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l’Informatique du Parallélisme.
e-mail address: {filippo.bonchi,fabio.zanasi}@ens-lyon.fr

Abstract. Bialgebrae provide an abstract framework encompassing the semantics of dif-
ferent kinds of computational models. In this paper we propose a bialgebraic approach
to the semantics of logic programming. Our methodology is to study logic programs
as reactive systems and exploit abstract techniques developed in that setting. First we
use saturation to model the operational semantics of logic programs as coalgebrae on
presheaves. Then, we make explicit the underlying algebraic structure by using bialgebrae
on presheaves. The resulting semantics turns out to be compositional with respect to con-
junction and term substitution. Also, it encodes a parallel model of computation, whose
soundness is guaranteed by a built-in notion of synchronisation between different threads.

1. Introduction

A fundamental tenet for the semantics of programming languages is compositionality : the
meaning of a program expression is reducible to the meaning of its subexpressions. This
allows inductive reasoning on the structure of programs, and provides several techniques to
prove properties of these.

In the last decades, much research has been devoted to develop abstract frameworks for
defining compositional semantics for different sorts of computational models. For instance,
in the setting of concurrency theory, several rule formats [1] have been introduced for
ensuring certain behavioural equivalences to be congruences with respect to the syntactic
operators of process algebrae. These works have inspired the Mathematical Operational
Semantics by Turi and Plotkin [50] where the semantics of a language is supposed to be a
bialgebra for a given distributive law representing a so called abstract GSOS specification.

A main drawback for this approach is its poor expressiveness, in the sense that many
relevant computational models do not naturally fit into the bialgebraic framework. Prime
examples of these, still from concurrency theory, are Petri nets and the calculus of Mobile
Ambients [13]: defining the operational behaviour of these systems in terms of their compo-
nents seems to be an intrinsically complex task that needs serious ingenuity of researchers
(see, e.g, [11] for a recent compositional semantics of Petri nets).

Motivated by these considerations, Milner initiated a research program devoted to sys-
tematically derive compositional semantics for more flexible semantics specification called
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reactive systems [34]. As shown in [9], these can be modeled as coalgebrae on presheaf cat-
egories and the resulting compositional semantics can be obtained by means of saturation,
a technique that we will detail later.

In this paper we study logic programs as reactive systems, applying the aforementioned
techniques to obtain a compositional semantics for logic programming. Our approach con-
sists of two steps. First, we model the saturated semantics of a program by means of
coalgebrae on presheaves. This allows us to achieve a first form of compositionality, with
respect to the substitution of the logic signature. Then, we extend our approach to a bialge-
braic setting, making the resulting semantics compositional also with respect to the internal
structure of goals.

In the remainder of this introduction, we describe these two steps in more detail.

Coalgebrae on Presheaves and Saturated Semantics. Coalgebrae on presheaves have
been successfully employed to provide semantics to nominal calculi: sophisticated process
calculi with complex mechanisms for variable binding, like the π-calculus [21, 22]. The
idea is to have an index category C of interfaces (or names), and encode as a presheaf
F : C → Set the mapping of any object i of C to the set of states having i as interface,
and any arrow f : i → j to a function switching the interface of states from i to j. The
operational semantics of the calculus will arise as a notion of transition between states,
that is, as a coalgebra α : F → B(F), where B : SetC → SetC is a functor on presheaves
encoding the kind of behavior that we want to express.

As an arrow in a presheaf category, α has to be a natural transformation, i.e. it should
commute with arrows f : i → j in the index category C. Unfortunately, this naturality
requirement may fail when the structure of C is rich enough, as for instance when non-
injective substitutions [40, 48] or name fusions [39, 6] occur. As a concrete example, consider
the π-calculus term t = ā〈x〉|b(y) consisting of a process ā〈x〉 sending a message x on a
channel named a, in parallel with b(y) receiving a message on a channel named b. Since
the names a and b are different, the two processes cannot synchronize. Conversely the
term tθ = ā〈x〉|a(y), that is obtained by applying the substitution θ mapping b to a, can
synchronize. If θ is an arrow of the index category C, then the operational semantics α is
not natural since α(tθ) 6= α(t)θ, where θ denotes the application of θ to the transitions of t.
As a direct consequence, also the unique morphism to the terminal coalgebra is not natural:
this means that the abstract semantics of π-calculus is not compositional, in the sense that
bisimilarity is not a congruence w.r.t. name substitutions. In order to make bisimilarity
a congruence, Sangiorgi introduced in [46] open bisimilarity, that is defined by considering
the transitions of processes under all possible name substitutions θ.

The approach of saturated semantics [9] can be seen as a generalization of open bisim-
ilarity, relying on analogous principles: the operational semantics α is “saturated” w.r.t.
the arrows of the index category C, resulting in a natural transformation α♯ in SetC.
In [6, 41], this is achieved by first shifting the definition of α to the category Set|C| of
presheaves indexed by the discretization |C| of C. Since |C| does not have other arrow
than the identities, α is trivially a natural transformation in this setting. The source of
α is U(F) ∈ Set|C|, where U : SetC → Set|C| is a forgetful functor defined by composi-

tion with the inclusion ι : |C| → C. The functor U has a right adjoint K : Set|C| → SetC

sending a presheaf to its right Kan extension along ι. The adjoint pair U ⊣ K induces

an isomorphism (·)♯X,Y : Set|C|[U(X), Y ] → SetC[X,K(Y )] mapping α to α♯. The latter is
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a natural transformation in SetC and, consequently, the abstract semantics results to be
compositional.

In the first part of the paper, we show that the saturated approach can be fruitfully
instantiated to coalgebraic logic programming [30, 32, 31, 33], which consists of a novel se-
mantics for logic programming and a parallel resolution algorithm based on coinductive trees.
These are a variant of ∧∨-trees [26] modeling parallel implementations of logic programming,
where the soundness of the derivations represented by a tree is guaranteed by the restriction
to term-matching (whose algorithm, differently from unification, is parallelizable [19]).

There are two analogies with the π-calculus: (a) the state space is modeled by a presheaf
on the index category L

op
Σ
, that is the (opposite) Lawvere Theory associated with some

signature Σ; (b) the operational semantics given in [32] fails to be a natural transformation

in SetL
op
Σ : Example 3.6 provides a counter-example which is similar to the π-calculus term

t discussed above.
The authors of [32] obviate to (b) by relaxing naturality to lax naturality : the opera-

tional semantics p of a logic program is given as an arrow in the category Lax (Lop
Σ
,Poset)

of locally ordered functors F : Lop
Σ
→ Poset and lax natural transformations between them.

They show the existence of a cofree comonad that induces a morphism [[·]]p mapping atoms

(i.e., atomic formulae) to coinductive trees. Since [[·]]p is not natural but lax natural, the
semantics provided by coinductive trees is not compositional, in the sense that, for some
atoms A and substitution θ,

[[Aθ]]p 6= [[A]]pθ

where [[Aθ]]p is the coinductive tree associated with Aθ and [[A]]pθ denotes the result of

applying θ to each atom occurring in the tree [[A]]p.

Instead of introducing laxness, we propose to tackle the non-naturality of p with a
saturated approach. It turns out that, in the context of logic programming, the saturation
map (·)♯ has a neat description in terms of substitution mechanisms: while p performs
term-matching between the atoms and the heads of clauses of a given logic program, its

saturation p♯ (given as a coalgebra in SetL
op
Σ ) performs unification. It is worth to remark

here that not only most general unifiers are considered but all possible unifiers.
A cofree construction leading to a map [[·]]p♯ can be obtained by very standard cate-

gorical tools, such as terminal sequences [2]. This is possible because, as Set, both SetL
op
Σ

and Set|L
op
Σ
| are (co)complete categories, whereas in the lax approach, Lax (Lop

Σ
,Poset)

not being (co)complete, more indirect and more sophisticated categorical constructions are
needed [31, Sec. 4]. By naturality of p♯, the semantics given by [[·]]p♯ turns out to be compo-

sitional, as in the desiderata. Analogously to [[·]]p, also [[·]]p♯ maps atoms to tree structures,
which we call saturated ∧∨-trees. They generalize coinductive trees, in the sense that the
latter can be seen as a “desaturation” of saturated ∧∨-trees, where all unifiers that are not
term-matchers have been discarded. This observation leads to a translation from saturated
to coinductive trees, based on the counit ǫ of the adjunction U ⊣ K. It follows that our
framework encompasses the semantics in [32, 31].

Analogously to what is done in [31], we propose a notion of refutation subtree of a
given saturated ∧∨-tree, intuitively corresponding to an SLD-refutation of an atomic goal
in a program. In our approach, not all the refutation subtrees represent sound derivations,
because the same variable may be substituted for different terms in the various branches. We
thus study the class of synched refutation subtrees: they are the ones in which, at each step
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of the represented derivation, the same substitution is applied on all the atoms considered on
different branches. Refutation subtrees with this property do represent sound derivations
and are preserved by the desaturation procedure. This leads to a result of soundness
and completeness of our semantics with respect to SLD-resolution, crucially using both
compositionality and the translation into coinductive trees.

Bialgebraic Semantics of Goals. In the second part of this paper we extend our frame-
work to model the saturated semantics of goals instead of single atoms. This broadening of
perspective is justified by a second form of compositionality that we want to study. Given
atoms A and B, one can see the goal {A,B} as their conjunction A ∧B: the idea is that a
resolution for A∧B requires a resolution for A and one for B. Our aim is to take this logical
structure into account, proposing a semantics for A ∧ B that can be equivalently given as
the “conjunction” (at a higher level) of the semantics [[A]]p♯ and [[B]]p♯ . Formally, we will
model the structure given by ∧ as an algebra on the space of goals. To properly extend
our saturated approach, the coalgebra p♯ encoding a logic program needs to be compatible
with such algebraic structure: the formal ingredient to achieve this will be a distributive
law δ involving the type of the algebra of goals and the one of the coalgebra p♯. This will

give raise to an extension of p♯ to a δ-bialgebra p♯δ on the space of goals, via a categorical
construction that is commonplace in computer science. For instance, when instantiated to
a non-deterministic automaton t, it yields the well-known powerset construction t on t: the
states of t are like atoms of a program, and the ones of t are collections of states, like goals
are collections of atoms.

Thanks to the compatibility of the operational semantics p♯δ, the induced map [[·]]
p♯δ

will

also be compatible with the algebraic structure of goals, resulting in the compositionality
property sketched above,

[[A ∧B]]
p
♯
δ
= [[A]]

p
♯
δ
∧ [[B]]

p
♯
δ

where on the right side [[·]]
p
♯
δ
is applied to goals consisting of just one atom, A or B. As we

did for [[·]]p♯ , we will represent the targets of [[·]]
p
♯
δ
as trees, which we call saturated ∨-trees.

Like saturated ∧∨-trees, they encode derivations by (generalized) unification, which now
apply to goals instead of single atoms. This operational understanding of [[·]]

p
♯
δ
allows for a

more concrete grasp on the higher order conjunction ∧: it can be seen as the operation of
“gluing together” (depthwise) saturated ∨-trees.

Beyond this form of compositionality, our approach exhibits another appealing feature,
arising by definition of δ. When solving a goal G in a program P, the operational semantics

p
♯
δ attempts to perform unification simultaneously on each atom in G with heads in P, by

applying the same substitution on all atoms in the goal. If this form of “synchronous”
resolution is not possible — for instance, if there is no unique substitution for all atoms in

G — then the computation encoded by p♯δ ends up in a failure.
This behavior is rather different from the one of the standard SLD-resolution algorithm

for logic programming, where unification is performed sequentially on one atom of the goal
at a time. However, we are able to show that the semantics [[·]]

p♯δ
is sound and complete with

respect to SLD-resolution, meaning that no expressivity is lost in assuming a synchronous
derivation procedure as the one above. This result extends the completeness theorem,
previously stated for the semantics [[·]]p♯ , from atomic to arbitrary goals. It relies on a
notion of refutation subtree for saturated ∨-trees that is in a sense more natural than
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the one needed for saturated ∧∨-trees. Whereas in the latter we had to impose specific
constraints to ensure that refutation subtrees only represent sound derivations, there is no
such need in saturated ∨-trees, because the required synchronisation property is guaranteed
by construction.

A Fistful of Trees. The following table summarises how the saturated derivation trees
that we introduce compare with the trees appearing in the logic programming literature.

substitution mechanism

most general unification term-matching unification

nodes are

atoms

∧∨-trees
(Def. 2.6, also called

parallel and-or trees [26])

coinductive trees
(Def. 3.5, [31, 33])

saturated ∧∨-trees
(Def. 4.5)

nodes are

goals
SLD-trees (e.g. [35])

saturated ∨-trees
(Def. 10.1)

The computation described by SLD-trees is inherently sequential, whereas all the oth-
ers in the table exhibit and-or parallelism (cf. Section 2.5). More specifically, (saturated)
∧∨-trees and coinductive trees express independent and-parallelism: there is no exchange
of information between the computations involving different atoms in the goal. Instead,
saturated ∨-trees encode a dependent form of and-parallelism: at each step every atom of
the goal is matched with heads of the program, but they have to agree on the same substitu-
tion, thus requiring a form of communication between different threads. Since independent
and-parallelism does not cohere well with unification, (saturated) ∧∨-trees may represent
unsound derivations. Instead, they are always sound by construction in coinductive trees
(because of the restriction to term-matching) and saturated ∨-trees (because the atoms in
the goal are processed synchronously, by applying the same substitution).

Related works. Our starting point is the key observation that, in coalgebraic logic pro-
gramming [30, 32, 31, 33], the operational semantics fails to be a natural transformation. As
an alternative to the lax approach of the above line of research, we propose saturation which,
in the case of logic programming, boils down to unification with respect to all substituions,
making the whole approach closer to standard semantics, like Herbrand models [51, 15]
(where only ground instances are considered) or the C-semantics of [20] (considering also
non-ground instances).

As a result, our approach differs sensibly from [30, 32, 31, 33]: in that series of works, the
aim is to give an operational semantics to coinductive logic programs and, at the same time,
to exploit and-or parallelism. In our case, the semantics is only meant to model standard
(recursive) logic programs and the synchronisation mechanism built-in in saturated ∨-trees
imposes a form of dependency to and-parallelism.

The two forms of compositionality that we investigate appear in various forms in the
standard literature, see e.g. [5, 35]. Our interest is to derive them as the result of applying
the categorical machinery — coalgebrae and bialgebrae on presheaves — that has been
fruitfully adopted in the setting of process calculi, as detailed above. For instance, in the
open π-calculus one aims at the same two forms of compositionality: with respect to name
substitution — corresponding to term substitutions in logic programming — and parallel
composition of processes — corresponding to conjunction of atoms in a goal.
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We should also mention other categorical perspectives on (extensions of) logic program-
ming, such as [18, 28, 4, 9]. Amongst these, the most relevant for us is [9] since it achieves
compositionality with respect to substitutions and ∧ by exploiting a form of saturation: ar-
rows of the index category are both substitutions and ∧-contexts of the shape G1 ∧−∧G2

(for some goals G1, G2). The starting observation in [9] is that the construction of relative
pushouts [34] instantiated to such category captures the notion of most general unifiers.

Beyond logic programming, the idea of using saturation to achieve compositionality is
even older than [46] (see e.g. [42]). As far as we know, [17] is the first work where saturation
is explored in terms of coalgebrae. It is interesting to note that, in [16], some of the same
authors also proposed laxness as a solution for the lack of compositionality of Petri nets.

A third approach, alternative to laxness and saturation, may be possible by taking a
special kind of “powerobject” functor as done in [39, 48] for giving a coalgebraic semantics to
fusion and open π-calculus. We have chosen saturated semantics for its generality: it works
for any behavioral functor B and it models a phenomenon that occurs in many different
computational models (see e.g. [8]).

Finally, the approach consisting in saturating and building a bialgebraic model already
appeared in [23] (amongst others). In that work, a sort of saturated semantics is achieved
by transposing along the adjunction between SetI and SetF obtained from the injection of
the category I of finite sets and injective functions into the category F of all functions. An
interesting construction, missing in [23], is the one of the distributive law δ for saturated
semantics: in our work, δ is built in a canonical way out of the distributive law for the
non-saturated semantics.

Synopsis. After introducing the necessary background in Section 2, we recall the frame-
work of coalgebraic logic programming of [30, 32, 31, 33] in Section 3. In Section 4 we
propose saturated semantics, allowing us to achieve the first compositionality property. In
Section 5 we compare saturated semantics with the lax approach of [32]. This is instru-
mental for proving, in Section 6, soundness and completeness of saturated semantics with
respect to SLD-resolution on atomic goals.

In the second part of the paper we present the bialgebraic semantics for arbitrary goals.
We start in Section 7 and 8 by considering the simpler setting of ground logic programs.
In particular, Section 7 shows the second compositionality property and Section 8 draws a
comparison with the coalgebraic semantics. Section 9 and Section 10 generalize the results of
the previous two sections to arbitrary logic programs. In particular, we conclude Section 10
by proving soundness and completeness of the bialgebraic semantics of goals with respect
to SLD-resolution, extending the analogous result for atomic goals in Section 6.

The present work extends the conference paper [10] with more examples, proofs and
the new material presented in Sections 7, 8, 9 and 10.

Acknowledgements. We thank E. Komendantskaya, T. Hirschowitz, U. Montanari, D.
Petrisan, J. Power, M. Sammartino and the anonymous referees for the helpful comments.
We acknowledge support by project ANR 12IS02001 PACE.
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2. Background

In this section we fix some terminology, notation and basic results, mainly concerning
category theory and logic programming.

2.1. Categories and Presheaves. Given a (small) category C, |C| denotes the category
with the same objects as C but no other arrow than the identities. With a little abuse
of notation, X ∈ C indicates that X is an object of C and C[X,Y ] the set of arrows
from X to Y . We denote with X × Y the product of objects X,Y ∈ C with projections
π1 : X × Y → X and π2 : X × Y → Y . Given Z ∈ C and arrows f : Z → X and g : Z → Y ,
we denote with 〈f, g〉 : Z → X ×Y the arrow given by universal property of X×Y . We use
the notation End(C) for the category of endofunctors on C and natural transformations.
A C-indexed presheaf is any functor G : C → Set. We write SetC for the category of
C-indexed presheaves and natural transformations.

Throughout this paper we will need to extend functors on Set to functors on presheaf
categories. For this purpose, it will be useful to state the following construction.

Definition 2.1. Given a category C, the functor (·)C : End(Set)→ End(SetC) is defined
as follows.

• Given an object F : Set → Set, FC : SetC → SetC is defined on G : C → Set as F ◦ G

and on α : G⇒ H as the natural transformation given by
(
FG(n)

F(αn)
−−−−→ FH(n)

)
n∈C

.

• Given an arrow γ : F ⇒ B of End(Set), γC : FC ⇒ BC is a natural transformation β

given by the family
(
FG

βG
−→ BG

)
G∈SetC

of natural transformations, where each βG is

defined by
(
FG(n)

γG(n)
−−−→ BG(n)

)
n∈C

.

We call FC and γC extensions of F and γ respectively.

We will mainly work with categories of presheaves indexed by L
op
Σ

— the (opposite)
Lawvere theory on a signature Σ, defined in Section 2.4 — and its discretization |Lop

Σ
|. To

simplify notation, we will follow the convention of writing (̆·) for the extension functor (·)L
op
Σ ,

i.e., (·)C where C = L
op
Σ
, and (̂·) for (·)|L

op
Σ

|.

2.2. Monads and Distributive Laws. A monad in a category C is a functor T : C→ C

together with two natural transformations η : id ⇒ T and µ : TT ⇒ T, called respectively
unit and multiplication of T, which are required to satisfy the following equations for any
X ∈ C: µX ◦ ηTX = µX ◦ TηX = idX and TµX ◦ µXX = µX ◦ µX . We shall also make use
of the triple notation (T, η, µ) for monads. A distributive law of a monad (T, ηT , µT) over a
monad (M, ηM, µM) is a natural transformation λ : TM ⇒ MT making the diagrams below
commute:

TX

T(ηMX )
��

TX

ηM
TX��

TM2X

TµMX ��

λMX // MTMX
MλX // M2TX

µM
TX��

TMX
λX

// MTX TMX
λX

// MTX

MX

ηT
MX

OO

MX

MηTX

OO

T2MX

µT
MX

OO

TλMX

// TMTX
λTX

// MT2X

MµTX

OO
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A distributive law λ : TM ⇒ MT between monads yields a monad MT with unit ηMT :=
ηM
T
◦ ηT and multiplication µMT := MµT ◦ µM

TT
◦ MλT. We introduce now two weaker

notions of the law. A distributive law of a monad (T, ηT , µT) over a functor M is a natural
transformation λ : TM⇒ MT such that only the two bottommost squares above commute.
One step further in generalization, we call a distributive law of a functor T over a functor
M any natural transformation from TM to MT.

With the next proposition we observe that the extension functor (·)C (Definition 2.1)
preserves the monad structure.

Proposition 2.2. If (T, η, µ) is a monad in Set then (TC, ηC, µC) is a monad in SetC.
Moreover, if λ : TM→MT is a distributive law of monads in Set then λC : TCMC →MCTC

is a distributive law of monads in SetC.

Proof. The action of (·)C on arrows of End(Set) is given componentwise. This means that
commutativity of the diagrams involving ηC, µC and λC in SetC follows by the one of the
corresponding diagrams in Set.

2.3. Algebrae, Coalgebrae and Bialgebrae. Given a functor F : C → C, a F-algebra
on X ∈ C is an arrow h : F(X) → X, also written as a pair (X,h). A morphism between
F-algebrae (X,h) and (Y, i) is an arrow f : X → Y such that f ◦ h = i ◦ F(f).

Dually, a B-coalgebra on X ∈ C is an arrow p : X → B(X), also written as a pair
(X, p). A morphism between B-coalgebrae (X, p) and (Y, q) is an arrow g : X → Y such
that q ◦ g = B(g) ◦ p. We fix notation CoAlg(B) for the category of B-coalgebrae and
their morphisms. If it exists, the final B-coalgebra is the terminal object in CoAlg(B).
The cofree B-coalgebra on X ∈ C is given by (Ω, π2 ◦ ω : Ω → B(Ω)), where (Ω, ω) is the
terminal object in CoAlg(X ×B(·)).

Let λ : FB ⇒ BF be a distributive law between functors F,B : C → C. A λ-bialgebra
is a triple (X,h, p) where h : FX → X is an F-algebra and p : X → BX is a B-coalgebra
subject to the compatibility property given by commutativity of the following diagram:

FX
h //

Fp
��

X
p // BX

FBX
λX

// BFX

Bh

OO

A λ-bialgebra morphism from (X,h, p) to (Y, i, q) is an arrow f : X → Y that is both a B-
coalgebra morphism from (X, p) to (Y, q) and an F-algebra morphism from (X,h) to (Y, i).
We fix notation BiAlg(λ) for the category of λ-bialgebrae and their morphisms. If it exists,
the final λ-bialgebra is the terminal object in BiAlg(λ).

Next we record some useful constructions of bialgebrae out of coalgebrae. When F is
a monad and λ is a distributive law of the monad F over the functor B, then any BF-
coalgebra canonically lifts to a λ-bialgebra as guaranteed by the following proposition (for
a proof see e.g. [27]).

Proposition 2.3. Given a monad T : C→ C and a functor B : C→ C, let λ : TB⇒ BT be
a distributive law of the monad T over the functor B. Given a BT-coalgebra p : X → BTX,
define the B-coalgebra pλ : TX → BTX as

TX
Tp // TBTX

λTX // BTTX
B(µTX)

// BTX .
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Then (TX,µTX , pλ) forms a λ-bialgebra. Moreover, this assignment extends to a functor
from CoAlg(BT) to BiAlg(λ) mapping:

• a BT-coalgebra (X, p) to the λ-bialgebra (TX,µTX , pλ);
• a morphism f : X → Y of BT-coalgebrae to a morphism Tf : TX → TY of λ-bialgebrae.

We recall also the following folklore result (see e.g. [29]) on the relation between final
coalgebrae and final bialgebrae.

Proposition 2.4. Let λ : FB ⇒ BF be a distributive law between functors F,B : C → C

and suppose that a final B-coalgebra c : X → BX exists. Form the B-coalgebra h : FX
Fc
−→

FBX
λX−−→ BFX and let h′ : FX → X be the unique B-coalgebra morphism given by finality

of c : X → BX. Then (X,h′, c) is the final λ-bialgebra.

2.4. Terms, Atoms and Substitutions. We fix a signature Σ of function symbols, each
equipped with a fixed arity, and a countably infinite set Var = {x1, x2, x3, . . . } of variables.
We model substitutions and unification of terms over Σ and Var according to the categorical
perspective of [24, 12]. To this aim, let the (opposite) Lawvere Theory of Σ be a category
L
op
Σ

where objects are natural numbers, with n ∈ L
op
Σ

intuitively representing variables
x1, x2, . . . , xn from Var . For any two n,m ∈ L

op
Σ
, the set Lop

Σ
[n,m] consists of all n-tuples

〈t1, . . . , tn〉 of terms where only variables among x1, . . . , xm occur. The identity on n ∈ L
op
Σ
,

denoted by idn, is given by the tuple 〈x1, . . . , xn〉. The composition of 〈t11, . . . , t
1
n〉 : n→ m

and 〈t21, . . . , t
2
m〉 : m→ m′ is the tuple 〈t1, . . . , tn〉 : n→ m′, where ti is the term t1i in which

every variable xj has been replaced with t2j , for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

We call substitutions the arrows of Lop
Σ

and use Greek letters θ, σ and τ to denote
them. Given θ1 : n → m1 and θ2 : n → m2, a unifier of θ1 and θ2 is a pair of substitutions
σ : m1 → m and τ : m2 → m, where m is some object of Lop

Σ
, such that σ ◦ θ1 = τ ◦ θ2. The

most general unifier of θ1 and θ2 is a unifier with a universal property, i.e. a pushout of the

diagram m1
θ1←− n

θ2−→ m2.
An alphabet A consists of a signature Σ, a set of variables Var and a set of predicate

symbols P,P1, P2, . . . each assigned an arity. Given P of arity n and Σ-terms t1, . . . , tn,
P (t1, . . . , tn) is called an atom. We use Latin capital letters A,B, . . . for atoms. Given a
substitution θ = 〈t1, . . . , tn〉 : n → m and an atom A with variables among x1, . . . , xn, we
adopt the standard notation of logic programming in denoting with Aθ the atom obtained
by replacing xi with ti in A, for 1 ≤ i ≤ n. The atom Aθ is called a substitution instance of
A. The notation {A1, . . . , Am}θ is a shorthand for {A1θ, . . . , Amθ}. Given atoms A1 and
A2, we say that A1 unifies with A2 (equivalently, they are unifiable) if they are of the form
A1 = P (t1, . . . , tn), A2 = P (t′1, . . . , t

′
n) and a unifier 〈σ, τ〉 of 〈t1, . . . , tn〉 and 〈t

′
1, . . . , t

′
n〉

exists. Observe that, by definition of unifier, this amounts to saying that A1σ = A2τ . Term
matching is a particular case of unification, where σ is the identity substitution. In this
case we say that 〈σ, τ〉 is a term-matcher of A1 and A2, meaning that A1 = A2τ .

2.5. Logic Programming. A logic program P consists of a finite set of clauses C written
as H ← B1, . . . , Bk. The components H and B1, . . . , Bk are atoms, where H is called
the head of C and B1, . . . , Bk form the body of C. One can think of H ← B1, . . . , Bk as
representing the first-order formula (B1 ∧ · · · ∧ Bk) → H. We say that P is ground if only
ground atoms (i.e. without variables) occur in its clauses.
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The central algorithm of logic programming is SLD-resolution, checking whether a finite
collection of atoms G (called a goal and usually modeled as a set or a list) is refutable in P.
A run of the algorithm on inputs G and P gives rise to an SLD-derivation, whose steps of
computation can be sketched as follows. At the initial step 0, a set of atoms G0 (the current
goal) is initialized as G. At each step i, an atom Ai is selected in the current goal Gi and
one checks whether Ai is unifiable with the head of some clause of the program. If not, the
computation terminates with a failure. Otherwise, one such clause Ci = H ← B1, . . . , Bk
is selected: by a classical result, since Ai and H unify, they have also a most general unifier
〈σi, τi〉. The goal Gi+1 for the step i+ 1 is given as

{B1, . . . , Bk}τi ∪ (Gi \ {Ai})σi.

Such a computation is called an SLD-refutation if it terminates in a finite number (say
n) of steps with Gn = ∅. In this case one calls computed answer the substitution given
by composing the first projections σn, . . . , σ0 of the most general unifiers associated with
each step of the computation. The goal G is refutable in P if an SLD-refutation for G in P

exists. A correct answer is a substitution θ for which there exist a computed answer τ and
a substituion σ such that σ ◦ τ = θ. We refer to [35] for a more detailed introduction to
SLD-resolution.

Convention 2.5. In any derivation of G in P, the standard convention is that the variables
occurring in the clause Ci considered at step i do not appear in goals Gi−1, . . . , G0. This
guarantees that the computed answer is a well-defined substitution and may require a
dynamic (i.e. at step i) renaming of variables appearing in Ci. The associated procedure
is called standardizing the variables apart and we assume it throughout the paper without
explicit mention. It also justifies our definition (Section 2.4) of the most general unifier
as pushout of two substitutions with different target, whereas it is also modeled in the
literature as the coequalizer of two substitutions with the same target, see e.g. [24]. The
different target corresponds to the two substitutions depending on disjoint sets of variables.

Relevant for our exposition are ∧∨-trees (“and-or trees”) [26], which represent execu-
tions of SLD-resolution exploiting two forms of parallelism: and-parallelism, corresponding
to simultaneous refutation-search of multiple atoms in a goal, and or-parallelism, exploring
multiple attempts to refute the same goal. These are also called and-or parallel derivation
tress in [33].

Definition 2.6. Given a logic program P and an atom A, the (parallel) ∧∨-tree for A in P

is the possibly infinite tree T satisfying the following properties:

(1) Each node in T is either an ∧-node or an ∨-node.
(2) Each ∧-node is labeled with one atom and its children are ∨-nodes.
(3) The root of T is an ∧-node labeled with A.
(4) Each ∨-node is labeled with • and its children are ∧-nodes.
(5) For every ∧-node s in T , let A′ be its label. For every clause H ← B1, . . . , Bk of P and

most general unifier 〈σ, τ〉 of A′ and H, s has exactly one child t, and viceversa. For
each atom B in {B1, . . . , Bk}τ , t has exactly one child labeled with B, and viceversa.

As standard for any tree, we have a notion of depth: the root is at depth 0 and depth i+ 1
is given by the children of nodes at depth i. In our graphical representation of trees, we
draw arcs between a node and its children which we call edges. A subtree of a tree T is a
set of nodes of T forming a tree T ′, such that the child relation between nodes in T ′ agrees
with the one they have in T .
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An SLD-resolution for the singleton goal {A} is represented as a particular kind of
subtree of the ∧∨-tree for A, called derivation subtree. The intuition is that derivation
subtrees encode “deterministic” computations, that is, no branching given by or-parallelism
is allowed. Refutation subtrees are those derivation subtrees yielding an SLD-refutation of
{A}: all paths lead to a leaf with no atoms left to be refuted.

Definition 2.7. Let T be the ∧∨-tree for an atom A in a program P. A subtree T ′ of T is
a derivation subtree if it satisfies the following conditions:

(1) the root of T ′ is the root of T ;
(2) if an ∧-node of T belongs to T ′, then just one of its children belongs to T ′;
(3) if an ∨-node of T belongs to T ′, then all its children belong to T ′.

A refutation subtree (called success subtree in [31]) is a finite derivation subtree with only
∨-nodes as leaves.

3. Coalgebraic Logic Programming

In this section we recall the framework of coalgebraic logic programming, as introduced in
[30, 32, 31, 33].

3.1. The Ground Case. We begin by considering the coalgebraic semantics of ground
logic programs [30]. For the sequel we fix an alphabet A, a set At of ground atoms and a
ground logic program P. The behavior of P is represented by a coalgebra p : At → PfPf (At)
on Set, where Pf is the finite powerset functor and p is defined as follows:

p : A 7→ {{B1, . . . , Bk} | H ← B1, . . . , Bk is a clause of P and A = H}.

The idea is that p maps an atom A ∈ At to the set of bodies of clauses of P whose head H
unifies with A, i.e. (in the ground case) A = H. Therefore p(A) ∈ PfPf (At) can be seen as
representing the ∧∨-tree of A in P up to depth 2, according to Definition 2.6: each element
{B1, . . . , Bk} of p(A) corresponds to a child of the root, whose children are labeled with
B1, . . . , Bk. The full tree is recovered as an element of C(PfPf )(At), where C(PfPf ) is the
cofree comonad on PfPf , standardly provided by the following construction [2, 52].

Construction 3.1. The terminal sequence for the functor At×PfPf (·) : Set→ Set consists
of sequences of objects Xα and arrows ζα : Xα+1 → Xα, defined by induction on α as follows.

Xα :=

{
At α = 0
At × PfPf (Xβ) α = β + 1

ζα :=

{
π1 α = 0
idAt × PfPf (ζβ) α = β + 1

For α a limit ordinal, Xα is given as a limit of the sequence and a function ζα : Xα → Xβ

is given for each β < α by the limiting property of Xα.
By [52] it follows that the sequence given above converges to a limit Xγ such that

ζγ : Xγ+1 → Xγ is an isomorphism forming the final At×PfPf (·)-coalgebra (Xγ , ζ
−1
γ ). Since

Xγ+1 is defined as At × PfPf (Xγ), there is a projection function π2 : Xγ+1 → PfPf (Xγ)
which makes π2 ◦ ζ

−1
γ : Xγ → PfPf (Xγ) the cofree PfPf -coalgebra on At . This induces the

cofree comonad C(PfPf ) : Set→ Set on PfPf as a functor mapping At to Xγ .
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As the elements of the cofree Pf -coalgebra on a set X are standardly presented as
finitely branching trees where nodes have elements of X as labels [52, 45], those of the
cofree PfPf -coalgebra on X can be seen as finitely branching trees with two sorts of nodes
occurring at alternating depth, where only one sort has the X-labeling. We now define a
C(PfPf )-coalgebra [[·]]p : At → C(PfPf )(At).

Construction 3.2. Given a ground program P, let p : At → PfPf (At) be the coalgebra
associated with P. We define a cone {pα : At → Xα}α<γ on the terminal sequence of
Construction 3.1 as follows:

pα :=

{
idAt α = 0
〈idAt , (PfPf (pβ) ◦ p)〉 α = β + 1.

For α a limit ordinal, pα : At → Xα is provided by the limiting property of Xα. Then in
particular Xγ = C(PfPf )(At) yields a function [[·]]p : At → C(PfPf )(At).

Given an atom A ∈ At , the tree [[A]]p ∈ C(PfPf )(At) is built by iteratively applying

the map p, first to A, then to each atom in p(A), and so on. For each natural number
m, pm maps A to its ∧∨-tree up to depth m. As shown in [30], the limit [[·]]p of all such
approximations provides the full ∧∨-tree of A.

Example 3.3. Consider the following ground logic program, based on an alphabet consist-
ing of a signature {a0, b0, c0} and predicates p(−,−), q(−).

p(b, c) ← q(a), q(b), q(c) p(b, b) ← q(c)

p(b, b) ← p(b, a), p(b, c) q(c) ←

The corresponding coalgebra p : At → PfPf (At) and the ∧∨-tree [[p(b, b)]]p ∈ C(PfPf )(At)
are depicted below on the left and on the right, respectively.

p(p(b, c)) = {{q(a), q(b), q(c)}}
p(p(b, b)) = {{p(b, a), p(b, c)}{q(c)}}
p(q(c)) = {{}}
p(A) = {} for A ∈ At \ {p(b, c), p(b, b), q(c)}

p(b, b)
♣♣ ◆◆◆

• •
♣♣♣ ◆◆◆

q(c) p(b, a) p(b, c)

• •
♣♣♣ ▼▼▼

q(a) q(b) q(c)

•

3.2. The General Case. In the sequel we recall the extension of the coalgebraic semantics
to arbitrary (i.e. possibly non-ground) logic programs presented in [32, 31]. A motivating
observation for their approach is that, in presence of variables, ∧∨-trees are not guaran-
teed to represent sound derivations. The problem lies in the interplay between variable
dependencies and unification, which makes SLD-derivations for logic programs inherently
sequential processes [19].

Example 3.4. Consider the signature Σ = {cons2, succ1, zero0, nil0} and the predicates
List(−), Nat(−). The program NatList, encoding the definition of lists of natural numbers,
will be our running example of a non-ground logic program.

List(cons(x1, x2)) ← Nat(x1), List(x2) List(nil) ←

Nat(succ(x1)) ← Nat(x1) Nat(zero) ←
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Let A be the atom List(cons(x1, cons(x2, x1))). It is intuitively clear that there is no
substitution of variables making A represent a list of natural numbers: we should replace
x1 with a “number” (for instance zero) in its first occurrence and with a “list” (for instance
nil) in its second occurrence. Consequently, there is no SLD-refutation for {A} in NatList.
However, consider the ∧∨-tree of A in NatList, for which we provide a partial representation
as follows.

List(cons(x1, cons(x2, x1)))

•
❡❡❡❡❡

❡❡❡❡❡
❡

❩❩❩❩❩❩
❩❩❩❩❩

Nat(x1)

♣♣♣
List(cons(x2, x1))

• • •

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞
❲❲❲❲❲

❲❲❲

. . . Nat(x2)

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩ List(x1)
❖❖❖

. . . • • . . .

The above tree seems to yield an SLD-refutation: List(cons(x1, cons(x2, x1))) is refuted
by proving Nat(x1) and List(cons(x2, x1)). However, the associated computed answer
would be ill-defined, as it is given by substituting x2 with zero and x1 both with zero and
with nil (the computed answer of Nat(x1) maps x1 to zero and the computed answer of
List(cons(x2, x1)) maps x1 to nil).

To obviate to this problem, in [32] coinductive trees are introduced as a sound variant
of ∧∨-trees, where unification is restricted to term-matching. This constraint is sufficient
to guarantee that coinductive trees only represent sound derivations: the key intuition is
that a term-matcher is a unifier that leaves untouched the current goal, meaning that the
“previous history” of the derivation remains uncorrupted.

Before formally defining coinductive trees, it is worth recalling that, in [32], the collec-
tion of atoms (based on an alphabet A) is modeled as a presheaf At : Lop

Σ
→ Set. The index

category is the (opposite) Lawvere Theory L
op
Σ

of Σ, as defined above. For each natural
number n ∈ L

op
Σ
, At(n) is defined as the set of atoms with variables among x1, . . . , xn. Given

an arrow θ ∈ L
op
Σ
[n,m], the function At(θ) : At(n)→ At(m) is defined by substitution, i.e.

At(θ)(A) := Aθ. By definition, whenever an atom A belongs to At(n), then it also belongs
to At(n′), for all n′ ≥ n. However, the occurrences of the same atom in At(n) and At(n′)
(for n 6= n′) are considered distinct: the atoms A ∈ At(n) and A ∈ At(n′) can be thought
of as two states x1, . . . , xn ⊢ A and x1, . . . , xn′ ⊢ A with two different interfaces x1, . . . , xn
and x1, . . . , xn′ . For this reason, when referring to an atom A, it is important to always
specify the set At(n) to which it belongs.

Definition 3.5. Given a logic program P, a natural number n and an atom A ∈ At(n),
the n-coinductive tree for A in P is the possibly infinite tree T satisfying properties 1-4 of
Definition 2.6 and property 5 replaced by the following1:

(5) For every ∧-node s in T , let A′ ∈ At(n) be its label. For every clause H ← B1, . . . , Bk
of P and every term-matcher 〈idn, τ〉 of A

′ and H, with B1τ, . . . , Bkτ ∈ At(n), s has
exactly one child t, and viceversa. For each atom B in {B1, . . . , Bk}τ , t has exactly one
child labeled with B, and viceversa.

1Our notion of coinductive tree corresponds to the notion of coinductive forest of breadth n as in [31,
Def. 4.4], the only difference being that we “glue” together all trees of the forest into a single tree. It agrees
with the definition given in [33, Def. 4.1] apart for the fact that the parameter n is fixed.
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We recall from [32] the categorical formalization of this class of trees. The first step is to
generalize the definition of the coalgebra p associated with a program P. Definition 3.5
suggests how p should act on an atom A ∈ At(n), for a fixed n:

A 7→ {{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

A = Hτ and B1τ, . . . , Bkτ ∈ At(n)}. (3.1)

For each clause H ← B1, . . . , Bk, there might be infinitely (but countably) many substitu-
tions τ such that A = Hτ (see e.g. [32]). Thus the object on the right-hand side of (3.1)
will be associated with the functor PcPf : Set→ Set, where Pc and Pf are respectively the
countable powerset functor and the finite powerset functor. In order to formalize this as a

coalgebra on At : Lop
Σ
→ Set, let P̆c : Set

L
op
Σ → SetL

op
Σ and P̆f : Set

L
op
Σ → SetL

op
Σ be exten-

sions of Pc and Pf respectively, given according to Definition 2.1. Then one would like to fix

(3.1) as the definition of the n-component of a natural transformation p : At → P̆cP̆f (At).
The key problem with this formulation is that p would not be a natural transformation, as
shown by the following example.

Example 3.6. Let NatList be the same program of Example 3.4. Fix a substitution

θ = 〈nil〉 : 1→ 0 and, for each n ∈ L
op
Σ
, suppose that p(n) : At(n)→ P̆cP̆f (At)(n) is defined

according to (3.1). Then the following square does not commute.

At(1)

At(θ)

��

p(1)
// P̆cP̆f (At)(1)

P̆cP̆f (At)(θ)
��

At(0)
p(0)

// P̆cP̆f (At)(0)

A counterexample is provided by the atom List(x1) ∈ At(1). Passing through the bottom-
left corner of the square, List(x1) is mapped first to List(nil) ∈ At(0) and then to {∅} ∈

P̆cP̆f (At)(0) - intuitively, this yields a refutation of the goal {List(x1)} with substitution
of x1 with nil. Passing through the top-right corner, List(x1) is mapped first to ∅ ∈

P̆cP̆f (At)(1) and then to ∅ ∈ P̆cP̆f (At)(0), i.e. the computation ends up in a failure.

In [32, Sec.4] the authors overcome this difficulty by relaxing the naturality require-

ment. The morphism p is defined as a P̃cP̃f -coalgebra in the category Lax (Lop
Σ
,Poset)

of locally ordered functors F : Lop
Σ
→ Poset and lax natural transformations, with each

component p(n) given according to (3.1) and P̃cP̃f the extension of P̆cP̆f to an endofunctor
on Lax (Lop

Σ
,Poset).

The lax approach fixes the problem, but presents also some drawbacks. Unlike the

categories Set and SetL
op
Σ , Lax (Lop

Σ
,Poset) is neither complete nor cocomplete, meaning

that a cofree comonad on P̃cP̃f cannot be retrieved through the standard Constructions

3.1 and 3.2 that were used in the ground case. Moreover, the category of P̃cP̃f -coalgebrae
becomes problematic, because coalgebra maps are subject to a commutativity property
stricter than the one of lax natural transformations. These two issues force the formalization
of non-ground logic program to use quite different (and more sophisticated) categorical tools
than the ones employed for the ground case. Finally, as stressed in the Introduction, the
laxness of p makes the resulting semantics not compositional.
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4. Saturated Semantics

Motivated by the observations of the previous section, we propose a saturated approach
to the semantics of logic programs. For this purpose, we consider an adjunction between
presheaf categories as depicted on the left.

SetL
op
Σ

U

''

⊥ Set|L
op
Σ

|

K

dd

|Lop
Σ
| �
� ι //

F

��

L
op
Σ

K(F)||③③
③③
③③
③③

Set

The left adjoint U is the forgetful functor, given by precomposition with the inclusion

functor ι : |Lop
Σ
| →֒ L

op
Σ
. As shown in [36, Th.X.1], U has a right adjoint K : Set|L

op
Σ

| →

SetL
op
Σ sending F : |Lop

Σ
| → Set to its right Kan extension along ι. This is a presheaf

K(F) : Lop
Σ
→ Set mapping an object n of Lop

Σ
to

K(F)(n) :=
∏

θ∈Lop
Σ

[n,m]

F(m)

where m is any object of Lop
Σ
. Intuitively, K(F)(n) is a set of tuples indexed by arrows with

source n and such that, at index θ : n → m, there are elements of F(m). We use ẋ ẏ, . . .
to denote such tuples and we write ẋ(θ) to denote the element at index θ of the tuple ẋ.
Alternatively, when it is important to show how the elements depend from the indexes, we
use 〈x〉θ:n→m (or simply 〈x〉θ) to denote the tuple having at index θ the element x. With
this notation, we can express the behavior of K(F) : Lop

Σ
→ Set on an arrow θ : n→ m as

K(F)(θ) : ẋ 7→ 〈ẋ(σ ◦ θ)〉σ:m→m′ . (4.1)

The tuple 〈ẋ(σ ◦θ)〉σ ∈ K(F)(m) can be intuitively read as follows: for each σ ∈ L
op
Σ
[m,m′],

the element indexed by σ is the one indexed by σ ◦ θ ∈ L
op
Σ
[n,m′] in the input tuple ẋ.

All this concerns the behavior of K on the objects of Set|L
op
Σ
|. For an arrow f : F → G

in Set|L
op
Σ
|, the natural transformation K(f) is defined as an indexwise application of f on

tuples from K(F). For all n ∈ L
op
Σ
, ẋ ∈ K(F)(n),

K(f)(n) : ẋ 7→ 〈f(m)(ẋ(θ))〉θ:n→m.

For any presheaf F : Lop
Σ
→ Set, the unit η of the adjunction is instantiated to a morphism

ηF : F → KU(F) given as follows: for all n ∈ L
op
Σ
, X ∈ F(n),

ηF(n) : X 7→ 〈F(θ)(X)〉θ:n→m. (4.2)

When taking F to be At , ηAt : At → KU(At) maps an atom to its saturation: for each
A ∈ At(n), the tuple ηAt(n)(A) consists of all substitution instances At(θ)(A) = Aθ of A,
each indexed by the corresponding θ ∈ L

op
Σ
[n,m].

As shown in Example 3.6, given a program P, the family of functions p defined by (3.1)

fails to be a morphism in SetL
op
Σ . However, it forms a morphism in Set|L

op
Σ
|

p : UAt→ P̂cP̂f (UAt)

where P̂c and P̂f denote the extensions of Pc and Pf to Set|L
op
Σ

|, given as in Definition

2.1. The naturality requirement is trivially satisfied in Set|L
op
Σ

|, since |Lop
Σ
| is discrete. The
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adjunction induces a morphism p♯ : At→ KP̂cP̂fU(At) in SetL
op
Σ , defined as

At
ηAt−−→ KU(At)

K(p)
−−−→ KP̂cP̂fU(At). (4.3)

In the sequel, we write S for KP̂cP̂fU. The idea is to let S play the same role as PfPf in

the ground case, with the coalgebra p♯ : At → S(At) encoding the program P. An atom
A ∈ At(n) is mapped to 〈p(m)(Aσ)〉σ:n→m, that is:

p♯(n) : A 7→ 〈{{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

Aσ = Hτ and B1τ, . . . , Bkτ ∈ At(m)}〉σ:n→m. (4.4)

Intuitively, p♯(n) retrieves all unifiers 〈σ, τ〉 of A and heads of P: first, Aσ ∈ At(m) arises as
a component of the saturation of A, according to ηAt(n); then, the substitution τ is given
by term-matching on Aσ, according to K(p)(m).

By naturality of p♯, we achieve the property of “commuting with substitutions” that
was precluded by the term-matching approach, as shown by the following rephrasing of
Example 3.6.

Example 4.1. Consider the same square of Example 3.6, with p♯ in place of p and S in

place of P̆cP̆f . The atom List(x1) ∈ At(1) together with the substitution θ = 〈nil〉 : 1→ 0

does not constitute a counterexample to commutativity anymore. Indeed p♯(1) maps
List(x1) to the tuple 〈p(n)(List(x1)σ)〉σ : 1→n, which is then mapped by S(At)(θ) to
〈p(n)(List(x1)σ

′ ◦ θ)〉σ′ : 0→n according to (4.1). Observe that the latter is just the tuple
〈p(n)(List(nil)σ′)〉σ′ : 0→n obtained by applying first At(θ) and then p♯(0) to List(x1).

Another benefit of saturated semantics is that p♯ : At → S(At) lives in a (co)complete
category which behaves (pointwise) as Set. This allows us to follow the same steps as in
the ground case, constructing a coalgebra for the cofree comonad C(S) as a straightforward
generalization of Constructions 3.1 and 3.2. For this purpose, we first need to verify the
following technical lemma.

Proposition 4.2. The functor S is accessible and the terminal sequence for At × S(·) con-
verges to a final At × S(·)-coalgebra.

Proof. By [52, Th.7], in order to show convergence of the terminal sequence it suffices to
prove that S is an accessible mono-preserving functor. Since these properties are preserved
by composition, we show them separately for each component of S:

• Being adjoint functors between accessible categories, K and U are accessible themselves
[3, Prop.2.23]. Moreover, they are both right adjoints: in particular, U is right adjoint
to the left Kan extension functor along ι : |C| →֒ C. It follows that both preserve limits,
whence they preserve monos.

• Concerning functors P̂c : Set
|Lop

Σ
| → Set|L

op
Σ

| and P̂f : Set
|Lop

Σ
| → Set|L

op
Σ

|, it is well-known
that Pc : Set→ Set and Pf : Set→ Set are both mono-preserving accessible functors on

Set. It follows that P̂c and P̂f also have these properties, because (co)limits in presheaf
categories are computed objectwise and monos are exactly the objectwise injective mor-
phisms (as shown for instance in [37, Ch.6]).
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Construction 4.3. The terminal sequence for the functor At × S(·) : SetL
op
Σ → SetL

op
Σ

consists of a sequence of objects Xα and arrows δα : Xα+1 → Xα, which are defined just as
in Construction 3.1, with S replacing PfPf . By Proposition 4.2, this sequence converges to
a limit Xγ such that Xγ

∼= Xγ+1 and Xγ is the carrier of the cofree S-coalgebra on At .

Since S is accessible (Proposition 4.2), the cofree comonad C(S) exists and maps At to
Xγ given as in Construction 4.3. Below we provide a C(S)-coalgebra structure [[·]]p♯ : At →
C(S)(At) to At .

Construction 4.4. The terminal sequence for At×S(·) induces a cone {p♯α : At → Xα}α<γ
as in Construction 3.2 with p♯ and S replacing p and PfPf . This yields a natural transfor-
mation [[·]]p♯ : At → Xγ , where Xγ = C(S)(At).

As in the ground case, the coalgebra [[·]]p♯ is constructed as an iterative application of

p♯: we call saturated ∧∨-tree the associated tree structure.

Definition 4.5. Given a logic program P, a natural number n and an atom A ∈ At(n),
the saturated ∧∨-tree for A in P is the possibly infinite tree T satisfying properties 1-3 of
Definition 2.6 and properties 4 and 5 replaced by the following:

(4) Each ∨-node is labeled with a substitution σ and its children are ∧-nodes.
(5) For every ∧-node s in T , let A′ ∈ At(n′) be its label. For every clause H ← B1, . . . , Bk

of P and every unifier 〈σ, τ〉 of A′ and H, with σ : n′ → m′ and B1τ, . . . , Bkτ ∈ At(m
′), s

has exactly one child t labeled with σ, and viceversa. For each atom B in {B1, . . . , Bk}τ ,
t has exactly one child labeled with B, and viceversa.

We have now seen three kinds of tree, exhibiting different substitution mechanisms. In
saturated ∧∨-trees one considers all the unifiers, whereas in ∧∨-trees and coinductive trees
one restricts to most general unifiers and term-matchers respectively. Moreover, in a coin-
ductive tree each ∧-node is labeled with an atom in At(n) for a fixed n, while in a saturated
∧∨-tree n can dynamically change.

Example 4.6. Part of the infinite saturated ∧∨-tree of List(x1) ∈ At(1) in NatList is
depicted below. Note that not all labels of ∧-nodes belong to At(1), as it would be the case
for a coinductive tree: such information is inherited from the label of the parent ∨-node,
which is now a substitution. For instance, both Nat(x1) and List(x2) belong to At(2), since
their parent is labeled with 〈cons(x1, x2)〉 : 1 → 2 (using the convention that the target of
a substitution is the largest index appearing among its variables).

List(x1)

�� ��

�� ��〈nil〉
�� ��

�� ��〈cons(x1, x2)〉

❧❧❧❧

�� ��

�� ��〈cons(x1, cons(x1, x2))〉
❳❳❳❳❳

❳
. . .

Nat(x1)

♦♦♦
List(x2)

❘❘❘
❘❘❘

Nat(x1)

❥❥❥❥
❥❥❥❥

List(cons(x1, x2))

�� ��

�� ��〈zero, x2〉 . . .
�� ��

�� ��〈x1, nil〉 . . . . . .
�� ��

�� ��〈zero, x2〉 . . .

Next we verify that the notion of saturated ∧∨-tree is indeed the one given by saturated
semantics. In the following proposition and in the rest of the paper, with an abuse of
notation we use [[A]]p♯ to denote the application of [[·]]p♯(n) to A ∈ At(n) without mentioning

the object n ∈ L
op
Σ
.
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Proposition 4.7 (Adequacy). For all n and A ∈ At(n), the saturated ∧∨-tree of A in a
program P is [[A]]p♯ .

Proof. Fix n ∈ L
op
Σ
. Just as Construction 3.1 allows to describe the cofree PfPf -coalgebra

C(PfPf )(At) on At as the space of trees with two sorts of nodes occurring at alternating
depth and one sort labelled by At , observing Construction 4.3 we can provide a similar
description for the elements of C(S)(At)(n). Those are also trees with two sorts of nodes
occurring at alternating depth. One sort (the one of ∧-nodes), is labeled with elements of
At(m) for some m ∈ L

op
Σ
. The root itself is an ∧-node labeled with some atom in At(n).

The ∨-nodes children of an ∧-node B ∈ At(m) are not given by a plain set, as in the ground
case, but instead by a tuple ẋ ∈ S(At)(m). We can represent ẋ by drawing a child ∨-node t

labeled with the substitution θ : m→ m′ for each element St of the set ẋ(θ) ∈ P̂cP̂fAt(m).

The ∧-node children of t are labeled with the elements of St ∈ P̂fAt(m
′).

The saturated ∧∨-tree for an atom A ∈ At(n), as in Definition 4.5, is a tree of the
above kind and thus an element of C(S)(At)(n). The function A 7→ TA mapping A in
its saturated ∧∨-tree TA extends to an At × S(·)-coalgebra morphism from At — with
coalgebraic structure given by 〈id , p♯〉 — to C(S)(At). By construction [[·]]p♯ is also an

At × S(·)-coalgebra morphism. Since C(S)(At) is the final At × S(·)-coalgebra, these two
morphisms must coincide, meaning that [[·]]p♯ maps A into its saturated ∧∨-tree TA.

For an arrow θ ∈ L
op
Σ
[n,m], we write θ for C(S)(At)(θ) : C(S)(At)(n) → C(S)(At)(m).

With this notation, we can state the compositionality result motivating our approach. Its
proof is an immediate consequence of the naturality of [[·]]p♯ .

Theorem 4.8 (Compositionality). For all atoms A ∈ At(n) and substitutions θ ∈ L
op
Σ
[n,m],

[[Aθ]]p♯ = [[A]]p♯θ.

We conclude this section with a concrete description of the behavior of the operator θ,
for a given substitution θ ∈ L

op
Σ
[n,m]. Let r be the root of a tree T ∈ C(S)(At)(n) and r′

the root of Tθ. Then

(1) the node r has label A iff r′ has label Aθ;
(2) the node r has a child t with label σ ◦ θ and children t1, . . . , tn iff r′ has a child t′ with

label σ and children t1 . . . tn.

Note that the children t1, . . . , tn are exactly the same in both trees: θ only modifies the root
and the ∨-nodes at depth 1 of T , while it leaves untouched all the others. This peculiar
behavior can be better understood by observing that the definition of K(F)(θ), as in (4.1),
is independent of the presheaf F. As a result, θ = Xγ(θ) is independent of all the Xαs built
in Construction 4.3.
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Example 4.9. Recall from Example 4.6 the saturated ∧∨-tree [[List(x1)]]p♯ . For θ =

〈cons(x1, x2)〉, the tree [[List(x1)]]p♯θ is depicted below.

List(cons(x1, x2))

�� ��
�� ��id2

♦♦♦
♦♦

�� ��

�� ��〈x1, cons(x1, x2)〉

❲❲❲❲
❲

. . .

Nat(x1)

♦♦♦
List(x2)

❚❚❚❚
❚❚❚❚

Nat(x1)

♠♠♠
♠♠♠

List(cons(x1, x2))

�� ��

�� ��〈zero, x2〉 . . .
�� ��

�� ��〈x1, nil〉 . . . . . .
�� ��

�� ��〈zero, x2〉 . . .

5. Desaturation

One of the main features of coinductive trees is to represent (sound) and-or parallel deriva-
tions of goals. This leads the authors of [31] to a resolution algorithm exploiting the two
forms of parallelism. Motivated by these developments, we include coinductive trees in our
framework, showing how they can be obtained as a “desaturation” of saturated ∧∨-trees.

For this purpose, the key ingredient is given by the counit ǫ of the adjunction U ⊣ K.
Given a presheaf F : |Lop

Σ
| → Set, the morphism ǫF : UK(F) → F is defined as follows: for

all n ∈ L
op
Σ

and ẋ ∈ UK(F)(n),

ǫF(n) : ẋ 7→ ẋ(idn) (5.1)

where ẋ(idn) is the element of the input tuple ẋ which is indexed by the identity substitution
idn ∈ L

op
Σ
[n, n]. In the logic programming perspective, the intuition is that, while the unit of

the adjunction provides the saturation of an atom, the counit reverses the process. It takes
the saturation of an atom and gives back the substitution instance given by the identity,
that is, the atom itself.

We now want to define a “desaturation” map d from saturated ∧∨-trees to coinduc-
tive trees, acting as a pointwise application of ǫUAt . For this purpose, first we state the

construction of the cofree comonad on P̂cP̂f for later reference.

Construction 5.1. The terminal sequence for UAt × P̂cP̂f (·) : Set
|Lop

Σ
| → Set|L

op
Σ
| consists

of sequences of objects Yα and arrows ξα : Yα+1 → Yα, defined by induction on α as follows.

Yα :=

{
UAt α = 0

UAt × P̂cP̂f (Yβ) α = β + 1
ξα :=

{
π1 α = 0

idUAt × P̂cP̂f (ξβ) α = β + 1

For α a limit ordinal, Yα and ξα are defined as expected. As stated in the proof of Proposition

4.2, P̂cP̂f is a mono-preserving accessible functors. Then by [52, Th.7] we know that the
sequence given above converges to a limit Yχ such that Yχ ∼= Yχ+1 and Yχ is the value

of C(P̂cP̂f ) : Set
|Lop

Σ
| → Set|L

op
Σ
| on UAt , where C(P̂cP̂f ) is the cofree comonad on P̂cP̂f

induced by the terminal sequence given above, analogously to Construction 3.1.

The next construction defines the desidered morphism d : U
(
C(S)(At)

)
→ C(P̂cP̂f )(UAt).

Construction 5.2. Consider the image of the terminal sequence converging to C(S)(At) =

Xγ (Construction 4.3) under the forgetful functor U : SetL
op
Σ → Set|L

op
Σ

|. We define a
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sequence of natural transformations {dα : U(Xα)→ Yα}α<γ as follows2:

dα :=

{
idUAt α = 0

idUAt ×
(
P̂cP̂f (dβ) ◦ ǫP̂cP̂fU(Xβ)

)
α = β + 1.

U(Xβ)

dβ
.. Yβ

U(Xβ+1)

dβ+1

..

U(δβ)

OO

idUAt×ǫP̂cP̂fU(Xβ)

❚❚❚❚
❚

))❚❚❚

Yβ+1

ξβ

OO

UAt × P̂cP̂fU(Xβ)

idUAt×P̂cP̂f (dβ)❦❦❦

55❦❦❦❦❦❦❦

For α<γ a limit ordinal, an arrow dα : U(Xα)→ Yα is provided by the limiting property
of Yα. In order to show that the limit case is well defined, observe that, for every β < α,
the above square commutes, that is, ξβ ◦ dβ+1 = dβ ◦ U(δβ). This can be easily checked by
ordinal induction, using the fact that ǫ

P̂cP̂fU(Xβ)
is a natural transformation for each β <α.

We now turn to defining a natural transformation d : U
(
C(S)(At)

)
→ C(P̂cP̂f )(UAt). If

χ ≤ γ, then this is provided by dχ : U(Xχ) → Yχ together with the limiting property of
U(Xγ) on U(Xχ). In case γ < χ, observe that, since Xγ is isomorphic to Xγ+1, then Xγ is
isomorphic to Xζ for all ζ > γ, and in particular Xγ

∼= Xχ. Then we can suitably extend

the sequence to have a natural transformation dχ : U(Xχ)→ Yχ. The morphism d is given
as the composition of dχ with the isomorphism between U(Xγ) and U(Xχ).

The next theorem states that d is a translation from saturated to coinductive trees:
given an atom A ∈ At(n), it maps [[A]]p♯ to the n-coinductive tree of A. The key intuition
is that n-coinductive trees can be seen as saturated ∧∨-trees where the labeling of ∨-nodes
has been restricted to the identity substitution idn, represented as • (see Definition 3.5).
The operation of pruning all ∨-nodes (and their descendants) in [[A]]p♯ which are not labeled
with idn is precisely what is provided by Construction 5.2, in virtue of the definition of the
counit ǫ given in (5.1).

Theorem 5.3 (Desaturation). Let [[·]]p♯ : At → C(S)(At) be defined for a logic program P

according to Construction 4.4 and d : U
(
C(S)(At)

)
→ C(P̂cP̂f )(UAt) be defined according to

Construction 5.2. Then for all n ∈ |Lop
Σ
| and A ∈ UAt(n), the n-coinductive tree of A in P

is
(
d ◦ U([[·]]p♯)

)
(n)(A).

Theorem 5.3 provides an alternative formalization for the coinductive tree semantics
[32], given by composition of the saturated semantics with desaturation. In fact it represents
a different approach to the non-compositionality problem: instead of relaxing naturality to
lax naturality, we simply forget about all the arrows of the index category L

op
Σ
, shifting

the framework from SetL
op
Σ to Set|L

op
Σ

|. The substitutions on trees (that are essential, for

2Concerning the successor case, observe that idUAt ×
(
P̂cP̂f (dβ) ◦ ǫ

P̂cP̂fU(Xβ )

)
is in fact an arrow from

UAt × UKP̂cP̂fU(Xβ) to Yβ+1. However, the former is isomorphic to U(Xβ+1) = U
(
At × KP̂cP̂fU(Xβ)

)
,

because U is a right adjoint (as observed in Proposition 4.2) and thence it commutes with products.
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instance, for the resolution algorithm given in [31]) exist at the saturated level, i.e. in
C(S)(At), and they are given precisely as the operator θ described at the end of Section 4.

Example 5.4. The coinductive tree for List(cons(x1, x2)) in
NatList is depicted on the right. It is constructed by desatu-
rating the tree [[List(cons(x1, x2))]]p♯ in Example 4.9, i.e., by

pruning all the ∨-nodes (and their descendants) that are not
labeled with id2.

List(cons(x1, x2))

�� ��
�� ��id2

❯❯❯❯
❯❯❯

Nat(x1) List(x2)

6. Soundness and Completeness

The notion of coinductive tree leads to a semantics that is sound and complete with respect
to SLD-resolution [31, Th.4.8]. To this aim, a key role is played by derivation subtrees of
coinductive trees: they are defined exactly as derivation subtrees of ∧∨-trees (Definition 2.7)
and represent SLD-derivations where the computation only advances by term-matching.

Similarly, we now want to define a notion of subtree for saturated semantics. This
requires care: saturated ∧∨-trees are associated with unification, which is more liberal
than term-matching. In particular, like ∧∨-trees, they may represent unsound derivation
strategies (cf. Example 3.4). However, in saturated ∧∨-trees all unifiers, not just the most
general ones, are taken into account. This gives enough flexibility to shape a sound notion of
subtree, based on an implicit synchronization of the substitutions used in different branches.

Definition 6.1. Let T be the saturated ∧∨-tree for an atom A in a program P. A subtree
T ′ of T is called a synched derivation subtree if it satisfies properties 1-3 of Definition 2.7
and the following condition:

(4) all ∨-nodes of T ′ at the same depth are labeled with the same substitution.

A synched refutation subtree is a finite synched derivation subtree with only ∨-nodes as
leaves. Its answer is the substitution θ2k+1 ◦ . . . θ3 ◦θ1, where θi is the (unique) substitution
labeling the ∨-nodes of depth i and 2k + 1 is its maximal depth.

The prefix “synched” emphasizes the restriction to and-parallelism encoded in Defi-
nition 6.1. Intuitively, we force all subgoals at the same depth to proceed with the same
substitution. For instance, this rules out the unsound derivation of Example 3.4. For a com-
parison with Definition 2.7, note that derivation subtrees can be seen as special instances
of synched derivation subtrees where all the substitutions are forced to be identities.

We are now in position to compare the different semantics for logic programming.

Theorem 6.2 (Soundness and Completeness). Let P be a logic program and A ∈ At(n) an
atom. The following are equivalent.

(1) The saturated ∧∨-tree for A in P has a synched refutation subtree with answer θ.
(2) For some m ∈ L

op
Σ
, the m-coinductive tree for Aθ in P has a refutation subtree.

(3) There is an SLD-refutation for {A} in P with correct answer θ.

In statement (3), note that θ is the correct (and not the computed) answer: indeed,
the unifiers associated with each derivation step in the synched refutation subtree are not
necessarily the most general ones. Towards a proof of Theorem 6.2, a key role is played by
the following proposition.
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List(c(x1, (c(x1, x2))))

�� ��

�� ��〈x1, x2〉

❤❤❤❤
❤❤❤❤

Nat(x1) List(c(x1, x2))

�� ��

�� ��〈s(x1), n〉
�� ��

�� ��〈s(x1), n〉

❯❯❯❯
❯❯

Nat(x1) Nat(s(x1)) List(n)

�� ��

�� ��〈z〉
�� ��

�� ��〈z〉
�� ��

�� ��〈z〉

Nat(z)

�� ��
�� ��id0

List(c(s(z), (c(s(z), n))))

�� ��
�� ��id0

❤❤❤❤
❤❤❤❤

❤❤

Nat(s(z)) List(c(s(z), n))

�� ��
�� ��id0

�� ��
�� ��id0

❱❱❱❱
❱❱❱❱

❱❱

Nat(z) Nat(s(z)) List(n)

�� ��
�� ��id0

�� ��
�� ��id0

�� ��
�� ��id0

Nat(z)

�� ��
�� ��id0

Figure 1: Successful synched derivation subtrees for List(cons(x1, (cons(x1, x2)))) (left)
and List(cons(succ(zero), (cons(succ(zero), nil)))) (right) in NatList. The sym-
bols cons, nil, succ and zero are abbreviated to c, n, s and z respectively.

Proposition 6.3. Let P be a logic program and A ∈ At(n) an atom. If [[A]]p♯ has a synched

refutation subtree with answer θ : n → m, then [[A]]p♯θ has a synched refutation subtree
whose ∨-nodes are all labeled with idm.

Proof. See Appendix A.

Figure 1 provides an example of the construction needed for Proposition 6.3. Note that
the root of the rightmost tree is labeled with an atom of the form Aθ, where θ and A are
respectively the answer and the label of the root of the leftmost tree. The rightmost tree is
a refutation subtree of the 0-coinductive tree for Aθ and can be obtained from the leftmost
tree via a procedure involving the operator θ discussed at the end of Section 4.

We are now ready to provide a proof of Theorem 6.2 combining Proposition 6.3, the
desaturation procedure of Theorem 5.3 and the compositionality result of Theorem 4.8.

Proof of Theorem 6.2. The statement (2 ⇔ 3) is a rephrasing of [31, Th.4.8], whence we
focus on proving (1⇔ 2), where m is always the target object of θ.

(1⇒ 2). If [[A]]p♯ has a synched refutation subtree with answer θ, then by Proposition

6.3, [[A]]p♯θ has a synched refutation subtree T whose ∨-nodes are all labeled with idm.

Compositionality (Theorem 4.8) guarantees that T is a synched refutation subtree of [[Aθ]]p♯ .
Since all the ∨-nodes of T are labeled with idm, T is preserved by desaturation. This
means that T is a refutation subtree of d(U([[·]]p♯))(m)(Aθ) which, by Theorem 5.3, is the
m-coinductive tree for Aθ in P.

(2⇐ 1). If the m coinductive tree for Aθ has a refutation subtree T then, by Theorem
5.3, this is also the case for d(U([[·]]p♯))(m)(Aθ). This means that T is a synched derivation

subtree of [[Aθ]]p♯ whose ∨-nodes are all labeled by idm. By compositionality, T is also a

subtree of [[A]]p♯θ. Let t be the ∨-node at the first depth of T . By construction of the

operator θ, the root of [[A]]p♯ has a child t′ labeled with θ having the same children as t.

Therefore [[A]]p♯ has a synched refutation subtree with answer θ.
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7. Bialgebraic Semantics of Goals: the Ground Case

In this section we lay the foundations of a (saturated) semantics that applies directly to
goals. As outlined in the introduction, a main motivation for this extension is the study of
yet another form of compositionality, now with respect to the algebraic structure of goals.

First, we approach the question in the simpler case of ground logic programs. Such a
program P, that in Section 3.1 has been represented as a PfPf -coalgebra p : At → PfPf (At),
will now be modeled as a certain bialgebra. The coalgebraic part will be given by the
endofunctor Pf : this corresponds to the outer occurrence of Pf in p : At → PfPf (At) and
encodes non-determinism, i.e., the possibility that an atom matches multiple heads in a
program. The algebraic part, encoding the internal structure of a goal, instead will be
given by a monad T that corresponds to the inner occurrence of Pf in p : At → PfPf (At).
Intuitively, T(At) represents a goal, i.e. a collection of atoms, to be processed in parallel.

To formally define the type of our bialgebrae, we need to provide a distributive law
λ : TPf ⇒ PfT. Our specification for λ stems from the observation that Pf (At) models a
disjunction of atoms, whereas T(At) models a conjunction. Then λ should just distribute
conjunction over disjunction, for instance:

(A1 ∨A2) ∧ (B1 ∨B2) 7→ (A1 ∧B1) ∨ (A1 ∧B2) ∨ (A2 ∧B1) ∨ (A2 ∧B2). (7.1)

Provided this specification for λ, one could naively think of modelling T as Pf itself, so that
the conjunction T(At) is represented as a finite set of atoms. However, this would pose a
problem with the naturality of λ. Consider again the example above, now formalized with
T = Pf , and suppose to check naturality for f : At → At defined as (A1 7→ B1, A2 7→ B2):

TPf (At)

TPf (f)

��

λAt // PfT(At)

PfT(f)

��
TPf (At)

λAt // PfT(At)

(7.2)

The function λAt ◦ TPf (f) maps {{A1, A2}, {B1, B2}} first to {{B1, B2}} and then to
{{B1}, {B2}}. Instead PfT(f)◦λAt maps {{A1, A2}, {B1, B2}} first to {{A1, B1}, {A1, B2},
{A2, B1}, {A2, B2}} and then to {{B1}, {B1, B2}, {B2}}. Therefore our specification (7.1)
for λ, with T modeled as Pf , would not yield a natural transformation.

For this reason, we model instead the elements of T(At) as lists of atoms. Formally, we
let T be the list endofunctor L : Set→ Set mapping a set X into the set of lists of elements
of X and a function f : X → Y into its componentwise application to lists in L(X). Such a
functor forms a monad with unit ηLX : X ⇒ LX given by x 7→ [x] (where [x] is the list with
a single element x) and a multiplication given by flattening: for l1, . . . , ln elements of L(X),
µLX : LLX ⇒ LX maps [l1, . . . , ln] to l1 :: . . . :: ln, where :: denotes list concatenation. In

virtue of its definition, we will make use of the notation :: for the function µLX , whenever
X is clear from the context.

There is a distributive law λ : LPf ⇒ PfL of the monad Pf over the monad L given by
assignments [X1, . . . ,Xn] 7→ {[x1, . . . , xn] | xi ∈ Xi} (cf. [38, Ex. 2.4.8]). One can readily
check that this definition implements the specification given in (7.1):

[{A1, A2}, {B1, B2}] 7→ {[A1, B1], [A1, B2], [A2, B1], [A2, B2]}.
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Also, the counterexample to commutativity of (7.2) given above is neutralized as follows.

[{A1, A2}, {B1, B2}]❴

TPf (f)

��

✤ λAt // {[A1, B1], [A1, B2], [A2, B1], [A2, B2]}❴

PfT(f)

��
[{B1, B2}, {B1, B2}]

✤ λAt // {[B1, B1], [B1, B2], [B2, B1], [B2, B2]}

Remark 7.1. Non-commutativity of diagram (7.2) is essentially due to the idempotence
of the powerset constructor. Thus, in order to achieve naturality, multisets instead of
lists would also work, as both structures are not idempotent. We chose lists in conformity
with implementations of SLD-resolution (for instance PROLOG) where atoms are processed
following their order in the goal.

Convention 7.2. As motivated above, we will develop our framework modeling goals as
lists instead of sets. This requires a mild reformulation of the constructions presented in
Section 3.1, with L taking the role of the inner occurrence of Pf : throughout this and the
next section we suppose that a ground logic program P is encoded as a coalgebra p : At →
PfL(At) (instead of p : At → PfPf (At)) and its semantics as a map [[·]]p : At → C(PfL)(At).
It is immediate to see that this is an harmless variation on the framework for coalgebraic
logic programming developed so far and all our results still hold. Accordingly, ∧∨-trees
are now elements of C(PfL)(At) (instead of C(PfPf )(At) as in Section 3) and therefore
the children of an ∨-node form a list rather than a set. For that reason, while keeping
the standard representation of ∧∨-trees, we shall implicitly assume a left to right ordering
amongst children of ∨-nodes (cf. Example 8.7).

We now have all the formal ingredients to define the extension from coalgebraic to
bialgebraic operational semantics.

Construction 7.3. Let P be a ground logic program and p : At → PfL(At) be the coalgebra
associated with P. We define the Pf -coalgebra pλ : LAt → PfLAt in the way prescribed by
Proposition 2.3 as

LAt
Lp // LPfLAt

λLAt // PfLLAt
Pf ( :: ) // PfLAt .

By Proposition 2.3, (LAt , :: , pλ) forms a λ-bialgebra.

Remark 7.4. Equivalently, the map pλ : LAt → PfLAt may be obtained with the following

universal construction. Let UL ⊣ FL be the canonical adjunction between Set and the
category EM(L) of Eilenberg-Moore algebrae for the monad L. By using the distributive
law λ we can define an L-algebra structure on PfLAt as h := Pf ( :: ) ◦ λLAt : LPfLAt →
PfLAt . Let p̃ : (LAt , :: ) → (PfLAt , h) be the unique extension of p : At → PfLAt to an

algebra morphism in EM(L) along the adjunction UL ⊣ FL. The map pλ : LAt → PfLAt

of Construction 7.3 is simply UL(p̃). By definition it makes the following diagram commute.

At

p

��

ηLAt // LAt

pλzz✉✉
✉✉
✉✉
✉✉
✉

PfLAt

(7.3)
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As investigated in [47], the same pattern that here leads to pλ from a given p has many
relevant instances. Most notably, the standard powerset construction for non-deterministic
automata can be presented in a bialgebraic setting, as a mapping t 7→ t, where t encodes
a non-deterministic automaton on state space X, t a deterministic one on state space
PX and a diagram analogous to (7.3) yields t ◦ ηPX = t. It is worth noticing that the
powerset construction performs a determinization of the automaton t: non-determinism
is internalized, that is, an element of the state space PX models a disjunction of states.
Our construction follows a different intuition: the non-determinism given by clauses with
the same head is preserved and what is internalized is the possible ∧-parallel behavior of a
computation: indeed, an element of LAt models a conjunction of atoms.

Example 7.5. Let pλ : LAt → PfLAt be constructed out of the coalgebra p : At → PfLAt
associated with the logic program of Example 3.3. For a concrete grasp on Construction 7.3,
we compute pλ([p(b, b), p(b, c)]) ∈ PfLAt . First, observe that p : At → PfLAt assigns to
the atom p(b, b) the set {[q(c)], [p(b, a), p(b, c)]} and to p(b, c) the set {[q(a), q(b), q(c)]}. It
is therefore easy to see that Lp maps [p(b, b), p(b, c)] into the list of sets of lists

[{[q(c)], [p(b, a), p(b, c)]}, {[q(a), q(b), q(c)]}].

This is mapped by λLAt into the set of lists of lists

{[[q(c)], [q(a), q(b), q(c)]], [[p(b, a), p(b, c)], [q(a), q(b), q(c)]]}

and finally, via Pf ( :: ) into the set of lists

{[q(c), q(a), q(b), q(c)], [p(b, a), p(b, c), q(a), q(b), q(c)]}

that is the value pλ([p(b, b), p(b, c)]).
The operational reading of such a computation is that [p(b, b), p(b, c)] is a goal given by

the conjunction of atoms p(b, b) and p(b, c). The action of pλ tells us that, in order to refute
[p(b, b), p(b, c)], one has to refute either [q(c), q(a), q(b), q(c)] or [p(b, a), p(b, c), q(a), q(b),q(c)]
(respectively first and second element of pλ([p(b, b), p(b, c)])).

For later use, it is interesting to observe also that pλ([ ]) = {[ ]} for any program p: this

is because [ ]
Lp
7→ [ ]

λLAt7→ {[ ]}
Pf ( :: )
7→ {[ ]}.

Remark 7.6. For yet another view on Construction 7.3, we remark that the map pλ can
be presented in terms of the following SOS-rules, where l → l′ means l′ ∈ pλ(l).

l1
l ∈ p(A)

[A]→ l
l2

l1 → l′1 l2 → l′2

l1 :: l2 → l′1 :: l
′
2

l3
[ ]→ [ ]

Rule (l1) corresponds to commutativity of (7.3). Rule (l2) states that pλ preserves the
algebraic structure of LAt given by list concatenation :: . Operationally, this means that
one step of (parallel) resolution for l1 :: l2 requires both a step for l1 and a step for l2. Finally,
rule (l3) encodes the trivial behavior of pλ on the empty list, as observed in Example 7.5.

We now provide a cofree construction for the semantics [[·]]pλ arising from pλ.

Construction 7.7. Let C(Pf )(LAt) denote the cofree Pf -coalgebra on LAt , obtained like in

Construction 3.1. It enjoys a final LAt×Pf (·)-coalgebra structure c : C(Pf )(LAt)
∼=
−→ LAt×

Pf (C(Pf )(LAt)). We now want to lift its universal property to the setting of bialgebrae,



26 F. BONCHI AND F. ZANASI

showing that C(Pf )(LAt) forms a final λ′-bialgebra, where λ′ : L(LAt × Pf (·)) ⇒ LAt ×
PfL(·) is a distributive law of the monad L over the functor LAt × Pf (·) defined by

L(LAt × Pf (X))
〈Lπ1,Lπ2〉 // LLAt × LPf (X)

::×λX // LAt × PfL(X) .

For this purpose, we apply the construction of Proposition 2.4. First, using finality of

c : C(Pf )(LAt)
∼=
−→ LAt × Pf (C(Pf )(LAt)) we define an L-algebra :: : L(C(Pf )(LAt)) →

C(Pf )(LAt) as follows:

L(C(Pf )(LAt))

Lc
��

:: //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ C(Pf )(LAt)

c

��

L(LAt × Pf (C(Pf )(LAt)))

λ′
C(Pf )(LAt)

��
LAt × Pf (L(C(Pf )(LAt)))

idLAt×Pf ( :: ) // LAt × Pf (C(Pf )(LAt))

This algebraic structure yields the final λ′-bialgebra
(
C(Pf )(LAt), :: , c) as guaranteed by

Proposition 2.4. Now we turn to the definition of the semantics [[·]]pλ : LAt → C(Pf )(LAt).

First, observe that the λ-bialgebra (LAt , :: , pλ) canonically extends to a λ′-bialgebra by
letting 〈idLAt , pλ〉 be the LAt ×Pf (·)-coalgebra structure on LAt . We can then use finality

of
(
C(Pf )(LAt), :: , c) to obtain the unique λ′-bialgebra morphism [[·]]pλ : LAt → C(Pf )(LAt)

making the following diagram commute:

LLAt

::
��

L[[·]]pλ // L(C(Pf )(LAt))

::
��

LAt

〈idLAt ,pλ〉
��

[[·]]pλ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ C(Pf )(LAt)

c
��

LAt × Pf (LAt)
idLAt×Pf ([[·]]pλ

)
// LAt × Pf (C(Pf )(LAt)).

(7.4)

One can check that the above construction of the map [[·]]pλ can be equivalently obtained

by building a cone with vertex LAt on the terminal sequence generating C(Pf )(LAt), anal-
ogously to Construction 3.2.

Since [[·]]pλ is given as a morphism of bialgebrae instead of plain coalgebrae, it will
preserve the algebraic structure of LAt . This allow us to state the motivating composition-
ality property of bialgebraic semantics where, intuitively, list concatenation :: models the
conjunction ∧ described in the introduction.

Theorem 7.8 (∧-Compositionality). Given lists l1, . . . , lk of atoms in At:

[[l1 :: . . . :: lk]]pλ = [[l1]]pλ :: . . . :: [[lk]]pλ.

Where l1 :: . . . :: lk is notation for :: ([l1, . . . , lk]) = µLAt([l1, . . . , lk]) and [[l1]]pλ :: . . . :: [[lk]]pλ
for :: ([[[l1]]pλ, . . . , [[lk]]pλ]).
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Proof. The statement is given by the following derivation:

[[l1 :: . . . :: lk]]pλ = [[·]]pλ ◦ :: ([l1, . . . , lk])

= :: ◦ L[[·]]pλ([l1, . . . , lk])

= :: ([[[l1]]pλ, . . . , [[lk]]pλ])

= [[l1]]pλ :: . . . :: [[lk]]pλ .

The first and the last equality are just given by unfolding notation. The second equality
amounts to commutativity of the top square in diagram (7.4) and the third one is given by
definition of L on the function [[·]]pλ.

Example 7.9. Recall from Example 7.5, that pλ([p(b, b)]) = {[q(c)], [p(b, a), p(b, c)]} and
pλ([p(b, c)]) = {[q(a), q(b), q(c)]}. Below we represent the values [[p(b, b)]]pλ (on the left) and

[[p(b, c)]]pλ (on the right) as trees.

[p(b, b)]

⑧⑧
⑧⑧
⑧⑧

❏❏
❏❏

❏❏
❏

[q(c)] [p(b, a), p(b, c)]

[ ]

[ ]

. . .

[p(b, c)]

[q(a), q(b), q(c)]

The idea is that edges represent the transitions of the rule system of Remark 7.6. The
node [q(c)] has a child labeled with the empty list, since p(q(c)) = {[ ]} (cf. Example 3.3)
and thus, by virtue of rule (l1), pλ([q(c)]) = {[ ]}. Instead, [q(a), q(b), q(c)] has no children
because pλ([q(a), q(b), q(c)]) is empty. That follows by the fact that pλ(q(a)) — and, in
fact, also pλ(q(b)) — is empty and thus we cannot trigger rule (l2) to let [q(a), q(b), q(c)]
make a transition. Intuitively, this means that [q(a), q(b), q(c)] cannot be refuted because
not all of its atoms have a refutation. A similar consideration holds for [p(b, a), p(b, c)].

In Example 7.5, we have shown that

pλ([p(b, b), p(b, c)]) = {[q(c), q(a), q(b), q(c)], [p(b, a), p(b, c), q(a), q(b), q(c)]}

and, by similar arguments to those above, we can show that both pλ([q(c), q(a), q(b), q(c)])
and pλ([p(b, a), p(b, c), q(a), q(b), q(c)]) are empty. Therefore, we can depict [[p(b, b), p(b, c)]]pλ
as the tree below.

[p(b, b), p(b, c)]

❧❧❧
❧❧❧

❧❧
❯❯❯❯

❯❯❯❯
❯❯

[q(c), q(a), q(b), q(c)] [p(b, a), p(b, c), q(a), q(b), q(c)]

By virtue of Theorem 7.8, such a tree can be computed also by concatenating via :: the
tree [[[p(b, b)]]]pλ with the tree [[[p(b, c)]]]pλ depicted above. The operation :: on trees T1 and
T2 can also be described as follows.

(1) If the root of T1 has label l1 and the root of T2 has label l2, then the root of T1 ::T2 has
label l1 :: l2;

(2) If T1 has a child T ′
1 and T2 has a child T ′

2, then T1 ::T2 has a child T ′
1 ::T

′
2.

Observe that such trees are rather different from the ∧∨-trees introduced in Definition 2.6
(cf. also Example 3.3): all nodes are of the same kind (there is no more distinction between
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∧-nodes and ∨-nodes) and are labeled by lists of atoms (rather than just atoms). In the
next section, we will formally introduce such trees under the name of (parallel) ∨-trees and
show that they provide a sound and complete semantics for ground logic programs.

8. Soundness and Completeness of Bialgebraic Ground Semantics

In this section we investigate the relation between the semantics [[·]]p and [[·]]pλ, stating a
relative soundness and completeness result.

In Section 3.1 we observed that [[·]]p — of type At → C(PfL)(At), following Conven-

tion 7.2 — maps an atom A into its ∧∨-tree (Definition 2.6). As a first step of our analysis,
we provide an analogous operational understanding for the value [[l]]pλ ∈ C(Pf )(LAt) as-
sociated with a goal l ∈ LAt . The resulting notion of ∨-tree will correspond to the one
intuitively given in Example 7.9.

Definition 8.1. Given a ground logic program P and a list l ∈ LAt of atoms, the (parallel)
∨-tree for l in P is the possibly infinite tree T satisfying the following properties:

(1) Each node in T is labeled with a list of atoms and the root is labeled with l.
(2) Let s be a node in T with label l′ = [A1, . . . , Ak]. For every list [C1, . . . , Ck] of clauses

of P such that Hi = Ai for each Ci = H i ← Bi
1, . . . , B

i
j, s has exactly one child t, and

viceversa. The node t is labeled with the list l1 :: . . . :: lk, where li = [Bi
1, . . . , B

i
j ] is the

body of clause Ci.

Differently from ∧∨-trees, where two kinds of nodes yield a distinction between or- and and-
parallelism, ∨-trees have only one kind of nodes, intuitively corresponding to or-parallelism.
The and-parallelism, which in ∧∨-trees is given by the branching of and-nodes labeled with
an atom, is encoded in ∨-trees by the labeling of nodes with lists of atoms. The children of
a node labeled with l yield the result of simultaneously matching each atom in l with heads
in the program (cf. rule (l2) in Remark 7.6).3

Analogously to Proposition 4.7, it is immediate to check the following observation.

Proposition 8.2 (Adequacy). Given a list of atoms l ∈ LAt and a program P, [[l]]pλ ∈
C(Pf )(LAt) is the ∨-tree for l in P.

We are now in position to provide a translation between the two notions of tree associ-
ated respectively with the semantics [[·]]p and [[·]]pλ.

Construction 8.3. There is a canonical representation of ∧∨-trees as ∨-trees given as
follows. First recall that the domain C(PfL)(At) of ∧∨-trees is the final At × PfL(·)-

coalgebra, say with structure given by u : C(PfL)(At)
∼=
−→ At ×PfL

(
C(PfL)(At)

)
(cf. Con-

struction 3.1). Let d := (ηLAt × id) ◦ u be the extension of u to an LAt ×PfL(·)-coalgebra.

3This synchronous form of computation is what makes ∨-trees essentially different from SLD-trees [35],
in which also nodes are labeled with lists, but the parent-child relation describes the unification of a single
atom in the parent node.
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We now define an LAt × Pf (·)-coalgebra structure dλ′ on L(C(PfL)(At)) in the way pre-
scribed by Proposition 2.3:

L(C(PfL)(At))

Ld

��

dλ′ // LAt × PfL
(
C(PfL)(At)

)

:=

L

(
LAt × PfL

(
C(PfL)(At)

)) λ′
C(PfL)(At)

// LAt × PfLL
(
C(PfL)(At)

)

idLAt×Pf ( :: )

OO

Then we use finality of C(Pf )(LAt) (the domain of ∨-trees) to obtain our representation

map r := [[·]]dλ′ ◦ η
L
C(PfL)(At) as in the following commutative diagram.

C(PfL)(At)

u

��

d

''

ηL
C(PfL)(At)

// L(C(PfL)(At))

dλ′

zz✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

[[·]]d
λ′ //❴❴❴❴❴❴❴❴ C(Pf )(LAt)

c

��

At × PfL
(
C(PfL)(At)

)

ηLAt×id

��
LAt × PfL

(
C(PfL)(At)

) idLAt×Pf ([[·]]d
λ′

)
// LAt × PfC(Pf )(LAt)

(8.1)

The representation map r is a well-behaved translation between the semantics given by
[[·]]p and the one given by [[·]]pλ, as shown by the following property.

Proposition 8.4. For all A ∈ At, r([[A]]p) = [[[A]]]pλ.

Proof. By construction [[·]]p : At → C(PfL)(At) is a PfL-coalgebra morphism and thus

clearly also an LAt×PfL(·)-coalgebra morphism. By Proposition 2.3 the canonical mapping
of an LAt × PfL(·)-coalgebra to a λ′-bialgebra

At

〈ηLAt ,p〉

��

LLAt
::��

7→ LAt

〈ηLAt ,p〉λ′��
LAt × PfL(At) LAt × PfLAt

C(PfL)(At)

d

��

LLC(PfL)(At)

::
��

7→ LC(PfL)(At)

dλ′��
LAt × PfL(C(PfL)(At)) LAt × PfLC(PfL)(At)

is functorial, meaning that L[[·]]p : LAt → L(C(PfL)(At)) is a λ′-bialgebra morphism and

thus in particular a morphism of LAt × Pf (·)-coalgebrae. By construction [[·]]pλ and [[·]]dλ′
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are also LAt × Pf (·)-coalgebra morphisms. Therefore [[·]]dλ′ ◦ L[[·]]p = [[·]]pλ by finality of

C(Pf )(LAt). Precomposing both sides with ηLAt yields the statement of the proposition:

[[·]]pλ ◦ η
L
At = [[·]]dλ′ ◦ L[[·]]p ◦ η

L
At = [[·]]dλ′ ◦ η

L
C(PfL)(At) ◦ [[·]]p = r ◦ [[·]]p.

In order to study soundness and completeness of [[·]]pλ , we give a notion of refutation
for ∨-trees.

Definition 8.5. Let T ∈ C(Pf )(LAt) be an ∨-tree. A derivation subtree of T is a sequence
of nodes s1, s2, . . . such that s1 is the root of T and si+1 is a child of si. A refutation subtree
is a finite derivation subtree s1, . . . , sn where the last node sn is labeled with the empty list.

In fact, derivation subtrees of ∨-trees have no branching: they are just paths starting
from the root. This is coherent with the previously introduced notions of subtree (cf.
Definition 2.7): there the only branching allowed was given by and-parallelism, which in
the case of ∨-tress has been internalized inside the node labels. For refutation subtrees, the
intuition is that they represents paths of computation where all atoms in the initial goal
[A1, . . . , An] have been refuted, whence eventually the current goal becomes the empty list.

Theorem 8.6 (Soundness and Completeness). Let A1, . . . , An be atoms in At. Then
[[[A1, . . . , An]]]pλ has a refutation subtree if and only if [[Ai]]p has a refutation subtree for
each Ai.

Proof. The statement is given by the following derivation:

[[Ai]]p has a refutation subtree for each Ai iff r([[Ai]]p) has a refutation subtree for each Ai

iff [[[Ai]]]pλ has a refutation subtree for each Ai

iff [[[A1]]]pλ :: . . . :: [[[An]]]pλ has a refutation subtree

iff [[[A1, . . . , An]]]pλ has a refutation subtree

The first and the third equivalence are given by checking that the property of having a refu-
tation subtree is preserved and reflected both by the representation map r : C(PfL)(At)→
C(Pf )(LAt) (cf. Construction 8.3) and by the concatenation operation :: on ∨-trees. The
second equivalence is given by Proposition 8.4 and the last one by Theorem 7.8.

Example 8.7. Consider the ground logic program in Example 3.3 and compare the ∧∨-tree
[[p(b, b)]]p with the ∨-tree [[[p(b, b)]]]pλ — that is, r([[p(b, b)]]p) — depicted below on the left
and right, respectively.

p(b, b)

tt
t ❑❑

❑

• •
ss
s ❏❏

❏

q(c) p(b, a) p(b, c)

• •
tt
t ❏❏

❏

q(a) q(b) q(c)

•

✤ r //

[p(b, b)]

⑧⑧
⑧⑧
⑧⑧

❏❏
❏❏

❏❏
❏

[q(c)] [p(b, a), p(b, c)]

[ ]

[ ]

. . .

Following Convention 7.2, children of ∨-nodes form a list which is implicit in the represen-
tation above: for instance, in the tree on the left p(b, a) and p(b, c) are displayed according
to their order in [p(b, a), p(b, c)] ∈ p(p(b, b)).
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This convention is instrumental in illustrating the behaviour of the representation map
r: all the children t1, . . . , tk of an ∨-nodes (labeled with •) of an ∧∨-trees T are grouped in
r(T ) into a single node whose label lists all the atoms labeling t1, . . . , tk. For instance, the
rightmost child of [[p(b, b)]]p becomes in [[[p(b, b)]]]pλ a node labeled with [p(b, a), p(b, c)]. It is

also worth to note that the whole subtree reachable from [[p(b, c)]]p is pruned: since pλ(p(b, a))

is the empty set, then also pλ([p(b, a), p(b, c)]) is empty. Intuitively, p(b, c) should be proved
in conjunction with p(b, a) which has no proof and therefore the (parallel) resolution of
[p(b, a), p(b, c)] can stop immediately.

Instead, the unique refutation subtree of [[p(b, b)]]p (that is p(b, b) − • − q(c) − •) is

preserved in r([[p(b, b)]]p). Indeed, [p(b, b)] − [q(c)] − [ ] is a refutation subtree of [[p(b, b)]]pλ.

9. Bialgebraic Semantics of Goals: the General Case

In the sequel we generalize the bialgebraic semantics for goals from ground to arbitrary logic

programs. Our approach is to extend the saturated semantics [[·]]p♯ in SetL
op
Σ introduced

in Section 4. This will yield compositionality both with respect to the substitutions in
the index category L

op
Σ

(cf. Theorem 4.8) and with respect to the concatenation of goals
(extending the result of Theorem 7.8).

Convention 9.1. As we did for ground programs (cf. Convention 7.2), also for arbitrary
logic programs we intend to model goals as lists of atoms. This requires a mild reformulation
of our framework for saturated semantics. For this purpose, we introduce the extension

L̂ : Set|L
op
Σ
| → Set|L

op
Σ
| of L : Set → Set as in Definition 2.1. Since L is a monad, then

L̂ is also a monad by Proposition 2.2. A logic program P is now encoded in Set|L
op
Σ

| as

a coalgebra p : UAt → P̂cL̂U(At) (instead of p : UAt → P̂cP̂fU(At)) and its saturation in

SetL
op
Σ as a colgebra p♯ : At → KP̂cL̂U(At). The saturated semantics of P (Construction

4.4) is given by [[·]]p♯ : At → C(KP̂cL̂U)(At). All results stated in Section 4, 5 and 6 continue
to hold in this setting.

Our first task is to generalize Construction 7.3. The extension p♯δ of a saturated logic

program p♯ : At → KP̂cL̂U(At) to a bialgebra will depend on a distributive law δ, yet to be

defined. The domain of p♯δ will be the presheaf L̆At ∈ SetL
op
Σ of goals, where L̆ : SetL

op
Σ →

SetL
op
Σ extends L : Set→ Set as in Definition 2.1. Since L is a monad, by Proposition 2.2

L̆ is also a monad with unit and multiplication given componentwise by the ones of L.
For ground logic programs, the definition of a bialgebra involves the construction of a

Pf -coalgebra out of a PfL-coalgebra. For arbitrary logic programs there is a type mismatch,

because in p♯ : At → KP̂cL̂U(At) the functor L̆ does not apply to At . However, this can be
easily overcome by observing the following general property of the adjunction U ⊣ K.

Proposition 9.2. Let F : Set→ Set be a functor and F̂ : Set|L
op
Σ
| → Set|L

op
Σ

|, F̆ : SetL
op
Σ →

SetL
op
Σ its extensions to presheaf categories, given as in Definition 2.1. Then F̂U = UF̆.
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Proof. Fix G ∈ SetL
op
Σ . By definition of U, F̆ and F̂ the following diagram commutes, where

ι : |Lop
Σ
| →֒ L

op
Σ

is the inclusion functor.

|Lop
Σ
|

F̂UG

&&

ι

��

UG // Set
F // Set

L
op
Σ

G

<<③③③③③③③③③
F̆G

??

This gives the following derivation: F̂UG = FUG = FGι = F̆Gι = UF̆G. The reasoning on

arrows of SetL
op
Σ is analogous.

By Proposition 9.2, we can consider p♯ : At → KP̂cL̂U(At) as having the type p♯ : At →

KUP̆cL̆(At). Thus the bialgebra constructed out of p♯ will be formed by a KUP̆c-coalgebra

p
♯
δ : L̆At → KUP̆cL̆(At). In order to define it by applying Proposition 2.3, the next step is

to define δ as a distributive law of type L̆(KUP̆c)⇒ (KUP̆c)L̆.
For this purpose, our strategy will be to construct δ as the combination of different

distributive laws. First, recall the distributive law λ : LPf ⇒ PfL of monads introduced in
Section 7: we override notation by calling λ the distributive law of type LPc ⇒ PcL defined
as the one involving Pf . By Proposition 2.2, λ : LPc ⇒ PcL extends to a distributive law

of monads λ̆ : L̆P̆c ⇒ P̆cL̆ in SetL
op
Σ . Next, we introduce two other distributive laws: one

for P̆c over KU and the other for L̆ over KU. In fact, because KU is a monad arising from
the adjunction U ⊣ K and extensions commute with U (Proposition 9.2), we can let

ϕ : L̆(KU) ⇒ (KU)L̆

ψ : P̆c(KU) ⇒ (KU)P̆c

be defined in a canonical way, using the following general result.

Proposition 9.3. Let C and D be categories with an adjunction U ⊣ K for U : C → D

and K : D→ C. Let T̆ : C→ C and T̂ : D→ D be two monads such that UT̆ = T̂U. Then,

there is a distributive law of monads λ : T̆(KU)⇒ (KU)T̆ defined for all X ∈ C by

(T̂(idKUX)
♭)♯ (9.1)

where (·)♭X,Z : C[X,KZ] → D[UX,Z] and (·)♯X,Z : D[UX,Z] → C[X,KZ] are the compo-

nents of the canonical bijection given by the adjunction U ⊣ K.

Proof. See Appendix A.

In our case, C = SetL
op
Σ , D = Set|L

op
Σ

| and the required property of commuting with

U is given for both pairs of monads L̆, L̂ and P̆c, P̂c by Proposition 9.2. In the sequel we

provide the explicit calculation of the distributive law ϕ : L̆KU⇒ KUL̆ according to (9.1).

For this purpose, fix a presheaf G ∈ SetL
op
Σ and n ∈ L

op
Σ
. By definition ϕG : Set

L
op
Σ → SetL

op
Σ

is given on n ∈ L
op
Σ

as the following function (where UL̆ = L̂U by Proposition 9.2):

(L̂(idKUG)
♭)♯(n) : L̆KUG(n)

η
L̆KUG

(n)
// KUL̆KUG(n)

K(L̂(idKUG)
♭)(n)

// KUL̆G(n).
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We now compute ϕG(n) on a list of tuples [ẋ1, . . . , ẋk]. This is first mapped onto the value

[ẋ1, . . . , ẋk]
✤
η
L̆KUG

(n)
// 〈L̆KUG(θ)[ẋ1, . . . , ẋk]〉θ : n→m = 〈[〈ẋ1(σ ◦ θ)〉σ, . . . , 〈ẋk(σ ◦ θ)〉σ]〉θ

where the unit η is computed as in (4.2) and the equality follows by definition of K(UG)

on arrows θ ∈ L
op
Σ
[n,m] — cf. (4.1). Then we apply (idKUG)

♭ componentwise in the list
elements of the tuple:

〈[〈ẋ1(σ ◦ θ)〉σ, . . . , 〈ẋk(σ ◦ θ)〉σ]〉θ
✤K(L̂(idKUG)

♭)(n)
// 〈[〈ẋ1(σ ◦ θ)〉σ(idn), . . . , 〈ẋk(σ ◦ θ)〉σ(idn)]〉θ

=

〈[ẋ1(θ), . . . , ẋk(θ)]〉θ.

By definition of (·)♭, (idKUG)
♭(n) =

(
ǫUG ◦ U(idKUG

)
(n) : UKUG(n) → UG(n) maps a tuple

ẋ into its element ẋ(idn) — cf. the definition (5.1) of the counit ǫ. The equality holds
because 〈ẋi(σ ◦ θ)〉σ(idn) = ẋi(idn ◦ θ) = ẋi(θ).

The calculation leading to the definition of ψ : P̆cKU⇒ KUP̆c is analogous. In conclu-
sion we obtain the following definitions for distributive laws of monads ϕ and ψ:

ϕG(n) : L̆KUG(n) → KUL̆G(n)

[ẋ1, . . . , ẋk] 7→ 〈[ẋ1(θ), . . . , ẋk(θ)]〉θ : n→m

ψG(n) : P̆cKUG(n) → KUP̆cG(n)

{ẋi}i∈I 7→ 〈{ẋi(θ)}i∈I〉θ : n→m

where I is a countable set of indices. Note that the existence of distributive laws ϕ and ψ

implies in particular that KUL̆ and KUP̆c are monads.

We have now all ingredients to define the distributive law δ : L̆(KUP̆c)⇒ (KUP̆c)L̆:

δ : L̆KUP̆c

ϕ
P̆c // KUL̆P̆c

KUλ̆ // KUP̆cL̆ (9.2)

Concretely, given G ∈ SetL
op
Σ and n ∈ L

op
Σ
, the function δG(n) is defined by

[〈X1〉θ, . . . , 〈Xk〉θ]
✤
ϕ
P̆cG

(n)
// 〈[X1, . . . ,Xk]〉θ

✤ KUλ̆G(n) // 〈{[x1, . . . , xk] | xi ∈ Xi}〉θ

Proposition 9.4. δ : L̆(KUP̆c) ⇒ (KUP̆c)L̆ is a distributive law of the monad L̆ over the

monad KUP̆c.

Proof. In [14] it is proven that the natural transformation δ defined as in (9.2) (or, equiv-

alently, the natural transformation ψ
L̆
◦ P̆cϕ : P̆cL̆KU ⇒ KUP̆cL̆) is a distributive law

yielding the monad KUP̆cL̆ if one can prove that the three distributive laws λ̆, ϕ and ψ sat-
isfy a compatibility condition called Yang-Baxter equation. This is given by commutativity
of the following diagram, which can be easily verified by definition of λ̆, ϕ and ψ.

L̆KUP̆c
ϕP̆c // KUL̆P̆c

KUλ̆
((◗◗

◗◗◗
◗◗

L̆P̆cKU

L̆ψ 66♠♠♠♠♠♠♠

λ̆KU
((◗◗

◗◗◗
◗◗

KUP̆cL̆

P̆cL̆KU
˘Pcϕ // P̆cKUL̆

ψL̆

66♠♠♠♠♠♠♠
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Convention 9.5. Throughout the rest of the paper, we do not need to manipulate further

the components of the functor KUP̆c : Set
L
op
Σ → SetL

op
Σ and thus we adopt the shorter

notation R for it.

We are now in position to extend Construction 7.3 to arbitrary logic programs.

Construction 9.6. Let P be a logic program and p♯ : At → RL̆(At) be the associated

coalgebra in SetL
op
Σ . We define the R-coalgebra p♯δ : LAt → RL̆(At) in the way prescribed

by Proposition 2.3 as

L̆At
L̆p♯ // L̆RL̆At

δ
L̆At // RL̆L̆At

R( :: ) // RL̆At

where :: is µL̆At , defined componentwise by list concatenation µL since L̆ is the extension of

L. By Proposition 2.3, (LAt , :: , p♯δ) forms a δ-bialgebra.

In order to have a more concrete intuition, we spell out the details of the above con-

struction. Fixed n ∈ L
op
Σ
, L̆p♯(n) maps a list [A1, . . . Ak] ∈ LAt(n) into the list of tuples

[〈X1〉θ, . . . 〈Xk〉θ]

where each Xi = p♯(n)(Ai)(θ) is a set of lists of atoms. This is mapped by δ
L̆At

into the
tuple of sets (of lists of lists)

〈{[l1, . . . , lk]|li ∈ Xi}〉θ
and, finally, by R( :: ) into the tuple of sets (of list)

〈{l1 :: . . . :: lk|li ∈ Xi}〉θ.

Alternatively, p♯δ can be inductively defined from p♯ by the following rules, where l
θ
→ l′

stands for l′ ∈ p♯δ(l)(θ).

l1
l′ ∈ p♯(A)(θ)

[A]
θ
→ l′

l2
l1

θ
→ l′1 l2

θ
→ l′2

l1 :: l2
θ
→ l′1 :: l

′
2

l3

[ ]
θ
→ [ ]

The rule system extends the one provided for the ground case (cf. Remark 7.6) by labeling
transitions with the substitution applied on the goal side. Observe that rule (l2) is the same
as the one for parallel composition in CSP [44]: the composite system can evolve only if its
parallel components are able to synchronise on some common label θ.

Example 9.7. Consider the logic program NatList in Example 3.6 and the atoms Nat(x1)

and List(cons(x1, x2)), both in At(2). The morphism p♯ : At → KUP̆cL̆(At) maps these
atoms into the tuples defined for all θ ∈ L

op
Σ
[2,m] as

p♯(Nat(x1))(θ) =




{[ ]} if x1θ = zero

{[Nat(t)]} if x1θ = succ(t)
∅ otherwise

p♯(List(cons(x1, x2)))(θ) = {[Nat(x1)θ, List(x2)θ]}

for some Σ-term t. By application of rule (l1), such tuples are the same of p♯δ([Nat(x1)])

and p♯δ([List(cons(x1, x2))]) and, by mean of rule (l2), it is easy to compute the value of p♯δ
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on the list of atoms [Nat(x1), List(cons(x1, x2))].

p
♯
δ([Nat(x1), List(cons(x1, x2))])(θ) =




{[Nat(zero), List(x2)θ]} if x1θ = zero

{[Nat(t), Nat(succ(t)), List(x2)θ]} if x1θ = succ(t)
∅ otherwise

Intuitively, p♯δ forces all the atoms of a list to synchronize by choosing a common substitution.
For instance, [List(cons(x1, x2))] can make a transition with any substitution θ but, when in
parallel with [Nat(x1)], it cannot evolve (and thus cannot be refuted) for those substitutions
that do not allow Nat(x1) to evolve — i.e., those θ belonging to the third case above.

We now generalize Construction 7.7 to define the cofree semantics [[·]]
p
♯
δ
arising from p

♯
δ.

Construction 9.8. The cofree R-coalgebra C(R)(L̆At) on L̆At , defined following the

same steps of Construction 4.3, forms the final L̆At × R(·)-coalgebra c : C(R)(L̆At)
∼=
−→

L̆At × R(C(R)(L̆At)). We now build its canonical extension to a final δ′-bialgebra, where

δ′ : L̆(L̆At × R(·)) ⇒ L̆At × RL̆(·) is a distributive law of the monad L̆ over the functor

L̆At × R(·) defined in terms of δ:

δ′G : L̆(L̆At × R(G))
〈L̆π1,L̆π2〉 // L̆L̆At × L̆R(G)

::×δG // L̆At × RL̆(G) .

For this purpose, we construct a L̆-algebra :: : L̆(C(R)(L̆At)) → C(R)(L̆At), using finality

of C(R)(L̆At):

L̆(C(R)(L̆At))

L̆c
��

:: //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ C(R)(L̆At)

c

��

L̆(L̆At × R(C(R)(L̆At)))

δ′
C(R)(L̆At)

��

L̆At × R(L̆(C(R)(L̆At)))
id

L̆At
×R( :: )

// L̆At × R(C(R)(L̆At))

Proposition 2.4 guarantees that
(
C(R)(L̆At), :: , c) is the final δ′-bialgebra.

We now turn to the definition of the semantics [[·]]
p
♯
δ
: L̆At → C(R)(L̆At). We let it be the

unique δ′-bialgebra morphism from L̆At to C(R)(L̆At), given by finality of
(
C(R)(L̆At), :: , c):

L̆L̆At

::
��

L̆[[·]]
p
♯
δ // L̆(C(R)(L̆At))

::
��

L̆At

〈id
L̆At

,p
♯
δ〉

��

[[·]]
p
♯
δ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ C(R)(L̆At)

c
��

L̆At × R(L̆At)

id
L̆At

×R([[·]]
p
♯
δ

)

// L̆At × R(C(R)(L̆At)).
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[Nat(x1)]〈z,x2〉

〈s(x1),x2〉

...

[ ] [Nat(x1)]

〈z,x2〉〈z,n〉

✾✾
✾

...

❋❋
❋❋

❋❋
❋❋

❋
. . .

[ ] [ ] [ ] . . .

. . . . . . . . .

[List(c(x1, x2))]

〈z,x2〉
〈s(x1),x2〉

...
〈x1,x2〉

[Nat(x1), List(x2)]

〈z,n〉
...

●●
●●

●●
●●

●
[Nat(z), List(x2)]

...

①①
①①
①①
①①

〈x1,n〉

[Nat(s(x1)), List(x2)]

〈z,n〉
▼▼▼

▼▼

▼▼
〈x1,n〉

...

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
. . .

[ ] . . . [ ] [Nat(x1)]

...

[Nat(z)] . . .

[ ] [ ] . . . [ ]

. . . . . . . . .

Figure 2: Part of the bialgebraic semantics of [Nat(x1)] (left) and [List(cons(x1, x2))] (right)
in At(2). We use the convention that unlabeled edges stand for edges with any
substitution.

The next result states that bialgebraic semantics exhibits two forms of compositionality:
it respects both the substitutions in L

op
Σ

(by saturation) and the internal structure of goals.
In order to formulate such theorem, given a substitution θ ∈ L

op
Σ
[n,m], we use notation:

θl := L̆(At)(θ) : L̆(At)(n)→ L̆(At)(m)

θ := C(R)(LAt)(θ) : C(R)(LAt)(n)→ C(R)(LAt)(m).

Theorem 9.9 (Two-Fold Compositionality). Let l1, . . . , lk be list of atoms in At(n) and
θ ∈ L

op
Σ
[n,m] a substitution. The following two equalities hold:

[[θl l1 :: . . . :: θ
l lk]]p♯δ

= θ[[l1]]p♯δ
:: . . . :: θ[[lk]]p♯δ

= θ([[l1]]p♯δ
:: . . . :: [[lk]]p♯δ

).

Where l1 :: . . . :: lk is notation for :: ([l1, . . . , lk]) = µL̆At(n)([l1, . . . , lk]) and [[l1]]p♯δ
:: . . . :: [[lk]]p♯δ

for :: (n)([[[l1]]p♯δ
, . . . , [[lk]]p♯δ

]).

Proof. The proof is entirely analogous to the one for the ground case, see Theorem 7.8.

Commutativity with substitutions is given by naturality of [[·]]
p♯δ
, :: and :: in SetL

op
Σ .

Example 9.10. In Example 9.7 we have computed the values of p♯δ for the lists [Nat(x1)]
and [List(cons(x1, x2))]. Figure 2 shows (a finite part of) their bialgebraic semantics
[[[Nat(x1)]]]p♯δ

and [[[List(cons(x1, x2))]]]p♯δ
. These are depicted as ∨-trees (Definition 8.1)

where edges are labeled with substitutions. Analogously to the ground case, one can think
of the edges as (labeled) transitions generated by the rule presentation of pδ given above.

It is instructive to note that, while [Nat(x1)] has one 〈zero, x2〉-child, [Nat(x1), List(x2)]
cannot have a child with such substitution: in order to progress [Nat(x1), List(x2)] needs
a substitution which makes progress at the same time both Nat(x1) and List(x2) like, for
instance, 〈zero, nil〉.

In Example 9.7 we discussed the value p♯δ([Nat(x1), List(cons(x1, x2))]). Figure 3 shows
the bialgebraic semantics [[[Nat(x1), List(cons(x1, x2))]]]p♯δ

for such list. By virtue of The-

orem 9.9, it can be equivalently obtained by concatenating via :: the trees [[[Nat(x1)]]]p♯δ
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[Nat(x1), List(c(x1, x2))]

〈z,x2〉
〈s(x1),x2〉

...

[Nat(z), List(x2)]

...

rr
rr
rr
rr
rr

〈x1,n〉

[Nat(x1), Nat(s(x1)), List(x2)]

〈z,n〉
◗◗◗

◗◗◗

◗◗
...

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

. . .

. . . [ ] [Nat(z)] . . .

[ ] [ ]

. . . . . .

Figure 3: Part of the bialgebraic semantics of [Nat(x1), List(cons(x1, x2))].

and [[[List(cons(x1, x2))]]]p♯δ
in Figure 2. Similarly to the ground case, the operation of

concatenating two trees T1, T2 can be described as follows.

(1) If the root of T1 has label l1 and the root of T2 has label l2, then the root of T1 ::T2 has
label l1 :: l2;

(2) if T1 has a θ-child T ′
1 and T2 has a θ-child T ′

2, then T1 ::T2 has a θ-child T ′
1 ::T

′
2.

For instance, while [List(cons(x1, x2))] has one 〈x1, x2〉-child, [Nat(x1), List(cons(x1, x2))]
has no 〈x1, x2〉-children because [Nat(x1)] has no 〈x1, x2〉-children. Instead it has one
〈zero, x2〉-child labeled with [ ] :: [Nat(zero), List(x2)] and one 〈succ(x1), x2〉-child labeled
with [Nat(x1)] :: [Nat(succ(x1)), List(x2)]. The latter node has no 〈x1, nil〉-children because
[Nat(x1)] has no 〈x1, nil〉-children.

10. Soundness and Completeness of Bialgebraic Semantics

In this section we study the relationship between the bialgebraic semantics [[·]]
p♯δ

and the

other approaches investigated so far. First, analogously to the ground case, we provide an
explicit description of the elements of C(Pf )(LAt) that [[·]]

p♯δ
associates with goals. This

formalizes the notion of tree given in Example 9.10.

Definition 10.1. Given a logic program P, n ∈ L
op
Σ

and a list l ∈ LAt(n) of atoms, the
(parallel) saturated ∨-tree for l in P is the possibly infinite tree T satisfying the following
properties:

(1) Each node s in T is labeled with a list of atoms ls ∈ LAt(m) for some m ∈ L
op
Σ

and the
root is labeled with l. For any child t of s, say labeled with a list lt ∈ LAt(z), the edge
from s to t is labeled with a substitution σ : m→ z.

(2) Let s be a node in T with label l′ = [A1, . . . , Ak] ∈ LAt(m). For all substitutions
σ, τ1, . . . , τk and list [C1, . . . , Ck] of clauses of P such that, for each Ci = H i ←
Bi

1, . . . , B
i
j , 〈σ, τi〉 is a unifier of Ai and H i, s has exactly one child t, and viceversa.

Furthermore, the edge connecting s to t is labeled with σ and the node t is labeled with
the list l1 :: . . . :: lk, where li = [τiB

i
1, . . . , τiB

i
j ] is given by applying τi to the body of

clause Ci.
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Saturated ∨-trees extend the ∨-trees introduced in Definition 8.1 and we can formulate the
same adequacy result.

Proposition 10.2 (Adequacy). Given a list of atoms l ∈ LAt(n) and a program P, [[l]]
p♯δ
∈

C(Pf )(LAt)(n) is the saturated ∨-tree for l in P.

It is worth clarifying that the substitutions labeling edges in a saturated ∨-tree play
the same role as the substitutions labeling or-nodes in saturated ∧∨-trees. For any node in
[[l]]

p
♯
δ
, say labeled with l1, an outgoing edge with label θ connecting to a child l2 means that

l2 is an element of p♯δ(l
′)(θ) — cf. the rule presentation of p♯δ in Section 9.

In analogy to Construction 8.3, we now set a translation rsat : C(RL̆)(At)→ C(R)(L̆At)
between saturated ∨∧-trees (Definition 4.5) and saturated ∨-trees.

Construction 10.3. Let u : C(RL̆)(At)
∼=
−→ RL̆At ×

(
C(RL̆)(At)

)
be the final At × RL̆(·)-

coalgebra structure on C(RL̆)(At) and define d := ηL̆At × id ◦ u as the extension of u

to a L̆At × RL̆(·)-coalgebra. Next we provide a L̆At × R(·)-coalgebra structure dδ′ on

L̆(C(RL̆)(At)) in the way prescribed by Proposition 2.3:

L̆(C(RL̆)(At))

L̆d

��

dδ′ // L̆At × RL̆
(
C(RL̆)(At)

)

:=

L̆

(
L̆At × RL̆

(
C(RL̆)(At)

)) λ′
C(RL̆)(At) // L̆At × RL̆L̆

(
C(RL̆)(At)

)
id

L̆At
×R( :: )

OO

By finality of C(R)(L̆At) we obtain our representation map rsat := [[·]]dδ′ ◦ η
L̆

C(RL̆)(At)
.

C(RL̆)(At)

u
��

d

''

ηL̆
C(RL̆)(At) // L̆(C(RL̆)(At))

dδ′

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

[[·]]d
δ′ //❴❴❴❴❴❴❴❴ C(R)(L̆At)

c

��

At × RL̆
(
C(RL̆)(At)

)

ηL̆At×id
��

L̆At × RL̆
(
C(RL̆)(At)

) id
L̆At

×R([[·]]d
δ′
)

// L̆At × RC(R)(L̆At)

(10.1)

Proposition 10.4. For any atom A ∈ At(n), rsat([[A]]p♯) = [[A]]
p
♯
δ
.

Proof. The proof is entirely analogous to the one provided for the ground case, see Propo-
sition 8.4.

We now focus on the notion of refutation subtree associated with saturated ∨-trees. As
outlined in the introduction, here lies one of the main motivations for bialgebraic semantics.
When defining refutation subtrees for saturated semantics (Definition 6.1), we had to require
that they were synched. The corresponding operational intuition is that, at each derivation
step, the proof-search for the atoms in the current goal can only advance by applying to
all of them the same substitution. If we did not impose such condition, we would take
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into account derivation subtrees yielding an unsound refutation, where the same variable is
substituted for different values, as shown in Example 3.4.

The deep reason for requiring such constraint is that, to be sound, the explicit and-
parallelism exhibited by saturated ∧∨-trees has to respect some form of dependency between
the substitutions applied on different branches. Coinductive trees (Definition 3.5) achieve
it by construction, because all substitutions applied in the goal have to be identities. For
saturated ∨-trees, this property is also given by construction, but in a more general way:
at each step the same substitution (not necessarily the identity) is applied on all the atoms

of the goal. This synchronicity property is already encoded in the operational semantics p♯δ,
as immediately observable in its rule presentation, and arises by definition of δ.

By these considerations, subtrees of saturated ∨-trees are always synched (in the sense
of Definition 6.1) and we can define a sound notion of derivation as in the ground case,
without the need of additional constraints.

Definition 10.5. Let T be a saturated ∨-tree in C(R)(LAt)(n) for some n ∈ L
op
Σ
. A

derivation subtree of T is a sequence of nodes s1, s2, . . . such that s1 is the root of T and
si+1 is a child of si. A refutation subtree is a finite derivation subtree s1, . . . , sk where the
last element sk is labeled with the empty list. Its answer is the substitution θk ◦ . . . θ2 ◦ θ1,
where θi is the substitution labeling the edge between si and si+1.

The following statement about refutation subtrees will be useful later.

Proposition 10.6. Let P be a logic program and l ∈ LAt(n) a list of atoms. If [[l]]
p♯δ

has a

refutation subtree with answer θ : n→ m, then it has also a refutation subtree T = s1, s2, . . .

with the same answer where the edge connecting s1 and s2 is labeled with θ and all the other
edges in T are labeled with idm.

Proof. See Appendix A.

Example 10.7. The saturated ∨-trees for [Nat(x1)] and [List(cons(x1, x2))] in Figure 2
contain several refutation subtrees: for instance,

[List(cons(x1, x2))]
〈zero,x2〉

[Nat(zero), List(cons(x2))]
〈x1,nil〉

[ ] (10.2)

is a refutation subtree of [List(cons(x1, x2))] with answer 〈x1, nil〉◦ 〈zero, x2〉 = 〈zero, nil〉.
Observe that [Nat(x1)] has a refutation subtree with the same answer: indeed for any
substitution θ : 2→ m,

[Nat(x1)]
〈zero,x2〉

[ ]
θ

[ ] (10.3)

is a refutation subtree with answer θ ◦ 〈zero, x2〉. This is because rule (l3) yields [ ]
θ
→ [ ],

which is graphically represented in our figures by an unlabeled edge.
It is interesting to note that concatenating (10.3) (where θ = 〈x1, nil〉) with (10.2) via

:: yields a refutation subtree for [Nat(x1), List(cons(x1, x2))] with the same answer: this is

[Nat(x1), List(cons(x1, x2))]
〈zero,x2〉

[Nat(zero), List(cons(x2))]
〈x1,nil〉

[ ] (10.4)

depicted at the center of Figure 3. More generally, if two trees T1 and T2 have refutation
subtrees with the same sequence of substitutions θk ◦ . . . θ2 ◦ θ1, then also T1 ::T2 has a
refutation subtree with the same sequence.
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For an example of the behaviour of rsat, consider part of the saturated ∧∨-tree for
List(cons(x1, x2)) depicted below (Example 4.9 discusses a different part of the same tree).
This is mapped by rsat into the saturated ∨-tree of [List(cons(x1, x2))] shown on the right
of Figure 2.

List(c(x1, x2))

�� ��

�� ��〈x1, x2〉

②②
②②
②

▲▲
▲▲

▲▲

�� ��

�� ��〈z, x2〉

⑥⑥
⑥⑥
⑥

❊❊
❊❊

❊

�� ��

�� ��〈s(x1), x2〉

ss
ss
ss

■■
■■

■■

Nat(x1)

✡✡
✡✡
✡✡
✡✡
✡

❍❍
❍❍

❍❍
List(x2)

��
��
��
��
��

♣♣♣
♣♣♣

♣
Nat(z)

❊❊
❊❊

❊
List(x2)

✈✈
✈✈
✈✈

Nat(s(x1))

✆✆
✆✆
✆✆
✆✆
✆✆

▼▼▼
▼▼▼

▼
List(x2)

rr
rr
rr

☎☎
☎☎
☎☎
☎☎
☎☎

. . . . . . . . .

�� ��

�� ��〈z, x2〉
�� ��

�� ��〈z, n〉
�� ��

�� ��〈z, n〉
�� ��

�� ��〈x1, n〉
�� ��

�� ��〈x1, n〉
�� ��

�� ��〈x1, n〉
�� ��

�� ��〈x1, n〉
�� ��

�� ��〈z, n〉
�� ��

�� ��〈x1, n〉
�� ��

�� ��〈z, n〉

Nat(x1) Nat(z)

❑❑
❑❑

❑❑
❑❑

. . .
�� ��

�� ��〈x1, x2〉 . . .

The representation map rsat behaves similarly to the one given for the ground case
(cf. Example 8.7), the main difference being that, in saturated ∧∨-trees, ∨-nodes are now
labeled with substitutions: the effect of rsat is to move such substitutions to the edges of
the target saturated ∨-trees. For instance, the label 〈x1, x2〉 on the ∨-node (on the left
above) is moved in Figure 2 to the edge connecting the root [List(cons(x1, x2))] with the
node labeled with [Nat(x1), List(x2)]. Observe that this node has one 〈zero, nil〉-child and
no children associated with 〈zero, x2〉 or 〈x1, nil〉: instead, those two substitutions label
one child of Nat(x1) and one of List(x2), respectively (on the left above). Intuitively, the
children of [Nat(x1), List(x2)] are given by considering only the children of Nat(x1) and
those of List(x2) labeled with the same substitution.

It is worth to observe that, for every synched refutation subtree T ′ (Definition 6.1) of
a saturated ∧∨-tree T there is a refutation subtree in rsat(T ) with the same answer. The
effect on T ′ of applying rsat to T can be described by the following procedure: for every
depth in T ′, (a) all the ∧-nodes are grouped into a single node whose label lists all the labels
of these ∧-nodes; (b) the ∨-nodes become an edge whose label is the common substitution
labeling all these ∨-nodes. For an example, we depict below a synched derivation subtree
on the left and the corresponding subtree on the right. (In the saturated ∧∨-tree above
there are other three synched refutation subtrees: the reader can find the corresponding
refutation subtrees in the ∨-tree on the right of Figure 2.)

List(c(x1, x2))

�� ��

�� ��〈x1, x2〉
❦❦❦ ❙❙❙

Nat(x1) List(x2)

�� ��

�� ��〈z, n〉
�� ��

�� ��〈z, n〉

[List(c(x1, x2))]

〈x1,x2〉

[Nat(x1), List(x2)]

〈z,n〉

[ ]

Such transformation is neither injective nor surjective. Against surjectivity, consider the
refutation subtree (10.3): it does not correspond to any synched derivation subtree because
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it contains two occurrences of [ ], while the above procedure always transforms synched
derivation subtrees into refutation subtrees with exactly one occurrence of [ ]. Nevertheless,
using the construction of Proposition 10.6 one can show that for every refutation subtree in
rsat(T ) there exists a synched refutation subtree in T with the same answer. For instance,
(10.3) corresponds to the synched refutation subtree with root Nat(x1) and the only other
node a child of Nat(x1) labeled with θ ◦ 〈zero, x2〉.

Generalizing the observations of Example 10.7 above, we have that a saturated ∧∨-tree
T has a synched derivation subtree with answer θ if and only if rsat(T ) has a refutation
subtree with answer θ. In case T = [[A]]p♯ for some atom A ∈ At(n), then rsat(T ) = [[[A]]]

p
♯
δ

by Proposition 10.4. This yields the following statement.

Proposition 10.8. Fix an atom A ∈ At(n) and a program P. The following are equivalent.

(I) The saturated ∨-tree for [A] ∈ L̆At(n) in P has a refutation subtree with answer θ.
(II) The saturated ∧∨-tree for A in P has a synched refutation subtree with answer θ.

Corollary 10.9 (Soundness and Completeness I). Let P be a logic program and A ∈ At(n)
an atom. The following statement is equivalent to any of the three of Theorem 6.2.

(4) The saturated ∨-tree for [A] ∈ L̆At(n) in P has a refutation subtree with answer θ.

Proof. It suffices to prove the equivalence between (4) and statement (1) of Theorem 6.2,
which is given by Proposition 10.8.

In fact, since both bialgebraic semantics and SLD-resolution are defined on arbitrary
goals, we can state the following stronger result.

Theorem 10.10 (Soundness and Completeness II). Let P be a logic program and G =

[A1, . . . , Ak] ∈ L̆At(n) be a goal. The following are equivalent.

(1) The saturated ∨-tree for G in P has a refutation subtree with answer θ.
(2) There is an SLD-refutation for G in P with correct answer θ.

Proof. Fix a program P and the goal G = [A1, . . . , Ak]. The statement is given by the
following reasoning.

G has an SLD-refutation

with correct answer θ ⇔ each [Ai] has an SLD-refutation with correct answer θ

(Corollary 10.9) ⇔ each [[[Ai]]]p♯δ
has a refutation subtree with answer θ

⇔ [[[A1]]]p♯δ
:: . . . :: [[[Ak]]]p♯δ

has a refutation subtree with answer θ

(Theorem 9.9) ⇔ [[G]]
p♯δ

has a refutation subtree with answer θ.

The first equivalence is a basic fact implied by the definition of SLD-resolution. The third
equivalence comes from the observation that, like in the ground case, :: preserves and
reflects the property of yielding a refutation. To see this, suppose that [[[Ak]]]p♯δ

, . . . , [[[Ak]]]p♯δ
all have refutation subtrees with answer θ : n→ m. By Proposition 10.6, for each i we can
pick a refutation subtree Ti of [[[Ai]]]p♯δ

with answer θ, such that θ is the substitution labeling

the edge connecting depth 0 and 1 and all the other edges are labeled with idm. Therefore,
at each depth, T1, . . . , Tk all have the same substitution labeling the corresponding edge.
This means that the operation :: applied to [[[A1]]]p♯δ

, . . . , [[[Ak]]]p♯δ
has the effect of “gluing
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together” T1, . . . , Tk into a refutation subtree T of [[[A1]]]p♯δ
:: . . . :: [[[Ak]]]p♯δ

with answer θ,

just as in Example 10.7, where (10.3) and (10.2) were glued to form (10.4). Starting instead
with a refutation subtree in [[[A1]]]p♯δ

:: . . . :: [[[Ak]]]p♯δ
, one clearly has a decomposition in the

converse direction.

11. Conclusions

The first part of this work proposed a coalgebraic semantics for logic programming, extend-
ing the framework introduced in [30] for the case of ground logic programs. Our approach
has been formulated in terms of coalgebrae on presheaves, whose nice categorical proper-
ties made harmless to reuse the very same constructions as in the ground case. A critical
point of this generalization was to achieve compositionality with respect to substitutions,
which we obtained by employing saturation techniques. We emphasized how these can be
explained in terms of substitution mechanisms: while the operational semantics p proposed
in [32] is associated with term-matching, its saturation p♯ corresponds to unification. The
map p♯ gave rise to the notion of saturated ∧∨-tree, as the model of computation repre-
sented in our semantics. We observed that coinductive trees, introduced in [32], can be
seen as a desaturated version of saturated ∧∨-trees, and we compared the two notions with
a translation. Eventually, we tailored a notion of subtree (of a saturated ∧∨-tree), called
synched derivation subtree, representing a sound derivation of a goal in a program. This led
to a result of soundness and completeness of our semantics with respect to SLD-resolution.

In the second part of the paper, we extended our framework to model the saturated
semantics of goals with bialgebrae on presheaves. The main feature of this approach was yet
another form of compositionality: the semantics of a goal G can be equivalently expressed
as the “pasting” of the semantics of the single atoms composing G. This property arose
naturally via universal categorical constructions based on monads and distributive laws.
The corresponding operational description was given the name of saturated ∨-trees. The
synchronisation of different branches of a derivation subtree, which was imposed on satu-
rated ∧∨-trees, is now given by construction: in saturated ∨-trees the parallel resolution of
each atom in the goal always proceeds with the same substitution. On the base of these
observations, we extended the soundness and completeness result for saturated semantics
to the SLD-resolution of arbitrary (and not just atomic) goals.

Saturated ∨-trees carry more information than traditional denotational models like
Herbrand or C-models [20]. The latter can be obtained by saturated ∨-trees as follows: a
substitution θ is an answer of the saturated ∨-tree of a goal G if and only if Gθ belongs to the
minimal C-model. For future work, we would like to find the right categorical machinery to
transform saturated ∨-trees into C-models. The approach should be close to the one used in
[7] for the semantics of automata with ǫ-transitions: first, the branching structure of ∨-trees
is flattened into sets of sequences of substitutions (similarly to passing from bisimilarity to
trace equivalence); second, the substitutions in a sequence are composed to form a single
substitution (similarly to composing a sequence of words to form a single word).

Moreover, we find of interest to investigate infinite computations and the semantics of
coinductive logic programming [25]. These have been fruitfully explored within the approach
based on coinductive trees [31]. We expect our analysis of the notion of synchronisation for
derivation subtrees to bring further insights on the question.
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Appendix A. Proofs

In this appendix we collect the proofs of some of the statements in the main text, whose
details are not of direct relevance for our exposition.

Proposition 6.3. Let P be a logic program and A ∈ At(n) an atom. If [[A]]p♯ has a

synched refutation subtree with answer θ : n → m, then [[A]]p♯θ has a synched refutation
subtree whose ∨-nodes are all labeled with idm.

Proof. First, we fix the two following properties, holding for all the ∧-nodes of [[A]]p♯ .

(†) Let θ, θ′ be two arrows in L
op
Σ

such that θ′ ◦ θ is defined. If an ∧-node s has a child
t such that (a) the label of t is θ and (b) t has children labeled with B1, . . . , Bn, then
s has also another child t′ such that (a) the label of t′ is θ′ ◦ θ and (b) t′ has children
labeled with B1θ

′, . . . , Bnθ
′.

(‡) Let θ, θ′, σ, σ′ be four arrows in L
op
Σ

such that σ ◦ θ = σ′ ◦ θ′. If an ∧-node labeled with
A′ has a child t such that (a) the label of t is θ and (b) t has children labeled with
B1, . . . , Bn, then each node labeled with A′θ′ has a child t′ such that (a) the label of t′

is σ′ and (b) t′ has children labeled with B1σ, . . . , Bnσ.

Assume that [[A]]p♯ has a synched refutation subtree T whose ∨-nodes are labeled with θ1,

θ3, . . . , θ2k+1 (where θi is the substitution labeling the ∨-nodes of depth i). We prove
that [[A]]p♯ has another synched refutation subtree T ′ whose first ∨-node is labeled with
θ = θ2k+1 ◦ θ2k−1 ◦ . . . ◦ θ1 and all the other ∨-nodes are labeled with identities.

By assumption, the root r has a child (in T ) that is labeled with θ1. Assume that its
children are labeled with B2

1 . . . B
2
n2
. By (†), r has another child t′ (in [[A]]p♯), that (a) is

labeled with θ and (b) has children labeled with B2
1σ3 . . . B

2
nσ3 where σ3 = θk+1◦θk−1◦. . .◦θ3.

These children form depth 2 of T ′ (the root r and t form, respectively, depth 0 and 1).
We now build the other depths. For an even i ≤ 2k, let σi+1 denote θ2k+1◦θ2k−1◦· · ·◦θi+1

and let Bi
1, . . . , B

i
ni

be the labels of the ∧-nodes of T at depth i. The depth i of T ′ is given

by ∧-nodes labeled with Bi
1σi+1, . . . , B

i
ni
σi+1; the depth i + 1 by ∨-nodes all labeled with

idm. It is easy to see that T ′ is a subtree of [[A]]p♯ : by assumption the nodes labeled with

Bi
1, . . . , B

i
ni

have children in T all labeled with θi+1; since σi+3 ◦ θi+1 = idm ◦ σi+1, by

property (‡), the nodes labeled with Bi
1σi+1, . . . , B

i
ni
σi+1 have children (in [[A]]p♯) that (a)

are labeled with idm and (b) have children with labels Bi+2
1 σi+3, . . . , B

i+2
ni+2

σi+3.

Once we have built T ′, we can easily conclude. Recall that t′ (the first ∨-node of T ′) is
labeled with θ. Following the construction at the end of Section 4, the root of [[A]]p♯θ has a

child that is labeled with idm and that has the same children as t′. Therefore [[A]]p♯θ has a
synched refutation subtree with answer idm.

Next we provide a proof of the following statement.

Proposition 9.3. Let C and D be categories with an adjunction U ⊣ K for U : C → D

and K : D→ C. Let T̆ : C→ C and T̂ : D→ D be two monads such that UT̆ = T̂U. Then,

there is a distributive law of monads λ : T̆(KU)⇒ (KU)T̆ defined for all X ∈ C by

(T̂(idKUX)
♭)♯

where (·)♭X,Z : C[X,KZ] → D[UX,Z] and (·)♯X,Z : D[UX,Z] → C[X,KZ] are the compo-

nents of the canonical bijection given by the adjunction U ⊣ K.
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For this purpose, we first need to state some auxiliary preliminaries on monads and
distributive laws. Given a monad (M, ηM, µM) on a category C, we use Kℓ(M) to denote
its Kleisli category and J : C → Kℓ(M) to denote the canonical functor acting as identity
on objects and mapping f ∈ C[X,Y ] into ηY ◦ f ∈ Kℓ(KU)[X,Y ]. The lifting of a monad
(T, η, µ) in C is a monad (T′, η′, µ′) in Kℓ(M) such that JT = T′J and η′, µ′ are given on
JX ∈ Kℓ(M) (i.e. X ∈ C) respectively as J(ηX) and J(µX).

The following “folklore” result gives an alternative description of distributive laws in
terms of liftings to Kleisli categories, see e.g. [49, §4], [43].

Proposition A.1. Let (M, ηM, µM) be a monad on a category C. For every monad
(T, ηT , µT) on C, there is a bijective correspondence between liftings of (T, ηT , µT) to Kℓ(M)
and distributive laws of the monad T over the monad M.

We are now ready to supply the proof of Proposition 9.3.

Proof of Proposition 9.3. By Proposition A.1, it suffices that we define a monad lifting T̆ to
Kℓ(KU). For this purpose, we will use the canonical comparison functor H : Kℓ(KU)→ D

associated with Kℓ(KU) (see e.g. [36, §VI.5]), enjoying the following property:

HJ = U. (A.1)

Given X,Y ∈ |Kℓ(KU)| and f ∈ Kℓ(KU)[X,Y ], the functor H is defined as

H : Kℓ(KU) → D

X 7→ UX

X
f
→ Y 7→ UX

f♭
→ UY

where f ♭ is given by observing that f in Kℓ(KU) is a morphism f : X → KUY in C and

using the bijective correspondence (·)♭X,Z : C[X,KZ]→ D[UX,Z].

We have now the ingredients to introduce the monad T̈ on Kℓ(KU) that we will later

show to be a lifting of T̆. On objects JX of Kℓ(KU), the functor T̈ : Kℓ(KU)→ Kℓ(KU) is

defined as JT̆X (note that all objects in Kℓ(KU) are of the shape JX for some X ∈ C). For

an arrow JX
f
→ JY in Kℓ(KU), (i.e., X

f
→ KUY in C), we take UX

f♭
→ UY in D and apply

T̂ to obtain T̂UX
T̂f♭
→ T̂UY which, by assumption, is UT̆X

T̂f♭
→ UT̆Y . Using the bijective

correspondence (·)♯X,Z : D[UX,Z]→ C[X,KZ], we obtain T̆X
(T̂f♭)♯
→ KUT̆Y in C, that is an

arrow JT̆X
(T̂f♭)♯
→ JT̆Y in Kℓ(KU). We define T̈f as (T̂f ♭)♯. The unit of the monad ηT̈X is

defined as X = JX
JηT̆X→ JT̆X = T̈X. The multiplication µT̈X as T̈T̈X = JT̆T̆X

JµT̆X→ JT̆X =

T̈X. One can readily check that (T̈, ηT̈, µT̈) is a monad.

In order to verify that (T̈, ηT̈, µT̈) is a monad lifting of (T̆, ηT̆ , µT̆), it only remains to

check that T̈J = JT̆, since the unit and multiplication are simply defined by applying J to
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ηT̆ and µT̆. For objects, it follows from the definition of T̈. For arrows f ∈ C[X,Y ],

T̈JX
T̈Jf
→ T̈JY = JT̆X

(T̂(Jf)♭)♯

→ JT̆Y (definition of T̈)

= JT̆X
(T̂HJf)♯
→ JT̆Y (definition of H)

= JT̆X
(T̂Uf)♯
→ JT̆Y (by A.1)

= JT̆X
(UT̆f)♯

→ JT̆Y (by assumption)

= JT̆X
(HJT̆f)♯

→ JT̆Y (by A.1)

= JT̆X
((JT̆f)♭)♯

→ JT̆Y (definition of H)

= JT̆X
JT̆f
→ JT̆Y. ((·)♯ and (·)♭ form a bijection)

By Proposition A.1, we thus obtain a distributive law of monads λ : T̆(KU) ⇒ (KU)T̆.
Following the correspondence in [49], this is effectively constructed for all X ∈ C as
follows. Let idKUX be the identity on C and ιX : JKUX → JX be the corresponding
arrow in Kℓ(KU). Then T̈(ιX) : JT̆KUX → JT̆X in Kℓ(KU) corresponds to an arrow

T̈(ιX) : T̆KUX → KUT̆X in C, which is how λ is defined on X. Unfolding the definition of

T̈, this means that λX = (T̂(idKUX)
♭)♯.

Proposition 10.6. Let P be a logic program and l ∈ LAt(n) a list of atoms. If [[l]]
p♯δ

has a

refutation subtree with answer θ : n→ m, then it has also a refutation subtree T = s1, s2, . . .

with the same answer where the edge connecting s1 and s2 is labeled with θ and all the
other edges in T are labeled with idm.

Proof. The proof follows closely the one of Proposition 6.3. First, observe that properties
analogous to (†) and (‡) in the proof of Proposition 6.3 hold for ∨-trees, since both saturated

∧∨- and ∨-trees are based on unification. We express them using the rule presentation of p♯δ:

l4
l1

σ
→ l2

l1
σ′◦σ
→ l2σ

′
l5

l1
τ
→ l2 σ ◦ τ = σ′ ◦ τ ′

l1τ
′ σ

′

→ l2σ

where lθ is the result of applying θ to each atom in l. Rule (l4) corresponds to (†) and (l5)
to (‡).

Now suppose that T ′ = t1, t2, . . . , tk is a refutation subtree of [[l]]
p
♯
δ
, say with answer

θ = θk ◦ . . . ◦ θ2 ◦ θ1 and where ti labeled with a list li. We build T inductively as follows.
Depth 0 in T is given by the root t1 labeled with l1 = l. By construction θ1 labels the edge
between t1 and t2 in T ′. Thus, by rule (l4), in [[l]]

p
♯
δ
the root t1 has also an edge θ targeting

a child s2 with label θk ◦ . . . ◦ θ2l2. We let s2 be the node of depth 1 in T . Inductively,
suppose that we built T up to depth i < k. We know that in T ′ the node ti is connected to
ti+1 by an edge labeled with θi. Also, by inductive hypothesis the node si in T is labeled
with θk ◦ . . . ◦ θili. Since (θk ◦ . . . ◦ θi+1) ◦ θi = idm ◦ (θk ◦ . . . ◦ θi), then by rule (l5)
the node si is connected to a node si+1 in [[l]]

p♯δ
labeled with θk ◦ . . . ◦ θi+1li+1 via an edge

labeled with idm. We let si+1 be the node of depth i+ 1 in T . It is clear by construction
that T is a refutation subtree of [[l]]

p♯δ
with the required properties.
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