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ABSTRACT. We present an effect system for core Eff, a simplified variant of Eff, which is
an ML-style programming language with first-class algebraic effects and handlers. We de-
fine an expressive effect system and prove safety of operational semantics with respect to it.
Then we give a domain-theoretic denotational semantics of core Eff, using Pitts’s theory
of minimal invariant relations, and prove it adequate. We use this fact to develop tools for
finding useful contextual equivalences, including an induction principle. To demonstrate
their usefulness, we use these tools to derive the usual equations for mutable state, includ-
ing a general commutativity law for computations using non-interfering references. We
have formalized the effect system, the operational semantics, and the safety theorem in
Twelf.

1. INTRODUCTION

An effect system supplements a traditional type system for a programming language with
information about which computational effects may, will, or will not happen when a piece of
code is executed. A well designed and solidly implemented effect system helps programmers
understand source code, find mistakes, as well as safely rearrange, optimize, and parallelize
code [I1], 8]. As many before us [I11 24], 25] [7] we take on the task of striking just the right
balance between simplicity and expressiveness by devising an effect system for Eff [2], an
ML-style programming language with first-class algebraic effects [17), [15] and handlers [19].

Our effect system is descriptive in the sense that it provides information about possible
computational effects but it does not prescribe them. In contrast, Haskell’s monads prescribe
the possible effects by wrapping types into computational monads. In the implementation
we envision effect inference which never fails, although in some cases it may be uninformative.
Of course, typing errors are still errors.

An important feature of our effect system is non-monotonicity: it detects the fact that
a handler removes some effects. For instance, a piece of code which uses mutable state is
determined to actually be pure when wrapped by a handler that handles away lookups and
updates.
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Our contributions are as follows:

(1) We define core Eff, a fragment of the language which retains the essential features of Eff,
including first-class handlers and instances (Section [2), although we leave out dynamic
creation of new instances.

(2) We give small-step and big-step operational semantics for core Eff and show them to
be equivalent (Section [3).

(3) We devise an expressive effect system for core Eff and prove safety of the operational
semantics with respect to it (Section []).

(4) Using the standard domain-theoretic apparatus and Pitts’s theory of minimal invariant
relations [I4], we provide denotational semantics for core Eff and prove an adequacy
theorem (Section [l).

(5) We identify a set of observational equivalences and an induction principle that allow us
to reason about effectful computations (Section [G).

(6) We demonstrate how the equivalences are used by deriving the standard equations for
state from general principles. The induction principle is used in a proof of a general com-
mutativity law which allows us to interchange two computations that use non-interfering
references (Section [T).

(7) We formalized core Eff, the operational semantics, the effect system, and the safety
theorem in Twelf [I3] (Section []).

2. CORE EFF

The current implementation of Eff includes a number of features, such as syntactic sugar,
products, records, inductive types, type definitions, effect definitions, etc., which are inessen-
tial for a conceptual analysis. We therefore restrict attention to core Eff, a fragment of the
language described here. We refer the readers to [2] for a more thorough introduction of
how one actually programs in Eff.

In Eff all computational effects are accessed uniformly and exclusively through opera-
tions. These are a primitive concept, of which typical examples are reading and writing on
a communication channel, updating and looking up the contents of a reference, and raising
an exception. Thus, in Eff each terminating computation results either in an effect-free
value, or it calls an operation. Each operation has an associated delimited continuation,
which is a suspended computation awaiting the result of the operation.

Operations do not actually perform effects, but are just suspended computations whose
behavior is controlled by a second primitive notion, the effect handlers. These are like
exception handlers, except that an effect handler has access to the continuation of the
handled operation, and so may restart the computation after the operation is handled. With
handlers we may implement all the usual computational effects, as well as great variety
of others, such as transactional memory, non-deterministic execution strategies, stream
redirection, cooperative multi-threading, and delimited continuations. At the top level there
may be built-in handlers that provide interaction with the external environment, although
we do not consider these in core Eff.

Since Eff is geared towards practical programming, it and core Eff depart in several
respects from previous work on handlers and algebraic effects [I9] [7]. First, rather than
imposing equations on handlers by a typing discipline, the programmer may write arbitrary
handlers, and then prove that a particular handler satisfies the desired equations. We
demonstrate the technique in Section [T} where we implement a state handler and show that
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it satisfies the standard equations. Second, Eff uses fine-grained call-by-value evaluation
strategy [I0] rather than the theoretically more desirable call-by-push-value [9] because
we found the former to be closer to programming practice as well as easier to implement.
Third, every effect has multiple instances. For example, a program may write and read
from multiple communication channels, raise different kinds of exceptions, and manipulate
multipartite state. Thus in core Eff an operation symbol op is always paired with an instance
L to give an operation t#op. From a theoretical point of view instances are straightforward (as
long as we do not generate them dynamically) and inessential, but are absolutely necessary
for practical programming.

2.1. Effects and types. To get things going we presume given a collection of effects
Effect £ ::= exception ! ref ‘

which in full Eff are declared by the programmer. For each E there is a given set Zp of
instances 11,12,t3,... of E. The instances may be thought of as atomic names. In full
Eff they may be dynamically created, but to keep the semantics reasonably simple we
assume a fixed set. Additionally, with each E we associate a set of Op of operation symbols
opy, 0Py, - . . An operation symbol is associated with at most one effect.

The terms of core Eff are split into effect-free expressions and possibly effectful com-
putations, as described in the next subsection. Consequently, the type system of core Eff
consists of pure types for expressions and dirty types for computations:

Pure type A, B ::= bool ‘ nat ‘ unit ‘ empty ‘ A—-C ! ER ‘ C=D
Dirty type C,D == A!lA
Region R 1= {u1,...,tn}
Dirt A = {u1#0py,...,n#oDp, }

A dirty type A! A is just a pure type A tagged with a finite set A of operations that might be
called during evaluation. We require that any operation t#op appearing in A is well-formed
in the sense that + € Zg and op € Of for some effect E.

The pure types comprise the usual ground types, the function types A — C, the effect
types Ef, and the handler types C = D. Note that the function type takes pure types
to dirty ones because a function accepts a pure expression as an argument and may call
operations when evaluated. We let | bind more strongly than —, so that A — B! A means
A — (B!A). Each effect type B is tagged with a finite set of instances R = {¢1,...,t,} C
Zr which tells us that the expression equals one of the instances in R. Finally, C = D is the
type of handlers which take computations of ingoing type C to computations of outgoing
type D.

We assume that each effect E has an associated effect signature

Y ={op; : A"t — B°P1 ...  op, : A®’» — B°Pn}

which assigns to each operation op, € O its parameter type A°Pi and result type B°Pi. In
full Eff the signature is part of the definition of an effect, so for instance we might have

Yret = {lookup : unit — nat,update : nat — unit},

Yexception = {raise :unit — empty}.
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Note that the signature may create circularities such as
Yp = {op:unit — (unit — unit!{w#op})}.

Consequently, the denotational semantics of types in Section Bl will involve recursive domain
equations.

2.2. Terms. The abstract syntax of terms of core Eff is as follows:

Expression e ::= x ‘ true ‘ false ‘ 0 ! succ e ‘ O ! funzx: A—c ‘ ) ! h
Handler h ::= (handler val x : A — ¢, | ocs)
Operation cases ocs ::= nilg | (e#topx k> ¢ | ocs)
Computation ¢ :=vale | ei#fopes(y.c) | withehandlec |

if e then c; else ¢y ! absurdg e ‘ el e ‘
(match e with 0 +— ¢ | succ = +— ¢3) ‘
let x = c¢1 in ¢y ! letrec fr: A—C=c inc

In order to ensure that each term has at most one skeletal typing derivation, cf. Subsec-
tion [£3] certain terms include typing annotations. We shall omit these when they do not
play a role. The Eff implementation does not have typing annotations because its effect
system automatically infers types and effects [22].

An expression is either a variable, a constant of ground type, a function abstraction
(note that we abstract over computations), an effect instance, or a handler. It is worth
noting that both instances and handlers are first-class values. We sometimes abbreviate
succ” 0 as n. A handler consists of a single value case and multiple operation cases, which
describe how values and operations are handled, respectively. We defined operation cases
inductively as lists, which is how they are formalized in Twelf, but we also write them as
(ei#opi ZT; k’z — Cz)z

A computation is either a pure expression, an operation call, a handle construct, an
eliminator for a ground type, an application, a let binding, or a recursive function definition.

3. OPERATIONAL SEMANTICS

We first describe the operational semantics informally. A computation val e is pure and
indicates a “final” result e, while an operation call ej#opes (y.c) is the principal way of
triggering an effect. The instance e; and the operation symbol op together form an oper-
ation ej#op, its parameter is eg, and (y.c) the delimited continuation. We do not expect
programmers to write explicit continuations, so the concrete syntax of Eff only gives access
to calls through functions of the form fun x +— e#opx (y.val y), known also as generic
effects [17]. In examples we shall use generic effects rather than explicit continuations, and
there we write them as e#op. A general operation call ej#op ez (y. ¢) may then be expressed
in terms of a generic effect and a let binding as let y = ej#opes in c.
A binding let & = ¢; in ¢ is evaluated as follows:

(1) If ¢ evaluates to val e then the binding evaluates as ¢o with = bound to e.
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(2) If ¢; evaluates to an operation call t#ope (y.c}), then the binding evaluates to
t#ope (y.let x = ¢} in ca),
where we assume that y does not occur free in cs.

It may be helpful to think of val and let as being similar to Haskell return and do,

respectively. In ML val is invisible, while let is essentially the same as ours.
The handle construct applies a handler to a computation. If h is the handler

handler val = — ¢, | (t;#op; x; ki — ¢;);

and c is a computation, then with h handle c first evaluates ¢ which is then handled

according to h:

(1) If ¢ evaluates to val e, then the handle construct evaluates as ¢, with = bound to e.

(2) If ¢ evaluates to w#ope’ (y.c), and ;#op, z; k; — ¢; is the first operation case in h for
which (#op = ¢;#0p, then the handle construct evaluates to ¢; with x; and k; bound to
¢/ and fun y — with h handle ¢, respectively. We assume that y does not occur free
in h.

(3) If ¢ evaluates to an operation call t#op e’ (y. ) which is not listed by h, then the handle
construct propagates the call and acts as if A contained the clause

t#opa k — witopx (y. ky).

Thus it evaluates to (#op €’ (y.with h handle ¢/), where again we assume that y does
not occur free in h.
Note that the handler always wraps itself around the continuation so that subsequent oper-
ations are handled as well. A binding let x = ¢ in ¢o is equivalent to
with (handler val x — ¢) handle ¢;

so we could theoretically omit let.

3.1. Small-step semantics. The small-step operational semantics of core Eff is defined
in terms of a relation ¢ ~ ¢/, which intuitively means that the computation c takes a single
step to ¢’. There is no operational semantics for expressions, which are just inert pieces of
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data. The relation ~~ is defined inductively by the following rules:

if true then ¢y else cy ~~ if false then c; else cy ~~ ¢

(match O with 0 — ¢; | succ & + ¢2) ~ ¢;  (match (succe) with 0 — ¢; | succ & — ¢2) ~ cae/z]

c1 ~ ¢y
(fun x — ¢) e ~ cle/z] let x =cj incy ~ let ¥ = ¢} in ¢y
let x = (val e) in ¢ ~ c[e/x] let © = (t#ope(y.c1)) in co ~ thope (y.let x = ¢1 in ¢a)

letrec fo =c¢1 inco ~ eo[(funx — let rec fo =c¢1 in 1)/ f]

/
c~ C

with e handle ¢ ~ with ¢ handle ¢  with (handler val z — ¢, | ocs) handle (val e) ~ cyle/x]

I (handler val z — ¢, | ocs) (op: A® — BP) € ¥

with h handle (t#ope (y.c)) ~ ocSusop(e, (funy : B°? +— with h handle c))

In the last rule for let binding and the last rule for the handle construct variable y must
not occur free in ¢y and h respectively, and it goes without saying that the substitutions
are capture avoiding. In the last rule we have an auxiliary definition of ocs,#ep:
(nil) pop (€, k) = t#ope (y. kY)
cle/z,k/k]  if t#op = J/#op’
(V#op' Tk > ¢ | 0¢8)pop(e, k) = e/, /K] p‘ P
ocsop(e, k) otherwise

In words, ocsuop(e€, k) finds the first handler case in ocs that matches the operation i#op
and executes it, or calls the operation again if no match is found.

Example 3.1. The non-standard state handler (recall that in examples we use generic
effects)

h def handler

| val xz — (#updatex
| t#lookupzk — k1
| t#updatexzk — k QO

treats the reference ¢ as if its content were always 1, and updates ¢ with the final result of
the handled computation. This update is not handled by h because it escapes its scope. If
we use h to handle the computation

c def let 1 = t#lookup () in

let zo = (#updatez; in
val (succ 1)

the outcome of the first lookup is 1, which is bound to x1, the update is ignored and finally
t#update?2 is called. The exact reduction sequence is as follows, where we underline the
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active parts at each step and indicate desugaring of generic effects with =:
with h handle
let 1 = t#lookup () in let xo = t#updatex; in val (succ 1) =
with h handle
let x; = (#lookup()(y1.val 1) in let x2 = t#updatex; in val (succ z1) ~
with h handle

(#lookupQ (y1.let 1 = val y; in let 2o = i#updatex; in val (succ 1)) ~

(fun y; — with h handle (let 21 = val y; in let x5 = (#updatex; in val (succ x1))) 1~

with h handle (let 2; = val 1 in let 2 = t#updatex; in val (succ 1)) ~
with h handle (let xo = (#updatel inval 2) =
with h handle (let 23 = (#updatel (y2.val y2) in val 2) ~

with h handle (t#updatel (y2.let 2o = val yo in val 2)) ~~

(fun y2 — with h handle (let 22 = val yo inval 2)) () ~

with h handle (let 23 = val () inval 2) ~
with h handle (val 2) ~ (#update 2 = (#update 2 (ys. val ys3)

3.2. Big-step semantics. In addition to small-step operational semantics, we also provide
a big-step variant, which is closer to the actual implementation of Eff. Define a result to
be a pure expression or an operation call:

Result r ::= vale | w#ope(z.c)

Big-step semantics ¢ |} r evaluates a computation ¢ to a result r, according to the following
inductive rules:

cdr el r
if true thency elsecy | 7 if false thency elsecy | 7
calr cole/x] | r
(match O with O+ ¢y | succx — c2) | r (match succewith 0 — ¢ | succz — ¢o) | r
cle/x] U r ¢ dvale cole/x] | r
funx—c)elr vale | vale t#ope(x.c) || thope(z.c letx=ciincy | r
p p

c1 ) thope (y.c) co[(funz — letrec foe =cyincy)/fl I r

let £ = ¢ in ¢y || thope (y.let 2 = cinca) letrec fr=ciincy |7

clvale cole/x] | r
with (handler val x — ¢, | ocs) handlec || r

h (handler val x — ¢, | ocs) c | hope(y.c) (op: A® — B®?) € ¥p
oS pop (€, (fun y : B°®? = with h handle c)) | r

with h handlecl r
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To relate the two semantics we define an auxiliary relation ~~* by the rules

/ /
Cc~s C c ~*r

val e ~" vale tope (x.c) ~* t#tope (x.c) c~"r
This is roughly the reflexive transitive closure of ~~, except that it relates computations to

results rather than to computations. The small-step and big-step semantics agree in the
following sense.

Proposition 3.2. For all computations ¢ and results r, ¢ v if and only if ¢ ~* r.

Proof. Both directions of the equivalence proceed by a routine induction. The formalized
proofs of the two implications can be found in the file small-big.elf. L]

4. AN EFFECT SYSTEM

4.1. Subtyping. As in most effect systems, we need to take care of the poisoning prob-
lem [26]. For example, what should be the type of ignore in

let ignore = val (fun msg +— val ()) in
let f = if b then (val ignore) else (val std#write) in
val ignore

assuming we have the ground type string and a boolean expression b7 If we give it the
desired type string — unit!@ then there is a type mismatch between the branches in
the conditional statement, whereas the dirty type string — unit!{std#write} loses the
valuable knowledge that ignore is a pure function. The simplest antidote to the poisoning
problem is subtyping so that ignore may be given the function type with empty dirt which
is coerced in the conditional statement to a supertype that matches the other branch.

For our purposes, a straightforward variant of structural subtyping [6] suffices. We have
subtyping of pure types A < A’ and of dirty types C < C, given by the rules

A<A CO<(C

bool < bool nat < nat unit < unit empty < empty A—-C<A =
RC R ¢'<Cc DD A<A ACA
ER < ER C=D<C =D ATA AN

It is easily checked that reflexivity and transitivity of subtyping are admissible. Apart
from resolving the poisoning problem, subtyping allows us to better deduce the behavior of
handlers. Consider the computation

letu=val ¢ in
let v = (if b then val u else val /') in

let h = val (handler val z + --- | u#opx k — ¢) in

Without subtyping we are forced to give both v and v the type BV} Therefore, by looking
at the type of u we cannot tell whether h handles (#op or //#op, and so we must assume
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that both may be unhandled by h. With subtyping we may give u the type E{*} which
makes it clear that h handles (#op.

4.2. Typing rules. There are two typing judgments,
I'ke: A and I'kte:C

stating that an expression e has a pure type A and a computation ¢ has a dirty type C,
respectively. Here I is a typing context of the form z1 : Ay,...,x, : A,. There is also a
third, auxiliary typing judgment

'k ocs: C/A
which states that operation cases ocs all have the same outgoing type C and are guaranteed
to handle operations in A. Most of the typing rules in Figure [l are standard, except for:

INsT: we check that ¢ is one of instances in R, which in turn must be contained in Zg.

HAND: to check that a handler has type A! A = B!A’, we verify that it converts a compu-
tation of type A!A to one of type B!A’, which involves checking three premises. First,
the value case must take a value of type A to a computation of type B!A’. Second, all
operation cases must have outgoing type B!A’. Third, every operation in A is either
guaranteed to be handled by ocs, or is contained in A’.

OprCAsEs-NiL, OPCAsEs-Cons: the auxiliary typing judgment verifies that the operation
cases have the given outgoing type, and that they cover the given dirt. The empty list
nil does not cover anything and has any outgoing type. The rule OrCases-Cons checks
the first operation case, checks the others inductively, and verifies that A C A’ U R#op,

where
A Réfop % A"U{w#op} if R= {1},
P A/ otherwise.

The idea is that we can be sure that an operation case handles (#op only when the type
of its instance is of the form FE{#op},

Opr: we first check that e and op belong to the same effect. Then we check that A covers
not just all possible operations that the operation call may cause (recall that R may
contain more than one instance), but also any operations in the continuation ¢. We may
assume that ¢ has the same dirt, as we can use SuBComp otherwise. We use the same
reasoning in rules IFTHENELSE, MATCH and LET.

WitH: handlers behave like functions from computations to computations.

SUBEXPR, SUBCoMP: these subsumption rules allow us to always assign a bigger type.

The effect system is safe with respect to the operational semantics:

Theorem 4.1 (Progress & Preservation).

Progress: IfF-c: A!'A then either
e there exists a computation ¢ such that ¢ ~ ¢, or
e c is of the form val e for some expression e, or
e c is of the form w#ope (x.c') for some #op € A.

Preservation: Iftc:C and c~ c thentcd : C

Proof. Both statements are proved by induction. The formalized proofs can be found in the
files progress.elf and preservation.elf. [l
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VAR Succ
(z:A) el TRUE FALSE ZERO Tk e:nat
I'tz: A I' - true : bool I'+ false : bool I'H0:nat I'+ succe:nat
U Fun INsT
NIT Dz:AbFc:C LeRCIp
T'F QO :unit I'tfunz:A—c:A—C k.. ER
HaND SUBEXPR
Iz:Akc,: BIA"  Trocs: BIA/JA"  ACA'UA F'ke: A  ALA
' (handlervalx: A ¢, | ocs): A'A = BIA’ Ike: A
OpPCASES-CONS
I'Fe:E%  (op:A°® — B®) e ¥y
OpPCASES-NIL Iz:A® k:B® - Ckc:C 'k ocs: C/A A C A’ U R#op
I'knile : C/o L'k (e#topxk— c|ocs): C/A
IFTHENELSE MATCH
I'e:bool I'ke: C T'kep:C I'e:nat I'te : C I'z:natbcy: C
I'if ethency elsecy : C I'FmatchewithO+> ¢y | succz — ¢y : C
ABSURD APppP VAL
' e: empty I'ter:A—C T'key: A I'ke: A
I' - absurdg e: C I'terex:C I'tvale: AI'A
Op

I'Fe :EE (op: A® — BP) € ¥
T'Feg: AP Ty:B®Fc: A'A Vi € R. t#op € A
Tk ej#opes(y.c): AIA

LET LETREC
T'ke  AVA I'z:AFcy: B!A Nf:A—-Czx:AFc: C If:A—-CkFc:D
I'Fletz=ciincy: B!'A

I'Fletrec fr:A—C=c inc: D
WitH

SuBCoMP
'ke:C=D I'kte:C I'te:C c<c
I'withehandlec: D Ftec:C

Figure 1: The typing rules of core Eff.

Corollary 4.2 (Safety). A terminating computation of type A! A returns a value of type A,
or calls an operation in A.

In particular, a terminating computation of type A!@ does not call any operations and
returns a pure value of type A.

Example 4.3. Let us see what the effect system tells us about Example B.Jl We may
give the reference ¢ € Zyes type refit). Then the computation ¢ has the dirty type
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nat ! {t#lookup, (#update}, and the handler h the type
(nat ! {t#1lookup, t#update}) = (unit! {t#update})

because it handles both lookup and update, but then calls update in the value case. This
update also changes the type of computation from nat to unit.
If we give ¢ the less precise type refit*'} the dirt of ¢ is

AY {1#1ookup, ('#1ookup, t#update, // #update}

while the best type we can give to his (nat ! A) = (unit!A). Since {¢,/'} is not a singleton,
we cannot give any guarantees on what operations are handled.

4.3. Skeletal types. We relate the pure and dirty types to ML-style types by an operation
which erases all effect information to produce a skeletal type. We will use these later to
obtain a coherent semantics of types. The skeletal types are defined as follows:

Skeletal type S,T ::= bool | nat | unit ‘ empty ‘ S—=T | E | S=T

There is no distinction between pure and dirty types anymore. The typing rules for skeletal
types are like those for pure and dirty types with the effect information omitted, for instance

INST’ HaND’ ’
L€1p Nz:A%Fc,: S Tk ocs: S OpPCASEs-NIL
I'Fv: E 't (handlervalx: A ¢, | ocs): A= S I+ nile : C*

OprCasgs-Cons’
'ke:E (op: A®® — B®?) € Xp Iz:(A®)° k:(B®)° - Skc:S 'k ocs: S

'k (e#opxk—clocs): S

Oop’
ke : E (op: A® — B®?) € ¥p T'Feg: (AP)° Ty : (B®)*Fec: S
T'F ej#opes (y.c): S

The remaining rules remain unchanged as they do not mention effects, while subsumption
rules are removed. To every pure type A and a dirty type C we assign their skeletal versions
A% and C?, which are like A and C with region and dirt removed. The skeletal version I'*
of a typing context I' is obtained by taking the skeletons of the types in I'. We summarize
the properties of skeletal types:

Theorem 4.4.
(1) If A< B and C < D then A* = B® and C° = D°.
(2) If
I'Fe: A and I'ke:C
then

Ire:A® and Irc:C°.
(3) In a given context, an expression and a computation has at most one skeletal type, with
a unique typing derivation.
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Proof. The first statement holds by an induction on the derivation of A < B and C < D.
To prove the second statement, observe that a typing derivation may be mapped to the
corresponding skeletal version rule by rule, except for subsumption rules. But these can be
simply omitted from the typing derivations because A < B and C' < D imply A% = B® and
C?® = D? by the first statement.
The last statement holds by inversion: in any situation at most one skeletal typing rule
applies in at most one way. L]

A consequence of the theorem is that if a computation ¢ has dirty types C' and D then
C?% = D? hence C and D differ only in the effect information. An analogous property holds
for expressions and pure types.

5. DENOTATIONAL SEMANTICS

We use standard domain theory to provide an adequate denotational semantics of core
Eff. We shall use w-cpos as domains, but presumably a different kind of domains could be
used, as long as they support the standard constructions, in particular solutions of domain
equations, and are amenable to Pitts’s theory of minimal invariant properties [14]. We refer
to [I] for background on domain theory and denotational semantics.

We define a predomain to be a poset in which chains (ascending sequences) have
suprema, while a domain is a predomain with a least element L. A continuous map is
a monotone map which commutes with suprema of chains. If D is a predomain and F is a
domain the set D — FE of all continuous maps forms a domain. The ordering on continuous
maps is pointwise. A continuous map is strict if it maps L to L. The set D —o E of strict
maps between domains D and F forms a subdomain of D — FE.

5.1. Computation domains. We first build domains that will serve as the meanings of
computation types. Let A be a predomain, I an index set, and for each i € I let A; and B;
be predomains. We seek a domain 7 satisfying the domain equation 7' = F(T') where F' is
the functor
F(D) = (A+1Le; 4 x (Bi = D)) .

Following [14] we work in the category of domains and strict maps, and take T to be a
minimal solution in the sense that it possesses the minimal invariant property. The usual
limit-colimit construction [I, Chapter 7] yields such a domain. As domain equations go, this
one is quite simple because 1" occurs only covariantly. The elements of T' can be thought of
as trees whose leaves are tagged with elements of A or |, and whose nodes have branching
types B; and are tagged with elements of A;. The trees need not be well founded.

The minimality of T yields a recursion and an induction principle. The recursion
principle says that for any domain D, a continuous map fya1 : A — D, and continuous
maps f; : A; x (B; = D) — D for i € I, there is a unique strict continuous map f : T — D
such that

f(inval(x)) = fval(x) for z € A,
f(ini(y, k) = fi(y, f o K) forye A;and k: B; — T.
The induction principle for 1" applies to admissible predicates on T, i.e., those that hold for

1 and are closed under suprema of chains. Precisely, if ¢ is an admissible predicate on T
such that
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(1) ¢(inyai(x)) for all z € A, and
(2) forallie I, x € A;j,and k: B; —» T, it Vy € B;. ¢(k(y)) then ¢(in;(x, K)),
then ¢(t) holds for all t € T'.
For any I, the construction of a minimal solution 77 (A, (4;);, (B;);) from the input data
A, (Ay)ier, (Bi)ier forms a locally continuous functor

T; : pCpo x pCpo’ x (pCpo°?)! — Cppo.

Here Cppo is the category of domains and strict continuous maps, while pCpo is the
category of predomains and partial continuous maps which are defined on open subsets (an
upper set which is inaccessible by suprema of chains). The functor will appear later on in
a larger system of recursive domain equations.

5.2. Semantics of skeletal types. We interpret pure and dirty types as predomains and
domains, respectively. A typing context is interpreted as a cartesian product of predomains,
and a typing judgment as a continuous map. However, typing judgments do not have unique
derivations because of the subsumption rules, and so we have to worry about coherence.
That is, when we define the meaning of a typing judgment by induction on its derivation,
we need to make sure that the result does not depend on the choice of derivation. We
accomplish this by providing a semantics which factors through the skeletal types from
Section [4.3]

Let

Q= {wop |IE. L€IpNop € Xg}

be the set of all operations. If dirts could be infinite, 4! would be a dirty type expressing
the fact that any effect could happen.

To each skeletal type S we assign a predomain [S]. and a domain [S]. as follows:

[bool]. = {ff,tt}, [nat]. = N,
[unit]. = {x}, [empty]. = 2,
[S = T]e = [S]e = [T]e, [E]e = ZE,

[S=T]e=1[S]c — [T]e,
and
[S]e = Ta([STe, (I(A%)°e)utops (I(BP)*e)utop)-

These should be read as a system of domain and predomain equations indexed by the
skeletal types. There are possible circularities in the system because the equation for [S].
refers to possibly larger skeletal types (A°)® and (B°P)°. As in the case of computation
domains, we take the minimal solutions which enjoy the minimal invariant property.

To each pure type A and dirty type C we assign a skeletal predomain [A] and skeletal
domain [C] by setting

[A] = [A%]e  and  [C] = [C’]..
The first part of Theorem [£.4] guarantees that A < B and C < D imply [A] = [B] and
[€] = [D].
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5.3. Semantics of expressions and computations. The meaning of a typing context I"
x1: A, Tt Ay
is
[T] = [Au] > -+ < [Aa]-
We interpret typing judgments
I'ke: A and I'kte:C
as continuous maps
[THe:A]:[T]— [4] and [TEc:C]:[T]— [C].

When no confusion can arise we abbreviate these as [e] and [c¢]. The definition proceeds
by induction on the derivation of the typing judgment. Given an environment n € [I'], the
base rules for expressions and the successor rule are taken care of by

[Tz Ain=mn [T+ false : bool]n = ff
[T'F QO :unit]p = [T F true : bool]n =t
[IT'+0:nat]n=0 [Tt succe:nat]n = ([I't e:nat]n) +1

[CFeo: BB =0,
and the abstraction rule by
[TF(fuwmz:A—c):A=>Clln=Xc[A].[lz:AFc:C](n,a)
For the handler rule we set
[T+ (handler valx: Ars ¢, | ocs) : AlA = BIA|=h
where h: [['] — [A!A] — [B!A’] is defined by recursion on [A!A]:
h(n)(L) = L
h(n)(inyai(a)) =[O, : A+ ¢, : B!A’](n,a)
h(n)(inuop(a, k) = [ocs]irop (1, @, h(n) 0 k)
The auxiliary map
[ocs]sop = [I] x [A®] x [B® — B! A'] — [B!A]
is defined by
[nilc] pop (1, @, k) = ingop(a, k)
le'#op’ x k + ¢ | ocs]ipop(n, ay k) =
{[[F,a: : APk : B® — BIA'Fc: BIA'|(n,a,k) if ([¢/]|n)#op’ = t#op,
Locs] isop(n, a, k) otherwise.

Finally, if ' - e : A’ is derived from the premises I' - e : A and A < A’ by the subsumption

rule, we set
[Te:Alnp=[CFe: A]n.
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The definition is meaningful because A < A’ implies [A] = [A’]. The meaning of pure
computations and operations is

[THvale: A!A]n=ing ([T Fe: A])
[['F er#opea (y.c) : ALA]n = inpe, yop([e2]n, Ab € [BP] . [,y : B® Fc: AVA](n,b)).
The meaning of elimination forms is
[l Fwithehandlec: D]np=([I'+e:C = D]n)([TFc:C]n)
[T+ if e then ¢; else ey : Cyy = [CFe :Cly if [T+ e:bool]n = tt,
T [TFco:CJn if [Tt e:bool]n=ff
[T+ absurde: Cn= L
[THeies:Cln=(TkFe:A—Cn)([LF ex: A])
and
[T'F (match e with 0 — ¢ | succ z — ¢2) : Clnp =
[TFec:Cln if [I' - e:nat]n =0,
[T,z :nat b co: C](n,n) if [['Fe:natln=n+1.

To give semantics of let binding, we first define the lifting of a map f : [A] — [B!A] to
be the map fT: [A!A] — [B!A] defined recursively by

i) =1,
FI(inai(x)) = f(x),
fT(inL#op(x, K)) = iNgop(, fT o K).
Then we set
[THletx=ciincy: B!Aln=

(Ma € [A].[T,z: AFcy: BIA](g,a) ([T F ¢ : AV A]n).

The meaning of a recursive function definition is
[TH(letrec fr:A—C=cinc):Cln=[T,f: A= CkFc:C](n,9)

where g : [A] — [C] is the least fixed-point of the map

9= (Aa € [A] . [e1](n, g,a)).

Finally, just like for expressions, if I' - ¢ : C' is derived from the premises I' - ¢ : C and
C < C' by the subsumption rule, we set

[Tke:Cn=[CFc:C]n.
This concludes the definition of denotational semantics of expressions and computations.
Theorem 5.1 (Coherence). All derivations of a typing judgment give it the same meaning.

Proof. The semantics of I' - e : A and I' F ¢ : C factor through the associated skeletal
derivations I'* F e : A% and I'* F ¢ : C%, respectively. This is so because the semantic
rules given above clearly factor through the associated skeletal rules. In other words, they
ignore the effect information and the subsumption rules. Uniqueness of meaning is thus a
consequence of the uniqueness of skeletal derivations, cf. Theorem .41 []
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5.4. Semantics of effects. In the terminology of John Reynolds [23] the semantics given so
far is intrinsic, while the semantics of effects given below is extrinsic. This is in accordance
with our understanding that effect information is descriptive rather than prescriptive: a
function f of type (A — B!A) — B’! A’ should accept any function g of type A — B! A",
even if A” ¢ A, although it has the property that if A” C A then f(g) calls only operations
in A

For each pure type A and dirty type C we define subpredomains [JA]] C [A] and
subdomains [[C]] C [C] of those elements that behave according to the effect information.
The ground types are easy:

[bool]] = [bool], [nat]] = [nat], [unit] = [unit],

[enpty]) = [empty], [E7] = R.
For function types, handler types, and dirty types we would like to solve the following
system of equations with unknowns [[A]] and [[C] where A and C range over pure and dirty
types, respectively:

[A—Cl={f €Al = [C] | V= € [A]. f(=) € [CT},
[C = D] = {n € [C] — [D] | vt € [C]. h(t) € [D]},
[A'A] = {t e [A'A] | t = LV 3z € [A]. t = inyai(z)) V (5.1)
duttop € Ay € AP,k € [B®® — Al A].
(Vz € [B®]. 5(b) € [A'A]) At = insop(y, &)}

The last rule says that ¢ € [A! A]] when it is L, or of the form iny,(z) for some x € [[A],
or of the form inop(y, k) for some y € [[AP]] and x € [B® — A!A].

The system is potentially problematic because the types A°® and B°P introduce circu-
larities in the last equation. We apply Pitts’s theorem [I4], Theorem 4.16] about existence
of invariant relations to obtain a solution that satisfies an induction principle, see Theo-
rem below. For Pitts’s theorem to apply we must verify that our conditions form an
admissible action on admissible relations, as defined in [I4] Definition 4.6]. The relational
structure in question is that of [14, Example 4.2(ii)] for which the accompanying notion
of admissibility is the one we are using, cf. [14, Example 4.5(ii)]. The locally continuous
functor is the evident one, while its admissible action on relations is read off (5.1I). The
admissibility of the action follows from [I4] Lemma 6.6]: the first two actions in (G.]) are
considered explicitly, while the third one is a composition of actions from the cited lemma.
The solution so obtained possesses the following induction principle.

Theorem 5.2. Suppose ¢ is an admissible predicate on [A!A] such that

(1) ¢(inyai(a)) for every a € [[A], and

(2) for all u#op € A, a € [[A®], v € [B® — A!A], if Vb € [B°P]]. ¢(k(b)) then
G (inpop(a, K)).

Then ¢(t) for all t € A A].

Proof. Because we defined [[—]] mutually for all types, we first extend ¢ to be constantly
true on types other than A!A. Then our theorem becomes an instance of the induction
property [14, Theorem 6.5]. The admissible action required for the application of the
theorem is obtained using [I4, Lemma 6.6]. L]
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The semantics of effects and the semantics of expressions and computations fit together:

Theorem 5.3. IfT'Fe: A and T+ ¢ : C then for all n € [T = [A1]] x --- x [A,], we
have
[TFe:AlneA] and [TFec:ClnelC].

Proof. The proof proceeds by induction on the derivation of the typing judgment. All cases
are easy, except for the typing rule for a handler

[t (handler val x 5 ¢, | ocs) : A!A = BIA’
First, we claim that if the auxiliary judgment
I'Focs: BIA'/A,

is derivable then [ocs],s0p(n, a, k) € [B!A'] for all t#op € AU A, n € [I], a € [A°P],
and  : [B°® — B!A’]]. Assuming the claim has been established, the above handler rule
follows immediately.

The proof of the claim proceeds by induction on the derivation of the auxiliary judgment.
For nil, we have A, = & and the claim obviously holds. The other possibility is

[ (e#op’ 2k clocs): BIA'JAL
for some I' - ocs : B! A’/A. and A!, C (A.U R#op). Define // = [I' - e : Ef]n and consider
two cases. First, if J/#op’ = t#op then
[e#top’ x k — c | ocs]pop(n,a, k) = [,z : AP k: B® — BIA'c: BIA'|(n,a,k),

and we may apply the induction hypothesis (for the whole theorem) to ¢. Second, suppose
'#op’ # 1#op. Then the assumption t#op € A’ U Al implies t#op € A’ U A.. Indeed, if
t#op € A’ there is nothing to prove, and if t#op € Al C (A.J R#op), then either R is not a
singleton and A, J R#op = A., or R = {/#0p'} and t#op ¢ R. In any case, it follows that

[[e#op/x k—c | OCS]]L#op(T/a a, ’1) = [[OCS]]L#op(TIa a, "f)

and '+ ocs: B!A’/A.. Thus we may apply the induction hypothesis. []

5.5. Soundness and adequacy. The soundness and adequacy theorems state that oper-
ational semantics and denotational semantics fit together. One is an easy induction, while
the other is proved using standard technique of formal approximation relations, e.g., see [I]
Theorem 6.3.6].

Theorem 5.4 (Soundness). IfFc:C and ¢~ ¢ then[Fc:C] =+ : C].

Proof. We just have to walk through all the defining rules for ~» and verify that they do
indeed preserve the meaning of c. U]
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To tackle adequacy, see Corollary below, we define formal approximation relations
<4 and <¢ whose intuitive meaning is that an element of [A] or [C] approximates a closed
term of type A or C. Given d € [A] and a closed expression e : A, we define d <4 e by:

d<oor € <= (d=ttNe=true)V (d=1fANe==false)
d<pat € < d=nANe=succ"0
d<dpite <= d=*xNe= 0
dda—sce < Vd €. (d<aae =d(d)<cee)
d<gre < d=e
d<c=pe < Vd' c. (d' <¢c ¢ = d(d') 4p (with e handle c))

Simultaneously we define when d € [A!A] approximates a closed computation ¢ : Al A,
where d <141 A ¢ holds when

e d=_1,or

o d=iny(d), clvaleand d' <4e, or

o d=ingep(d, k), cl hope(y.c), d <ae e, and if d” <per €' then k(d"”) <a1a " /y].

The definition of <14, A refers to types A°® and B°P which are possibly larger than A, thus
we again use [I4] Theorem 4.16] to establish existence of minimal such <4 and <¢, much
like for the recursive types considered in [14] Section 5].

Lemma 5.5. Ifd<iqia ¢ and c ~ ¢ then d<aia c.

Proof. There is nothing to prove if d = L. The other two cases follow because ¢ ~ ¢ and
d | v imply ¢ | r. For instance, if d <a1a ¢ holds because d = inyy(d'), ¢ |} val e and
d' <4 e for some d’ and e, then d <41 ¢ holds because ¢ ~ ¢ implies ¢ || val e and so we
may reuse d’ and e. ]

Lemma 5.6. The relations <4 and <¢ are closed under suprema of chains in the first
argument. The relations <¢ relate L to every computation.

Proof. The second statement holds by the definition of <¢. For the first statement we
proceed by induction on the type. The base cases hold because the predomains for ground
types are flat. For A — C, suppose (d,), is a chain in [A — C] and d,, <4—¢ e for all n.
Consider any d’, ¢’ such that d’ <4 ¢’. Then d,,(d’) <¢ e€’ for all n. Suprema in [A — C] are
defined pointwise, so we can use the induction hypothesis for C and get

(Vydn)(d') =V, dn(d) <c e€,

hence \/,, d,, <c e as desired. Handler types are treated similarly. Consider a computation

type A!A, a closed computation ¢ : A!A and a chain (dy,),, in [A!A] such that d,, <¢ ¢ for

all n. There are three kinds of chains in [A!A]:

e (dy,)n is constantly L: then \/, d, =L ¢ c.

e for large enough n there are d), such that d,, = iny,(d},): then (d},),, form a chain in [A].
Because operational semantics is deterministic, there exists a single e such that ¢ | val e,
and d;, <4 e. By induction hypothesis for A we have \/, d;, <4 e, from which \/, d, <414 ¢
follows because \/,, dp, = inyai(V,, d,,).

e there are ¢ and op such that for large enough n there are d], and &/, such that d,, =
iNop(dy,, kp): this case is treated analogously to the previous one. ]
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Lemma 5.7. Let I' be the context 1 : A1, ...,x, : A,. Suppose that for each 1 < i < n we
have d; € [A;] and a closed expression t-e; : A; such that d; <4, e;.

(1) IfT'Fe: Athen [Tk e: A](dy,...,dy) <aeler/x1,. .., en/xy].

(2) IfT'Fe:C then [I'Fc:C](d1,...,dn) <c cler/x1, ... en/Tp].

Proof. We prove the statements by induction on the derivation of the typing judgments.
Let n = (dy,...,d,) and 0 = [e1/z1,...,e,/x,]. We write [o,e/z] for the substitution
le1/z1,...,en/xn,e/z]. Throughout we assume that bound variables occurring in various
terms do not appear in o:

Cases VAR, TRUE, FALSE, UNIT, ZERO, INST: these are all trivial.

Case Succ: I' F (succ e) : nat. By the induction hypothesis, we have [e]n <yat €o. Next,
notice that the closed expression ec : nat must be succ® 0 for some k, hence [e]n = k,
and so

[succ e]n = (k4 1) <pat succ (eo) = (succ e)o.
Case FuN: ' (funz +— ¢): A — C. If d' <4 € then by the induction hypothesis for ¢
[0,z : At c](n,d)<c clo,€/z].
Because [[',z : A+ ¢](n,d') = ([T F fun x — ¢]n)d" and
((fun z +— c)o) e’ = (fun o — co) e’ ~ clo, e’ /2],

we may use Lemma to get the desired conclusion

([0 F fun z — cn) d <¢ ((fun z — c)o) €.

Most other cases in the proof follow the same pattern, so we shall not explicitly mention
uses of Lemma anymore.

Case Hanp: I' F (handler val z +— ¢, | ocs) : A!A = B!A’. We abbreviate the handler
as h. Assuming d <41 A ¢ we need to show that

([h]n)(d) <gias (with ho handle c).

We proceed by an induction on d:

e If d = 1 then the conclusion follows because [h]n is strict.

o If d = inyy(d’) then d <4, ¢ implies ¢ || val ¢’ and d' <4 €’ for some €’ and d'. In this
case, by induction hypothesis for ¢,,

([nIn)(d) = [T, 2 : AF c](n,d) <14 colo, €' /2],
and
(with ho handle ¢) ~ - -+ ~ (c,0)[¢' /2] = ¢y[o, €' /).
o If d = inyop(d’, k) then d<q1a ¢ implies ¢ | w#op€ (y.c'), d Qs € and k <pe— a1
(funy — ). Now

(I0n) (inusop(d's ) = [ocslusop(n, ' [l o )
and
(with ho handle ¢) ~ - -+~ (0¢S0)0p (€', (fun y — with ho handle '),
therefore it suffices to prove
locs]itop(n, d', [R]n o k) <p1ar (0¢sT)4op(€), (fun y > with ho handle ),
which we do by induction on the length of ocs. When ocs is nil the statement becomes

inop(d', [R]n o k) <p1as t#op € (y.with ho handle ().
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We already know d’' <0 €', and still need

[h]n(k(d")) <giar (with ho handle c'[e”//y])
assuming d” <iger €. This follows from the available induction hypotheses.
When ocs is (J/#op’ x k — ¢’ | ocs') there are two further subcases:
— if t#op = (/#op’ then we get

[[Pa xz, k+ C”]] (T,a d7 [[h]]n o "i) <4Bra’

"o, e/, (fun y — with ho handle ) /k]
which holds by induction on ¢”,

— if 1#op # /#op’ then we are left with

[[OCS'HL#op(??, d', [h]n o K)apias
(ocs' o) op(e, (fun y > with ho handle ¢)),

which is just the induction hypothesis for ocs’.
Cases IFTHENELSE, MATCH, ABSURD: We consider only

'k (if e then ¢y else o) : C,

as MATCH is similar and ABSURD is vacuous. Because eo is a closed expression of type
bool it is either true or false. Let us take a look at the first possibility. By induction
hypothesis for ¢; we have [c1]n <¢ ci0. Again, because [if true then ¢ else c2]n =
[e1]n and

(if true then ¢ else c2)0 ~» 10
it follows that

[if true then ¢; else ¢l <d¢ (if true then ¢; else ¢3)0,

as required.

Case App: ' ej e, : C whereI'F e} : A — Cand I' - €}, : A. By induction hypotheses
for €} and e, we have [e|]n <a—c €jo and [e4]n <4 ezo, therefore by the definition of
-,

1 exln = ([erlm)([et]n) ¢ (eho)(eho) = (€] ez)o.

Case VaL: I'Fval e: AIA. By induction on e we have [e]n<4 eo, therefore by the second

clause in the definition of <41 A

[val e]n = invai([e]n) <aia val (eo) = (val e)o.

Case Op: I' - w#ope(y.c) : AVA. This case works much like a combination of VAL and
APP, so we omit the details.

Case LET: I' - (let * = ¢; in ¢p) : B! A. This case is treated like a handler which only
has a val case.

Case WitH: I' - with e handle ¢: D where ' e : C = D and I' - ¢ : C. By induction
hypotheses we have [e]n <c=p eo and [c]n <c co, therefore by the definition of <c=p

([eln)(Teln) <p (with ec handle co).

The left-hand side equals [with e handle ¢ : D]n and the right (with e handle c¢)o, so
we are done.
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Case LETREC: I' F let rec fax = ¢ in ¢y : D. After a short calculation the problem
reduces to showing that

g <Uu—sc (fun z — let rec fo = ¢j0 in ¢j0)

where ¢ is the least fixed-point of the operator @ : [A — C] — [A — (], defined by
®(h) = Xa € [A].[L, f,z F c1](n, h,a).

By Lemma it suffices to show that

h<a—c (fun x — let rec fo = cj0 in ¢10)
implies

®(h) <a—c (fun x — let rec fx = cj0 in ¢10).
This amounts to proving that if d <4 e then
®(h)(d) =L, f,z t cr](n, b, d)
Ac cio, (fun x +— let rec fx = ci0 in¢10)/f,e/x],

which holds by the induction hypothesis for ¢;.

Case SUBExPR, SuBCoMP: For SUBEXPR, take I' e : A where ' - e : A and A < A'.
From induction hypothesis, we get [I' - e : A]n <4 eo. Since [A] = [A’], we have
A4 = <4r. Additionally, [T'Fe: A'] = [T+ e: A], hence [e]n <4 eo. For SuBComp, the
proof is similar. L]

Corollary 5.8 (Adequacy). IfF c:unit! A and [¢] = inya(*) then ¢ | val Q.

Proof. By the previous lemma [c] <unit1a ¢. Therefore, if [¢] = inya (%) then ¢ || val O by
the definition of <ypit1A- ]

The stated adequacy suffices for our purposes, but of course similar statements holds
for other ground types. Regarding operations, if [c¢] = inop(d, x), then t#op € A and so
¢ |} t#opek for some e and k such that [e] = d and [k] = k. Therefore, if [¢] # L then
¢} r for some result 7.

6. EQUATIONAL REASONING

6.1. Contextual and denotational equivalence. In this section we provide principles
that allow us to reason about programs. Let us first recall how contextual equivalence is
defined. An expression context € is a computation with several occurrences of a hole [] in
positions where an expression is expected. When the hole is plugged with an expression e
we get a computation E[e]. A computation context £ is defined analogously, except that the
holes appear where computations are expected.

We say that expressions e and e’ are contextually equivalent, written e ~ ¢/, when
for all expression contexts £ such that £[e] and £[¢’] are both of type unit!A, we have
Ele] | val O if and only if £[¢'] | val (). Contextual equivalence of computations is
defined analogously.

Contextually equivalent expressions or computations may be interchanged anywhere
in the code. Therefore, it is quite useful to know that a certain contextual equivalence
holds, but unfortunately it is difficult to work directly with contextual equivalence. Luckily,
denotational equivalence is more easily handled and is related to contextual equivalence by
the adequacy theorem.
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We write e = ¢’ and ¢ = ¢ when the denotations of two expressions or computations
are the same. More precisely, if Fe: Aand '¢e¢ : AthenT'Fe=¢€: A, or just e = ¢/,
means [['Fe: A] = [['F €' : A], and similarly for computations.

Proposition 6.1. Denotationally equal expressions are contextually equivalent, and likewise
for computations.

Proof. Suppose e = ¢’ and consider an expression context £ such that £[e] and £[e’] both
have type unit ! A. Assume E[e] || val (). By soundness of denotational semantics [E]e]] =
inyal(*). By assumption [e] = [¢'] and because denotational semantics is compositional it
follows that [E[e]] = [E[¢/]]. Now by adequacy E[€¢/] | val (). The proof for computations
is the same. U]

Denotational equivalence is a congruence and is preserved by well-typed substitutions.
It validates the following B-rules, where the various expressions and computations have
suitable types, and h stands for handler val x — ¢, | ocs:

if true thenci elsecy =
if false thenc| elsecy = co
match O withOr ¢y | succx—cy =
match (succ e) with O+ ¢1 | succz — o = c2le/x]
(funzx —c)e = cle/x]
letz=valeinc = cle/x]

e1#opes (y.let x = ¢q in c9)

let x = ej#opey (y.c1) in o
letrec fr=c incy co[(fun z +— let rec fz =c; incy)/f]
with h handle (val e) cole/ ]

with h handle (t#ope(y.c)) = ocSuop(e, (fun y — with h handle c))

We also have the following n-rules, provided the expressions and computations have easily
guessed types:

e = O
funr—ex = e
letx=cinvalx = c
if e then c[true/z] else c[false/x] = c[e/x]
match e with 0 — ¢[0/z] | succ y — c[succ y/z|] = cle/z]
absurde = cle/z]

We omit the proofs because they just involve unfolding of semantic definitions. An exception
is the n-rule for let binding, which is proved by induction in the next section.
A variety of other equivalences is readily validated, for example

let x =c¢; incy = with (handler val x + co | nil) handle ¢
and the “associativity” of let binding [12]
letz=(lety=cyincy) incg = lety = ¢y in (let x = o inc3),

where y must not occur freely in cs, see [20} 21] for other examples.
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6.2. An induction principle for effects. The induction principle for the computation
domains from Section [5.1]is useful for deriving general laws that do not depend on a partic-
ular choice of effects. It is less useful for specific examples which involve a carefully chosen
set of effects and handlers, because it forces us to consider operations that have nothing to
do with the situation at hand. The induction principle Theorem (.2 remedies the drawback.
A typical application arises when we prove an equivalence of the form E[c] = &'[c] : C
for all computations ¢ of a suitable type A!A. The computation contexts £ and &' are
interpreted as continuous maps [E],[€] : [A!A] — [C], and the equivalence may be
phrased as
vt e [AIA]. [E]@) = [E](@).
The equality inside the quantifier is an admissible predicate on [JA!A], so the induction
principle applies. It is a bit cumbersome to perform the proof using the semantic brackets
[—] all over the place. Instead, with a bit of flexibility in notation, we can write the proof
in a syntactic manner as follows:
(1) We write L for a non-terminating computation, e.g., let rec fz = fx in f(), and
check that E[L] = &'[L].
(2) We verify that E[val e] = £’[val e] where e is a meta-variable of type A.
(3) We verify, for each t#op € A,

Elope (y. ky)] = E'[thope (y. ky)),
where e is a meta-variable of type A°? and k is a meta-variable of type B® — A!A.
The induction hypothesis is that E[k /] = £'[k €] for all expressions ¢’ of type B°P.

We apply the method to prove the n-rule
letz=cinvalx = c
by induction:
(1) (let z = L inval z) = L because let is strict in both arguments,
(2) (let z = (val a) inval z) = (val z)[a/x] = val a by a [S-rule for let,
(3) The induction step is proved by

let x = (w#ope(y.ky)) inval z
= #ope(y.let z = Ky inval x)
= #ope(y.KY)

where we used a fS-rule in the first step and the induction hypothesis for xy in the
second.

A non-trivial application of the induction principle is presented in Section

7. EXAMPLE: MUTABLE REFERENCES

As a more elaborate example we consider mutable references. In core Eff they are imple-
mented by the effect ref with operations

lookup : unit — A and update : A — unit,
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where A is a fixed pure type (in full Eff we could use a parameter). The handler which
handles the reference given by an expression 7 : ref’ is defined by (the underscore _
indicates an ignored parameter):

state, % handler val z — val (fun s — val x)
| r#lookup_ k > val (fun s+ let f = ksin fs)
| r#update s’ k > val (funs—let f=k(Q in fs')

This is just the usual monadic-style treatment of state which wraps a computation into a
state-carrying function. For any instance ¢ € Z,¢, pure type B, and dirt A, the computation
state, has the type

B! ({t#lookup, t#update} UA) = (A — BIA)!A.

The type says that the handler erases lookups and updates of ¢ from a computation. The
return type (A — B!A)!A has an outer dirt A because effects could happen before the
first lookup or update. Note that the double dirt would not arise if we took the call-by-
push-value approach to handlers [19].

The handler wraps a handled computation c¢ of type B! A into a function expecting the
current state, which explains the type A — B! A. In practice such a function is immediately
applied to an initial state e of type A (such a final transformation of handled computations
is so common that in full Eff handlers have a special finally case just for this purpose):

let f = (with h handlec) in fe

The type of this computation is simply B!A. In particular, if the only effects in ¢ are
lookups and updates of ¢, we get a pure computation.

If the type of r is weaker, for example refi/12} we are not able to deduce anything
useful. The best we can do is

state, : BIA= (A — B!A)IA

for any dirt A.
We may handle several references at once by wrapping a computation into several
handlers. For example, let ¢ be the computation which swaps the contents of two references:

let y; = t1#1lookup () in

let yo = to#lookup () in

let _ = 11#updateys in

let _ = ip#updatey; in (val Q)
By itself, ¢ has the type

unit!{.1#lookup, t;#update, to#lookup, .o#update},
When c is wrapped by the handler hy = state,,,
let fo = (with hy handle ¢) in fyeq,

the type becomes unit!{¢;#1lookup, ;j#update}. When the handler h; = state,, is used
on top of that,

let f1 = (with h1 handle (let f2 = (with ho handle ¢) in f 62)) in fi ey
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we get the pure type unit!@. Beware, it is important that the state is initialized at the
correct point in the computation. For instance,

let f; = (with h; handle (with hy handle ¢)) in (let fo = fie1 in foes)

does not do the right thing. We are warned about possible trouble by the effect system
which gives the computation the type unit!{.;#1lookup, t;#update} — the operations for
11 are escaping the handlers! A less modular way of handling two instances is to create a
new handler with four operation cases, two for each of the instances.

7.1. Reasoning about references. With handlers the workings of a computation may be
inspected in a highly intensional way. Consequently, there are few generally valid observa-
tional equivalences. However, when known handlers are used to handle operations, we may
derive equivalences that describe the behavior of operations. The situation is opposite to
that of [19], where we start with an equational theory for operations and require that the
handlers respect it.

We demonstrate the technique for mutable state. Let h = state, and abbreviate

let f = (with h handlec) in fe

as H|c, e]. Straightforward calculations give us the equivalences

H[(t#lookup O (y.c)),e] = Hlcle/y], €]
H|[(i#updatee (_.c)),e] = Hle, €]
Hlvale',e] = valé,

for instance,
H[(t#updatee’ (_.c)), €]
= let f =val (fun s+ let f' = (fun _ — with h handlec) ) in f'¢) in fe
= let f =val (fun s~ H[c,¢]) in fe
= (funs— Hlc,€])e
= Hlc, ]
These suffice for simple equational reasoning about state. If we read them as rewrite rules
they allow us to progressively transform a computation to a simpler form. In fact, the
transformations mimic the usual coalgebraic operational semantics for state [I§].
Of course, a realistic computation will contain several handlers. As long as they do not

interfere with each other, we can still use equivalences to usefully manipulate them. For
example, if A/ is a handler with no operation case for (#1ookup then

H[(with h' handle (#1lookup O (y.c)), €]
= H[(t#Llookup O (y.with i’ handle c)), ]
= H[(with A’ handle c[e/y]),€].
It may happen that a lookup or an update is nested deeply inside several handlers. The
above transformation allows us to hoist the operation out of the inner handlers so that it
is handled by the outer handler, as long as the inner handlers do not attempt to handle .

The transformation applies to 1et bindings too, as they are like handlers without operation
cases.
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We may validate the seven standard equations governing state [16]. There are four
combinations of lookup and update (in the first equation y does not occur free in ¢):

H[#lookup O (y.#updatey (_.c)),e] = Hlc, €]

H[#lookup O (y. t#lookup O (z.¢)),e] = H[t#lookup O (y.c[y/z]), €]
H[i#updatee (_.1#updatee’ (_.c)),e] = H[i#updatee (_.c),e]
H[#updatee (_.#lookup O (y.c)),e] = H[#updatee(_.c[e/y]),€]

For instance, the first equation is validated as follows:
H[i#Llookup O (y.#updatey (_.c)), €]
= H[#updatee(_.c),¢]
= Hlc, €

Three more equations describe commutativity of lookups and updates at different distances.
Let 11 # 19, and write H; and Hs for the the abbreviation H with respect to ¢; and to,
respectively:

H1[Ha[t1#Lookup O (y1. to#lookup O (y2.¢)), ea], €1]
= Hi[Ha[o#lookup O (y2. t1#Llookup O (y1.¢)), e2], e1]
H1[Ho[t1#update eq (_ . o#tupdatees (_.c)), ea], e1]
= Hi[Ha[we#tupdatees (_.c1#updatee; (_.c)), 2], €1]
H1[Ha[e1#update e (_ . to#lookup ) (y2.¢)), e2], e1]
= Hi[Hz[t2#lookup ) (yo.r1#updatee (_.c)), el 1]
Let us check the last equation. The left-hand side transforms as
H1[Hz[t1#update e (_ . a#lookup O (y2.¢)), ea], e1]
= Hi[u#updatee (_. Ha[to#lookup ) (y2.c), e2]), e1]
= Hi[Ha[2#lookup O (y2.c), e2], €]
Hi[Halclea/yo], e2], €]

and the right-hand side as

Hi[Ho[to#Llookup O (ys2.1#updatee (_.c)), ea], e1]
Hi[Ha[t1#updatee (_ . clea/y2]), 2], €1]
= Hi[ui#updatee (_.Ha[c[ea/y2], e2]), 1]

= Hi[Halclez/ya], e2] €]

The remaining two equations are proved much the same way. The symmetry in the equations
also shows that it does not matter in which order we nest the handlers for ¢; and ¢s.

€1
€1

7.2. Commutativity of non-interfering computations. Swapping lookups and up-
dates that act on different instances is only a basic reasoning step. In practice we want
to swap whole computations, as long as they do not interfere. To make the idea precise, let
Ay = {11 #1lookup, t1#update}, Ay = {19#1lookup, .o#update}, let ¢; and co be computations
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of types A1 A1 and Ay ! Ag, respectively, and ¢ a computation of type C in the context
x1: A1, 20 0 As. We would like to show the equivalence

Hi[Hz[let 1 = ¢1 in (let x3 = ¢ in¢), e2], eq]
= Hi[Ha[let 29 = ¢3 in (let x1 = ¢; in¢), ez], €1].

This is a commutativity law which allows us to transpose, or run in parallel, any computa-
tions that use only non-interfering references.
First, let us establish a simpler equivalence, which we are going to use in the proof:

H1[Hz[t1#Lookup O (y1.1let x2 = co in (let 1 = ¢| inc)), es], €]
= Hi[Hz[let 29 = c2 in (let 1 = t1#lookup O (y1.¢}) in¢), es], €]

We proceed by induction on ¢s. Since handlers and let are strict, both sides are 1 when
we set ¢ to L. Next, if ¢o is val eg, the two sides are equal already without handlers:

11#Llookup O (y1.let x9 = val ep in (let z1 = ¢} in¢))
= 11#lookup O (y1.1let z1 = ¢ in clea/w3))
= 1#1lookup O (y1.1let 21 = ¢ in (let w9 = val ey in c))
= let x1 = 11#1lookup O (y1.¢}) in (let x5 = val ey in c)
For the induction step, suppose ¢z is a call of to#update (the case Lookup is similar):

Hi[Ha[t1#1ookup O (y1.let xo = to#tupdatec) (z. £ 2) in (let 21 = ¢} inc)), ea], 1]

H1[t1#1lookup O (y1. Ho[let 22 = k() in (let 1 = ¢} in ¢),€)]), e1]
= Hi[Ha[#Llookup O (y1.1let 19 = k() in (let 21 = ¢} inc)), )], e1]
= Hi[Hz[let 20 = k() in (let z; = 11#Llookup O (y1.¢}) in ), ey], e1]

Hi[Hz[let zo = o#update e, (2. k 2) in (let z1 = t1#1lookup O (y1.¢)) in ¢), es), e1].

In the third step we used the induction hypothesis for k().
We now prove the main statement by induction on ¢;. When ¢; is L or a value, the
statement is easy. If ¢; is a call of 1#1lookup, we have:

Hi[Ho[let x1 = 13#1ookup O (y1.£y1) in (let x9 = c2 in ¢), €3], €1]
= Hi[t1#lookup O (y1. Ha[let z1 = Kyp in (let 29 = ¢ in¢), e9)], €1]

= 7‘[1[7‘[2[161‘, r1 = kKep in (let Tr9 = cg in C), 62], 61]

H1[Ha[let 29 = ¢ in (let x1 = keg in¢),es], e1]

where in the last step, we used the induction hypothesis for xej. The last line is equivalent
to the other side of the desired equivalence:

Hi[Hz[let 2 = 2 in (let x1 = Kep inc), es], €]
= Hi[t1#lookup O (y1. Hz[let z9 = co in (let 21 = Ky1 inc¢),e3]), e1]

Hi[Ha[let x9 = ¢y in (let 21 = t1#Llookup O (y1. kY1) in ¢), es], e1].

The proof for update is similar.
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8. FORMALIZATION IN TWELF

We formalized core Eff, the effect system and the safety theorems in Twelf. The files
are enclosed with this paper, or can be found at the GitHub repository [4]. The code is
compatible with Twelf version 1.7.1. Further instructions and description of the code can
be found in the file README .md.

9. DISCUSSION

The only essential feature of Eff that is missing from core Eff is dynamic creation of
instances with the new F construct. We omitted it because it leads to significant complica-
tions, both in the effect system and in semantics. One possible treatment of new would be
to upgrade the current setup with nominal logic and nominal domain theory.

Non-termination is a computational effect which is not reflected in our effect system.
It would be interesting to add a “divergence” effect. Such an effect would originate from
applications of recursive functions. However, since divergence cannot be handled it would
never disappear from effect information, and would likely become an uninformative nuisance.
A potential remedy would be to separate general recursive definitions, which may diverge,
from structural recursive definitions, which always terminate.

A realistic implementation of our effect system would only be useful if it actually inferred
computational effects. Such a possibility was explored by the second author [22], and an
early prototype is available in the latest implementation of Eff [5].

Acknowledgment. We thank the anonymous referees for useful suggestions and a lesson
in domain theory.
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