
Logical Methods in Computer Science
Vol. 9(1:13)2013, pp. 1–26
www.lmcs-online.org

Submitted Feb. 29, 2012
Published Mar. 26, 2013

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS

SETH FOGARTY a, ORNA KUPFERMAN b, THOMAS WILKE c, AND MOSHE Y. VARDI d

a Computer Science Department, Trinity University, San Antonio, TX
e-mail address: sfogarty@trinity.com

b School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel
e-mail address: orna@cs.huji.ac.il

c Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
e-mail address: wilke@ti.informatik.uni-kiel.de

d Department of Computer Science, Rice University, Houston, TX
e-mail address: vardi@cs.rice.edu

Abstract. Complementation of Büchi automata, required for checking automata con-
tainment, is of major theoretical and practical interest in formal verification. We consider
two recent approaches to complementation. The first is the rank-based approach of Kupfer-
man and Vardi, which operates over a dag that embodies all runs of the automaton. This
approach is based on the observation that the vertices of this dag can be ranked in a
certain way, termed an odd ranking, iff all runs are rejecting. The second is the slice-based

approach of Kähler and Wilke. This approach tracks levels of “split trees” – run trees in
which only essential information about the history of each run is maintained. While the
slice-based construction is conceptually simple, the complementing automata it generates
are exponentially larger than those of the recent rank-based construction of Schewe, and
it suffers from the difficulty of symbolically encoding levels of split trees.

In this work we reformulate the slice-based approach in terms of run dags and pre-
orders over states. In doing so, we begin to draw parallels between the rank-based and
slice-based approaches. Through deeper analysis of the slice-based approach, we strongly
restrict the nondeterminism it generates. We are then able to employ the slice-based ap-
proach to provide a new odd ranking, called a retrospective ranking, that is different from
the one provided by Kupferman and Vardi. This new ranking allows us to construct a
deterministic-in-the-limit rank-based automaton with a highly restricted transition func-
tion. Further, by phrasing the slice-based approach in terms of ranks, our approach affords
a simple symbolic encoding and achieves the tight bound of Schewe’s construction.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Automata over
infinite objects; [Software and its engineering]: Software organization and properties—Software func-
tional properties—Formal methods—Model checking.

Key words and phrases: Automata Theory, Omega Automata, Büchi Automata, Büchi Complementation,
Model Checking.

a The authors are grateful to Yoad Lustig for his extensive help in analyzing the original slice-based
construction. Work supported in part by NSF grants CNS-1049862 and CCF-1139011, by NSF Expeditions
in Computing project ”ExCAPE: Expeditions in Computer Augmented Program Engineering,” by BSF
grant 9800096, and by gift from Intel. Work by Seth Fogarty done while at Rice University.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:13)2013

c© S. Fogarty, O. Kupferman, T. Wilke, and M. Y. Vardi
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

1. Introduction

The complementation problem for nondeterministic automata is central to the automata-
theoretic approach to formal verification [Var07b]. To test that the language of an automa-
ton A is contained in the language of a second automaton B, check that the intersection of
A with an automaton that complements B is empty. In model checking, the automaton A

corresponds to the system, and the automaton B corresponds to a property [VW86]. While
it is easy to complement properties given as temporal logic formulas, complementation of
properties given as automata is not simple. Indeed, a word w is rejected by a nondeterminis-
tic automaton A if all runs of A on w reject the word. Thus, the complementary automaton
has to consider all possible runs, and complementation has the flavor of determinization.
Representing liveness, fairness, or termination properties requires automata that recognize
languages of infinite words. Most commonly considered are nondeterministic Büchi au-
tomata, in which some of the states are designated as accepting, and a run is accepting
if it visits accepting states infinitely often [Büc62]. For automata on finite words, deter-
minization, and hence also complementation, is done via the subset construction [RS59].
For Büchi automata the subset construction is not sufficient, and optimal complementation
constructions are more complicated [Var07a].

Efforts to develop simple complementation constructions for Büchi automata started
early in the 60s, motivated by decision problems of second-order logics. Büchi suggested a
complementation construction for nondeterministic Büchi automata that involved a Ramsey-
based combinatorial argument and a doubly-exponential blow-up in the state space [Büc62].

Thus, complementing an automaton with n states resulted in an automaton with 22
O(n)

states. In [SVW87], Sistla et al. suggested an improved implementation of Büchi’s con-

struction, with only 2O(n2) states, which is still not optimal. Only in [Saf88] Safra introduced

a determinization construction, based on Safra trees, which also enabled a 2O(n logn) com-
plementation construction, matching a lower bound described by Michel [Mic88]. A careful
analysis of the exact blow-up in Safra’s and Michel’s bounds, however, reveals an expo-
nential gap in the constants hiding in the O() notations: while the upper bound on the
number of states in the complementary automaton constructed by Safra is n2n, Michel’s
lower bound involves only an n! blow up, which is roughly (n/e)n. In addition, Safra’s
construction has been resistant to optimal implementations [ATW06, THB95], which has
to do with the complicated combinatorial structure of its states and transitions, which can
not be encoded symbolically.

The use of complementation in practice has led to a resurgent interest in the exact
blow-up that complementation involves and the feasibility of a symbolic complementation
construction. In 2001, Kupferman and Vardi suggested a new analysis of runs of Büchi
automata that led to a simpler complementation construction [KV01]. In this analysis,
one considers a dag that embodies all the runs of an automaton A on a given word w.
It is shown in [KV01] that the nodes of this dag can be mapped to ranks, where the
rank of a node essentially indicates the progress made towards a suffix of the run with
no accepting states. Further, all the runs of A on w are rejecting iff there is a bounded

odd ranking of the dag: one in which the maximal rank is bounded, ranks along paths
do not increase, paths become trapped in odd ranks, and nodes associated with accepting
states are not assigned an odd rank. Consequently, complementation can circumvent Safra’s
determinization construction along with the complicated data structure of Safra trees, and
can instead be based on an automaton that guesses an odd ranking. The state space of such

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 3

an automaton is based on annotating states in subsets with the guessed ranks. Beyond the
fact that the rank-based construction can be implemented symbolically [TV07], it gave rise
to a sequence of works improving both the blow-up it involves and its implementation in
practice. The most notable improvements are the introduction of tight rankings [FKV06]
and Schewe’s improved cut-point construction [Sch09]. These improvements tightened the
(6n)n upper bound of [KV01] to (0.76n)n. Together with recent work on a tighter lower
bound [Yan06], the gap between the upper and lower bound is now a quadratic term.
Addressing practical concerns, Doyen and Raskin have introduced a useful subsumption
technique for the rank-based approach [DR09].

In an effort to unify Büchi complementation with other operations on automata, Kähler
and Wilke introduced yet another analysis of runs of nondeterministic Büchi automata
[KW08]. The analysis is based on reduced split trees, which are related to the Müller-Schupp
trees used for determinization [MS95]. A reduced split tree is a binary tree whose nodes are
sets of states as follows: the root is the set of initial states; and given a node associated with
a set of states, its left child is the set of successors that are accepting, while the right child
is the set of successors that are not accepting. In addition, each state of the automaton
appears at most once in each level of the binary tree: if it would appear in more than one set,
it occurs only in the leftmost one. The construction that follows from the analysis, termed
the slice-based construction, is simpler than Safra’s determinization, but its implementation
suffers from similar difficulties: the need to refer to leftmost children requires encoding of a
preorder, and working with reduced split trees makes the transition relation between states
awkward. Thus, as has been the case with Safra’s construction, it is not clear how the slice-
based approach can be implemented symbolically. This is unfortunate, as the slice-based
approach does offer a very clean and intuitive analysis, suggesting that a better construction
is hidden in it.

In this paper we reveal such a hidden, elegant, construction, and we do so by unifying
the rank-based and the slice-based approaches. Before we turn to describe our construction,
let us point to a key conceptual difference between the two approaches. This difference has
made their relation of special interest and challenge. In the rank-based approach, the ranks
assigned to a node bound the visits to accepting states yet to come. Thus, the ranks refer
to the future of the run, making the rank-based approach inherently nondeterministic. In
contrast, in the slice-based approach, the partition of the states of the automaton to the
different sets in the tree is based on previous visits to accepting states. Thus, the partition
refers to the past of the run, and does not depend on its future.

In order to draw parallels between the two approaches, we present a formulation of the
slice-based approach in terms of run dags. A careful analysis of the slice-based approach
then enables us to reduce the nondeterminism in the construction. We can then employ this
improved slice-based approach in order to define a particular odd ranking of rejecting run
dags, called a retrospective ranking. In addition to revealing the theoretical connections
between the two seemingly different approaches, the new ranks lead to a complementa-
tion construction with a transition function that is smaller and deterministic in the limit:
every accepting run of the automaton is eventually deterministic. This presents the first
deterministic-in-the-limit complementation construction that does not use determinization.
Determinism in the limit is central to verification in probabilistic settings [CY95] and has
proven useful in experimental results [ST03]. Phrasing slice-based complementation as an
odd ranking also immediately affords us the improved cut-point of Schewe, the subsumption
operation of Doyen and Raskin, and provides an easy symbolic encoding.

4 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

2. Preliminaries

A nondeterministic Büchi automaton on infinite words (NBW for short) is a tuple A =
〈Σ, Q,Qin, ρ, F 〉, where Σ is a finite alphabet, Q a finite set of states, Qin ⊆ Q a set of initial
states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a nondeterministic transition
relation. A state q ∈ Q is deterministic if for every σ ∈ Σ it holds that |ρ(q, σ)| ≤ 1.
We lift the function ρ to sets R of states in the usual fashion: ρ(R,σ) =

⋃

q∈R ρ(q, σ).

Further, we lift ρ to words word σ0 · · · σi by defining ρ(R,σ0 · · · σi) = ρ(ρ(R,σ0), σ1 · · · σi).
For completeness, let ρ(R, ǫ) = R.

An infinite run of an NBW A on a word w = σ0σ1 · · · ∈ Σω is an infinite sequence of
states p0, p1, . . . ∈ Qω such that p0 ∈ Qin and, for every i ≥ 0, we have pi+1 ∈ ρ(pi, σi).
Correspondingly, a finite run is a finite sequence of states p0, . . . , pn such that p0 ∈ Qin

and, for every 0 ≤ i < n, we have pi+1 ∈ ρ(pi, σi). When unspecified, a run refers to an
infinite run. A run is accepting iff pi ∈ F for infinitely many i ∈ IN. A word w ∈ Σω is
accepted by A if there is an accepting run of A on w. The words accepted by A form the
language of A, denoted by L(A). The complement of L(A), denoted L(A), is Σω \L(A). We
say an automaton is deterministic in the limit if every state reachable from an accepting
state is deterministic. Converting A to an equivalent deterministic in the limit automaton
involves an exponential blowup [CY95, Saf88]. One can simultaneously complement and
determinize in the limit, via co-determinization into a parity automaton [Pit06], and then
converting that parity automaton to a deterministic-in-the-limit Büchi automaton, with a
cost of (n2/e)n.

Run dags: Consider an NBW A and an infinite word w = σ0σ1 · · · . The runs of A on w
can be arranged in an infinite dag (directed acyclic graph) G = 〈V,E〉, where

• V ⊆ Q× IN is such that 〈q, i〉 ∈ V iff some finite or infinite run p of A on w has pi = q.

• E ⊆
⋃

i≥0
(Q×{i})× (Q×{i+1}) is s.t. E(〈q, i〉, 〈q′, i+1〉) iff 〈q, i〉 ∈ V and q′ ∈ ρ(q, σi).

The dag G, called the run dag of A on w, embodies all possible runs of A on w. We are
primarily concerned with initial paths in G: paths that start in Qin × {0}. Define a node
〈q, i〉 to be an F -node when q ∈ F , and a path in G to be accepting when it is both initial
and contains infinitely many F -nodes. An accepting path in G corresponds to an accepting
run of A on w. When G contains an accepting path, call G an accepting run dag, otherwise
call it a rejecting run dag. We often consider dags H that are subgraphs of G. A node u
is a descendant of v in H when u is reachable from v in H. A node v is finite in H if it has
only finitely many descendants in H. A node v is F -free in H if it is not an F -node, and
has no descendants in H that are F -nodes. We say a node splits when it has at least two
children, and conversely that two nodes join when they share a common child.

Example 2.1. In Figure 1 we describe an NBW A that accepts words with finitely many
letters b. On the right is a prefix of the rejecting run dag of A on w = babaabaaabaaaa · · · .

Rank-Based Complementation: If an NBW A does not accept a word w, then every
run of A on w must eventually cease visiting accepting states. The notion of rankings, fore-
shadowed in [Kla90] and introduced in [KV01], uses natural numbers to track the progress
of each run in the dag towards this point. A ranking for a dag G = 〈V,E〉 is a mapping
from V to IN, in which no F -node is given an odd rank, and in which the ranks along all
paths do not increase. Formally, a ranking is a function r : V → IN such that if u ∈ V is
an F -node then r(u) is even; and for every u, v ∈ V , if (u, v) ∈ E then r(u) ≥ r(v). Since

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 5

p q r

s

t
b b b

a b

a,b a a,b

a

a

p q r s t

p q r t

b

p q r s t

a

p q r t

b

p q r s t

a

3

3

3

3

3

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

Figure 1. Left, the NBW A, in which all states are initial. Right, the re-
jecting run dag G of A on w = babaabaaabaaaa · · · . Nodes are superscripted
with the prospective ranks of Section 2.

each path starts at a finite rank and ranks cannot increase, every path eventually becomes
trapped in a rank. A ranking is called an odd ranking if every path becomes trapped in
an odd rank. Since F -nodes cannot have odd ranks, if there exists an odd ranking r, then
every path in G must stop visiting accepting nodes when it becomes trapped in its final,
odd, rank, and G must be a rejecting dag.

Lemma 2.2. [KV01] If a run dag G has an odd ranking, then G is rejecting.

A ranking is bounded by l when its range is {0, ..., l}, and an NBW A is of rank l when
for every w 6∈ L(A), the rejecting dag G has an odd ranking bounded by l. If we can
prove that an NBW A is of rank l, we can use the notion of odd rankings to construct a
complementary automaton. This complementary NBW, denoted Al

R, tracks the levels of
the run dag and attempts to guess an odd ranking bounded by l. An l-bounded level ranking

for an NBW A is a function f : Q → {0, . . . , l,⊥}, such that if q ∈ F then f(q) is even or
⊥. Let Rl be the set of all l-bounded level rankings. The state space of Al

R is based on the

set of l-bounded level rankings for A. To define transitions of Al
R, we need the following

notion: for σ ∈ Σ and f, f ′ ∈ Rl, say that f ′ follows f under σ when for every q ∈ Q and
q′ ∈ ρ(q, σ), if f(q) 6= ⊥ then f ′(q′) 6= ⊥ and f ′(q′) ≤ f(q): i.e. no transition between f and
f ′ on σ increases in rank. Finally, to ensure that the guessed ranking is an odd ranking, we
employ the cut-point construction of Miyano and Hayashi, which maintains an obligation
set of nodes along paths obliged to visit an odd rank [MH84]. For a level ranking f , let
even(f) = {q | f(q) is even} and odd(f) = {q | f(q) is odd}.

Definition 2.3. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉 and l ∈ IN, define Al
R to be the NBW

〈Σ,Rl × 2Q, 〈f in, ∅〉, ρR,R
l × {∅}〉, where

• f in(q) = l for each q ∈ Qin, ⊥ otherwise.

• ρR(〈f,O〉, σ) =

{

{〈f ′, ρ(O,σ) \ odd(f ′)〉 | f ′ follows f under σ} if O 6= ∅,

{〈f ′, even(f ′)〉 | f ′ follows f under σ} if O = ∅.

By [KV01], for every l ∈ IN, the NBW Al
R accepts only words rejected by A — exactly

all words for which there exists an odd ranking with maximal rank l. In addition, [KV01]

6 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

proves that for every rejecting run dag there exists a bounded odd ranking. Below we
sketch the derivation of this ranking. Given a rejecting run dag G, we inductively define
a sequence of subgraphs by eliminating nodes that cannot be part of accepting runs. At
odd steps we remove finite nodes, while in even steps we remove nodes that are F -free.
Formally, define a sequence of subgraphs as follows:

• G0 = G.

• G2i+1 = G2i \ {v | v is finite in G2i}.

• G2i+2 = G2i+1 \ {v | v is F -free in G2i+1}.

It is shown in [GKSV03, KV01] that only m = 2|Q \ F | steps are necessary to remove
all nodes from a rejecting run dag: Gm is empty. Nodes can be ranked by the last graph
in which they appear: for every node u ∈ G, the prospective rank of u is the index i such
that u ∈ Gi but u 6∈ Gi+1. The prospective ranking of G assigns every node its prospective
rank. Paths through G cannot increase in prospective rank, and no F -node can be given an
odd rank: thus the prospective ranking abides by the requirements for rankings. We call
these rankings prospective because the rank of a node depends solely on its descendants.
By [KV01], if G is a rejecting run dag, then the prospective ranking of G is an odd ranking
bounded by m. By the above, we thus have the following.

Theorem 2.1. [KV01] For every NBW A, it holds that L(Am
R) = L(A).

Example 2.4. In Figure 1, nodes for states s and t are finite in G0. With these nodes
removed, r-nodes are F -free in G1. Without r-nodes, q-nodes are finite in G2. Finally,
p-nodes are F -free in G3.

Karmarkar and Chakraborty have derived both theoretical and practical benefits from
exploiting properties of this prospective ranking: they demonstrated an unambiguous com-
plementary automaton that, for certain classes of problems, is exponentially smaller than
Am

R [KC09].

Tight Rankings: For an odd ranking r and l ∈ IN, let max rank (r, l) be the maximum
rank that r assigns a vertex on level l of the run dag. We say that r is tight1 if there exists
an i ∈ IN such that, for every level l ≥ i, all odd ranks below max rank (r, l) appear on level
l. It is shown in [FKV06] that the retrospective ranking is tight. This observation suggests
two improvements to Am

R . First, we can postpone, in an unbounded manner, the level in
which it starts to guess the level ranking. Until this point, Am

R may use sets of states to
deterministically track only the levels of the run dag, with no attempt to guess the ranks.
Second, after this point, Am

R can restrict attention to tight level rankings – ones in which
all the odd ranks below the maximal rank appear. Formally, say a level ranking f with
a maximum rank max rank = max{f(q) | q ∈ Q, f(q) 6= ⊥} is tight when, for every odd
i ≤ max rank, there exists a q ∈ Q such that f(q) = i. Let Rm

T be the subset of Rm that
contains only tight level rankings. The size of Rm

T is at most (0.76n)n [FKV06]. Including
the cost of the cut-point construction, this reduces the state space of Am

R to (0.96n)n.

1This definition of tightness for an odd ranking is weaker that of [FKV06], but does not affect the resulting
bounds.

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 7

3. Analyzing dags With Profiles

In this section we present an alternate formulation of the slice-based complementation
construction of Kähler and Wilke [KW08]. Whereas Kähler and Wilke approached the
problem through reduced split trees, we derive the slice-based construction directly from
an analysis of the run dag. This analysis proceeds by pruning G in two steps: the first
removes edges, and the second removes vertices.

3.1. Profiles. Consider a run dag G = 〈V,E〉. Let the labeling function Λ: V → {0, 1}
be such that Λ(〈q, i〉) = 1 if q ∈ F and Λ(〈q, i〉) = 0 otherwise. Thus, Λ labels F -nodes by 1
and all other nodes by 0. The profile of a path in G is the sequence of labels of nodes in the
path. The profile of a node is then the lexicographically maximal profile of all initial paths
to that node. Formally, let ≤ be the lexicographic ordering on {0, 1}∗ ∪{0, 1}ω. The profile
of a finite path b = v0, v1, . . . , vn in G, written hb, is Λ(v0)Λ(v1) · · ·Λ(vn), and the profile
of an infinite path b = v0, v1, . . . is hb = Λ(v0)Λ(v1) · · · . Finally, the profile of a node v,
written hv, is the lexicographically maximal element of {hb | b is an initial path to v}. The
lexicographic order of profiles induces a preorder over nodes.

We define the sequence of preorders �i over the nodes on each level of the run dag as
follows. For every two nodes u and v on a level i, we have that u ≺i v if hu < hv, and u ≈i v
if hu = hv. For convenience, we conflate nodes on the ith level of the run dag with their
states when employing this preorder, and say q �i r when 〈q, i〉 �i 〈r, i〉. Note that ≈i is an
equivalence relation. Since the final element of a node’s profile is 1 iff the node is an F -node,
all nodes in an equivalence class must agree on membership in F . We call an equivalence
class an F -class when all its members are F -nodes, and a non-F -class when none of its
members is an F -node. We now use profiles in order to remove from G edges that are not
on lexicographically maximal paths. Let G′ be the subgraph of G obtained by removing all
edges 〈u, v〉 for which there is another edge 〈u′, v〉 such that u ≺|u| u

′. Formally, G′ = 〈V,E′〉
where E′ = E \ {〈u, v〉 | there exists u′ ∈ V such that 〈u′, v〉 ∈ E and u ≺|u| u

′}.

Lemma 3.1. For every two nodes u and v, if (u, v) ∈ E′, then hv ∈ {hu0, hu1}.

Proof. Assume by way of contradiction that hv 6∈ {hu0, hu1}. Recall that hv is the lexico-
graphically maximal element of {hb | b is an initial path to v}. Thus our assumption entails
an initial path b to v so that hb > hu1. Let u

′ be b|u|: the node on the same level of G as u.
Since b is a path to v, it holds that (u′, v) ∈ E. Further, hb > hu1, it must be that hu′ > hu.
By definition of E′, the presence of (u′, v) where hu′ > hu precludes the edge (u, v) from
being in E′ — a contradiction.

Note that while it is possible for two nodes with different profiles to share a child in G,
Lemma 3.1 precludes this possibility in G′. If two nodes join in G′, they must have the same
profile and be in the same equivalence class. We can thus conflate nodes and equivalence
classes, and for every edge (u, v) ∈ E′, consider [v] to be the child of [u]. Lemma 3.1 then
entails that the class [u] can have at most two children: the class of F -nodes with profile
hu1, and the class of non-F -nodes with profile hu0. We call the first class the F -child of
[u], and the second class the non-F -child of [u].

By using lexicographic ordering we can derive the preorder for each level i+1 of the run
dag solely from the preorder for the previous level i. To determine the relation between
two nodes, we need only know the relation between the parents of those nodes, and whether
the nodes are F -nodes. Formally, we have the following.

8 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

Lemma 3.2. For all nodes u, v on level i, and nodes u′, v′ where E′(u, u′) and E′(v, v′):

• If u ≺i v, then u′ ≺i+1 v
′.

• If u ≈i v and either both u′ and v′ are F -nodes, or neither are F -nodes, then u′ ≈i+1 v
′.

• If u ≈i v and v′ is an F -node while u′ is not, then u′ ≺i+1 v
′.

Proof. If u ≺i v, then hu < hv and, by Lemma 3.1, we know that hu′ ∈ {hu0, hu1} must be
smaller than hv′ ∈ {hv0, hv1}, implying that u′ ≺i+1 v

′. If u ≈i v, we have three sub-cases.
If v′ is an F -node and u′ is not, then hu′ = hu0 = hv0 < hv1 = hv′ and u′ ≺i+1 v′. If both
u′ and v′ are F -nodes, then hu′ = hu1 = hv1 = hv′ and u′ ≈i v

′. Finally, if neither u′ nor
v′ are F -nodes, then hu′ = hu0 = hv0 = hv′ and u′ ≈i v

′.

We now demonstrate that by keeping only edges associated with lexicographically max-
imal profiles, G′ captures an accepting path from G.

Lemma 3.3. G′ has an accepting path iff G has an accepting path.

Proof. In one direction, if G′ has an accepting path, then its superset G has the same path.
In the other direction, assume G has an accepting path. Consider the set P of accepting

paths in G. We prove that there is a lexicographically maximal element π ∈ P . To begin,
we construct an infinite sequence, P0, P1, . . ., of subsets of P such that the elements of Pi

are lexicographically maximal in the first i +1 positions. If P contains paths starting in
an F -node, then P0 = {b | b ∈ P, b0 is an F -node} is all elements beginning in F -nodes .
Otherwise P0 = P . Inductively, if Pi contains an element b such that bi+1 is an F -node, then
Pi+1 = {b | b ∈ Pi, bi+1 is an F -node}. Otherwise Pi+1 = Pi. For convenience, define the
predecessor of Pi to be P if i = 0, and Pi−1 otherwise. Note that since G has an accepting
path, P is non-empty. Further, every set Pi is not equal to its predecessor P ′ only when
there is a path in P ′ with an F -node in the ith position. In this case, that path is in Pi.
Thus every Pi is non-empty.

First, we prove that there is a path π ∈
⋂

i≥0 Pi. Consider the sequence U0, U1, U2, . . .
where Ui is the set of nodes that occur at position i in runs in Pi. Formally, Ui =
{u | u ∈ G, b ∈ Pi, u = bi}. Each node in Ui+1 has a parent in Ui, although it may not
have a child in Ui+2. We can thus connect the nodes in

⋃

i>0 Ui to their parents, forming a
sub-dag of G. As every Pi is non-empty, every Ui is non-empty, and this dag has infinitely
many nodes. Since each node has at most n children, by Kon̈ig’s Lemma there is an initial
path π through this dag, and thus through G. We now show by induction that π ∈ Pi for
every i. As a base case, π ∈ P . Inductively, assume π is in the predecessor P ′ of Pi. The
set Pi is either P ′, in which case π ∈ Pi, or the set {b | b ∈ P ′, bi is an F -node}. In this
latter case, as Ui consists only of F -nodes, the node πi must be an F -node. and π ∈ Pi.

Second, having established that there must be an element π ∈
⋂

i≥0 Pi, we prove π
is lexicographically maximal in P . Assume by way of contradiction that there exists an
accepting path π′ so that hπ′ > hπ. Let k be the first point where hπ′ differs from hπ.
At this point, it must be that πk is not an F node, while π′

k is an F node. However,
π′ is an accepting path that shares a profile with π up until this point. As π is in the
predecessor P ′ of Pk, it must also be that π′ is in P ′. By definition, Pk then would be
{b | b ∈ P ′, bk is an F -node}. This would imply π 6∈ Pk, a contradiction.

Finally, we demonstrate that every edge in π occurs in G′. Assume by way of contradic-
tion that some edge (πi, πi+1) is in E but not in E′. This implies there is a node u on level
i such that (u, πi+1) is in E and πi ≺i u. Since u ∈ G, there is an initial path b to u. Thus,
the path b, u, πi+1, πi+2 . . . is an accepting path in G. This path would be lexicographically

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 9

larger than π, contradicting the second claim above. Hence, we conclude π is an accepting
path in G′.

In the next stage, we remove from G′ finite nodes. Let G′′ = G′ \{v | v is finite in G′}.
Note there may be nodes that are not finite in G, but are finite in G′. It is not hard to see
that G may have infinitely many F -nodes and still not contain a path with infinitely many
F -nodes. Indeed, G may have infinitely many paths each with finitely many F -nodes. We
now show that the transition from G via G′ to G′′ removes this possibility, and the presence
of infinitely many F -nodes in G′′ does imply the existence of a path with infinitely many
F -nodes.

Lemma 3.4. G has an accepting path iff G′′ has infinitely many F -nodes.

Proof. If G has an accepting path, then by Lemma 3.3 the dag G′ contains an accepting
path. Every node in this path is infinite in G′, and thus this path is preserved in G′′. This
path contains infinitely many F -nodes, and thus G′′ contains infinitely many F -nodes.

In the other direction, we consider the dag over equivalence classes induced by G′′.
Given a node u in G′′, recall that its equivalence class in G′′ contains all states v such that
v ∈ G′′ and hu = hv . Given two equivalence classes U and V , recall that V is a child of
U when there are u ∈ U , v ∈ V , and E′′(u, v). As mentioned above, once we have pruned
edges not in G′, two nodes of different classes cannot join. Thus this dag is a tree. Further,
as every node u in G′′ is infinite and has a child, its equivalence class must also have a child.
Thus the dag of classes in G′′ is a leafless tree. The width of this tree must monotonically
increase and is bounded by n. It follows that at some level j the tree reaches a stable width.
We call this level j the stabilization level of G.

After the stabilization level, each class U has exactly one child: as noted above, U
cannot have zero children, and if U had two children the width of the tree would increase.
Therefore, we identify each equivalence class on level j of G′′ with its unique branch of
children in G′′, which we term its pipe. These pipes form a partition of nodes in G′′ after j.
Every node in these pipes has an ancestor, or it would not be in the dag, and has a child,
or it would not be infinite and in G′′. Therefore each node is part of an infinite path in this
pipe. Thus, the pipe with infinitely many F -classes contains only accepting paths. These
paths are accepting in G, which subsumes G′′.

In the proof above we demonstrated there is a stabilization level j at which the number
of equivalence classes in G′′ stabilized, and discussed the pipes of G′′: the single chain of
descendants from each equivalence class on the stabilization level j of G′′.

Example 3.5. Figure 2 displays G′′ for the example of Figure 1. Edges removed from
G′ are dotted: at levels 1 and 3 where both q and r transition to r. When both r and
s transition to t, they have the same profile and both edges remain. The removed edges
render all but the first q-node finite in G′. The stabilization level is 0.

3.2. Complementing With Profiles. We now complement A by constructing an NBW,
AS , that employs Lemma 3.4 to determine if a word is in L(A). This construction is a
reformulation of the slice-based approach of [KW08] in the framework of run dags: see
Appendix A. The NBW AS tracks the levels of G′ and guesses which nodes are finite in
G′ and therefore do not occur in G′′. To track G′, the automaton AS stores at each point
in time a set S of states that occurs on each level. The sets S are labeled with a guess of

10 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

p q r s t

p rq t

b

rp q s t

a

p r tq

b

rp q s t

a

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

{q, t} ≻0 {p, r, s}

{r} ≻1 {q, t} ≻1 {p}

{r, s} ≻2 {q, t} ≻2 {p}

{t} ≻3 {r} ≻3 {q} ≻3 {p}

{t} ≻4 {r, s} ≻4 {q} ≻4 {p}

Figure 2. The run dag G′′, where dotted edges were removed from G and
dotted states were removed from G′. Nodes are superscripted with their
Λ-labels. Bold lines denote the pipes of G′′. The lexicographic order of
equivalence classes for each level of G′ is to the right.

which nodes are finite and which are infinite. States that are guessed to be infinite, and thus
correspond to nodes in G′′, are labeled ⊤, and states that are guessed to be finite, and thus
omitted from G′′, are labeled ⊥. In order to track the edges of G′, and thus maintain this
labeling, AS needs to know the lexicographic order of nodes. Thus AS also maintains the
preorder �i over states on the corresponding level of the run dag. To enforce that states
labeled ⊥ are indeed finite, AS employs the cut-point construction of Miyano and Hayashi
[MH84], keeping an “obligation set” of states currently being verified as finite. Finally, to
ensure the word is rejected, AS must enforce that there are finitely many F -nodes in G′′.
To do so, SA uses a bit b to guess the level from which no more F -nodes appear in G′′.
After this point, F -nodes must be labeled ⊥.

Before we define AS , we formalize preordered subsets and operations over them. For a
set Q of states, define Q = {〈S,�〉 | S ⊆ Q and � is a preorder over S} to be the set of
preordered subsets of Q. Let 〈S,�〉 be an element in Q. When considering the successors
of a state, we want to consider edges that remain in G′. For every state q ∈ S and σ ∈ Σ,
define ρ〈S,�〉(q, σ) = {r ∈ ρ(q, σ) | for every q′ ∈ S, if r ∈ ρ(q′, σ) then q′ � q}. Now define
the σ-successor of 〈S,�〉 as the tuple 〈ρ(S, σ),�′〉, where for every q, r ∈ S, q′ ∈ ρ〈S,�〉(q, σ),

and r′ ∈ ρ〈S,�〉(r, σ):

• If q ≺ r, then q′ ≺′ r′

• If q ≈ r and either both r′ ∈ F and q′ ∈ F , or both r′ 6∈ F and q′ 6∈ F , then q′ ≈′ r′.
• If q ≈ r and one of q′ and r′, say r′, is in F while the other, q′, is not, then q′ ≺′ r′.

We now define AS . The states of AS are tuples 〈S,�, λ,O, b〉 where: 〈S,�〉 ∈ Q is
preordered subset of Q; λ : S → {⊤,⊥} is a labeling indicating which states are guessed to
be finite (⊥) or infinite (⊤); O ⊆ S is the obligation set; and b ∈ {0, 1} is a bit indicating
whether we have seen the last F -node in G′′. To transition between states of As, say that
t
′ = 〈S′,�′, λ′, O′, b′〉 follows t = 〈S,�, λ,O, b〉 under σ when:

(1) 〈S′,�′〉 is the σ-successor of 〈S,�〉.
(2) λ′ is such that for every q ∈ S:

• If λ(q) = ⊤, then there exists r ∈ ρ〈S,�〉(q, σ) such that λ′(r) = ⊤,

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 11

• If λ(q) = ⊥, then for every r ∈ ρ〈S,�〉(q, σ), it holds that λ
′(r) = ⊥.

(3) O′ =

{

⋃

q∈O ρ〈S,�〉(q, σ) O 6= ∅,

{q | q ∈ S′ and λ′(q) = ⊥} O = ∅.

(4) b′ ≥ b.

We want to ensure that runs of AS reach a suffix where all F -nodes are finite. To this end,
given a state of AS 〈S,�, λ,O, b〉, we say that λ is F -free if for every q ∈ S ∩ F we have
λ(q) = ⊥.

Definition 3.6. For an NBWA = 〈Σ, Q,Qin, ρ, F 〉, let AS be the NBW 〈Σ, QS , Q
in
S , ρS , FS〉,

where:

• QS = {〈S,�, λ,O, b〉 | if b = 1 then λ is F -free},
• Qin

S = {〈Qin,�, λ, ∅, 0〉 | for all q, r ∈ Qin, q � r iff q 6∈ F or r ∈ F},
• ρS(t, σ) = {t′ | t′ follows t under σ}, and
• FS = {〈S,�, λ, ∅, 1〉}.

We divide runs of AS into two parts. The prefix of a run is the initial sequence of states
in which bi is 0, and the suffix is the remaining sequence states, in which bi is 1. A run
without a suffix, where b stays 0 for the entire run, has no accepting states.

Theorem 3.1. For every NBW A, it holds that L(AS) = L(A).

Proof. Consider a word w ∈ Σω and the run dag G. We first make the following claims
about every infinite run t0, t1, . . ., where ti = 〈Si,�i, λi, Oi, bi〉. For convenience, define
Si = 〈Si,�i〉.

(1) The states in Si are precisely {q | 〈q, i〉 ∈ G}.
We exploit this claim to conflate a state q in the ith state with the node 〈q, i〉, and speak
of states in Si being in, being finite in, and being infinite in a graph G.

(2) The preorder �i is the projection of � onto states occurring at level i.
This follows from Lemma 3.2 and the definition of one state in AS following another.

(3) For every p ∈ Si, q ∈ Si+1, it holds that q ∈ ρSi(p, σi) iff E′(〈p, i〉, 〈q, i+1〉).
This follows from the definitions of E′ and ρS.

(4) Oi is empty for infinitely many indices i iff every state labeled ⊥ is not in G′′.
This follows from the cut-point construction of Miyano and Hayashi. [MH84].

(5) Every state labeled ⊤ is in G′′.
This follows from the definition of transitions between states: every ⊤-labeled state
must have a ⊤-labeled child, and thus is infinite in G′ and in G′′.

We can now prove the theorem. In one direction, assume there is an accepting run t0, t1,
As this run is accepting, infinitely often Oi = ∅. By 4 and 5, this implies the states in Si

are correctly labeled ⊤ when and only when they occur in G′′. Further, for this run to be
accepting we must be able to divide the run into a prefix, and suffix as specified above. In
the suffix no state in F can be labeled ⊤, and thus no F -nodes occur in G′′ past this point.
As only finitely many F -nodes can occur before this point, by Lemma 3.3 G does not have
an accepting path and w 6∈ L(A).

In the other direction, assume w 6∈ L(A). This implies there are finitely many F -nodes
in G′′, and thus a level j where the last F -node occurs. We construct an accepting run
t0, t1, . . ., demonstrating along the way that we satisfy the requirements for ti+1 to be in
ρS(ti, σi). Given w, the sequence 〈S0,�0〉, 〈S1,�1〉, . . . of preordered subsets is uniquely
defined by ρS . There are many possible labelings λ. For every i, select λi so that a state

12 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

q ∈ Si is labeled with ⊤ when 〈q, i〉 ∈ G′′, and ⊥ when it is not. Since every node in G′′

has a child, by 3, for every p ∈ Si where λi(p) = ⊤, there exist a q ∈ ρSi(p, σi) so that
λi+1(q) = ⊤. Further, every node labeled ⊥ has only finitely many descendants, and so for
every p ∈ Si where λi(p) = ⊥ and q ∈ ρSi(p, σi), it holds that λi+1(q) = ⊥. Therefore the
transition from λi to λi+1 satisfies the requirements of ρS. The set O0 = ∅, and given the
sets Si and labelings λi, the sets Oi+1, i ≥ 0 are again uniquely defined by ρS . Finally, we
choose bi = 0 when i < j, and bi = 1 for i ≥ j. Since there are no F -nodes in G′′ past j,
no F -node will be labeled ⊤ and all states past j will be F -free. We have satisfied the last
requirement for the transitions from every ti to ti+1 to be valid, rendering this sequence a
run. By 4, infinitely often Oi = ∅, including infinitely often after j, thus there are infinitely
many states ti where bi = 1 and Oi = ∅, and this run is accepting.

If n= |Q|, the number of preordered subsets is roughly (0.53n)n [Var80]. As there are
2n labelings, and a further 2n obligation sets, the state space of As is at most (2n)n. The
slice-based automaton obtained in [KW08] coincides with AS, modulo the details of labeling
states and the cut-point construction (see Appendix A). Whereas the correctness proof in
[KW08] is given by means of reduced split trees, here we proceed directly on the run dag.

4. Retrospection

Consider an NBW A. So far, we presented two complementation constructions for A,
generating the NBWs Am

R andAS . In this section we present a third construction, generating
an NBW that combines the benefits of the two constructions above. Both constructions
refer to the run dag of A. In the rank-based approach applied in Am

R , the ranks assigned
to a node bound the visits in accepting states yet to come. Thus, the ranks refer to the
future, making Am

R inherently nondeterministic. On the other hand, the NBW AS refers to
both the past, using profiles to prune edges from G, as well as to the future, by keeping in
G′′ only nodes that are infinite in G′. Guessing which nodes are infinite and labeling them
⊤ inherently introduces nondeterminism into the automaton.

Our first goal in the combined construction is to reduce this latter nondeterminism.
Recall that a labeling is F -free if all the states in F are labeled ⊥. Observe that the fewer
labels of ⊥ (finite nodes) we have, the more difficult it is for a labeling to be F -free and,
consequently, the more difficult it is for a run of AS to proceed to the F -free suffix in which
b = 1. It is therefore safe for AS to underestimate which nodes to label ⊥, as long as the
requirement to reach an F -free suffix is maintained. We use this observation in order to
introduce a purely retrospective construction.

For a run dag G, say that a level k is an F -finite level of G when all F -nodes after

level k (i.e. on a level k′ where k′ > k) are finite in G′. By Lemma 3.4, G is rejecting iff
there is a level after which G′′ has no F -nodes. As finite nodes in G′ are removed from G′′,
we have:

Corollary 4.1. A run dag G is rejecting iff it has an F -finite level.

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 13

4.1. Retrospective Labeling. The labeling function λ used in the construction of AS

labels nodes by {⊤,⊥}, with ⊥ standing for “finite” and ⊤ standing for “infinite”. In this
section we introduce a variant of λ that again maps nodes to {⊤,⊥} except that now ⊤
stands for “unrestricted”, allowing us to underestimate which nodes to label ⊥. To capture
the relaxed requirements on labelings, say that a labeling λ is legal when every ⊥-labeled
node is finite in G′. This enables the automaton to track the labeling and its effect on F -
nodes only after it guesses that an F -finite level k has been reached: all nodes at or before

level k (i.e. on a level k′ where k′ ≤ k) are unrestricted, whereas F -nodes after level k and
their descendants are required to be finite. The only nondeterminism in the automaton lies
in guessing when the F -finite level has been reached. This reduces the branching degree of
the automaton to 2, and renders it deterministic in the limit.

The suggested new labeling is parametrized by the F -finite level k. The labeling λk is
defined inductively over the levels of G. Let Si be the set of nodes on level i of G. For
i ≥ 0, the function λk : Si → {⊤,⊥} is defined as follows:

• If i ≤ k, then for every u ∈ Si we define λk(u) = ⊤.
• If i > k, then for every u ∈ Si:
− If u is an F -node, then λk(u) = ⊥.
− Otherwise, λk(u) = λk(v), for a node v where E′(v, u).

For λk to be well defined when i > k and u is not an F -node, we need to show that λk(u)
does not depend on the choice of the node v where E′(v, u) holds. By Lemma 3.1, all
parents of a node in G′ belong to the same equivalence class. Therefore, it suffices to prove
that all nodes in the same class share a label: for all nodes u and u′, if u′ ≈|u| u then

λk(u) = λk(u′). The proof proceeds by an induction on i = |u|. Consider two nodes u and
u′ on level i where u′ ≈i u. As a base case, if i ≤ k, then u and u′ are labeled ⊤. For
i > k, if u is an F -node, then u′ is also an F -node and λk(u) = λk(u′) = ⊥. Finally, if u
and u′ are both non-F -nodes, recall that all parents of u are in the same equivalence class
V . As u ≈i u

′, Lemma 3.1 implies that all parents of u′ are also in V . By the induction
hypothesis, all nodes in V share a label, and thus λk(u) = λk(u′).

Lemma 4.1. For a run dag G and k ∈ IN, the labeling λk is legal iff k is an F -finite level

for G.

Proof. If λk is legal, then every ⊥-labeled node is finite in G′. Every F -node after level k
(i.e. on a level i where i > k) is labeled ⊥, and thus k is an F -finite level for G. If λk is
not legal, then there is a ⊥-labeled node u that is infinite in G′. Every ancestor of u is also
infinite. Let u′ be the earliest ancestor of u (possibly u itself) so that λk(u′) = ⊥. Observe
that only nodes after level k can be ⊥-labeled, and so u′ is on a level i > k. It must be
that u′ is an F -node: otherwise it would inherit its parents’ label, and by assumption the
parents of u′ are ⊤-labeled. Thus, u′ is an F -node after level k that is infinite in G′, and k
is not an F -finite level for G.

Corollary 4.2. A run dag G is rejecting iff, for some k, the labeling λk is legal.

4.2. From Labelings to Rankings. In this section we derive an odd ranking for G from
the function λk, thus unifying the retrospective analysis behind λk with the rank-based
analysis of [KV01]. Consider again the dag G′ and the function λk. Recall that every

14 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

equivalence class U has at most two child equivalence classes, one F -class and one non-F -
class. After the F -finite level k, only non-F -classes can be labeled ⊤. Hence, after level
k, every ⊤-labeled equivalence class U can only have a one child that is ⊤-labeled. For
every class U on level k, we consider this possibly infinite sequence of ⊤-labeled non-F -
children. The odd ranking we are going to define, termed the retrospective ranking, gives
these sequences of ⊤-labeled children odd ranks. The ⊥-labeled classes, which lie between
these sequences of ⊤-labeled classes, are assigned even ranks. The ranks increase in inverse
lexicographic order, i.e. the maximal ⊤-labeled class in a level is given rank 1. As with λk,
the retrospective ranking is parametrized by k. The primary insight that allows this ranking
is that there is no need to distinguish between two adjacent ⊥-labeled classes. Formally, we
have the following.

Definition 4.2 (k-retrospective ranking). Consider a run dag G, k ∈ IN, and the labeling
λk : G → {⊤,⊥}. Let m = 2|Q \ F |. For a node u on level i of G, let α(u) be the number
of ⊤-labeled classes lexicographically larger than u; α(u) = |{[v] | λk(v) = ⊤ and u ≺i v}|.
The k-retrospective ranking of G′ is the function rk : V → {0..m} defined for every node u
on level i as follows.

rk(u) =











m if i ≤ k,

2α(u) if i > k and λk(u) = ⊥,

2α(u) + 1 if i > k and λk(u) = ⊤.

Note that rk is tight. As defined in Section 2, a ranking is tight if there exists an i ∈ IN
such that, for every level l ≥ i, all odd ranks below max rank (r, l) appear on level l. For
rk this level is k + 1, after which each ⊤-labeled class is given the odd rank greater by two
than the rank of the next lexicographically larger ⊤-labeled class.

Lemma 4.3. For every k ∈ IN, the following hold:

(1) If u ≺|u| u
′ then rk(u) ≥ rk(u′).

(2) If (u, v) ∈ E′, then rk(u) ≥ rk(v).

Proof. As both claims are trivial when u is at or before level k, assume u is on level i > k.
To prove the first claim, note that α(u) ≥ α(u′): every class, ⊤-labeled or not, that is
larger than u′ must also be larger than u. If α(u) > α(u′), then (1) follows immediately.
Otherwise α(u) = α(u′), which implies that λk(u′) = ⊥: otherwise [u′] would be a ⊤-
labeled equivalence class larger than u, but not larger than itself. Thus rk(u′) = 2α(u), and
rk(u) ∈ {2α(u), 2α(u)+1} is at least rk(u′).

As a step towards proving the second claim, we show that α(u) ≥ α(v). Consider every
⊤-labeled class [v′] where v ≺i+1 v

′. The class [v′] must have a ⊤-labeled parent [u′]. Since
v ≺i+1 v′, the contrapositive of Lemma 3.2, part 1, entails that u �i u

′. By the definition
of λk, the class [u′] can only have one ⊤-labeled child class: [v′]. We have thus established
that for every ⊤-labeled class larger than v, there is a unique ⊤-labeled class larger than u,
and can conclude that α(u) ≥ α(v). We now show by contradiction that rk(u) ≥ rk(v). For
rk(u) < rk(v), it must be that α(u) = α(v), that rk(u) = 2α(u), and that rk(v) = 2α(u)+1.
In this case, λk(u) = ⊥ and λk(v) = ⊤. Since a ⊥-labeled node cannot have a ⊤-labeled
child in G′, this is impossible.

When k is an F -finite level of G, the k-retrospective ranking is an m-bounded odd
ranking.

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 15

Lemma 4.4. For a run dag G and k ∈ IN, the function rk is a ranking bounded by m.

Further, if the labeling λk is legal then rk is an odd ranking.

Proof. There are three requirements for rk to be a ranking bounded by m:

(1) Every F -node must have an even rank. At or before level k, every node has rank m,
which is even. After k only ⊤-labeled nodes are given odd ranks, and every F -node is
labeled ⊥.

(2) For every (u, v) ∈ E, it must hold that rk(u) ≥ rk(v). If u is at or before level k, then
it has the maximal rank of m. If u is after level k, we consider two cases: edges in
E′, and edges in E \ E′. For edges in E′, this follows from Lemma 4.3 (2). For edges
(u, v) ∈ E \ E′, we know there exists a u′ where u ≺|u| u

′ and (u′, v) ∈ E′. By Lemma

4.3, rk(u) ≥ rk(u′) ≥ rk(v).
(3) The rank is bounded by m. No F -node can be ⊤-labeled. Thus the maximum number

of ⊤-labeled classes on every level is |Q\F |. The largest possible rank is given to a node
smaller than all ⊤-labeled classes, which must be be a F -node and ⊥-labeled. Thus,
this node is given a rank of at most m = 2|Q \ F |.

It remains to show that if λk is legal, then rk is an odd ranking. Consider an infinite path
u0, u1, . . . in G. We demonstrate that for every i > k such that rk(ui) is an even rank e,
there exists i′ > i such that rk(ui′) 6= e. Since a path cannot increase in rank, this implies
rk(ui′) < e. To do so, define the sequence Ui, Ui+1, . . ., of sets of nodes inductively as
follows. Let Ui = {v | rk(v) = e}. For every j ≥ i, let Uj+1 = {v | v′ ∈ Uj , (v′, v) ∈ E′}. As
rk(v) is even only when λk(v) = ⊥, if λk is legal then every node given an even rank (such
as e) must be finite in G′. Therefore every element of Ui is finite in G′, and thus at some
i′ > i, the set Ui′ is empty. Since Ui′ is empty, to establish that rk(ui′) 6= e, it is sufficient
to prove that for every j, if rk(uj) = e, then uj ∈ Uj .

To show that rk(uj) = e entails uj ∈ Uj, we prove a stronger claim: for every j ≥ i and

v on level j, if uj �j v and rk(v) = e, then v ∈ Uj . We proceed by induction over j. For the
base case of j = i, this follows from the definition of Ui. For the inductive step, take a node
v on level j +1 where rk(v) = e and uj+1 �j+1 v. We consider two cases. If rk(uj+1) 6= e

then the path from ui to uj+1 entails that rk(uj+1) < e, and this case of the subclaim

follows from Lemma 4.3 (1). Otherwise, it holds that rk(uj+1) = e, and thus rk(uj) = e.
Let u′ and v′ be nodes on level j so that (u′, uj+1) ∈ E′ and (v′, v) ∈ E′. As uj+1 �j+1 v,
the contrapositive of Lemma 3.2, part 1, entails that u′ �j v

′. Further, since (u′, uj+1) ∈ E′

and (uj, uj+1) ∈ E, we know uj �j u
′. By transitivity we can thus conclude that uj �j v

′,

which along with Lemma 4.3 (1) entails rk(u′) = e ≥ rk(v′). As (v′, v) ∈ E, Lemma 4.3 (2)
entails that rk(v′) ≥ rk(v) = e. Thus rk(v′) = e, and by the inductive hypothesis v′ ∈ Uj .
As E′(v′, v) holds, by definition v ∈ Uj+1, and our subclaim is proven.

The ranking of Definition 4.2 is termed retrospective as it relies on the relative lexico-
graphic order of equivalence classes; this order is determined purely by the history of nodes
in the run dag, not by looking forward to see which descendants are infinite or F -free in
some subgraph of G.

Example 4.5. Figure 3 displays λ0 and the 0-retrospective ranking of our running example.
In the prospective ranking (Figure 2), the nodes for state t on levels 1 and 2 are given rank
0, like other t-nodes. In the absence of a path forcing this rank, their retrospective rank is
2.

16 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

p q r s t

p rq t

b

rp q s t

a

p r tq

b

rp q s t

a

⊤ ⊤ ⊤ ⊤ ⊤

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊥

⊤

⊤

⊤

⊤

⊤

⊤

⊥

⊥

⊥

⊥

6 6 6 66

3

3

3

3

2

2

2

2

1

1

1

1 1

1

2

2

0

0

{q, t} ≻0 {p, r, s}

{r} ≻1 {q, t} ≻1 {p}

{r, s} ≻2 {q, t} ≻2 {p}

{t} ≻3 {r} ≻3 {q} ≻3 {p}

{t} ≻4 {r, s} ≻4 {q} ≻4 {p}

Figure 3. The run dagG′, where 0 is an F -finite level. The labels of λ0 and
ranks in r0 are displayed as superscripts and subscripts, respectively. The
bold lines display the sequences of ⊤-labeled classes in G′. The lexicographic
order of states is repeated on the right.

We are now ready to define a new construction, generating an NBW AL, which combines
the benefits of the previous two constructions. The automaton AL guesses the F -finite level
k, and uses level rankings to check if the k-retrospective ranking is an odd ranking. We
partition the operation of AL into two stages. Until the level k, the NBW AL is in the
first stage, where it deterministically tracks preordered subsets. After level k, the NBW
AL moves to the second stage, where it tracks ranks. This stage is also deterministic.
Consequently, the only nondeterminism in AL is indeed the guess of k. Before defining AL,
we need some definitions and notations.

Recall that Q denotes the set of preordered subsets of Q, and Rm
T the set of tight level

rankings bounded bym. We distinguish between three types of transitions of AL: transitions
within the first stage, transitions from the first stage to the second, and transitions within
the second stage. The first type of transition is similar to the one taken in AS, by means of
the σ-successor relation between preordered subsets. Below we explain in detail the other
two types of transitions. Recall that in the retrospective ranking rk, each class in G′ labeled
⊤ by λk is given a unique odd rank. Thus the rank of a node u depends on the number of
⊤-labeled classes larger than it, denoted α(u).

We begin with transitions where AL moves between the stages: from a preordered
subset 〈S,�〉 to a level ranking. On level k + 1, a node is labeled ⊤ iff it is a non-F -node.
Thus for every q ∈ S, let β(q) = |{[v] | v ∈ S \ F, u ≺ v}| be the number of non-F -classes
larger than q. We now define torank : Q → Rm

T . Let torank(〈S,�〉) be the tight level
ranking f where for every q:

f(q) =











⊥ if q 6∈ S,

2β(q) if q ∈ S ∩ F,

2β(q) +1 if q ∈ S \ F.

We now turn to transitions within the second stage, between level rankings. The rank
of a node v is inherited from its predecessor u in G′. However, λk may label a finite
class ⊤. If a ⊤-labeled class larger than u has no children, then α(u) ≥ α(v). In this

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 17

case the rank of v decreases. Given a level ranking f , for every q ∈ Q where f(q) 6= ⊥,
let γ(q) = |{f(q′) | q′ ∈ Q, f(q′) is odd, f(q′) < f(q)}| be the number of odd ranks in the
range of f lower than f(q). We define the function tighten : Rm → Rm

T . Let tighten(f)
be the tight level ranking f ′ where for every q:

f ′(q′) =











⊥ if f(q) = ⊥,

2γ(q) if f(q) 6= ⊥ and q ∈ F,

2γ(q) +1 if f(q) 6= ⊥ and q 6∈ F.

Note that if f is tight, then f ′ = f , and that while tighten may merge two even ranks, it
cannot merge two odd ranks.

For a level ranking f , a letter σ ∈ Σ, and q′ ∈ Q, let pred(q′, σ, f) = {q | f(q) 6= ⊥, q′ ∈
ρ(q, σ)} be the predecessors of q′ given a non-⊥ rank by f . The lowest ranked element in
this set corresponds to the predecessor in G with the maximal profile. With two exceptions,
q′ will inherit this lowest rank. First, tighten might shift the rank down. Second, if q′ is
in F , it cannot be given an odd rank. For n ∈ IN, let ⌊n⌋even be: n when n is even; and
n−1 when n is odd. Define the σ-successor of f to be tighten(f ′) where for every q′ ∈ Q:

f ′(q′) =











⊥ if pred(q′, σ, f) = ∅,

⌊min({f(q) | q ∈ pred(q′, σ, f)})⌋even if pred(q′, σ, f) 6= ∅ and q′ ∈ F,

min({f(q) | q ∈ pred(q′, σ, f)}) if pred(q′, σ, f) 6= ∅ and q′ 6∈ F.

Definition 4.6. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉, let AL be the NBW
〈Σ,Q ∪ (Rm

T × 2Q), Qin
L , ρL,R

m
T × {∅}〉, where

• Qin
L = {〈Qin,�in〉} where �in is such that for all q, r ∈ Qin, q � r iff q 6∈ F or r ∈ F .

• ρL(S, σ) = {S′} ∪ {〈torank(S′), ∅〉}, where S′ is the σ-successor of S.
• ρL(〈f,O〉, σ) = {〈f ′, O′〉} where f ′ is the σ-successor of f

and O′ =

{

ρ(O,σ) \ odd(f ′) if O 6= ∅,

even(f ′) if O = ∅.

The proof of Theorem 4.3 is based on Lemmas 2.2 and 4.4 and Corollary 4.2.

Theorem 4.3. For every NBW A, it holds that L(AL) = L(A).

Proof. Consider a word w ∈ Σω and the run dag G. We first make the following claims
about every infinite run 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, For i > k,
define Si = {q | fi(q) 6= ⊥}.

(1) The states in Si are precisely {q | 〈q, i〉 ∈ G}.
This follows by the definitions of σ-successors of preordered subsets and σ-successors of
level rankings.

(2) The preorder �i is the projection of � onto states occurring at level i.
This follows from Lemma 3.2 and the definition of σ-successors.

(3) For every i ≤ k, state q ∈ Si, and s ∈ Si+1, it holds that s ∈ ρ〈Si,�i〉(q, σi) iff

E′(〈q, i〉, 〈s, i+1〉).
This follows from the definitions of E′ and ρ〈Si,�i〉.

(4) For every i > k and q, s ∈ Si, if fi(q) > fi(s), then 〈q, i〉 ≺i 〈s, i〉.
(5) For every i > k and q, s ∈ Si, if fi(s) is odd and 〈q, i〉 ≺i 〈s, i〉, then fi(q) > fi(s).

This and 4 are proven below.

18 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

(6) For every i ≥ k and q ∈ Si, it holds that fi(q) is even iff λk(〈q, i〉) = ⊥.

This follows from the definition of λk, which assigns ⊥ to F -nodes and their descendants
in G′, and fi, which assigns even ranks to states in F . By 4, the parent of a node in
G′ will be the parent with the lowest rank. Thus the descendants of F -nodes in G′ will
inherit the even rank of their parent.

We simultaneously prove 4 and 5 by induction. As a base case, both hold from the definition
of torank. As the inductive step, assume both hold for level i. To prove step 4, take
two states q, s ∈ Si+1 where fi+1(q) > fi+1(s). Each state has a parent in G′, i.e. a q′

and s′ so that E′(q′, q) and E′(s′, s). By the inductive hypothesis, this implies fi(q
′) =

min({fi(q
′) | q ∈ ρ(q′, σi)}) and fi(s

′) = min({fi(s
′) | s ∈ ρ(s′, σi)}). We analyze two cases.

When fi(q
′) > fi(s

′), by the inductive hypothesis we have 〈q′, i〉 ≺i 〈s
′, i〉. Since E′(q′, q)

and E′(s′, s), by Lemma 3.1 this implies 〈q, i+1〉 ≺i+1 〈s, i+1〉. Alternately, when fi(q
′) =

fi(s
′), then for fi+1(q) > fi+1(s) to hold, it must be that fi(q

′) is odd, s ∈ F , and q 6∈ F .
Since fi(q

′) = fi(s
′) is odd, by the inductive hypothesis we have that 〈q′, i〉 ≡ 〈s′, i〉. By

Lemma 3.1 we then have h〈q,i+1〉 = h〈q′,i〉0 < h〈s,i+1〉 = h〈s′,i〉1.
To prove step 5, consider when fi+1(s) is odd and 〈q, i+1〉 ≺ 〈s, i+1〉. This implies

that h〈s,i+1〉 = h〈s′,i〉0. Thus in order for 〈q, i+1〉 ≺i+1 〈s, i+1〉 to hold, 〈q′, i〉 ≺i 〈s′, i〉
must hold. By the inductive hypothesis, this implies fi(q

′) > fi(s
′). Before the tighten

function reduces ranks, since fi+1(q) = ⌊fi(q
′)⌋even, and fi+1(s) is odd, it must be that

fi+1(q) > fi+1(s). The tighten function can shift fi+1(q) down more than fi+1(s) only
when an odd rank between fi+1(s) and fi+1(q) becomes empty. Since this odd rank must
be two greater than fi+1(s), reducing fi+1(q) by 2 cannot change that fi+1(q) > fi+1(s).
We now proceed with the proof of Theorem 4.3.

In one direction, assume the run 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . .
is accepting. We construct a ranking r of G as follows. For all nodes u on level i ≤ k,
r(u) = m. For all nodes 〈q, i〉 where i > k, r(〈q, i〉) = fi(q). We note that each state
is given at most the minimum rank of all its parents, and that no state in F is given an
odd rank, thus r is in fact a ranking. That r is an odd ranking follows from the cut-point
construction.

In the other direction, assume G is a rejecting run dag. By Lemma 4.4 there exists a k
so that rk is an odd ranking. We construct a run S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . .,
which is uniquely defined by the transition relation of Definition 4.6. Further, the transition
relation of Definition 4.6 is total, so this run is infinite. To demonstrate that this run is
accepting, we will prove below that for every i > k and q ∈ Si, it holds that fi(q) =
rk(〈q, i〉). Since rk is an odd ranking and the cut-point construction is identical to that of
Definition 2.3, this is sufficient to show the run is accepting.

Recall that if λ(〈q, i〉) = ⊥, then rk(〈q, i〉) = 2α(〈q, i〉), and otherwise rk(〈q, i〉) =
2α(〈s, i〉) +1. We can thus use 6 to simplify our claim. It suffices to show that for every
i > k and q ∈ Si, we have α(〈q, i〉) = ⌊fi(q)/2⌋. We proceed by induction over i > k. As
the base case, consider a node 〈q, k〉. Recall that α(〈q, k〉) = |{[v] | λk(v) = ⊤, 〈q, k〉 ≺k v}|.
By the definition of λk, a node on level k is labeled ⊥ only when it is an F -node. All
other nodes inherit the label of their parents, and every node on level k is ⊤-labeled. From
2, we then have that α(〈q, k + 1〉) = |{[v] | v ∈ S \ F, u ≺ v}|, which is the definition of
β(q) = ⌊fi(q)/2⌋.

Inductively, assume the claim holds for every q ∈ Si. We show for every s ∈ Si+1, it
holds that α(〈s, i+1〉) = ⌊fi+1(s)/2⌋. Let q be the parent of s in G′, i.e. E′(q, s). Take

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 19

the set P = {[v] | λk(v) = ⊤, 〈q, i〉 ≺i v}. of ⊤-labeled equivalence classes greater than Q,
By the inductive hypothesis, ⌊fi(q)/2⌋ = α(〈q, i〉) = |P |. By the definition of rk, each
[v] ∈ P has a unique odd rank assigned to each of its elements. By 5, for each [v] this
odd rank is smaller than fi(q). Consider the subset of P given by Ps = {[v] | [v] ∈ P,
[v] has ⊤-labeled child class on level i +1}. Define Pe = P \ Ps to be the complementary
set: pipes that die on level i. By 5, before the tighten operation is applied, every element
of Pe has a corresponding odd rank that is unoccupied on level i+1. Since q is clearly not in
an element of Pe, this odd rank must be less than ⌊fi(q)⌊even. Thus the final rank assigned
to s, after tighten, is either fi(q)−2|Pe| or ⌊fi(q)−2|Pe|⌋even. In both cases ⌊fi+1(s)/2⌋ =
⌊fi(q)/2⌋−|Pe|. By the inductive hypothesis this is equivalent to α(〈q, i〉)−|Pe| = |P |−|Pe|.
By the definition of Ps and Pe, |P | − |Pe| = |Ps|. By Lemma 3.1, every ⊤-labeled child of a
class in Ps is lexicographically larger than 〈s, i+1〉. As every ⊤-labeled child must have a
unique parent in Ps, we conclude that |Ps| = α(〈s, i+1〉).

Analysis: Like the tight-ranking construction in Section 2, the automaton AL operates
in two stages. In both, the second stage is the set of tight level rankings and obligation
sets. The tight-ranking construction uses sets of states in the first stage, and is bounded by
the size of the second stage: (0.96n)n [FKV06]. The automaton AL replaces the first stage
with preordered subsets. As the number of preordered subsets is O((n

e ln 2)
n) ≈ (0.53n)n

[Var80], the size of AL remains bounded by (0.96n)n. This can be improved to (0.76n)n:
see Section 5 and [Sch09]. Further, AL has a very restricted transition relation: states in
the first stage only guess whether to remain in the first stage or move to the second, and
have nondeterminism of degree 2. States in the second stage are deterministic. Thus the
transition relation is linear in the number of states and size of the alphabet, and AL is
deterministic in the limit.

5. Variations on AL

In this section we present two variations of AL: one based on Schewe’s variant of the rank-
based construction that achieves a tighter bound; and one that is amenable to Tabakov and
Vardi’s symbolic implementation of the rank-based construction. Schewe’s construction
alters the cut-point of the rank-based construction to check only one even rank at a time.
Doing so drastically reduces the size of the cut-point: intuitively, we can avoid carrying the
obligation set explicitly. Instead we could carry the current rank i we are checking, and add
to the domain of our ranking function a single extra symbol c that indicates the state is
currently being checked, and thus is of rank i. For an analysis of the resulting state space,
please see [Sch09]. For clarity , we do not remove the obligation set from the construction.
Instead, states in this variant of the automaton carry with them the index i, and in a state
〈f,O, i〉, it holds that O ⊆ {q | f(q) = i}. For a level ranking f , let mr(f) be the largest
rank in f . Note that mr(f), for a tight ranking, is always odd.

Definition 5.1. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉, let ASchewe be the NBW
〈Σ,Q ∪ (Rm × 2Q ×N), Qin

L , ρSch, FSch〉, where

• ρSch(S, σ) = {〈torank(S′), ∅, 0〉} ∪ {S′}, where S′ is the σ-successor of S.
• ρSch(〈f,O, i〉, σ) = {〈f ′, O′, i′〉} where

f ′ is the σ-successor of f

20 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

i′ =

{

i if O 6= ∅,

(i+2) mod (mr(f ′) +1) if O = ∅,

and O′ =

{

ρ(O,σ) \ odd(f ′) if O 6= ∅,

{q | f ′(q) = i′} if O = ∅.

• FSch = Rm × {∅} × {0}

Theorem 5.1. For every NBW A, it holds that L(ASchewe) = L(A).

Proof. Given a word w, we relate the runs of ASchewe and AL. As both automata are
comprised of two internally deterministic stages, with a nondeterministic transition, each
index k defines a unique run for each automaton. As the first stage of both automata are
identical, and the second stage is deterministic, given a fixed k let

pL = 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . .

be the run of AL on w that moves to the second stage on the kth transition, and let the
corresponding run of ASchewe be

pSch〈S0,�0〉, . . . , 〈Sk,�k〉, 〈f
′
k+1, O

′
k+1, nk+1〉, 〈f

′
k+2, O

′
k+2, nk+2〉, . . .

We show that pL is accepting iff pSch is accepting, or more precisely that pL is rejecting iff
pSch is rejecting. First, we note that the level rankings fk+1, fk+2, . . . and f ′

k+1, f
′
k+2, . . . in

both automata are defined by torank(〈Sk,�k〉) and the σ-successor relation, and thus for
every j > k, it holds fj = f ′

j.
In one direction, assume that pSch is rejecting. This implies there is some j > k so that

for every j′ > j, O′
j′ is non-empty. In turn, this implies that there is a sequence qj, qj+1, . . .

of states so that, for every j′ ≥ j, we have that qj′ ∈ O′
j′ , that fj′(qj′) = nj, and that

qj′+1 ∈ ρ(qj′ , wj′). If there is no l > j where Ol = ∅, then we have that pL is rejecting.
Alternately, if there is such a l > j, then ql+1 ∈ Ol+1, and for every l′ > l we have ql′ ∈ Ol′ .
Again, this implies pL is rejecting.

In the other direction, assume that pL is rejecting. This implies there is some j > k so
that for every j′ > j the set Oj′ is non-empty. In turn, this implies that there is an even
rank i and sequence qj, qj+1, . . . of states so that, for every j′ ≥ j, we have that qj′ ∈ Oj′ ,
that fj′(qj′) = i, and that qj′+1 ∈ ρ(qj′, wj′). We now consider the indexes nj′ in pSch. If
there is some j′ > j where nj′ = i, then for every l ≥ j′, it will hold that ql ∈ O′

l, and
pSch will be rejecting. Alternately, if there is no j′ > j where nj′ = i, then it must be that
the indexes nj′ stops cycling through the even ranks. This implies the obligation set stops
emptying, and therefore that pSch must be rejecting.

To symbolically encode a deterministic-in-the-limit automaton, we avoid storing the
preorders. To encode the preorder in a BDD as a relation would require a quadratic number
of variables, increasing the size unacceptably. Alternately, we could associate each state with
its index in the preorder. Unfortunately, calculating the index of each state in the succeeding
preorder would require a global compacting step, to remove indices that had become empty.
To handle this difficulty, we simply store only the subset in the first stage, and transition to
an arbitrary level ranking when we move to the second stage. This maintains determinism in
the limit, and cannot result in false accepting run: we can always construct an odd ranking
from the sequence of level rankings. The construction and a small example encoding are
provided below.

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 21

Definition 5.2. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉, let ASymb be the NBW

〈Σ, 2Q ∪ (Rm × 2Q), Qin, ρSymb,R
m × {∅}〉, where

• ρSymb(S, σ) = {ρ(S, σ)} ∪ {〈f, ∅〉 | f ∈ Rm and for all q ∈ Q, f(q) 6= ⊥ iff q ∈ ρ(S, σ)}.
• ρSymb(〈f,O〉, σ) = ρL(〈f,O〉, σ)

Theorem 5.2. For every NBW A, it holds that L(ASymb) = L(A).

Proof. In one direction, assume w ∈ L(A). This implies w ∈ L(AL), and thus there exists
an accepting run 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . of AL on w. We show
that S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . is an accepting run of ASymb on w. We note
that in the second stage transitions and accepting states in ASymb are identical to AL. Thus
to show that this is an accepting run ASymb, we only need show that the run is valid from
0 to k + 1,

By definition, S0 = Qin is the initial state of ASymb. For every i, 0 ≤ i < k, it holds that
Si+1 = ρ(Si, wi) ∈ ρSymb(Si, wi). Finally, consider the transition from Sk to 〈fk+1, Ok+1〉.
Let 〈Sk+1,�k+1〉 be the σ-successor of 〈Sk,�k〉. By definition, Sk+1 = ρ(Sk, wk). By
the transition relation of AL, we have fk+1 = torank(〈Sk+1,�k+1〉) and Ok+1 = ∅. By
the definition of torank, for every q ∈ Q it holds that fk+1(q) = ⊥ iff q 6∈ Sk+1. Thus
〈fk+1, Ok+1〉 ∈ ρSymb(Sk), and S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . is an accepting run
of ASymb on w.

In the other direction, if w ∈ L(ASymb), there is an accepting run S0, . . . , Sk, 〈fk+1, Ok+1〉,
〈fk+2, Ok+2〉, . . . of ASymb on w. From this run we construct an odd ranking of G, which

implies w ∈ L(A). Define the ranking function r so that for every 〈q, i〉 ∈ G: if i ≤ k then
r(〈q, i〉) = m = 2|Q \ F |; and if i > k then r(〈q, i〉) = fi(q). As demonstrated in the proof
of Theorem 4.3, the definition of σ-successors and G implies that when i > k, it holds that
fi(q) 6= ⊥. Similarly, by the definition of σ-successors no path in G can increase in rank
under r. We conclude that r is a valid ranking function.

To demonstrate that r is an odd ranking, assume by way of contradiction that there
is a path 〈q0, 0〉, 〈q1, 1〉, . . . in G that gets trapped in an even rank. Let j be the point at
which this path gets trapped, or k + 1, whichever is later. If there is no j′ > j such that
Oj′ = ∅, then there is no accepting state after j, and the run would not be accepting. If
there is such a j′, then Oj′+1 would contain qj′+1, as fj′+1(qj′+1) is even. At every point
j′′ > j′ + 1, the obligation set will contain qj′′ , and thus there will be no accepting state
after j′, and the run would not be accepting. However, we have that the run is accepting
as a premise. Therefore no path in G gets trapped in an even rank, r is an odd ranking,
and by Lemma 2.2 w ∈ L(A).

As an example, Figure 4 is the SMV encoding of the complement of a two-state au-
tomaton.

6. Discussion

We have unified the slice-based and rank-based approaches by phrasing the former in the
language of run dags. This enables us to define and exploit a retrospective ranking, pro-
viding a deterministic-in-the-limit complementation construction that does not employ de-
terminization. Experiments show that the more deterministic automata are, the better
they perform in practice [ST03]. By avoiding determinization, we reduce the cost of such a
construction from (n2/e)n to (0.76n)n [Pit06].

22 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

typedef STATE 0..1; /* Size for complemented automaton: 2, maximum allowed rank = 2*/

module main() {

letter: {a,b}; /* The transition letter */

rank: array STATE of 0..3; /* The value 3 represents bottom */

phase : 0..1; /* The phase of the automaton, ranks 2 or 3 in phase 0*/

subset: array STATE of boolean; /* The obligation set vector */

init(rank) := [2,2,2,2]; /* 2 to initial states, 3 to others */

init(subset) := [1,1,1,1]; /* initially rejecting */

init(phase) := 0;

next(phase) := {i : i=0..1, i >= phase};

/* Define the rank of states in the next time step. Cases fall through. */

/* state 0 has transition from 0 on a and b */

next(rank[0]) := case {

rank[0]=3 : 3;

next(phase)=0 : 2;

phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[0]};

phase=1 : rank[0];

};

/* 1 has transition from 1 on a and from 0 on b. 1 is accepting */

next(rank[1]) := case {

letter=a & rank[1]=3 : 3;

letter=a & next(phase)=0 : 2;

letter=a & phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[1] & i in {0,2}};

letter=a & phase=1 : {i : i=0..2, i in {rank[1], rank[1]-1} & i in {0,2}};

letter=b & rank[0]=3 : 3;

letter=b & next(phase)=0 : 2;

letter=b & phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[0] & i in {0,2}};

letter=b & phase=1 : {i : i=0..2, i in {rank[0], rank[0]-1} & i in {0,2}};

};

/* Defining the transitions of the P-set */

if (next(phase)=0) {

forall (i in STATE) next(subset[i]) := 1;

} else {

if (subset=[0,0,0,0]) { /* The P-set is empty */

forall (i in STATE) next(subset[i]) := next(rank[i]) in {0,2};

} else { /* The P-set is non-empty */

if (letter=a) {

next(subset[0]) := (subset[0]) & next(rank[0]) in {0,2};

next(subset[1]) := (subset[1]) & next(rank[1]) in {0,2};

} else { /* letter=b */

next(subset[0]) := (subset[0]) & next(rank[0]) in {0,2};

next(subset[1]) := (subset[0]) & next(rank[1]) in {0,2};

}}}

SPEC 0;

FAIRNESS subset=[0,0,0,0];

}

Figure 4. The SMV encoding of the ASymb, for the two-state automaton
consisting of states p and q of Figure 1.

In addition, our transition generates a transition relation that is linear in the number
of states and size of the alphabet. Schewe demonstrated how to achieve a similar linear
bound on the transition relation, but the resulting relation is larger and is not deterministic
in the limit [Sch09].

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 23

As shown in Section 5, the use of level rankings affords several improvements from
existing research on the rank-based approach. First, the cut-point construction of Miyano
and Hayashi [MH84] can be improved. Schewe’s construction only checks one even rank at a
time, reducing the size of the state space to (0.76n)n, only an n2 factor from the lower bound
[Sch09]. As Schewe’s approach does not alter the progression of the level rankings, it can
be applied directly to the second stage of Definition 4.6. The resulting construction inherits
the asymptotic state-space complexity of [Sch09]. Second, symbolically encoding a preorder
is complicated. In contrast, ranks are easily encoded, and the transition between ranks is
nearly trivial to implement in SMV [TV07]. By changing the states in first stage of AL from
preordered subsets to simple subsets, and guessing the appropriate transition to the second
stage, we obtain a symbolic representation while maintaining determinism in the limit.
This approach sacrifices the linear-sized transition relation, but this is less important in a
symbolic encoding. Finally, although not addressed in Section 5, the subsumption relations
of Doyen and Raskin [DR09] could be applied to the second stage of Definition 4.6, while
it is unclear if it could be applied at all to the slice-based construction.

From a broader perspective, we find it very interesting that the prospective and retro-
spective approaches are so strongly related. Odd rankings seem to be inherently “prospec-
tive,” depending on the descendants of nodes in the run dag. By investigating the slice-
based approach, we are able to pinpoint the dependency on the future to a single component:
the F -free level. This suggests it may be possible to use odd rankings for determinization,
automata with other accepting conditions, and automata on infinite trees.

References

[ATW06] C.S. Althoff, W. Thomas, and N. Wallmaier. Observations on determinization of Büchi automata.
Theor. Comput. Sci., 363(2):224–233, 2006.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congress

on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press, 1962.
[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,

42:857–907, 1995.
[DR09] L. Doyen and J.-F. Raskin. Antichains for the automata-based approach to model-checking.

Logical Methods in Computer Science, 5(1), 2009.
[FKV06] E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter. Int’l J. of

Foundations of Computer Science, 17(4):851–867, 2006.
[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nondeterministic

Büchi automata. In Proc. 12th Conf. on Correct Hardware Design and Verification Methods,
volume 2860 of Lecture Notes in Computer Science, pages 96–110. Springer, 2003.

[KC09] H. Karmarkar and S. Chakraborty. On minimal odd rankings for Büchi complementation. In 7th

Int. Symp. on Automated Technology for Verification and Analysis, volume 5799 of Lecture Notes

in Computer Science, pages 228–243. Springer, 2009.
[Kla90] N. Klarlund. Progress Measures and finite arguments for infinite computations. PhD thesis, Cor-

nell University, 1990.
[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Transactions

on Computational Logic, 2(2):408–429, 2001.
[KW08] D. Kähler and T. Wilke. Complementation, disambiguation, and determinization of Büchi au-

tomata unified. In Proc. 35th Int. Colloq. on Automata, Languages, and Programming, volume
5125 of Lecture Notes in Computer Science, pages 724–735. Springer, 2008.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer Sci-

ence, 32:321–330, 1984.
[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,

1988.

24 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic au-
tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra. Theoretical
Computer Science, 141:69–107, 1995.

[Pit06] Nir Piterman. From nondeterministic buchi and streett automata to deterministic parity au-
tomata. In Proc. 21th IEEE Symp. on Logic in Computer Science, pages 255–264. IEEE Com-
puter Society, 2006.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research

and Development, 3:115–125, 1959.
[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of Com-

puter Science, pages 319–327, 1988.
[Sch09] S. Schewe. Büchi complementation made tight. In 26th Int. Symp. on Theoretical Aspects of

Computer Science, volume 3, pages 661–672. Schloss Dagstuhl, 2009.
[ST03] R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” büchi automata for efficient

LTL model checking. In Proc. 12th Conf. on Correct Hardware Design and Verification Methods,
volume 2860 of Lecture Notes in Computer Science, pages 126–140. Springer, 2003.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

[THB95] S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-deterministic omega-
automata. In Proc. 8th Conf. on Correct Hardware Design and Verification Methods, volume 987
of Lecture Notes in Computer Science, pages 261–277. Springer, 1995.

[TV07] D. Tabakov and M.Y. Vardi. Model checking Büchi specifications. In Proc. of the First In-

ternational Conference on Language and Automata Theory and Applications, Lecture Notes in
Computer Science, pages 565–576. Springer, 2007.

[Var80] M.Y. Vardi. Expected properties of set partitions. Research report, The Weizmann Institute of
Science, 1980.

[Var07a] M. Y. Vardi. The büchi complementation saga. In Proc. 24th Sympo. on Theoretical Aspects of

Computer Science, volume 4393 of Lecture Notes in Computer Science, pages 12–22. Springer,
2007.

[Var07b] M.Y. Vardi. Automata-theoretic model checking revisited. In Proc. 8th Int. Conf. on Verification,

Model Checking, and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science,
pages 137–150. Springer, 2007.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 332–344, 1986.

[Yan06] Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique. In
Proc. 33rd Int. Colloq. on Automata, Languages, and Programming, volume 4052 of Lecture Notes

in Computer Science, pages 589–600. Springer, 2006.

UNIFYING BÜCHI COMPLEMENTATION CONSTRUCTIONS 25

Appendix A. Slices

The paper of Kähler et al. introduces the notion of the split tree, reduced split tree, and
skeleton of an automaton A and word w Trees are represented as prefix-closed non-empty
subsets of {0, 1}∗. In a tree V , a node v0 is called the left child of v, and v1 the right
child of v. The root is ǫ. A node v is said to be on level i when |v| = i. For a set L, an
L-labeled tree is a pair 〈V, l〉 where V is a tree and l : V → L is a label function. By abuse
of notation, for an L-labeled tree T = 〈V, l〉 and vertex v, say v ∈ T when v ∈ V , and let
T (v) = l(v). For two nodes v and v′, say that v′ > v when |v| = |v′| and v′ is to the right
of, i.e. lexicographically larger than, v.

The split tree, written T sp, is the 2Q-labeled tree defined inductively as follows2. As a
base case, ǫ ∈ T sp and T sp(ǫ) = Qin. Inductively, given a node v on level i, let P = T sp(v).
If ρ(P,wi) \F 6= ∅ then v0 ∈ T sp and T sp(v0) = ρ(P,wi) \F . Similarly, if ρ(P,wi)∩F 6= ∅,
then v1 ∈ T sp and T sp(v1) = ρ(P,wi)∩F . As argued in [KW08], branches in T sp correspond
to runs of A on w. We gloss over this discussion and simply state that w ∈ L(A) iff T sp(A, w)
has a branch that goes right infinitely often. The split tree is analogous to Gw. Each path
p to node 〈q, i〉 ∈ Gw corresponds to a node v on level i of T sp that contains q in its label.
Edges in Gw correspond to edges in T sp, and thus paths in Gw correspond to paths in T sp.

Lemma A.1. For every state q and level i, 〈q, i〉 ∈ Gw iff there is at least one node v ∈ T sp

where |v| = i and q ∈ T sp(v).

Proof. We prove this by simple induction over i. As the base case we have that ǫ ∈ T sp(v)
and T sp(ǫ) = Qin, while by definition 〈q, 0〉 ∈ Gw iff q ∈ Qin. Thus our lemma holds for
i = 0.

Inductively, assume that the lemma holds for i = 1, and let q′ ∈ Q. In one direction, if
〈q′, i+1〉 ∈ Gw, then there is a run p so that pi+1 = q′. By the inductive hypothesis, there is a
node v ∈ T sp where |v| = i and pi ∈ T sp(v). If q′ 6∈ F , then ρ(T sp(v), wi) \F 6= ∅, v0 ∈ T sp,
and q′ ∈ T sp(v0) = ρ(T sp(v), wi) \ F . Similarly, if q′ ∈ F , then ρ(T sp(v), wi) ∩ F 6= ∅,
v1 ∈ T sp, and q′ ∈ T sp(v1) = ρ(T sp(v), wi) ∩ F .

In the other direction, if there is a node v′ ∈ T sp so that |v′| = i + 1 and q′ ∈ T sp(v),
then v′ has a parent v so that |v| = i. As q′ ∈ ρ(T sp(v), wi), there is a state q ∈ T sp(v)
so that q′ ∈ ρ(q, wi). By the inductive hypothesis, 〈q, i〉 ∈ Gw, and by definition q ∈
ρ(Qin, w0 · · ·wi−1). By the definition of a run, this implies q′ ∈ ρ(Qin, w0 · · ·wi), and thus
〈q′, i+ 1〉 ∈ Gw.

Lemma A.2. For every q, q′, and i, it holds that 〈〈q, i〉, 〈q′, i+ i〉〉 ∈ E iff there are nodes v
and v′ in T sp so that |v| = i, v′ is a child of v, q ∈ T sp(v), and q′ ∈ T sp(v′).

Proof. In one direction, let q, q′, and i be such that 〈〈q, i〉, 〈q′, i+ i〉〉 ∈ E. By the definition
of E, we have q′ ∈ ρ(q, wi). By Lemma A.1, there is a node v ∈ T sp so that |v| = i and
q ∈ T sp(v). If q′ 6∈ F , then let v′ = v0, otherwise q′ ∈ F and let v′ = v1. In either case that
q′ ∈ ρ(q, wi) implies that v′ ∈ T sp and q′ ∈ T sp(v′).

In the other direction, let q, q′, and i be such that there are nodes v and v′ in T sp

where |v| = i, v′ is a child of v, q ∈ T sp(v), and q′ ∈ T sp(v′). By Lemma A.1, we have that
〈q, i〉 ∈ Gw, and 〈q′, i + 1〉 ∈ Gw. By the definition of T sp, we have q′ ∈ ρ(q, wi), and thus
〈〈q, i〉, 〈q′, i+ i〉〉 ∈ E.

2Compared to [KW08], these definitions reverse the left and right children. This was done to match the
paper.

26 S. FOGARTY, O. KUPFERMAN, T. WILKE, AND M. Y. VARDI

The reduced split tree, written T rs, keeps only the rightmost instance of each state at
each level of the tree. This bounds the width of T rs to n. Formally, we define T rs inductively
as follows. As a base case, the root ǫ ∈ T rs, and T rs(ǫ) = Qin. Inductively, given a node
v ∈ T rs on level i, let P = T rs(v) and let P ′ =

⋃

{ρ(T rs(v′) | v′ ∈ T rs and v′ < v}. If
(ρ(P,wi) \ F) \ P ′ 6= ∅ then v0 ∈ T rs and T rs(v0) = (ρ(P,wi) \ F) \ P ′. Similarly, if
(ρ(P,wi)∩F) \ P ′ 6= ∅, then v1 ∈ T rs and T rs(v1) = (ρ(P,wi)∩F) \ P ′. The reduced split
tree is analogous to the profiles of nodes in Gw and the edges in G′. Since paths in Gw

correspond to paths in T sp, the lexicographically maximal path through Gw to a node 〈q, i〉
corresponds to the rightmost path through T sp to an instance of q on level i. This is the
only instance that remains in T rs.

Lemma A.3. For every node 〈q, i〉 ∈ G′, there is a node v ∈ T rs where |v| = i and

q ∈ T rs(v). Further, h〈q,i〉 = 0v.

Proof. By Lemma A.1, for every 〈q, i〉. there is at least one node v′ ∈ T rs where |v′| = i
and q ∈ T rs(v′). Let v be the rightmost such node. We must show that h〈q,i〉 = 0v, and

we do so by induction over i. As a base case, we have that q ∈ Qin, i = 0, and v = ǫ.
Since, by assumption, Qin ∩ F = ∅, we have h〈q, 0〉 = 0 = 0v. Inductively, assume that this
lemma holds for a fixed i, and let q′ be such that 〈q′, i+ 1〉 ∈ G′. Let b be 0 if q′ 6∈ F , and
1 if q′ ∈ F . Since there are no orphan nodes in G′, we know that there is a q on level i
such that 〈〈q, i〉, 〈q′, i+ 1〉〉 ∈ G′. By Lemma 3.1, we know that h〈q

′, i + 1〉 = h〈q, i〉b, and

that 〈q, i〉 has the lexicographically maximal profile of all predecessors of 〈q′, i + 1〉. By the
inductive hypothesis, there is a node v ∈ T rs so that |v| = i, q ∈ T rs(v), and h〈q,i〉 = v.
Since lexicographic maximality in profiles corresponds to being rightmost in the tree, this
means v is the rightmost node containing q in T sp. Thus vb is the rightmost node containing
q′ in T sp, and the only node containing q′ in T rs.

Lemma A.4. For every q, q′, and i, it holds that 〈〈q, i〉, 〈q′, i+ i〉〉 ∈ E′ iff there are nodes

v and v′ in T rs so that |v| = i, v′ is a child of v, q ∈ T rs(v), and q′ ∈ T rs(v′).

Proof. This follows from Lemma A.3 and Lemma 3.1.

Finally, the skeleton T sp is obtained by removing from the reduced split tree all nodes
that are finite. As a corollary of Lemma A.4, the skeleton is a representation of G′′. The
slice automaton of Kähler and Wilke proceeds by tracking the levels of T rs and guessing
which nodes occur in T sp. Each level i of T rs is encoded as a slice, a sequence 〈P0, . . . , Pm〉
of pairwise disjoint subsets of Q. This slice is precisely the sequence of equivalence classes in
level i of G′, indexed by their relative lexicographic ordering (see Figure 2). The automaton
of Kähler and Wilke differs from Definition 3.6 only in the details of labeling states and the
cut-point construction.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Analyzing dags With Profiles
	3.1. Profiles
	3.2. Complementing With Profiles

	4. Retrospection
	4.1. Retrospective Labeling
	4.2. From Labelings to Rankings

	5. Variations on AL
	6. Discussion
	References
	Appendix A. Slices

