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ABSTRACT. We study domain representations induced by dyadic subbases and show that
a proper dyadic subbase of a second-countable regular space X induces an embedding of
X in the set of minimal limit elements of a subdomain D of {0,1, L}*. In particular, if X
is compact, then X is a retract of the set of limit elements of D.

1. INTRODUCTION

From a computational point of view, it is natural to consider a subbase of a second-countable
Ty space X as a collection of primitive properties of X through which one can identify each
point of X. In this way, by fixing a numbering of the subbase, one can represent each point
of X as a subset of N and construct a domain representation of X in the domain P, of
subsets of N [3], [I7]. Note that P, is isomorphic to the domain of infinite sequences of the
Sierpinski space {1, L}.

On the other hand, each regular open set A (i.e., an open set which is equal to the
interior of its closure) of a topological space X divides X into three parts: A, the exterior of
A, and their common boundary. Therefore, one can consider a pair of regular open subsets
which are exteriors of each other as a pair of primitive properties and use a subbase which
is composed of such pairs of open sets in representing the space. Such a subbase is called a
dyadic subbase and a dyadic subbase of a space X induces a domain representation of X in
the domain T* of infinite sequences of T = {0, 1, L}. In [20] and [12], the authors introduced
to a dyadic subbase the properness property which expresses a kind of orthogonality between
the components and studied domain representations of Hausdorff spaces induced by proper
dyadic subbases. In this representation, the domain is fixed to T“ and an embedding ¢g of
a Hausdorff space X in T% is derived from a proper dyadic subbase S of X.

In this paper, we derive from a dyadic subbase S a domain (i.e., an w-algebraic pointed
dcpo) Dg and a bounded complete domain ﬁs which are subdomains of T containing
ps(X) as subspaces. The domain Dg has the following properties. (1) If X is a strongly
nonadhesive Hausdorff space (Definition [5.4]), then the set L(Dg) of limit (i.e., non-compact)

2012 ACM CCS: [Mathematics of computing]: Continuous mathematics—Topology—Point-set
topology.

Key words and phrases: domain theory, subbase, compact Hausdorff space.

This work was partially supported by JSPS KAKENHI Grant Number 22500014.

|E |LOGICAL METHODS © Hideki Tsuiki and Yasuyuki Tsukamoto

IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:17)2015 © Creative Commons


http://creativecommons.org/about/licenses

2 HIDEKI TSUIKI AND YASUYUKI TSUKAMOTO

elements of Dg has minimal elements. (2) If X is regular, then pg is an embedding of X
in the set of minimal elements of L(Dg). (3) If X is compact, then there is a retraction pg
from L(Dg) to X. That is, every infinite strictly increasing sequence in K (Dg) represents
a point of X through pg and (Dg, L(Dg), ps) is the kind of domain representations studied
in [19]. The domain Dg also has the properties (1) to (3) and, in addition, it is bounded
complete.

We study properties of representations for second-countable Hausdorff spaces and in-
vestigate which property holds under each of the above-mentioned conditions. Therefore, a
space in this paper means a second-countable Hausdorff space unless otherwise noted. We
are mainly interested in the case where X is a regular space because the corresponding do-
main representations have good properties as we mentioned above. In addition, it is proved
in [I1] that every second-countable regular space has a proper dyadic subbase and in [12]
that every dense-in-itself second-countable regular space has an independent subbase, which
is a proper dyadic subbase with an additional property.

We review proper dyadic subbases and their properties in the next section, and we
study TTE-representations and domain representations in T derived from (proper) dyadic
subbases in Section 3. We introduce the domains Dg and ﬁs in Section 4, and present the
strongly nonadhesiveness condition in Section 5. Then we study domain representations in
these domains for the case X is regular in Section 6. FinAally, in Section 7, we study the
small inductive dimension of the Tp-spaces L(Dg) and L(Dg) based on a result in [19].

Preliminaries and Notations:

Bottomed Sequences: Let N be the set of non-negative integers and 2 be the set
{0,1}. Let T be the set {0,1, L} where L is called the bottom character which means
undefinedness. The set of infinite sequences of a set X is denoted by »“. Each element of
T« is called a bottomed sequence and each copy of 0 and 1 which appears in a bottomed
sequence p is called a digit of p. A finite bottomed sequence is a bottomed sequence with a
finite number of digits, and the set of all finite bottomed sequences is denoted by T*. We
sometimes omit L“ at the end of a finite bottomed sequence and identify a finite bottomed
sequence with a finite sequence of T. The set of finite sequences of 2 is denoted by 2*.

We define the partial order relation = on T by 1. = 0 and 1 £ 1, and its product order
on T% is denoted by the same symbol C, i.e., for every p,q € T¥ p = ¢ if p(n) £ ¢(n) for
each n € N. Then 2% is the set of maximal elements of T“. We consider the Ty-topology
{,{0},{1},{0,1}, T} on T, and its product topology on T«. We write dom(p) = {k : p(k) #
1} for p € T. For a finite bottomed sequence e € T*, the length |e| of e is the maximal
number n such that e(n — 1) # L. We denote by p|,, the finite bottomed sequence with
dom(pl,,) = dom(p) n {0,1,...,n — 1} such that p|, © p. That is, p|,(k) = p(k) if k <n
and p|n(k) = L if & > n. Note that the notation pl, is used with a different meaning in

[20].

The letters a and b will be used for elements of 2, ¢ for elements of T, 4, j, k,l, m,n for
elements of N, p and ¢ for bottomed sequences, and d and e for finite bottomed sequences.
We write ¢ = (¢,¢,--+) € T% for ¢ € T. We denote by p[n := a] the bottomed sequence ¢
such that ¢(n) = a and ¢(i) = p(i) for i # n.

Topology: Throughout this paper, X denotes a second-countable Hausdorff space
unless otherwise noted. Therefore, if X is regular, then X is separable metrizable by
Urysohn’s metrization theorem. Recall that a subset U of X is reqular open if U is the
interior of its closure.
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A filter § on the space X is a family of subsets of X with the following properties.
(1) &¢3.
(2) fAeFand Ac A’ < X, then A’ € §.
(3) If A,Be 3, then An Beg.
Let U(x) denote the family of neighbourhoods of € X. For a filter § on X and a point
x € X, if we have U(z) < § then we say that § converges to x.

A family B of subsets of X is called a filter base if it satisfies ¢ ¢ B, B # ¢F, and that
for all A, B € B there exists C' € 98 such that C < A n B. A filter generated by a filter
base B is defined as the minimum filter containing 8. We say that a filter base converges
to x € X if it generates a filter which converges to x.

We denote by cly A, bdy A, and exty A the closure, boundary, and exterior of a set A
in a space Y, respectively, and we omit the subscript if the space is obvious.

Domain Theory: Let (P,=) be a partially ordered set (poset). We say that two
elements p and p’ of a poset P are compatible if p © ¢ and p’ = ¢ for some ¢ € P, and
write p 1 p’ if p and p’ are compatible. For p e P and A € P, we define 1p = {q : ¢ = p},
Ip=Hq¢:q= p}, 1A = 0U{lqg: qe A}, and |A = U{lq : ¢ € A}. Therefore, we have
"p ={q:q 1 p}. We say that A is downwards-closed if A = | A, and upwards-closed if
A=1A.

A subset A of a poset P is called directed if it is nonempty and each pair of elements of
A has an upper bound in A. A directed complete partial order (dcpo) is a partially ordered
set in which every directed subset A has a least upper bound (lub) WA. A dcpo is pointed if
it has a least element.

Let (D,=) be a decpo. A compact element of D is an element d € D such that for every
directed subset A, if d © LUA then d € [A. An element of D is called a limit element if it is
not compact. We write K (D) for the set of compact elements of D, and L(D) for the set
of limit elements of D.

For x € D, we define K, = K(D) n |x. A dcpo D is algebraic if K, is directed and
LK, = x for each z € D, and it is w-algebraic if D is algebraic and K (D) is countable. In
this paper, a domain means an w-algebraic pointed dcpo. The Scott topology of a domain
D is the topology generated by {1d : d € K(D)}. In this paper, we consider a domain D
as a topological space with the Scott topology. A poset is bounded complete if every subset
which has an upper bound also has a least upper bound. T is a bounded complete domain
such that K(T%) = T*.

An ideal of a poset P is a directed downwards-closed subset. The set of ideals of P
ordered by set inclusion is denoted by Idl(P). The poset Idl(P) becomes a domain called
the ideal completion of P if P is countable. We have an order isomorphism K (Idl(P)) =~ P
for each countable poset P with a least element. On the other hand, for a domain D, we
have Idl(K (D)) =~ D. Therefore, K (D), the set of compact elements of D, determines the
structure of D. We say that an ideal of K (D) is principal if its least upper bound is in

K (D). An infinite strictly increasing sequence dy &= dy & dy & --- in K (D) determines a
non-principal ideal {e € K (D) : e E d; for some i} of K(D) and thus determines a point of
L(D).

A poset P is a conditional upper semilattice with least element (cusl) if it has a least
element and every pair of compatible elements has a least upper bound. If P is a cusl, then
Idl(P) is a bounded complete domain. For background material on domains, see [8] [1I, [15].
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Representation: We write f :© A — B if f is a partial function from A to B. For
a finite or a countably infinite alphabet X, a surjective partial function from % to X is
called a (TTE-)representation of X. We say that a continuous function v := 3% — X is
reducible (resp. continuously reducible) to § := X% — X if there exists a computable function
(resp. continuous function) ¢ := ¥« — ¢ such that v(p) = d(¢(p)) for every p € dom(vy).
Two representations 0,9’ := X — X are equivalent (resp. continuously equivalent) if they
are reducible (reps. continuously reducible) to each other. A representation ¢ := ¥“ — X
is called admissible if § is continuous and every continuous function v := ¥* — X is
continuously reducible to 9.

Let X be a Ty-space and B = {B,, : n € N} be a subbase of X indexed by N. Consider
the representation dp := N¥ — X such that dp(p) = = if and only if {p(k) : k € N} =
{n e N:xze B,}. dpis called a standard representation of X with respect to B. Any
representation which is continuously equivalent to a standard representation is admissible

23} 14} 22].

Domain representation: Let D be a domain, D® a subspace of D, and p a quotient
map from D onto X. The triple (D, D, ;1) is called a domain representation of X. Note
that we do not require D to be bounded-complete or each element of D to be total (i.e.,
condense) in this paper. See [2, B] for the notion of totality. A domain representation is
called a retract domain representation if p is a retraction, and a homeomorphic domain
representation if p is a homeomorphism.

A domain representation (D, DT w) of X is upwards-closed if D™ is upwards-closed and
w(d) = p(e) for every d 2 e € D, A domain representation (D, D, 1) is called admissible
if for every pair (E, E?) of a domain E and a dense subset Ef € E and for every continuous
function v : B — X there is a continuous function ¢ : E — D such that v(z) = u(é(z))
holds for all z € E®. A domain representation E = (E, E® v) reduces continuously to a
domain representation D = (D, D ) if there is a continuous function ¢ : E — D such
that ¢(Ef) < DF and v(z) = p(¢(x)) for all 2 € EE. For more about (admissible) domain

representations, see [3, [0, [16], [17].

2. PROPER DYADIC SUBBASES
Recall that a space means a Hausdorff space unless otherwise noted.

Definition 2.1. A dyadic subbase S of a space X is a family {5, , : n € N, a € 2} of regular
open sets indexed by N x 2 such that (1) S, ; is the exterior of S), o for each n € N and (2)
it forms a subbase of X.

Note that we allow duplications in S, , and therefore, for example, a one point set X = {z}
has a dyadic subbase S, o = X,5,1 = & (n = 0,1,...). Note also that this definition is
applicable also to non-Hausdorff spaces, though we only consider the case X is Hausdorff
in this paper. We denote by S, | the set X\(S,,0 U Sp1). Since Sy, ¢ is regular open, we
get bd S, 0 =bdS, 1 =5, 1. Note that S, | is defined differently in [20].

A topological space is called semiregular if the family of regular open sets forms a base
of X. It is immediate that a regular space is semiregular. From the definition, a space with
a dyadic subbase is a second-countable semiregular space. On the other hand, it is shown
in [20] that every second-countable semiregular space has a dyadic subbase.
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Gs0,G51
Ga0,Ga1
G30,G31

G2,0,G21

G10,G11

Goo,Goa

0 1/2 1

Figure 1: Gray subbase of the unit interval I.

From a dyadic subbase S, we obtain a topological embedding ¢g : X — T% as follows.

0 (x € Smo),
ps(x)(n) =% 1 (z€Sy1),
L (zeSn).

We denote by & the sequence pg(z) € T and denote by X the set ps(X) < T if there is
no ambiguity of S.

In the sequence z, if Z(n) = a for n € N and a € 2, then this fact holds for some
neighbourhood A of = because Sy, is open. On the other hand, if Z(n) = L, then every
neighbourhood A of x contains points yg and y; with yo(n) = 0 and y1(n) = 1. Therefore,
if Z(n) = L, then every neighbourhood A of x does not exclude both of the possibilities
Z(n) =0 and Z(n) = 1.

Example 2.2 (Gray subbase). Let I = [0, 1] be the unit interval and let Xy = [0,1/2) and
X1 = (1/2,1] be subsets of I. The tent function is the function ¢ : I — I defined as

2z (x € cl Xp),
Hz) = { 2(1 —x) (x € cl Xy).
We define the dyadic subbase G as
Gno={z:t"(z) e Xu}

for n € N and a € 2. The map ¢ is an embedding of the unit interval in T¢ [7, [18]. If x is
a dyadic rational number other than 0 or 1, then ¢g(x) has the form e110“ for e € 2%, and
it is in 2“ otherwise. Figure [I] shows the Gray subbase, with the gray lines representing
G0 and the black lines representing G, 1.
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For a dyadic subbase S and p € T%, let

S(p) = ﬂ Sk,p(k)v (21)
kedom(p)

S(p) = ﬂ cl Sy pk) = ﬂ (Skp(e) Y Sk, L) (2.2)
kedom(p) kedom(p)

denote the corresponding subsets of X. Note that, for x € X and p e T%,
x € S(p) < z(k) = p(k) for k € dom(p) < p C 7, (2.3)
re S(p) < (k) C p(k) for k€ dom(p) = p 1 7. (2.4)

For e € T* = K(T¥), S(e) is an element of the base generated by the subbase S. We
denote by Bg the base {S(e) : e € T*}\{F}. On the other hand, L(T%) is the space in
which X is represented as the following proposition shows.

Proposition 2.3. Suppose that S is a dyadic subbase of a space X.
(1) S(z) = {x} for allz e X.
(2) X < L(T¥).

Proof.

(1) Let =,y be distinct elements in X. Since X is 77, there exists e € T* such that z € S(e)
and y ¢ S(e). From (23], we have e © ¥ and e & §. So we get & £ ¢, therefore,
y ¢ S(2).

(2) Suppose that dom(z) is finite. Then S(z) is an open set and thus {z} is a clopen set
which contradicts the fact that z is on the boundary of S, , for n ¢ dom(Z). L]

Definition 2.4. We say that a dyadic subbase S is proper if c1 S(e) = S(e) for every e € T*.

If S is a proper dyadic subbase, then S(e) is the closure of the base element S(e).
Therefore, by (2.4]), the sequence & codes not only base elements to which x belongs but
also base elements to whose closure z belongs.

Proposition 2.5. Suppose that S is a proper dyadic subbase of a space X.

(1) If x € X and p 2 &, then the family {S(e) : e € K,} is a filter base which converges to
reX.

(2) Ifr #ye X, thenxz e S, , and y € Sy 1-q for someneN and a € 2. That is, v and y
are separated by some subbase element.

(3) If r€ X and p 2 &, then S(p) = {z}.

(4) If pe 2%, then S(p) is either a one-point set {x} for some x € X or the empty set.

Proof.

(1) Since we have 7 1 e for every e € K, we obtain clS(e) = S(e) # . Therefore, we get
¢ {S(e) :ee Kp}. )

(2) Since X is Hausdorff, there is e € T* such that = € S(e) and y ¢ c1.S(e) = S(e). That
is, eC Z and e } g by (Z3) and (Z4). Therefore, we get & } 7.

(3) From (2), we have S() = {x}. We get S(p) < S(¥) = {z} from p 2 7, and S(p) > =
from p 1 7.

(4) Let pe 2¢. If p 3 7 for some z € X, then S(p) is a one-point set {z} by (3). If p £ 7
for all 2 € X, then p } Z, because p is maximal. Therefore, S(p) is empty. []
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[20] contains an example of a non-proper dyadic subbase for which Proposition (1) to
(4) do not hold.
Finally, we define a property of a dyadic subbase which is stronger than properness.

Definition 2.6. An independent subbase is a dyadic subbase such that S(e) is not empty
for every e € T*.

Proposition 2.7 ([12]). An independent subbase is proper.

The Gray subbase in Example is an independent subbase and we show many in-
dependent subbases as examples of proper dyadic subbases. When S is an independent
subbase, we have S(d) 2 S(e) if and only if d £ e. In particular, S(d) # S(e) if d # e.
Therefore, for an independent subbase S, the poset (Bg,2) ordered by reverse inclusion is
isomorphic to T*.

3. REPRESENTATIONS AND DOMAIN REPRESENTATIONS
DERIVED FROM DYADIC SUBBASES

We study some representations and domain representations of a space X derived from a
(proper) dyadic subbase of X.

We introduce two representations. The first one is immediately derived from a dyadic
subbase. If S is a dyadic subbase of X, then the inverse 4,051 of the embedding g is a
representation of X with the alphabet I' = {0,1, L} where L is considered as an ordinary
character of I'. Each point is represented uniquely with this representation and it is easy
to show that 4,051 : I'¥ — X is an admissible representation if and only if S, | = ¢J for
every n.

The second one is derived from a proper dyadic subbase. If S is a proper dyadic subbase
of X, from Proposition (3), we have a map pg from 1X < T¥ to X such that ps(p) is
the unique element in S(p). In particular, from Proposition (4), ps restricted to the
maximal elements 2“ is a partial surjective map from 2% to X, that is, it is a representation
of X which we denote by pl.

Example 3.1. For the Gray subbase G of I, pi; is a total function from 2 to I which is
called the Gray expansion of I [I§]. pi. is equivalent to the binary expansion through simple
conversion functions.

As this example suggests, we consider that p' is a generalization of the binary expansion
representation to a proper dyadic subbase S. We study its continuity in Proposition B4l It
is not admissible in general as the following proposition shows.

Proposition 3.2. Suppose that S is a proper dyadic subbase of a space X. ply is admissible
if and only if S, | = & for every n.

Proof. Only if part: suppose that p is admissible and z € S,, |. Theorem 12 of [4] says
that every admissible representation has a continuously equivalent open restriction. Suppose
that 6 := 2¥ — X is such an open restriction of py and = §(p). Let a = p(n). Since
J is an open map, §({qg € 2* : ¢(n) = a}) is an open neighbourhood of x, and since § is a
restriction of p, 6({g € 2* : q(n) = a}) < ps({g € 2¥ : ¢(n) = a}) = Sp,a U Sy, 1. Therefore,
Sn,a U Sp, 1 is a neighbourhood of x, which contradicts with z € .S, | .

If part: since the base 8¢ is composed of closed and open sets, X is regular and therefore
p's is continuous by Proposition B4l below. Since S, | is empty, x € S, or z € S, 1 holds
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for every x € X. Therefore, one can construct a reduction from the standard representation
of X with respect to an enumeration of the subbase S to pf. []

Next, we study domain representations. We start with a general construction of a
domain representation from a base of a space. Suppose that 5 is a base of a space X such
that ¢ ¢ B, X € B, and B is closed under finite non-empty intersection. For the domain
Dy obtained as the ideal completion of the poset (28, 2) with the reverse inclusion and for
the map «(x) = {U € B : x € U} from X to Dsg, ¢ is a homeomorphic embedding of X in
Dgs. Therefore, (Dg,t(X),t™1) is a homeomorphic domain representation which is known
to be admissible [3 [, [17].

We introduce two domain representations derived from (proper) dyadic subbases. The
first one is (T ,)N( , gpgl), which is defined for a space X with a dyadic subbase S. Since
pg is an embedding, it is a homeomorphic domain representation. In particular, if S is
an independent subbase, then the poset Bg is isomorphic to the poset T*. Therefore, the
domain Dy is isomorphic to T and thus the domain representations (T* ,)Z' ,cpgl) and
(Dgg,t(X),071) coincide. However, if S is a dyadic subbase which is not independent, then
the poset T* provides only a “notation” of the base Bg, and a set S(d) may be the same
as S(e) for d # e € T*. We show that (T%, X, cpgl) is an admissible domain representation
even for this case.

Proposition 3.3. If S is a dyadic subbase of a space X, then (T%, )Z', 9051) is an admissible
domain representation.

Proof. Suppose that E* is a subset of a domain F and p is a continuous map from E® to
X. Define a function ¢ : K(E) — T as ¢(e)(n) = a if and only if u(te n Ef) < S, 4. Since
¢ is monotonic, it has a continuous extension to F, which is a continuous function from E
to T¥. Tt is also denoted by ¢. We show that the function ¢ satisfies o' (¢(p)) = u(p)
for p € Ef. We have ¢(p)(n) = Ueek,®(e)(n). Therefore, for a € 2, ¢(p)(n) = a if and
only if (3e € K,)(¢(e)(n) = a), if and only if (3e € K,)(u(te n Ef) < S,,,), if and only if
14(p) € Sp,a- Therefore, ¢(p) = ps(u(p)). [

The other domain representation is (T%, T)z' ,ps), which is defined for a regular space X
with a proper dyadic subbase S. Suppose that S is a proper dyadic subbase of a space X.
From Proposition 5], pg is a map from 1X to X. We have ¢g(ps(p)) = p and ps(ps(z)) =
x. Therefore, (T, 1 X ,ps) is an upwards-closed retract domain representation if and only
if pg is a quotient map. Blanck showed in Theorem 5.10 of [3] that if a topological space
has an upwards-closed retract Scott domain representation, then it is a regular Hausdorff
space. Therefore, (T, T)N( ,ps) is a domain representation only if X is regular. We show
this fact as a corollary to the following equivalence.

Proposition 3.4. Let S be a proper dyadic subbase of a space X. The followings are
equivalent.
(1) X is regular.

(2) ps: 1X — X is continuous.
(3) plg <= 2¥ - X is continuous.

Proof.
(1 =2): Let pe 1X and = = pg(p). Since {S(&|,) : n € N} is a neighbourhood base of
in X and {1p|;, n 1X : m € N} is a neighbourhood base of p in 1X, it suffices to show
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that for every n, there is m such that ps(1p|m N 1X) = S(&,). Since X is regular,
there is m > n such that z € S(&m) S 1 S(Z|m) S S(&|n). Then, for all ¢ € 1X such
that ¢ 3 plm, we have vg(ps(q)) T Z|m because ¢s(ps(q)) E ¢ 2 plm 2 Z|m. Thus,
ps(q) € S(Z|;). Therefore, ps(q) € S(|m) = Cls(x‘m) < 5([n)-

(2 = 3): Immediate.

(3= 1): Suppose that x € X and n € N. For each p € 12 n 2“, since pY is continuous on
p, there exists e, € K, such that pis(e, n 2¢) € S(&|,). It means that S(e,) S S(Z|,).
Here, we can assume that 5:\‘6“ C e, by replacing e, with e, L 5:\‘614. Note that e, n 2¢
for p € 12 n 2¥ is an open cover of 12 n 2¥ and 1% n 2% is compact because it is
homeomorphic to 27 for some j < w. Therefore, for some finite subset {po,...,pn_1} of
12 N 2%, we have U;<pTep, 2 12 N 2%, Let m be the maximal length of e, for i < h and
let | = m — |dom(z|,,)|. Let dp,...,dy_; be sequences of length m obtained by filling
the first [ bottoms of Z|,, with 0 and 1. We have (1dg U ... U 1dy_;) N 2% = 1Z|,, N 2%,
Therefore, U; _o1_15(d;) = S(Z|,,). On the other hand, for each i < 2!, there is j < h
such that d; 2 e,,. Therefore, S(d;) = S(ep,) = S(&],). Thus, we have S(Z|m) < S(Z|n).
Since S(&|m) = ¢l S(Z];m), it means that X is a regular space. O

Corollary 3.5. Suppose that S is a proper dyadic subbase of a space X. The triple
(T, 11X, ps) is a domain representation if and only if X is reqular. In this case, it is
an admissible retract domain representation.

Proof. Suppose that X is regular. From ProposfmonBEL ps is a retraction with right inverse
pgs. Therefore, pg is a quotient map. Since X c 1 X and gps is a restriction of pg to X
the identity map on T% is a reduction map from the admissible domain representation
(TW7X7(10§1) to (TW,TX,PS)- L]

4. DOMAINS Dg AND Dg

In the previous section, we studied domain representations in the domain T%. In the
following sections, we study domain representations in subdomains Dg and ﬁg of T%. Before
that, we consider the domain Eg which is defined as the closure of X in T%. It is easy
to show that the triple (Eg, X ,gpgl) is a dense domain representation of X and, if in
addition S is proper and X is regular, then (Eg, ! X ,ps) is a dense admissible retract
domain representation of X. In these domain representations, we have S(e) # ¢J for every
e € K(Eg) and the family {S(e) : e € K,} forms a filter base for every p € L(Eg). In this
sense, one can say that Fg does not contain superfluous elements. However, Eg is identical
to T« if S is an independent subbase and the domain Eg does not have information about
X in this case. We consider further restrictions of T and define the domains Dg and IA)S
as follows.

Definition 4.1. Let S be a dyadic subbase of a space X.
(1) We define the poset Kg < T* as

Kg = {plm:pe X,meN}
and define Dg = Idl(Kg).
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Figure 2: The domain Dg.

(2) We define the poset Kg = T* as
Kg = {plm :p€ T)z',meN}

and define Dg = Idl(f(g).

For the Gray-subbase G of I, we have L1 € K¢ because ¢ (1/2) = L10%, but L0 ¢ K¢
and L 11¢ Kg. Figure [2 shows the structure of Dg = DG

We have KS c KS c T* and Dg < DS c T¢ for a dyadic subbase S. We also have
X € Dg and 1X < Dg.
Proposition 4.2.
(1) If S is a dyadic subbase of a space X, then X is dense in Dg.
(2) If S is a proper dyadic subbase of a space X, then X is dense in Dg.
Proof.
(1) X is dense in Dg because S(e) is not empty for every e € Kg.

(2) By Proposition 25(1), S(e) is not empty for every e € Kg. O
The domains Dg and ﬁg are not equal in general as the following example shows.
Example 4.3. Let W be the space obtained by glueing four copies of I at one of the
endpoints. That is, W = 2 x 2 x I/~ for ~ the equivalence relation identifying (a,b,0) for

a,b € 2. Let z be the identified point. That is, z = [(a,b,0)] for a,b € 2. Let R be the
dyadic subbase defined as

Roc={c} x2x(0,1]/ ~,
Ric=2x{c} x(0,1]/ ~,
RTL+2,C =2 x2x Gn’c/ ~,

forne N and ce 2. We have Z = 1 10¥ € L(Dg) and ab0* € L(Dg) for a,b € 2. However,
al0¥ ¢ L(Dpg) for a € 2 and Lb0¥ ¢ L(Dpg) for b € 2. On the other hand, we have

al0% € L(Dg) for a€ 2 and Lb0¥ € L(Dg) for b e 2.
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Proposition 4.4. If S is a dyadic subbase of a space X, then IA(S is a cusl and therefore
Dg is a bounded complete domain.

Proof. Let d = p|m,e = q|n € Kg for p,ge 1X and m < n e N. Suppose that d 1 e in Kg
and let f = d u e be their least upper bound in T*. Then, since d and ¢/|,, are compatible
and |d| < n,d 1 qin T and r = d L ¢ satisfies r|,, = f. Since r I ¢ 2 & for some = € X,
we have f € Kg. L]

Proposition 4.5.

e If S is a dyadic subbase of a space X, then the domain representation (ﬁs,)?,(pgl) i
admissible.

° If S is a proper dyadic subbase of a reqular space X, then the domain representation
(Dsg,1X, ps) is admissible.

Proof.

(1) We show that there is a reduction from the admissible domain representation (T, X, cpgl)
to (Dg, X ,pg"). Since Dy is bounded complete, we define ¢ : T — Dg as ¢(p) = L{e €
Kg:eCp}. It preserves X because {S(e) : e € Kg,e = &} contains S(,, n) for every n.

(2) The map ¢ preserves 1 X and it is a reduction also from (T%,1X, pg) to (Ds, 1X,ps). [

As Example [4.6] shows, Dg is not bounded complete in general. It is left open whether
the results corresponding to Proposition hold for Dg.

Example 4.6. Let Y be the space obtained by glueing 1/4 and 3/4 in I. That is, Y is
the quotient space of I with the equivalence relation generated by 1/4 ~ 3/4. Let T be
the independent subbase of Y such that Tpo = (Go,o\{1/4})/ ~, To1 = (Go1\{3/4})/ ~,
and T),, = Gpo/ ~ for n > 0. We have ¢r(z) = L110% for z = [1/4] = [3/4] and
er([z]) = va(x) for « ¢ {1/4,3/4}. Therefore, Kg contains 111 and L1(= 7 ([1/2])]2),
which are bounded above by 011 = ¢7([1/3])|3 and 111 = @7 ([2/3])|3. However, 111, which
is the least upper bound of 111 and L1 in T, does not belong to K. Therefore, Kt is
not a cusl and Dp is not a bounded complete domain. Note that the poset IA(T contains
111 because L110¥ = ¢r(2).

In Example [0l 17 (2) in Dy is the set { L Lp, 00p,01p, 10p, 11p, 1 Lp,0Lp} for p = 10*.
Therefore, it is different from fy(2) in T which contains also L0p and L1p. As Example
and show, L(Dg) < L(f)s) in general. However, for a proper dyadic subbase S, Dg
and ﬁg coincide on the top elements as Proposition shows.

Lemma 4.7. Let S be a dyadic subbase of a space X.
(1) For pe Dg and n € N, we have p|, € Kg.
(2) For pe Dg and n € N, we have p|, € Kg.

Proof.

(1) Suppose that p is the least upper bound of an ideal {Z;|,,, : @ € I}. Then, p|, is the
least upper bound of the ideal {Z;|m,|n : 7 € I} = {Tilminfm,n) : @ € 1}, whose length is
no more than n.

(2) It is proved similarly to (1). O]
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Proposition 4.8. For a proper dyadic subbase S of a space X, Dg n 2% = ﬁs N 2,

Proof. Let pe Dgn2% and n € N. By Lemmal7], we have pln € Kg. Therefore, S(pln) # &
by Proposition [£2(2). For every y € S(pl,), we have pl|,, = |, since p € 2¥. Thus, p|, € Kg
for every n € N and we have p € Dg.

[

5. DOMAINS WITH MINIMAL-LIMIT SETS

We study structures of Dg and ﬁg and present a condition on X which ensures the existence
of minimal elements of L(Dg) and L(Dg).

Definition 5.1. Let P be a poset.

(1) @ € P is a minimal element if y € z implies y = = for all y € P. We write min(P) for
the set of all minimal elements of P.

(2) We say that P has enough minimal elements if, for all y € P, there exists x € min(P)
such that z E y.

(3) For a domain D, if L(D) has enough minimal elements, we call min(L(D)) the minimal-
limit set of D.

The poset L(T*) does not have enough minimal elements.

Definition 5.2.

(1) Let (P,=) be a pointed poset with the least element L p. The level of x € P, if it exists,
is the maximal length n of a chain 1lp =yg = y1 & ... = ¥, = 2, and it is denoted by
level(x).

(2) A poset P is stratified if it is pointed and every element of P has a level.

(3) We say that y is an immediate successor of x if x = y and there is no element z such
that x © z & y. We write succ(x) for the set of immediate successors of z.

(4) We say that a stratified poset P is finite-branching if succ(z) is finite for every x € P.

In [19], the following proposition is proved with a slightly stronger definition of finite-
branchingness that contains the condition level(y) = level(z) + 1 for y € succ(x). However,
one can check that this condition is not used in the proof and it holds with our definition
of finite-branchingness.

Proposition 5.3 (Proposition 4.13 of [19]). If D is a domain such that K(D) is finite-
branching, then L(D) has enough minimal elements and min(L(D)) is compact. ]
Definition 5.4.

(1) We say that a space X is adhesive if X has at least two points and closures of any two
non-empty open sets have non-empty intersection.

(2) We say that X is nonadhesive if it is not adhesive.

(3) We say that X is strongly nonadhesive if every open subspace is nonadhesive.

Nonadhesiveness (and even strongly nonadhesiveness) is a weak condition that many of
the Hausdorff spaces satisfy. A space is called Urysohn (or completely Hausdorff or 7},1 in
2
some literature) if any two distinct points can be separated by closed neighbourhoods. A
regular space is always Urysohn.

Proposition 5.5. Fvery Urysohn space is strongly nonadhesive. U]
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Note that there is an adhesive Hausdorff space as the following example shows.

Example 5.6. Let P be the set of dyadic irrational numbers in I = [0,1] and N* be the
set of positive integers. We define our space A = P U NT. A neighbourhood base of z € P
is U n P for U a Euclidean neighbourhood of z € I. A neighbourhood base of n € N* is the
union of {n} and U n P for U a Euclidean neighbourhood of {k/2" : k is an odd number, 0 <
kE < 2™}. One can easily verify that A is Hausdorff. The closure of U n P is (UnP)u{ne
Nt : k/2" € U for some odd number k} and it contains {n € N* : n. > m} for some m.
Therefore A is adhesive. The space A has the following independent subbase S4.

S;?,a = (GpanP)u{neN":k/2" € G,, for all odd number k < 2" }.
We have pga(z) = pg(x) for x € P, and ¢ga(n) = L™10% for n e NT.

As Propositions 5.7 and B.8 show, adhesiveness of X and finite-branchingness of Dg are
closely related. Recall again that a (non)adhesive space means a (non)adhesive Hausdorff
space.

Proposition 5.7. Suppose that X is an adhesive space and S is a proper dyadic subbase
of X such that Sy # & for every n € N and a € 2. Then, succ(L¥) in Kg is infinite.
Therefore, Kg is not finite-branching.

Proof. All the elements of succ(L*) have the form 1*a for k € N and a € 2. Suppose that
succ(L%) is finite and let 1"~ 'a be an element with the maximal length. For b = 1 —a, take
xeSypandpetZn2¥ Ford=pl|,, de Kg holds and therefore S(d) # & by Proposition

Let e € 2" be the bitwise complement of d. Since 1" la € Kg, e € IA(S and therefore
S(e) # & by Proposition Therefore, closures of S(d) and S(e) intersect. Since S is
proper, clS(d) = S(d) and clS(e) = S(e). Therefore, there exists y € S(d) n S(e). Since
Jln = L¥, the smallest index of digits in g is greater than n, and we have contradiction. []

For the independent subbase S4 of A in Example (.0 succ(L*) = {L*1: ke N}.
Proposition 5.8. Suppose that X is a nonadhesive space and S is a proper dyadic subbase
of X. Then, succ(L¥) in Kg is finite.

Proof. Since S is nonadhesive, for some p,q € T*, S(p) # &, S(q) # &, and clS(p) N
clS(q) = & hold. Since S is proper, S(p) n S(q) = &. Let n = max{|p|,|q|}. If Z|, = L
for some x € X, then € S(p) and = € S(¢) and we have contradiction. Thus, in Kg,
succ(L¥) < {1*¥al® : k <n,ae 2}. O]

Lemma 5.9. Suppose that S is a proper dyadic subbase of a space X and e € T*. Let v be
an enumeration of N\ dom(e). Then,

Tn,a = Sy(n)’a M S(C) (n eN,ae€ 2)
is a proper dyadic subbase of S(e). ]

Proof. Let A be the regular open set S(e). First, note that if P is a regular open subset of
X, then A n P is a regular open subset of A and ext4(A n P) = A nextx P. Therefore, T



14 HIDEKI TSUIKI AND YASUYUKI TSUKAMOTO

is a dyadic subbase. Note also that cl4(A N P) = Anclx P. Therefore, for d € T*, we have

da [ Teaw =claAn () Suwam)
kedom(d) kedom(d)

=An ClX ﬂ Sy(k),d(k)
kedom(d)

=An (] dx Suw.am
kedom(d)

(| (Andx Sop.am)
kedom(d)

ﬂ cla(A Sy am))
kedom(d)

ﬂ CIA Tk,d(k) .
kedom(d)

Therefore, T' is proper. L]

Proposition 5.10. Suppose that X is a strongly nonadhesive space and S is a proper dyadic
subbase of X.

(1) The poset Kg is finite-branching.

(2) The poset IA(S is finite-branching.

Proof.

(1) Let e € T*. By applying Proposition to the proper dyadic subbase T' on S(e) in
Lemma[5.9] succ(Ll) is finite in the poset K. Since K7 is identical to e in Kg, succ(e)
is finite in Kg. R

(2) In this proof, succ(d) for d € Kg means succ(d) in Kg. Let e € Kg and let k be the
maximal length of elements in Uge|enkg suce(d), which exists by (1). Suppose that,

for some n = k and a € 2, e[n := a] € Ks. Then, for some z € X and p 3 Z,
Plnt+1 = e[n := a]. Therefore, Z|,, E e. For dy = Z|,, let m > n be the least integer such
that Z|,, 2 do. The set succ(dp) contains |, and we have contradiction. O

Theorem 5.11. Suppose that X is a strongly nonadhesive space and S is a proper dyadic
subbase of X.

(1) L(Dg) has enough minimal elements and min(L(Dg)) is compact.

~

(2) L(Dg) has enough minimal elements and min(L(Dg)) is compact.

Proof. From Proposition and [5.10) O

Note that, as Proposition shows, Theorem [5.17] is applicable to all the Urysohn
spaces, in particular, to regular spaces. Note also that the premise of Theorem [E.1T]is not
a necessary condition for L(Dg) to have enough minimal elements. For example, for the
space A and the dyadic subbase S# in Example [5.6] the domain Dga has enough minimal
elements and pga(A) € min(L(Dga)).

It is shown in [21]] that there is a Hausdorff space X and an independent subbase S of X
such that Dg is equal to T and therefore L(Dg) does not have enough minimal elements.
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6. DOMAIN REPRESENTATIONS IN MINIMAL-LIMIT SETS

Now, we show that X is embedded in min(L(Dg)) and min(L(Dg)) for the case S is a
proper dyadic subbase of a regular space X. We start with new notations and a small
lemma.

Definition 6.1. For a dyadic subbase S of a space X, p € T, and n € N, we define
Si(p) € X and SZ(p) € X as follows.

Sex(p) = ﬂ Skptky = S@ln) 0 ﬂ Sk, L

k<n k<mn,

k ¢ dom(p)
ggx(p) = ﬂ cl Sk,p(k) = §<p|n) N ﬂ Sk,J_-
k<n k<mn,

k ¢ dom(p)

Lemma 6.2. Let e € T* and n = |e|.
(1) SZ(e) # & if and only if e € Kg.
(2) S2(e) # & if and only if e € K.
Proof.

(1) z € Si(e) if and only if e = Z|,.
(2) x e Sl (e)if and only if Z|,, E e if and only if there exists ¢ 2 & such that e = ¢|,. [

Theozem 6.3. Suppose that S is a proper dyadic subbase of a reqular space X and D €
{Dg,Dg}. If p € L(D) and p is compatible with & in T%, then p 2 Z. In particular,
X < min(L(D)).

Proof. Suppose that p € L(T%) satisfies p 1 Z and p 2 Z. There is an index n € N such that
Z(n) # L and p(n) = L. We assume that #(n) = 0. That is, x € S, 0. Since X is regular

and S is proper, x € S(e) < clS(e) = S(e) < 5,0 for some e € K(Dg). We can assume that
e = |, for some m > n such that p(m — 1) # L.

We have
5(6) = ﬂ (Sk,e(k) U SkJ_),
kedom(e)
See(p) = ﬂ (Skp(k) Y Sk,L) N ﬂ Sk, L
k<m, k<m,
k € dom(p) k ¢ dom(p)

Therefore, since p 1 e, we have S, 2 S(e) 2 S™(p) 2 S™(p). On the other hand, since
p(n) = L, we have S, o n Sik(p) = &. Therefore, we can conclude that both Sii(p) =
S (plm) and ST (p) = S7(p|m) are empty. Thus, by Lemma [62] we have p|,, ¢ Kg and

A~

plm ¢ Kg. Then, from Lemma [£7] we have p ¢ Dg and p ¢ Dg. ]

Theorem 6.4. Suppose that SN’ is a proper dyadic subbase of a compact Hausdorff space X
and D € {Dg,Dg}. We have X = min(L(D)) and X is a retract of L(D).
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Proof. Since a compact Hausdorff space is regular, we have X < min(L(D)) by Theorem 6.3l
Assume that there exists p € min(L(D))\X. For every € X, & and p are not compatible
in T* by Theorem Therefore, Z(k) and p(k) are different digits for some k. Thus, we
have an open covering X = Ukedom(p) Ska—p(k)- Since S(pln) # & for all m € N, there is
no finite subcovering. Therefore, X is not compact. L]

We state properties of domain representations as a corollary. Here, TX in (Dg, 1 X pg)

is the upwards-closure of X in Dg which may be different from the upwards-closure of X
in T¢.

CorolAlary 6.5. Suppose that S is a proper dyadic subbase of a reqular space X and D €

{Ds, Ds}.

(1) In the dense domain representation (D, X, ¢ '), we have X < min(L(D)). In particu-
lar, if X is compact, then X = min(L(D)).

(2) In the retract domain representation (D,1X, pg), 1X is downwards-closed in L(D). In
particular, if X is compact, then T)Z' = L(D).

Proof. By Theorem and O

As Corollary shows, if X is compact, then (Dg, L(Ds), ps) and (Ds, L(Ds), ps)
are representations of X as minimal-limit sets of domains studied in [19]. In both of the
domains, all the strictly increasing sequences in the set of compact elements denote points
of X via pg.

As we have seen, if S is a proper dyadic subbase of a regular space X, then min(L(Dg))
is a compact space in which X is embedded densely. Therefore, min(L(Dg)) is a kind
of compactification of X. However, it is not a Hausdorff compactification, in general, as
Example shows.

Example 6.6. Let Z =1 x I be a unit square. An independent subbase H of Z is defined
as
Hopoq=Grox1, Hoypy14a=1xGp,, forkeN, ael.

We have ¢ ((1/2,1/2)) = L 1110¥. We set A = {00p,01p, 10p, 11p} and B = {0Lp, 1Lp, LOp,
11p} where p = 110¥ € T¥. Note that t1L1lp={L1lp}u AU B.

Let Z% =1 x I\{(1/2,1/2)} be a subspace of Z. The independent subbase of Z° which
is obtained by restricting each element of H to Z° is denoted by H°. We have L(Dyo) =
L(Dg)\{LLlp} and we get

min(L(Dgyo)) = (min(L(Dg))\{LLp}) U B.
Since the set B contains a pair of compatible bottomed sequences, min(L(Do)) is not

Hausdorff.

Example 6.7. Let Z! = Z\{(1/2,1/3)} be a subspace of Z and H! be a dyadic subbase of
Z' defined similarly to Example We have

Z" = min(L(Dp))\{a)
where ¢ = 1011(01)*“. However, since we have

1 1

—_— <—
v 3.9n

3 = @Hl((l/zy))bn = Q|2n
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for all n € N, we get L(Dpy1) = L(Dpg). Therefore min(L(Dy1)) is a Hausdorff compactifi-
cation of Z1.

Example 6.8. We set Z2 = Z'U{xg, 21} with &, = ¢[0 := a] for ¢ in Example[6.7land a € 2,
and let H? be the corresponding dyadic subbase. The space Z2 is a non-regular Hausdorff
space and we have min(L(Dp2)) = min(L(Dy)). Since we have Z, ¢ min(L(Dpz2)), we get
X & min(L(Dy2)).

7. HEIGHT OF L(Dg) AND THE DIMENSION OF X

We finally study aelations between the degree of a proper dyadic subbase S and structures
of L(Dg) and L(Dg).

Definition 7.1. For a dyadic subbase S of a space X and z € X, we define degg(x) = |{n €
N:z e S, 1 }| and deg S = sup{degg(z) : z € X}.

If deg S = m, then pg(x) contains at most m copies of L for x € X. It is proved in [I1]
that every separable metrizable space X with dim X = m has a proper dyadic subbase S
with deg S = m. Here, dim X is the covering dimension of X. It is known that dim X is
equal to the small inductive dimension ind X of X for a separable metrizable space X. See,
for example, [5] and [6] for dimension theory.

For a domain D, we consider the small inductive dimension ind L(D) of the topological
space L(D) with the subspace topology of the Scott topology of D. In Theorem 6.11 of
[19], it is proved that if D is a domain with property M, then ind L(D) = height L(D) holds.
Here, height P is the maximal length of a chain ag & a1 & ... £ a, in a poset P. Property
M is defined as follows.

Definition 7.2. (1) We say that a poset P is mub-complete if for every finite subset A < P,
the set of upper bounds of A has enough minimal elements. That is, if p is an upper bound
of A, then there exists a minimal upper bound ¢ of A such that ¢ = p.

(2) We say that a domain D has property M if K(D) is mub-complete and each finite subset
A <€ K(D) has a finite set of minimal upper bounds.

Property M is equivalent to Lawson-compactness for w-algebraic dcpo by the 2/3 SFP
Theorem [I3]. Domains with property M are studied in [10].

Proposition 7.3. Suppose that S is a proper dyadic subbase of a reqular space X.

(1) The domains Dg and Dg have property M.
(2) ind L(Dg) = height L(Dg) = ind L(Dg) = height L(Dg) > dim X.
(3) If X is compact, then ind L(Dg) = deg S.

Proof.

(1) Since bounded completeness implies property M, ﬁg has property M. For Dg, suppose
that a finite subset A € Kg has an upper bound. Let d be the least upper bound of
A in T*. Then, e € Kg is an upper bound of A in Kg if and only if e 2 d. If d € Kg,
then it is the only minimal upper bound of A. Suppose that d ¢ Kg, e 2 d, and e € Kg.
Then, for n = |d|, e|, 2 d and e|, € Kg by Lemma [L7(1). Therefore, if e is a minimal
upper bound of A, then e = e, and the length of e is no more than n. Therefore, the
set of minimal upper bounds of A is finite.
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(2) The equation ind L(D) = height L(D) for D € {Dg, Dg} is derived from (1) and The-
orem 6.11 of [19]. We have ind L(Dg) > ind X because X is embedded in L(Dg) and
ind X = dim X for a separable metrizable space X.

(3) Since 17 in Dg and 17 in T are the same set for € X, the maximum number of
bottoms in Z for x € X is equal to the height of L(ﬁs), which is equal to the small
inductive dimension of L(Dg) by (2). O

Note that ind L(Dg) may not be equal to degS even for an independent subbase of a
compact space X as Example shows. In this example, the height of L(Dpg) is one,

whereas that of L(ﬁR) is two.
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