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ABSTRACT. We improve the answer to the question: what set of excluded middles for
propositional variables in a formula suffices to prove the formula in intuitionistic proposi-
tional logic whenever it is provable in classical propositional logic.

1. INTRODUCTION

Let . and F; denote derivability in classical and intuitionistic propositional logic, respec-
tively. Then it is known that if -. A, then IIy4) F; A, where V(A) is the set of propositional
variables in a formula A and IIyy = {pV —p | p € V'} for a set V of propositional variables;
see, for example, [I, appendix|, and [4, p. 27] which was originally given in [7].

In this note, we consider a problem: what set V' of propositional variables suffices for
Iy, T +; A whenever T' k. A, and show, employing a technique in [2, 3], that V = (V~(T")U
VH(A)) N (VL(T) UV~ (A)) suffices, where VT, V™ and V[, are the sets of propositional
variables occurring positively, negatively and non-strictly positively, respectively (precise
definitions will be given in the next section). For example, since (p — q) — p k- p, we have

pV-p,(p—q) —phip
and, since p—qVrht.(p—q)V (p—r), we have
pVp,p—=qVrii(p—q)V(p—r).
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2. PRELIMINARIES

We refer to Troelstra and Schwichtenberg [6] for the necessary background on sequent calculi;
see also Negri and von Plato [4]. We use the standard language of propositional logic
containing A, V, — and 1 as primitive logical operators, and introduce the abbreviation
—A=A— 1. We define positive, strictly positive and negative occurrence of a formula in
the usual way (see [6, 1.1.3] or [5, 3.9,3.11,3.23] for details). The sets V*(A) and V= (A) of
propositional variables occurring positively and negatively, respectively, in a formula A are
simultaneously defined by

V*(p) {p}, V(L) =0,
VEHAAB) = VYAV B) = V(A UVH(B),
VI A—=B) = V- (A)UV*(B),

Vip) = V (1L)=
V(AAB) = V(AVB) V- (A) UV~ (B),

V(A—B) = VAUV (B).

The set V1, (A) of propositional variables occurring non-strictly positively in a formula A is
defined by

Vos(p) Vos(L) =0,
Vis(AAB) = Vi (AVB) =V (A) UV (B),
VI(A—B) = V (A UVL(B).
We extend VT to a finite multiset T' of formulas by VT(I') = Jep VT(4). V- (T) and

Vi.(T) are defined similarly.
The sequent calculus G3cp is specified by the following axioms and rules:

p,I'=Ap Ax 1, I'=A LL
A B T'= A I'=s=AA I'sAB
ANBT =AW T=AAAB
Al'=A BI'=A I'=AAB
AVBT=A LIV TSAAvE RY
I'=s=AA BTI'=A Al'=AB
A-BT=>A 7 TSAASB

where in Ax, p is a propositional variable.
The intuitionistic version G3ip of G3cp has the following form:

p,I'=p Ax 1, I'=A LL
A B T'=C I'=A I'=12H
ANBT=C N T=AArB RN
Al'=sC BTI'=C =4 I'= B
AVBT=C Y T=o4ave ™Y1 FsAvp
A—-BT'=A BI=C AT =2RB
L—

ASBT =0 T=A4A-B R

where in Ax, p is a propositional variable.
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Note that having the present sequent calculus formulation (Ax with a propositional
variable p instead of a formula A) allows for an easy treatment of the Basis case in the
proof of the main result below.

The structural rules (weakening, contraction and cut) are admissible in G3cp and in
G3ip; see [6l, 3.4.3,3.4.5,4.1.2]. Those structural rules are formulated in G3ip as follows:

I'=C Av Av r=<c
rasc™W Arsc
r=A4 Al'=C
rr=c«c

We write . I' = A and F; T' = A for derivability of sequents ' = A and I' = A in
G3cp and in G3ip, respectively.

We introduce the symbol “¢” as a special proposition letter (a place holder) and an
abbreviation -, A = A—x*. It is straightforward to see that if -; ' = A then ; I', 7, A = *;
if b I'y—4—4A = % then H; I' = —,A, and F; A = % if and only if -; T' = —,A.
From the latter and the former results, it is trivial to conclude that if ; I') A = * then
Fi T, —A =%, and F; [, 7, A = % if and only if F; I' = —,—,A.

We have the following lemma for the logical operators and the operators — and —.

Cut

Lemma 2.1.

l_i Fa -l = *,

i (D A D') = —,~D A ~,~D',

l_i _‘*_‘*S A _‘*_‘*Sl = _‘*_‘*(S A Sl);

i (D V D) = =~y =DV =y =D'),
Fi o (oS A =0 8') = (S V S,

i (S = B) = 48 — ~,—B,

F: S — B = —,—.5 = B,

Proof. Easy exercise. L]

Let A[x/C] denote the result of substituting a formula C' for each occurrence of * in
a formula A, and, for a finite multiset I' = Ay,..., 4,, let I'[x/C| denote the multiset
Aq[x/C], ..., Aplx/C].

Lemma 2.2. If; I' = A, then t; T'[x/C] = Alx/C].
Proof. By induction on the depth of a deduction +; I' = A. []

3. THE MAIN RESULT

If “¢” is an operator, such as = and -, and I' = A4, ..., A, is a finite multiset of formulas,
then we write cI’ for the multiset cAq,...,cA,.

Proposition 3.1. If . I'A = X, then b; Iy, T, —.0A, =X = %, where V is a set of
propositional variables containing (V™ (T, A) UV (X)) N (VL (T) UVT(A) UV (D).
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Proof. Let V be a set of propositional variables containing (V= (', A)U VT (%)) N (Vi (T)U
VH(A)UV~ (X)), and we proceed by induction on the depth of a deduction of . ', A = X.
Basis. If the deduction is an instance of Ax, then it must be either of the form p, IV, A =
Y/ p, or of the form I, p, A’ = ¥, p. In the former case, we have

|_i HVaPu F/7 _'*_'Aa _‘*2/7 TP =k
and, in the latter case, since

pe VYV (T,p,A)UVT(E,p)) NV (D) UV (p, A) UV~ (X,p) CV,
we have
Fi Iy, T, —mp, i n A 2,5 —up =+
by Lemma 2.1] (). If the deduction is an instance of L_L, then it must be either of the form
1L, T, A =%, or of the form I", L, A’ = X. In the former case, we have
|_i HV7 —L7 Plu _‘*_‘A7 T2 =k

and, in the latter case, we have

Fi Ty, T, mam L, —m A =, = %

by Lemma 2.1 (2]).

Induction step. For the induction step, we distinguish the cases: (A) the last rule applied
is an L-rule and the principal formula is in A, (B) the last rule applied is an L-rule and the
principal formula is in I', and (C) the last rule applied is an R-rule.

Case A. The last rule applied is an L-rule, and the principal formula is in A.

Case A1. The last rule applied is LA. Then the derivation ends with

LD.D\A =Y
TODAD AN =5 N

Since
(V= (',D, D', A"y uvH(E)nVLT)uVH(D,D' AUV~ (X)) =
V- (L, DAD AHYuvtE)nWLO)uvH(DAD ,AYuv (%) CV,
we have
Fi Iy, T, ~e=D, == D', = A =2 =
by the induction hypothesis, and hence
b Oy, T, =D A =D == A =, 8 = %
by LA. Therefore F; Iy, ', == (D A D), =, A, =% = %, by Cut with Lemma 211 (3]).
Case A2. The last rule applied is LV. Then the derivation ends with
ID,A'=Y T',DA'=X
I,DVD A =X .
Since (V~(I', D,A")uVH () n VLT)UVH(D,AYUV (X)) CV and (V- (I, D',A")U
VEE)) N VL) UV (D, A) UV (X)) CV, we have
F; Oy, T, == D, = A =Y = % and  F; Iy, T, ~ =D/, —, - A .8 = %
by the induction hypothesis, and hence
b Oy, T, =DV == D = A =8 = %
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by LV. Therefore
Fi Iy, T, i (e DV — = D' = A =, 8 =

and so t; [Ty, T, == (D V D), == A, =2 = %, by Cut with Lemma 211 (&]).
Case A3. The last rule applied is L—. Then the derivation ends with

A =%S BT A=Y

IS—BA =% L_>.
Since
V(T AHYUVT(Z,9) N (VLT uvT AUV (E,9)) C
V(IS — B,AHYuvH(E)n(VLIH UV (S —B,A)UV (X)) CV
and
VT ([,B,AHYuvT(Z)nVLT)uvH(B,AYuv (X)) C
YV ([,S = B,AHYuvtrE)nVLO)uvH(S = B,AYUV (X)) CV,
we have

b Oy, T, = m A =8, -8 =+ and b Iy, T, =B, =, A, 2,8 =
by the induction hypothesis, and therefore, since
b Oy, T, nA 2,8 = .S
we have F; Iy, ', =, —,.S — == B, 7, —A, =, Y = —,—,5, by LW. Thus
F; Iy, T, =S — =B, A =8 = %

by L—, and so ; Iy, T, =,=(S — B), —.—A’, =, = %, by Cut with Lemma 21] ().

Case B. The last rule applied is an L-rule, and the principal formula is in I'. Since the cases
for the rules LA and LV are straightforward, we review the case for the rule L—.

Case B1. The last rule applied is L—. Then the derivation ends with

I'A=X%S BI' A=X%

S—BI' A=YX% L_>.
Since
V@A) UVT(E,9) N (VLT UVT(A) UV (E,9)) C
V7 (S— B, I",A)uvt(E)nVL(S— BT uVHA)uy (X)) CV
and
V (B, T, A)uVvT () nVL(B,THYUVT(A)UVY (X)) C
V= (S—= B, I",A)uvtE)n VLS — B I UV (A) UV (X)) CV,
we have

b Oy, T = A, -2, -8 =« and Iy, BT/, =, A, -2 = %
by the induction hypothesis, and therefore, since
B Iy, T, = A 28 = .S
we have F; Iy, =S — =B, TV, == A, =, 2 = —,—,S, by LW, and
Fi Iy, = B T 2 m A 8 = %,
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Thus
l_i HV7 _‘*_'*S — _‘*_‘*B7 F/, _‘*_‘A7 _‘*2 = *
by L—, and so ; Iy, S — B, TV, =,—=A, =% = %, by Cut with Lemma 2] (g]).
Case C. The last rule applied is an R-rule.
Case C1. The last rule applied is RA. Then the derivation ends with

IA=Y,S I,A=Y,8
T,A= > ,SAS

Since (V= (I, A) UV (X, S) )NV LUV (A)UY— (¥, S)) C Vand (V~ (T, A)uyT (X', 8)N
VLM UVYT(A) UV (X, 8) CV, we have

F, Oy, T, —nA, -2 .S =« and  H; Iy, T, =AY, =8 = «
by the induction hypothesis, and hence
Fi My, =AY = =,=,.8 and Oy, T, oA, -8 = -5
Therefore b; Iy, T, =, —A, =Y = =, (S A S’), by RA and Cut with Lemma 2] (), and
so b My, T, =, A =3 = (S A S) = .
Case C2. The last rule applied is RV. Then the derivation ends with
A=Y S5
TASy.Svs Y.
Since (W~ (T, A)uVH(X,S,8))Nn(VLT)uVT(A) UV (¥, S,5)) C V, we have
Fi My, T = A, =, =08, =08 = %
by the induction hypothesis, and hence
Fi Oy, T = A 8 =S A S = %
by LA. Therefore F; Iy, T, == A, =% = =, (7.5 A —,.97), and so
B Iy, T, =oAL =Y = =, (S VST
by Cut with Lemma 2.1 (G). Thus ; Iy, T, = =A, =3 =, (S V S') = .
Case C8. The last rule applied is R—. Then the derivation ends with
AT, A=Y S
T A=Y Aos V7

Since
VT, AA)UVTELS) Nn(VLITUVT(A4,A) UV (X,9)) =
V(A UVTE A= S)Nn(VLTuvHA) UV (Z,4—=9)CV,

we have
Fi Oy, T, —en A, = n A, =2 -8 =

by the induction hypothesis, and therefore, since
Fi Oy, T, = m A, 2 A =Y = =S

we have b; IIy, T, 7, = A, .Y = == A — —,—,5, by R—. Thus
b Iy, T, —m AL =Y = =i (A — S)

by Cut with Lemma 2] (@), and so t; Iy, T, = —A, =, 3 =, (A — S) = . ]
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Theorem 3.2. If-.T' = A, then t; IIy,I' = A, where V. = (V- (T)UVT(A4))n (Vi (T)U
V= (4)).

Proof. Suppose that -, I' = A, and let V = (V= (') UVt (A)) N (V5 (T) UV~ (A)). Then
F; Iy, T', - A = *, by Proposition 3.1 and hence

Iy, I'N’A—> A=A
by Lemma, Therefore =; Iy, T" = A. L]

Corollary 3.3. If-.T'= A and (V- (D)UVT(A)NVLT)UV(A) =0, then -, T = A.
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