
Logical Methods in Computer Science
Vol. 9(4:22)2013, pp. 1–39
www.lmcs-online.org

Submitted Jan. 13, 2013
Published Dec. 17, 2013

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH

RESOURCES

MARTIN LANG AND CHRISTOF LÖDING

Chair of Computer Science 7, RWTH Aachen, 52056 Aachen (Germany)
e-mail address: {lang,loeding}@automata.rwth-aachen.de

Abstract. We consider formal verification of recursive programs with resource consump-
tion. We introduce prefix replacement systems with non-negative integer counters which
can be incremented and reset to zero as a formal model for such programs. In these systems,
we investigate bounds on the resource consumption for reachability questions. Motivated
by this question, we introduce relational structures with resources and a quantitative first-
order logic over these structures. We define resource automatic structures as a subclass
of these structures and provide an effective method to compute the semantics of the logic
on this subclass. Subsequently, we use this framework to solve the bounded reachability
problem for resource prefix replacement systems. We achieve this result by extending
the well-known saturation method to annotated prefix replacement systems. Finally, we
provide a connection to the study of the logic cost-WMSO.

1. Introduction

Transition systems induced by the configuration graph of pushdown automata have become
an important tool in automatic program verification. Starting with the introduction of the
concept of pushdown automata by A.G. Oettinger in 1961 and M.-P. Schützenberger in 1963,
these systems have been extensively studied and are well understood today. Already in 1985,
Muller and Schupp were able to prove the decidability of MSO-logic over these systems (see
[MS85]), which are mostly called pushdown systems nowadays. Until now, methods and
algorithms have been developed that provide automatic verification procedures for recursive
programs. For example, the model-checker jMoped, introduced in [SSE05], uses symbolic
pushdown systems to verify programs given in Java bytecode.

Recently, quantitative aspects in formal verification came into the focus. Although there
is a long history of automata models with quantitative aspects such as weighted automata
(see [Sch61]) or distance automata (see [Has82]), their use in the area of formal verification
was limited. More recently, timed automata (see [AD94]) were introduced as model for
systems with quantitative timing constraints. Additionally, there is currently some effort

2012 ACM CCS: [Security and privacy]: Formal methods and theory of security—Logic and ver-
ification; [Theory of computation]: Formal languages and automata theory—Automata extensions—
Transducers / Quantitative automata; Logic—Verification by model checking.

Key words and phrases: Pushdown Systems; Reachability with Annotations; Quantitative Automata and
Logics.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:22)2013
c© M. Lang and C. Löding
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. LANG AND C. LÖDING

to extend this line of research to the area of pushdown systems. In [AAS12], a model
that combines dense-timed automata with pushdown automata is introduced in order to
model real-time recursive systems. Furthermore, finite automata and games with resource
constraints instead of timing constraints were introduced and studied (see [BFL+08]). Ad-
ditionally, a combined concept of weighted automata and pushdown systems is used for
program verification with data flow analysis (see [LTKR08]). However, the authors do not
know of research considering infinite systems with resource constraints.

We contribute in our work to the theory of quantitative systems by defining and ana-
lyzing a model for recursive programs with discrete resource consumption. We introduce
resource prefix replacement systems as a combination of prefix replacement systems and
non-negative integer counters similar to those used in B-automata (see [Col09]). These
counters support three kinds of operations: increment, reset to zero, or skip. The opera-
tions annotate the transitions of the prefix replacement system. Thereby, the model is able
to simulate usage and refreshment of resources during program execution. We consider the
resource usage of a run through the system to be the highest occurring counter value.

One central aspect in systems with resource consumption is boundedness. Generally,
this means checking whether there is a finite bound such that the system can complete a
given task while keeping the resource consumption within the bound. We formalize this
idea by the concept of bounded reachability. This means checking whether there is a finite
bound such that it is possible to reach from all initial configurations of the system some
configuration in a given goal set with less resource usage than the bound. An algorithmic
solution to this problem can be used as a building block in the realizability checking of
systems with resources. For example, consider a battery powered mobile measuring device
which should be able to complete certain tasks without recharging the battery. This is only
possible if there is a finite bound on the energy consumption independent of the selected
task. The realizability question of this requirement can be stated in the form of a bounded
reachability problem.

Motivated by this question, we develop a framework to formalize and solve the bounded
reachability problem and related questions for recursive programs with resource consump-
tion. We introduce resource structures as a quantitative variant of relational structures
based on the idea that being in relation may cost a certain amount of resources. For these
structures, we develop the quantitative logic first-order+resource relations (for short FO+RR)
in order to express combined constraints on the resource consumption and the behavior of
the system. Intuitively, the semantics of this logic is designed to describe the amount of
resources necessary to satisfy a first-order constraint. We define resource automatic struc-
tures as a subclass of resource structures. This definition extends automatic structures
as introduced in [KN95] with a quantitative aspect. Based on the closure properties of
B-automata and ideas from the theory of automatic structures, we provide an effective way
to compute the semantics of the logic over resource automatic structures.

Subsequently, we demonstrate the usage of this general theory to solve the bounded
reachability problem on resource prefix replacement systems for regular initial and goal sets.
This is achieved by showing that resource prefix replacement systems are resource automatic
structures and thus bounded reachability can be solved by computing the semantics of an
FO+RR formula. In order to obtain this decidability result, we analyze prefix replacement
systems with a general form of annotation. Based on the well-known saturation principle,
we devise a method to compute an annotation aware transitive closure of the successor
relation in the form of synchronized transducers.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 3

This saturation procedure is based on a saturation for ground-tree transducers pre-
sented in [LHDT87] and constructed with the goal of obtaining a synchronous transducer.
Although the idea of saturation in annotated systems is not entirely new, the existing meth-
ods do not quite fit our needs. In [RSJ03], saturation is used to compute predecessor and
successor configurations of regular configuration sets for pushdown systems with weights
from a semi-ring. This result was extended in [LTKR08] to compute an asynchronous
transducer for the reachability relation of (semi-ring) weighted pushdown systems. How-
ever, these methods cannot be applied directly to our problem since we need a synchronous
transducer for the decision procedure of FO+RR and additionally encoding the resource
counters into a semi-ring structure is very complex. Moreover, we believe that this differ-
ent two-sided-saturation approach offers an interesting new viewpoint on the problem of
transitive closure in annotated pushdown- and prefix replacement systems.

Finally, we provide a connection between our problems and the logic cost-WMSO, which
was also introduced in connection to B-automata. We show that the decidability results
for the boundedness problem of cost-WMSO presented by M. Vanden Boom in [Boo11] can
also be used to obtain a decision procedure for a restricted version of bounded reachability.
Although this part does not contain any new results, it shows that this logic, which was
designed as equivalent formalism to B-automata, is also capable of expressing a very natural
problem for quantitative systems. This motivates further studies on the expressive power
of cost-(W)MSO and other quantitative logics that emerged around cost-automata.

In the following section, we first introduce and formalize our model for recursive pro-
grams with resource consumption. In Section 3, we present the known results for counter
automata as introduced by T. Colcombet and briefly repeat the important results. Subse-
quently, we define and investigate the model of resource structures and the logic FO+RR
in Section 4. Next, we exhibit an extended saturation approach which enables us to com-
pute the transitive closure for prefix replacement systems with annotations in Section 5.
At the end of this section, we use the previously developed framework to prove our main
statement on the bounded reachability problem. Section 6 connects our results to the logic
cost-WMSO. Finally, we conclude in Section 7.

We would like to thank T. Colcombet and M. Bojańczyk for the fruitful and enlight-
ening discussions. Moreover, we want to thank the anonymous reviewers for their very
constructive and detailed comments. They helped us to significantly improve the qual-
ity of this article. Additionally, we thank the Deutsche Forschungsgemeinschaft, which
supports the first author in the project “Automatentheoretische Verifikationsprobleme mit
Ressourcenschranken”.

2. Resource Prefix Replacement Systems

We define resource prefix replacement systems (for short RPRS) to be a suitable model
for recursive programs with resource consumption. This is achieved by combining prefix
replacement systems, which are a well-known model for recursive programs, with discrete
non-negative counters. These counters support three kinds of operations, which annotate
the transitions of the prefix replacement system. First, the counter can be incremented (i).
This models the use of one unit of one resource. Second, the counter can be reset to zero
(r). This models the complete refresh/refill of this kind of resources. Third, it is possible to
leave the counter unchanged, what we call no operation (n). This counter model is similar

4 M. LANG AND C. LÖDING

ε

a

aa
aaa . . .

baa . . .

ba
aba . . .

bba . . .

b

ab
aab . . .

bab . . .

bb
abb . . .

bbb . . .

i

i

i

i

i

i

i

r

r

r

r

r

r

n

n

n

n

n

n

n

Figure 1: Configuration graph induced by the example RPRS

to B-automata, which are presented in the subsequent section. We formalize the model of
RPRS by the following definition.

Definition 2.1. A resource prefix replacement system is a triple R = (Σ,∆,Γ) consisting
of a finite alphabet Σ, a finite set of counters Γ and a finite transition relation ∆ ⊆ Σ+ ×
Σ∗×{n, i, r}Γ. A configuration is a finite word over Σ. A transition (u, v, f) ∈ ∆ enables a
change from the configuration uw to vw for all w ∈ Σ∗ and triggers the counter operation
f(c) for each counter c ∈ Γ. If there is only one counter in the system, we also write u −→

op
v

for a rule (u, v, f) where f(c0) = op for the unique counter c0.

We are mainly interested in the configuration graph induced by the system. A path in
this graph represents a (partial) run of the modeled recursive program. The resource usage
of such a run is calculated by simulating all counter operations along the path according to
the annotated operations at the transitions. We identify the resource usage (or resource-cost)
of the path with the maximal counter value (of all counters) in the sequence. Furthermore,
we write u `∗≤k v if v is reachable from u with resource usage of at most k. We remark that
we do not distinguish between the different counters when calculating the overall resource
usage because we focus on boundedness questions.

For example, consider a simple RPRS with only one counter c0 over the alphabet {a, b}.
The system contains four replacement rules: a −→

i
ε, a −→

r
ba, b −→

r
bb, b −→

n
a. Figure 1 shows a

part of the resulting configuration graph. In this example, it can be seen that for all n ∈ N,
we obtain an `∗≤2 ε. However, this is not possible with simple paths without loops because
detours using the replacement rules annotated with reset are needed. In detail, we obtain,
e.g., aaa `∗≤2 ε by aaa −→

i
aa −→

i
a −→

r
ba −→

n
aa −→

i
a −→

i
ε.

2.1. The Bounded Reachability Problem. Reachability checking is a fundamental
building block of many formal verification procedures. For example, it can be applied
as a decision procedure for the termination problem of a program. The general reachability
problem on prefix replacement systems can be formulated as follows. Let A (starting config-
urations) and B (final configurations) be two sets of configurations. We say B is reachable
from A if for all elements in A there is a path to some element of B. This resembles
the termination idea that independent of the starting configuration of the program a final
configuration should be reached after finitely many steps.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 5

However, in the context of systems with resources mere reachability is often not enough
to ensure the realizability of the system. We therefore extend the question by asking whether
bounded resources are enough to achieve reachability.

Definition 2.2 (Bounded Reachability). Let A,B be two sets of configurations. We say B
is boundedly reachable from A if there is a bound k ∈ N such that for all u ∈ A there is a
v ∈ B satisfying u `∗≤k v.

Reconsider the example depicted in Figure 1. We already observed that an `∗≤2 ε.

Consequently, the set {ε} is boundedly reachable from {an | n ∈ N}. However, if we
remove one of the rules a −→

r
ba, b −→

n
a, this does not hold anymore although it is still

possible to reach ε but with increasing resource usage.
The rest of this work is dedicated to developing tools with the goal of better understand-

ing and solving the bounded reachability problem. First, we introduce the basic concepts
and known results on cost automata in Section 3. These results form the basis for most
of our following work. In Section 4, we define resource structures as a specialized concept
to represent systems with resource consumption. On these structures we define the logic
FO+RR to describe the behavior of the system in combination with its resource consumption.
This framework allows amongst other things a simple formulation of the bounded reachabil-
ity problem. To achieve the desired goal and solve the bounded reachability problem in a
restricted scenario, we provide a method to effectively compute the semantics of FO+RR on
a restricted class of structures which we call resource automatic. In Section 5, we develop a
method to compute an annotation aware transitive closure of annotated prefix replacement
systems. With this method we are able to prove that RPRS are resource automatic. Thus,
we solve the bounded reachability problem for regular sets of configurations.

3. Cost Automata

To study boundedness questions, M. Bojańczyk and T. Colcombet presented general au-
tomata with (non-readable) counters called B- and S-automata in [BC06]. T. Colcombet
compared these models with an algebraic and a logical approach in [Col09]. All these con-
cepts define functions from Σ∗ to N ∪ {∞}. In [Col09] it is shown that all the models are
capable of expressing the same functions up to some equivalence relation ≈. The equiv-
alence classes resulting from this relation are called cost functions. We additionally call
a cost function regular if it contains a function that is definable by some B-automaton.
Correspondingly, we call the two automata models cost automata.

The definition of the equivalence relation ≈ uses so called correction functions to mea-
sure the difference between a pair of cost functions. A correction function α is a non-
decreasing mapping from N ∪ {∞} to N ∪ {∞} which maps ∞ and only ∞ always to ∞,
i.e., k ≤ j ⇒ α(k) ≤ α(j) and α(x) =∞⇔ x =∞.

Definition 3.1. Let x, y ∈ N∪{∞} be two values and α : N∪{∞} → N∪{∞} a correction
function. We say that x is α-dominated by y and write x �α y if x ≤ α(y). If x �α y and
y �α x, we say that x and y are α-equivalent and write x ≈α y.

We extend this naturally to functions. Let f, g : Σ∗ → N ∪ {∞} be two functions. We
say f is α-dominated by g and write f �α g if

∀x ∈ Σ∗ : f(x) �α g(x)

6 M. LANG AND C. LÖDING

Analogously, if f �α g and g �α f we say f and g are α-equivalent and write f ≈α g.
The two functions are just called equivalent (written f ≈ g) if there exists some correction
function α such that f ≈α g.

Note that for a fixed α, the relation ≈α is not transitive. From the inequality it becomes
clear that for three functions f ≈α g ≈β h, we only obtain f �α◦β h and h �β◦α f . However,
one can easily check that for γ := max(β ◦ α, α ◦ β), we obtain f ≈γ h.

An equivalent characterization of the relation ≈ can be given by comparing the subsets
of the domain with bounded image.

Lemma 3.2 (see [Col09]). Let f , g be two cost functions and A ⊆ Σ∗. We write f(A) <∞
if f is bounded on A, i.e., if supa∈A f(x) <∞.

We have f ≈ g iff for all sets A ⊆ Σ∗: f(A) <∞⇔ g(A) <∞.

The definition of ≈ with correction function has the advantage that it is also applicable
to single values instead of functions. Thus, it enables us to prove the equivalence of two
functions by comparing all of their values instead of all subsets of the domain. The second
characterization helps to understand the flexibility of the relation ≈ and the expressiveness
of regular cost functions.

In order to reduce the technical overhead and make full use of the expressiveness of
B-/S-automata as long as possible, we usually work with concrete cost functions defined by
automata. We view these functions as representatives of their ≈-equivalence class. As a
consequence, we will also consider concrete values of the functions for a single word although
this is not well defined for the equivalence class of functions. We explicitly mention the
situations in which it is important that functions have to be considered only up to the
equivalence ≈.

In the following, we introduce the models of B- and S-automata as well as some known
results for these models. The structures of B- and S-automata are identical. They only
differ in their semantics. We first provide the structure and introduce the semantics later.

Definition 3.3 (see [Col09]). A B/S-automaton is a nondeterministic finite automaton
(NFA) extended with a finite set of counters. Formally, we have A = (Q,Σ,∆, In,Fin,Γ).
Similar to standard NFAs, Q is a finite set of states, In the set of initial states, Fin the
set of final states and Σ a finite input alphabet. Γ is the finite set of counters and the
counter operations are annotated to the transitions. The finite transition relation has the
form ∆ ⊆ Q× Σ×Q× ({i, r, c}∗)Γ.

The counter operations in B-/S-automata are similar to RPRS. However, we don’t
have the operation n but an operation c which is explained below. Additionally, we call
B-automata simple if their transition relation contains only counter operations of the form
ε, r and ic. Similarly, we call S-automata simple if their transition relation contains only
counter operations of the form ε, i, r and cr.

The semantics of cost automata is based on the notion of a run. A run is a sequence
t1, . . . , tn of transitions that is compatible with the input word, i.e., for a word w = a1 . . . an
with ai ∈ Σ, we have ti = (qi−1, ai, qi, ui) ∈ ∆. Similar to RPRS, we assign a value to
each run of a B- or S-automaton based on the annotated counter operations. However,
the counters of cost automata support the additional c counter operation which means
check. For the value of the run, only the counter values of checked positions are considered.
The need for this additional action will become clear after the definition of S-automaton
semantics. For a run ρ we denote the set of all counter values at checked positions with C(ρ).

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 7

q0

B-semantics:

a : ic

b : r

q0

S-semantics:

q1 q2

a, b : ε

b : cr

a : i

a : i

b : cr

a, b : ε

Figure 2: B- and S-automaton which count the maximal subsequent occurrences of the
letter a in a word.

A run is called accepting if its first transition starts in a state of In and its last transition
ends in a state of Fin. We formally define the B- and S-semantics for a cost automaton A
as follows:

JAKB(w) := inf
ρ: acc. run of A on w

sup C(ρ)

JAKS(w) := sup
ρ: acc. run of A on w

inf C(ρ)

We remind the reader that inf ∅ = ∞ and sup ∅ = 0. We see that the value of an S-run
would always be 0 if we had no check operation and considered all occurring values because
the counters are initialized with 0.

Figure 2 gives an example for this definition. The shown automata have only one
counter c0 and both count the maximal number of subsequent a-letters in a word. On
the left-hand side of the figure there is an automaton with B-semantics which defines this
function. The automaton on the right-hand side uses S-semantics. A large class of examples
is formed by the characteristic functions of regular languages. For a language L ⊆ Σ∗, we
define the characteristic function χL : Σ∗ → N∪{∞} to assume the value 0 if the word is in
the language L and ∞ otherwise. An NFA A for L can be transformed into a B-automaton
A′ which defines χL by taking A, adding one counter and setting all counter operations of
the transitions to ε. Thus, supC(ρ) = sup ∅ is 0 for every run ρ. So, the value of every
word in L is 0 and the value of all other words is ∞ since there is no accepting run and
consequently we have inf ∅ = ∞. It is easy to see that the automaton A′ equipped with
S-semantics defines the characteristic function χL of the complement of L.

Conversely, it is also possible to obtain regular languages from functions defined by B-
or S-automata. We remark that the language of all words which have a value less than
a fixed k ∈ N in the given function is regular. Since the bound k is fixed, a usual finite
automaton can simulate the counter values up to k and thus decide whether a given word
is below or above the threshold.

In his work [Col09], T. Colcombet showed several properties of the models and the
functions defined by these models. First, he was able to prove that the two automata models
define, up to the equivalence ≈, the same cost functions and concluded that boundedness
properties are decidable. Second, he showed extensive closure properties for regular cost
functions under standard operations such as min, max or special kinds of projections.

8 M. LANG AND C. LÖDING

The results in the framework of regular cost functions form the basis for the applications
on the verification of infinite state systems with resources investigated here. Therefore, we
briefly repeat the major results.

Theorem 3.4 (Equal expressiveness, see [Col09]). Let A be some B-automaton or S-
automaton. The following four automata are effectively computable and define a function
which is equivalent (≈) to the one defined by A:

• a B-automaton AB
• a simple B-automaton AsimB

• an S-automaton AS
• a simple S-automaton AsimS

Boundedness questions have been studied for cost automata since their first introduc-
tion. These questions exist in slightly different formulations. In our application we reduce
the boundedness question for RPRS over several steps to boundedness questions for regular
cost functions.

Theorem 3.5 (Boundedness, see [Col09]). Let A be a B- or S-automaton. The following
problem is decidable:

∃M ∈ N ∀w ∈ Σ∗ : JAKB/S(w) < M

The class of regular languages possesses many closure properties. It is known that it is
closed under boolean operations as well as under projection. This result was generalized and
extended to regular cost functions. In the context of cost functions, the boolean connectives
conjunction and disjunction correspond to max and min. Furthermore, two variants of pro-
jection for cost functions have been introduced: inf-projection and sup-projection. Consider
an alphabet projection π : Λ → Σ and let π̄ : Λ∗ → Σ∗ be the canonical extension of π to
words. For a cost function f : Λ∗ → N ∪ {∞}, the inf-projection finf,π : Σ∗ → N ∪ {∞} of
f is given by

finf,π(w) := inf
u∈π̄−1(w)

f(u)

The sup-projection is defined analogously.

Theorem 3.6 (Closure properties, see [Col09]).

(i) Let A and B be B/S-automata. There are effectively computable B-automata Cmin and
Cmax such that JCminKB ≈ min(JAKB/S , JBKB/S) and JCmaxKB ≈ max(JAKB/S , JBKB/S).
Moreover, the automata Cmin and Cmax can be computed exactly (without ≈) if the
input automata are both B-automata.

(ii) Let A be a B/S-automaton over the alphabet Λ and π : Λ→ Σ be an alphabet projec-
tion function. There are effectively computable B-automata Binf and Bsup such that
(JAKB/S)inf,π ≈ JBinfKB and (JAKB/S)sup,π ≈ JBsupKB.

We remark that min, max and inf- as well as sup-projection preserve the equivalence
property ≈ on cost functions in the following sense: for f ≈ f ′ and g ≈ g′, we have
max(f, g) ≈ max(f ′, g′), min(f, g) ≈ min(f ′, g′) and for all projections π we also have
finf,π ≈ f ′inf,π and fsup,π ≈ f ′sup,π.

A first, simple consequence of the previous theorem is that we can easily modify the
values of a (concrete) cost function on a regular set of its domain. For example, we can
implement a case distinction between two cost functions. Let f, g be two regular cost

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 9

functions (given in form of B-automata) and L a regular set. The function

h : Σ∗ → N ∪ {∞}, w 7→

{
f(w) if w ∈ L
g(w) otherwise

can be defined using the above result by h := max(min(g, χL),min(f, χL̄)) where L̄ denotes
the complement of L.

Remark 3.7. Similar to regular languages, the functions defined by B- or S-automata are
closed under reversing the words. Let A be an B-/S-automaton and wrev = an . . . a1 denote
the letter-wise reversed word of w = a1 . . . an for w ∈ Σ∗ and ai ∈ Σ. There is a correction
function α and a B-/S-automaton B such that

JAKB/S(w) ≈α JBKB/S(wrev)

If no change between B- and S- automata is made, this is even possible for α = idN∪{∞}.

Proof. By Theorem 3.4 there is a simple B-automaton equivalent to A. In simple B-
automata the value of a run is the same when reading the run forward or backward. Conse-
quently reversing all transitions and exchanging the sets In and Fin in this automaton yields
the desired result automaton B. The additional statement follows from the idea that one
can simulate the reversed runs of cost automata by reversing all transitions and additionally
storing whether the counters have been checked and then applying the check at the other
end of the respective increment block. This preserves exact values.

4. Resource Structures and the Logic FO+RR

In the following section, we introduce resource structures and the logic FO+RR as a formal
tool to represent systems with resource consumption and specify combined properties on
the behavior and resource consumption of the system. First, we define a general framework
of structures and logic. Subsequently, we show that this framework is able to express our
question about bounded reachability. Finally, we establish a connection between a subclass
of resource structures and special forms of cost automata. This connection allows us to
effectively evaluate the logic on this subclass of resource structures.

4.1. Resource Structures. A resource structure is a relational structure whose relations
incorporate a notion of resource-cost. In contrast to standard structures, the relations are
not evaluated as a set of tuples but in the form of a function that maps every tuple to a
natural number or infinity. Intuitively, the assigned value represents the amount of resources
which is needed for this tuple to be in the given relation. A value of infinity means that a
tuple is not in the relation at all.

Definition 4.1. A relational signature τ = {R1, . . . , Rm} is a set of ni-ary relational sym-
bols. A resource structure over some signature τ is a tuple S = (S,RS

1 , . . . , R
S
m) consisting

of a universe S and valuations RS
1 , . . . , R

S
m for the relations in τ . The valuation of each

relational symbol is a function RS
i : Sni → N∪{∞} mapping every tuple to its resource-cost

value or infinity.

10 M. LANG AND C. LÖDING

Resource structures can be considered an extension of ordinary relational structures.
A standard relation can be represented in the form of the characteristic resource function
which maps tuples in relation to 0 and others to ∞. Conversely, we define the restriction
of a resource structure S to some allowed resource bound k ∈ N. This restricted structure
is the ordinary relational structure given by S≤k := (S,R

S≤k

1 , . . . , R
S≤k
m) with valuations

defined by R
S≤k

i := {s̄ ∈ Sni | RS
i (s̄) ≤ k}.

As an example, we can represent an RPRS as a resource structure in the form of the
configuration graph with a quantitative reachability relation. So, for a given RPRS R let
CR = (Σ∗,�∗ CR). The resource-cost for a pair of configurations (a, b) is defined to be the
minimal cost of all possible paths from a to b. If there is no such path, the resource-cost is

set to ∞, i.e., �∗ CR(a, b) := inf
{
k ∈ N | a `∗≤k b

}
.

4.2. The Logic FO+RR. Specifications for systems with resource consumption should
not only be able to express properties on the behavior of the system but also be capable
of modeling constraints on the resources. A natural question in the context of resource
structures is how many resources are needed in order to satisfy some first-order property. We
define the logic first-order+resource relations (for short FO+RR) to formalize this question.
Its syntax is very similar to ordinary first-order logic but does not contain negation.

Definition 4.2 (Syntax of FO+RR). Let τ = {R1, . . . , Rm} be a relational signature.
FO+RR formulas over τ are:

φ ::= x = y | x 6= y | R1x1 . . . xn1 | . . . | Rmx1 . . . xnm

φ ∨ φ | φ ∧ φ | ∀xφ | ∃xφ
We denote the set of possible FO+RR formulas over the signature τ by FO+RR(τ).

The semantics assigns to each formula a finite number or infinity instead of a truth
value. Intuitively, this number is the amount of resources which are necessary to satisfy the
formula. More precisely, it is the minimal number k such that S≤k satisfies the formula when
interpreted as normal first-order formula. This idea also explains the lack of negation in the
logic. The intuitive formulation of the semantics implies that a higher amount of allowed
resources leads to more satisfiable formulas. However, this monotonicity is incompatible
with negation. In the following, we define the formal semantics in a way to calculate this
value directly. It is easy to verify that the above described intuition and the formal semantics
below coincide.

Definition 4.3 (Semantics of FO+RR). Let ϕ ∈ FO+RR(τ), τ = {R1, . . . Rm} a signature
with ni-ary relational symbols and S = (S,RS

1 , . . . , R
S
m) a resource structure.

The semantics JϕKS : (free(ϕ) → S) → N ∪ {∞} of the formula ϕ is a function which
takes a valuation for the free variables of the formula and maps it to a finite number or

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 11

infinity. It is defined inductively by:

Jx = yKS(I) :=

{
0 if I(x) = I(y)

∞ otherwise

Jx 6= yKS(I) :=

{
∞ if I(x) = I(y)

0 otherwise

JRix1 . . . xniK
S(I) := RS

i (I(x1), . . . ,I(xni))

Jϕ1 ∨ ϕ2KS(I) := min(Jϕ1KS(I), Jϕ2KS(I))

Jϕ1 ∧ ϕ2KS(I) := max(Jϕ1KS(I), Jϕ2KS(I))

J∃xϕKS(I) := inf
a∈S

JϕKS(I[x→ a])

J∀xϕKS(I) := sup
a∈S

JϕKS(I[x→ a])

where I[x→ a](y) :=

{
a if y = x

I(y) otherwise

Note that JϕKS is a constant when free(ϕ) = ∅. For a formula ϕ with free(ϕ) = {x1, . . . , xj},
we also write ϕ(x̄) and set Jϕ(ā)KS := JϕKS([xi → ai]) for ā ∈ Sj . In general, we use
the letters x, y, z to indicate variables of the logic and a, b, c to indicate elements of the
structure.

The formalism of FO+RR can be used to express the bounded reachability problem. By
formalizing the definition of bounded reachability and simple equivalences using the formal
definition of FO+RR, we obtain:

Proposition 4.4. Let S = (Σ∗,�∗, A,B) be an extended resource structure representation
of an RPRS where A and B are two sets of configurations. Let the relation A be valuated
by the characteristic function of the complement of the set A, and the relation B by the
characteristic function of B. The set B is boundedly reachable in the RPRS from A if and
only if (J∀x∃yAx ∨ (By ∧ x�∗ y)KS <∞).

4.3. Resource Automatic Structures. B. Khoussainov and A. Nerode introduced the
concept of automatic structures in [KN95]. Automatic structures are relational structures
which are representable by automata in two aspects. First, they must have a representation
of the universe in the form of a regular language. Second, their relations must be repre-
sentable with synchronous transducers which operate over the language representation of
the universe. In [KN95], automata theoretic methods are used to prove that the FO-theory
of every automatic structures is decidable.

We extend this concept of automatic structures to the area of resource structures. First,
we define synchronous resource transducers as a straight-forward extension of usual synchro-
nous transducers (see [KN01] for a comprehensive introduction on synchronous transducers).
Based on this model, we define resource automatic structures as resource structures whose
relations are representable by these transducers. Finally, we prove that the semantics of
FO+RR is effectively computable over resource automatic structures.

12 M. LANG AND C. LÖDING

A synchronous resource transducer can be seen as a cost automaton operating over an
alphabet Σ′ consisting of vectors of elements from some original alphabet Σ. Additionally,
the vector can contain special padding symbols (we use $). With this notation, it is possible
to describe a vector of words over Σ in the form of a word over the vector alphabet Σ′. Since
the words may have different lengths, one pads all words to the length of the longest word
either on the left- or the right end of the word. We formalize these ideas for the left-aligned
case in the following definitions.

Definition 4.5 (Word-Relations). Let Σ be a finite alphabet. In order to differentiate
between words of length n and a vector of dimension n, the set of vectors of dimension n
with entries in Σ∪{$} is denoted by Σ⊗n and the words of length n still by Σn. Vectors with
arbitrary words as entries are denoted by (Σ∗)n. The symbol � (read “pad”) is used for
the vector consisting only of padding symbols ($). We define the function conv to translate
between vectors of words and words over vector-alphabets. The abbreviation conv was
introduced by Khoussainov and Nerode and means convolution.

wsel : Σ∗ ×N→ Σ ∪ {$}, (w, i) 7→

{
ai if i ≤ |w| and w = a1 . . . a|w| for ai ∈ Σ

$ otherwise

conv : (Σ∗)n →
(
Σ⊗n

)∗
,

(w1, . . . , wn) 7→

wsel(w1, 1)
...

wsel(wn, 1)

 · · ·
wsel(w1, `)

...
wsel(wn, `)

 with ` := max
i=1,...,n

|wi|

Furthermore, we define strip : (Σ ∪ {$})∗ → Σ∗ to be the function which just removes all
occurrences of $. With this, we define unconv by

unconv :
(
Σ⊗n

)∗ → (Σ∗)n,a1,1
...

an,1

 · · ·
a1,`

...
an,`

 7→ (strip(a1,1 . . . a1,`), . . . , strip(an,1 . . . an,`))

We call a word over the vector alphabet correctly padded if it is generated by some
tuple of words. Formally, we denote the set of all left-aligned correctly padded words over
the n dimensional vector alphabet by Σ⊗Ln

∗
:= conv((Σ∗)n). Accordingly, the complement

(the set of not correctly padded words) is called Σ⊗Ln∗ . We remark that correctly padded
words do not contain the � symbol and in every component there are only $ after the first
position where $ occurs. Moreover, the correctly padded words Σ⊗Ln

∗
form a regular set.

To simplify the notation in the constructions we write ⊗L to combine two correctly
padded words from vector alphabets Σ⊗Ln1

∗
, Σ⊗Ln2

∗
to a new correctly padded word from

Σ⊗Ln1+n2
∗

which combines the two vectors. Formally, this can also be written in the form
v̄ ⊗L w̄ = conv((unconv(v̄), unconv(w̄))).

Definition 4.6 (Synchronous Resource Transducer). A synchronous resource transducer
for an n-ary relation R ⊆ (Σ∗)n over a finite alphabet Σ is a B-automaton T operating over
the alphabet Σ⊗n.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 13

q1 q2

q3

qid

(
a

$

)
: icrnic,

(
b

$

)
: nicrnic

ε : n

(
a

a

)
: icrnic,

(
a

b

)
: icrnic(

b

a

)
: icrnic,

(
b

b

)
: icrnic

(
b

a

)
: n,

(
a

a

)
: n,

(
b

b

)
: n

(
b
a

)
: n,

(
a
a

)
: n,

(
b
b

)
: n

(
$
a

)
: rn,

(
$
b

)
: r

(
a
a

)
: icrnic,

(
a
b

)
: icrnic(

b

a

)
: icrnic,

(
b

b

)
: icrnic

(
a
a

)
: n,

(
b
b

)
: n

Figure 3: Synchronous resource transducer for the reachability-cost of the RPRS in Figure 1

The semantics is given by:

JTK⊗L
: (Σ∗)n → N ∪ {∞}, w̄ 7→ JTKB(conv(w̄))

We also define JTKS⊗L
which is identical to the above definition but uses S-automaton

semantics instead of B-automaton semantics on the automaton T. We remark that in addi-
tion to this relational semantics, we sometimes view these automata as plain cost automata
over Σ⊗n. This point of view is mainly used in constructions.

We remark that we could repeat all the definitions with index R for right-aligned re-
lations. These relations are essentially the (word-wise) reversed relations of left-aligned
ones. For a quantiative relation R : Σ∗ × Σ∗ → N ∪ {∞}, let Rrev(u, v) := R(urev, vrev).
By Remark 3.7, it is easy to see that R can be defined by a left-aligned B-automaton iff
Rrev can be defined by a right-aligned B-automaton. We follow the notation in most of
the literature regarding automatic structures and present the definitions and ideas around
resource automatic structures with left-aligned relations. However, we show that there is
no conceptual difference to right-alignment and use right-aligned relations in the context of
prefix replacement systems because we consider it to be more natural.

To illustrate and motivate the previous definition, we give an example transducer in
Figure 3. In order to simplify the presentation of the automaton, we use the usual concept
of ε-transitions although they are not originally part of the definition of B-automata. An
ε-transition changes the state and executes the associated counter operation but does not
consume symbols from the input word. It is known that ε-transitions do not change the
expressive power of the model and that it is possible to algorithmically obtain an equivalent
B-automaton. The idea behind this ε-elimination procedure is similar to the one for normal
ε-NFAs. The transducer in Figure 3 computes the reachability-cost relation of the example
RPRS whose configuration graph is shown in Figure 1. It operates on right-aligned words
since this is more common for prefix replacement systems. This behavior resembles the
replacement operation which allows to replace some prefix followed by a common postfix.
We remarked earlier, that it is possible to remove an arbitrary number of as or bs in front
of a word with a resource-cost of at most 2. This is reflected in the loops of q1 which
are labeled with the counter operations (n)icrnic. This sequence of counter operations

14 M. LANG AND C. LÖDING

corresponds to one removal step with detour. We remark that we left the ns in the counter
sequence although they are not part of B-automaton counter operations. This way, the
counter operations in the automaton resemble more closely the accumulated operations of
all replacement steps. In a similar way we can also replace one letter by another. However,
this requires first to pop the stack until the letter which should be changed and afterwards
to push the old contents again. We saw that only the pop operations influence the resource-
cost. This is handled in the state q2 which calculates the cost of the pop operations, the
push operations match the number of pop operations but do not cost anything and thus
do not occur explicitly in the transitions. The state q3 covers the “free” addition at the
beginning of a word. Nevertheless, in all cases we have to ensure that the last b in the
word is not replaced by an a since this is not possible in the RPRS. This is ensured by the
transitions to the state qid. This state finally recognizes the identity with no more resource-
cost after the replaced front was completely read. Although this particular transducer was
constructed manually, we see in Section 5 how to derive such a transducer algorithmically.
We remark that the algorithmic construction works in a completely different way.

We define resource automatic structures as a combination of the ideas of resource- and
automatic structures. Similar to automatic structures, we require a representation of the
universe in the form of a regular language. Additionally, the resource relations are required
to have a synchronous resource transducer which computes their semantics.

Definition 4.7 (Resource Automatic Structure). A resource structure S = (S,RS
1 , . . . , R

S
m)

is called resource automatic if it satisfies two conditions. First, there is a finite alphabet
Σ such that S ⊆ Σ∗ is a regular language. Second, for all relations RS

i there exists a
synchronous resource transducer TRi such that RS

i (ā) = JTRiK⊗L
(ā).

Additionally, we also call a structure resource automatic if it is isomorphic to a resource
automatic structure as defined above. This way, we also allow for resource automatic
structures with a universe which is not a word-language.

We first remark that for every resource automatic structure S and every k ∈ N the
structure S≤k is automatic. As remarked earlier, it is possible to simulate the behavior of
cost automata up to a fixed bound k with normal finite automata by extending their state
space. Thus, one can easily obtain synchronous transducers for the relations in S≤k from
the resource transducers.

Remark 4.8. One can also consider resource automatic structures given by right-aligned
synchronized resource transducers. These structures are equally expressive as resource
automatic structures given by left-aligned transducers.

Proof. As remarked earlier, if there is a right-aligned (B-)resource transducer for some re-
lation R, there is a left-aligned resource transducer for Rrev. Consequently, one directly
obtains an isomorphic structure given by left-aligned resource transducers (with the isomor-
phism ϑ : S → Srev, w 7→ wrev).

The rest of this section is dedicated to show how we can compute the semantics of
FO+RR formulas in a given resource automatic structure. The proof is divided into a
lemma followed by the main result. The proof of the main result is quite similar to the
decidability proof of FO over automatic structures. We inductively construct synchronous
resource transducers which (approximately) compute the semantics of FO+RR formulas with
free variables. In Section 3, we saw that the min and max of two cost automata is again
representable by a cost automaton. This directly enables a simulation of ∧ and ∨ in FO+RR

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 15

formulas on the level of automata. Although we also saw that sup and inf-projection can
be realized by cost automata, these operations do not directly correspond to the semantics
of ∀ and ∃ in FO+RR. The reason for this is that alphabet projection does not preserve
the encoding of convoluted words. If one projects away the longest word in a convolution
of words, the result contains a sequence of � symbols at the end. Hence, the result is not
correctly padded. In the following lemma we show how to solve this problem. The main
idea is to divide the calculation of the semantics of ∀ and ∃ into two sup or inf operations by
the following idea. We use sup- and inf-projection in a first step and add an additional step
to cover sequences of � symbols at the end. In this second step, we use that computing the
inf and sup over all runs is part of B- and S-automaton semantics. Thus, we can implement
such a computation by adding new transitions to an automaton.

Lemma 4.9. Let Σ be a finite alphabet, T a synchronous resource transducer operating
over

(
Σ⊗n+1

)∗
. There are effectively computable synchronous resource transducers Tsup,

Tinf operating over (Σ⊗n)
∗

and a correction function α such that for all ū ∈ Σ⊗Ln
∗
:

(i) JTsupKB(ū) ≈α sup
w∈Σ∗

JTKB(ū⊗L w)

(ii) JTinfKB(ū) ≈α inf
w∈Σ∗

JTKB(ū⊗L w)

Proof. The proof of both parts of the lemma is divided into two similar parts. First, we
show how to transform the single sup or inf operation into two operations of which the
first is the sup- or inf-projection as defined in [Col09]. In the second part, we exploit the
definition of cost automata to compute the remaining “supp̄∈�∗” and “inf p̄∈�∗”.

We start with part (i) of the statement in the lemma. So, let f :
(
Σ⊗n+1

)∗ → N∪{∞}
be the function defined by T when interpreted as normal B-automaton. Since Σ⊗Ln+1∗ is a

regular set, we can assume w.l.o.g. that f(ū) = 0 for all ū ∈ Σ⊗Ln+1∗ . This ensures that
the value of the sup-projection is determined only by correctly encoded (vector-)words. Let
furthermore π : Σ⊗n+1 → Σ⊗n be the projection function removing the last component.
With the above explained argument, we can divide the sup in the following way. We obtain
that for all ū ∈ Σ⊗Ln

∗
:

sup
w∈Σ∗

JTKB(ū⊗L w) = sup
w∈Σ∗

f(ū⊗L w) = sup
p̄∈�∗

sup
v̄∈(Σ⊗n+1)

∗
:

π̄(v̄)=ūp̄

f(v̄)

︸ ︷︷ ︸
sup -projection

By Theorem 3.6, we obtain a B-automaton T′ and by Theorem 3.4 an S-automaton T′S
operating over (Σ⊗n)

∗
such that for some correction functions β and β′:

sup
w∈Σ∗

JTKB(ū⊗L w) ≈β sup
p̄∈�∗

JT′KB(ūp̄) ≈β′ sup
p̄∈�∗

JT′SKS(ūp̄)

We now show how to construct an S-automaton T′sup which computes the last sup. The idea
of this construction exploits the special semantics of S-automata. For S-automata, the value
of a word is the sup of the values of all accepting runs. Thus, we can construct an automaton
computing supp̄∈�∗JT′SKS(ūp̄) by making all runs of T′S on some ūp̄ also accepting for ū. We
implement this by introducing ε-transitions in positions with �-transitions. Formally, let
T′S = (Q,Σ⊗n,∆, In,Fin,Γ). We define T′sup = (Q × {0, 1},Σ⊗n,∆′, In × {0},Fin × {1},Γ)

16 M. LANG AND C. LÖDING

with:

∆′ := {((p, 0), a, (q, 0), u) | (p, a, q, u) ∈ ∆}
∪ {((p, 1), ε, (q, 1), u) | (p,�, q, u) ∈ ∆}
∪ {((p, 0), ε, (p, 1), u) | p ∈ Q, u(γ) := ε for all γ ∈ Γ}

Let ρ be an accepting run of T′S on ū�k. We construct the run ρ′ of T′sup on ū out of the
run ρ. First, copy the ū part of the run ρ into the first component of the state vector and
set the second component to 0. Subsequently, take the ε-transition to change the second
component to 1. Then, copy the �k part of the run ρ into the first component and set the
second component to 1. This is possible because of the ε-transitions which are inserted at
the positions of the �-transitions. By the construction of the transition relation, this is a
valid accepting run of T′sup on ū which induces the same counter sequence as ρ and thus
has the same cost-value. Consequently, sup

p̄∈�∗
JT′SKS(ūp̄) ≤ JT′supKS(ū).

Conversely, let ρ be an accepting run of T′sup on ū. Since all final states have a 1 in their
second component and the run can only change the second component from 0 to 1 (and not
back), the run ρ can be split into a part which uses states with a 0 in the second component
and part which uses states with a 1 there. By construction, the first part consumes ū and
the second part uses ε-transitions at positions with �-transitions in T′S . Consequently, it is

possible to construct a run ρ′ of T′S on ū�k for some k ∈ N which induces the same counter
sequence as ρ. Therefore, sup

p̄∈�∗
JT′SKS(ūp̄) ≥ JT′supKS(ū).

We use a rather lengthy procedure to eliminate ε-transitions in S-automata, which is
described in more detail in [Lan11]. The main problem in ε-elimination for S-automata
arises from the fact that loops of ε-transitions with i counter operations are meaningful
for the semantics of S-automata since the supremum over all runs is built. Consequently,
one could loop more and more often through the ε-increment-loop in order to obtain large
counter values before the next check. The ε-elimination procedure systematically searches
for these loops and adds a control component to the automaton indicating that a certain
counter may have an arbitrarily large value (due to looping in ε-increment-loops). If a
counter that is marked to have such an arbitrary large value hits a cr operation, it just gets
reset but not checked.

First note that for every run ρ of the ε-automaton, there is a similar run ρ′ of the ε-free
automaton with at least the same value because skipping a check can only increase the
value of the run.

For the converse, consider a run ρ of the automaton with eliminated ε-transitions that
skips a check because the counter was indicated to be arbitrarily large. We distinguish two
cases. First, if no counter is checked, the value of ρ is ∞. However, if we construct a run ρ′

similar to ρ on the ε-automaton, the counter is checked at the position where the check is
skipped in ρ. In order to obtain the value ∞ on the ε-automaton, we construct a sequence
ρ′k of runs such that each run loops k times through the ε-increment-loop before the check.
All these runs are valid for the input word and yield a value of at least k. Since the value
of a word on an S-automaton is determined by the supremum over all runs, the value is ∞
as the value of ρ in this case. Second, if there is some counter checked in ρ, the value of ρ
is some finite k. When transferring the run ρ to a similar run ρ′ of the ε-automaton, all the
counters checked in ρ are also checked in ρ′ with the same values. Consequently, we just
have to ensure that the additional check, which is skipped in ρ but occurs in ρ′, does not

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 17

decrease the value of the run. To achieve this, we construct the run ρ′ such that it loops
k times through the ε-increment-loop before the check. Thereby, the counter has at least
value k before the additional check occurs and the value of ρ′ stays k because the value of
a run is determined by the minimal checked counter value in S-automata.

By Theorem 3.4, we obtain an equivalent B-automaton Tsup and thus obtain for appro-
priate correction functions δ and β′′ in total:

JTsupKB(ū) ≈δ JT′supKS(ū) = sup
p̄∈�∗

JT′SKS(ūp̄) ≈β′′ sup
w∈Σ∗

JTKB(ū⊗L w)

We now prove part (ii) of the lemma with similar techniques. However, we now exploit
the semantics of B-automata to implement the additional inf-computation. So, let f and

π be like in the previous case but now assume w.l.o.g. that all words ū ∈ Σ⊗Ln+1∗ have
f(ū) =∞. For the same reasons as above, we obtain

inf
w∈Σ∗

JTKB(ū⊗L w) = inf
w∈Σ∗

f(ū⊗L w) = inf
p̄∈�∗

inf
v̄∈(Σ⊗n+1)

∗
:

π̄(v̄)=ūp̄

f(v̄)

︸ ︷︷ ︸
inf -projection

Again by Theorem 3.6 and Theorem 3.4, we obtain a simple B-automaton T′ which
computes the inf-projection:

inf
w∈Σ∗

JTKB(ū⊗L w) ≈β inf
p̄∈�∗

JT′KB(ūp̄)

We now create the automaton Tinf by taking T′ and making all states final from which one
can reach a final state with only �-transitions. This yields an automaton which computes
a function which is slightly different from the real inf but still correct w.r.t. a correction
function δ. Let m be the number of states in T′ and δ(x) = x+m. We show that

JTinfKB(ū) �δ inf
p̄∈�∗

JT′KB(ūp̄) and inf
p̄∈�∗

JT′KB(ūp̄) �δ JTinfKB(ū)

For the first inequality note that N∪{∞} is well-ordered. Thus, there is a k ∈ N such that
JT′KB(ū�k) = c assumes the value of the infimum. W.l.o.g. this infimum is smaller than ∞
(otherwise there is nothing to show in the first inequality). By the definition of the model,
there is an accepting run ρ of T′ on ū�k such that the cost-value of this run is c. Let ρ′

the front part of ρ which reads ū, q the state after reading ū and cq the maximal checked
counter value at this point in the run. By the definition of the semantics of B-automata,
the maximal checked counter value can only increase in the course of a run. Moreover, the
run ρ shows that the state q can reach a final state with only �-transitions. Therefore, ρ′

is an accepting run of Tinf with the value cq and

JTinfKB(ū) ≤ cq ≤ c = JT′KB(ū�k) = inf
p̄∈�∗

JT′KB(ūp̄) ≤ δ
(

inf
p̄∈�∗

JT′KB(ūp̄)

)
Conversely, let now ρ be an accepting run of Tinf on ū with cost-value c = JTinfKB(ū). If
there is no such run, we have c = ∞ and there is nothing to show. By construction, there
is a final state qf of T′ which is reachable from q with k ≥ 0 �-transitions. Since there is a
loop-free path, we have k ≤ m. We look at the run ρ′ which is created by appending these
�-transitions to ρ. The run ρ′ is accepting for T′ on ū�k. Since every transition has at
most one ic-operation (T′ is simple), the cost-value of ρ′ is limited by c+ k = JTinfKB + k.

18 M. LANG AND C. LÖDING

Altogether:

inf
p̄∈�∗

JT′KB(ūp̄) ≤ JT′KB(ū�k) ≤ c+ k ≤ JTinfKB(ū) +m = δ (JTinfKB(ū))

Alternatively, it also would have been possible to use the same approach as for part (i).
However, the presented way has the advantage that a costly ε-elimination procedure is not
necessary. The major reason why such an approach is not possible for the first part of
the lemma is the semantics of loops consisting only of ε-transitions in cost automata. In
S-automata, paths with high values are preferred. Consequently, it would change the value
of a run to loop through some increment again and again. In the case of B-automata it is
sufficient to take it once or twice in order to obtain a low counter value with a reset located
on the loop.

We now have all prerequisites for a concise formulation of the main theorem on resource
automatic structures. We first inductively translate a formula ϕ with free variables into a
synchronous resource transducer which calculates a function that is α-equivalent to the
function defined by the semantics of ϕ. Finally, we explain why the equivalence relation ≈
is no real restriction and how to calculate precise values of the semantics.

Theorem 4.10. There is an algorithm which takes as input a resource automatic structure
S = (Σ∗, RS

1 , . . . , R
S
m) in form of resource transducers and an FO+RR formula with at least

one free variable over the signature of S and outputs a synchronous resource transducer
that defines an equivalent function to JϕKS.

Proof. Let ϕ(x̄) be the formula with n > 0 free variables.
We show by induction on the structure of the formula how to construct a synchronous

resource transducer Tϕ such that for some correction function α:

∀ā ∈ (Σ∗)n : Jϕ(ā)KS ≈α JTϕK⊗L
(ā)

(base case): Let ϕ = (x = y)
The following transducer obviously captures the semantics of x = y:

Tx=y = ({q},Σ⊗2, {q}, {q}, {γ0}, {(q, (a, a), q, u) | a ∈ Σ, u(γ0) := ε})
(base case): Let ϕ = (x 6= y)

The following transducer captures the semantics of x 6= y:

Tx 6=y = ({q=, q6=, ql, qr},Σ⊗2, {q=}, {q 6=, ql, qr}, {γ0},∆)

where ∆ is given as follows with u s.t. u(γ0) = ε

∆ = {(q=, (a, a), q=, u), (q 6=, (a, a), q6=, u) | a ∈ Σ}
∪ {(q=, (a, b), q6=, u) | a, b ∈ Σ, a 6= b}
∪ {(q=, (a, $), ql, u), (ql, (a, $), ql, u) | a ∈ Σ}
∪ {(q=, ($, a), qr, u), (qr, ($, a), qr, u) | a ∈ Σ}

(base case): Let ϕ = Rix1 . . . xni

By the definition of a resource automatic structure, there is a transducer TRi such that

JTRiK⊗L
(ā) = RS

i (ā) = JRia1 . . . aniK
S = Jϕ(ā)KS

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 19

(induction step): Let ϕ = ϕ1 ∨ ϕ2

By the induction hypothesis, there are transducers Tϕ1 , Tϕ2 such that Jϕ1(b̄)KS ≈β
JTϕ1K⊗L

(b̄) and Jϕ2(c̄)KS ≈δ JTϕ2K⊗L
(c̄). The free variables of ϕ consist of the free

variables of ϕ1 combined with the free variables of ϕ2. Let x̄ = {x1, . . . , xn} be the free
variables of ϕ. In a first step, the two automata Tϕ1 and Tϕ2 have to be adapted such
that they take all free variables of ϕ as input. This can easily be achieved by adding
new components to the input vector which are not taken into account by the automaton.
Furthermore, we possibly have to reorder the components in the input of the automaton.
This can be achieved by reordering them in the transition relation accordingly. As a
result, we obtain automata T′ϕ1

and T′ϕ2
operating over the input alphabet Σ⊗n such

that:

JT′ϕ1
K⊗L

(ā) ≈β Jϕ1KS([xi → ai]) and JT′ϕ2
K⊗L

(ā) ≈δ Jϕ2KS([xi → ai])

By Theorem 3.6, we can construct an automaton Tϕ such that the equation JTϕKB =
min(JT′ϕ1

KB, JT′ϕ2
KB) holds. For this automaton, we have

JTϕK⊗L
(ā) = min

(
JT′ϕ1

K⊗L
(ā), JT′ϕ2

K(ā)
)

≈α min
(
Jϕ1KS([xi → ai]), Jϕ2KS([xi → ai])

)
= Jϕ(ā)KS

(induction step): Let ϕ = ϕ1 ∧ ϕ2

This step is analog to the previous one when replacing min by max.
(induction step): Let ϕ = ∀yψ

By the induction hypothesis, there is an automaton Tψ such that JTψK⊗L
(c̄) ≈β Jψ(c̄)KS.

We assume w.l.o.g that the free variable y is represented by the last component of the
input vector of Tψ. By Lemma 4.9, there is an automaton Tϕ such that JTϕKB(ū) ≈δ
sup
w∈Σ∗

JTψKB(ū⊗L w) for all ū ∈ Σ⊗Ln
∗
. Altogether, we have:

JTϕK⊗L
(ā) = JTϕKB(conv(ā))

≈δ sup
w∈Σ∗

JTψKB(conv(ā)⊗L w)

= sup
b∈S

JTψK⊗L
(ā, b)

≈β sup
b∈S

Jψ(ā, b)KS

= J∀yψ(ā)KS = Jϕ(ā)KS

(induction step): Let ϕ = ∃yψ
This step is again analog to the previous one. We just use the second part of Lemma 4.9
instead of the first part.

It remains to explain how to cover FO+RR sentences. We remind the reader of the fact
that the value of an FO+RR sentence is a constant. Calculating this constant value of a
sentence up to the equivalence relation ≈ means just checking whether the value is infinite
or not. We present this separately from the case with free variables in order to emphasize
the computational steps necessary to decide whether a formula has a finite value.

Corollary 4.11. Let S be a resource automatic structure like in the previous theorem and
ϕ an FO+RR sentence over the signature of S. It is decidable whether JϕKS <∞.

20 M. LANG AND C. LÖDING

Proof. First, we remove the outermost quantifier from the sentence. Now we can apply The-
orem 4.10 and get a synchronized resource transducer T operating over Σ. If the outermost
quantifier is existential, the formula has a finite value if and only if there is some accepting
run on T. If the outermost quantifier is universal, the automaton is accepting if and only if
the automaton is bounded. This can be checked by Theorem 3.5.

The decision procedure described above paves the way for computing precise values of
FO+RR formulas. First, one can check whether the value of a formula ϕ (for some possible
valuation) is infinite by the presented decision procedure. If it is infinite, we are done because
≈ preserves boundedness and thus the precise value of this formula is also∞. Otherwise, it
is known that the formula is bounded and there is some k ∈ N with JϕKS = k. We remarked
earlier that this k is exactly the smallest k such that S≤k |= ϕ when ϕ is interpreted as
normal FO-formula. Since the structures S≤k are (standard) automatic structures for all
fixed k, this can be checked algorithmically. Thus, one can check the above conditions for
all possible k and it will terminate because we already know that the value is finite.

We remark that the previous theorem only covered resource automatic structures whose
universe contains all words in Σ∗. However, this is no real restriction. By definition, the
universe S ⊆ Σ∗ is a regular language. Consequently, we can extend the universe to full Σ∗

and set the value of all relations for elements outside of S to∞. Moreover, we introduce two
new relations S and S valuated with the characteristic functions of S and its complement
language. Similar to standard first-order logic, it is then possible to adapt FO+RR formulas
by restricting the quantifications to elements of S by transforming ∃xϕ into ∃x(Sx ∧ ϕ)
and ∀xϕ into ∀x(Sx ∨ ϕ). With the standard arguments, one can show that this provides
a reduction of arbitrary resource automatic structures to those with universe Σ∗.

5. Computing Reachability with Annotations

The bounded reachability problem can be seen as a reachability problem with annotations
at the transitions. The value associated with a path can be computed from the sequence
of annotations – in our scenario the counter operations. When computing the transitive
closure, we not only have to calculate basic reachability but also the (combined) annotations
of the paths among the nodes.

In the following, we introduce a general algorithm to compute reachability with annota-
tions on prefix replacement systems. This procedure is based on the widely known saturation
principle. It creates an output which can directly be transformed into a synchronous trans-
ducer calculating the annotations for paths between a pair of system configurations. First,
we formally describe the requirements for an annotation domain. Subsequently, we explain
the actual saturation procedure and show how the reachability-cost problem for RPRS can
be represented in the developed framework.

5.1. Annotation Domains. An annotation domain which is compatible with saturation
has to satisfy certain requirements. First, the concatenation operation on the annotations
has to be associative because the order in which paths in the pushdown system are com-
bined during saturation must not be important. Second, the termination of saturation
normally results from the fact that there are only finitely many possible transitions in a
finite automaton which can be added. However, this argument does not suffice anymore
if additional annotations from a potentially infinitely large domain are considered. Since

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 21

there may exist infinitely many paths which are all annotated differently, this problem is
inherent to the considered question. Motivated by the search for good or cheap paths in
the context of the bounded reachability problem, we equip the annotations with a partial
order. This order has to be well-founded and must not contain infinite anti-chains. Such
an order is often called well-partial order or partial well-order in the literature. Finally, we
need to be able to reverse paths because the saturation procedure we adapt operates in
both directions (predecessors and successors) simultaneously. Consequently, we require a
compatible reverse operation on the annotations. We formalize these requirements in the
form of well-partially ordered monoids with involution.

Definition 5.1 (Well-Partially Ordered Monoid with Involution). A well-partially ordered
monoid with involution M is a 5-tuple (M, ◦, eM ,≤, rev) where:

(i) (M, ◦, eM) is a monoid
(ii) ≤ is a well-partial order. The order is compatible with the monoid operation, i.e.,

a ≤ a′ ∧ b ≤ b′ ⇒ a ◦ b ≤ a′ ◦ b′.
(iii) rev : M →M is the so called reverse function. It is an involution, i.e., rev(rev(a)) = a.

Moreover, it satisfies the functional equation rev(a ◦ b) = rev(b) ◦ rev(a).
(iv) Order and the reverse function are compatible, i.e., a ≤ a′ ⇒ rev(a) ≤ rev(a′)

We present a concrete example for such a structure later. In Section 5.3, we show how we
can use this formalism to obtain a quite natural and concise representation of sequences of
B-counter operations.

Before constructing specific instances of well-partially ordered monoids with involution,
we exhibit some general properties. Direct products are a useful tool in many automaton
constructions. Hence, we verify that the direct product of two well-partially ordered monoids
with involution is well-defined. This is mostly formal checking that the properties are
satisfied.

Lemma 5.2. Let M1 = (M1, ◦1, eM1 ,≤1, rev1) and M2 = (M2, ◦2, eM2 ,≤2, rev2) be two
well-partially ordered monoids with involution. We define the direct product M of these
monoids in the usual way

M = (M1 ×M2, ◦, (eM1 , eM2),≤, rev)

with component-wise application of the operation ◦, the involution rev and the component-
wise order ≤, i.e., (m1,m2) ≤ (m′1,m

′
2) :⇔ m1 ≤1 m

′
1 ∧m2 ≤ m′2.

The monoid M is a well-partially-ordered monoid with involution.

Proof. It is clear that M is a monoid. The compatibility of the reverse function and the
order are easy to check. In [Hig52], G. Higman showed that the component-wise order on
the product of two well-partial orders is also a well-partial order.

We now define a general form of prefix replacement systems whose replacement rules
are annotated with elements from a well-partially ordered monoid with involution. With
the above remark that we can encode sequences of B-counter operations in a well-partially
ordered monoid, the following definition can be seen as a generalization of counter automata.

Definition 5.3 (Monoid Annotated Prefix Replacement System).
Let M = (M, ◦, eM ,≤, rev) be a well-partially ordered monoid with involution. A

monoid annotated prefix replacement system is a triple R = (Σ,∆,M) consisting of a
finite alphabet Σ, a finite transition relation ∆ and a well-partially ordered monoid with

22 M. LANG AND C. LÖDING

involutionM. The prefix replacement rules in the transition relation ∆ ⊆ Σ+×Σ∗×M are
annotated with elements from the monoid. We also write u −→

m
v for a prefix replacement

rule (u, v,m) ∈ ∆.
Let w1, w2 be two configurations. We say w2 is an m-successor of w1 and write w1 `m

w2 if ∃(u, v,m) ∈ ∆ ∃x ∈ Σ∗ : w1 = ux ∧ w2 = vx. Let w1, . . . , wn be a sequence of
configurations such that wi `mi wi+1 for all i = 1, . . . , n − 1. We write w1 `∗m wn with
m = m1 ◦ . . . ◦mn.

5.2. Annotation Aware Saturation. It is already known for quite some time that satura-
tion methods can be used to calculate the point-to-point reachability relation of pushdown-
or prefix replacement systems. In addition, it is also known that it is possible to construct a
synchronous transducer which computes this reachability relation. This shows that the con-
figuration space of a prefix replacement system with the reachability relation is an automatic
structure. One approach for such a construction can be found in [LHDT87]. Although this
algorithm is for ground term replacement systems, it is easy to see that a prefix replacement
system is just a special case. We adapt the algorithm for this special case and extend it to
fit our needs.

The algorithm performs a two-sided saturation. Our adapted variant operates over two
ε-NFAs that share some of their states. These two automata read the changed prefixes of the
two configurations. The common suffix is ignored1. A pair (uw, vw) of configurations with
common suffix w is accepted by the pair of automata if there is a run of the first automaton
on u and a run of the second automaton on v such that both end in the same (shared) state.
The saturation algorithm starts with two NFAs that recognize one rewrite step of a given
prefix replacement system. Then, subsequently, new ε-transitions which each simulate one
or more prefix replacement steps are added in both automata. The major reason for this
two-sided construction is the possibility of very different word lengths on both sides of a
prefix replacement rule. In contrary to usual pushdown systems, the left-hand side of a rule
in prefix replacement systems may be much longer than the right-hand side.

Our adaptation extends the original algorithm to keep track of the annotations. We im-
plement this by annotating the transitions of the ε-NFAs with elements from the annotation
domain of the prefix replacement system. Formally, we define those NFAs by:

Definition 5.4 (Monoid annotated ε-NFA). A monoid annotated ε-NFA is a tuple A =
(Q,Σ, In,Fin,∆,M). The components Q,Σ, In,Fin are as in usual NFAs. M is a well-
partially ordered monoid with reverse-function. The finite transition relation ∆ is annotated
with elements from M. It has the form ∆ ⊆ Q× (Σ ∪ {ε})×Q×M .

Each run of the automaton on a word w ∈ Σ∗ naturally defines a monoid element. The
value m of a run is defined by the concatenation of the values of the used transitions along
the run. Consequently, the (finite) set of all possible accepting runs of the automaton on

the word w induces a set of monoid elements Sw ⊆M . Additionally, we write A : q0
w−→
m

∗ q

to indicate that there exists a run from q0 to q on the word w with accumulated annotation
m.

We describe the intuitive idea of Algorithm 1 by first explaining the goal of the algorithm
followed by the explanation of one saturation step in the first of the two automata. We

1This definition comes from the algorithm’s origin as ground tree replacement algorithm. There, the two
subtrees which are framed by the common (tree-)context are read by the automata.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 23

Algorithm 1: Two-sided saturation procedure

input : monoid annotated prefix replacement system R = (Σ,∆R,M)
output : monoid annotated automata A∗1 = (Q1,Σ, {q1,ε}, ∅,∆∗1) and

A∗2 = (Q2,Σ, {q2,ε}, ∅,∆∗2)
1 ` := max {|u|, |v| | (u, v,m) ∈ ∆R}
2 A0

1 := (Q1,Σ, {q1,ε}, ∅,∆0
1) and A0

2 := (Q2,Σ, {q2,ε}, ∅,∆0
2) with

Qshared := {q(u,v,m) | (u, v,m) ∈ ∆R}, Q1 := {q1,v | v ∈ Σ∗, |v| ≤ `} ∪Qshared

Q2 := {q2,v | v ∈ Σ∗, |v| ≤ `} ∪Qshared

∆C,i := {(qi,u, a, qi,v, eM) | u, v ∈ Σ∗, a ∈ Σ : v = ua ∧ |v| ≤ `}
∆0

1 := ∆C,1 ∪ {(q1,u, ε, q(u,v,m), eM) | (u, v,m) ∈ ∆R}
∆0

2 := ∆C,2 ∪ {(q2,v, ε, q(u,v,m), eM) | (u, v,m) ∈ ∆R}
3 i := 0

4 while automata can be updated do
5 i := i+ 1

6 Find w ∈ Σ≤` and states q, q(u,v,m̄) s.t. Ai2 : q2,ε
w−−→
m→

∗ q(u,v,m̄), A
i
1 : q1,ε

w−−→
m←

∗ q

7 mu := m̄rev(m→)m←
8 if ∃(q(u,v,m̄), ε, q,mo) ∈ ∆i

1 with mo > mu then

9 ∆i+1
1 := ∆i

1 \ {(q(u,v,m̄), ε, q, m̃) ∈ ∆i
1 | m̃ > mu} ∪ {(q(u,v,m̄), ε, q,mu)}

10 else if ¬(∃(q(u,v,m̄), ε, q,mo) ∈ ∆i
1 with mo ≤ mu) then

11 ∆i+1
1 := ∆i

1 ∪ {(q(u,v,m̄), ε, q,mu)}
12 endif

13 Ai+1
2 := Ai2, Ai+1

1 := (Q1,Σ, {q1,ε}, ∅,∆i+1
1)

14 continue

15

16 Find w ∈ Σ≤` and states q, q(u,v,m̄) s.t. Ai2 : q2,ε
w−−→
m→

∗ q, Ai1 : q1,ε
w−−→
m←

∗ q(u,v,m̄)

17 mu := rev(m̄)rev(m←)m→
18 if ∃(q(u,v,m̄), ε, q,mo) ∈ ∆i

2 with mo > mu then

19 ∆i+1
2 := ∆i

2 \ {(q(u,v,m̄), ε, q, m̃) ∈ ∆i
2 | m̃ > mu} ∪ {(q(u,v,m̄), ε, q,mu)}

20 else if ¬(∃(q(u,v,m̄), q,mo) ∈ ∆i
2 with mo ≤ mu) then

21 ∆i+1
2 := ∆i

2 ∪ {(q(u,v,m̄), ε, q,mu)}
22 endif

23 Ai+1
1 := Ai1, Ai+1

2 := (Q2,Σ, {q2,ε}, ∅,∆i+1
2)

24 continue

25

26 end

Result: A∗1 := Ai1, A∗2 := Ai2

remarked already that the two automata start with recognizing the successor relation of
prefix replacement. Formally, this means that for every prefix replacement rule u −→̄

m
v ∈ ∆R,

there is a (shared) final state q(u,v,m̄) in A0
1 and A0

2. Moreover, there are runs A0
1 : q1,ε

u−−→
eM

∗ q(u,v,m̄) and A0
2 : q2,ε

v−−→
eM

∗ q(u,v,m̄). During the saturation procedure, we want to add

24 M. LANG AND C. LÖDING

u −→̄
m

v ∈ ∆R

u `m̄ v

Ai2 : q2,ε q(u,v,m̄)
w

m→

v `∗rev(m→) w

Ai+1
1 : q1,ε

q(u,v,m̄)u

Ai1 : q1,ε
q

w

m←

ε, m̄rev(m→)m←

Figure 4: Illustration of the idea of Algorithm 1

ε-transitions which enable the automata to simulate one or more prefix replacement steps

on their own, such that there is a run A∗1 : q1,ε
u′−−→
m←

∗ q(u,v,m̄) iff u′ `∗m← u and symmetrically

(but reversed) also that there is a run A∗2 : q2,ε
v′−−→
m→

∗ q(u,v,m̄) iff v `∗rev(m→) v
′. Note that this

especially means that both runs imply u′ `∗m←m̄rev(m→) v
′.

In order to enable Ai1 to simulate one more application of the replacement rule u −→̄
m

v,

the algorithm uses the following strategy, which is illustrated in Figure 4. First, it finds a

word w ∈ Σ≤` and a fitting run Ai2 : q2,ε
w−−→
m→

∗ q(u,v,m̄) (notice that v = w is always possible).

By our intuition this means v `∗rev(m→) w. Subsequently, the algorithm searches for a

run Ai1 : q1,ε
w−−→
m←

∗ q and adds a transition from q(u,v,m̄) to q in Ai+1
1 . After reading u, the

automaton can use the new ε-transition and is now in a state as if it would have read w in the
first place. This captures the sequence of replacement operations u `m̄ v `∗rev(m→) w, which

is possible because (u, v, m̄) ∈ ∆R for q(u,v,m̄) by construction. Thereby, the automaton

Ai+1
1 can now simulate one execution of this replacement sequence on its own.

In addition to the correct operation of the replacement rules, the algorithm also keeps
track of the annotation. We saw that the ε-transition simulates replacement rules with
accumulated annotation m̄rev(m→). Additionally, it skips the part of reading w on Ai1,
which also contains some annotationm←. Since Ai1 would have read this annotation after the
replacements were made, we also have to include m← into the ε-transition. For this reason,
the complete annotation of the ε-transition to add is m̄rev(m→)m←. However, we only add
this transition if there is not already a transition with the same source and destination and
a better (≤-smaller) annotation. This ensures that we only have finitely many transitions in
the automaton although there might be replacement paths with arbitrarily many different
annotations for a pair of configurations. Additionally, we remove all similar ε-transitions
with a larger annotation for the same reason.

The saturation in Ai2 is symmetric with the roles of Ai1 and Ai2 exchanged. However,
the computation of the annotation is a mirror-image of the computation in Ai2 because Ai2
simulates the replacement steps backwards.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 25

The result of the algorithm is a pair of automata which recognizes the reachability
relation and also contains all minimal annotations for paths from the first to the second
configuration. In the following, we provide formal arguments for termination and correctness
of the algorithm. This includes a detailed analysis of the saturation steps and the book-
keeping of the annotations.

Remark 5.5. Algorithm 1 terminates for every input.

Proof. There are only finitely many pairs of states in Q1 and Q2. Moreover, there are only
two possibilities where a pair of states is considered several times in the algorithm. First,
the transitions can be updated because a pair of runs leading to a smaller annotation was
found. However, this can occur only finitely many times since the order on the annotation
domain is well-founded. Second, several transitions can be added because the annotations
are incomparable. This can occur only finitely often, too. Otherwise this yields a (size)
increasing sequence of anti-chains. The union of all sets in the sequence would be an
infinite anti-chain in contradiction to the definition of the annotation domain. Hence, the
algorithm terminates after a finite number of steps.

Lemma 5.6. Let R be a monoid annotated prefix replacement system, A∗1 and A∗2 the result
of Algorithm 1. For two configurations w1, w2 ∈ Σ∗ with w1 6= w2 the following holds:

(i) If w1 `∗m w2, then there are runs A∗1 : q1,ε
w′1−−→
m←

∗ q(u,v,m̄) and A∗2 : q2,ε
w′2−−→
m→

∗ q(u,v,m̄) for

some (u, v, m̄) ∈ ∆R and x ∈ Σ∗ such that w1 = w′1x, w2 = w′2x and m←m̄rev(m→) ≤
m.

(ii) If there is a run A∗1 : q1,ε
w1−−→
m←

∗ q(u,v,m̄) for some (u, v, m̄) ∈ ∆R, then w1z `∗m← uz

for all z ∈ Σ∗.

(iii) If there is a run A∗2 : q2,ε
w2−−→
m→

∗ q(u,v,m̄) for some (u, v, m̄) ∈ ∆R, then vz `∗rev(m→) w2z

for all z ∈ Σ∗.

Proof. We first show (i) by induction on the number of replacement steps. Let ` be as in
the algorithm.

(base case): Let w1 `m w2:
By definition of the successor relation, there is a replacement rule (u, v, m̄) ∈ ∆R and
a common suffix x ∈ Σ∗ such that w1 = ux, w2 = vx and m = m̄. By definition of the

automata A0
1 and A0

2, which are included in A∗1 and A∗2, there are runs A∗1 : q1,ε
u−−→
eM

∗ q(u,v,m̄) and A∗2 : q2,ε
v−−→
eM

∗ q(u,v,m̄). Additionally, eMm̄rev(eM) = m̄.

(induction step): Let u `n+1
m w:

By the definition of `n+1
m , there is a v such that u `nm1

v `m2 w with m1m2 = m. By the
induction hypothesis, there is a common suffix x̄ such that u = ūx̄, v = v̄x̄ and there

are runs A∗1 : q1,ε
ū−−→
mu

∗ q̄ and A∗2 : q2,ε
v̄−−→

muv

∗ q̄ for some state q̄ = q(w1,w2,m̄) such that

mum̄rev(muv) ≤ m1. Additionally, there is a common suffix x̂ such that v = v̂x̂, w = ŵx̂
and (v̂, ŵ,m2) ∈ ∆R. Now, distinguish two cases depending on the length of x̂ and x̄.

1st case: |x̂| ≤ |x̄|:
The used words and runs in this case are shown in Figure 5.
One can write v in the form v = v̄v̂′x̂. With this notation, we can also write
u = ūv̂′x̂.

26 M. LANG AND C. LÖDING

u
ū x̄

q1,εA∗1 :
q̄

mu

q̃

ε

q̂eM

v
v̄

v̂

x̄

x̂

q2,εA∗2 :

q1,εA∗1 :

q̄

q̂
q̃

muv

eM eM

v̂′

w
ŵ x̂

q2,εA∗2 : q̂
eM

m̄

m2

m2

Figure 5: Illustration of the 1st case of part (i) of Lemma 5.6

By construction of the automata A∗1 and A∗2, there are two runs A∗1 : q1,ε
v̄−−→
eM

∗ q̃
v̂′−−→
eM

∗ q̂ and A∗2 : q2,ε
ŵ−−→
eM

∗ q̂ with q̂ = q(v̂,ŵ,m2). Additionally, we have

v̂ = v̄v̂′ and thus |v̄| ≤ |v̂| ≤ `.
By the saturation algorithm, there is a transition q̄

ε−→
m′

q̃ in A∗1 such that

m′ ≤ m̄rev(muv)eM . Using this ε-transition, one can create the following run:

A∗1 : q1,ε
ū−−→
mu

∗ q̄
ε−→
m′

q̃
v̂′−−→
eM

∗ q̂

So, this run and the run A∗2 : q2,ε
ŵ−−→
eM

∗ q̂ satisfy the first condition of the

lemma. By the induction hypothesis, we have mum̄rev(muv) ≤ m1. By the
monotonicity of the monoid operator, we have

mum
′m2eM ≤ mum̄rev(muv)m2 ≤ m1m2 = m

2nd case: |x̂| > |x̄|:
This case is mostly analogous to the first one. The roles of A∗1 and A∗2 are
exchanged. One can write w in the form w = ŵv̄′x̄ and v in the form v = v̂v̄′x̄.

By construction of the automata A∗1 and A∗2, there are runs A∗1 : q1,ε
v̂−−→
eM

∗ q̂

and A∗2 : q2,ε
ŵ−−→
eM

∗ q̂ with q̂ = q(v̂,ŵ,m2). Furthermore, the inductively given run

A∗2 : q2,ε
v̄−−→

muv

∗ q̄ can be divided into two parts A∗2 : q2,ε
v̂−−→
mv̂

∗ q̃
v̄′−−→
mv̄′

∗ q̄.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 27

zw1

w′1
y

Ai+1
1 : q1,ε

ε
mε

q̂ q̃ q(u,v,m)

mw′1 my i.h.: w1yz `∗mw′1
ûyz

ûyz `∗m̂ v̂yz

n−1-times
new transition only Ai

1

zx y
Ai2 : q2,ε

q̂ = (û, v̂, m̂)m̂→ i.h.: v̂yz `∗rev(m̂→) xyz

Ai1 : q1,ε q̃ q(u,v,m)

m̂← my i.h.: xyz `∗m̂←my
uz

Figure 6: Illustration of part (ii) of Lemma 5.6

Since |v̂| ≤ `, the the saturation algorithm guarantees that there is a transition

q̂
ε−→
m′

q̃ in A∗2 such that m′ ≤ rev(m2)rev(eM)mv̂ = rev(m2)mv̂. Using this ε-

transition, one can create the following run:

A∗2 : q2,ε
ŵ−−→
eM

∗ q̂
ε−→
m′

q̃
v̄′−−→
mv̄′

∗ q̄

So, this run and the run A∗1 : q1,ε
ū−−→
mu

∗ q̄ satisfy the first condition of the lemma.

Consequently, we obtain by the application of the functional equation of rev
and the compatibility with the order:

mum̄rev(m′mv̄′) = mum̄rev(mv̄′)rev(m′)

≤ mum̄rev(mv̄′)rev(rev(m2)mv̂)

= mum̄rev(mv̄′)rev(mv̂)m2

= mum̄rev(mv̂mv̄′︸ ︷︷ ︸
muv

)m2

i.h.
≤ m1m2 = m

Now we show the parts (ii) and (iii) by induction on the number of steps of the algorithm.
Depending on the automaton in which the saturation step was executed either the statement
of part (ii) or of part (iii) needs to be proven. Nevertheless, we need to prove both statements
together because of the interplay of both automata in the saturation procedure.

(base case): Let A0
1 : q1,ε

w1−−→
m1

∗ q(u,v,m) or A0
2 : q2,ε

w2−−→
m2

∗ q(u,v,m) for some (u, v,m) ∈ ∆R

and z ∈ Σ∗:
By the construction of the automata A0

1 and A0
2, we have w1 = u, w2 = v, m1 = eM ,

m2 = eM and thus obtain w1z `0
eM uz and vz `0

eM w2z as desired.

(induction step): Let Ai+1
1 : q1,ε

w1−−→
m←

∗ q(u,v,m) for some (u,w,m) ∈ ∆R and z ∈ Σ∗:

We assume that the new/updated transition q̂
ε−−→
mε

q̃ is in Ai+1
1 (otherwise there is

28 M. LANG AND C. LÖDING

nothing to show here). Let n ∈ N be the number of occurrences of the new transition

in Ai+1
1 : q1,ε

w1−−→
m←

∗ q(u,v,m).

(base case): Let n = 0:

If the run Ai+1
1 : q1,ε

w1−−→
m←

∗ q(u,v,m) does not contain the new transition, the claim

follows directly by the induction hypothesis of the outer induction.
(induction step): Let n > 0:

The used words and runs of the construction are shown in Figure 6.
The run on Ai+1

1 can be represented by:

Ai+1
1 : q1,ε

w′1−−−→
mw′1

∗ q̂︸ ︷︷ ︸
new trans. only
n− 1 times

q̂
ε−−→
mε

q̃ q̃
y−−→
my

∗ q(u,v,m)︸ ︷︷ ︸
only Ai

1

with w1 = w′1y

By the saturation algorithm, there is a word x ∈ Σ∗ and a pair of runs Ai1 : q1,ε
x−−→
m̂←

∗ q̃

and Ai2 : q2,ε
x−−→
m̂→

∗ q̂ with q̂ = q(û,v̂,m̂) such that mε = m̂rev(m̂→)m̂← which led to

the construction of the new transition.

Since Ai+1
1 : q1,ε

w′1−−−→
mw′1

∗ q̂ uses the new transition only n − 1 times we have w1z =

w′1yz `∗mw′1
ûyz by the inner induction hypothesis. Furthermore, we obtain from the

outer induction hypothesis (part (iii) of the lemma) that v̂yz `∗rev(m̂→) xyz.

Additionally, it is possible to construct the following run with the given run of Ai1 on
w1 and the run of Ai1 which led to the construction of the new transition:

Ai1 : q1,ε
x−−→
m̂←

∗ q̃
y−−→
my

∗ q(u,v,m)

This run does not use the new transition. Consequently, the outer induction hypoth-
esis yields xyz `∗m̂←my

uz. In total:

w1z = w′1yz `∗mw′1
ûyz `m̂ v̂yz `∗rev(m̂→) xyz `

∗
m̂←my

uz

with
mw′1

m̂rev(m̂→)m̂←︸ ︷︷ ︸
mε

my = mw′1
mεmy = m←

(induction step): Let Ai+1
2 : q2,ε

w2−−→
m→

∗ q(u,v,m) for some (u, v,m) ∈ ∆R and z ∈ Σ∗:

This step is mostly analogous to the previous case – just the roles of the two automata

are exchanged. Thus, we now assume that the new/updated transition q̂
ε−−→
mε

q̃ is in Ai+1
2 .

Let n ∈ N be the number of occurrences of the new transition in Ai+1
2 : q2,ε

w2−−→
m→

∗ q(u,v,m).

(base case): Let n = 0:

If the run Ai+1
2 : q2,ε

w2−−→
m→

∗ q(u,v,m) does not contain the new transition, the claim

follows directly by the induction hypothesis of the outer induction.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 29

(induction step): Let n > 0:
The run on Ai+1

2 can be represented by:

Ai+1
2 : q2,ε

w′2−−−→
mw′2

∗ q̂︸ ︷︷ ︸
new trans. only
n− 1 times

q̂
ε−−→
mε

q̃ q̃
y−−→
my

∗ q(u,v,m)︸ ︷︷ ︸
only Ai

2

with w2 = w′2y

By the saturation algorithm, there is a word x ∈ Σ∗ and a pair of runs Ai1 : q1,ε
x−−→
m̂←

∗ q̂

and Ai2 : q2,ε
x−−→
m̂→

∗ q̃ with q̂ = q(û,v̂,m̂) such that mε = rev(m̂)rev(m̂←)m̂→ which led

to the construction of the new transition.

Since Ai+1
2 : q2,ε

w′2−−−→
mw′2

∗ q̂ uses the new transition only n − 1 times, the inner induc-

tion hypothesis yields v̂yz `∗
rev

(
mw′2

) w′2yz. Furthermore, we obtain from the outer

induction hypothesis (part (ii) of the lemma) that xyz `∗m̂← ûyz.

Additionally, it is possible to construct the following run with the given run of Ai2 on
w2 and the run of Ai2 which led to the construction of the new transition:

Ai2 : q2,ε
x−−→
m̂→

∗ q̃
y−−→
my

∗ q(u,v,m)

This run does not use the new transition. Consequently, the outer induction hypoth-
esis yields vz `∗rev(m̂→my) xyz. In total:

vz `∗rev(m̂→my) xyz `
∗
m̂← ûyz `∗m̂ v̂yz `∗

rev
(
mw′2

) w′2yz
with

rev(m̂→my)m̂←m̂rev
(
mw′2

)
= rev(my)rev(m̂→)m̂←m̂rev

(
mw′2

)
= rev(my)rev(rev(m̂)rev(m←)m̂→︸ ︷︷ ︸

mε

)rev
(
mw′2

)
= rev(mw′2

mεmy)

= rev(m→)

5.3. Cost-Reachability in RPRS. Although the previously presented algorithm shows
that we are able to compute the reachability relation of prefix replacement systems with
annotations, there are still two problems to settle in order to solve the problem stated in
our motivating question. First, we have to encode the counter operations in the form of a
well-partially ordered monoid with involution. The main problem here is that evaluating
(mapping partial sequences to maximal counter values) sequences of counter operations is
inherently not associative. Thus, we need to capture the essential information contained in
a sequence of counter operations but in a more accessible representation. Second, we have
to construct a synchronous resource transducer from the result of the algorithm.

We define counter profiles to capture the behavior of counter sequences and provide a
way to store a sequence of counter operations such that an associative concatenation can be
defined. A counter profile is a triple whose elements are either natural numbers or � (read

30 M. LANG AND C. LÖDING

“n/a”) meaning not applicable. We map a sequence of counter operations to a counter profile
based on the following ideas. If there is no reset in the sequence, we just store the number
of increments in the first component. All other components are set to �. If it contains a
reset, we store the number of increments before the first reset in the first component and the
number of increments after the last reset in the third component. The second component
contains the maximal number of increments between two subsequent resets. If there are
less than two resets in the sequence, this component remains �. It is easy to see that such
a profile contains sufficient information to define an associative concatenation operator and
that the profile (0,�,�) is neutral for this operator. We denote the set of all valid counter
profiles, i.e., those profiles resulting from some counter sequence, by CP and the above
described mapping from counter sequences to counter profiles by Profile : {i, r, n}∗ → CP.

Proposition 5.7. The structure (CP, ◦, (0,�,�),≤cw, rev) is a well-partially ordered mon-
oid with involution where ◦ is the concatenation operator induced by the concatenation of
counter sequences, ≤cw is the component-wise order on the profiles. In each component
the natural numbers are ordered canonically, the element � is incomparable to all numbers.
The function rev is defined by:

rev : CP → CP, (i+←, cmax , i
+
→) 7→

{
(i+←,�,�) if i+→ = �
(i+→, cmax , i

+
←) otherwise

Note that the first case corresponds to counter sequences without reset, which are reverse-
invariant.

Proof. By construction the structure (CP, ◦, (0,�,�)) is a monoid. Furthermore, one can
verify by checking all cases that the order ≤cw is compatible with ◦ and the reverse function.
We show that the order ≤cw is well-founded and has only finite anti-chains by showing
that it is the product of three orders satisfying these conditions. This argumentation is
analogous to Lemma 5.2. The canonical order on N with one additional element � which
is incomparable to all numbers is well-founded and has only finite anti-chains since every
set of more than one natural number forms a chain. Thus only two element sets containing
one number and � can be anti-chains. The order on counter profiles is the product of three
times this order.

We remark that the framework of well-partially ordered monoids with involution can
be used to capture sequences of counters with S-automaton semantics as well. The idea to
construct S-counter profiles is very similar to B-counter profiles. Analogously, they store
the number of increments before the first and after the last reset. They additionally store
whether these resets were cr or r. Following the semantics of S-automata, the profiles do
not store the maximal counter value between subsequent (check-)resets but the minimal
ones. Due to the fact that there are cr and r in S-semantics, they have to store this for
both directions: when reading the counter sequence from left to right and when reading
from right to left.

(B-)Counter profiles allow the translation of RPRS into monoid annotated prefix re-
placement systems with a direct relation between their semantics. This translation trans-
forms i into (1,�,�), r into (0,�, 0) and n into the neutral element (0,�,�). In this
translated system we define u `∗≤k v iff u `∗m v for some m = (i+←, cmax , i

+
→) ∈ CP with

max(i+←, cmax , i
+
→) ≤ k. We already explained that Profile is a (monoid-)homomorphism.

Consequently, the relation `∗≤k is preserved under the transformation of the RPRS to the

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 31

q(u,v,(1,�,�))

q(u,v,(1,�,�))

qid
qid

wait run of A∗
1 identity check

run of A∗
2

ε

ε

x
x

$. . . $ w′1
w′2

i

γ1
1

i

γ1
1

r

γ1
1

i

γ1
1

i

γ2
1

r

γ2
1

i

γ2
1

r

γ2
1

i

γ2
1

i

γ2
1

A∗1

A∗2

qwait

qwait

qwait

ε

q2,ε

ε
q1,ε

T

Figure 7: Construction of the synchronous transducer

annotated prefix replacement system. Additionally, this also holds the other way around.
For a pair u `∗≤k v in the profile annotated prefix replacement system one can directly

construct a path also satisfying u `∗≤k v in the corresponding RPRS. Moreover, we remark
that if u `∗≤k v holds for a pair of configurations in the profile annotated prefix replacement
system, then there is a ≤cw-minimal profile which witnesses that. Formally, let M be the
set of all those elements m s.t. u `∗m v. There is a (i+←, cmax , i

+
→) = m↓ ∈ minM s.t.

max(i+←, cmax , i
+
→) ≤ k because ≤cw-smaller elements can only have a smaller max than the

max of all components.
Analogously, we can transform counter profiles back into equivalent counter sequences.

We define the mapping PrToOp : (i+←, cmax , i
+
←) 7→ ii

+
← [ricmax][rii

+
→], where the parts in

square brackets are only needed if cmax or i+→ are not �, to convert a profile back into an
equivalent sequence of counter operations. This transformation allows us to obtain normal
B-automata in the end.

Even though the above description did not consider RPRS with several counters, we
are not restricted to the single counter scenario. By Lemma 5.2 the direct product of two
monoids as presented in Proposition 5.7 is again a well-partially ordered monoid with reverse-
function. Since all counters are handled independently from each other in an RPRS, the
direct product of n copies of the counter profiles exactly corresponds to the behavior of an
n counter RPRS for the same reasons as explained in the previous paragraph. Accordingly,
we have u `∗≤k v if the maximum of all entries in all profiles is less than or equal to k.

The following lemma formally describes how the previous results can be used to compute
a synchronous resource transducer for the resource-cost reachability relation. The proof is
divided into three parts. First, we use the above described ideas to transform an RPRS
into an equivalent profile annotated prefix replacement system. Second, Algorithm 1 is used
to compute the annotation-aware transitive closure. Third, we construct a synchronous re-
source transducer from the result of the saturation procedure. The idea of this construction
is depicted in Figure 7. It is based on a product construction of the two output automata
from the saturation. The construction is extended to read an entire pair of configurations.
Both state components of the product automaton start in an additional wait-state (qwait).
This wait-state is used to skip the padding in front of the shorter configuration. Following,
both state components process the changed prefix of the two configurations individually.

32 M. LANG AND C. LÖDING

To do so, each component has its own copy of every counter of the RPRS. The detailed
analysis shows that this is sufficient to simulate the counters up to a factor of two. When
the changed prefix of the two configurations is completely read, the constructed transducer
nondeterministically guesses that the common postfix starts. Whenever both state compo-
nents are in the same state (one of the states of Qshared in the algorithm), the transducer
can change to the newly introduced state qid. It then only verifies until the end that the
remainder of both configurations is identical.

In the following, we only write i but mean the counter operation ic of B-automata.
This reduces the notation overhead and it resembles more closely the notation in RPRS
where all increments count for the resource-cost value and there is no notion of check.

Lemma 5.8. Let R = (Σ,∆R,Γ) be a resource prefix replacement system and α(k) = 2k+1
be a correction function. There is a synchronous resource transducer T such that for all
w1, w2 ∈ Σ∗ we have

JTK⊗R
((w1, w2)) ≈α inf{j ∈ N | w1 `∗≤j w2}

Proof. The proof follows the previously presented ideas. We translate R into a monoid anno-
tated prefix replacement system with counter profile annotation. Let Γ = {γ1, . . . , γn} such
that the i-th component of the profile vector represents the counter γi. Subsequently, we use
Algorithm 1 to obtain the automata A∗1 = (Q1,Σ, {q1,ε}, ∅,∆1) and A∗2 = (Q2,Σ, {q2,ε}, ∅,∆2).
We define the transducer by:

T = (Q,Σ⊗2,∆, In,Fin,Γ′)

where the state set is defined as Q = (Q1 ·∪{qwait})× (Q2 ·∪{qwait}) ·∪{qid} with initial state
In = {(qwait, qwait)} and final state Fin = {qid}. The set of counters contains two copies for
every counter in Γ, i.e., Γ′ = {γ1, γ2 | γ ∈ Γ}. The transition relation ∆ is given similar to
a product construction but also contains transitions which enable the automaton to wait
until the padding ends and to change from a state where both components of the state are
in the same shared end state to the state which starts reading the identity.

∆ = {((p1, p2),

(
a1

a2

)
, (p′1, p

′
2), u) | (pl, al, p′l,ml) ∈ ∆l, l ∈ {1, 2}, u(γji) := PrToOp((mj)i)}

∪ {((p, qwait),

(
a
$

)
, (p′, qwait), u) | (p, a, p′,m1) ∈ ∆1, u(γ2

i) := ε, u(γ1
i) := PrToOp((m1)i)}

∪ {((qwait, q),

(
$
b

)
, (qwait, q

′), u) | (q, b, q′,m2) ∈ ∆2, u(γ1
i) := ε, u(γ2

i) := PrToOp((m2)i)}

∪ {((qwait, p2), ε, (q1,ε, p2), un), ((p1, qwait), ε, (p1, q2,ε), un) | pi ∈ Qi ∪ {qwait}}

∪ {((p, p), ε, qid, un), (qid,

(
a
a

)
, qid, un) | p ∈ Q1 ∩Q2, a ∈ Σ}

with un(γ
j
i) := ε

We show the claim by first showing JTK⊗R
((w1, w2)) �α inf{j ∈ N | w1 `∗≤j w2} and

then inf{j ∈ N | w1 `∗≤j w2} �α JTK⊗R
((w1, w2)) separately.

Assume w1 `∗≤k w2. Then there is a counter profile vector m in which no entry exceeds
k and we have w1 `∗m w2. Note that if no such k exists, there is nothing to show in
this direction because the inf is ∞ in this case. By Lemma 5.6 part (i) there are runs

A∗1 : q1,ε
w′1−−→
m←

∗ q(u,v,m̄) and A∗2 : q2,ε
w′2−−→
m→

∗ q(u,v,m̄) for some (u, v, m̄) ∈ ∆R and x ∈ Σ∗ such

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 33

that w1 = w′1x, w2 = w′2x and m←m̄rev(m→) ≤ m. By these two runs, we can easily obtain
an accepting run of T on w1 ⊗R w2 where the counters γ1

i process a counter sequence with
profile m← and the counters γ2

i process a counter sequence with profile m→.
We show that the maximal occurring counter value in these runs can only be smaller

than the maximum in m←m̄rev(m→). Consider the sequence of counter operations for one

counter. The part resulting from m← looks like [r]in
←
1 rin

←
2 . . . ri

n←`1 , the part resulting from

m→ like [r]in
→
1 rin

→
2 . . . ri

n→`2 . The operation corresponding to m̄ is either i, r or n. We
first recognize that the maximal counter value only depends on the length of the maximal
block of increments in the sequence. Consequently, it makes no difference to read the
sequence reversed. The only difference of the sequences read by T to the combined sequence

m←m̄rev(m→) is that the latter could contain the block i
n←`1iχmi

n→`2 if the operation of m̄
is not r with χm = 1 if the operation is i and 0 otherwise. This block is not read by
the run of T. However, this block would only induce a larger value. This shows that the
value computed by T is a lower bound on the k such that w1 `∗≤k w2. Thus, we have

JTK⊗R
((u, v)) �α inf{j ∈ N | w1 `∗≤j w2}.

For the other inequality let now JTK⊗R
((w1, w2)) = k. From the run witnessing this

fact, we obtain a common suffix x ∈ Σ∗, which is read while the automaton is in state
qid, and w′1, w

′
2 such that w1 = w′1x, w2 = w′2x. Furthermore, there is a common state

q(u,v,m̄) ∈ Q1 ∩Q2 which is the last state before the automaton changed to qid. By splitting
the run on T at the transition changing to qid and projecting the first part to the respec-

tive state components, we obtain the runs A∗1 : q1,ε
w′1−−→
m→

∗ q(u,v,m̄) and A∗2 : q2,ε
w′2−−→
m←

∗ q(u,v,m̄)

where the counter profile m← corresponds to the sequence of counter operations of the coun-
ters γ1

i and the profile m→ corresponds to the sequence of the counters γ2
i , respectively. By

Lemma 5.6, we obtain that w1 `∗m←m̄rev(m→) w2. Thus, it remains to show that no value in

the profile m←m̄rev(m→) exceeds 2k+ 1. For the sake of simplicity we assume that there is
only one counter. The proof extends directly to several counters by repeating all arguments
component-wise for every counter. We use equivalent counter sequences to examine the max-

imal counter value induced by m←m̄rev(m→). Let PrToOp(m←) = i
←−
i+← [ri

←−−cmax][ri
←−
i+→] and

PrToOp(m→) = i
−→
i+← [ri

−−→cmax][ri
−→
i+→] be the counter sequence representations of the profiles

and op = PrToOp(m̄). With this notation, the complete sequence m←m̄rev(m→) corre-

sponds to i
←−
i+← [ri

←−−cmax][ri
←−
i+→]op[i

−→
i+→r][i

−−→cmax r]i
−→
i+← . First, we remark that −−→cmax and ←−−cmax are

either undefined or at most k by assumption. Since they are enclosed by r in the sequence,
we can ignore them. Second, we see that the maximal counter value of the complete counter
sequence only exceeds the maximal counter value of the two single sequences if op 6= r. It
becomes largest if op = i. Consequently, the new block of increments in the middle of the

sequence is
←−
i+← +

−→
i+← + 1,

←−
i+→ +

−→
i+→ + 1,

←−
i+← +

−→
i+→ + 1 or

←−
i+→ +

−→
i+← + 1. Since all profile entries

are bounded by k, the counters are bounded by 2k + 1 in the complete sequence. So, we
have that w1 `∗≤2k+1 w2. In total, we have inf{j ∈ N | w1 `∗≤j w2} �α JTK⊗R

((w1, w2)).

We remark that it is also possible to use the result of the saturation procedure to con-
struct a transducer which calculates the exact values. However, this requires a slightly more
complex construction. The basic construction is analogous to the construction presented in
the previous lemma. However, we additionally have to solve the problem of the connection
point in the middle of the two sequences. This can be done by nondeterministically guessing
the position of the last reset for each counter in both components of the state space. This

34 M. LANG AND C. LÖDING

q(u,v,(1,�,�))

q(u,v,(1,�,�))

qid
qid

wait run of A∗
1 identity check

run of A∗
2

ε
i γ2

1

ε

last reset → change counter

last reset only in A∗
2

x
x

$. . . $ w′1
w′2

i

γ1
1

i

γ1
1

r i

γ2
1

i

γ2
1

r

γ2
1

i

γ2
1

r

γ2
1

i

γ2
1

i

γ2
1

A∗1

A∗2

qwait

qwait

qwait

ε

q2,ε

ε
q1,ε

T

Figure 8: Construction of the synchronous transducer for the exact value

is illustrated in Figure 8. At some point in the run, the transducer T decides that this is
the last reset for some counter in this component of the state space. It checks whether the
corresponding counter in the other state-component is already in this after last reset mode.
If this is the case, the current component uses from this time onwards in the run the counter
of the other component to store increments. In any case the automaton validates that there
are no more resets for the respective counter in the run. That includes the counter oper-
ation associated with the shared synchronization state before switching to qid. This way,
the transducer accumulates all increments contained in the middle part connecting both
counter sequences in one counter. Hence, the transducer calculates exactly the maximal
counter value of m←m̄rev(m→).

With the previous lemma, we can directly obtain the following theorem.

Theorem 5.9. Let R = (Σ,∆,Γ) be an RPRS and CR = (Σ∗,−→∗ CR) its resource structure
representation. The structure CR is resource automatic.

We are now ready to prove the main result about the bounded reachability problem of
RPRS. We already saw in the previous section that we can express bounded reachability
with FO+RR and that we are able to compute the value of this logic on resource automatic
structures. The previous result completes the puzzle and enables a concise proof for a
positive result in a restricted case of bounded reachability.

Theorem 5.10. The bounded reachability problem for resource prefix replacement systems
and regular sets A and B of configurations is decidable.

Proof. By Theorem 5.9 the structure CR = (Σ∗,−→∗ CR) is resource automatic for a given
resource prefix replacement system R = (Σ,∆,Γ). For regular sets A,B ⊆ Σ∗ the extended
resource representation C′R = (Σ∗,−→∗ CR , A,B) is also resource automatic since the valu-

ations of A and B are characteristic functions of a regular language. By Proposition 4.4
the bounded reachability problem is expressible in the logic FO+RR over the structure C′R
and by Theorem 4.10 the semantics of FO+RR formula is effectively computable on resource
automatic structures. Consequently, computing the semantics yields a decision procedure
for the bounded reachability problem.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 35

We remark that the complete saturation process can be (computationally) accelerated
if one is only interested in boundedness. In this case it is sufficient to have counter profiles
with entries from {0, 1,�} and ignore higher counter values. If larger values are created
with concatenation, we just reset them to 1. One can easily verify that such profiles also
form a well-partially ordered monoid with involution and that the usage of the restricted
profiles only results in smaller values for the calculated resource-cost. However, since there
are only finitely many profiles in the saturated automata, there is a largest value k occurring
in the profiles. A run on the original automata can, compared to a run on the automata
only using the entries {0, 1,�}, only have larger resource-cost by the factor k. Hence, the
computed functions of both automata are ≈-equivalent and this equivalence is known to pre-
serve boundedness. Moreover, with this restriction the runtime of the saturation procedure
is polynomial in the number and maximal length of the prefix replacement rules and expo-
nential in the number of counters (since there are still exponentially many incomparable
counter profile vectors with the restricted profile entries).

We additionally remark that Theorem 5.10 can be generalized to prefix replacement
systems with labeled replacement rules and regular constraints on the labeling of paths.
One can extend (resource) prefix replacement systems by labeling all replacement rules
with symbols from a finite alphabet Λ. A configuration sequence in such a system generates
a word w ∈ Λ∗. In these systems, one can study the reachability relation with respect to
some language L ⊆ Λ∗. A pair of configurations u, v satisfies this relation u `L≤k v if v is
reachable from u with a sequence of configurations which yields a word w ∈ L and needs
at most k resources. One can easily see that boundedness questions on such systems can
be solved with the above framework if L is regular. One can either simulate an automaton
recognizing L on top of the stack of the prefix replacement system or (if one does not want
to change the stack alphabet) include a finite monoid recognizing L (see, e.g., [Sak09]) in
the annotation monoid.

6. The Bounded Reachability Problem and cost-WMSO

Together with the model of B-automata different forms of quantitative logics have been
introduced. The logic FO+RR presented in this work can also be seen as such a logic. How-
ever, directly in connection with the introduction of B-automata (see [Col09]) T. Colcombet
already considered two dual forms of cost monadic second-order logic (for short cost-MSO)
over finite words. Recently, M. Vanden Boom showed in [Boo11] that the boundedness prob-
lem for cost-weakMSO is decidable over the infinite tree (in weak MSO set quantification
only ranges over finite sets). In this section, we show how the bounded reachability prob-
lem for systems with one counter can be encoded to cost-weakMSO. This reduction yields,
together with the decidability result by M. Vanden Boom, an alternative decision proce-
dure for a restricted version of bounded reachability problem as solved with our framework
in Theorem 5.10. Although this reduction does not provide any new decidability result,
we present it to demonstrate that the logic cost-(weak)MSO, which was initially designed
with the goal of creating an equivalent formalism to B-automata, is capable of expressing a
natural problem on quantitative systems. Moreover, we think that it motivates research in
comparing the expressive power of the different recently introduced quantitative logics.

The logic cost-(weak)MSO extends standard monadic second-order logic with a bounded
existential quantifier ∃X.|X| ≤ N (or ≥ N in the dual form) which is only allowed to appear
positively in the formula. The semantics of this logic is quantitative. For a given structure

36 M. LANG AND C. LÖDING

each formula is mapped to the minimal (or maximal in the dual form) N0 ∈ N such that
the formula is satisfied as normal (weak)MSO formula with a cardinality restriction of N0

in all bounded existential quantifications.
For example, let Pa be the proposition indicating all positions at which there is an a in

the word. The formula ∃X.|X| ≤ N ∀x Pa(x) → X(x) counts the number of as in a word.
The formula enforces that all positions with an a also have to be in X. Consequently, the
set X must have at least the number of as as size in order to satisfy the formula.

The translation of the bounded reachability problem into a cost-weakMSO formula over
the infinite binary tree is conducted in four steps. We present the approach for a single
counter. First, we shift the counter operation annotation from the prefix replacement rules
to the configurations by considering the incidence graph. In the incidence graph, every
transition is replaced by an additional node. This additional node is then connected to the
nodes incident to the edge. This graph is still the configuration graph of a prefix replace-
ment system. Moreover, we can assume without loss of generality that this replacement
system works over the alphabet {0, 1}. Second, we embed the graph into the binary tree.
As usual, we identify every node in the tree with the {0, 1}-word induced by the path from
the root to the node. In this encoding, the root is labeled with ε, the left child with 0 and
the right child with 1. This can be extended to the complete tree. Hence, every node can
represent one configuration of the prefix replacement system. Furthermore, we can obtain
FO-formulas ϕ`(a, b), representing the successor relation (see [Tho03]), ϕi(a), ϕr(a), identi-
fying the configurations with increment or reset counter actions, and ϕA(a), ϕB(b), marking
the tree representation of the sets A and B of the bounded reachability problem. Third,
we construct a formula that expresses reachability with a bounded number of increments.
Finally, we use this previous formula to construct a formula for bounded reachability. This
formula checks bounded reachability by guessing positions with resets and checking for a
bounded number of increments between those positions.

Lemma 6.1. Let ϑ(a, b) be a formula representing a binary relation. The weakMSO formula
Ψϑ(P, x, y) defined as follows is true iff the finite set P contains a sequence from x to y
connected via ϑ.

Ψϑ(P, x, y) :=P (x) ∧ P (y) ∧ ∀S
(

(S ⊆ P ∧ S(x))→

(S(y) ∨ (∃z∃z′S(z) ∧ ¬S(z′) ∧ P (z′) ∧ ϑ(z, z′)))
)

The following cost-WMSO formula Ξ(a, b) has a value of at most k iff there is a path with
at most k increments from a to b

Ξ(a, b) := ∃X.|X| ≤ N ∃P Ψϕ` (P, a, b) ∧ ∀x(P (x) ∧ ϕi(x))→ X(x)

Proof. We start with the claim on the formula Ψϑ(P, x, y). Fix a set P and two elements
x, y.

First, assume that P contains a ϑ-path x = u1, . . . , un = y with ϑ(ui, ui+1). Then P (x)
and P (y) are satisfied. Now, let S ⊆ P be an arbitrary subset of P which contains x but
does not contain y (otherwise the second part of the formula is trivially satisfied). There is
a maximal index i such that ui ∈ S. Since y 6∈ S, we get i < n and thus ui+1 ∈ P \ S. By
construction, ϑ(ui, ui+1) is satisfied. Thus, Ψϑ(P, x, y) is satisfied.

Conversely, assume that Ψϑ(P, x, y) is satisfied. Let S be the set of elements which
are ϑ-reachable from x using only elements of P . Note that S is finite and thus occurs

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 37

in the universal quantification of the second part of the formula. Furthermore, we have
x ∈ S because x is trivially reachable from x. If y ∈ S, we get the desired ϑ-path from x
to y. Otherwise, by the second part of the formula, there are two elements z ∈ S ⊆ P and
z′ ∈ P \ S such that ϑ(z, z′). By assumption, z is reachable from x using only elements of
P . Consequently, z′ ∈ P \ S is also reachable from x using only elements of P . This is a
contradiction to the choice of S.

We can now prove the claim on the second formula Ξ(a, b). Assume there is a path
with at most k increments from a to b. Let P be the set of the nodes on this path. By the
previous proof, we know that Ψϕ` (P, a, b) is satisfied. Furthermore, we set X = {u ∈ P |
ϕi(u) is true}. By construction, we have |X| ≤ k. Consequently, the formula Ξ(a, b) has a
value of at most k.

Assume the formula Ξ(a, b) has a value of at most k. Let X and P be sets witnessing the
satisfiability of Ξ with a value of at most k. Furthermore, let Pi = {u ∈ P | ϕi(u) is true}.
By definition, we have |X| ≤ k. By the second part of the formula, we obtain that Pi ⊆ X
and thus |Pi| ≤ k. Since Ψϕ` (P, a, b) guarantees that b is reachable from a through only
configurations in P , we obtain that there is a path from a to b with at most k increment
configurations.

Theorem 6.2. The set B is boundedly reachable (in a one counter setting) from A iff the
following cost-weakMSO formula, which uses the previously defined reachability formula Ψ
with respect to the bounded-cost reachability formula Ξ, has a finite value

∀aϕA(a)→ (∃bϕB(b) ∧ ∃R ΨΞ(R, a, b) ∧ ∀rR(r)→ (ϕr(r) ∨ r = a ∨ r = b))

Proof. Let the value of the formula in the theorem be less than k. This means that for all
a ∈ A the second part of the formula (after the implication) has a value less than k. Let
ba and Ra be witnesses for this. From the last part of the formula, we obtain that ϕr is
true for all elements in Ra \ {a, ba}. Since ΨΞ(Ra, a, ba) must have a value of less than k,
there is a sequence a = r1, . . . , rm = ba such that Ξ(ri, ri+1) has value less than k. By the
previous lemma, we obtain that there is a path from ri to ri+1 with less than k increments.
Since the positions ri are reset positions (except r1 and rm), this path is a witness that a
reaches an element ba ∈ B with cost less than k. Hence, B is boundedly reachable from A.

Conversely, let B be boundedly reachable from A with a resource bound of k. We
show that the value of the formula is at most k. So, let a ∈ A. By assumption, there
is a ba ∈ B and a path a = u1, . . . , um = ba with resource-cost of at most k. We set
Ra := {ui | ϕr(ui) is true} ∪ {a, ba}. Since the value of the path is at most k, the segments
of the path between two subsequent reset positions have at most k increments. Hence,
ΨΞ(Ra, a, ba) has a value of at most k. In total, the whole formula has a value of at most k
because a was chosen arbitrarily.

The previously presented approach is specially tailored for the bounded reachability
problem on resource prefix replacement systems with only one counter. Although it exem-
plary shows that one can express bounded reachability in a quite straightforward way with
cost-(W)MSO, the approach lacks the flexibility and generality of the previously studied
framework. One can see this already when trying to cover the case of multiple counters.
Although it might be possible to extend the shown approach to multiple counters, some
significant new ideas are required.

38 M. LANG AND C. LÖDING

7. Conclusion

We introduced RPRS as a model for recursive programs with resource consumption. This
model can represent recursive programs that use discrete resources in a consume-and-refresh
manner. We represented these operations with non-negative integer counters. These coun-
ters can be incremented to represent the consumption of a single resource and reset to zero
to simulate a complete refreshment.

We developed resource structures and the logic FO+RR to analyze systems with re-
sources and specify combined properties on the systems’ behavior and their resource con-
sumption. We identified the subclass of resource automatic structures and provided an
algorithm to compute the semantics of FO+RR formulas. This logic is able to express the
bounded reachability problem on a presentation of an RPRS as resource structure. Thereby,
we reduced bounded reachability to an evaluation problem of the quantitative logic FO+RR.

We devised a method to compute a synchronous transducer recognizing an annotation
aware transitive closure of an annotated prefix replacement system. We used this method
to prove that the resource structure representation of an RPRS is resource automatic. This
completed the decidability proof of the bounded reachability problem.

Although we gave a self-contained presentation on a formalization of recursive programs
with resource consumption and the bounded reachability problem, several open questions
remain. First, the choice of prefix replacement systems as underlying computational model
induces certain restrictions on the systems which can be modeled. It excludes important
classes such as systems with parallelism or reactive systems. It remains open whether and
how the presented results can be extended to such classes of system models. Second, the
positive computability results for FO+RR on resource automatic structures motivate further
research in the area of specification logics for systems with resource consumption. Moreover,
in the area of automatic program verification usually temporal logics are used. However,
it remains unclear how temporal logics for systems with resource consumption look and
whether there will be algorithmic solution methods. Nevertheless, we saw in the previous
section that there are other quantitative logics which are related to verification problems of
systems with resources. Especially, there are several logics which emerged around the models
of B- and S-automata. In addition to cost-(weak)MSO, there is the logic (weak)MSO+U
introduced by M. Bojańczyk in [Boj11]. It extends normal MSO by a quantifier stating
that there are sets of unbounded size such that the following part of the formula holds. An
investigation of the relations between all these logics would help to identify the boundaries
of decidability.

References

[AAS12] P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In Proceedings of
the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science, LICS ’12, pages
35–44. IEEE Computer Society, 2012.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183 –
235, 1994.

[BC06] M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In Logic in Computer Science, 2006
21st Annual IEEE Symposium on, pages 285–296, 2006.

[BFL+08] P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed
automata with energy constraints. In F. Cassez and C. Jard, editors, Formal Modeling and Anal-
ysis of Timed Systems, volume 5215 of Lecture Notes in Computer Science, pages 33–47. Springer
Berlin Heidelberg, 2008.

MODELING AND VERIFICATION OF INFINITE SYSTEMS WITH RESOURCES 39

[Boj11] Miko laj Bojańczyk. Weak MSO with the Unbounding Quantifier. Theory of Computing Systems,
48(3):554–576, 2011.

[Boo11] M. V. Boom. Weak cost monadic logic over infinite trees. In International Symposium on Math-
ematical Foundations of Computer Science, pages 580–591. Springer, 2011.

[Col09] T. Colcombet. Regular cost functions over words. Manuscript available online, 2009.
[Has82] K. Hashiguchi. Limitedness theorem on finite automata with distance functions. Journal of com-

puter and system sciences, 24(2):233–244, 1982.
[Hig52] G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings London Mathematical

Society, s3-2(1):326–336, 1952.
[KN95] B. Khoussainov and A. Nerode. Automatic presentations of structures. In D. Leivant, editor,

Logic and Computational Complexity, volume 960 of Lecture Notes in Computer Science, pages
367–392. Springer, 1995.

[KN01] B. Khoussainov and A. Nerode. Automata theory and its applications, volume 1. Birkhäuser
Boston, 2001.

[Lan11] M. Lang. Resource-bounded Reachability on Pushdown Systems. Master thesis, RWTH Aachen,
2011.

[LHDT87] P. Lescanne, T. Heuillard, M. Dauchet, and S. Tison. Decidability of the confluence of ground
term rewriting systems. Rapport de recherche RR-0675, INRIA, 1987.

[LTKR08] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of concurrent programs under a
context bound. In C. R. Ramakrishnan and J. Rehof, editors, International conference on Tools
and algorithms for the construction and analysis of systems, pages 282–298. Springer, 2008.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order logic.
Theoretical Computer Science, 37:51–75, 1985.

[RSJ03] T. Reps, S. Schwoon, and S. Jha. Weighted Pushdown Systems and Their Application to Inter-
procedural Dataflow Analysis. In R. Cousot, editor, Static Analysis, volume 2694 of Lecture Notes
in Computer Science, pages 1075–1075. Springer, 2003.

[Sak09] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
[Sch61] M.P. Schützenberger. On the definition of a family of automata. Information and Control, 4(2-

3):245–270, 1961.
[SSE05] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode checker based on

Moped. In N. Halbwachs and L. D. Zuck, editors, International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 3440 of Lecture Notes in Computer
Science, pages 541–545. Springer, 2005. Tool paper.

[Tho03] W. Thomas. Constructing Infinite Graphs with a Decidable MSO-Theory. In B. Rovan and
P. Vojtáš, editors, Mathematical Foundations of Computer Science 2003, volume 2747 of Lecture
Notes in Computer Science, pages 113–124. Springer Berlin Heidelberg, 2003.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Resource Prefix Replacement Systems
	2.1. The Bounded Reachability Problem

	3. Cost Automata
	4. Resource Structures and the Logic FO+RR
	4.1. Resource Structures
	4.2. The Logic FO+RR
	4.3. Resource Automatic Structures

	5. Computing Reachability with Annotations
	5.1. Annotation Domains
	5.2. Annotation Aware Saturation
	5.3. Cost-Reachability in RPRS

	6. The Bounded Reachability Problem and cost-WMSO
	7. Conclusion
	References

