < x22 < x12 < · · · , which is enough to tell the two nets
apart. We have not yet attempted to formalize these ideas, but we believe them to be a
promising direction of research to obtain a full abstraction result for ≃βε (or ≃βηε, which
is perhaps more feasible—again, in the λ-calculus, no non-syntactic model is known whose
theory is H, which corresponds to our ≃βε).

Of course, there is also the question of semantically characterizing Fernández and
Mackie’s ≈. We currently have no clue about this question, but if, as we discussed in
the end of Sect. 5.1, this equivalence is akin to whnf-equivalence in the λ-calculus, then
we may be facing a difficult problem: in the λ-calculus, no full abstraction result exists at
present for such equivalence.

Concerning edifices, an aspect which should further be explored is their connection with
games semantics and traced monoidal categories. Indeed, the trace operation on edifices is
strikingly reminiscent of the notion of “composition and hiding” for composing strategies
in games semantics, trace sequences representing plays. One may wonder whether the set
of edifices presented in this paper can be seen as some sort of “reflexive object” in a traced
monoidal category of edifices. This would be quite interesting, because it would open the
way for introducing a typed version of the symmetric interaction combinators: types would
be modeled by the objects of this category, and the set of edifices introduced here would
appear as a special type capable of modeling untyped nets (in the context of the λ-calculus,
this would be like an object D in a Cartesian closed category such that D ⇒ D is a retract
of D). Such considerations also bring forth the question of what is a categorical model of
the symmetric interaction combinators, a question for which we have some clues, but which
is still unsettled.

Finally, there is the intriguing possibility of using edifices as the basis for defining
new non-deterministic extentions of the symmetric interaction combinators, or modeling
existing non-deterministic systems. What we have in mind is something in the vein of
Ehrhard and Regnier’s differential interaction nets [ER06]. In fact, as soon as one considers
non-simple edifices (cf. Definition 3.4), several non-deterministic phenomena emerge: arches
may superpose, i.e., they may share a pillar, which is reminiscent of additive slices in proof
nets, or in differential interaction nets; and trace sequences, which represent computational
paths in nets, are no longer uniquely determined by the arch they generate (Lemma 3.9
fails).
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Appendix A. Invariance of the Trace

This appendix is devoted to the proof of Proposition 3.13, which we recall below:

Proposition 3.13. Let µ →β µ′, and let µ = σ[ν] and µ′ = σ′[ν ′] according to the
Decomposition Lemma 1.6. Then, Trσ(E(ν)) = Trσ′(E(ν ′)).

The result is basically a corollary of the following:

Lemma A.1. Let ν and σ be resp. the cut-free net and feedback drawn below:

ν0

α β

. . .

. . .

ν

σ

p1 p2
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Then:

(1) if α = β, and if ν ′ and σ′ are the following cut-free net and feedback

ν0

. . .

. . .
ν′

σ′

then Trσ′(ν ′) = Trσ(ν);
(2) if α 6= β, and if ν ′ and σ′ are the following cut-free net and feedback

ν0

. . .

. . .

σ′

ν′

α β βαq2 q3 q4

q5 q6 q7 q8

q1

then Trσ′(ν ′) = Trσ(ν);

Proof. The proof is a bit technical, and not very interesting. We shall only address point
(2), point (1) being analogous and technically simpler. We assume α = δ and β = ζ, the
other configuration being perfectly symmetric, and start by showing the inclusion Trσ(ν) ⊆
Trσ′(ν ′). Let s = (uk @ ik ⌢ vk @ jk)1≤k≤n be a trace sequence of E(ν) along σ, such that
i1 6∈ dom σ. We shall build by induction on n a trace sequence s′ = (u′

k @ i′k ⌢ v′k @ j′k)1≤k≤n′

of E(ν ′) along σ′ such that:

• u′
1 @ i′1 = u1 @ i1;

• v′n′ @ j′n′ = vn @ jn in case jn 6∈ dom σ, i.e., in case s is visible;
• otherwise, jn is one of the free ports denoted by p1, p2 in the above picture of σ[ν], and vn

is of the form thw, where 1 ≤ h ≤ 4 and t1 = p⊗1, t2 = q⊗1, t3 = 1⊗p, t4 = 1⊗q, the
value of h depending on the cell and auxiliary port “used” by the observable axiom/path
of ν inducing sn. In that case, s′ will be such that v′n′ @ j′n′ = w @ qh, where qh is one of
the free ports of ν ′ as shown in the picture of σ′[ν ′], point (2).

It is obvious that the above is sufficient to prove the inclusion, because a visible trace
sequences s yield a visible trace sequence s′ such that a(s′) = a(s).

The base case is n = 1, in which s consists of a single arch u@ i ⌢ v @ j. If j 6∈ dom σ,
then j is a free port of σ[ν], and s is also a visible trace sequence of E(ν ′) along σ′, so we
take s′ = s. Otherwise, j ∈ {p1, p2}, and v = thv′, with 1 ≤ h ≤ 4 and th as described
above. In this case, the sequence s′ is defined to consist of the sole arch u@ i ⌢ x⊗ y @ qh;
this is clearly in E(ν ′), and s′ satisfies the desired requirements.

Let now n > 1. We write sn−1 = ξ ⌢ vn−1 @ jn−1, and observe that jn−1 ∈ dom σ,
because of the chain condition. Then, we have jn−1 ∈ {p1, p2} and vn = thw for some
w ∈ C × C and 1 ≤ h ≤ 4, with th is as described above. We shall assume h = 1; the
other three cases are perfectly similar. So we have jn−1 = p1, and the chain condition
forces in = σ(jn−1) = p2, so sn is of the form su@ p2 ⌢ vn @ jn for some u ∈ C × C and
s ∈ {1 ⊗ p,1 ⊗ q}. We make the choice s = 1 ⊗ p, the other cases being again analogous.
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So, to resume, we know that the last two arches of s are of the form

sn−1 = ξ ⌢ px ⊗ y @ p1,

sn = x′ ⊗ py′ @ p2 ⌢ vn @ jn,

for some x, y, x′, y′ ∈ C and ξ ∈ P; observe that the match condition implies x′ = px and
y = py′.

Now, by the induction hypothesis applied to s1, . . . , sn−1, we know how to build a
sequence s′ = (u′

k @ i′k ⌢ v′k @ j′k)1≤k≤n′ such that u′
1 @ i′1 = u1 @ i1 and such that the last

arch is of the form
s′n′ = ξ′ ⌢ x ⊗ y @ q1

Remark that σ′(q1) = q8, σ′(q6) = q3, and that

x′′ ⊗ py′′ @ q8 ⌢ px′′ ⊗ y′′ @ q6 ∈ E(ν ′)

for all x′′, y′′ ∈ C. We now have two possibilities:

• jn 6∈ domσ, i.e., jn is a free port of σ[ν] and σ′[ν ′]. In this case, sn ∈ E(ν) implies
x′ ⊗ y′ @ q3 ⌢ vn @ jn ∈ E(ν ′);

• jn ∈ dom σ, which implies jn ∈ {p1, p2}. We assume jn = p1, again the case jn = p2

being perfectly similar. Then, we have vn = pz ⊗ z′ for some z, z′,∈ C, which implies
x′ ⊗ y′ @ q3 ⌢ z ⊗ z′ @ p1 ∈ E(ν ′).

Then, define
s′n′+1 = x ⊗ py′ @ q8 ⌢ px ⊗ y′ @ q6,

and
s′n′+2 = x′ ⊗ y′ @ q3 ⌢ vn @ jn

in case jn 6∈ dom σ, and
s′n′+2 = x′ ⊗ y′ @ q3 ⌢ z ⊗ z′ @ p1

in case jn ∈ dom σ. In both cases, by the arguments given above we have s′n′+1, s
′
n′+2 ∈

E(ν ′), and (sk)1≤k≤n′′+2 is a trace sequence of E(ν ′) along σ′ satisfying the desired require-
ments.

We are left with proving that Trσ′(E(ν ′)) ⊆ Trσ(E(ν)). We use a similar argument, but
this time we build a trace sequence s of E(ν) along σ only starting from a trace sequence
s′ = (u′

k @ i′k ⌢ v′k @ j′k)1≤k≤n′ of E(ν ′) along σ′ such that j′n′ 6∈ {q5, q6, q7, q8} (the induction
is on n′). This will be enough for the inclusion to be proved, because visible trace sequences
of E(ν ′) along σ′ do not end with any of those free ports of ν ′, as they are not free in σ′[ν ′].
The sequence s = (uk @ ik ⌢ vk @ jk)1≤k≤n will have to satisfy the following:

• u1 @ i1 = u′
1 @ i′1;

• vn @ jn = v′n′ @ j′n′ if j′n′ 6∈ dom σ′, i.e., in case s′ is visible;
• otherwise, we must have j′n′ ∈ {q1, q2, q3, q4}; then, s will satisfy vn @ jn = sv′n′ @ p1 with

s = p ⊗ 1 (resp. s = q ⊗ 1) if j′n′ = q1 (resp. j′n′ = q2), or vn @ jn = sv′n′ @ p2 with
s = 1⊗ p (resp. s = 1⊗ q) if j′n′ = q3 (resp. j′n′ = q4).

The base case is n′ = 1, in which s′ consists of exactly one arch u′ @ i′ ⌢ v′ @ j′, and
obviously j′ 6∈ {q5, q6, q7, q8}, because i′ 6∈ dom σ′. If j′ 6∈ dom σ′, we take s = s′. Otherwise,
supposing j′ = q1, we take s to be made of the sole arch u′ @ i′ ⌢ (p ⊗ 1)v′ @ p1; the other
three possible values of j′ are handled similarly, prefixing v′ with q ⊗ 1,1 ⊗ p,1 ⊗ q as
appropriate.

Let now n′ > 1. We put j = j′n′ , and observe that, by j 6∈ {q5, q6, q7, q8} and by the
chain condition, we have i′n′ ∈ {q1, q2, q3, q4}. We have again four cases; as above, each
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time we shall have a choice in the sequel, we shall analyze only one arbitrary case, all cases
being easily recoverable every time from each other. So we assume, for instance, i′n′ = q1.
We have j′n′−1 = σ′(q1) = q8, so s′n′−1 is based at q, q8, where q ∈ {q5, q6}; in both cases,

q is not a free port of σ′[ν ′], so the sequence must contain a previous arch of the form
s′n′−2 = ξ′ ⌢ v′ @ q′, with q′ ∈ {q1, q2, q3, q4}. We choose q = q6 and q′ = q3, so we can
write, by using the match condition, that the last three arches of s′ are of the form

s′n′−2 = ξ ⌢ x ⊗ y @ q3,

s′n′−1 = px′ ⊗ y′ @ q6 ⌢ x′ ⊗ py′ @ q8,

s′n′ = x′′ ⊗ y′′ @ q1 ⌢ v @ j,

for some x, y, x′, y′, x′′, y′′ ∈ C, v ∈ C×C, and ξ ∈ P. Furthermore, by the match condition,
we know that x = px′, y = y′, x′′ = x′, and y′′ = py′. If we apply the induction hypothesis
to the sequence s′1, . . . , s

′
n′−2, we obtain a sequence s = (u1 @ i1 ⌢ vn @ jn)1≤k≤n satisfying

all the requirements mentioned above; in particular, we have

sn = ξ′ ⌢ x ⊗ py @ p2.

Now, suppose j ∈ dom σ′; we choose for example j = q1. In that case, define

sn+1 = px′′ ⊗ y′′ @ p1 ⌢ (q ⊗ 1)v @ p1.

Otherwise, j is a free port of σ′[ν ′]; then, we set

sn+1 = px′′ ⊗ y′′ @ p1 ⌢ v @ j.

In both cases, it is easy to see that sn+1 ∈ E(ν), and that s1, . . . , sn, sn+1 is a trace sequence
of E(ν) along σ, which is visible iff s′ is.

To prove Proposition 3.13, observe first of all that trace sequences never use ε cells,
so the only interesting interaction rules are those addressed by Lemma A.1. Then, we can
always write σ[ν] = σ1[σ0[ν]], where σ0[ν] is of the form given in Lemma A.1; similarly, we
can write σ′[ν ′] = σ1[σ

′
0[ν

′]], where σ′
0[ν

′] is of one of the forms given in point (1) or (2) of
Lemma A.1, depending on whether the interaction rule is an annihilation or commutation.
Note that σ1, σ0 and σ1, σ

′
0 are disjoint feedbacks. Then, by Lemma A.1 and the associativity

of the trace (Lemma 3.8), we have

Trσ(E(ν)) = Trσ1
(Trσ0

(E(ν))) = Trσ1
(Trσ′

0
(E(ν ′))) = Trσ′(E(ν ′)).
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