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ABSTRACT. We study simple type theory with primitive equality (STT) and its first-order
fragment EFO, which restricts equality and quantification to base types but retains lambda
abstraction and higher-order variables. As deductive system we employ a cut-free tableau
calculus. We consider completeness, compactness, and existence of countable models. We
prove these properties for STT with respect to Henkin models and for EFO with respect
to standard models. We also show that the tableau system yields a decision procedure for
three EFO fragments.

1. INTRODUCTION

Church’s type theory [16] is a basic formulation of higher-order logic. Henkin [IS§]
found a natural class of models for which Church’s Hilbert-style proof system turned out
to be complete. Equality, originally expressed with higher-order quantification, was later
identified as the primary primitive of the theory [19] 8] [I]. In this paper we consider simple
type theory with primitive equality but without descriptions or choice. We call this system
STT for simple type theory. The semantics of STT is given by Henkin models with equality.

Modern proof theory started with Gentzen’s [17] invention of a cut-free sequent calcu-
lus for first-order logic. While Gentzen proved a cut-elimination theorem for his calculus,
Smullyan [25] found an elegant technique (abstract consistency classes) for proving the
completeness of cut-free first-order calculi. Smullyan [25] found it advantageous to work
with a refutation-oriented variant of Gentzen’s sequent calculi [I7] known as tableau cal-
culi [10} 20} 25].

The development of complete cut-free proof systems for simple type theory turned out
to be hard. In 1953, Takeuti [30] introduced a sequent calculus for a version of simple
type theory without primitive equality and conjectured that cut elimination holds for this
calculus. Gentzen’s [I7] inductive proof of cut-elimination for first-order sequent calculi does
not generalize to the higher-order case since instances of formulas may be more complex than
the formula itself. Moreover, Henkin’s [I8] completeness proof cannot be adapted for cut-
free systems. Takeuti’s conjecture was answered positively by Tait [27] for second-order
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logic, by Takahashi [28] and Prawitz [24] for higher-order logic without extensionality, and
by Takahashi [29] for higher-order logic with extensionality. Building on the possible-values
technique of Takahashi [28] and Prawitz [24], Takeuti [31] finally proves Henkin completeness
of a cut-free sequent calculus with extensionality.

The first cut-elimination result for a calculus similar to Church’s type theory was ob-
tained by Andrews [2] in 1971. Andrews considers elementary type theory (Church’s type
theory without equality, extensionality, infinity, and choice) and proves that a cut-free se-
quent calculus is complete relative to a Hilbert-style proof system. Andrews’ proof employs
both the possible-values technique [28, 24] and the abstract consistency technique [25]. In
2004 Benzmiiller, Brown and Kohlhase [7] gave a completeness proof for an extensional cut-
free sequent calculus. The constructions in [7] also employ abstract consistency and possible
values.

None of the cut-free calculi discussed above has equality as a primitive. Following Leib-
niz, one can define equality of ¢ and b to hold whenever a and b satisfy the same properties.
While this yields equality in standard models (full function spaces), there are Henkin models
where this is not the case as was shown by Andrews [3]. A particularly disturbing fact about
the model Andrews constructs is that while it is extensional (indeed, it is a Henkin model), it
does not satisfy a formula corresponding to extensionality (formulated using Leibniz equal-
ity). In [3] Andrews gives a definition of a general model which is essentially a Henkin model
with equality. This notion of a general model was generalized to include non-extensional
models in [6] and a condition called property q was explicitly included to ensure Leibniz
equality is the same as semantic equality. The constructions of Prawitz, Takahashi, An-
drews and Takeuti described above do not produce models guaranteed to satisfy property q.
A similar generalization of Henkin models to non-extensional models is given by Muskens [23]
but without a condition like property q. Muskens uses the Prawitz-Takahashi method to
prove completeness of a cut-free sequent calculus for a formulation of elementary type theory
via a model existence theorem, again producing a model in which Leibniz equality may not
be the same as semantic equality. The models constructed in [6] do satisfy property q, as
do the models constructed in [7].

In addition to the model-theoretic complication, defined equality also destroys the cut-
freeness of a proof system. As shown in [8] any use of Leibniz equality to say two terms
are equal provides for the simulation of cutll Hence calculi that define equality as Leibniz
equality cannot claim to provide cut-free equational reasoning. In the context of resolution,
Benzmiiller gives serious consideration to primitive equality and its relationship to Leibniz
equality in his 1999 doctoral thesis [4] (see also [5]). The completeness proofs there are
relative to an assumption that corresponds to cut.

The first completeness proof for a cut-free proof system for extensional simple type
theory with primitive equality relative to Henkin models was given by Brown in his 2004
doctoral thesis [12] (later published as a book [13]). Brown proves the Henkin completeness
of a novel one-sided sequent calculus with primitive equality. His model construction starts
with Andrews’ [2] non-extensional possible-values relations and then obtains a structure
isomorphic to a Henkin model by taking a quotient with respect to a partial equivalence
relation. Finally, abstract consistency classes [25] 2] are used to obtain the completeness
result. The equality-based decomposition rules of Brown’s sequent calculus have common-
alities with the unification rules of the systems of Kohlhase [22] and Benzmiiller [5]. Note,

1¥rom a Leibniz formula of the form Vp.ps — pt one can easily infer u — u for any formula u, and then
use u as a formula introduced by cut.
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however, that the completeness proofs of Kohlhase and Benzmiiller assume the presence of
cut.

In this paper we improve and simplify Brown’s result [I3]. For the proof system we
switch to a cut-free tableau calculus 7 that employs an abstract normalization operator.
With the normalization operator we hide the details of lambda conversion from the tableau
calculus and most of the completeness proof. For the completeness proof we use the new
notion of a value system to directly construct surjective Henkin models. Value systems are
logical relations [26] providing a relational semantics for simply-typed lambda calculus. The
inspiration for value systems came from the possible-values relations used in [13| 15, [14].
In contrast to Henkin models, which obtain values for terms by induction on terms, value
systems obtain values for terms by induction on types. Induction on types, which is crucial
for our proofs, has the advantage of hiding the presence of the lambda binder. As a result,
only a single lemma of our completeness proof deals explicitly with lambda abstractions and
substitutions.

Once we have established the results for ST'T, we turn to its first-order fragment EFO
(for extended first-order), which restricts equality and quantification to base types but re-
tains lambda abstraction and higher-order variables. EFO contains the usual first-order
formulas but also contains formulas that are not first-order in the traditional sense. For in-
stance, a formula p(Ax.—fx) is EFO even though the predicate p is applied to a A-abstraction
and the negation appears embedded in a nontrivial way. We sharpen the results for STT by
proving that they hold for EFO with respect to standard models and for a constrained rule
for the universal quantifier (first published in [14]).

Finally, we consider three decidable fragments of EFO: the lambda-free fragment, the
pure fragment (disequations between simply typed A-terms not involving logic), and the
Bernays-Schonfinkel-Ramsey fragment. For each of these fragments, decidability follows
from termination of the tableau calculus for EFO (first published in [15] and [I4]).

2. BASIC DEFINITIONS

We assume a countable set of base types (5). Types (o, T, u) are defined inductively:
(1) every base type is a type; (2) if o and 7 are types, then o7 is a type. We assume a
countable set of names (z, y), where every name comes with a unique type, and where for
every type there are infinitely many names of this typeE Terms (s, t, u, v) are defined
inductively: (1) every name is a term; (2) if s is a term of type Tu and ¢ is a term of type
7, then st is a term of type u; (3) if z is a name of type o and ¢ is a term of type 7, then
Az.t is a term of type o7. We write s : o to say that s is a term of type o. Moreover, we
write A, for the set of all terms of type 0. We assume that the set of types and the set of
terms are disjoint.

A frame is a function D that maps every type to a nonempty set such that D(o7) is
a set of total functions from Do to Dr for all types o, 7 (i.e., D(o7) C (Do — D7)). An
assignment into a frame D is a function Z that extends D (i.e., D C Z) and maps every
name z : o to an element of Do (i.e., Zx € Do). If 7 is an assignment into a frame D,
x : 0 is aname, and a € Do, then Z? denotes the assignment into D that agrees everywhere
with Z but possibly on x where it yields a. For every frame D we define a function " that for

2Later we will partition names into variables and logical constants.
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every assignment Z into D yields a function 7 that for some terms s : o returns an element
of Do. The definition is by induction on terms.

Tz =Tz
I(st) :== fa if Zs=f and It =a
I(\x.s) = f if \x.s:o1, fe€D(or), and Va € Do: fgs = fa

We call Z the evaluation function of Z. The evaluation function may be partial since in the
last clause of the definition even assuming there is some function f such that fgs = fa for
every a € Do, this f may not be in D(o7). In such a case, 7 will not be defined on Az.s.
Of course, in such a case Z will also not be defined on a term of the form (Ax.s)t since the
second clause of the definition will fail. An interpretation is an assignment whose evaluation
function is defined on all terms. An assignment 7 is surjective if for every type o and every
value a € Zo there exists a term s : o such that Zs = a.

Proposition 2.1. Let Z be an interpretation, x : o, and a € Zo. Then I is an interpreta-
tion.

Proposition 2.2. If T is a surjective interpretation, then Zo is a countable set for every
type o

A standard frame is a frame D such that D(o7) = (Do — Dr) for all types o, 7. A
standard interpretation is an assignment into a standard frame. Note that every standard
interpretation is, in fact, an interpretation.

We assume a normalization operator [-] that provides for lambda conversion. The nor-
malization operator [-] must be a type preserving total function from terms to terms. We
call [s] the normal form of s and say that s is normal if [s] = s. One possible normalization
operator is a function that for every term s return a S-normal term that can be obtained
from s by f-reduction. We will not commit to a particular normalization operator but
state explicitly the properties we require for our results. To start, we require the following
properties:

N1 : [[s]] = [s]
N2 : [[s]t] = [st]
N3 : [ws1...sn] =als1]...[sn] ifasi...sp:Bandn >0

N4 : Z[s] =Zs if 7 is an interpretation
Proposition 2.3. zsy...s, : 8 is normal iff s1,...,s, are normal.

For the proofs of Lemma [B.3] and Theorem [B.4] we need further properties of the nor-
malization operator that can only be expressed with substitutions. A substitution is a type
preserving partial function from names to terms. If 6 is a substitution, = is a name, and s is
a term that has the same type as x, we write 67 for the substitution that agrees everywhere
with 6 but possibly on & where it yields s. We assume that every substitution 6 can be
extended to a type preserving total function 6 from terms to terms such that the following
conditions hold:

S1: Oz = if x € Dom @ then Oz else =
82 : O(st) = (0s)(0t)_
83 : [(0(A\w.5))t] = [67s]

4 : [@s] = [s]
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Note that () (the empty set) is the substitution that is undefined on every name.

3. VALUE SYSTEMS

We introduce value systems as a tool for constructing surjective interpretations. Value
systems are logical relations inspired by the possible-values relations used in |13} [14, [15].

A walue system is a function > that maps every base type 3 to a binary relation >g such
that Dom (>g) € Ag and spga iff [s] >g a. For every value system > we define by induction
on types:

Do := Ran (>,)
Dor = { (8, f) € Aoy X (Do — D7) |V(t,a) € by: (st, fa) €, }

Note that D(o7) C (Do — Dr) for all types o7. We usually drop the type index in s>, a
and read s> a as s can be a or a is a possible value for s.

Proposition 3.1. For every value system: s, a iff [s] >y a.

Proof. By induction on o. For base types the claim holds by the definition of value systems.
Let 0 =7p. Forall s€ Ay, t € A, a € DT — D, and b € Dr,

sty ab iff [st] >, ab iff [[s]t] >, ab iff [s]t >, ab
by the inductive hypothesis and N2. Hence s>, a iff [s] > a. []

A value system 1> is functional if > is a functional relation for every base type 3. (That
is, for each s € Ag there is at most one b such that s> b.)

Proposition 3.2. If > is functional, then >y is a functional relation for every type o.

Proof. By induction on o. For ¢ = 3, the claim is trivial. Let o = 7 and s>7, f,g9. We
show f = g. Let a € Dr. Then t>; a for some t. Now st>, fa, ga. By inductive hypothesis
fa = ga. L]

A value system i is total if x € Domp, for every name = : 0. An assignment Z is
admissible for a value system > if Zo = Do for all types o and x > Zx for all names zx.
(Recall that © is used to define D.) Note that every total value system has admissible
assignments. We will show that admissible assignments are interpretations that evaluate
terms to possible values.

Lemma 3.3. Let 7 be an assignment that is admissible for a value system > and 6 be a
substitution such that 8x > TZx for all x € Dom@. Then s € DomZ and 0s > ZLs for every
term s.

Proof. By induction on s. Let s be a term. Case analysis.
s = x. The claim holds by assumption and S1.

s = tu. T}len te DomAf, Aét Dit) u € Don}f, and Ou>Zu by inductive hypothesis. Thus
s € DomZ and 6s = (0t)(0u) > (Zt)(Zu) = Zs using S2.

s=Ax.t,x:0and t: 7. We need to prove s € DomZ and s >Zs. First we prove

te Domig and (0s)u ngt whenever u >, a. (3.1)



6 C. E. BROWN AND G. SMOLKA

Let u >, a. By inductive hypothesis we have t € Domf% and 67t Digt. Now [(0s)u] =
[é%t] Df%t using S3. Using Proposition Bl we conclude (31) holds.

By definition of DJ for every a € Do there is a u such that u>a. Using this and (B.1))
we know t € DomIm for every a € Do. Let f: Do — D1 be defined by fa = If”t for each
a € To. For all ub, a we have (6s)ut fa by BI). Hence fs> f. This implies f € D(o7),
s € DomI Is= f and s> Ts as desired. ]

Theorem 3.4. Let T be an assignment that is admissible for a value system >. Then T is an
interpretation such that s>Zs for all terms s. Furthermore, T is surjective if > is functional.

Proof. Follows from Lemma [3:3] with Proposition B1land S4. To prove the second claim, let
a € Do be given. By definition of D there is some s such that s> a. Since s>7Zs we know
Zs = a by Proposition O

4. SIMPLE TYPE THEORY

We now define the terms and semantics of simple type theory (STT). We fix a base
type o for the truth values and a name — : oo for negation. Moreover, we fix for every type
o aname =,: ooo for the identity predicate for o. An assignment Z is logical if Zo = {0, 1},
Z(—) is the negation function and Z(=,) is the identity predicate for o. We refer to the base
types different from o as sorts, to the names — and =, as logical constants, and to all other
names as variables. From now on x will range over variables. Moreover, ¢ will range over
logical constants and « will range over sorts.

A formula is a term of type 0. We employ infix notation for formulas obtained with =,
and often write equations s =, t without the type index. We write s # t for —(s=t) and
speak of a disequation. Note that quantified formulas Vz.s can be expressed as equations
(Az.s) = (A\z.xz = x).

A logical interpretation Z satisfies a formula s if Zs = 1. A model of a set of formulas A
is a logical interpretation that satisfies every formula s € A. A set of formulas is satisfiable
if it has a model.

5. TABLEAU CALCULUS

We now give a deductive calculus for STT. A branch is a set of normal formulas. The
tableau calculus T operates on finite branches and employs the rules shown in Figure[Il The
side condition “x fresh” of rule 7wz requires that x does not occur free in the branch the
rule is applied to. We say a branch A is closed if z,—x € A for some variable x : o or if
x #, x € A for some variable x : t. Note that A is closed if and only if either the Ty.r or
Torc rule applies with n = 0. We impose the following restrictions:

(1) We only admit rule instances A/A; ... A, where A is not closed.
(2) Tee can only be applied to a disequation (s#t) € A if there is no variable = such that

([sz] # [tz]) € A.
The set of refutable branches is defined inductively: if A/A; ... A, is an instance of a rule
of 7 and Aq,...,A, are refutable, then A is refutable. Note that the base cases of this
inductive definition are when n = 0. The rules where n may be 0 are Ty,r and Tpgc.
Figure 2l shows a refutation in 7.
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=8 s=,t s Fot
T — Toqg ————— Top ——————
s st | —s, ot s, ot | s, t
S =gt S t
Trq — 7 40 NORMAL T L T : 0 FRESH
[su] = [tu] [sz] # [tz]
TS ...8n, "xt1... T IS1...8 xty...t
,TMAT 1 n 1 n n>0 %Ec 1 n#a 1 n n>0
8175751|"'|8n7étn 51#t1|"'|8n7£tn

S=qt,uFqv

Tcon
s#u,t#uls#v,t#v

Figure 1: Tableau rules for STT

pf, "p(Az.m=fz)
[Thar
f# (Az.—~fx)
[Tecl
fr#-=fx
7ol
fo, =—=fx | —fx, ~~fwx
7= 7=
~fx fx
[Tssar] [Tasar]
T #£x T F#x
[Toxcl [Toxcl

Figure 2: Tableau refuting {pf, ~p(Az.——fx)} where p: (a0)o and f : o

A remark on the names of the rules: Ty.r is called the mating rule, Topc the decom-
position rule, Tcon the confrontation rule, 7, the Boolean equality rule, 7gp the Boolean
extensionality rule, 7pq the functional equality rule, and 7T the functional extensionality
rule.

Proposition 5.1 (Soundness). Every refutable branch is unsatisfiable.

Proof. Let A/A; ... A, be an instance of a rule of 7 such that A is satisfiable. It suffices to
show that one of the branches Ay, ..., A, is satisfiable. Straightforward. L]

We will show that the tableau calculus T is complete, that is, can refute every finite
unsatisfiable branch. The rules of 7 are designed such that we obtain a strong completeness
result. For practical purposes one can of course include rules that close branches including
§,78 Or S # S.

To avoid redundancy, our definition of STT only covers the logical constants = and =,.
Adding further constants such as A, V, —, ¥V, and 3, is straightforward. In fact, all logical
constants can be expressed with the identities =, [I]. We have included — since we need
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(A\z.x) = Az.y
[Trq with x|
T =0Y

[Tsal

-, Y
[Trq with —z (—x) =0y

T, Y T, Y T, Y [7:‘—']
[ﬂ/{AT] [7;/IAT] [7;/IAT] X

Figure 3: Tableau refuting (Az.x) = A\x.y where z,y : o

If -—sisin FE, then s isin F.

If s =, tisin E, then either s and ¢ are in F or —s and —t are in E.
If s #, tis in E, then either s and =t are in F or —s and t are in E.
If s =, tisin E, then [su] = [tu] is in E for every normal u : o.

If s #,7 tis in E, then [sz] # [tz] is in E for some variable x.

If xs1...8, and —xty...t, arein E, then n > 1 and s; # t; is in F for
some i € {1,...,n}. Note that if n = 0, this means if —x € E, then

If xs1...8, #a xt1 ...ty isin E, then n > 1 and s; # t; is in E for
some i € {1,...,n}. Note that if n = 0, this means x #, = ¢ E.

If s=4tand u #, v arein F,
then either s 2 u and t # w are in F or s # v and t # v are in FE.

Figure 4: Evidence conditions

elimination of — is not straightforward.

A branch FE is evident if it satisfies the evidence conditions in Figure dl The evidence
conditions correspond to the tableau rules and are designed such that every branch that is
closed under the tableau rules is either closed or evident. We will show that evident branches

6. EVIDENCE

are satisfiable.

A branch E is complete if for every normal formula s either s or —s is in E. The cut-
freeness of 7 shows in the fact that there are many evident sets that are not complete. For
instance, {pf, -p(Ax.~fx), f # \e.~fx, fx # —fx, -fx} is an incomplete evident branch
if p: (co)o.
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6.1. Discriminants. Given an evident branch F, we will construct a value system whose
admissible logical interpretations are models of E. We start by defining the values for the
sorts, which we call discriminants. Discriminants first appeared in [15].

Let E be a fixed evident branch in the following. A term u € A, is a-discriminating in
E if there is some term t such that either u #, t or t #, u is in . An a-discriminant is a
maximal set a of discriminating terms of type « such that there is no disequation s#t €
such that s,t € a. We write sfit if E contains the disequation s#t or t#s.

In [I2] a sort was interpreted using maximally compatible sets of terms of the sort
(where s and t are compatible unless sfit). The idea is that the set E insists that certain
terms cannot be equal, but leaves open that other terms ultimately may be identified by the
interpretation. In particular, two compatible terms s and t may be identified by taking a
maximally compatible set of terms containing both s and t as a value. It is not difficult to see
that a maximally compatible set is simply the union of an a-discriminant with all terms of
sort « that are not a-discriminating. We now find that it is clearer to use a-discriminants as
values instead of maximally compatible sets. In particular, it is easier to count the number
of a-discriminants, as we now show.

Example 6.1. Suppose E = {z#y, v#z, y#z} and z,y, z : a. There are 3 a-discriminants:
{=}, {v}, {=}-

Example 6.2. Suppose E = { a,, #4 bp | n € N} where the a,, and b,, are pairwise distinct
variables. Then FE is evident and there are uncountably many a-discriminants.

Proposition 6.3. If E contains exactly n disequations at o, then there are at most 2"
a-discriminants. If E contains no disequation at «, then () is the only a-discriminant.

Proposition 6.4. Let a and b be different discriminants. Then:

(1) a and b are separated by a disequation in E, that is, there exist terms s € a and t € b
such that sft.

(2) a and b are not connected by an equation in E, that is, there exist no terms s € a and
t € b such that (s=t) € E.

Proof. The first claim follows by contradiction. Suppose there are no terms s € ¢ and t € b
such that sfit. Let s € a. Then s € b since b is a maximal set of discriminating terms. Thus
a C b and hence a = b since a is maximal. Contradiction.

The second claim also follows by contradiction. Suppose there is an equation (s1=s2) €
E such that s; € a and s9 € b. By the first claim we have terms s € a and t € b such that
sfit. By Econ we have s14s or sofft. Contradiction since a and b are discriminants. ]

6.2. Compatibility. For our proofs we need an auxiliary notion for evident branches that
we call compatibility. Let ' be a fixed evident branch in the following. We define relations
leC Ay X A, by induction on types:

s llo t = {[s], ~[t]} € E and {—[s], [t]} £ E
S ||o t <= not [s]f[t]
S |lor t <= su ||+ tv whenever u ||, v

We say that s and ¢ are compatible if s || .
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Lemma 6.5 (Compatibility).

Formn >0 and all terms s, t, xs1...8p, Tty ...ty of type o:

(1) We do not have both s ||, t and [s]t]t].

(2) Either xs1...5p ||o Tty ...ty or [s;]g[t:] for some i€ {1,...,n}.

Proof. By induction on o. Case analysis.

o = o. Claim (1) follows with . Claim (2) follows with N3 and Eyur.

o = a. Claim (1) is trivial. Claim (2) follows with N3 and Epgc.

o = 7. We show (1) by contradiction. Suppose s ||, t and [s]|f[t]. By Erg [[s]z]8[[t]z] for
some variable z. By inductive hypothesis (2) we have x || «. Hence sz ||, tx. Contradiction
by inductive hypothesis (1) and N2.

To show (2), suppose xs; ...Sp ffo xt1...t,. Then there exist terms such that u ||, v
and xs1...s,u ffu xt1...t,v. By inductive hypothesis (1) we know that [u]f[v] does not
hold. Hence [s;]§[t;] for some ¢ € {1,...,n} by inductive hypothesis (2). O

7. MODEL EXISTENCE

Let E be a fixed evident branch. We define a value system > for E:
spo0 <= seA,and [s] ¢ E
sPol <= se€ A, and 0[s] ¢ E
S$Pq a:<= s € Ay, a is an a-discriminant, and [s] € a if [s] is discriminating
Note that N1 ensures the property s>z a iff [s] g a.

Proposition 7.1. For all variables x,, either x>0 and —x>1 or x> 1 and —-x>0. In
particular, Do = {0, 1}.

Proof. By Eyar either x ¢ Eor —x ¢ E. If x ¢ E, then x>0 and —z>1 by N3 and €. If
-z ¢ E, then x> 1 and -~z >0 by N3. O

Lemma 7.2. A logical assignment is a model of E if it is admissible for 1.

Proof. Let T be a logical assignment that is admissible for >, and let s € E. By Theorem [3.4]
we know that 7 is an interpretation and that s, Zs. Thus Zs # 0 since s € E. Hence
Is=1. L]

It remains to show that > admits logical interpretations. First we show that all sets Do
are nonempty. To do so, we prove that compatible equi-typed terms have a common value.
A set T of equi-typed terms is compatible if s || t for all terms s,t € T. We write T >, a if
T CAy,a€Do,and tr>a for every t € T

Lemma 7.3 (Common Value). Let T' C A,. Then T is compatible if and only if there exists
a value a such that T >, a.
Proof. By induction on o.

0 = «, =. Let T be compatible. Then there exists an a-discriminant a that contains all
the a-discriminating terms in { [t] | ¢t € T'}. Clearly, T'> a.

0 =, <. Suppose T'>a and T is not compatible. Then there are terms s,¢ € T such that
([s]#]t]) € E. Thus [s] and [t] cannot be both in a. This contradicts s, € T'> a since [s]
and [¢] are discriminating.
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0 = o, =. By contraposition. Suppose T ¥ 0 and T ¥ 1. Then there are terms s,t € T
such that [s],—[t] € E. Thus s }f t. Hence T is not compatible.

o = o0, <. By contraposition. Suppose s }f, t for s,t € T. Then [s], 2[t] € E without loss of
generality. Hence s ¢ 0 and ¢ ¢ 1. Thus T » 0 and T ¥ 1.

o = Tu, =. Let T be compatible. We define T, := {ts |t € T, s>, a} for every value
a € Z7 and show that T, is compatible. Let t1,to € T and si, S92 > a. It suffices to show
t1s1 || t2s2. By the inductive hypothesis sq ||; s2. Since T is compatible, ¢; || t2. Hence
t181 ” t282.

By the inductive hypothesis we now know that for every a € Z7 there is a b € Zpu such
that T >, b. Hence there is a function f € Zo such that T, >, fa for every a € Z7. Thus
T, f.

o=7p, <. Let T>, f and s,t € T. We show s ||, t. Let u ||; v. It suffices to show
su ||, tv. By the inductive hypothesis u,v >, a for some value a. Hence su,tv>, fa. Thus
su ||, tv by the inductive hypothesis. ]

Lemma 7.4 (Admissibility). For every variable x : o there is some a € Do such that x> a.
In particular, Do is a nonempty set for every type o.

Proof. Let x : o be a variable. By Lemma [6.5](2) we know z ||, 2. Hence {z} is compatible.
By Lemma [7.3] there exists a value a such that x>, a. The claim follows since a € Do by
definition of Da. []

Lemma 7.5 (Functionality). If s>, a, t>, b, and (s=t) € E , then a = b.

Proof. By contradiction and induction on o. Assume s>, a, t >, b, (s=t) € E, and a # b.
Case analysis.

0 = 0. By &gq either s,t € E or —s,—t € E. Hence a and b are either both 1 or both 0.
Contradiction.

o = a. Since a # b, there must be discriminating terms of type a. Since (s=t) € E, we
know by N3 and E.oy that s and ¢ are normal and discriminating. Hence s € a and ¢ € b.
Contradiction by Proposition [6.4](2).

o = Tp. Since a # b, there is some ¢ € D7 such that ac # be. By the definition of D1
and Lemma [B1] there is a normal term u such that u >, ¢. Hence su> ac and tu > be. By
Proposition Bl [su]>,ac and [tu]>,be. By Eqq the equation [su] = [tu] is in E. Contradiction
by the inductive hypothesis. L]

We now define the canonical interpretations for the logical constants:
L(—) := Aa€Do. if a=1 then 0 else 1
L(=4) := Aa€Do. \beDo. if a=b then 1 else 0

Lemma 7.6 (Logical Constants). c> L(c) for every logical constant c.

Proof. We show —>£(—) by contradiction. Let s>,a and assume —s ¢ L(—)a. Case analysis.

e ¢ =0. Then [s] ¢ F and —[—s] € E. Contradiction by N3 and £_-..

e ¢ =1. Then —[s] ¢ E and [—s] € E. Contradiction by N3.

Finally, we show (=,) > £(=,) by contradiction. Let s>, a, t >, b, and (s=,t) B¢ L(=,)ab.

Case analysis.

e a = b. Then [s]§[t] by N3 and s,t>a. Thus s || ¢ by Lemma [(.3] Contradiction by
Lemma [6.5](1).
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e a # b. Then ([s]=[t]) € E by N3. Hence a = b by Proposition B.1I] and Lemma
Contradiction. L]

Theorem 7.7 (Model Existence). Fvery evident branch is satisfiable. Moreover, every
complete evident branch has a surjective model, and every finite evident branch has a finite
model.

Proof. Let E be an evident branch and > be the value system for E. By Proposition [7.1]
Lemma [74], and Lemma we have a logical interpretation Z that is admissible for >. By
Lemma [7.2] Z is a model of E.

Let E be complete. By Theorem [B.4] we know that Z is surjective if > is functional. Let
spga and s>gb. We show a = b. By Proposition B.Il we can assume that s is normal. Thus
s=s is normal by N3. Since Z is a model of E, we know that the formula s#s is not in F.
Since E is complete, we know that s=s is in F. By Lemma we have a = b.

If F is finite, Za = Dq is finite by Proposition []

8. ABSTRACT CONSISTENCY

We now extend the model existence result for evident branches to abstract consistency
classes, following the corresponding development for first-order logic [25]. Notions of abstract
consistency for simple type theory have been previously considered in [2] 21| 22| 41 @ [6] 7
12| 13]. Equality was treated as Leibniz equality in [2]. Abstract consistency conditions
for primitive equality corresponding to reflexivity and substutivity properties were given by
Benzmiiller in [4,5]. A primitive identity predicate =, was considered in [6] but the abstract
consistency conditions for =, essentially reduced it to Leibniz equality. Conditions for =,
analogous to Ceoy first appeared in [12].

An abstract consistency class is a set ' of branches such that every branch A € T satisfies
the conditions in Figure 5l An abstract consistency class I' is complete if for every branch
A €T and every normal formula s either AU {s} or AU {=s} is in I'. The completeness
condition was called “saturation” in [6]. As discussed in [8] and the conclusion of [6], the
condition corresponds to having a cut rule in a calculus. In [7] conditions analogous to Cpgc
and Cyar appear (using Leibniz equality) and a model existence theorem is proven with
these conditions replacing saturation. The use of Leibniz equality means that there was still
not a cut-free treatment of equality in [7].

Proposition 8.1. Let A be a branch. Then A is evident if and only if {A} is an abstract
consistency class. Moreover, A is a complete evident branch if and only if {A} is a complete
abstract consistency class.

Lemma 8.2 (Extension Lemma). Let I' be an abstract consistency class and A € I'. Then
there exists an evident branch E such that A C E. Moreover, if I' is complete, a complete
evident branch E exists such that A C E.

Proof. Let ug,u1,us, ... be an enumeration of all normal formulas. We construct a sequence

Ag € Ay C Ay C -+ of branches such that every A, € I'. Let Ay := A. We define A, 11

by cases. If there is no B € T" such that A, U {u,} C B, then let A,11 := A,. Otherwise,

choose some B € I' such that A, U{u,} C B. We consider two subcases.

(1) If uy is of the form s #, ¢, then choose A, 41 to be B U {[sz] # [tz]} € I for some
variable x. This is possible since I' satisfies Crg.
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C.. If-—sisin A, then AU{s} isin I
Coq If s=,tisin A, then either AU {s,t} or AU {—s,~t} isin I
Cer If s #,tisin A, then either AU {s,~t} or AU{=s,t} isin I

Crq If s=4rtisin A,
then A U {[su] # [tu]} is in T" for every normal u : o.

Cer If s #4r tisin A, then AU {[sz] # [tz]|} is in T" for some variable x.

Cunr I xsy...s,isin A and —xty...t, isin A,
thenn >1and AU{s; #t;} isin I for some i € {1,...,n}.

Copc Ifwsy...sp #qaty...tyisin A, thenn >1and AU{s; #¢t;}isin T
for some i € {1,...,n}.

Ceon If s=ntand u #, v arein A,
then either AU {s # u,t #u} or AU{s #v,t #v}isin I.

Figure 5: Abstract consistency conditions (must hold for every A € T')

(2) If uy, is not of this form, then let A, i be B.
Let F := U A,,. We show that E satisfies the evidence conditions.

&~

gM AT

gDEC

gCON

6.BE
Erq

neN
Assume ——s is in E. Let n be such that u,, = s. Let r > n be such that ——s is in
A,. By C—, A, U{s} €I'. Since A, U{s} C A, U{s}, we have s € A,,y1 C E.
Assume 7 ...s, and —xty...t, are in E. For each i € {1,...,n}, let m; be such
that wu,, is s; # t;. Let » > my,...,my be such that xs;...s, and —zt;...t, are in
A,. By Cyar n > 1 and there is some ¢ € {1,...,n} such that A, U{s; # t;} € T
Since Ay, U{s; #t;} C A, U{s; #t;}, we have (s; #t;) € Ap,+1 C E.
Similar to Eyar
Assume s =, t and u #, v are in F. Let n,m,j,k be such that w, is s # u, um
ist # u, ujis s # vandwugist # v. Let r > n,m,jk be such that s =, ¢t and
u #q v are in A.. By Ceon either A, U{s # u,t # u} or A, U{s # v,t # v} is in
I. Assume A, U {s # u,t # u} is in I'. Since 4, U {s # u} C A, U{s # u,t # u},
we have s # u € A,y1 C E. Since A, U {t # u} C A, U{s # u,t # u}, we have
t#u€ Apy1 C E. Next assume A, U {s # v,t # v} is in I". By a similar argument
we know s # v and t # v must be in E.
Assume s =, t is in E. Let n,m,j,k be such that u, = s, u,, = t, u; = —s and
up = —t. Let r > n,m, j, k be such that s =, t is in A,. By Cyq either A, U {s,t} or
A U{=s,—t}isin I'. Assume A, U{s,t}isin I'. Since 4, U{s} C A, U{s,t}, we have
s € E. Since Ay, U{t} C A, U{s,t}, we have t € E. Next assume A, U {—s,—t} is in
I'. Since A;U{=s} C A,U{—s,t}, we have =s € E. Since A, U{-t} C A, U{=s, t},
we have -t € E.
Similar to Egq
Assume s =,; t is in F and u : o is normal. Let n be such that w, is [su] =, [tu].
Let r > n be such that s =,; t is in A,. By Cpq we know A, U {[su] =, [tu]} isin T.
Hence [su] =; [tu] is in A, 41 and also in E.
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Erg Assume s #,; t isin E. Let n be such that u, is s #,. t. Let r > n be such that
$ #or tisin A,. Since A, U{u,} C A,, there is some variable = such that [sx] #; [tz]

isin Ap,+1 C E.
It remains to show that E is complete if I' is complete. Let I' be complete and s be a normal
formula. We show that s or —s is in E. Let m, n be such that u,, = s and u,, = —s. We
consider m < n. (The case m > n is symmetric.) If s € A,, we have s € E. If s ¢ A,, then
A, U{s} isnot in I'. Hence A,,U{-s} isin I" since I is complete. Hence —s € 4,11 C E.[]

Theorem 8.3 (Model Existence). FEvery member of an abstract consistency class has a
model, which is surjective if the consistency class is complete.

Proof. Let A € T where I' is an abstract consistency class. By Lemma we have an
evident set E such that A C E, where E is complete if I" is complete. The claim follows
with Theorem [T.7 ]

9. COMPLETENESS

It is now straightforward to prove the completeness of the tableau calculus 7. Let I't
be the set of all finite branches that are not refutable.

Lemma 9.1. 'y is an abstract consistency class.

Proof. We have to show that 'y satisfies the abstract consistency conditions.

C-— Assume ——sisin A and AU {s} ¢ I'r. Then we can refute A using 7--.
Cyar Assume {xsy...sp,—wty ...t} € Aand AU {s; # t;} ¢ Iy for all i € {1,...,n}.
Then we can refute A using Tyar-
Cprc Assume x81...8, #q at1...tyisin Aand AU {s; #t;} ¢ Ty foralli € {1,...,n}.
Then we can refute A using Tpgc.
Coon Assume s =, t and u #, v are in A but AU{s # u,t # u} and AU {s # v,t # v} are
not in I'y. Then we can refute A using Toox.
Cpq Assume s =, tisin A, AU{s,t} ¢ I';r and AU {—s, -t} ¢ I'r. Then we can refute A
using Tgq.
Cer Assume s #, tisin A, AU{s, -t} ¢ I';r and AU {—s,t} ¢ I'r. Then we can refute A
using Tgg.
Crq Let (s =57 t) € A € T'r. Suppose A U {[su]=[tu]} ¢ T'r for some normal u € A,.
Then A U {[su|=[tu]} is refutable and so A is refutable by Tgq.
Cer Let (s#,,t) € A € T'r. Suppose AU {[sz]#[tz]} ¢ 't for every variable x : 0. Then
A U {[sz]#£[tz]} is refutable for every x : 0. Hence A is refutable using 7y and the
finiteness of A. Contradiction. L]

Theorem 9.2 (Completeness). Fvery unsatisfiable finite branch is refutable.

Proof. By contradiction. Let A be an unsatisfiable finite branch that is not refutable. Then
A € 'y and hence A is satisfiable by Lemma and Theorem B3l Contradiction. Il
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10. COMPACTNESS AND COUNTABLE MODELS

It is known [I8 1] that simple type theory is compact and has the countable-model
property. We use the opportunity and show how these properties follow with the results we
already have. It is only for the existence of countable models that we make use of complete
evident sets and complete abstract consistency classes.

A branch A is sufficiently pure if for every type o there are infinitely many variables of
type o that do not occur free in the formulas of A. Let I'¢ be the set of all sufficiently pure
branches A such that every finite subset of A is satisfiable. We write Cy for the finite subset
relation.

Lemma 10.1. Let A € T'¢ and By, ..., B, be finite branches such that AU B; ¢ T for all
i€ {l,...,n}. Then there exists a finite branch A" Cy A such that A" U B; is unsatisfiable
forallie{1,... ,n}.

Proof. By the assumption, we have for every ¢ € {1,...,n} a finite and unsatisfiable branch
C; € AU B;. The branch A’ := (C; U---UC(C,) N A satisfies the claim. [l

Lemma 10.2. I'c is a complete abstract consistency class.

Proof. We verify the abstract consistency conditions using Lemma [I0.1] tacitly.

C-— Assume ——s is in A and AU {s} ¢ I'c. There is some A" C¢ A such that A" U {s} is
unsatisfiable. There is a model of A’ U {——s} Cr A. This is also a model of A" U {s},
contradicting our choice of A’.

Cyar Assume zsy...s, and —aty...t, are in A and AU {s; # t;} ¢ T¢c for all i €
{1,...,n}. There is some A" C¢ A such that A’ U {s; # ¢;} is unsatisfiable for all
i € {1,...,n}. There is a model Z of A" U {xsy...sp,2ty...t,} C¢ A. Since
I(xsy...sn) # L(xty ... t,), we must have Z(s;) # Z(t;) for some i € {1,...,n} (and
in particular n must not be 0). Thus Z models A" U{s; # t;}, contradicting our choice
of A'.

Core Similar to Cyar

Coon Assume s =, t and u #, v are in A, AU {s # u,t # u} ¢ I'c and AU {s #v,t #
v} ¢ T'c. There is some A’ C¢ A such that A'U{s # u,t # u} and A"U{s # v,t # v}
are unsatisfiable. There is a model Z of A’ U {s = t,u # v} C; A. Since Z(s ) = Z(t)
and Z(u) # Z(v), we either have Z(s) # Z(u) and Z(t) # Z(u) or Z(s) # Z(v) and
i(t) + i(v) Hence Z models either A" U {s # u,t # u} or A’ U {s # v,t # v},
contradicting our choice of A’.

Cpq Assume s =, t is in A, AU {s,t} ¢ I'c and AU {—s,-t} ¢ I'c. There is some
A" Cy A such that A’ U {s,t} and A" U {—s,—t} are unsatisfiable. There is a model of
A'U{s =, t} Cf A. This is also a model of A" U {s,t} or A" U {=s,t}.

Cer Assume s #, tis in A, AU {s,~t} ¢ I'c and AU {—s,t} ¢ I'c. There is some
A" Cy A such that A" U {s,—t} and A’ U{—s,t} are unsatisfiable. There is a model of
A"U{s #,t} Cy A. This is also a model of A" U {s,—~t} or A" U {=s,t}.

Crq Assume s =,, t is in A but AU {[su] = [tu]} is not in I'c for some normal u € A,.
There is some A’ C¢ A such that A’ U {[su] [tu]} is unsatisfiable. There is a model
T of AAU{s =1t} Cf A. Since I( ) = I(t), we know i([su]) = f(su) = i’(s)f(u) =
Z(t)I(u) = Z(tu) = Z([tu]) using N4. Hence T is a model of A’ U {[su] = [tu]}, a
contradiction.
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Crg Assume s #,, t is in A. Since A is sufficiently pure, there is a variable x : ¢ which
does not occur in A. Assume A U {[sz] # [tz]} ¢ T'c. There is some A" Cr A such
that A’ U {[sz] # [tz]} is unsatisfiable. There is a model Z of A’ U {s # t} C¢ A.
Since Z(s) # Z(t), there must be some a € Zo such that Z(s)a # Z(t)a. Since
x does not occur free in A, we know ig(sx) # ig(m) and Z? is a model of A’
Since i’g([sx]) = ig(sx) and ﬁ([taz]) = fg(m) by N4, we conclude Z? is a model of

A" U{[sz] # [tx]}, contradicting our choice of A’.
We show the completeness of I'c by contradiction. Let A € I'c and s be a normal formula
such that AU{s} and AU{—s} are not in I'c. Then there exists A" C¢ A such that A"U{s}
and A’ U {—s} are unsatisfiable. Contradiction since A’ is satisfiable. L]

Theorem 10.3. Let A be a branch such that every finite subset of A is satisfiable. Then A
has a countable model.

Proof. Without loss of generality we assume A is sufficiently pure. Then A € I'c. Hence A
has a countable model by Lemma and Theorem 8.3l L]

11. EFO FRAGMENT

We now turn to the EFO fragment of STT as first reported in [14]. The EFO fragment
contains first-order logic and enjoys the usual properties of first-order logic. We will show
completeness and compactness with respect to standard models. We will also prove that
countable models for evident EFO sets exist.

Suppose STT were given with =, —, =, and V,. Then the natural definition of EFO
would restrict =, and V, to the case where o is a base type. To avoid redundancy our
definition of EFO will also exclude the case where o = o.

Our definition of EFO assumes the logical constants — : 0o, —: 000, =,: aco and
Vo i (ao)o where « ranges over sorts. We call these constants EFO constants. For an
assignment to be logical we require that it interprets the logical constants as usual. In
particular, Z(V,,) must be the function returning 1 iff its argument is the constant 1 function.

We say a term is EFO if it only contains the logical constants -, —, =, and V,. Let
EFO, be the set of EFO terms of type 0. A term is quasi-EFO if it is EFO or of the form
s #o t where s,t are EFO and o is a type. A branch F is EFO if every member of E is
quasi-EFO. The example tableau shown in Figure 2] only contains EFO branches.

The tableau rules in Figure [@ define a tableau calculus F for EFO branches up to
restrictions on applicability given in Section [[4l After showing a model existence theorem,
we will precisely define the tableau calculus F and prove it is complete for EFO branches.
The completeness result will be with respect to standard models. For some fragments of
EFO the tableau calculus F will terminate, yielding decidability results.

12. EFO EVIDENCE AND COMPATIBILITY

We say an EFO branch F is evident if it satisfies the evidence conditions in Figure (]
and the following additional conditions.
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-8 S t s =1 (s =1
For — R —STel Fo = P
s s,t | s, t s |t s, it
TS81...8p, "xl1... 1 rs1...8 xty...1
Fone 1 n 1 n n>0 Fose 1 n?‘éa 1 n n>0
Sl#tll”’lsn?étn Sl#tll”"sn#tn
S#O’Tt Szatau#av
Frg —————— & :0 FRESH F
" [sx] # [ta] N stu,tFuls#v, t#v
V.S -V, S
Fv —— u € EFO, NORMAL F_v T : o FRESH
[su] —[sz]

Figure 6: Tableau rules for EFO

£, Ifs—tisin E, then —sortisin F.
&, If=(s—t)isin E, then s and —t are in E.
& IfVysisin E, then [su] is in E for every a-discriminating u in E.
E'V@ If Vs is in E, then [su] is in E for some normal EFO term u : a.
Ewv If =Vysisin E, then —[sz] is in E for some variable .

We say an EFO branch E is EFO-complete if for all normal s € EFO, either s € F or
—se kb

The condition &y is the usual condition for universal quantifiers with instantiations
restricted to a-discriminating terms. Since there may be no a-discriminating terms in F,
we also include the condition Sv@ to ensure that at least one instantiation has been made.
Without the condition E'V@ , the set {V,z.—~(y — y)} would be evident.

Let E be an evident EFO branch. Compatibility can be defined exactly as in Section
and Lemma [6.5] holds. In the proof of Lemma [I3.8 below, we will need to know that if F has
some a-discriminating term, then all a-discriminants are nonempty. Since a-discriminants
are maximal sets of a-discriminating terms, it is enough to prove every a-discriminating
term is compatible with itself. To be concrete, we must prove s #, s is never in E. One
way we could ensure this is to include it as an evidence condition and have a corresponding
tableau rule of the form:

S #a S

Fz

This was the choice taken in [14]. One drawback to including the rule F in the ground
calculus is that a lifting lemma will be more difficult to show when one passes to a calculus
with variables.

Another alternative is to remove the restriction on instantiations in the rule Fy. If we do
not restrict Fy to discriminating terms, then we can show the existence of a model without
knowing a priori that a-discriminants are nonempty in the presence of a-discriminating
terms.
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In order to obtain a strong completeness result, we will not follow either of these alter-
natives. Instead we prove that all terms are compatible with themselves. First we prove
EFO constants are compatible with themselves.

Lemma 12.1. For every EFO constant c, ¢ || c.

Proof. Case analysis. = || = follows from N3 and £--. —||— follows from N3, £_, and £_,.
=4 ||=a follows from N3 and E.on. We show ¥, || V. Let s [|ao ¢ be given. Assume Vs f V¢.
Without loss of generality, assume [Vs] and —[V¢] are in E. By £y we have —[tz] in E for
some variable z : a. By 5\9 we have [su] in E for some normal EFO term w. Since su }f, tz,
we must have u Jf, . In particular, x must be an a-discriminating term. By &, we have
[sz] is in E. Hence we must have z }f, z, contradicting Lemma [6.5](2). ]

Next we prove compatibility respects normalization.
Lemma 12.2. For all s,t: 0, s ||, t iff [s] ||& [t].

Proof. Induction on types. At base types this follows from N1 and the definition of compat-
ibility. Assume o is 7u. Let u [|; v. By N2 and the inductive hypothesis (twice) we have
su || to iff [su] || [tv] iff [[s]u] || [[t]v] iff [s]w || [t]v. Hence s || ¢ iff [s] || [t]. O

For two substitutions # and ¢ we write 0 || ¢ when Dom 6 = Dom ¢, 0z || ¢x for every
variable € Dom @ and fc || ¢c for every EFO constant ¢ € Dom 6.

Lemma 12.3. For all s € EFO,, if 0 || ¢, then 0s || ¢s.

Proof. By induction on s. Case analysis.

s is a variable or an EFO constant in Dom #. The claim follows from 6 || ¢ and S1.
s is a variable not in Dom €. The claim follows from S1 and Lemma [6.5(2).

s is an EFO constant not in Dom #. The claim follows from S1 and Lemma [12.1]

s = tu. By inductive hypothesis 0¢ || ¢t and Gu || du. Hence 0(tu) || (tu) using S2.

s = Azt where 2 : 0. Let u || v be given. We will prove (As)u || (¢s)v. Using Lemma 22
and S3 it is enough to prove 0%t || ¢Zt. This is the inductive hypothesis with 67 and ¢7. []

Lemma 12.4. For all s € EFO,, s | s.
Proof. By Lemma [[2:3 we have (s || }s. We conclude s || s using Lemma and S4. [

We can now prove a-discriminants are nonempty if £ has some a-discriminating term.

Lemma 12.5. If a is an a-discriminant and E has an a-discriminating term, then a is
nonempty.

Proof. Let s be a-discriminating. We know s || s by Lemma [[2.4] and so {s} is compatible.
If a is empty, then a U {s} is compatible, contradicting maximality of a. ]
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13. EFO MoODEL CONSTRUCTION

Let E be an evident EFO branch. We inductively define a standard frame D.
Do = {0,1}
Da = {ala is an a-discriminant }
D(o1) =Do — Dt

We define a value system > as for STT, but extend it to higher types using full function
spaces.

sPo0 <= seN,and [s] ¢ E

sPol <= se€ A, and 7[s] ¢ E

S$Pq a:<= s € Ay, a is an a-discriminant, and [s] € a if [s] is discriminating
Dor = { (8, f) € Agr X (Do — D7) |V(t,a) € by: (st, fa) €, }

In spite of the slightly different construction, many of the previous results still hold with
essentially the same proofs as before.

Proposition 13.1. s>, a iff [s| >, a.
Proof. Similar to Proposition Bl ]

Lemma 13.2. Let T be an assignment into D such that x >Zx for all names x and 6 be
a substitution such that 8x>Zx for all x € Dom#f. Then s € DomZ and 0s>Zs for every
term s.

Proof. Similar to Lemma [3.3] L]

Theorem 13.3. Let Z be an assignment into D such that x> Zx for all names x. Then T
is an interpretation such that s>Zs for all terms s.

Proof. Follows from Proposition [3.1] Lemma [13.2] and property S4. O
Lemma 13.4. A logical assignment I is a model of E if x >Zx for every name x.
Proof. Similar to Lemma using Theorem [13.3] ]

Lemma 13.5 (Common Value). Let T' C A,. Then T is compatible if and only if there
erists a value a such that T >, a.

Proof. Similar to Lemma [.3] O
Lemma 13.6 (Admissibility). For every variable x : o there is some a € Do such that z>a.
Proof. Similar to Lemma [T4] using Lemma and Lemma ]
Lemma 13.7 (Functionality). If s>q a, t>o b, and (s=t) € E , then a = b.

Proof. Similar to Lemma restricted only to sorts. L]
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As before £(c) is the canonical interpretation for each logical constant ¢. We now have
the additional logical constants — and V,;:

L(—) := Aa€Do. \beDo. if a=1 then b else 1
L(Y) := A\feDa — Do. if f = (Ax € Da. 1) then 1 else 0

Lemma 13.8 (Logical Constants). ¢ L(c) for every logical constant c.

Proof. Similar to Lemma The proof for — is the same. The proof for — uses N3,

E_, and &._,. The proof for =, requires a slight modification. Assume s>, a, t >, b, and

(s=ot) B¢ L(=4)ab. Case analysis.

e o =b. Use Lemmas and [6.5](1).

e o # b. Then ([s]=[t]) € F and so ¢ must be a sort « since E is EFO. This contradicts
Lemma [[3.7

Finally, we prove V,, > £(V,). Case analysis. Assume s>, f and Vs ¢, L(V,)f.

o L(Vy)f = 1. Then —[V,s] € E and so by N3, £y and N2 we have —[sz] € E for some
variable z : . We know {x} is compatible by Lemma [6.51(2) and so by Lemma [[3.5] there
is some a € Da such that x> a. Thus sz > 1, contradicting —[sz] € E.

e L(V,)f =0. Then [V,s] € E and there is some a € Da such that fa = 0. Suppose there
are no a-discriminating terms. In this case a is empty and u > a for any u € A,. By N3,
5\9 and N2 we have [su] € E for some normal EFO term u. Hence su p¢ 0, contradicting
st f and u>a. Next suppose there are a-discriminating terms. In this case there is some
u € a by Lemma By N3, & and N2 we know [su| € E. In this case we also have
su ¥ 0, again contradicting s> f and u > a. ]

Theorem 13.9 (EFO Model Existence). Every evident EFO branch has a standard model.
Every EFO-complete evident EFO branch has a standard model where each Da is countable.
Every finite evident EFO branch has a finite standard model.

Proof. We use the frame D and relation > defined above. We give an assignment Z into D.
For each variable x we can choose Zx such that x >Zz using Lemma For each logical
constant ¢ we choose Zc = L(c). By Lemma [I3.8 we know c¢>Zc. 7 is a model of E by
Lemma [I3.4

Suppose E is EFO-complete. We prove there are only countably many a-discriminants
as follows. If there are no a-discriminating terms, then () is the only a-discriminant. Other-
wise, every a-discriminant is nonempty by Lemma For each a-discriminant a, choose
some s, € a. We prove the function mapping a to s, is injective. Assume a,b € Da and
a # b. By EFO-completeness of F and Proposition [6.4] we must have s, # s, € E. If s, and
sp were the same term, then F would be unsatisfiable. Hence s, and s are different terms.

Finally, if F is finite, then for each sort « there will be only finitely many a-discriminants
(by Proposition [6.3)) and hence Do will be finite for all o. O

14. EFO COMPLETENESS

Let F be the tableau calculus given by taking all the rules from Figure [l subject to the
following restrictions.

e If (s#t) is on a branch A, then Fiy can only be applied if there is no variable  such that
([sz] # [ta]) € A.
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e If =V, s is on a branch A, then F_y can only be applied if there is no variable x : « such
that —[sz] € A.

e If V,s is on a branch A and there are a-discriminating terms in A, then Fy can only be
applied with these a-discriminating terms.

o If ¥,s is on a branch A, [su] ¢ A for all normal u € A,, some variable z : a occurs free
in A and there are no a-discriminating terms in A, then Fy can only be applied with a
variable x : o occurring free in A.

e If V,s is on a branch A, [su] ¢ A for all normal u € A,, no variable x : a occurs free in A
and there are no a-discriminating terms in A, then Fy can only be applied with a variable
x: .

The idea behind the restrictions on Fy is that only a-discriminating terms should be used

as instantiations, except when there are no a-discriminating terms. In case there are no

a-discriminating terms, at most one new variable x : o will be used as an instantiation term
for each sort a. These restrictions will ensure that F terminates when given branches in
certain fragments of EFO.

From now on we use the term refutable to refer to refutability in the calculus F. That

is, the set of refutable branches is the least set such that if A/A;... A, is an instance of a

rule of F and Aq,..., A, are refutable, then A is refutable. The proof of soundness of T

(see Proposition [5.]) extends to show soundness of F.

Proposition 14.1 (Soundness of F). Every refutable branch is unsatisfiable.
An EFO abstract consistency class is a set I' of EFO branches such that every branch

A € T satisfies the conditions in Figure Bl and also the following conditions:

C, Ifs—tisin A, then AU{—-s} or AU{t} isin T

C., If—=(s—t)isin A, then AU{s,~t} isin I

Cy IfVasisin A, then AU {[su]} is in I for every a-discriminating w in A.

C\g If Vys isin A, then AU {[su]} is in I" for some normal EFO term

u € A,
Cv If =V,sisin A, then AU {=[sz]} is in " for some variable x.

We say an abstract consistency class I' is EFO-complete if for all A € T' and all normal
s € EFO, either AU {s} €' or AU {—s} €.

Let F?_-F O be the set of all finite EFO branches that are not refutable.
Lemma 14.2. I‘EFO s an abstract consistency class.

Proof. Similar to Lemma We only check the new conditions: C_,, C—_, Cy, Cg and C_y.

C_ Let s >t € AeTHO. Suppose AU {~s} ¢ 'O and AU {t} ¢ IO, By F, we

have A is refutable. Contradiction.
Cy If~(s—>t)€e Aand AU {s,~t} ¢ IO then A ¢ 'O using the rule F-_,.

Cy Let Vs € A € TEFO. Suppose A U {[su]} ¢ I'7 for some normal a-discriminating w.
Then AU {[su]} is refutable. Hence A can be refuted using Fy (with the restriction).

C\g Let Vs € A € FE-F O If there is some a-discriminating term, then C\g follows from
Cy. Assume there are no a-discriminating terms and A U {[su]} ¢ I'y for all normal
u € EFO,. In particular, [su] ¢ A for all normal v € EFO,. Choose a variable
x 1 « occurring free in A (or any variable x : « if none occurs free in A). Since
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AU{[sx]} ¢ T'7, AU{[sz]|} is refutable. Using Fy (with the restriction), A is refutable.
Contradiction.

C-y Let ~Vus € A € IO, Suppose AU {—[sz]} ¢ I'7 for every variable = : a. Let 7 :
be fresh for A. Then A U {—[sz|} is refutable and so A can be refuted using F_y. [

Lemma 14.3 (EFO Extension Lemma). Let ' be an abstract consistency class and A € T'
be an EFO branch. Then there exists an evident EFO branch E such that A C E. Moreover,
if I' is EFO-complete, a EFO-complete evident EFO branch E exists such that A C E.

Proof. Similar to Lemma Instead of using an enumeration of all normal formulas, we
use an enumeration of all normal EFO formulas. The proof goes through when one makes
some obvious modifications. []

Theorem 14.4 (EFO Completeness). Every finite EFO branch is either refutable or has a
standard model.

Proof. Follows from Lemma [[4.2] Lemma [I4.3] and Theorem [I3.91 L]

We now turn to compactness and the existence of countable models. Let FEFO be the
set, of all sufficiently pure EFO branches A such that every finite subset of A has a standard
model.

Lemma 14.5. I‘gFO is an EFO-complete abstract consistency class.
Proof. Similar to Lemma [10.2] L]

Theorem 14.6. Let A be a branch such that every finite subset of A has a standard model.
Then A has a standard model where Do is countable for all sorts c.

Proof. Similar to Theorem [10.3 ]

Corollary 14.7. Let A be a satisfiable EFO branch. Then A has a standard model where
Da is countable for all sorts a.

Proof. To apply Theorem [I4.6l we only need to show every subset of A has a standard model.
Let A’ be a finite subset of A. Since A’ is satisfiable, A’ is not refutable by Proposition T4l
By Theorem [[4.4] A’ has a standard model. ]

15. DECIDABLE EFO FRAGMENTS

Given the completeness result for the tableau calculus F (Theorem [I4.4]), we can show
a fragment of EFO is decidable by proving F terminates on branches in the fragment. We
will use this technique to argue decidability of three fragments:
e The A-free fragment, which is EFO without A-abstraction.
e The pure fragment, which consists of disequations s # t where no name used in s and ¢
has a type that contains o.
e The BSR fragment (Bernays-Schonfinkel-Ramsey), which consists of relational first-order
F*V*-formulas with equality.

Proposition 15.1 (Verification Soundness). Let A be a finite EFO branch that is not closed
and cannot be extended with F. Then A is evident and has a finite model.

Proof. Checking A is evident is easy. The existence of a finite model follows from Theo-

rem [13.9 ]
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We now have a general method for proving decidability of satisfiability within a fragment.

Proposition 15.2. Let F terminate on a set A of finite EFO branches. Then satisfiability
of the branches in A is decidable and every satisfiable branch in A has a finite model.

Proof. Follows with Propositions [[4.1] and [5.1] and Theorem O

The decision procedure depends on the normalization operator employed with F. A
normalization operator that yields S-normal forms provides for all termination results proven
in this section. Note that the tableau calculus applies the normalization operator only to
applications st where s and t are both normal and ¢ has type a (for some sort «) if it is not a
variable. Hence at most one S-reduction is needed for normalization if s and ¢ are S-normal.
Moreover, no a-renaming is needed if the bound variables are chosen differently from the
free variables. For clarity, we continue to work with an abstract normalization operator and
state further conditions as they are needed.

15.1. Lambda-Free Formulas. In [I5] we study lambda- and quantifier-free EFO and
show that the concomitant subsystem of F terminates on finite branches. The result extends
to lambda-free branches containing quantifiers (e.g., {V,f}).

Proposition 15.3 (Lambda-Free Termination). Let the normalization operator satisfy
[s] = s for every lambda-free EFO term s. Then F terminates on finite lambda-free branches.

Proof. An application of Fiy disables a disequation s#,,t and introduces new subterms as
follows: a variable x : o, two terms sx : 7 and tx : 7, and the formula sx#tx. The types of
the new subterms are smaller than the type of s and ¢, and the new subterms introduced
by the other rules always have type o or a.. For each branch, consider the multiset of types
oT where s,t : o7 are subterms of formulas on the branch but there is no x : o such that
sx # tx is on the branch. By considering the multiset ordering, we see that no derivation
can employ Frp infinitely often.

Let A - Ay — Ay — --- be a possibly infinite derivation that issues from a finite
lambda-free branch and does not employ Fyg. It suffices to show that the derivation is
finite. Consider the new variables x : & which may be introduced by the Fvy and F_y rules.
For each subterm V,s at most one new variable will be introduced by these rules. Since
the branches are A-free, no rule creates new subterms of the form V,s. Hence only finitely
many new variables of type « are introduced. Let A, be a branch in the sequence such that
no new variables are introduced after this point. Let S, be the set of all subterms of type
o of the formulas in A,. Let B be the union of the three finite sets S,, {—s|s € S,} and
{s #5 t|s,t € S,}. Every branch A,, with m > n can only contain members of B. Hence
the derivation is finite. L]

15.2. Pure Disequations. A type is pure if it does not contain o. A term is pure if the
type of every name occurring in it (bound or unbound) is pure. An equation s = ¢ or
disequation s # t is pure if s and t are pure terms.
We add a new property of normalization in order to prove termination.
N5: The least relation = on terms such that
(1) asy...sp > s ifie{l,...,n}
(2) s> [sz] if s:oTand x: 0
terminates on normal terms.
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Proposition 15.4 (Pure Termination). Let the normalization operator satisfy N5. Then F
terminates on finite branches containing only pure disequations.

Proof. Let A — A1 — As — --- be a possibly infinite derivation that issues from a finite
branch containing only pure disequations. Then no other rules but possibly Fpre and Fig
apply and thus no A; contains a formula that is not a pure disequation (using S5). Using
N5 it follows that the derivation is finite. ]

15.3. Bernays-Schonfinkel-Ramsey Formulas. It is well-known that the satisfiability
of Bernays-Schonfinkel-Ramsey formulas (relational first-order 3*V*-prenex formulas with
equality) is decidable and the fragment has the finite model property [II]. We reobtain this
result by showing that F terminates for the respective fragment. We call a type BSR if
it is o or o or has the form a7 ...an0. We call an EFO formula s BSR if it satisfies two
conditions:

(1) The type of every variable that occurs in s is BSR.
(2) V¥, does not occur below a negation or an implication in s.

Note that every subterm of a BSR formula that has type « is a variable. For simplicity, our
BSR formulas don’t provide for outer existential quantification. We need one more condition
for the normalization operator:

N6: If s : ao is BSR and = : «, then [sx] is BSR.

Proposition 15.5 (BSR Termination). Let the normalization operator satisfy N5 and N6.
Then F terminates on finite branches containing only BSR formulas.

Proof. Let A — Ay — Ay — -+ be a possibly infinite derivation that issues from a finite
branch containing only BSR formulas. Then F_y and Fyy are not applicable and all A;
contain only BSR formulas (using N6). Furthermore, for each sort a used in A at most one
new variable of sort « is introduced (by the restriction on Fy in F). Since all terms of sort «
are variables, there is only a finite supply. Using N5 it follows that the derivation is finite.[]

16. CONCLUSION

In this paper we have studied a complete cut-free tableau calculus for simple type theory
with primitive equality (STT). For the first-order fragment of STT (EFO) we have shown
that the tableau system is complete with respect to standard models. Our development
demonstrates that first-order logic can be treated naturally as a fragment of STT.

For the EFO fragment we gave an interesting restriction on instantiations. In particular,
one can restrict most instantiations of sort a to be a-discriminating terms. Such a restric-
tion can also be included in the tableau calculus for STT without sacrificing completeness.
Confining instantiations to a-discriminating terms is a serious restriction since each branch
has only finitely many such terms.

Automated theorem proving would be a natural application of the tableau calculi pre-
sented here. When designing a search procedure one often starts with a complete ground
calculus (like our tableau calculi 7 and F), then extends this to include metavariables to
be instantiated during search, and finally proves a lifting lemma showing the tableaux with
metavariables can simulate a refutation in the ground calculus. A design principle of our
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calculi 7 and F is that none of the rules look deeply into the structure of any formula on
the branch. For example, consider the mating rule

TS ...8y, 7xl1...1n

3175751 | "'|3n7étn
To check if this rule applies to two formulas s, ¢ on the branch A, one only needs to check if
s has a variable x at the head and if ¢ is the negation of a formula with x at the head. When
trying to prove a lifting lemma, we would need to show how the calculus with metavariables
could simulate the mating rule. This may involve partially instantiating metavariables to
expose the head x in the counterpart to s or the negation and the head x in the counterpart
to t. On the other hand, suppose our ground calculus included a rule to close branches with
a formula of the form s # s. To simulate this in the calculus with metavariables we would
need to know if some instantiation for the metavariables can yield a formula of the form
s # s. In the worst case this is a problem requiring full higher-order unification. We have
been careful to only include rules in our calculi which will not require arbitrary instantiations
of metavariables to prove a lifting lemma. Formulating such a calculus with metavariables
and proving such a lifting lemma is left for future work.

n>0
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