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Abstract. Higher-order recursion schemes are recursive equations defining new opera-
tions from given ones called “terminals”. Every such recursion scheme is proved to have a
least interpreted semantics in every Scott’s model of λ-calculus in which the terminals are
interpreted as continuous operations. For the uninterpreted semantics based on infinite
λ-terms we follow the idea of Fiore, Plotkin and Turi and work in the category of sets
in context, which are presheaves on the category of finite sets. Fiore et al showed how
to capture the type of variable binding in λ-calculus by an endofunctor Hλ and they ex-
plained simultaneous substitution of λ-terms by proving that the presheaf of λ-terms is an
initial Hλ-monoid. Here we work with the presheaf of rational infinite λ-terms and prove
that this is an initial iterative Hλ-monoid. We conclude that every guarded higher-order
recursion scheme has a unique uninterpreted solution in this monoid.

1. Introduction

The present paper is a contribution to the study of the semantics of recursive definitions
using category-theoretic tools and methods. Our goal is to present a category-theoretic
semantics of higher-order recursion schemes in the sense of W. Damm [8]. To reach this
goal we apply the theory of rational monads on a category K , developed in our previous
work [2] in order to formalize iteration in algebra, to the category

K = SetF (F = finite sets and functions)

of sets in context. We use the approach to λ-calculus based on H-monoids in the category of
sets in context due to M. Fiore, G. Plotkin and D. Turi [10]. Our main result is a description
of the initial iterative H-monoid as the monoid of rational λ-terms, and the fact that in
this monoid every higher-order recursion scheme has a unique uninterpreted solution.

We now explain the motivation of our paper in more detail. In the higher-order seman-
tics we assume a given collection Σ of existing programs of given types (that is, a many-
sorted signature of “terminals”). One recursively defines new typed programs p1, . . . , pn
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(forming a many-sorted signature of “nonterminals”) using symbols from Σ and {p1, . . . , pn}.
If the recursion only concerns application, we can formalize this as a collection of equations

pi = fi (i = 1, . . . , n) (1.1)

whose right-hand sides fi are terms in the signature of all terminals and all non-terminals.
Such collections are called (first-order) recursion schemes and were studied in 1970’s by
various authors, e.g. B. Courcelle, M. Nivat and I. Guessarian (see the monograph [12] and
references there) or S. J. Garland and D. C. Luckham [11]. Recently, a categorical approach
to semantics of first-order recursion schemes was presented by S. Milius and L. Moss [18].
In the present paper we take a first step in an analogous approach to the semantics of
higher-order recursion schemes in which λ-abstraction is also used as one of the operations.
That is, a higher-order recursion scheme, as introduced by W. Damm [8] (see also the
recent contributions [7] and [19]) is a collection of equations pi = fi where fi are terms
using application and λ-abstraction on symbols from Σ and {p1, . . . , pn}. As in [18], we
first study the uninterpreted semantics, where the given system is regarded as a purely
syntactic construct. At this stage the operation symbols in Σ as well as λ-abstraction and
application have no interpretation on actual data. So the semantics is provided by formal
(infinite) terms. These terms can be represented by rational trees, i. e., infinite trees having
finitely many subtrees. Thus the uninterpreted solution assigns to each of the recursive

variables pi in (1.1) a rational tree p†i such that the formal equations become identities if we

substitute p†i for pi (i = 1, . . . , n). We assume α-conversion (renaming of bound variables)
but no other rules in the uninterpreted semantics. We next turn to an interpreted semantics.
Here a recursion scheme is given together with an interpretation of all symbols from Σ as
well as λ-abstraction and application. Following D. Scott, we interpret the λ-calculus on
a CPO, say D. The symbols of Σ are interpreted as continuous operations on D, and
formal λ-abstraction and application are the actual λ-abstraction and application in the
model D. An interpreted solution in D then assigns to each pi in the context Γ of all free
variables in (1.1) an element of CPO(DΓ,D) (continuously giving to each assignment of
free variables in DΓ an element of D) such that the formal equations in the recursion scheme
become identities in D when the right-hand sides are interpreted in D.

Example 1.1. The fixed-point operator Y is specified by

Y = λf.f(Y f)

and the uninterpreted semantics is the rational tree

Y † =

λf

@

f @

λf

@

f
. . .

f

(1.2)
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(The symbol @ makes application explicit.) The interpreted solution in D is the least fixed
point operator (considered as an element of D).

The above example is untyped, and indeed we are only treating the untyped case in the
present paper since its uninterpreted semantics is technically simpler than the typed case;
however, the basic ideas of uninterpreted semantics are similar. In contrast, the interpreted
semantics (based on a specified model of λ-calculus with “terminal” symbols interpreted as
operations) is more subtle in the untyped case.

Our main result is that every guarded higher-order recursion scheme has a unique
uninterpreted solution, and a least interpreted one. This demonstrates that the methods
for iteration in locally finitely presentable categories developed in [2] can serve not only
for first-order iteration, when applied to endofunctors of Set, but also for higher-order
iteration: it is possible to apply these methods to other categories, here the category of sets
in context.

Related Work. This is an extended and revised version of the conference paper [4]. In
addition to the material in that extended abstract we include here the theory of iterative
monoids in a monoidal category, see Section 4 below, and we provide detailed proofs.

2. Presheaves as Algebras

Notation 2.1.

(1) Throughout the paper a given countably infinite set Var of variables is assumed. Finite
subsets Γ ⊆ Var are called contexts and form a full subcategory F of Set. We also
assume that a (possibly empty) finitary signature Σ is given.

When speaking about formulas in context Γ we mean those that have all free variables
in Γ. For example, λx.yx is a formula in context Γ = {y, y′}.

(2) The category SetF of “covariant presheaves” on F is well known to be equivalent to
the category of finitary endofunctors of Set. Indeed, every endofunctor X yields the
presheaf X ↾ F , and conversely, every presheaf X in SetF has a left Kan extension to
a finitary endofunctor of Set: for every set M we have

X(M) =
⋃

XiΓ
[
X(Γ)

]

where the union ranges over embeddings iΓ : Γ →֒ M of contexts Γ into M , and
XiΓ[X(Γ)] denotes the image of XiΓ.

(3) From now on we speak about presheaves when objects of SetF are meant. The word
endofunctor is reserved for endofunctors on SetF throughout our paper.

Example 2.2.

(i) The presheaf of variables, V , is our name for the embedding F →֒ Set: V (Γ) = Γ. As
we will see in Section 3, V is the unit of the monoidal operation of substitution.

(ii) Free presheaf on one generator of context Γ is our name for the representable presheaf

F (Γ,−).

Indeed, the Yoneda lemma states that this presheaf is freely generated by the ele-
ment idΓ of context Γ: for every presheaf X and every x ∈ X(Γ) there exists a unique
morphism f : F (Γ,−) → X with fΓ(idΓ) = x. Observe that F (Γ,−) is naturally
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isomorphic to the functor X 7→ Xn, where n = card Γ is the power of Γ. Consequently
a free presheaf on k generators in contexts Γ1, . . . ,Γk has the form

Γ 7→ Γn1 + · · ·+ Γnk , where ni = card Γi.

This is the “polynomial presheaf” XΣ of a signature Σ of k operation symbols of the
given arities ni.

(iii) The presheaf Fλ of (finite) λ-terms is defined via a quotient since we want to treat
λ-terms always modulo α-conversion. We first consider the set of all λ-trees τ given
by the grammar

τ ::= x | τ @ τ | λy.τ (x, y ∈ Var). (2.1)

In the graphic form:

x or

@

τ τ ′

or

λy

τ

(2.2)

The notions of a free and bound variable of a λ-tree τ are defined as usual.
As explained in [10], the following approach is equivalent to defining λ-terms up to

α-equivalence by de Bruijn levels: We first denote by F ′
λ(Γ) the set of all finite λ-trees

with free variables in the context Γ = {x1, . . . , xn}. We then define the presheaf Fλ in
context Γ by

Fλ(Γ) = F ′
λ(Γ)/∼α

where ∼α represents the α-conversion: this is the least congruence with λy.τ ∼α

λz.τ
[
z
/
y
]
, where z is not a free variable of τ . And we define Fλ on morphisms

γ : Γ→ Γ′ by choosing a term t ∈ Fλ(Γ), relabelling all bound variables so that they
do not lie in Γ′, and denoting by Fλγ(t) the term obtained by relabelling every free
variable x ∈ Γ to γ(x) ∈ Γ′.

We call the congruence classes of finite λ-trees modulo α-conversion finite λ-terms.
(Finite λ-trees do not form a presheaf, due to possible clashes of bound and free
variables. For example consider the λ-tree

λx

@

x y
��
�� //

//

in F ′
λ{ y } and the function j : { y } → Γ with x ∈ Γ and j(y) = x. Then to define

the action of F ′
λ on j we must rename the bound variable x to some z 6∈ Γ. But in

fact, any other renaming to z′ 6∈ Γ is fine, too. So trying to define the action of F ′
λ on

functions naturally forces us to consider equivalence classes modulo α-conversion.)
(iv) The presheaf Fλ,Σ of finite λ-Σ-terms is defined analogously: in (2.1) we just add

the term σ(τ1, . . . , τn) for every n-ary operation symbol σ ∈ Σ, and in (2.2) the
corresponding tree.
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(v) The presheaf Tλ of all (finite and infinite) λ-terms is defined analogously to Fλ. We
first denote by T ′

λ(Γ) the set of all trees (2.2) dropping the assumption of finiteness.
Then we use α-conversion: for infinite trees t and t′ we write

t ∼α t′

if their (finite) cuttings at level k (with label ⊥ for all leaves at level k) are α-equivalent
in the above sense for all k ∈ N. (We can formalize this by using Σ⊥ = Σ∪ {⊥} with
⊥ a constant symbol outside of Σ ∪ Var). The presheaf Tλ is defined on objects Γ by
Tλ(Γ) = T ′

λ(Γ)/∼α and on morphisms γ : Γ→ Γ′ by relabellings of variables as in (iii).
Observe that since Var \Γ is infinite, the relabelling of bound variables needed here
causes no problem.

(vi) The presheaf Rλ of rational λ-terms is also defined analogously. Recall that a tree
is called rational if it has up to isomorphism only finitely many subtrees. We denote
by R′

λ(Γ) the set of all rational trees in T ′
λ(Γ) and define a presheaf Rλ by Rλ(Γ) =

R′
λ(Γ)/∼α on objects, and by relabellings of variables (as in (iii)) on morphisms.

Observe that, by definition, every rational λ-term t is represented by a rational λ-
tree. However, t can also be represented by non-rational λ-trees—for example, if it
contains infinitely many λ’s, the α-conversion can introduce an infinite number of
bound variables.

(vii) The presheaves Tλ,Σ (of all λ-Σ-terms) and Rλ,Σ (of rational λ-Σ-terms) are obvious
modifications of (iv) and (v): one adds to (2.1) and (2.2) the case σ(τ1, . . . , τn) for all
n-ary symbols σ ∈ Σ and all (rational) λ-Σ-trees τ1, . . . , τn.

Notation 2.3. We denote by δ : SetF → SetF the endofunctor defined by

δX(Γ) = X(Γ + 1).

Observe that δ preserves limits and colimits.
Note that an algebra for δ is a presheaf Y together with an operation Y (Γ + 1) →

Y (Γ) for all contexts Γ—this is precisely the form of λ-abstraction, where to a formula
f in Y (Γ + {y}) we assign λy.f in Y (Γ). The other λ-operation, application, is simply
a presheaf morphism X × X → X, that is, a binary operation on X. We put these two
together:

Notation 2.4. Let Hλ denote the endofunctor of SetF given by

HλX = X ×X + δX.

Thus, an algebra for Hλ is a presheaf X together with operations of application X(Γ) ×
X(Γ) → X(Γ) and abstraction X(Γ + 1) → X(Γ) for all contexts Γ; these operations are
compatible with the renaming of free variables.

Example 2.5. The presheaves Fλ, Tλ and Rλ are algebras for Hλ in the obvious sense.

Remark 2.6.

(i) The slice category V/SetF of presheaves X together with a morphism i : V → X
is called the category of pointed presheaves. For example Fλ is a pointed presheaf
in a canonical sense: iF : V → Fλ takes a variable x to the term x. Analogously
iT : V → Tλ and iR : V → Rλ are pointed presheaves, and so are Fλ,Σ, Rλ,Σ and Tλ,Σ.

(ii) Recall that the category AlgHλ of algebras for Hλ has as morphisms the usual Hλ-
homomorphisms, i.e., a morphism from a : HλX → X to b : HλY → Y is a natural
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transformation f : X → Y such that f ·a = b·Hλf . Then AlgHλ is a concrete category
over SetF with the forgetful functor (HλX → X) 7→ X.

Theorem 2.7 (see [10]). The presheaf Fλ of finite λ-terms is the free Hλ-algebra on V .

Definition 2.8 (see [2]). Given an endofunctor H, an algebra a : HA→ A is called

(1) completely iterative (cia for short) if for every object X (of variables) and every (flat
equation) morphism e : X → HX + A there exists a unique solution which means a
unique morphism e† : X → A such that the square below commutes

X
e†

//

e
��

A

HX +A
He†+id

// HA+A

[a,id]
OO

(2.3)

(2) iterative if every equation morphism e : X → HX + A with X finitely presentable has
a unique solution e† : X → A.

We are going to characterize finitely presentable presheaves in Theorem 2.16. In practice, we
are interested only in equations using free presheaves (on polynomial endofunctors of Set)
as X, but including the more general concept does not “disturb” anything as we explain in
Remark 5.2.

Example 2.9. As proved in [17], Corollary 6.3, the free completely iterative algebra for
an arbitrary finitary endofunctor H on an object X is precisely the terminal coalgebra for
H(−) + X. More detailed, suppose TX is the terminal coalgebra for H(−) + X, then
its structure morphism is an isomorphism by Lambek’s Lemma and the inverse of this
morphism has the components

τX : HTX → TX and ηTX : X → TX

making TX a free cia on X.
Conversely, let τX : HTX → TX be a cia which is free on X w.r.t. the universal

arrow ηTX . Then [τX , ηTX ] : HTX + X → TX is an isomorphism, and its inverse is the
structure of the terminal coalgebra for H(−) +X.

Theorem 2.10. The presheaf Tλ of infinite λ-terms is the free completely iterative Hλ-
algebra on V .

Proof. As explained in Example 2.9 above, the free completely iterative algebra for Hλ on V
is precisely the terminal coalgebra for Hλ(−)+V . The latter functor clearly preserves limits
of ωop-chains. Consequently, its terminal coalgebra is a limit of the chain W with W0 = 1
(the terminal presheaf) and Wn+1 = HλWn+V , where the connecting maps are the unique
w0 : W1 →W0 and wn+1 = Hλwn + idV .

Observe first that the limit of W is computed objectwise. So for every context Γ we
can identify W0(Γ) with the set {⊥} where ⊥ /∈ Var, and we have

Wn+1(Γ) = Wn(Γ)×Wn(Γ) +Wn(Γ + 1) + Γ.

An easy induction proof now shows that Wn(Γ) can be identified with the set of all λ-
terms in context Γ of depth at most n having all leaves of depth n labelled by ⊥. And
wn+1 : Wn+1 → Wn cuts away the level n+ 1 in the trees of Wn+1(Γ), relabelling level-n
leaves by ⊥. With this identification we obtain Tλ as a limit of Wn where the limit maps
Tλ →Wn cut the trees in Tλ(Γ) at level n and relabel level-n leaves by ⊥.
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Example 2.11. The complete iterativity of the algebra Tλ means that we are able to solve
systems of recursive equations such as

p1 = p1 @ (λx.p2)
p2 = y @ p1.

(2.4)

Indeed, the solution in Tλ({y}) is formed by the λ-terms represented by the following trees
t̂1 and t̂2:

t̂1 =

@

@

@

..
.

λx

@

y @

@

@

...

...

λx

@

y @

@

@

...

...

λx

@

y @

@

@

...

...

t̂2 =

@

y
t̂1

How is this related to the above concept of Definition 2.8? Firstly, every system of recursive
equations can be flattened: a flat system has in context Γ the right-hand sides of only three
types: pi @ pj or λx.pi or a term in Tλ(Γ). For example, we flatten the system (2.4) to

p1 = p1 @ p3
p2 = p4 @ p1
p3 = λx.p2
p4 = y

(2.5)

Let Γ = {y} be the context of all free variables and let X be the free presheaf on generators
p1, . . . , p4 of context Γ, see Example 2.2. Notice that even though the recursion variables
p1, . . . , p4 appear as constants in the system (2.5), the associated presheafX is not a constant
presheaf. Using the Yoneda lemma, the above system (2.5) defines an obvious morphism

e : X → HλX + Tλ

viz, the unique one such that eΓ(pi) is the right-hand side of the equation above. The
solution

e† : X → Tλ

is the unique morphism such that e†Γ takes pi to the solution in Tλ; for example e†Γ(p1) = [t̂1]

for the above tree t̂1. We will see in Theorem 5.7 below that equations such as (2.5) have
a unique solution yielding rational trees.
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Remark 2.12. Given an equation morphism

e : X → HλX + Tλ

then the solution e† : X → Tλ allows us to choose, for every element p of X(Γ), a tree t̂p in
Tλ(Γ) with

e†Γ(p) = [t̂p].

Due to the commutativity of (2.3) for HλX = X ×X+ δX we have three possible cases for
every p:

(a) eΓ(p) = (p1, p2) in X(Γ)×X(Γ), then for the operation τ : HλTλ → Tλ we have

[t̂p] = τ
(
[t̂p1 ], [t̂p2 ]

)

in other words,

t̂p ∼α

@

t̂p1 t̂p2
(b) eΓ(p) = q in X(Γ + {x}), then

[t̂p] = τ
(
[t̂q]

)

in other words

t̂q ∼α

λx

t̂p
or

(c) eΓ(p) lies in Tλ(Γ) and is represented by t̂p:

e†Γ(p) = [t̂p] = eΓ(p).

Remark 2.13. We are going to characterize the presheaf Rλ as a free iterative algebra
for Hλ. That is, in equations we admit only presheaves X of variables that are finitely
presentable. Recall that an object X of a category W is finitely presentable provided that
its hom-functor W (X,−) preserves filtered colimits. We are first going to characterize the
finitely presentable presheaves by using the following concept:

Definition 2.14 (see [4]). A presheaf X is called super-finitary provided that each X(Γ)
is finite and there exists a nonempty context Γ0 generating X in the sense that for every
nonempty context Γ we have

X(Γ) =
⋃

γ : Γ0→Γ

Xγ
[
X(Γ0)

]
. (2.6)

Example 2.15. A signature Σ defines the polynomial presheaf XΣ, see Example 2.2(ii),

by XΣ(Γ) =
∐

σ∈Σ Γar(σ). This is a super-finitary presheaf iff Σ is a finite signature. Other
super-finitary presheaves are precisely the quotients of XΣ with Σ finite.

Theorem 2.16. A presheaf in SetF is finitely presentable iff it is super-finitary.
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Proof. (1) Let X be a super-finitary presheaf and let Γ0 be a context of n variables gen-
erating X. We prove that X is a finite colimit of representables. Since representables are
(due to Yoneda lemma) clearly finitely presentable, this proves finite presentability of X.

Form the finite diagram of all presheaves

Za = F (Γ,−)

where Γ ⊆ Γ0 + Γ0 is a context of at most 2n variables1 and a ∈ X(Γ). The connecting
morphisms are the Yoneda transformations

Y f : Za → Za′ for a ∈ X(Γ) and a′ ∈ X(Γ′)

where f : Γ′ → Γ is a function that fulfils Xf(a′) = a. The Yoneda transformations

za : Za → X, with the components defined by f 7→ Xf(a),

clearly form a compatible cocone of this finite diagram. We prove that this is a colimit
cocone. In other words, for every context Γ̄ we must prove that the cocone of all Γ̄-
components zΓ̄a (sending elements f : Γ→ Γ̄ of Za = F (Γ,−) to Xf(a)) is a colimit in Set.
For that we only need to verify that in every context Γ̄

(i) the cocone zΓ̄a is collectively epimorphic, and

(ii) whenever two elements f : Γ → Γ̄ of Za and f ′ : Γ′ → Γ̄ of Za′ fulfil z
Γ̄
a (f) = zΓ̄a′(f

′),
then there exists a zig-zag connecting f and f ′ in the Γ̄-component of our diagram.

The proof of (i) is trivial: given an element a ∈ X(Γ̄), either Γ̄ = ∅ or by Equation (2.6)
there exists f : Γ0 → Γ̄ and an element b ∈ X(Γ0) with a = Xf(b), in other words,

a = zΓ̄b (f).

In case Γ̄ = ∅ we have a = zΓ̄a (id∅).
To prove (ii), observe that the given equation states

Xf(a) = Xf ′(a′).

In case Γ̄ has at most 2n variables, we can assume Γ̄ ⊆ Γ0 + Γ0 and the desired zig-zag is

Za
Y f
←−−− Zb

Y f ′

−−−→ Za′ ,

where b = Xf(a). Thus, we can assume that Γ̄ has more than 2n elements.

Case 1: Γ = ∅ = Γ′. Here f = f ′ and we have Xf(a) = Xf(a′). Choose a monomorphism
m : Γ0 → Γ̄ and observe that f = m·g for the unique g : ∅ → Γ0. Thus Xm(Xg(a)) =
Xm(Xg(a′)) and since m is a split monomorphism, we conclude Xg(a) = Xg(a′) = c.
The desired zig-zag is

Za
Y g
←−−− Zc

Y g′
−−−→ Za′ .

Case 2: Γ = ∅ 6= Γ′. Factorize f ′ as an epimorphism e followed by a split monomorphismm:

Γ′ Γ̄

Γ1

f ′

e m

Then, since for the unique h : ∅ → Γ1 we have f = m·h, we obtain

Xm
(
Xe(a′)

)
= Xm

(
Xh(a)

)
.

1The reason why we need 2n variables will become clear in (2.7) below.
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Thus, Xe(a′) = Xh(a) = c which yields the zig-zag

Za
Y h
←−−− Zc

Y e
−−→ Za′ .

Case 3: Γ 6= ∅ 6= Γ′. Find g : Γ0 → Γ with a = Xg(b) and g′ : Γ0 → Γ′ with a′ = Xg′(b′) for
some b, b′ ∈ X(Γ0). Then X(f ·g)(b) = X(f ′·g′)(b′). Now factorize [f ·g, f ′·g′] : Γ0+Γ0 →
Γ̄ as an epimorphism followed by a split monomorphism; so we obtain a commutative
diagram

Γ0 + Γ0 Γ̄

Γ1

[f ·g,f ′·g′]

[e,e′] m
(2.7)

Since m is a split monomorphism, conclude that Xe(b) = Xe′(b′) = c. The desired
zig-zag is

Za Za′

Zb Zb′

Zc

Y g Y g′

Y e Y e′

(2) Let X be a finitely presentable object of SetF . The empty maps are denoted by
tΓ : ∅ → Γ. For every nonempty context Γ0 let XΓ0 be the subfunctor of X generated by
the elements of X(Γ0) ∪X(∅): it assigns to every Γ the subset of X(Γ) given by

XΓ0(Γ) = XtΓ
[
X(∅)

]
∪

⋃

f : Γ0→Γ

Xf
[
X(Γ0)

]
.

We obviously have a union

X =
⋃

Γ0∈F\{∅}

XΓ0

which is directed: given nonempty contexts Γ0,Γ1 then XΓ0 ∪ XΓ1 ⊆ XΓ0∪Γ1 . Since X is
finitely presentable, the morphism

idX : X → colim
Γ0∈F\{∅}

XΓ0

factorizes through one of the colimit injections XΓ0 →֒ X. In other words

X = XΓ0 for some Γ0 6= ∅.

It remains to prove that the sets X(Γ0) and X(∅) are finite, then every X(Γ) is finite.
For every finite setM ⊆ X(∅) we have the subfunctorXM ofX equal toX on nonempty

objects and maps, and assigning M to ∅. We obviously get X as a directed union of these
subfunctors XM , thus, as above, there exists M with X = XM . Then X(∅) = M is finite.

For every finite set M ⊆ X(Γ0) we have the subfunctor MX of X = XΓ0 generated by
the elements of M ∪X(∅):

MX(Γ) = XtΓ
[
X(∅)

]
∪

⋃

f : Γ0→Γ

Xf [M ].
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Again X is a directed union of these subfunctors MX, thus, there exists M with X = MX,
proving that X(Γ0) is finite.

Theorem 2.17. The presheaf Rλ of rational λ-terms is the free iterative Hλ-algebra on V .

Proof. (I) Rλ is an iterative algebra for Hλ. Indeed, given an equation morphism

e : X → HλX +Rλ

where Equation (2.6) holds for Γ0, we know that its extension

ē : X
e
−→ HλX +Rλ →֒ HλX + Tλ

has a unique solution e† : X → Tλ, and we are going to prove that the trees e†Γ0
(p) and e†∅(p)

are all rational. It then follows that all the trees e†Γ(p) are rational for all contexts Γ, and
this gives us the desired solution X → Rλ. Indeed, for each x ∈ X(Γ) with Γ 6= ∅ we have

x = Xf(p) for some f : Γ0 → Γ and p ∈ X(Γ0). Then e†Γ(x) = e†Γ(Xf(p)) = Tλf(e
†
Γ0
(p))

by the naturality of e†, and since e†Γ0
(p) is rational, so is Tλf(e

†
Γ0
(p)). (The action of Tλf

is just relabelling leaves according to f .)
Now every element of X(Γ0) = {p1, . . . , pn} yields an element

eΓ0(pi) ∈ X(Γ0)×X(Γ0) +X
(
Γ0 + {x}

)
+Rλ(Γ0)

which is either (i) a pair (pj , pk) or (ii) q ∈ X(Γ0 + {x}) or (iii) a rational tree in Rλ(Γ0).

Put ti = e†Γ0
(pi), then in the last case the commutativity of Diagram (2.3) implies that

eΓ0(pi) = ti (cf. Remark 2.12). From (2.3) we also obtain in cases (i) and (ii)

ti = tj @ tk and ti = λx.e†Γ0+{x}(q), respectively.

From Equation (2.6) we see that in case (ii) there exists f : Γ0 → Γ0+{x} with q = Xf(pj)

for some j, then e†Γ0+{x}(q) = Tλf(e
†
Γ0
(pj)) = Tλf(tj). Thus we get equations telling us that

for every i either ti = tj@tk or ti = λx.Tλf(tj) or ti is a rational tree. Using these equations
it is now easy, for every i = 1, . . . , n, to prove by induction on the depth k of subtrees of ti
that each subtree of ti is either of the form s = Tλf(e

†
Γ0
(r)) for some r ∈ X(Γ0) and some

f : Γ0 → Γ0 + {x}, or s is a subtree of some rational tree e†Γ0
(r) = eΓ0(r) in case (iii). Since

X(Γ0) is a finite set, it follows that every tree ti has only finitely many subtrees, whence
ti ∈ Rλ(Γ0).

The case X(∅) = {p1, . . . , pn} is analogous: for ti = e†Γ(pi) we get (i) ti = tj @ tk or (ii)

ti = λx.e†{x}(q) or (iii) ti = e∅(pi) ∈ Rλ(∅). We already know that the trees in case (ii) are

rational. Thus, each subtree of e†∅(pi) is either e
†
∅(r) or it is a subtree of some rational tree

in cases (ii) or (iii).
The solution of e in Rλ is unique because every solution in Rλ yields a solution of the

extended morphism ē in Tλ.

(II) Let D be the category of all equation morphisms

e : X → HλX + V, X finitely presentable,

whose morphisms are the coalgebra homomorphisms for Hλ(−)+V . The diagram D : D →
SetF , D(e) = X, is filtered and its colimit is the free iterative Hλ-algebra on V , see [2]. We
will prove that Rλ is a colimit of D. Recall that Rλ is a pointed presheaf (see Remark 2.6).
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For every e as above the equation morphism

ẽ ≡ X
e
−→ HλX + V

id+iR
−−−−−→ HλX +Rλ

has a unique solution ẽ† : X → Rλ. It is easy to verify that these morphisms form a cocone
for the diagram D. Since D is a filtered diagram in SetF and since colimits in SetF are
constructed objectwise in Set, in order to prove that

Rλ = colimD with the colimit cocone (ẽ†)

all we need to prove is that for every context Γ

(a) the cocone ẽ†Γ is collectively epimorphic: Rλ(Γ) =
⋃
ẽ†Γ[X], and

(b) whenever ẽ†Γ merges x, x′ ∈ X(Γ), there exists a connecting morphism in D merging x
and x′ too.

To prove (a), let t ∈ Rλ(Γ) be a rational tree and let Γ0 be the context of variables xs indexed
by the finitely many subtrees s of t (up to isomorphism). Let X be the free presheaf on the
set Γ0 of generators of context Γ̄ = Γ ∪ Γ0, see Example 2.2(ii). Define

e : X → HλX + V

by assigning to every variable xs, for a subtree s of t, the following value: if s = s′@ s′′ in t,
then

eΓ(xs) = xs′ @ xs′′ in X(Γ̄)×X(Γ̄),

if s = λy.s′ in t, then
eΓ(xs) = λy.xs′ in X

(
Γ̄ + {y}

)
,

and if s is a leaf labelled by x ∈ Γ, then

eΓ(xs) = x in Γ = V (Γ).

This object e of D yields two equation morphisms: ẽ : X → HλX + Rλ above, and analo-
gously ê = (id+iT )·e : X → HλX + Tλ. The solution of the latter is the unique morphism

ê† : X → Tλ with ê†
Γ̄
(xs) = s for all s ∈ Γ0.

Indeed, Diagram (2.3) is easily seen to commute for ê and ê†. In (I) above we saw that the
solution ẽ† : X → Rλ is a codomain restriction of ê†. In particular:

t = ẽ†
Γ̄
(xt).

This proves (a).
To prove (b) let τ : HλTλ → Tλ denote the algebra structure of Tλ. By Theorem 2.10

and Example 2.9 we have that

[τ, iT ] : HλTλ + V → Tλ is an isomorphism.

From Diagram (2.3) we get

ê† = [τ, idTλ
]·[Hλê

† + idTλ
]·(idHλX +iT )·e

which yields
[τ, iT ]−1·ê† = (Hλê

† + idV )·e.

Let us factorize ê† as a strong epimorphism k : X → Y followed by a monomorphism
m : Y → Tλ. Then the last equation makes it possible to apply the diagonal fill in:
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X Y

HλX + V Tλ

HλY + V HλTλ + V

k

me

Hλk+id [τ,iT ]−1

Hλm+id

f

Indeed, Hλ = (−)2 + δ preserves connected limits (because each summand does), thus,
monomorphisms; consequently, Hλm+idV is a monomorphism. Since Y is a strong quotient
of X, it follows from Theorem 2.16 that Y is finitely presentable. Thus,

f : Y → HλY + V

is an object of D , and clearly k is a connecting morphism from e to f .

From (I) we know that ẽ† is the domain restriction of ê†, thus we see that ẽ†Γ(x) = ẽ†Γ(x
′)

implies ê†Γ(x) = ê†Γ(x
′), and since mΓ is a monomorphism with ê†Γ = mΓ·kΓ, we conclude

kΓ(x) = kΓ(x
′)

as requested.

Remark 2.18. As mentioned in the Introduction we want to combine application and
abstraction with other operations. Suppose Σ = (Σn)n∈N is a signature (of “terminals”).

Then we can form the endofunctor Hλ,Σ of SetF on objects by

Hλ,ΣX = X ×X + δX +
∐

n∈N

Σn •X
n

where Σn •X
n is the coproduct (that is: disjoint union in every context) of Σn copies of the

n-th Cartesian power of X. For this endofunctor an algebra is an Hλ-algebra A together
with an n-ary operation on A(Γ) for every σ ∈ Σn and every context Γ.

In the following result we use notation of Example 2.2(vii).

Theorem 2.19. For every signature Σ

(i) Fλ,Σ is the free Hλ,Σ-algebra on V ,
(ii) Rλ,Σ is the free iterative Hλ,Σ-algebra on V , and
(iii) Tλ,Σ is the free completely iterative Hλ,Σ-algebra on V .

Indeed, (i) was proved in [10], and the proofs of (ii) and (iii) are completely analogous to
the proofs of Theorems 2.17 and 2.10.

3. Presheaves as Monoids

So far we have not treated one of the basic features of λ-calculus: substitution of sub-
terms. For the presheaf Fλ,Σ of finite λ-Σ-terms this was elegantly performed by Fiore

et al [10] based on the monoidal structure of the category SetF . As mentioned in Nota-
tion 2.1(3), we can work with the equivalent category Fin(Set,Set) of all finitary endo-
functors of Set. Composition of functors makes this a (strict, non-symmetric) monoidal
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category with unit IdSet. This monoidal structure, as shown in [10], corresponds to simul-
taneous substitution. Indeed, let X and Y be objects of Fin(Set,Set). Then the “formulas
of the composite presheaf X·Y ” in context Γ are the elements of

X·Y (Γ) = X
(
Y (Γ)

)
=

⋃

u:Γ̄→֒Y (Γ)

Xu[Γ̄], (3.1)

where u : Γ̄ →֒ Y (Γ) ranges over finite subobjects of Y (Γ). Indeed, X preserves the filtered
colimit Y (Γ) = colim Γ̄.

Consequently, in order to specify an X·Y -formula t in context Γ we need (a) an X-
formula s in some new context Γ̄ and (b) for every variable x ∈ Γ̄ a Y -formula of context Γ,
say, rx. We can then think of t as the formula s(rx/x) obtained from s by simultaneous
substitution.

Example 3.1. We consider the presheaves Fλ,Σ and Fλ,Σ′ , where Σ is the signature with
a binary operation symbol ∗ and Σ′ a signature with a unary operation symbol o. Then for
every context Γ, the elements of Fλ,Σ·Fλ,Σ′(Γ) are λ-Σ-terms in some context Γ with free

variables replaced by λ-Σ′-terms in context Γ. For a concrete example, let Γ = { y, z } and
Γ = { z′ } and consider the λ-Σ-term

t = λx.x ∗ (y ∗ z) in Fλ,Σ{ y, z }

and the function

u : Γ→ Fλ,Σ′(Γ) with
u(y) = λx.o(x) @ z′

u(z) = z′ @ o(o(z′))

Then the element of Fλ,Σ·Fλ,Σ′(Γ) corresponding to t and u is the term

λx.x ∗
(
(λx.o(x) @ z′) ∗ (z′ @ o(o(z′)))

)
.

Remark 3.2.

(i) The monoidal structure on SetF corresponding to composition in Fin(Set,Set) will
be denoted by ⊗. Its unit (corresponding to Id) is V , see Notation 2.2(i). Observe that
every endofunctor −⊗X preserves colimits, e.g., (A+B)⊗X ∼= (A⊗X) + (B ⊗X).

(ii) Explicitly, the monoidal structure can be described by the coend

(X ⊗ Y )(Γ) =

∫ Γ

Set(Γ, Y (Γ)) •X(Γ). (3.2)

(iii) Recall that monoids in the monoidal category Fin(Set,Set) are precisely the finitary
monads on Set.

(iv) The presheaf Fλ,Σ is endowed with the usual simultaneous substitution of λ-terms

which defines a morphism mF : Fλ,Σ ⊗ Fλ,Σ → Fλ,Σ. Together with the canonical

pointing iF : V → Fλ,Σ, see Remark 2.6, this constitutes a monoid as proved in [10].
Analogously the simultaneous substitution of infinite λ-terms defines a monoid

(Tλ,Σ,m
T , iT ).

It is easy to see that given a rational term, every simultaneous substitution of ra-
tional terms for variables yields again a rational term. Thus, we have a submonoid
(Rλ,Σ,m

R, iR).
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(v) The monoidal operation of Fλ,Σ is well connected to its structure of an Hλ,Σ-algebra.
This was expressed in [10] by the concept of an Hλ,Σ-monoid.

In order to recall this concept, we need the notion of point-strength introduced
in [9] under the name (I/W )-strength; this is a weakening of the classical strength
(necessary since Hλ,Σ is unfortunately not strong). Recall that given an object I of
a category W , then objects of the slice category I/W are morphisms x : I → X for
X ∈ objW .

Definition 3.3 (see [9]). Let (W ,⊗, I) be a strict monoidal category and H an endofunctor
on W . A point-strength of H is a collection of morphisms

s(X,x)(Y,y) : HX ⊗ Y → H(X ⊗ Y )

natural in (X,x) and (Y, y) ranging through I/W such that

(i) s(X,x)(I,id) = idHX , and
(ii) the following triangles commute:

HX ⊗ Y ⊗ Z H(X ⊗ Y ⊗ Z)

H(X ⊗ Y )⊗ Z

s(X,x),(Y⊗Z,y⊗z)

s(X,x),(Y,y)⊗idZ s(X⊗Y,x⊗y),(Z,z) (3.3)

Example 3.4.

(i) The endofunctor X 7→ X⊗X (which usually fails to be strong) has the point-strength

s(X,x)(Y,y) = (X ⊗X)⊗ Y = (X ⊗ I ⊗X)⊗ Y
idX ⊗y⊗idX⊗Y
−−−−−−−−−−−→ (X ⊗ Y )⊗ (X ⊗ Y ).

(ii) The endofunctor X 7→ Xn of SetF is clearly (point-)strong for every n ∈ N.
(iii) The functor δ in Notation 2.3 is point-strong, as observed in [10]. The easiest way to

describe its point-strength is by working in Fin(Set,Set). Given pointed endofunctors
x : Id → X and y : Id → Y , then the point-strength s(X,x)(Y,y) : (δX)·Y → δ(X·Y )
has components

X
(
Y (Γ) + 1

) X(id+y1)
−−−−−−−→ X

(
Y (Γ) + Y (1)

) X can
−−−−→ X·Y (Γ + 1),

where can : Y (Γ) + Y (1)→ Y (Γ + 1) denotes the canonical morphism.
(iv) A coproduct of point-strong functors is point-strong.

Corollary 3.5. The endofunctors Hλ and Hλ,Σ are point-strong. Their point-strength is

denoted by sH .

Definition 3.6 (see [10]). Let H be a point-strong endofunctor of a monoidal category. By
an H-monoid is meant an H-algebra (A, a) which is also a monoid

m : A⊗A→ A and i : I → A

such that the square below commutes:

HA⊗A H(A⊗A) HA

A⊗A A

s(A,i)(A,i)

a⊗id

m

Hm

a (3.4)
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Remark 3.7.

(1) Homomorphisms of H-monoids are those monoid homomorphisms which are also H-
algebra homomorphisms.

(2) An H-monoid is called (completely) iterative if its underlying H-algebra has this prop-
erty.

Example 3.8.

(1) Fλ is an Hλ-monoid. Indeed, we know that substitution yields the monoid structure
(Remark 2.6) and tree tupling yields the algebra structure (Example 2.5). Let us
consider the square

HλFλ ⊗ Fλ Hλ(Fλ ⊗ Fλ) HFλ

Fλ ⊗ Fλ Fλ

s

ϕ⊗id

mF

HmF

ϕ

The elements t of HλF ⊗ Fλ in context Γ are those of

HλFλ(Γ0) = Fλ(Γ0)× Fλ(Γ0) + Fλ

(
Γ0 + {x}

)

for a given context Γ0 together with a substitution f : Γ0 → Fλ(Γ). In case of the
summand Fλ(Γ0) × Fλ(Γ0) the lower passage mF

Γ (ϕΓ ⊗ id) assigns to t = (t1, t2) the
term t1 @ t2 with variables substituted according to f . And the upper passage first
substitutes to t1 and t2 according to f separately, and then forms @; the result is the
same. In case of the summand Fλ(Γ0+{x}) the lower passage assigns to t the term λx.t
with variables substituted according to f ; the upper one first substitutes in t and then
forms λx.− yielding the same result again.

(2) More generally, for every signature Σ we have an Hλ,Σ-monoid Fλ,Σ.

Theorem 3.9 (see [10]). The presheaf Fλ,Σ of finite λ-Σ-terms is the initial Hλ,Σ-monoid.

Theorem 3.10 (see [16]). The presheaf Tλ,Σ of λ-Σ-terms is an Hλ,Σ-monoid with simul-
taneous substitution as monoid structure.

Although in [16], Example 13, just Tλ is used, the methods of that paper apply to Tλ,Σ

immediately. The following theorem proves a stronger property of Tλ,Σ, corresponding to
Theorem 3.9 above.

Theorem 3.11. The presheaf Tλ,Σ of λ-Σ-terms is the initial completely iterative Hλ,Σ-
monoid.

An elementary proof of this theorem was presented in [4]. Here we will prove a more
general result in Theorem 4.18 below.
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4. The Initial Iterative H-Monoid

The aim of this section is to prove that the presheaf Rλ,Σ of rational λ-Σ-terms is the initial

iterative Hλ,Σ-monoid in SetF . We have (in contrast to the characterization of Tλ in the
preceding section) no elementary proof. Rather, we need to work with the monad Rλ,Σ

of free iterative Hλ,Σ-algebras on SetF (for which Rλ,Σ is Rλ,Σ(V )) and prove that it is
point-strong and use this strength further. We will actually work in a more general setting
(which can be applied later for the case of typed λ-calculus).

Assumption 4.1. Throughout this section we assume that H is a finitary endofunctor
of W where

(1) W is a locally finitely presentable category, i.e., a cocomplete category with a set of
finitely presentable objects Wfp whose closure under filtered colimits is all of W .

(2) W is also a strict monoidal category with the unit I finitely presentable and the tensor
product preserving finite presentability: if A,B are finitely presentable, then so is A⊗B.

(3) W is right distributive, that is, for every object W the endofunctor −⊗W preserves
finite coproducts.

(4) The tensor product is a finitary functor, i.e., its preserves filtered colimits (in both
variables).

We call categories satisfying (1)–(4) monoidally locally finitely presentable.

Example 4.2. Set is, as a cartesian closed category, monoidally locally finitely presentable.
For every monoidally locally finitely presentable category W all functor categories W A ,
A small, have the property too; for example, SetF with the cartesian product as tensor.
However, in our paper we only use the fact that SetF is a monoidally locally finitely
presentable w.r.t. ⊗ in Remark 3.2(i). This follows from the fact that this is equivalent
to Fin(Set,Set) with the tensor product given by composition. Observe that ⊗ is right
distributive (since precomposition with a given functor preserves colimits) but not left
distributive.

Notation 4.3. For every object Y of W we denote by

̺Y : HRY → RY and ηY : Y → RY

the structure and oniversal morphism of the free iterative H-algebra on Y , which exists as
proved in [2]. This gives rise to the monad

R = (R, η, µ)

where µX : RRY → RY is the unique homomorphism extending ηY :

HRRY RRY Y

HRY RY

̺RY ηRY

HµY ηY

̺Y

µY (4.1)

R is called the rational monad of the endofunctor H.

Remark 4.4. In [2] we described the free iterative H-algebra RY as the colimit of the
diagram of all “flat equation” morphisms

e : W → HW + Y, W ∈ W finitely presentable,
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whose connecting morphisms (“equation morphisms”) are just the coalgebra homomor-
phisms h for the endofunctor H(−) + Y :

W HW + Y

W ′ HW ′ + Y

e

h

e′

Hh+id (4.2)

More detailed:

(i) The category EQY of all flat equation morphisms in Y is filtered. The filtered diagram

EqY : EQY →W, EqY (W
e
−→ HW + Y ) = W

has a colimit RY with the colimit injections e# : W → RY .
(ii) For the flat equation morphism inl : Y → HY + Y put

ηY = inr# : Y → RY. (4.3)

(iii) There is a unique isomorphism i : RY → HRY + Y such that the squares

W HW + Y

RY HRY + Y

e

e#

iY

He#+Y (4.4)

commute for all flat equations e. Put

̺ ≡ HRY
inl
−−−→ HRY + Y

i−1
Y−−−→ RY.

Then RY together with ηY and ̺Y is the free iterative H-algebra on Y . We also have

iY = [̺Y , ηY ]
−1. (4.5)

Furthermore, e# is the unique coalgebra homomorphism from e to iY .
(iv) For every e : W → HW + Y the morphism e# : W → RY is the unique solution (in

the iterative algebra RY ) of

ηY • e ≡W
e
−→ HW + Y

HW+ηY−−−−−−→ HW +RY.

(v) Let
e : W → HW +RY and e′ : W ′ → HW ′ +RY

be two equation morphisms with W and W ′ finitely presentable, and let h be a coal-
gebra homomorphism from (W, e) to (W, e′). Then for the unique solutions of e and e′

we have
e† =

(
e′
)†
·h : W → RY.

(v) Suppose we have two morphisms

f : V → HV +W and e : W → HW +RY

where V,W are finitely presentable. Then we can form an equation morphism
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e � f ≡ V +W HV +W HV +HW +RY

H(V +W ) +RY

[f,inr] HV+e

can+RY

and we have (
e† • f

)†
= (e � f)†· inl, (4.6)

see [3].
(vi) Finally, every homomorphism h : A → B of H-algebras between iterative algebras A

and B preserves solutions:

h·e† = (h • e)† : X → B

for every equation morphism e : X → HX +A.

Example 4.5. The rational monad of Hλ is the monad Rλ of rational λ-terms with con-
stants: to every presheaf Y it assigns the presheaf Rλ(Y ) defined precisely as Rλ in Ex-
ample 2.2(v) except that in every context Γ we can also use elements of Y (Γ) to label the
leaves.

More detailed: we first define the set R′
λ(Y )(Γ) of rational trees in context Γ with

constants from Y . It consists of all rational trees of the form (2.2) such that

a node labelled by an element of Y (Γ) is a leaf.

By using the α-conversion precisely as in Example 2.2(iii), we obtain the desired presheaf

Rλ(Y )(Γ) = R′
λ(Y )(Γ)/∼α.

It is again pointed; the pointing iRλ(Y ) : V → Rλ(Y ) assigns to every variable the corre-
sponding singleton tree. And Rλ(Y ) is canonically an Hλ-algebra. We define

ηY : Y → Rλ(Y )

to assign to every element of Y (Γ) the corresponding singleton tree. This is the free iterative
Hλ-algebra on Y , the proof is completely analogous to that of Theorem 2.17.

Definition 4.6. A point-strong monad is a monad M = (M,η, µ) on W together with a
point-strength

s(X,x),(Y,y) : (MX)⊗ Y →M(X ⊗ Y )

see Definition 3.3, such that s preserves the unit:

MX ⊗ Y M(X ⊗ Y )

X ⊗ Y

s(X,x),(Y,y)

ηX⊗Y ηX⊗Y
(4.7)

and the multiplication:

MMX ⊗ Y M(MX ⊗ Y ) MM(X ⊗ Y )

MX ⊗ Y M(X ⊗ Y )

s(MX,ηX ·x),(Y,y) Ms(X,x),(Y,y)

µX⊗Y

s(X,x),(Y,y)

µY (4.8)
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Example 4.7. By our assumption that H be finitary we know that all terminal coalgebras
for H(−) + X exist, this follows from [15], see also [5]. Equivalently, all free completely
iterative algebras for H exist (cf. Example 2.9), and they yield the object map of a monad
T = (T, ηT , µT ). This monad is the free completely iterative monad on the endofunctor H,
see [17]. The monad multiplication µT

X : TTX → TX is the unique algebra homomorphism
extending idTX , i.e., such that

µT
X ·τTX = τX ·HµT

X and µT
X ·η

T
TX = idTX . (4.9)

Theorem 4.8. The free completely iterative monad T of a point-strong endofunctor H is
point-strong.

Remark. The strength of T will be proved to be the unique natural transformation sT for
which the diagram

HTX ⊗ Y H(TX ⊗ Y ) HT (X ⊗ Y )

TX ⊗ Y T (X ⊗ Y )

X ⊗ Y

sH HsT

τX⊗Y

sT
τX⊗Y

ηTX⊗Y ηTX⊗Y

(4.10)

commutes. Note that we have dropped the subscripts indicating the components of the
natural transformations sH and sT above; from now on we shall frequently do this when
components of natural transformations are clear from the context.

Proof. (a) Let (X,x) and (Y, y) be pointed objects. For every morphism f : X ⊗ Y → TZ

there exists a unique morphism f ♭ : TX ⊗ Y → TZ such that that the diagram

HTX ⊗ Y H(TX ⊗ Y ) HTZ

TX ⊗ Y TZ

X ⊗ Y

sH Hf♭

τ⊗Y

f♭

τ

η⊗Y f

(4.11)

commutes. Indeed, the algebra TZ is completely iterative. Due to (HTX + Y ) ⊗ Y =
HTX ⊗ Y + X ⊗ Y , see Assumption 4.1(3), we obtain an equation morphism in TZ as
follows:

TX ⊗ Y
[τX ,ηTX ]−1⊗Y
−−−−−−−−−→ HTX ⊗ Y +X ⊗ Y

sHX,Y +f
−−−−−−→ H(TX ⊗ Y ) + TZ.

Its unique solution is denoted by f ♭. It is characterized by the commutative diagram
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TX ⊗ Y TZ

HTX ⊗ Y +X ⊗ Y

H(TX ⊗ Y ) + TZ HTZ + TZ

[τ,ηT ]⊗Y

sH+f

f♭

Hf♭+TZ

[τ,TZ]

It is easy to verify that this diagram commutes iff (4.11) does.

(b) Put

sT(X,x),(Y,y) =
(
ηTX⊗Y

)♭
: TX ⊗ Y → T (X ⊗ Y ).

In other words, we define the components of sT via (4.11) uniquely.

(b1) sT is natural: the squares

TX ⊗ Y T (X ⊗ Y )

T ′X ⊗ Y ′ T (X ′ ⊗ Y ′)

sT

Tg⊗h T (g⊗h)

sT

commute for all morphisms g and h of I/W since both passages form f ♭ for

f = ηTX′⊗Y ′ ·(g ⊗ h) : X ⊗ Y → T (X ′ ⊗ Y ′).

Indeed, for the upper passage, f ♭ = T (g ⊗ h)·sT , use the following diagram:

HTX ⊗ Y HTX ⊗ Y HT (X ⊗ Y ) HT (X ′ ⊗ Y ′)

TX ⊗ Y T (X ⊗ Y ) T (X ′ ⊗ Y ′)

X ⊗ Y X ′ ⊗ Y ′

sH HsT HT (h⊗g)

HτX⊗Y τX⊗Y τ
X′⊗Y ′

sT T (h⊗g)

ηTX⊗Y ηTX⊗Y ηT
X′⊗Y ′

h⊗g

The two left-hand parts form Diagram (4.11), the remaining two commute by naturality of
τ and η.

The lower passage f ♭ = sT ·(Tg ⊗ h) follows from the following diagram:
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HTX ⊗ Y HTX ′ ⊗ Y ′ H(T (X ′)⊗ Y ′) HT (X ′ ⊗ Y ′)

TX ⊗ Y TX ′ ⊗ Y ′ T (X ′ ⊗ Y ′)

X ⊗ Y X ′ ⊗ Y ′

HTg⊗h sH HsT

τX⊗Y τ
X′⊗Y ′ τ

X′⊗Y ′

Tg⊗h sT

ηTX⊗Y ηT
X′⊗Y ′ ηT

X′⊗Y ′

g⊗h

The right-hand parts form Diagram (4.12), the left-hand ones commute by naturality of τ
and ηT .

(b2) sT is a point-strength of the endofunctor T . Indeed, the axiom

sT(X,x)(V,v) = idT (X) (4.12)

follows from the fact that if (Y, y) = (V, id), then Diagram (4.10) commutes with idT (X) in

lieu of sT . To verify the Axiom (3.3), apply (a) to f = ηTX⊗Y⊗Z : we prove that the lower

passage of (3.3) serves as f ♭. In detail, the diagram

HT (X ⊗ Y )⊗ Z H(T (X ⊗ Y )⊗ Z)

HTX ⊗ Y ⊗ Z H(TX ⊗ Y )⊗ Z HT (X ⊗ Y ⊗ Z)

TX ⊗ Y ⊗ Z T (X ⊗ Y )⊗ Z T (X ⊗ Y ⊗ Z)

X ⊗ Y ⊗ Z

HsT⊗Z

sH

HsT

sH⊗Z

τX⊗Y⊗Z

τX⊗Y ⊗Z

τX⊗Y ⊗Z

sT⊗Z sT

ηTX⊗Y⊗Z ηTX⊗Y ⊗Z ηTX⊗Y ⊗Z

commutes. Indeed, all inner parts commute by two applications of (4.10).

(b3) It remains to verify the axioms of Definition 4.6. For (4.7) use the lower triangle
of Diagram (4.10). For (4.8) apply (a) to

f = sT : TX ⊗ Y → T (X ⊗ Y ).

We prove that both passages of (4.8) serve as f ♭. For the lower passage, (sT )♭ = sT ·µT ⊗Y ,
use the following diagram
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HTTX ⊗ Y HT (TX ⊗ Y ) HT HT (X ⊗ Y )

HTX ⊗ Y

TTX ⊗ Y TX ⊗ Y T (X ⊗ Y )

TX ⊗ Y

sH H(µT⊗Y ) HsT

HµT⊗Y sH

τ⊗Y

τ⊗Y τ

µT⊗Y sT

ηT T⊗Y sT

The upper left-hand part is Equation (4.9), the lower one commutes by the monad axiom
µT ·ηTT = id, the upper triangle is the naturality of sH , and the right-hand part follows
from (4.10).

For the upper passage, (sT )♭ = µT ·TsT ·sT , use the following diagram

H(TTX ⊗ Y )

HTTX ⊗ Y HT (TX ⊗ Y ) HTT (X ⊗ Y ) HT (X ⊗ Y )

TTX ⊗ Y T (TX ⊗ Y ) TT (X ⊗ Y ) T (X ⊗ Y )

TX ⊗ Y

sH HsT

HTsT HµT

τ⊗Y τ τ τ

sT TsT µT

ηT⊗Y ηT sT

The three upper squares commute due to (4.10), the naturality of τ and (4.9). The lower
triangles commute due to (4.10), the naturality of sT and µT ·ηTT = id.

Remark 4.9. Recall from Example 2.9 that T = HT + Id with injections τ and ηT . From
the Diagram (4.10) we see that the strength sT then has the form

sT = HsT ·sH +X ⊗ Y : HTX ⊗ Y +X ⊗ Y → HT (X ⊗ Y ) +X ⊗ Y.

Theorem 4.10. The rational monad of a point-strong endofunctor is point-strong.

Remark. The strength of R will be proved to be the unique natural transformation sR for
which the diagram
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HRX ⊗ Y H(RX ⊗ Y ) HR(X ⊗ Y )

RX ⊗ Y R(X ⊗ Y )

X ⊗ Y

sH HsR

̺X⊗Y

sR
̺X⊗Y

ηX⊗Y ηX⊗Y

(4.13)

commutes.

Proof. (a) Given pointed objects (X,x) and (Y, y), we prove that for every morphism f : X⊗
Y → RZ there exists a unique morphism f ♭ : RX⊗Y → RZ such that the following diagram
commutes:

HRX ⊗ Y H(RX ⊗ Y ) HRZ

RX ⊗ Y RZ

X ⊗ Y

sH Hf♭

̺X⊗Y

f♭

̺Z

ηX⊗Y f

(4.14)

(a1) Assume that Y is finitely presentable. Recall RY = colimEqY from Remark 4.4.
For every object

e : W → HW +X in EQX

define, using the distributivity (HW +Y )⊗Y = HW ⊗Y +X⊗Y (see Assumption 4.1(3)),
the equation morphism

ê ≡W ⊗ Y
e⊗Y
−−−−→ HW ⊗ Y +X ⊗ Y

sH+f
−−−−→ H(W ⊗ Y ) +RZ. (4.15)

Since W ⊗ Y is finitely presentable by Assumption 4.1(2), we obtain the unique solution
ê† : W ⊗ Y → RZ, and those solutions form a cocone of the diagram EqX ⊗ Y . Indeed,
given a connecting morphism

W HW +X

W ′ HW ′ +X

e

h

e′

Hh+X

then h⊗ Y is a coalgebra homomorphism from ê to ê′:

W ⊗ Y (HW ⊗ Y ) + (X ⊗ Y ) H(W ⊗ Y ) +RZ

W ′ ⊗ Y (HW ′ ⊗ Y ) + (X ⊗ Y ) H(W ′ ⊗ Y ) +RZ

e⊗Y sH+f

h⊗Y (Hh⊗Y )+(X⊗Y )

e′⊗Y

H(h⊗Y )+RZ

sH+f
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which implies, by Remark 4.4(v) that

ê† = ê′
†
·(h⊗ Y ).

Consequently, we can define

f ♭ : RX ⊗ Y → RZ

by the commutativity of the triangles

W ⊗ Y

RX ⊗ Y RZ

e#⊗Y ê†

f♭

for all e ∈ EQX . (4.16)

Indeed, since −⊗Y is a finitary functor by Assumption 4.1(4), we see that RX ⊗ Y is a
colimit of EqY ⊗Y with the colimit cocone e#⊗Y . We now verify that the Diagram (4.14)
commutes. Consider the diagram below:

W ⊗ Y RX ⊗ Y RZ

HW ⊗ Y +X ⊗ Y HRX ⊗ Y +X ⊗ Y

H(W ⊗ Y ) +RZ H(RX ⊗ Y ) +RZ HRZ +RZ

e⊗Y

e#⊗Y f♭

iX⊗Y

He#⊗Y+X⊗Y

sH+f sH+f

H(e#⊗Y )+RZ Hf♭+RZ

[̺Z ,RZ]

[̺X⊗Y,ηX⊗Y ]

(4.17)

Notice first that the left-hand edge is ê. The upper left-hand part commutes by (4.4), and the
lower one does by naturality of sH . The outside of the diagram commutes since f ♭·(e#⊗Y )
is the unique solution of ê in the iterative algebra RZ. Thus, the right-hand part commutes
when precomposed by any e#⊗Y . So since the latter morphisms are collectively epimorphic
(being the injections of colimEqX⊗Y ), we see that the right-hand part commutes. Now we
use that iX is an isomorphism with the inverse [̺X , ηX ], see Equation (4.5), which implies

[̺X ⊗ Y, ηX ⊗ Y ] = (iX ⊗ Y )−1.

Finally observe that the two coproduct components of the right-hand part of (4.17) yield
precisely the upper and lower parts of (4.14)—this proves that (4.14) commutes.

It only remains to prove the uniqueness of f ♭. So suppose we have some f ♭ such that
Diagram (4.14) commutes. Equivalently, the right-hand part of (4.17) commutes, and this
implies that f ♭·(e#⊗Y ) is, for every e in EQX , a solution of ê. This determines f ♭ uniquely.

(a2) Let Y be arbitrary. Then since W is locally finitely presentable we can express Y
as a filtered colimit

Y = colim
q∈Q

Y q with colimit cocone yq : Y q → Y
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of finitely presentable objects Y q. By Assumption 4.1(2) the unit object I is finitely pre-
sentable, thus the given pointing of Y :

y : I → colim
q∈Q

Y q

factorizes through some yq. The diagram above being filtered, we can assume that this
factorization takes place for every q ∈ Q, in other words, that we have a filtered diagram
of pointed objects Y q with colimit Y (and with all the connecting morphisms Y q → Y q′

preserving the pointing).
Given f : X⊗Y → RZ, for every q ∈ Q we know from the previous part (a1) that there

exists a unique
f ♭
q : RX ⊗ Y q → RZ

such that Diagram (4.14) commutes when f ♭ is replaced by f ♭
q and f by

fq ≡ X ⊗ Y q X⊗yq
−−−−→ X ⊗ Y

f
−−→ RZ.

This defines a unique f ♭ : RX ⊗ Y → RZ with

f ♭
q = f ♭·(RX ⊗ yq) for all q ∈ Q. (4.18)

Now Diagram (4.14) commutes becauseHRX⊗Y = colimq∈QHRX⊗Y q as well asX⊗Y =

colimq∈QX ⊗Y q. And f ♭ is uniquely determined by this commutativity; indeed, for any f ♭

such that (4.14) commutes one easily verifies that (4.18) holds using the uniqueness of f ♭
q

from part (a1).

(b) Analogously to the proof of Theorem 4.8 put

sR(X,x),(Y,y) = η♭X⊗Y : RX ⊗ Y → R(X ⊗ Y ). (4.19)

The verification that sR is the desired strength is analogous to the above proof: just replace
T by R (and τ by ̺).

Remark 4.11. The proofs of Theorems 4.8 and 4.10 have the same structure, and also the
proof that the monad Fλ,Σ is point-strong can proceed analogously:

Let H be a point-strong endofunctor of W and let (M̂, µ̂, η̂) be a monad. Suppose

that a natural transformation α : HM̂ → M̂ has the property that for every morphism

f : X⊗Y →MZ there exists a unique morphism f ♭ : MX⊗Y →MZ with f = f ♭·(η̂X⊗Y )

and f ♭·(αX ⊗ Y ) = αX ·Hf ♭·sH . Then M is a point-strong monad w.r.t. sM = η̂♭X⊗Y .

Remark 4.12. The morphisms

̺X : HRX → RX and ηX : X → RX

of (4.13) are coproduct injections of

RX = HRX +X

as proved in [2]. From diagram (4.13) we conclude that the strength of R,

sR : RX ⊗ Y → R(X ⊗ Y )

whose domain is HRX ⊗ Y +X ⊗ Y by 4.1(2) and codomain is HR(X ⊗ Y ) +X ⊗ Y , has
the form

sR = HsR·sH +X ⊗ Y.
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Corollary 4.13. For a point-strong endofunctor H the free iterative H-algebra

RI

on the unit object is an H-monoid w.r.t. the unit i = ηI : I → RI and the multiplication

m ≡ RI ⊗RI
sRI,RI
−−−−→ RRI

µI−−→ RI. (4.20)

Proof. Indeed, the unit laws are obvious:

I ⊗RI RI

RI ⊗RI RRI RI

RI ⊗ I RI

ηI⊗RI (4.13) ηRI

sRI,RI
µI

RI⊗ηI RηI

sRI,I

where the lower square commutes by the naturality of sR. For the associativity we have the
following commutative diagram

RI ⊗RI ⊗RI RI ⊗RRI RI ⊗RI

RRI ⊗RI R(RI ⊗RI) RRRI RRI

RI ⊗RI RRI RI

RI⊗sRI,RI
RI⊗µI

sRI,RI⊗RI sRI,RRI sRI,RI

sRRI,RI RsRI,RI RµI

µI⊗RI (4.8) µRI

sRI,RI µI

µI

RI⊗m

m

m⊗RI m

sRI,RI⊗RI

Finally, the Diagram (3.4) commutes due to (4.13):

HRI ⊗RI H(RI ⊗RI) HRRI HRI

RI ⊗RI RRI RI

sH

HsR Hµ

̺⊗RI ̺R ̺

sR µ

Hm

m

Corollary 4.14. The free completely iterative H-algebra

TI

on the unit object is an H-monoid w.r.t. ηTI and µT
I ·s

T
I,T I .

The proof is completely analogous to the previous one.
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Notation 4.15. Let
e : W → HW + I

be a flat equation morphism in I, and let a pointing of W be given.

(i) e# : W → RI denotes the colimit morphism of RI = colimEqI and

ê# : RW → RI

its unique extension to a homomorphism of H-algebras.
(ii) e ∗W denotes the following equation morphism in W :

e ∗W ≡W ⊗W
e⊗W
−−−−→ HW ⊗W +W

sH+W
−−−−−→ H(W ⊗W ) +W.

(iii) 〈e〉 : W ⊗W +W → H(W ⊗W +W ) + I denotes the flat equation morphism whose
left-hand component is

〈e〉· inl ≡W ⊗W H(W ⊗W ) +W

H(W ⊗W ) +HW + I H(W ⊗W +W ) + I

e∗W

H(W⊗W )+e

can+I

and the right-hand one is

〈e〉· inr ≡W
e
−→ HW + I

H inr+I
−−−−−−→ H(W ⊗W +W ) + I.

Lemma 4.16. For every flat equation morphism e : W → HW + I with W pointed the
square

W ⊗W RW

W ⊗W +W RI

(e∗W )#

̂e#inl

〈e〉#

(4.21)

commutes.

Proof. Notice that 〈e〉 is precisely of the form e � f from Remark 4.4(vi) for f = e ∗W .
Also recall from Remark 4.4(iv) that 〈e〉# = (η • 〈e〉)† and similarly (e ∗W )# = (η • (e ∗

W ))†. We shall also use that the H-algebra homomorphism ê# preserves solutions (cf.
Remark 4.4(vii)). Thus, we compute

ê#·(e ∗W )# = ê#·
(
η • (e ∗W )

)†
4.4(iv)

=
(
(ê#·η) • (e ∗W )

)†
4.4(vii)

=
(
e# • (e ∗W )

)†
ê# extends e#

=
(
(η·e)† • (e ∗W )

)†
4.4(iv)

= (η·e � e ∗W )†· inl (4.6)

=
(
η •

(
e � (e ∗W )

))†
· inl obvious

=
(
e � (e ∗W )

)#
· inl 4.4(iv)

= 〈e〉#· inl 4.4(vi)
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This completes the proof.

Theorem 4.17. Let H be a finitary, point-strong endofunctor. Then the H-monoid RI
above is the initial iterative H-monoid.

That is, for every H-monoid A there exists precisely one morphism h : RI → A which
is both a monoid homomorphism and a homomorphism of H-algebras.

Proof. (1) Given an iterative H-monoid

ā : HĀ→ Ā, ī : I → Ā and m̄ : Ā⊗ Ā→ Ā

we know that there is a unique H-algebra homomorphism

h : RI → Ā with h·ηI = ī.

It is our task to prove that h preserves multiplication:

RI ⊗RI RRI RI

Ā⊗ Ā Ā

sR µI

hh⊗h

m̄

(4.22)

(2) Recall RI = colimEqI from Remark 4.4. We can substitute EQI by the category of
all e : W → HW + I with W pointed. The argument is as in (a2) of Theorem 4.10. We
indicate pointing by writing W• instead of W (this stands for the notation (W, iW )). We
know that ⊗ is finitary, thus

RI ⊗RI = colimEqI ⊗ EqI

with the colimit cocone
e# ⊗ e# : W• ⊗W• → RI ⊗RI.

It is thus sufficient to prove that for every e the square

W• ⊗W• RI ⊗RI RRI RI

Ā⊗ Ā Ā

e#⊗e# sR µI

h(he#)⊗(he#)

m̄

(4.23)

commutes.
For every flat equation morphism e : W → HW + I recall 〈e〉 from Notation 4.15(iii)

and put

ē ≡W
e
−→ HW + I

HW+ī
−−−−−→ HW + Ā. (4.24)

We prove that (4.23) commutes by verifying that the two sides of the square are both the
left-hand part of the solution f̄ † : W ⊗W +W → Ā of the equation morphism f̄ for

f = 〈e〉 : W ⊗W +W → H(W ⊗W +W ) + I.

(3) Proof of the upper passage of (4.23):

h·µI ·s
R·(e# ⊗ e#) = f̄ †· inl : W ⊗W → Ā. (4.25)
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Since h : RI → Ā preserves solutions by Remark 4.4(vii), and since f# is a solution of ηI •f
as mentioned in Remark 4.4(iv), the composite h·f# is a solution of the equation morphism
f̄ : indeed, h takes ηI • f to f̄ due to the diagram

W ⊗W +W H(W ⊗W +W ) +RI

H(W ⊗W +W ) + I

H(W ⊗W +W ) + Ā

ηI•f

f

id+ηI
id+h

id+ī

f̄

Shortly, the triangle

W ⊗W +W RI

Ā

f#

h

f̄†

(4.26)

commutes.
Observe that also the triangle

RW

RRI RI

̂e#

Re#

µ

(4.27)

commutes since RW is the free iterative algebra on ηW : W → RW and the three morphisms
above are homomorphisms of H-algebras which are merged by ηW—indeed:

ê#·ηW = e#

as well as
µ·Re#·ηW = µ·ηRI ·e

# = e#.

Let us verify that
sI,W ·(e

# ⊗W ) = (e ∗W )#. (4.28)

Indeed, for e : W → HW+I and f = ηW form ê as in (4.15) and observe that ê = ηW •(e∗W )
holds. Now recall from Equation (4.19) that sRI,W = η♭W . Thus, we have

sRI,W ·(e
# ⊗W ) = η♭W ·(e

# ⊗W )

= ê† by (4.16)

=
(
ηW • (e ∗W )

)†

= (e ∗W )# by Remark 4.4(iv).

We are now in the position to demonstrate (4.25):
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W• ⊗W• (W• ⊗W•) +W•

RI ⊗W• RW

RI ⊗RI RRI RI Ā

inl

(e∗W•)#e#⊗W (4.28)

sR
f#

(4.21)

RI⊗e# Re# ̂e#

f̄†

sR µI h

(4.27)
(4.26)

(4) We shall prove for the lower passage of (4.23) that

m̄·
(
(h·ē#)⊗ (h·ē#)

)
= f̄ †· inl : W ⊗W → Ā.

Since the homomorphism h : RI → A preserves solutions and, by Remark 4.4(iv), e# is the
solution of ηI • e in RI, it follows that ē† = h·e# (cf. (4.26)). So we will prove that

f̄ † =
[
m̄·(ē† ⊗ ē†), ē†

]
: W ⊗W +W → Ā.

To see this it suffices to verify that the following diagram

W ⊗W +W Ā

H(W ⊗W +W ) + Ā HĀ+ Ā

[m̄·(ē†⊗ē†),ē†]

f̄ [ā,Ā]

H[m̄·(ē†⊗ē†),ē†]+Ā

(4.29)

commutes. In order to do so we consider the components of the upper left-hand coproduct
separately. For the right-hand component with domain W we obtain

W Ā

HW + I HW + Ā

H(W ⊗W +W ) + Ā HĀ+ Ā

ē†

e ē

HW+ī

H inr+ī H inr+Ā Hē†+Ā

[ā,Ā]

H[m̄·(ē†⊗ē†),ē†]+Ā

This diagram commutes: the upper right-hand part commutes since ē† is a solution of ē,
and all other inner parts are obvious.

For the left-hand component of (4.29) we prove that the following diagram
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W ⊗W Ā⊗ Ā Ā

(HW ⊗W ) +W (HĀ+ Ā)⊗W (HĀ⊗ Ā) + (Ā⊗ Ā)

H(W ⊗W ) +W H(Ā⊗ Ā) + Ā HĀ+ Ā

H(W ⊗W ) +HW + Ā H(Ā⊗ Ā) +HĀ+ Ā

H(W ⊗W +W ) + Ā H(Ā⊗ Ā+ Ā) + Ā HĀ+ Ā

ē†⊗ē† m̄

(vii) (ii)

e⊗W (iv) m̄·([ā,Ā]⊗Ā)

(Hē†+ī)⊗W id⊗ē†

(sH+W ) (v)

id+ē (vi)

Hm̄·sH+m̄

H(ē†⊗ē†)+ē† Hm̄+Ā

id+[ā,Ā]

can+Ā (viii) (ix)can+Ā

H(ē†⊗ē†)+Hē†+Ā

Hm̄+[ā,Ā]

H(ē†⊗ē†+ē†)+Ā H[m̄,Ā]+Ā

H[m̄·(ē†⊗ē†),ē†]+Ā

[ā,Ā]f̄ · inl

(i)

(iii) [ā,A]⊗ē†

commutes: the left-hand part (i) commutes by the definition of f̄ = 〈e〉 and right-hand
part (ii) is obvious since Ā is an H-monoid, i.e., ā·Hm̄·sH = m̄·(ā ⊗ Ā). For part (iii)
observe that (HW ⊗W )+W = (HW +I)⊗W and use Diagram (2.3) and Equation (4.24).
In part (iv) we use the distributivity for the object in the lower right-hand corner: (HĀ+
Ā)⊗ Ā = HĀ⊗ Ā+ Ā⊗ Ā—the commutativity is then obvious. We postpone part (v) to
the end. Part (vi) commutes by using (2.3). Parts (vii) and (viii) are trivial. We do not
claim that part (ix) commutes, but it clearly does when post-composed with [ā, Ā], which
suffices for the commutativity of the outside of the diagram. Finally, it remains to prove
that part (v) commutes: we consider the components of the coproduct (HW ⊗W ) + W
separately. For the right-hand component we obtain the commutative diagram

W = I ⊗W Ā⊗W Ā⊗ Ā

I ⊗ Ā

W Ā

ī⊗W Ā⊗ē†

I⊗ē† ī⊗Ā

m̄

ē†

(4.30)

and for the left-hand one consider the diagram below

HW ⊗W HĀ⊗ Ā H(Ā⊗ Ā)

H(W ⊗W ) H(Ā⊗ Ā) HĀ

Hē†⊗ē† sH

sH Hm̄

H(ē†⊗ē†) Hm̄

(4.31)
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This completes the proof.

Theorem 4.18. Let H be a finitary, point-strong endofunctor. Then the monoid TI from
Corollary 4.14 is the initial completely iterative H-monoid.

Notice that our proof below uses just the existence of the completely iterative algebras
for H (cf. Example 4.7) and not finitariness of H directly.

Proof. Analogously to the preceding proof, for a completely iterative H-monoid (Ā, ī, m̄, ā)
we know that there exists a unique H-algebra homomorphism

h : TI → Ā with h·ηTI = ī

and it is our task to prove that it preserves multiplication:

TI ⊗ TI TTI TI

Ā⊗ Ā Ā

sT µT

h⊗h h

m̄

(4.32)

To prove this, we define an equation morphism in Ā:

e : TI ⊗ TI = HTI ⊗ TI + TI → H(TI ⊗ TI) + Ā

such that both passages of (4.32) are solutions of e in Ā: put

e = sHTI,T I + h.

For the upper passage of (4.32) we need to verify that the square

TI ⊗ TI Ā

H(TI ⊗ TI) + Ā HĀ+ Ā

h·µT ·sT

e [ā,Ā]

H(h·µT ·sT )+Ā

(4.33)

commutes. Consider the components of HTI ⊗ TI + I ⊗ TI separately. The left-hand
component yields

H(TI ⊗ TI) HTTI HTI HĀ

HTI ⊗ TI

TI ⊗ TI TTI TI Ā

H(TI ⊗ TI)

H(TI ⊗ TI) + Ā HTTI + Ā HTI + Ā HĀ

sH

HsT HµT
Hh

sH

τ⊗TI

e

sT µT
h

τ τ ā

inl

HsT+Ā HµT+Ā Hh+Ā

[ā,Ā]
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The two upper right-hand squares commute since µT and h are homomorphisms of algebras,
the upper left-hand square is Diagram (4.10) and the lower left-hand part is obvious. Thus,
since the outside of the diagram clearly commutes we see that its lower part (4.33) commutes
when extended by the left-hand injection τI ⊗ TI, as desired.

The right-hand component of (4.33) yields

I ⊗ TI = TI

TI ⊗ TI TTI TI Ā

Ā H(TI ⊗ TI) + Ā HĀ+ Ā

h

ηT⊗TI ηT T

sT

e

µT

h

inr H(h·µT ·sT )+Ā

[ā,Ā]

Since all other parts clearly commute we see that the right-hand lower part (4.33) commutes
when extended by the coproduct injection ηTI ⊗TI as desired. For the lower passage of (4.32)
we verify that the square

TI ⊗ TI Ā⊗ Ā Ā

H(TI ⊗ TI) + Ā H(Ā⊗ Ā) + Ā HĀ+ Ā

h⊗h ā

e [ā,Ā]

H(h⊗h)+Ā Hm̄+Ā

(4.34)

commutes. The left-hand component of TI ⊗ TI = (HTI + I) ⊗ TI = (HTI ⊗ TI) + TI
(with coproduct injections τ ⊗ TI and ηT ⊗ TI) yields

HTI ⊗ TI HĀ⊗ Ā H(Ā⊗ Ā) HĀ

H(TI ⊗ TI) TI × TI Ā⊗ Ā Ā

H(TI ⊗ TI) + Ā H(Ā⊗ Ā) + Ā HĀ+ Ā

Hh⊗h sH Hm̄

sH τ⊗TI ā⊗Ā ā

inl e [ā,Ā]

H(h⊗h)+Ā Hm̄+Ā

h⊗h m̄

The upper right-hand square is Diagram (3.4) and the middle one commutes since h is an
H-algebra homomorphism. The left-hand part is clear since e = sH+h. The lowest passage
in the last diagram is

ā·Hm̄·H(h⊗ h)·sH = ā·Hm̄·sH ·(Hh⊗ h)

due to the naturality of sH . Thus, the outside of the diagram commutes, showing that
(4.34) commutes when extended by τI ⊗ TI.
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Finally, the right-hand component of (4.34) is obvious:

I ⊗ TI = TI

Ā TI ⊗ TI Ā⊗ Ā Ā

H(TI ⊗ TI) + Ā H(Ā⊗ Ā) + Ā HĀ+ Ā

h ηT⊗TI ī⊗h
h

h⊗h ā

inl e

H(h⊗h)+Ā Hm̄+Ā

[ā,Ā]

The lower passage is h and so is the upper one:

ā·(̄i⊗ h) = a·(i⊗ Ā)·(I ⊗ h) = I ⊗ h.

This shows that (4.34) commutes when extended by ηTI ⊗TI, which completes the proof.

Corollary 4.19. For every signature Σ the presheaf Tλ,Σ is the initial completely iterative
Hλ,Σ-monoid, and the presheaf Rλ,Σ is the initial iterative Hλ,Σ-monoid.

Indeed, SetF is monoidally locally finitely presentable category and Hλ,Σ is finitary
and point-strong by Corollary 3.5. Moreover, Rλ,Σ(V ) = Rλ,Σ by Theorem 2.19, and
Tλ,Σ(V ) = Tλ,Σ by Theorem 4.18.

5. Higher-Order Recursion Schemes

We can reformulate (and slightly extend) higher-order recursion schemes (1.1) categorically.

Throughout this section we put W = SetF .

Definition 5.1. A higher-order recursion scheme on a signature Σ (of “terminals”) is a
presheaf morphism

e : X → Fλ,Σ ⊗ (X + V ) (5.1)

where X is a finitely presentable presheaf.

Remark 5.2.

(i) The presheaf Fλ,Σ ⊗ (X + V ) assigns to a context Γ the set Fλ,Σ(X(Γ) + Γ) of finite

λ-terms in contexts Γ ⊆ X(Γ) + Γ.
(ii) Although Fλ,Σ is the free Hλ,Σ-algebra on V , see Theorem 2.7, it is not in general true

that Fλ,Σ ⊗ Z is the free Hλ,Σ-algebra on a presheaf Z. For example, if Z = V × V ,
then terms in (Fλ,Σ⊗Z)(Γ) are precisely the finite λ-Σ-terms whose free variables are
substituted by pairs in Γ×Γ. In contrast, the free Hλ,Σ-algebra on V × V contains in
context Γ also terms such as λx.(x, y) for y ∈ Γ, that is, in variable pairs one member
can be bound and one free.

(iii) In the introduction we considered, for a given context

Γnt = {p1, . . . , pn}

of “nonterminals”, a system of equations pi = fi, where fi is a λ-Σ-term in some
context Γ0 = {x1, . . . , xk}. Let X be the free presheaf in n generators p1, . . . , pn of
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context Γ0 (a coproduct of n copies of F (Γ0,−), see Example 2.2(ii)). Then the
system of equations defines the unique morphism

e : X → Fλ,Σ ⊗ (X + V )

assigning to every pi the right-hand side fi lying in

Fλ,Σ(Γnt + Γ0) ⊆ Fλ,Σ(X(Γ0) + Γ0).

Here we consider Fλ,Σ as an object of Fin(Set,Set).
(iv) Conversely, every morphism (5.1) yields a system of equations pi = fi as follows: let

Γ0 fulfill (2.6) in Definition 2.14, and define Γnt = X(Γ0). The element fp = eΓ0(p)
lies, for every nonterminal p ∈ Γnt, in Fλ,Σ(Γnt+Γ0). We obtain a system of equations
p = fp describing the given morphism e.

(v) We will use the presheaf Rλ,Σ for our uninterpreted solutions of recursion schemes:
A solution of the system of (formal) equations pi = fi are rational λ-Σ-terms

p†1, . . . , p
†
n making those equations identities in Rλ,Σ(Γ0) when we substitute in fi

the λ-Σ-terms p†j for the nonterminals pj (j = 1, . . . , n). This is expressed by the
Definition 5.3 below.

(vi) The general case of “equation morphisms” as considered in [2] is (for the endofunctor
Hλ,Σ) a morphism of type e : X → Rλ,Σ(X + V ). We see that every higher-order
recursion scheme gives an equation morphism via the inclusion Fλ,Σ →֒ Rλ,Σ and the
strength of the monad Rλ,Σ (but not necessarily conversely). Our solution theorem
below is an application of the general result of [2].

Definition 5.3. A solution of a higher-order recursion scheme e : X → Fλ,Σ ⊗ (X + V ) is

a morphism e† : X → Rλ,Σ such that the square below, where j : Fλ,Σ → Rλ,Σ denotes the
embedding, commutes:

X
e†

//

e
��

Rλ,Σ

Fλ,Σ ⊗ (X + V )

j⊗(X+V )
��

Rλ,Σ ⊗ (X + V )
Rλ,Σ⊗[e†,i]

// Rλ,Σ ⊗Rλ,Σ

m

OO

Example 5.4. The equation for the fixed-point combinator (see Example 1.1) with Σ = ∅
defines e whose domain is the terminal presheaf 1, that is, e : 1→ Fλ⊗(1+V ). The solution
e† : 1→ Rλ assigns to the unique element of 1 the tree (1.2).

Remark 5.5. Recursion schemes such as p1 = p1 make no sense—and they certainly fail
to have a unique solution. In general, we want to avoid right-hand sides of the form pi.
A recursion scheme is called guarded if no right-hand side lies in Γnt. (Theorem 5.7 below
shows that no other restrictions are needed.) Guardedness can be formalized as follows:
since

Rλ,Σ = Hλ,Σ(Rλ,Σ) + V with injections ̺V and i

by Remark 4.12, we have (see Remark 3.2(i))

Rλ,Σ ⊗ (X + V ) ∼= Hλ,Σ(Rλ,Σ)⊗ (X + V ) +X + V
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with coproduct injections ̺V ⊗ idX+V and i ⊗ idX+V . Then e is guarded if its extension
(j ⊗ (X + V ))·e : X → Rλ,Σ ⊗ (X + V ) factorizes through the embedding of the first and
third summand of this coproduct:

Definition 5.6. A higher-order recursion scheme e : X → Fλ,Σ⊗ (X +V ) is called guarded
if (j ⊗ (X + V ))·e factorizes through

[
̺⊗ id, (i⊗ id)· inr

]
: Hλ(Rλ,Σ)⊗ (X + V ) + V → Rλ,Σ ⊗ (X + V ).

Theorem 5.7. Every guarded higher-order recursion scheme has a unique solution.

Remark. In Definition 5.1 we restricted higher-order recursion schemes to have Fλ,Σ in
their codomain. This corresponds well to the classical notion of recursion schemes as ex-
plained in Remark 5.2. Moreover, this leads to a simple presentation of the interpreted
semantics in Section 6 below. However, Theorem 5.7 remains valid if we replace Fλ,Σ

by Rλ,Σ in Definition 5.1 and define solution by e† = m · Rλ,Σ ⊗ [e†, i] · e. This extends
the notion of a higher-order recursion scheme (1.1) to allow the right-hand sides fi to be
rational λ-Σ-terms. We shall prove Theorem 5.7 working with higher-order schemes of the
form e : X → Rλ,Σ ⊗ (X + V ), X finitely presentable. We call e guarded if it factorizes
through [̺⊗ id, (i⊗ id)· inr].

Proof. Let us apply the monad Rλ,Σ and its point-strength sR from Theorem 4.10. We
construct for every higher-order recursion scheme e : X → Rλ,Σ(V ) ⊗ (X + V ) a rational
equation morphism ē : X → Rλ,Σ(X + V ) in the sense of [2] as follows:

ē ≡ X
e
−→ Rλ,Σ(V )⊗ (X + V )

sR
(V,id)(X+V,inr)
−−−−−−−−−−→ Rλ,Σ(X + V ).

From the guardedness of e we conclude that ē is guarded in the sense of [2], that is, ē factor-
izes through the summand Hλ,ΣRλ,Σ(X+V )+V of Rλ,Σ(X+V ), see Remark 4.12. Indeed,
this follows from the following diagram

Hλ,Σ(Rλ,Σ)⊗ (X + V ) + V Hλ,Σ(Rλ,Σ(X + V )) + V

X Rλ,Σ ⊗ (X + V ) Rλ,Σ(X + V )

Hλ,Σs
R+id

e sR

Consequently, by Theorem 4.5 in [2] there exists a unique solution ē† of ē with respect to
the monad Rλ,Σ—this means that there exists a unique morphism ē† : X → Rλ,Σ(V ) such
that the outside of the diagram below commutes:

X Rλ,Σ(V )

Rλ,Σ(V )⊗ (X + V ) Rλ,Σ(V )⊗ Rλ,Σ(V )

Rλ,Σ(X + V ) Rλ,Σ(V )(Rλ,Σ(V ))

ē†

e

Rλ,Σ(idV )⊗[ē†,i]

m

sR
(V,id)(X+V,inr)

sR
(V,id)(Rλ,Σ,i)

Rλ,Σ[ē
†,i]

µV
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Since the right-hand triangle is Equation (4.20) and the lower square commutes by the
naturality of sR, we see that ē† is a solution of e in the sense of Definition 5.3 iff ē† is a
solution of ē in the sense of [2]. This proves that e has a unique solution.

Remark 5.8. Analogously we could define a solution of a higher-order recursion scheme
of the form e : X → Tλ,Σ ⊗ (X + V ) in the initial completely iterative monoid Tλ,Σ, see
Theorem 3.11. (Here we, moreover, do not need to assume that X is finitely presentable.)
And guardedness means here that e factorizes through the summandHλ,ΣTλ,Σ⊗(X+V )+V
of Tλ,Σ ⊗ (X + V ) (cf. Remarks 4.9 and 3.2(i)). Every such guarded scheme has a unique
solution in Tλ,Σ. The proof is completely analogous to the previous one for Rλ,Σ but using
Corollary 3.8 in [1] in lieu of Theorem 4.5 from [2].

Remark 5.9. Notice that the definitions and results in this section generalize to the set-
ting as considered in Section 4 (see Assumption 4.1). Simply replace Hλ,Σ by the finitary
functor H, the monoid Fλ,Σ by the initial H-monoid F ; this exists and is given by the
free H-algebra on V , see [10]. Further replace the monoid Rλ,Σ by the initial iterative
H-monoid RI (cf. Theorem 4.17), and Tλ,Σ by the initial completely iterative H-monoid
(cf. Theorem 4.18).

6. Interpreted Solutions

In the present section we prove that every Scott model of λ-calculus as a CPO, D, with
fold and unfold operations can be used as a model of higher-order recursion. Following
M. Fiore et al [10] we work with the presheaf 〈D,D〉 which to a context Γ assigns the set of
all continuous functions from DΓ to D. We prove that every higher-order recursion scheme
has a least solution in 〈D,D〉.

We denote by CPO the cartesian closed category of posets with directed joins and
continuous functions. Thus least elements are not assumed; if they exist we use ⊥ for them.

Assumption 6.1. We assume that a Scott model D of λ-calculus is given, i.e., a CPO
with ⊥ and with an embedding-projection pair

fold : CPO(D,D) ⊳ D : unfold . (6.1)

Moreover, for the given signature Σ of terminals we also assume that continuous operations

σD : Dn → D for every n-ary σ in Σ

are given.

Notation 6.2. We define a presheaf 〈D,D〉 by

〈D,D〉Γ = CPO(DΓ,D).

Remark 6.3.

(a) Observe that elements of 〈D,D〉 can always be interpreted in D: the above function
fold : 〈D,D〉1 → D yields obvious functions foldΓ : 〈D,D〉Γ → D for all contexts Γ via
induction: define foldΓ+1 by

〈D,D〉(Γ + 1) ∼= CPO(DΓ ×D,D) D

CPO(DΓ,DD) CPO(DΓ,D)

foldΓ+1

foldΓcurry

CPO(DΓ,fold)
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where curry : CPO(DΓ ×D,D)→ CPO(DΓ,DD) is the currification.
(b) The projections DΓ → D are continuous functions, that is, elements of 〈D,D〉Γ. This

defines a natural pointing
ι : V → 〈D,D〉

of the presheaf 〈D,D〉.

Remark 6.4. The presheaf 〈D,D〉 is an Hλ,Σ-monoid. Indeed, application and abstraction
are naturally obtained from (6.1), see [10]. The monoid structure

m : 〈D,D〉 ⊗ 〈D,D〉 → 〈D,D〉

can be described directly by using the coend formula (3.2) or indirectly:

(a) For the direct description consider the component of mΓ corresponding, for an element
f ∈ Set(Γ,CPO(DΓ,D)), to the injection

inf : CPO(DΓ,D)→

∫ Γ

Set(Γ,CPO(DΓ,D)) •CPO(DΓ,D).

Observe that f yields a continuous function f̃ : DΓ → DΓ̄ defined by f̃(x) = f(−)(x)
for all x ∈ Γ. We define the component mΓ· inf of mΓ by

〈D,D〉 ⊗ 〈D,D〉(Γ) =

∫ Γ̄

Set(Γ̄,CPO(DΓ,D)) •CPO(DΓ̄,D) CPO(DΓ,D) = 〈D,D〉Γ

CPO(DΓ̄,D)

mΓ

inf g 7→g·f̃
(6.2)

(b) There is a much more elegant way of obtaining the monoid structure of 〈D,D〉. From

results of Steve Lack [14] we see that the monoidal category (SetF ,⊗, V ) has the
following monoidal action ∗ on CPO: given X in SetF and C in CPO, we put X ∗C =∫ Γ

X(Γ) • CΓ. Moreover, extending the above notation to pairs C, C ′ of CPO’s and

defining 〈C,C ′〉Γ = CPO(CΓ, C ′) we obtain a presheaf with a natural isomorphism

SetF (X, 〈C,C ′〉) ∼= CPO(X ∗ C,C ′).

As observed by George Janelidze and Max Kelly [13] this yields an enriched category
whose hom-objects are 〈C,C ′〉. In particular, 〈D,D〉 receives a monoid structure. It is
tedious but not difficult to prove that this monoid structure is given by (6.2) above and
it forms an Hλ,Σ-monoid (cf. Definition 3.6).

Notation 6.5. We denote by
[[−]] : Fλ,Σ → 〈D,D〉

the unique Hλ,Σ-monoid homomorphism (see Theorem 3.9). For every finite term t in

context Γ we thus obtain its interpretation as a continuous function [[t]]Γ : DΓ → D

Remark 6.6. What is our intuition of an interpreted solution of higher order recursion
scheme e : X → Fλ,Σ ⊗ (X + V ) in the presheaf 〈D,D〉? This should be an interpretation
of X-terms in 〈D,D〉 via a natural transformation

e† : X → 〈D,D〉
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with the following property: Given an X-term x in context Γ, then eΓ assigns to it an
element eΓ(x) of (Fλ,Σ ⊗ (X + V ))(Γ), that is, a finite term t ∈ Fλ,Σ(Γ) for some Γ ⊆

X(Γ) + Γ. We request that the solution assigns to x the same value e†Γ(x) : D
Γ → D that

we obtain from the interpretation [[t]]1 of the given term by substituting the Γ-variables
using [e†, ι] : X + V → 〈D,D〉. This substitution is given by composing [[−]] ⊗ [e†, ι] with
the monoid structure of 〈D,D〉. This leads to the following

Definition 6.7. Given a higher-order recursion scheme e : X → Fλ,Σ ⊗ (X + V ) by an

interpreted solution is meant a presheaf morphism e† : X → 〈D,D〉 such that the square
below commutes:

X
e†

//

e
��

〈D,D〉

Fλ,Σ ⊗ (X + V )
[[−]]⊗[e†,ι]

// 〈D,D〉 ⊗ 〈D,D〉

m

OO

(6.3)

Theorem 6.8. Every higher-order recursion scheme has a least interpreted solution in
〈D,D〉 in the pointwise ordering of SetF (X, 〈D,D〉).

Proof. Observe that SetF (X, 〈D,D〉) is a CPO with ⊥. Therefore it is sufficient to prove

that the endomap of SetF (X, 〈D,D〉) given by

s 7→ m · ([[−]]⊗ [s, ι]) · e (6.4)

is continuous, then we can use the Kleene Fixed-Point Theorem. Observe that the func-
tion (6.4) is a composite

SetF (X, 〈D,D〉) SetF (X, 〈D,D〉)

SetF (X + V, 〈D,D〉) SetF (Fλ,Σ ⊗ (X + V ), 〈D,D〉)

s 7→m·([[−]]⊗[s,ι])·e

[−,ι] −·e

z 7→m·(idFλ,Σ
⊗z)

(6.5)

where the vertical arrows are obviously continuous. It remains to prove the continuity of

z 7→ m·(id⊗z) for z : Z → 〈D,D〉

where Z = X + V (but this structure of Z plays no role).
We use the coend formula (3.2). It is obvious what the components of

(id⊗z)Γ :

∫ Γ̄

Set(
(
Γ̄, Z(Γ)

)
• 〈D,D〉Γ̄→

∫ Γ̄

Set
(
Γ̄, 〈D,D〉Γ

)
• 〈D,D〉Γ̄

are: the Γ̄-component composed with the coproduct injection of u ∈ Set(Γ̄, Z(Γ)) yields
the coproduct injection of

f = zΓ·u ∈ Set
(
Γ̄, 〈D,D〉Γ

)
.

Combined with the component of mΓ, see (6.2), this yields the components of (m·(id⊗z))Γ
as follows: for every context Γ̄ the component composed with the coproduct injection inu
of u is the map

g 7→ g·z̃Γ·u for g ∈ 〈D,D〉Γ̄.
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We are ready to prove that the lower horizontal arrow of (6.5) is continuous. Suppose

z =
⊔

k∈K

zk

is a directed join in the pointwise ordering of SetF (X + V, 〈D,D〉). In order to prove the
equality

m·(id⊗z) =
⊔

k∈K

m·(id⊗zk)

in SetF , we choose an arbitrary context Γ and prove that

mΓ·(id⊗zΓ) =
⊔

k∈K

mΓ·(id⊗z
k
Γ)

holds in Set. For that use the fact that the injection maps, for all contexts Γ̄ and all
u ∈ Set(Γ̄, Z(Γ)),

〈D,D〉Γ̄
inu−−−→ Set

(
Γ̄, Z(Γ)

)
• 〈D,D〉Γ̄

inΓ̄−−−→

∫ Γ̄

Set
(
Γ̄, Z(Γ)

)
• 〈D,D〉Γ̄

form a collectively epimorphic cocone. Thus, it is sufficient to prove that for every context Γ̄
and every g ∈ 〈D,D〉Γ̄ we have

g·z̃Γ·u =
⊔

k∈K

g·z̃kΓ·u.

Since g is continuous from DΓ̄ to D, we just need to verify

z̃Γ·u =
⊔

k∈K

z̃kΓ·u.

From the pointwise ordering we clearly get zΓ·u =
⊔

k∈K zkΓ·u, thus, we only need to observe

the continuity of the map f 7→ f̃ , and this follows from the coordinate-wise ordering of DΓ.

7. Conclusions

We proved that guarded higher-order recursion schemes have a unique uninterpreted so-
lution, i.e., a solution as a rational λ-Σ-term. And they also have the least interpreted
solution for interpretations based on Scott’s models of λ-calculus as CPO’s with continuous
operations for all “terminal” symbols of the recursion scheme.

Following M. Fiore et al [10] we worked in the category SetF of sets in context, that
is, covariant presheaves on the category F of finite sets and functions. A presheaf is a set
dependent on a context (a finite set of variables). For every signature Σ of “terminal” oper-
ation symbols it was proved in [10] that the presheaf Fλ,Σ of all finite λ-Σ-terms is the initial
Hλ,Σ-monoid. This means that Fλ,Σ has (i) the λ-operations (of abstraction and applica-
tion) together with the operations given by Σ rendering an Hλ,Σ-algebra, (ii) the operation
expressing simultaneous substitution rendering a monoid in the category of presheaves, and
(iii) these two structures are canonically related. And Fλ,Σ is the initial presheaf with such
structure. R. Matthes and T. Uutalu [16] showed that the presheaf Tλ,Σ of finite and infi-
nite λ-Σ-terms is also an Hλ,Σ-monoid. Here we proved that this is the initial completely
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iterative Hλ,Σ-monoid. And its subpresheaf Rλ,Σ of all rational λ-Σ-terms is the initial iter-
ative Hλ,Σ-monoid. We used that last presheaf in our uninterpreted semantics of recursion
schemes.

Our approach was based on untyped λ-calculus. The ideas in the typed version are
quite analogous. If S is the set of all types, then we form the full subcategory F of SetS of
finite S-sorted sets and consider presheaves in (SetS)F—the latter category is equivalent to
that of finitary endofunctors of the category SetS . The definition of Hλ,Σ is then completely
analogous to the untyped case, and one can form the presheaves Fλ,Σ (free algebra on V ),
Tλ,Σ (free completely iterative algebra) and Rλ,Σ (free iterative algebra). Each of them is a
monoid, in fact, an Hλ,Σ-monoid in the sense of [10]. Moreover, every guarded higher-order
recursion scheme has a unique solution in Rλ,Σ. The interpreted semantics can be built
up on a CPO-enriched cartesian closed category (as our model of typed λ-calculus) with
additional continuous morphisms for all terminals. The details of the typed version are
more involved, and we leave them for future work.

Related results on higher-order substitution can be found e.g. in [16] and [20].
In future work we will, analogously as in [18], investigate the relation of uninterpreted

and interpreted solutions.
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