
Logical Methods in Computer Science
Vol. 5 (3:3) 2009, pp. 1–23
www.lmcs-online.org

Submitted Feb. 7, 2008
Published Aug. 3, 2009

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗

PHILIPP WEIS AND NEIL IMMERMAN

Department of Computer Science, University of Massachusetts, Amherst, 140 Governors Drive,
Amherst, MA 01003, USA
e-mail address: {pweis,immerman}@cs.umass.edu

Abstract. It is well-known that every first-order property on words is expressible using at
most three variables. The subclass of properties expressible with only two variables is also
quite interesting and well-studied. We prove precise structure theorems that characterize
the exact expressive power of first-order logic with two variables on words. Our results
apply to both the case with and without a successor relation.

For both languages, our structure theorems show exactly what is expressible using a
given quantifier depth, n, and using m blocks of alternating quantifiers, for any m ≤ n.
Using these characterizations, we prove, among other results, that there is a strict hierarchy
of alternating quantifiers for both languages. The question whether there was such a
hierarchy had been completely open. As another consequence of our structural results,
we show that satisfiability for first-order logic with two variables without successor, which
is NEXP-complete in general, becomes NP-complete once we only consider alphabets of a
bounded size.

1. Introduction

It is well-known that every first-order property on words is expressible using at most
three variables [7, 8]. The subclass of properties expressible with only two variables is also
quite interesting and well-studied (Fact 1.1).

In this paper we prove precise structure theorems that characterize the exact expressive
power of first-order logic with two variables on words. Our results apply to FO2[<] and
FO2[<,Suc], the latter of which includes the binary successor relation in addition to the
linear ordering on string positions.

For both languages, our structure theorems show exactly what is expressible using
a given quantifier depth, n, and using m blocks of alternating quantifiers, for any m ≤
n. Using these characterizations, we prove that there is a strict hierarchy of alternating
quantifiers for both languages. The question whether there was such a hierarchy had been
completely open since it was asked in [3, 4]. As another consequence of our structural results,

1998 ACM Subject Classification: F.4.1, F.4.3.
Key words and phrases: descriptive complexity, finite model theory, alternation hierarchy, Ehrenfeucht-

Fräıssé games.
∗ This work is an extended version of [20].
Supported in part by NSF grant CCF-0514621.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (3:3) 2009

c© P. Weis and N. Immerman
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. WEIS AND N. IMMERMAN

we show that satisfiability for FO2[<], which is NEXP-complete in general [4], becomes NP-
complete once we only consider alphabets of a bounded size.

Our motivation for studying FO2 on words comes from the desire to understand the
trade-off between formula size and number of variables. This is of great interest because,
as is well-known, this is equivalent to the trade-off between parallel time and number of
processors [6]. Adler and Immerman [1] introduced a game that can be used to determine
the minimum size of first-order formulas with a given number of variables needed to express
a given property. These games, which are closely related to the communication complexity
games of Karchmer and Wigderson [9], were used to prove two optimal size bounds for
temporal logics [1]. Later Grohe and Schweikardt used similar methods to study the size
versus variable trade-off for first-order logic on unary words [5]. They proved that all first-
order expressible properties of unary words are already expressible with two variables and
that the variable-size trade-off between two versus three variables is polynomial whereas the
trade-off between three versus four variables is exponential. They left open the trade-off
between k and k + 1 variables for k ≥ 4. While we do not directly address that question
here, our classification of FO2 on words is a step towards the general understanding of the
expressive power of FO needed for progress on such trade-offs.

Our characterization of FO2[<] and FO2[<,Suc] on words is based on the very natural
notion of n-ranker (Definition 3.2). Informally, a ranker is the position of a certain combi-
nation of letters in a word. For example, ⊲a and ⊳b are 1-rankers where ⊲a(w) is the position
of the first a in w (from the left) and ⊳b(w) is the position of the first b in w from the right.
Similarly, the 2-ranker r2 = ⊲a⊲c denotes the position of the first c to the right of the first
a, and the 3-ranker, r3 = ⊲a ⊲c ⊳b denotes the position of the first b to the left of r2. If
there is no such letter then the ranker is undefined. For example, r3(cababcba) = 5 and
r3(acbbca) is undefined.

Our first structure theorem (Theorem 3.8) says that the properties expressible in
FO2

n[<], i.e. first-order logic with two variables and quantifier depth n, are exactly boolean
combinations of statements of the form, “r is defined”, and “r is to the left (right) of r′”
for k-rankers, r, and k′-rankers, r′, with k ≤ n and k′ < n. A non-quantitative version of
this theorem was previously known [13].1 Furthermore, a quantitative version in terms of
iterated block products of the variety of semi-lattices is presented in [16], based on work by
Straubing and Thérien [14].

Surprisingly, Theorem 3.8 can be generalized in almost exactly the same form to char-
acterize FO2

m,n[<] where there are at most m blocks of alternating quantifiers, m ≤ n. This
second structure theorem (Theorem 4.5) uses the notion of (m,n)-ranker where there are m
blocks of ⊲’s or ⊳’s, that is, changing direction in rankers corresponds exactly to alternation
of quantifiers. Using Theorem 4.5 we prove that there is a strict alternation hierarchy for
FO2

n[<] (Theorem 4.11) but that exactly at most |Σ|+ 1 alternations are useful, where |Σ|
is the size of the alphabet (Theorem 4.7).

The language FO2[<,Suc] is more expressive than FO2[<] because it allows us to talk
about consecutive strings of symbols2. For FO2[<,Suc], a straightforward generalization of
n-ranker to n-successor-ranker allows us to prove exact analogs of Theorems 3.8 and 4.5.
We use the latter to prove that there is also a strict alternation hierarchy for FO2

n[<,Suc]

1See item 7 in Fact 1.1: a “turtle language” is a language of the form “r is defined”, for some ranker, r.
2With three variables we can express Suc(x, y) using the ordering: x < y ∧ ∀z(z ≤ x ∨ y ≤ z).

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 3

(Theorem 5.6). Since in the presence of successor we can encode an arbitrary alphabet in
binary, no analog of Theorem 4.7 holds for FO2[<,Suc].

The expressive power of first-order logic with three or more variables on words has been
well-studied. The languages expressible are of course the star-free regular languages [10].
The dot-depth hierarchy is the natural hierarchy of these languages. This hierarchy is strict
[2] and identical to the first-order quantifier alternation hierarchy [18, 19].

Many beautiful results on FO2 on words were also already known. The main significant
outstanding question was whether there was an alternation hierarchy. The following is a
summary of the main previously known characterizations of FO2[<] on words. For a detailed
treatment of all these characterizations, we refer the reader to [15].

Fact 1.1. [3, 4, 11, 12, 17, 13] Let R ⊆ Σ⋆. The following conditions are equivalent:

(1) R ∈ FO2[<]
(2) R is expressible in unary temporal logic
(3) R ∈ Σ2 ∩Π2[<]
(4) R is an unambiguous regular language
(5) The syntactic semi-group of R is a member of DA

(6) R is recognizable by a partially-ordered 2-way automaton
(7) R is a boolean combination of “turtle languages”

The proofs of our structure theorems are self-contained applications of Ehrenfeucht-
Fräıssé games. All of the above characterizations follow from these results. Furthermore,
we have now exactly connected quantifier and alternation depth to the picture, thus adding
tight bounds and further insight to the above results.

For example, one can best understand item 4 above – that FO2[<] on words corresponds
to the unambiguous regular languages – via Theorem 3.12 which states that any FO2

n[<]
formula with one free variable that is always true of at most one position in any string,
necessarily denotes an n-ranker.

In the conclusion of [13], the authors define the subclasses of rankers with one and two
blocks of alternation. They write that, “. . . turtle languages might turn out to be a helpful
tool for further studies in algebraic language theory.” We feel that the present paper fully
justifies that prediction. Turtle languages — aka rankers — do provide an exceptionally
clear and precise understanding of the expressive power of FO2 on words, with and without
successor.

In summary, our structure theorems provide a complete classification of the expressive
power of FO2 on words in terms of both quantifier depth and alternation. They also tighten
several previous characterizations and lead to the alternation hierarchy results.

We begin the remainder of this paper with a brief review of logical background includ-
ing Ehrenfeucht-Fräıssé games, our main tool. In Sect. 3 we formally define rankers and
present our structure theorem for FO2

n[<]. The structure theorem for FO2
m,n[<] is covered

in Sect. 4, including our alternation hierarchy result that follows from it. Sect. 5 extends
our structure theorems and the alternation hierarchy result to FO2[<,Suc]. Finally, we
discuss applications of our structural results to satisfiability for FO2[<] in Sect. 6.

2. Background and Definitions

We recall some notation concerning strings, first-order logic, and Ehrenfeucht-Fräıssé
games. See [6] for more details, including the proof of Facts 2.1 and 2.2.

4 P. WEIS AND N. IMMERMAN

Σ will always denote a finite alphabet and ε the empty string. For a word w ∈ Σℓ and
i ∈ [1, ℓ], let wi be the i-th letter of w; and for [i, j] a subinterval of [1, ℓ], let w[i,j] be the

substring wi . . . wj . Slightly abusing notation, we identify a word w ∈ Σℓ with the logical
structure w = ({1, . . . , ℓ};Qw

a
, a ∈ Σ;xw; yw). Here Qa, a ∈ Σ are all unary relation symbols,

and x and y are the only two variables. If not specified otherwise, we have xw = yw = 1 by
default, and for all a ∈ Σ, Qw

a
= {1 ≤ i ≤ ℓ | wi = a}. Furthermore, we write (w, i, j) for

the word structure w with the two variables set to i and j, respectively, and (w, i) for the
word structure w with xw = i. Thus w = (w, 1, 1), and (w, i) |= Qa(x) iff wi = a.

We use FO[<] to denote first-order logic with a binary linear order predicate <, and
FO = FO[<,Suc] for first-order logic with an additional binary successor predicate. FO2

n

refers to the restriction of first-order logic to use at most two distinct variables, and quanti-
fier depth n. FO2

m,n is the further restriction to formulas such that any path in their parse

tree has at most m blocks of alternating quantifiers, and FO2–ALT[m] =
⋃

n≥m FO2
m,n. We

write u ≡2
n v to mean that u and v agree on all formulas from FO2

n, and u ≡2
m,n v if they

agree on FO2
m,n.

We assume that the reader is familiar with our main tool: the Ehrenfeucht-Fräıssé
game. In each of the n moves of the game FO2

n(u, v), Samson places one of the two pebble
pairs, x or y on a position in one of the two words and Delilah then answers by placing that
pebble’s mate on a position of the other word. Samson wins if after any move, the map
from the chosen points in u to those in v, i.e., xu 7→ xv, yu 7→ yv is not an isomorphism
of the induced substructures; and Delilah wins otherwise. The fundamental theorem of
Ehrenfeucht-Fräıssé games is the following:

Fact 2.1. Let u, v ∈ Σ⋆, n ∈ N. Delilah has a winning strategy for the game FO2
n(u, v) iff

u ≡2
n v.

Thus, Ehrenfeucht-Fräıssé games are a perfect tool for determining what is express-
ible in first-order logic with a given quantifier-depth and number of variables. The game
FO2

m,n(u, v) is the restriction of the game FO2
n(u, v) in which Samson may change which

word he plays on at most m− 1 times.

Fact 2.2. Let u, v ∈ Σ⋆ and let m,n ∈ N with m ≤ n. Delilah has a winning strategy for
the game FO2

m,n(u, v) iff u ≡2
m,n v.

We end this section with a simple lemma that will be useful whenever we want to prove
that there is a formula expressing a property of strings. With this lemma, it suffices to
show that for any pair of strings, one with the property in question and one without, there
is a formula that distinguishes between these two particular strings.

Lemma 2.3. Let P ⊆ Σ⋆ and let L be a logic closed under boolean operations with only
finitely many inequivalent formulas. If for every u ∈ P and every v ∈ P there is a formula
ϕu,v ∈ L such that u |= ϕu,v and v 6|= ϕu,v, then there is a formula ϕ ∈ L such that for all
w ∈ Σ⋆, w |= ϕ ⇐⇒ w ∈ P .

Proof. Let Γ = {ψu,v | u ∈ P, v ∈ P}, and let Γ′ be a maximal subset of Γ containing
only inequivalent formulas. Since L contains only finitely many inequivalent formulas, Γ′ is
finite. For every u ∈ P , we define the finite sets of formulas Γ′

u = {ψ ∈ Γ′ | u |= ψ}. Since
all these sets are subsets of the finite set Γ′, there can only be finitely many of them. Thus

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 5

there is a finite set P ′ ⊆ P such that {Γ′
u | u ∈ P} = {Γ′

u | u ∈ P ′}. Now we set

ϕ =
∨

u∈P ′

∧

ψ∈Γ′
u

ψ

We have ϕ ∈ L and for every w ∈ Σ⋆, w ∈ P ⇐⇒ w |= ϕ as required.

It is well-known [6] that for any m,n ∈ N, the logics FO2
n and FO2

m,n, both with and
without the successor predicate, have only finitely many inequivalent formulas. Thus the
above lemma applies to these logics.

3. Structure Theorem for FO2[<]

We define boundary positions that point to the first or last occurrences of a letter in
a word, and define an n-ranker as a sequence of n boundary positions. In terms of [13],
boundary positions are turtle instructions and n-rankers are turtle programs of length n.
The following three lemmas show that basic properties about the definedness and position
of these rankers can be expressed in FO2[<], and we use these results to prove our structure
theorem.

Definition 3.1. A boundary position denotes the first or last occurrence of a letter in a
given word. Boundary positions are of the form da where d ∈ {⊲, ⊳} and a ∈ Σ. The
interpretation of a boundary position da on a word w = w1 . . . w|w| ∈ Σ⋆ is defined as
follows.

da(w) =

{

min{i ∈ [1, |w|] | wi = a} if d = ⊲

max{i ∈ [1, |w|] | wi = a} if d = ⊳

Here we set min{} and max{} to be undefined, thus da(w) is undefined if a does not occur
in w. A boundary position can also be specified with respect to a position q ∈ [1, |w|].

da(w, q) =

{

min{i ∈ [q + 1, |w|] | wi = a} if d = ⊲

max{i ∈ [1, q − 1] | wi = a} if d = ⊳

Definition 3.2. Let n be a positive integer. An n-ranker r is a sequence of n boundary
positions. The interpretation of an n-ranker r = (p1, . . . , pn) on a word w is defined as
follows.

r(w) :=











p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

Instead of writing n-rankers as a formal sequence (p1, . . . , pn), we often use the simpler
notation p1 . . . pn. We denote the set of all n-rankers by Rn, and the set of all n-rankers
that are defined over a word w by Rn(w). Furthermore, we set R⋆n :=

⋃

i∈[1,n]Ri and

R⋆n(w) :=
⋃

i∈[1,n]Ri(w).

Definition 3.3. Let r be an n-ranker. As defined above, we have r = (p1, . . . , pn) for
boundary positions pi. The k-prefix ranker of r for k ∈ [1, n] is rk := (p1, . . . , pk).

6 P. WEIS AND N. IMMERMAN

Definition 3.4. Let i, j ∈ N. The order type of i and j is defined as

ord(i, j) =











< if i < j

= if i = j

> if i > j

Lemma 3.5 (distinguishing points on opposite sides of a ranker). Let n be a positive integer,
let u, v ∈ Σ⋆ and let r ∈ Rn(u) ∩ Rn(v). Samson wins the game FO2

n(u, v) where initially
ord(xu, r(u)) 6= ord(xv, r(v)).

Proof. We only look at the case where xu ≥ r(u) and xv < r(v) since all other cases are
symmetric to this one. For n = 1 Samson has a winning strategy: If r is the first occurrence
of a letter, then Samson places y on r(u) and Delilah cannot reply. If r marks the last
occurrence of a letter in the whole word, then Samson places y on r(v). Again, Delilah
cannot reply with any position and thus loses.

u

v

rrn−1

x

x

S : y

D : y

Figure 1: The case rn−1(u) < r(u)

For n > 1, we look at the prefix ranker rn−1

of r. One of the following two cases applies.

(1) rn−1(u) < r(u), as shown in Fig. 1. Sam-
son places pebble y on r(u), and Delilah has
to reply with a position that is to the left of
xv. She cannot choose a position in the in-
terval (rn−1(v), r(v)), because this section
does not contain the letter ur(u). Thus she
has to choose a position left of or equal to
rn−1(v). By induction Samson wins the remaining game.

(2)

u

v

r rn−1

x

x S : y

D : y

Figure 2: The case r(u) < rn−1(u)

r(u) < rn−1(u), as shown in Fig. 2.
Samson places y on r(v), and Delilah has
to reply with a position to the right of xu

and thus to the right of r(u). She cannot
choose any position in (r(u), rn−1(u)), be-
cause this interval does not contain the let-
ter vr(v), thus Delilah has to choose a po-
sition to the right of or equal to rn−1(u).
By induction Samson wins the remaining
game.

Lemma 3.6 (expressing the definedness of a ranker). Let n be a positive integer, and let
r ∈ Rn. There is a formula ϕr ∈ FO2

n[<] such that for all w ∈ Σ⋆, w |= ϕr ⇐⇒ r ∈ Rn(w).

Proof. Using Lemma 2.3 it suffices to consider arbitrary u, v ∈ Σ⋆ with r ∈ Rn(u) and
r /∈ Rn(v), and using Fact 2.1, it suffices to show that Samson wins the game FO2

n(u, v). If
r1, the shortest prefix ranker of r, is not defined over v, the letter referred to by r1 occurs
in u but does not occur in v. Thus Samson easily wins in one move.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 7

u

v

ri ri−1

S : x

D : x

Figure 3: ri(v) is undefined

Otherwise we let ri = (p1, . . . , pi) be the shortest prefix
ranker of r that is undefined over v. Thus ri−1 is defined
over both words. Without loss of generality we assume that
pi = ⊳a. This situation is illustrated in Fig. 3. Notice that
v does not contain any a’s to the left of ri−1(v), otherwise
ri would be defined over v. Samson places x in u on ri(u),
and Delilah has to reply with a position right of or equal to
ri−1(v). Now Lemma 3.5 applies and Samson wins in i− 1
more moves.

Lemma 3.7 (position of a ranker). Let n be a positive integer and let r ∈ Rn. There is a
formula ψr ∈ FO2

n[<] such that for all w ∈ Σ⋆ and for all i ∈ [1, |w|], (w, i) |= ψr ⇐⇒
i = r(w).

Proof. As in the proof of Lemma 3.6, it suffices to show that for arbitrary u, v ∈ Σ⋆,
Samson wins the game FO2

n(u, v) where initially x
u = r(u) and xv 6= r(v). If r(v) is defined

over v, then we can apply Lemma 3.5 immediately to get the desired strategy for Samson.
Otherwise we use the strategy from Lemma 3.6.

Theorem 3.8 (structure of FO2
n[<]). Let u and v be finite words, and let n ∈ N. The

following two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,
(b) for all r ∈ R⋆n(u) and r′ ∈ R⋆n−1(u), ord(r(u), r

′(u)) = ord(r(v), r′(v))

(ii) u ≡2
n v

Notice that condition (i)(a) is equivalent to R⋆n(u) = R⋆n(v). Instead of proving Theorem
3.8 directly, we prove the following more general version on words with two interpreted
variables.

Theorem 3.9. Let u and v be finite words, let i1, i2 ∈ [1, |u|], let j1, j2 ∈ [1, |v|], and let
n ∈ N. The following two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,
(b) for all r ∈ R⋆n(u) and r′ ∈ R⋆n−1(u), ord(r(u), r

′(u)) = ord(r(v), r′(v)), and,

(c) (u, i1, i2) ≡
2
0 (v, j1, j2), and,

(d) for all r ∈ R⋆n(u), ord(i1, r(u)) = ord(j1, r(v)) and ord(i2, r(u)) = ord(j2, r(v))
(ii) (u, i1, i2) ≡

2
n (v, j1, j2)

Proof. For n = 0, (i)(a), (i)(b) and (i)(d) are vacuous, and (i)(c) is equivalent to (ii). For
n ≥ 1, we prove the two implications individually using induction on n.

We first show “¬(i) ⇒ ¬(ii)”. Assuming that (i) holds for n ∈ N but fails for n+ 1, we
show that (u, i1, i2) 6≡

2
n+1 (v, j1, j2) by giving a winning strategy for Samson in the FO2

n+1

game on the two structures. If (i)(c) does not hold, then Samson wins immediately. If (i)(d)
does not hold for n+1, then Samson wins by Lemma 3.5. If (i)(a) or (i)(b) do not hold for
n+ 1, then one of the following three cases applies.

(1) There is an (n+ 1)-ranker that is defined over one word but not over the other.
(2) There are two n-rankers that do not agree on their ordering in u and v.
(3) There is an (n + 1)-ranker that does not appear in the same order on both structures

with respect to a k-ranker where k ≤ n.

We first look at case (2) where there are two rankers r, r′ ∈ R⋆n(u) that disagree on
their ordering in u and v. Without loss of generality we assume that r(u) ≤ r′(u) and

8 P. WEIS AND N. IMMERMAN

r(v) > r′(v), and present a winning strategy for Samson in the FO2
n+1 game. In the first

move he places x on r(u) in u. Delilah has to reply with r(v) in v, otherwise she would lose
the remaining n-move game as shown in Lemma 3.5. Let r′n−1 be the (n− 1)-prefix-ranker
of r′. We look at two different cases depending on the ordering of r′n−1 and r′.

u

v

r′n−1
r r′ r

S : x

D : xS : y

D : y

Figure 4: Two n-rankers appear in differ-
ent order and r′ ends with ⊲.

For r′n−1(u) < r′(u), the situation is illus-
trated in Fig. 4. In his second move, Samson
places y on r′(v). Delilah has to reply with a
position to the left of xu, but she cannot choose
any position from the interval (r′n−1(u), r

′(u))
because it does not contain the letter vyv . So
she has to reply with a position left of or equal
to r′n−1(u), and Samson wins the remaining

FO2
n−1 game as shown in Lemma 3.5.

u

v

r′n−1
r r′ r

S : x

D : x

S : y

D : y

Figure 5: Two n-rankers appear in differ-
ent order and r′ ends with ⊳.

For r′n−1(u) > r′(u), the situation is illus-
trated in Fig. 5. In his second move, Samson
places pebble y on r′(u), and Delilah has to
reply with a position to the right of xv, but
she cannot choose anything from the interval
(r′(v), r′n−1(v)) because this section does not
contain the letter uyu . Thus she has to reply
with a position right of or equal to r′n−1(v),

and Samson wins the remaining FO2
n−1 game

as shown in Lemma 3.5.

u

v

r r′

S : x

a

Figure 6: A letter a occurs between
n-rankers r, r′ in u but not in v

Now we look at cases (1) and (3), assuming that
case (2) does not apply. We know that condition
(i) from the statement of the theorem fails, but still
all n-rankers agree on their ordering. In both case
(1) and case (3), there are two consecutive n-rankers
r, r′ ∈ Rn(u) with r(u) < r′(u) and a letter a ∈ Σ such
that without loss of generality a occurs in the segment
u((r(u),r′(u)) but not in the segment v(r(v),r′(v)). We
describe a winning strategy for Samson in the game
FO2

n+1(u, v). He places x on an a in the segment
(r(u), r′(u)) of u, as shown in Fig. 6. Delilah can-
not reply with anything in the interval (r(v), r′(v)). If she replies with a position left of or
equal to r(v), then x is on different sides of the n-ranker r in the two words. Thus Lemma
3.5 applies and Samson wins the remaining n-move game. If Delilah replies with a position
right of or equal to r′(v), then we can apply Lemma 3.5 to r′ and get a winning strategy
for the remaining game as well. This concludes the proof of “¬(i) ⇒ ¬(ii)”.

To show “(i) ⇒ (ii)”, we assume (i) for n+1, and present a winning strategy for Delilah
in the FO2

n+1 game on the two structures. In his first move Samson picks up one of the two
pebbles, and places it on a new position. Without loss of generality we assume that Samson
picks up x and places it on u in his first move. If xu = r(u) for any ranker r ∈ R⋆n+1(u),
then Delilah replies with xv = r(v). This establishes (i)(c) and (i)(d) for n, and thus Delilah
has a winning strategy for the remaining FO2

n game by induction.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 9

If Samson does not place xu on any ranker from R⋆n+1(u), then we look at the closest
rankers from R⋆n(u) to the left and right of xu, denoted by λ and ρ, respectively. Let a := uxu
and define the (n + 1)-ranker s = (λ, ⊲a). On u we have λ(u) < s(u) < ρ(u). Because of
(i)(a) s is defined on v as well, and because of (i)(b), we have λ(v) < s(v) < ρ(v). If yu is
not contained in the interval (λ(u), ρ(u)), then Delilah places x on s(v), which establishes
(i)(c) and (i)(d) for n. Thus by induction Delilah has a winning strategy for the remaining
FO2

n game.

u

v
λ s ρ

y

y

S : x

Figure 7: x and y are in the same section

If both pebbles xu and yu occur in the in-
terval (λ(u), ρ(u)), then we need to be more
careful. Without loss of generality we assume
yu < xu as illustrated in Fig. 7. Thus Delilah
has to place x in the interval (yv, ρ(v)) and at
a position with letter a := uxu . We define the
n + 1-ranker s = (ρ, ⊳a). From (i)(d) we know
that s appears on the same side of y in both
structures, thus we have yv < s(v) < ρ(v).
Delilah places her pebble x on s(v), and thus
establishes (i)(c) and (i)(d) for n. By induction, Delilah has a winning strategy for the
remaining FO2

n game.

A fundamental property of an n-ranker is that it uniquely describes a position in a
given word. Now we show that the converse holds as well: Any position in a word that can
be uniquely described with an FO2[<] formula can also be described by a ranker (Lemma
3.11). Furthermore, any FO2[<] formula that describes a unique position in any given word
is equivalent to a boolean combination of rankers (Theorem 3.12).

Definition 3.10 (unique position formula). A formula ϕ ∈ FO2[<] with x as a free variable
is a unique position formula if for all w ∈ Σ⋆ there is at most one i ∈ [1, |w|] such that
(w, i) |= ϕ.

Lemma 3.11. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position formula.

Let u ∈ Σ⋆ and let i ∈ [1, |u|] such that (u, i) |= ϕ. Then i = r(u) for some ranker r ∈ R⋆n.

Proof. Suppose for the sake of a contradiction that there is no ranker r ∈ R⋆n such that
(u, i) |= ϕr. Because the first and last positions in u are described by 1-rankers, we know
that i /∈ {1, |u|}. We construct a new word v by doubling the symbol at position i in u,
v = u1 . . . ui−1uiuiui+1 . . . u|u|. By assumption, there is no n-ranker that describes position
i in u. A brief argument by contradiction shows that there are also no n-rankers that
describe positions i or i+ 1 in v: Assuming that such a ranker exists, let r be the shortest
such ranker. Thus none of the prefix rankers of r point to either positions i or i + 1 in v.
This means that all prefix rankers of r are interpreted in exactly the same way on both
u and v, and irrespective of whether r(v) points to i or i + 1, we have have r(u) = i, a
contradiction. Hence all n-rankers are insensitive to the doubling of ui, and the two words
u and v agree on the definedness of all n-rankers and on their ordering. By Theorem 3.9,
we thus have (u, i) ≡2

n (v, i) ≡2
n (v, i + 1), which contradicts the fact that ϕ is a unique

position formula.

Theorem 3.12. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position

formula. There is a k ∈ N, and there are mutually exclusive formulas αi ∈ FO2
n[<] and

10 P. WEIS AND N. IMMERMAN

rankers ri ∈ R⋆n such that

ϕ ≡
∨

i∈[1,k]

(αi ∧ ϕri)

where ϕri ∈ FO2
n[<] is the formula from Lemma 3.7 that uniquely describes the ranker ri.

Proof. Let T be the set of all FO2
n[<] types of words over Σ with one interpreted variable.

Because there are only finitely many inequivalent formulas in FO2
n[<], T is finite. Let

T ′ ⊆ T be the set of all types that satisfy ϕ. We set T ′ = {T1, . . . , Tk} and let αi ∈ FO2
n[<]

be a description of type Ti. Thus ϕ ≡
∨

i∈[1,k] αi.

Now suppose that (u, j) |= ϕ. Thus (u, j) |= αi for some i. By Lemma 3.11 (u, j) |= ϕri
for some ri ∈ R

⋆
n. Thus αi → ϕri since ϕri ∈ FO2

n and αi is a complete FO2
n formula. Thus

αi ≡ αi ∧ ϕri so ϕ is in the desired form.

4. Alternation hierarchy for FO2[<]

We define alternation rankers and prove our structure theorem (Theorem 4.5) for
FO2

m,n[<]. Surprisingly the number of alternating blocks of ⊳ and ⊲ in the rankers cor-
responds exactly to the number of alternating quantifier blocks. The main ideas from our
proof of Theorem 3.8 still apply here, but keeping track of the number of alternations does
add complications.

Definition 4.1 (m-alternation n-ranker). Let m,n ∈ N with m ≤ n. An m-alternation
n-ranker, or (m,n)-ranker, is an n-ranker with exactly m blocks of boundary positions that
alternate between ⊲ and ⊳.

We use the following notation for alternation rankers.

Rm,n(w) := {r | r is an m-alternation n-ranker and defined over the word w}

Rm⊲,n(w) := {r ∈ Rm,n(w) | r ends with ⊲}

R⋆m,n(w) :=
⋃

i∈[1,m],j∈[1,n]

Ri,j(w)

R⋆m⊲,n(w) := R⋆m−1,n(w) ∪
⋃

i∈[1,n]

Rm⊲,i(w)

Lemma 4.2. Let m and n be positive integers with m ≤ n, let u, v ∈ Σ⋆, and let r ∈
Rm,n(u) ∩ Rm,n(v). Samson wins the game FO2

m,n(u, v) where initially ord(r(u), xu) 6=
ord(r(v), xv).

Furthermore, Samson can start the game with a move on u if r ends with ⊲, r(u) ≤ xu

and r(v) ≥ xv, or if r ends with ⊳, r(u) ≥ xu and r(v) ≤ xv. He can start the game with a
move on v if r ends with ⊲, r(u) ≥ xu and r(v) ≤ xv, or if r ends with ⊳, r(u) ≤ xu and
r(v) ≥ xv.

Proof. If m = n = 1, then we can immediately apply the base case from the proof of Lemma
3.5. Samson wins in one move, placing his pebble on u or v as specified.

For the remaining cases, we assume without loss of generality that r ends with ⊲ and
that xu ≥ r(u) and xv ≤ r(v). Let rn−1 be the (n− 1)-prefix ranker of r. This situation is
illustrated in Fig. 1 of Lemma 3.5. Samson places y on r(u), and creates a situation where
yu > rn−1(u) and yv ≤ rn−1(v). If rn−1 ends with ⊳, then by induction Samson wins the

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 11

remaining FO2
m−1,n−1 game and thus he has a winning strategy for the FO2

m,n game. If

rn−1 ends with ⊲, then by induction Samson wins the remaining FO2
m,n−1 game starting

with a move on u, and thus he has a winning strategy for the FO2
m,n game.

Lemma 4.3. Let m and n be positive integers with m ≤ n and let r ∈ Rm,n. There is a

ϕr ∈ FO2
m,n[<] such that for all w ∈ Σ⋆, w |= ϕr ⇐⇒ r ∈ Rm,n(w).

Proof. Using Lemma 2.3 it suffices to consider arbitrary u, v ∈ Σ⋆ with r ∈ Rm,n(u) and

r /∈ Rm,n(v), and using Fact 2.1, it suffices to show that Samson wins the game FO2
m,n(u, v).

Let ri = (p1, . . . , pi) be the shortest prefix ranker of r that is undefined over v, and we assume
without loss of generality that this ranker ends with the boundary position pi = ⊳a for some
a ∈ Σ. This situation is illustrated in Fig. 3 for Lemma 3.7. In his first move Samson places
x on ri(u) and thus forces a situation where xu < ri−1(u) and xv ≥ ri−1(v). If ri−1 ends
with ⊳, then according to Lemma 4.2, Samson wins the remaining FO2

m,n−1 game starting
with a move on u. Otherwise ri−1 ends with ⊲, and thus by Lemma 4.2 Samson wins the
remaining FO2

m−1,n−1 game starting with a move on v.

Lemma 4.4. Let m and n be positive integers with m ≤ n and let r ∈ Rm,n. There is a
formula ψr ∈ FO2

m,n[<] such that for all w ∈ Σ⋆ and for all i ∈ [1, |w|], (w, i) |= ψr ⇐⇒
i = r(w).

Proof. As in the proof of Lemma 4.3, it suffices to show that Samson wins the game
FO2

m,n(u, v) where initially xu = r(u) and xv 6= r(v). Depending on whether r is de-
fined over v, we use the strategies from Lemma 4.2 or Lemma 4.3.

Theorem 4.5 (structure of FO2
m,n[<]). Let u and v be finite words, and let m,n ∈ N with

m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(u) = Rm,n(v), and,
(b) for all r ∈ R⋆m,n(u) and for all r′ ∈ R⋆m−1,n−1(u), we have

ord(r(u), r′(u)) = ord(r(v), r′(v)), and,
(c) for all r ∈ R⋆m,n(u) and r′ ∈ R⋆m,n−1(u) such that r and r′ end with different

directions, ord(r(u), r′(u)) = ord(r(v), r′(v))
(ii) u ≡2

m,n v

Just as before with Theorem 3.8, instead of proving Theorem 4.5 directly, we prove a
more general version that applies to words with two interpreted variables. The statement
of the general version is asymmetric with respect to the roles of the two structures u and
v. This is necessary because of the correspondence between quantifier alternations (i.e.
alternations between u and v in the game) and alternations of directions in the rankers.
This asymmetry already affected the statement of Lemma 4.2, where Samson’s winning
strategy starts with a move on the specified structure. In fact, as the proof of the following
theorem shows, he does not have a winning strategy that starts with a move on the other
structure. We remark that conditions (i)(a) through (i)(e) of the general theorem are
completely symmetric with respect to the roles of u and v, and only conditions (i)(f) and
(ii) are asymmetric. Theorem 4.5 follows directly from the general theorem, since here
i1 = i2 = j1 = j2 = 1, thus conditions (i)(e) and (i)(f) or trivially true, and the equivalence
holds with the roles of u and v reversed as well.

12 P. WEIS AND N. IMMERMAN

Theorem 4.6. Let u and v be finite words, let i1, i2 ∈ [1, |u|], let j1, j2 ∈ [1, |v|], and let
m,n ∈ N with m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(u) = Rm,n(v), and,
(b) for all r ∈ R⋆m,n(u) and for all r′ ∈ R⋆m−1,n−1(u), we have

ord(r(u), r′(u)) = ord(r(v), r′(v)), and,
(c) for all r ∈ R⋆m,n(u) and r′ ∈ R⋆m,n−1(u) such that r and r′ end with different

directions, ord(r(u), r′(u)) = ord(r(v), r′(v))
(d) (u, i1, i2) ≡

2
0 (v, j1, j2), and,

(e) for all r ∈ R⋆m−1,n(u), ord(r(u), i1) = ord(r(v), j1) and ord(r(u), i2) = ord(r(v), j2),
and,

(f) for all r ∈ R⋆m,n(u), and (i, j) ∈ {(i1, j1), (i2, j2)},
(f1) if r ends on ⊲ and r(u) = i, then r(v) ≤ j
(f2) if r ends on ⊲ and r(u) < i, then r(v) < j
(f3) if r ends on ⊳ and r(u) = i, then r(v) ≥ j
(f4) if r ends on ⊳ and r(u) > i, then r(v) > j

(ii) Delilah wins the game FO2
m,n[<]((u, i1, i2), (v, j1, j2)) if Samson starts with a move on

(u, i1, i2).

Proof. As in the proof of Theorem 3.8, we use induction on n. For n = 0, condition (i)(d)
just by itself is equivalent to (ii), and all other conditions of (i) are vacuous. For n ≥ 1, we
we first show “¬ (i) ⇒ ¬ (ii)”.

Suppose that (i) holds for (m,n), but fails for (m,n + 1). If (i)(d) does not hold then
Samson wins immediately. If (i)(e) does not hold for (m,n+1), then by Lemma 4.2, Samson
wins the (m,n + 1)-game on (u, v), starting with a move on either u or v. If Samson can
start with a move on u, we have established that (ii) is false. Otherwise, we reverse the
roles of u and v, and observe that condition (i)(e) still remains the same. Thus, even if
Samson needs to start with a move on v, he still has a winning strategy, and (ii) does not
hold for (m,n + 1). If (i)(f) does not hold for (m,n + 1), then again by using Lemma 4.2,
Samson wins the (m,n+ 1)-game on (u, v) starting with a move on u.

If one of (i)(a), (i)(b) or (i)(c) fail, then we show that Samson has a winning strategy
for the game FO2

m,n+1(u, v). We observe that it does not matter what structure Samson
chooses for his first move, since all of (i)(a), (i)(b) and (i)(c) are completely symmetric with
respect to the roles of u and v. Thus if Samson’s winning strategy starts with a move on
v, we can reverse the roles of u and v and get a winning strategy starting with move on u.
One of the following cases applies.

(1) There is a ranker r ∈ Rm,n+1 that is defined over one structure but not over the other.

This first case applies if (a) fails for (m,n + 1). If condition (2) fails for (m,n + 1), then
there are two n-rankers for which it fails, or an (n+ 1)-ranker and an n-ranker. This leads
to the following two cases.

(2) There are two rankers r ∈ Rm,n(u) and r
′ ∈ Rm−1,n(u) that disagree on their order, i.e.

ord(r(u), r′(u)) 6= ord(r(v), r′(v)).
(3) There are two rankers r ∈ Rm,n+1(u) and r

′ ∈ Rm−1,n(u) that disagree on their order.

In a similar fashion, we obtain the remaining two cases if condition (3) fails for (m,n+ 1).

(4) There are rankers r, r′ ∈ Rm,n(u) that end on different directions and disagree on their
order.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 13

(5) There are rankers r ∈ Rm,n+1(u) and r
′ ∈ Rm,n(u) that end on different directions and

disagree on their order.

We look at the cases (2) and (4) first, then deal with case (1) assuming that cases (2)
and (4) do not apply, and finally look at cases (3) and (5).

For case (2), we assume that r(u) ≤ r′(u), as illustrated in Fig. 8. The situation for
r(u) ≥ r′(u) is completely symmetric. Depending on the last boundary position of r, one
of the following two subcases applies.

u

v

r r′ r

Figure 8: r and r′ appear in
different order

• r ends with ⊲. Samson places x on r(u) in his first move.
If Delilah replies with a position to the left of r′(v) or
equal to r′(v), then xv < r(v). Thus we can apply Lemma
4.2 to get a winning strategy for Samson in the remaining
FO2

m,n game that starts with a move on u. If Delilah
replies with a position to the right of r′(v), Samson has a
winning strategy for the remaining FO2

m−1,n game. Thus

we have a winning strategy for Samson in the FO2
m,n+1

game.
• r ends with ⊳. This is similar to the previous case, but now Samson places x on r(v) in
his first move. If Delilah replies with a position to the right of r′(u), or equal to r′(u),
then as above we get a winning strategy for Samson in the remaining FO2

m,n game that
starts with a move on v. Otherwise we get a winning strategy for Samson with only
m− 1 alternations for the remaining game. Thus again he has a winning strategy for the
FO2

m,n+1 game.

For case (4), Samson’s winning strategy is very similar to the previous case. If r(u) ≤
r′(u) and r ends with ⊲, then Samson places x on r(u) in his first move. If Delilah replies
with a position to the right of r(u), then Samson’s winning strategy is as above. Otherwise
x is on different sides of r′ and Samson has a winning strategy for the remaining FO2

m,n

game that starts with a move on u. All together, he has a winning strategy for the FO2
m,n+1

game. The remaining three cases (ordering of r(u) and r′(u) and ending direction of r)
work in the same way.

Similar to what we did in the proof of Theorem 3.8, we can reduce the remaining cases
to an easier situation where a certain segment contains a certain letter in one structure,
but not in the other structure, and then apply Lemma 4.2 to obtain a winning strategy for
Samson.

To deal with case (1), we assume that the previous two cases, (2) and (4), do not apply.
Without loss of generality, say that the (m,n+1)-ranker r is defined over u but not over v.
Let a := ur(u) be the letter in u at position r(u). We define the following sets of rankers.

Rℓ := {s ∈ R⋆m⊲,n(u) | s(u) < r(u)}

Rr := {s ∈ R⋆m⊳,n(u) | s(u) > r(u)}

Notice that all rankers from Rℓ appear to the left of all rankers from Rr in u. From
the inductive hypothesis, and from the fact that both cases (2) and (4) do not apply, it
follows that over v, all rankers from Rℓ appear to the left of all rankers from Rr as well.
However, the rankers from Rℓ and Rr by themselves do not necessarily appear in the same
order in both structures. We look at the ordering of these rankers in v, and let λ be the
rightmost ranker from Rℓ and ρ be the leftmost ranker from Rr. By construction, we have

14 P. WEIS AND N. IMMERMAN

λ(u) < r(u) < ρ(u), so the segment (λ, ρ) in u contains the letter a. Let rn be the n-prefix-
ranker of r, and observe that rn is defined on both structures and that rn is contained in
either Rℓ or Rr. Because r is not defined on v, the letter a does not occur in v either to
the right of rn if rn ∈ Rℓ, or to the left of rn if rn ∈ Rr. Thus the segment (λ, ρ) does not
contain the letter a in v.

u

v
λ ρ

S : x

a

Figure 9: A letter occurs between
rankers r, r′ in u but not in v

Now we know that a occurs in the segment (λ, ρ)
in u but not in v, and thus we have established the
situation illustrated in Fig. 9. Samson places his first
pebble on an a within this section of u, and Delilah has
to reply with a position outside of this section. No mat-
ter what side of the segment she chooses, with Lemma
4.2 Samson has a winning strategy for the remaining
game and thus wins the FO2

m,n+1 game.
In cases (3) and (5), we again assume that cases

(2) and (4) do not apply, and we look at the same sets
of rankers, Rℓ and Rr, and at rn, the n-prefix-ranker of
r. We assume that r(u) ≤ r′(u) and that r ends with ⊲, all three other cases are completely
symmetric. Notice that rn is an (m − 1, n)-ranker, or an (m,n)-ranker that ends with ⊲.
Thus both structures agree on the ordering of rn and r′. The relative positions of all these
rankers are illustrated in Fig. 10. As above, let λ be the rightmost ranker from Rℓ and let ρ
be the leftmost ranker from Rr, with respect to the ordering of these rankers on v. Again we
know that λ(u) < r(u) < ρ(u) and therefore the segment (λ, ρ) of u contains an a. Notice
that rn ∈ Rℓ and r

′ ∈ Rr, thus rn(v) ≤ λ(v) < ρ(v) ≤ r′(v). Thus the segment (λ, ρ) does
not contain the letter a in v, providing Samson with a winning strategy as argued above.

u

v

r r′ rrn

Figure 10: Ranker positions, case (4)

To prove “(i) ⇒ (ii)”, we assume that the the-
orem holds for n, and that (i) holds for (m,n + 1),
and we present a winning strategy for Delilah in
the game FO2

m,n+1(u, v) where Samson starts with
a move on u.

If Samson places x on a ranker r ∈ R⋆m−1,n(u),
then Delilah replies by placing x on the same ranker
on v. Since (i)(b) holds for (m,n + 1), this estab-
lishes (i)(e) and (i)(f) for (m,n). It also establishes (i)(e) and (i)(f) for (m − 1, n) with
reversed roles of u and v. Thus we can apply the inductive hypothesis to get a winning
strategy for Delilah in the remaining game.

If xu = yu after Samson’s first move, then Delilah replies with xv = yv. We use the
inductive hypothesis to argue that Delilah wins the remaining n-move game, no matter
what structure Samson chooses for his next move. If he chooses to play on u, then the
remaining game is an (m,n)-game. Since in the first move Delilah set xv = yv, we have
(i)(e) and (i)(f) for (m,n), and thus the inductive hypothesis applies and Delilah wins the
remaining game. On the other hand, if Samson chooses to play on v for the next move, the
remaining game is an (m− 1, n)-game, since he started with a move on u. Because Delilah
set xv = yv in the first move, (i)(e) for (m,n+1) implies both (i)(e) and (i)(f) for (m−1, n)
with reversed roles of u and v. Thus we can again use the inductive hypothesis to get a
winning strategy for Delilah in the remaining game.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 15

Otherwise we assume that xu < yu after Samson’s first move, the case for xu > yu is
completely symmetric. We look at the following two sets of rankers.

Rℓ := {r ∈ R⋆m⊲,n(u) | r(u) < xu}

Rr := {r ∈ R⋆m⊳,n(u) | r(u) > xu}

On u, all rankers from Rℓ occur to the left of all rankers from Rr. Since (i)(c) holds for
(m,n + 1), this is also true for the positions of these rankers on v. Let a be the letter
Samson places his pebble on. To establish both (i)(e) and (i)(f) for (m,n), Delilah needs to
find an a in v that is to the right of all rankers from Rℓ and to the left of all rankers from
Rr. We define

R0
ℓ = {r ∈ R⋆m⊲,n(u)−R⋆m−1,n(u) | r(u) = xu}

R0
r = {r ∈ R⋆m⊳,n(u)−R⋆m−1,n(u) | r(u) = xu}

R′
ℓ := {r⊲a | r ∈ Rℓ} ∪R

0
ℓ

and have Delilah place her pebble xv on the rightmost ranker from R′
ℓ on v. This position

of course is labeled with an a. Since on u all rankers from R′
ℓ occur to the left of or at xu,

all of them occur strictly to the left of yu. Since all rankers in R′
ℓ are from R⋆m−1,n+1(u) or

R⋆m⊲,n+1(u), we can apply (i)(e) and (i)(f2), and we see that all of these rankers also appear
to the left of yv. Therefore we have xv < yv, which makes sure that Delilah does not lose
in this move, and also establishes (i)(d).

To complete the inductive step, we need to argue that Delilah’s move also establishes
(i)(e) and (i)(f), both for (m,n), and for (m − 1, n) with reversed roles of u and v. Then,
using the inductive hypothesis, Delilah has a winning strategy for the remaining game, no
matter what side Samson chooses for his next move.

We observe that all rankers from R′
ℓ appear to the right of the rankers from Rr. This is

true by definition on u, and holds for v because (i)(b) and (i)(c) hold for (m,n+ 1). Since
Delilah placed xv on a ranker from R′

ℓ, we have (i)(e), (i)(f2) and (i)(f4) for (m,n) for all
all rankers from Rr. And since Delilah placed xv on the rightmost of the rankers from R′

ℓ,
we know that all rankers from Rℓ appear to the left of xv, just as they do on u. Thus we
have (i)(e), (i)(f2) and (i)(f4) for the rankers from Rℓ as well, and therefore for all rankers
mentioned in those conditions.

All rankers from R⋆m⊲,n that appear at xu are in R0
ℓ , since we already dealt with the

case where xu does appear at a ranker from R⋆m−1,n. Since Delilah chose xv as the rightmost

ranker from R′
ℓ, all of these rankers appear to the left of or at xv, and we have established

(i)(f1) for (m,n). For condition (i)(f3), we need to argue about R0
r . From (i)(b) and (i)(c)

for (m,n + 1), we know that all rankers from R0
r appear to the right of or at the same

position as the rankers from R′
ℓ on v, just as they do on u. Thus (i)(f3) holds as well.

Now that we have established (i) for (m,n), we use the inductive hypothesis to get a
winning strategy for Delilah for the remaining game if Samson’s next move is on u. For
the case where his next move is on v, we only need to establish (i) for (m− 1, n), but with
reversed roles of u and v. Reversing the roles of the two structures only affects condition
(i)(f), and (i)(f) for (m− 1, n) follows immediately from (i)(e) for (m,n). Thus Delilah also
wins the remaining game if Samson’s next move is on v.

Using Theorem 4.5, we show that for any fixed alphabet Σ, at most |Σ|+1 alternations
are useful. Intuitively, each boundary position in a ranker says that a certain letter does
not occur in some part of a word. Alternations are only useful if they visit one of these

16 P. WEIS AND N. IMMERMAN

previous parts again. Once we visited one part of a word |Σ| times, this part cannot contain
any more letters and thus is empty.

Theorem 4.7. Let Σ be a finite alphabet, let u, v ∈ Σ⋆ and n ∈ N. If u ≡2
|Σ|+1,n v, then

u ≡2
n v.

Proof. Suppose for the sake of a contradiction that u ≡2
|Σ|+1,n v and u 6≡2

n v. Thus, using

Theorem 4.5, u and v agree on the definedness of all (|Σ|+1, n)-rankers, and on their order
with respect to all (|Σ|, n− 1)-rankers and some (|Σ|+ 1, n− 1)-rankers. But since u 6≡2

n v,
u and v need to disagree on the properties of some other ranker. Let r = (p1, . . . , pt) with
t ∈ N be the shortest such ranker. We know that r has more than |Σ| blocks of alternating
directions, say r is an m-alternation ranker for some m > |Σ|. Let 1 ≤ k1, . . . , km ≤ t be
the indices of the boundary positions at the end of each block, i.e. where pki , 1 ≤ i < m
points to a different direction than pki+1. For the last of those indices we have km = t.

We look at the prefix rankers of r up to the end of each alternating block, rki :=
(p1, . . . , pki), and the intervals defined by these prefix rankers. We set I0(u) := [1, |u|],
r0(u) = 0 if p1 points to the right, and r0(u) = |u| + 1 if p1 points to the left. For all
i ∈ [1,m] let,

Ii(u) :=

{

[rki−1(u) + 1, rki(u)− 1] if pki points to the right

[rki(u) + 1, rki−1(u)− 1] if pki points to the left

Notice that by definition the letter mentioned in pki does not occur in the interval Ii.
Suppose that for all i ∈ [1,m] we have rki(u) ∈ Ii−1(u). Then the letter mentioned in

pki has to occur in the interval Ii−1(u) of u, but the interval I|Σ|(u) of u cannot contain any
of the |Σ| distinct letters. Therefore rk|Σ|+1

/∈ I|Σ| and we have a contradiction.

Otherwise there is an i ∈ [1,m] such that rki(u) /∈ Ii−1(u). We will construct a ranker
r′ that is shorter than r, does not have more alternations than r and occurs at exactly
the same position as r in both u and v. The main idea for this construction is that if
rki(u) /∈ Ii−1(u), then it is not useful to enter this interval at all. By our assumption, u
and v disagree on some property of the ranker r, and thus on some property of the shorter
ranker r′. This contradicts our assumption that r was the shortest such ranker.

Now we show how to construct a shorter ranker r′ that occurs at the same position
as r. We assume without loss of generality that pki points to the left. In this case we
have rki(u) /∈ Ii−1(u) = [rki−1−1(u) + 1, rki−1

(u) − 1]. We look at the relative positions
of the rankers rki−1+1, . . . , rki with respect to the ranker rki−1−1. We know that rki(u) ≤
rki−1−1(u), and we are interested in the right-most of the rankers rki−1+1, . . . , rki that is still
outside of the interval Ii−1(u). Let rj be this ranker. Thus we have

rki(u) < . . . < rj(u) ≤ rki−1−1(u) < rj−1(u) < . . . < rki−1+1(u) < rki−1
(u)

We know that u ≡2
|Σ|+1,n v, thus by Theorem 4.5, these rankers occur in exactly the same

order in v. Now we set s := (rki−1−1, pj , . . . , pki). Because u and v agree on the ordering of
the relevant rankers, we have s(u) = rki(u) and s(v) = rki(v). Therefore we have reduced
the size of a prefix of r without increasing the number of alternations, and thus have a
shorter ranker r′ that occurs at the same position as r in both structures.

In order to prove that the alternation hierarchy for FO2 is strict, we define example
languages that can be separated by a formula of a given alternation depth m, but that
cannot be separated by any formula of lower alternation depth. As Theorem 4.7 shows, we

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 17

need to increase the size of the alphabet with increasing alternation depth. We inductively
define the example words um,n and vm,n and the example languages Km and Lm over finite
alphabets Σm = {a0, . . . , am−1}. Here i, m and n are positive integers.

u1,n := a0 v1,n := ε

u2,n := a0(a1a0)
2n v2,n := (a1a0)

2n

u2i+1,n := (a0 . . . a2i)
n u2i,n v2i+1,n := (a0 . . . a2i)

n v2i,n

u2i+2,n := u2i+1,n (a2i+1 . . . a0)
n v2i+2,n := v2i+1,n (a2i+1 . . . a0)

n

Notice that um,n and vm,n are almost identical – if we delete only one a0 from um,n, we get
vm,n. Finally, we set Km :=

⋃

n≥1{um,n} and Lm :=
⋃

n≥1{vm,n}.

Definition 4.8. A formula ϕ separates two languages K,L ⊆ Σ⋆ if for all w ∈ K we have
w |= ϕ and for all w ∈ L we have w 6|= ϕ or vice versa.

Lemma 4.9. For all m ∈ N, there is a formula ϕm ∈ FO2[<]–ALT[m] that separates Km

and Lm.

Proof. For m = 1, we can easily separate K1 = {a0} and L1 = {ε} with the formula
∃x(x = x). For all larger m, we show that the two languages Km and Lm differ on the
ordering of two (m − 1)-alternation rankers. Then by Theorem 4.5 there is an FO2

m,m[<]
formula that separates Km and Lm. We inductively define the rankers

r2 := ⊲a0 s2 := ⊲a1
r2i+1 := ⊳a2ir2i s2i+1 := ⊳a2is2i

r2i+2 := ⊲a2i+1
r2i+1 s2i+2 := ⊲a2i+1

s2i+1

For m = 2, it is easy to see that r2(u2,n) < s2(u2,n), but r2(v2,n) > s2(v2,n). For m > 2,
these rankers disagree on their order as well. To prove this, we prove the following two
equalities.

r2i+2(u2i+2,n) = r2i+1(u2i+1,n) = (2i + 1)n + r2i(u2i,n)

To prove this, we first use the definitions above and write

r2i+2(u2i+2,n) = (⊲a2i+1
r2i+1)(u2i+1,n (a2i+1 . . . a0)

n)

The letter a2i+1 does not occur in the word u2i+1,n, and thus ⊲a2i+1
(u2i+2,n) points to the

first position in u2i+2,n right after the copy of u2i+1,n. We observe that r2i+1 starts with
⊳, and that r2i+1 is defined on u2i+1,n. Thus the evaluation of the remainder of r2i+2 on
u2i+2,n never leaves the copy of u2i+1,n, and we have

r2i+2(u2i+2,n) = r2i+1(u2i+1,n)

For the second part of the equality, we have

r2i+1(u2i+1,n) = (⊳a2ir2i)((a0 . . . a2i)
n u2i,n)

As above, the letter a2i does not occur in the word u2i,n, and thus ⊳a2i(u2i+1,n) points to
the position in u2i+1,n right before the copy of u2i,n. The ranker r2i starts with ⊲, and r2i
is defined on u2i,n. Thus, just as above, the evaluation of the remainder of r2i+1 on u2i+1,n

never leaves the copy of u2i,n, and we have

r2i+1(u2i+1,n) = (2i+ 1)n + r2i(u2i,n)

18 P. WEIS AND N. IMMERMAN

Exactly the same holds for the other rankers (s2, . . .) and words (v2,n, . . .). We have

r2i+2(u2i+2,n) = r2i+1(u2i+1,n) = (2i+ 1)n+ r2i(u2i,n)

s2i+2(u2i+2,n) = s2i+1(u2i+1,n) = (2i+ 1)n + s2i(u2i,n)

r2i+2(v2i+2,n) = r2i+1(v2i+1,n) = (2i+ 1)n+ r2i(v2i,n)

s2i+2(v2i+2,n) = s2i+1(v2i+1,n) = (2i+ 1)n + s2i(v2i,n)

Now an easy inductive argument, based on the two equalities we just proved, shows
that the rankers disagree on their order. Therefore condition (i)(b) of Theorem 4.5 fails for
any pair of words, and there is a formula in FO2

m,m[<] that separates Km and Lm.

Lemma 4.10. For m ∈ N, m ≥ 1, and all n ∈ N, we have um,n ≡2
m−1,n vm,n.

Proof. Because we do not have constants, there are no quantifier-free sentences. Thus
FO2

0,n[<] does not contain any formulas and the statement holds trivially for m = 1.
For m ≥ 2 and any n ≥ m, we claim that exactly the same (m − 1, n)-rankers are

defined over um,n and vm,n, and that all (m− 1, n)-rankers appear in the same order with
respect to all (m− 2, n − 1)-rankers and all (m − 1, n − 1)-rankers that end on a different
direction. Once we established this claim, the lemma follows immediately from Theorem
4.5. We already observed that um,n and vm,n are almost identical. The only difference
between the two words is that um,n contains the letter a0 in the middle whereas vm,n does
not. Thus we only have to consider rankers that are affected by this middle a0.

We claim that any ranker that points to the middle a0 of um,n requires at least m− 1
alternations. Furthermore, we claim that any such ranker needs to start with ⊲ for even m
and with ⊳ for odd m. We prove this by induction on m.

For m = 2 we have u2,n = a0(a1a0)
n. Any n-ranker that starts with ⊳ cannot reach the

first a0, thus we need a ranker that starts with ⊲.
For odd m > 2 we have um,n = (a0 . . . am−1)

num−1,n. Any n-ranker that starts with ⊲
cannot leave the first block of n ·m symbols of this word and thus not reach the middle a0.
Therefore we need to start with ⊳, and in fact use ⊳am−1

at some point, because we would
not be able to leave the last section of um−1,n otherwise. But with ⊳am−1

we move past all
of um−1,n, and we need one alternation to turn around again. By induction, we need at
least m− 2 alternations within um−1,n, and thus m− 1 alternations total.

The argument for even m is completely symmetric. Thus we showed that we need at
least m − 1 alternation blocks to point to the middle a0. Furthermore, we showed that if
we have exactly m − 1 alternation blocks, then the last of these blocks uses ⊲. Therefore
we only need to consider (m − 1)-alternation rankers that end on ⊲ and pass through the
middle a0. It is easy to see that all of these rankers agree on their ordering with respect
to all other (m− 2)-alternation rankers, and with respect to all (m− 1)-alternation rankers
that end on ⊳.

To summarize, we showed that um,n and vm,n satisfy condition (i) from Theorem 4.5
for m− 1 alternations. Thus the two words agree on all formulas from FO2

m−1,n[<].

Theorem 4.11 (alternation hierarchy for FO2[<]). For any positive integer m, there is a
ϕm ∈ FO2[<]–ALT[m] and there are two languages Km, Lm such that ϕm separates Km

and Lm, but no ψ ∈ FO2[<]–ALT[m− 1] separates Km and Lm.

Proof. The theorem immediately follows from Lemma 4.9 and Lemma 4.10.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 19

Theorem 4.11 resolves an open question from [3, 4].

5. Structure Theorem and Alternation Hierarchy for FO2[<,Suc]

We extend our definitions of boundary positions and rankers from Sect. 3 to include
the substrings of a given length that occur immediately before and after the position of the
ranker.

Definition 5.1. A (k, ℓ)-neighborhood boundary position denotes the first or last occurrence
of a substring in a word. More precisely, a (k, ℓ)-neighborhood boundary position is of the
form d(s,a,t) with d ∈ {⊲, ⊳}, s ∈ Σk, a ∈ Σ and t ∈ Σℓ. The interpretation of a (k, ℓ)-
neighborhood boundary position p = d(s,a,t) on a word w = w1 . . . w|w| is defined as follows.

p(w) =

{

min{i ∈ [k + 1, |w| − ℓ] | wi−k . . . wi+ℓ = s a t} if d = ⊲

max{i ∈ [k + 1, |w| − ℓ] | wi−k . . . wi+ℓ = s a t} if d = ⊳

Notice that p(w) is undefined if the sequence sat does not occur in w. A (k, ℓ)-neighborhood
boundary position can also be specified with respect to a position q ∈ [1, |w|].

p(w, q) =

{

min{i ∈ [max{q + 1, k + 1}, |w| − ℓ] | wi−k . . . wi+ℓ = s a t} if d = ⊲

max{i ∈ [k + 1,min{q − 1, |w| − ℓ}] | wi−k . . . wi+ℓ = s a t} if d = ⊳

Observe that (0, 0)-neighborhood boundary positions are identical to the boundary
positions from Definition 3.1. As before in the case without successor, we build rankers
out of these boundary positions. The size of the boundary position neighborhoods grows
linearly from the first boundary position to the last one, reflecting the remaining quantifier
depth for successor moves at those positions.

Definition 5.2. An n-successor-ranker r is a sequence of n neighborhood boundary posi-
tions, r = (p1, . . . , pn), where pi is a (ki, ℓi)-neighborhood boundary position and ki, ℓi ∈
[0, i − 1]. The interpretation of an n-successor-ranker r on a word w is defined as follows.

r(w) :=











p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

We denote the set of all n-successor-rankers that are defined over a word w by SRn(w), and
set SR⋆

n(w) :=
⋃

i∈[1,n] SRi(w).

Because we now have the additional atomic relation Suc, we need to extend our defini-
tion of order type as well.

Definition 5.3. Let i, j ∈ N. The successor order type of i and j is defined as

ordS(i, j) =































≪ if i < j − 1

−1 if i = j − 1

= if i = j

+1 if i = j + 1

≫ if i > j + 1

20 P. WEIS AND N. IMMERMAN

With this new definition of n-successor-rankers, our proofs for Lemmas 3.5, 3.6, 3.7 and
Theorem 3.8 go through with only minor modifications. Instead of working through all the
details again, we simply point out the differences.

First we notice that 1-successor-rankers are simply 1-rankers, so the base case of all
inductions remains unchanged. In the proofs of Lemmas 3.5, 3.6 and 3.7, and in the proof
of “(ii) ⇒ (i)” from Theorem 3.8, we argued that Delilah cannot reply with a position in a
given section because it does not contain a certain ranker and therefore it does not contain
the symbol used to define this ranker. Now we need to know more – we need to show that
Delilah cannot reply with a certain letter in a given section that is surrounded by a specified
neighborhood, given that this section does not contain the corresponding successor-ranker.
Whenever Samson’s winning strategy depends on the fact that an n-successor-ranker does
not occur in a given section, he has n− 1 additional moves left. So if Delilah does not reply
with a position with the same letter and the same neighborhood, Samson can point out a
difference in the neighborhood with at most (n− 1) additional moves.

For the other direction of Theorem 3.8, we need to make sure that Delilah can reply with
a position that is contained in the correct interval, has the same symbol and is surrounded
by the same neighborhood. Where we previously defined the n-ranker s := (λ, ⊲a) or
s := (ρ, ⊳a), we now include the (n− 1)-neighborhood of the respective positions chosen by
Samson. Thus we make sure that Samson cannot point out a difference in the two words,
and Delilah still has a winning strategy. Thus we have the following three theorems for
FO2[<,Suc].

Theorem 5.4 (structure of FO2
n[<,Suc]). Let u and v be finite words, and let n ∈ N. The

following two conditions are equivalent.

(i) (a) SRn(u) = SRn(v), and,
(b) for all r ∈ SR⋆

n(u) and for all r′ ∈ SR⋆
n−1(u),

ordS(r(u), r
′(u)) = ordS(r(v), r

′(v))
(ii) u ≡2

n v

Theorem 5.5 (structure of FO2
m,n[<,Suc]). Let u and v be finite words, and let m,n ∈ N

with m ≤ n. The following two conditions are equivalent.

(i) (a) SRm,n(u) = SRm,n(v), and,
(b) for all r ∈ SR⋆

m,n(u) and for all r′ ∈ SR⋆
m−1,n−1(u),

ordS(r(u), r
′(u)) = ordS(r(v), r

′(v)), and,
(c) for all r ∈ SR⋆

m,n(u) and r′ ∈ SR⋆
m,n−1(u) such that r and r′ end with different

directions, ordS(r(u), r
′(u)) = ordS(r(v), r

′(v))
(ii) u ≡2

m,n v

Theorem 5.6 (alternation hierarchy for FO2[<,Suc]). Let m be a positive integer. There
is a ϕm ∈ FO2[<,Suc]–ALT[m] and there are two languages Km, Lm ⊆ Σ⋆ such that ϕm
separates Km and Lm, but there is no ψ ∈ FO2[<,Suc]–ALT[m− 1] that separates Km and
Lm.

Proof. We use the same ideas as before in Theorem 4.11. We define example languages that
now include an extra letter b to ensure that the successor predicate is of no use. As before,
we inductively construct the words um,n and vm,n and use them to define the languages Km

and Lm.

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 21

u1,n := b
2n
a0b

2n v1,n := b
2n

u2,n := u1,n (a1b
2n
a0b

2n)2n v2,n := v1,n (a1b
2n
a0b

2n)2n

u2i+1,n := (b2na0b
2n . . . b2na2i)

n u2i,n v2i+1,n := (b2na0b
2n . . . b2na2i)

n v2i,n

u2i+2,n := u2i+1,n (a2i+1b
2n . . . a0b

2n)n v2i+2,n := v2i+1,n (a2i+1b
2n . . . a0b

2n)n

Finally we set Km :=
⋃

n≥1{um,n} and Lm :=
⋃

n≥1{vm,n}. Notice that the bs are not
necessary to distinguish between the two languages Km and Lm, and thus the proof of
Lemma 4.9 goes through unchanged and we have a formula ϕm ∈ FO2[<,Suc]–ALT[m]
that separates Km and Lm. To see that no FO2[<,Suc]–ALT[m− 1] formula can separate
Km and Lm, we observe that any (n−1)-neighborhood in the words um,n and vm,n contains
all bs except for at most one letter ai for some i ∈ [0,m − 1]. Thus the proof of Lemma
4.10 goes through here as well.

6. Small Models and Satisfiability for FO2[<]

The complexity of satisfiability for FO2[<] was investigated in [4]. There it is shown
that any satisfiable FO2

n[<] formula has a model of size at most exponential in n. It
follows that satisfiability for FO2[<] is in NEXP, and a reduction from TILING shows that
satisfiability for FO2[<] is NEXP-complete. Using our characterization of FO2[<], Wilke
observed that satisfiability becomes NP-complete if we look at binary alphabets only [21].
We generalize this observation and show that satisfiability for FO2[<] is NP-complete for
any fixed alphabet size. In contrast to this, satisfiability for FO2[<,Suc] is NEXP-complete
even for binary alphabets [4], since in the presence of a successor predicate we can encode
an arbitrary alphabet in binary. Before we state and prove the two theorems of this section,
we prove a simple technical lemma first.

Lemma 6.1. Let u, v, v′, w ∈ Σ⋆. If v ≡2
n v

′, then uvw ≡2
n uv

′w.

Proof. We argue that Delilah has a winning strategy for the game FO2
n(uvw, uv

′w): If
Samson places a pebble in u or w, Delilah replies with the identical position in u or w in
the other structure. If Samson places a pebble in v or v′, Delilah replies according to her
winning strategy in the game FO2

n(v, v
′). All of these moves obviously preserve the ordering

of the pebbles, and thus Delilah wins.

Theorem 6.2 (Small Model Property for Bounded Alphabets). Let n ∈ N and let ϕ ∈
FO2

n[<] be a formula over a k-letter alphabet. If ϕ is satisfiable, then ϕ has a model of size
O(nk).

Proof. Let w be an arbitrary model of ϕ. We use induction on k to show how to construct
a new model of size O(nk) that satisfies ϕ. For k = 1, i.e. a single letter alphabet, we
observe that an n-ranker can only point to a position within the first or last n letters of w.
We let w′ be a copy of w with all letters after the first n letters and before the last n letters
removed. The words w and w′ agree on the existence and ordering of all n-rankers, thus we
can apply Theorem 3.8 and it follows that w′ |= ϕ.

For the inductive case, we partition w into segments, where each segment is a maximal
sequence of the same letter. For example, the word aaabb has two segments, aaa and bb.
First, we let w′ be a copy of w where we cut down all segments that are longer than 2n to

22 P. WEIS AND N. IMMERMAN

exactly 2n letters. Since no n-ranker can point to a position within any segment after the
first n letters and before the last n letters of that segment, we have w′ |= ϕ.

Now we partition the word w′ such that w′ = u1s1u2 . . . ursrur+1, where r ∈ N and
for every 1 ≤ i ≤ r, ui is a string of maximal length that uses exactly k different letters,
si is a segment, and ur+1 is a string over at most a k-letter alphabet. We observe that
this partition is unique: If a is the last of the (k + 1) letters in our alphabet to appear in
w′, starting from the left, then s1 is the left-most segment of a’s, and u1 is everything up
to that segment. Now s2 is the left-most segment after s1 of the letter that appears last
after s1, and so on. We can point to a position in segment sn with an n-ranker, but no
n-ranker that starts with ⊲ can point to a position to the right of sn. Similarly, we partition
w′, now starting from the right, such that w′ = vq+1tqvq . . . v2t1v1, where q ∈ N and for
every 1 ≤ i ≤ q, vi is a string of maximal length that uses exactly k different letters, ti is
a segment, and vq+1 is a string over at most a k-letter alphabet. Again, this partition is
unique and any n-ranker that starts with ⊳ cannot point to a position to the left of tn. We
also notice that both partitions have the same number of segments, i.e. r = q, since any
substring uisi from the first partition contains all letters of the alphabet and thus has to
contain at least one segment tj from the second partition, and vice versa.

If both partitions use more than 2n segments, then the segment sn of the first partition
occurs to the left of the segment tn of the second partition. In this case we construct the
word w′′ = u1s1u2 . . . unsntnvn . . . v2t1v1. w′′ agrees with w′ on all n-rankers, and thus
w′′ |= ϕ. Every one of the strings u1, . . . , un and v1, . . . vn uses at most k different letters,
therefore we can apply the inductive hypothesis and replace each of these strings with an
equivalent string of length O(nk), as explained in Lemma 6.1. Thus we have constructed a
word of length O(nk+1) that satisfies ϕ.

If the partitions have at most 2n segments, then we combine the two partitions such
that w′ = w1x1 . . . xpwp+1, where p ≤ 4n, and for every 1 ≤ i ≤ p, xp is one of the original
segments s1, . . . , sr and t1, . . . , tq. As above, we use the inductive hypothesis to replace all

strings xi with equivalent strings of length O(nk), and thus construct a new string of length
O(nk+1) that satisfies ϕ.

Theorem 6.3. Satisfiability for FO2[<] where the size of the alphabet is bounded by some
fixed k ≥ 2 is NP-complete.

Proof. Membership in NP follows immediately from Theorem 6.2 – we nondeterministically
guess a model of size O(nk) where n is the quantifier depth of the given formula, and verify
that it is a model of the formula. Now we give a reduction from SAT. Let α be a boolean
formula in conjunctive normal form over the variables X1, . . . ,Xn. We construct a FO2[<]
formula ϕ = ϕn ∧ α[ξi/Xi], where ϕn says that every model has size exactly n, and where
we replace every occurrence of Xi in α with a formula ξi of length O(n) which says that the
i-th letter is a 1. The total length of ϕ is O(|α| ·n), and ϕ is satisfiable iff α is satisfiable.

7. Conclusion

We proved precise structure theorems for FO2, with and without the successor predicate,
that completely characterize the expressive power of the respective logics, including exact
bounds on the quantifier depth and on the alternation depth. Using our structure theorems,
we showed that the quantifier alternation hierarchy for FO2 is strict, settling an open

Structure Theorem and Strict Alternation Hierarchy for FO2 on Words ∗ 23

question from [3, 4]. Both our structure theorems and the alternation hierarchy results add
further insight to and simplify previous characterizations of FO2. We hope that the insights
gained in our study of FO2 on words will be useful in future investigations of the trade-off
between formula size and number of variables.

Acknowledgment

We would like to thank Thomas Wilke for pointing out the consequences of our struc-
tural results to the satisfiability problem for FO2[<]. We are also very thankful to two
anonymous reviewers, whose detailed comments and suggestions significantly improved the
presentation of our results.

References

[1] Adler, M., and Immerman, N. An n! lower bound on formula size. ACM Transactions on Computa-

tional Logic 4, 3 (2003), 296–314.
[2] Brzozowski, J., and Knast, R. The dot-depth hierarchy of star-free languages is infinite. Journal of

Computer and System Science 16 (1978), 37–55.
[3] Etessami, K., Vardi, M. Y., and Wilke, T. First-order logic with two variables and unary temporal

logic. In IEEE Symposium on Logic in Computer Science (1997).
[4] Etessami, K., Vardi, M. Y., and Wilke, T. First-order logic with two variables and unary temporal

logic. Information and Computation 179, 2 (2002), 279–295.
[5] Grohe, M., and Schweikardt, N. The succinctness of first-order logic on linear orders. Logical

Methods in Computer Science 1, 1:6 (2005), 1–25.
[6] Immerman, N. Descriptive Complexity. Springer, 1999.
[7] Immerman, N., and Kozen, D. Definability with bounded number of bound variables. Information

and Computation 83, 2 (1989), 121–139.
[8] Kamp, J. A. Tense logic and the theory of linear order. PhD thesis, University of California, Los

Angeles, 1968.
[9] Karchmer, M., and Wigderson, A. Monotone circuits for connectivity require super-logarithmic

depth. SIAM Journal of Discrete Mathematics 3, 2 (1990), 255–265.
[10] McNaughton, R., and Papert, S. A. Counter-free automata. MIT Press, Cambridge, MA, 1971.
[11] Pin, J.-E., and Weil, P. Polynomial closure and unambiguous product. Theory of Computing Systems

30 (1997), 1–39.
[12] Schützenberger, M. P. Sur le produit de concatenation non ambigu. Semigroup Forum 13 (1976),

47–75.
[13] Schwentick, T., Thérien, D., and Vollmer, H. Partially-ordered two-way automata: a new char-

acterization of DA. In Developments in Language Theory (2001).
[14] Straubing, H., and Thérien, D. Weakly iterated block products. In Latin American Theoretical

Informatics Conference (2002).
[15] Tesson, P., and Thérien, D. Diamonds are forever: the variety DA. In Semigroups, Algorithms,

Automata and Languages (2001).
[16] Tesson, P., and Thérien, D. Algebra meets logic: the case of regular languages. Logical Methods in

Computer Science 3, 1:4 (2007).
[17] Thérien, D., and Wilke, T. Over words, two variables are as powerful as one quantifier alternation.

In ACM Symposium on Theory of Computing (1998).
[18] Thomas, W. Classifying regular events in symbolic logic. Journal of Computer and System Science 25

(1982), 360–376.
[19] Thomas, W. An application of the Ehrenfeucht-Fräıssé game in formal language theory. Mémoires de

la S.M.F. 16 (1984), 11–21.
[20] Weis, P., and Immerman, N. Structure theorem and strict alternation hiearchy for FO2 on words. In

Computer Science Logic (2007).
[21] Wilke, T. Personal communication, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://
reative
ommons.org/li
enses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Background and Definitions
	3. Structure Theorem for FOV[<]2
	4. Alternation hierarchy for FOV[<]2
	5. Structure Theorem and Alternation Hierarchy for FOV[<,suc]2
	6. Small Models and Satisfiability for FOV2[<]
	7. Conclusion
	Acknowledgment
	References

