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Abstract. Synthesis is the automatic construction of a system from its specification. In
classical synthesis algorithms, it is always assumed that the system is “constructed from
scratch” rather than composed from reusable components. This, of course, rarely happens
in real life, where almost every non-trivial commercial software system relies heavily on
using libraries of reusable components. Furthermore, other contexts, such as web-service
orchestration, can be modeled as synthesis of a system from a library of components.
Recently, Lustig and Vardi introduced dataflow and control-flow synthesis from libraries
of reusable components. They proved that dataflow synthesis is undecidable, while control-
flow synthesis is decidable. In this work, we consider the problem of control-flow synthesis
from libraries of probabilistic components. We show that this more general problem is also
decidable.

1. Introduction

Hardware and software systems are rarely built from scratch. Almost every non-trivial
system is based on existing components. A typical component might be used in the design
of multiple systems. Examples of such components include function libraries, web APIs, and
ASICs. Consider the mapping application in a typical smartphone. Such an application
might call the location service provided by the phone’s operating system to get the user’s
co-ordinates, then call a web API to obtain the correct map image tiles, and finally call
a graphics library to display the user’s location on the screen. None of these components
are exclusive to the mapping application and all of them are commonly used by other
applications.

The construction of systems from reusable components is an area of active research.
Examples of important work on the subject can be found in Sifakis’ work on component-
based construction [21], and de Alfaro and Henzinger’s work on “interface-based design” [9].
Furthermore, other situations, such as web-service orchestration [1], can be viewed as the
construction of systems from libraries of reusable components.
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Synthesis is the automated construction of a system from its specification. In contrast
to model checking, which involves verifying that a system satisfies the given specification,
synthesis aims to automatically construct the required system from its formal specification.
The modern approach to temporal synthesis was initiated by Pnueli and Rosner who intro-
duced linear temporal logic (LTL) synthesis [17]. In LTL synthesis, the specification is given
in LTL and the system constructed is a finite-state transducer modeling a reactive system.
In this setting it is always assumed that the system is “constructed from scratch” rather
than “composed” from existing components. Recently, Lustig and Vardi [14] introduced
the study of synthesis from reusable components. The use of components abstracts much of
the detailed behavior of a sub-system, and allows one to write specifications that mention
only the aspects of sub-systems relevant for the synthesis of the system at large.

A major concern in the study of synthesis from reusable components is the choice of
a mathematical model for the components and their composition. The exact nature of the
reusable components in a software library may differ. One finds in the literature many
different types of components; for example, function libraries (for procedural programming
languages) or object libraries (for object-oriented programming languages). Indeed, there
is no single “right” model encompassing all possible facets of the problem. The problem of
synthesis from reusable components is a general problem to which there are as many facets
as there are models for components and types of composition [21].

As a basic model for a component, following [14], we abstract away the precise details
of the component and model a component as a transducer, i.e., a finite-state machine with
outputs. Transducers constitute a canonical model for reactive components, abstracting
away internal architecture and focusing on modeling input/output behavior. In [14], two
models of composition were studied. In dataflow composition, the output of one component
is fed as input to another component. The synthesis problem for dataflow composition was
shown to be undecidable. In control-flow composition control is held by a single component
at every point in time. The synthesis problem can then be viewed as constructing a super-
visory transducer that switches control between the component transducers. Control-flow
composition is motivated by software (and web services) in which a single function is in
control at every point during the execution. LTL synthesis in this setting was shown in [14]
to be 2EXPTIME-complete, just like classical LTL synthesis [17].

In this paper, we extend the control-flow synthesis model of [14] to probabilistic com-
ponents, which are transducers with a probabilistic transition function. This is a well
known approach to modeling systems where there is probabilistic uncertainty about the
results of input actions. Intuitively, we aim at constructing a reliable system from unreli-
able components. There is a rich literature about verification and analysis of such systems,
cf. [22, 7, 8, 23], as well about synthesis in the face of probabilistic uncertainty [2]. The
introduction of probability requires us to use a probabilistic notion of correctness; here we
choose the qualitative criterion that the specification be satisfied with probability 1, leaving
the study of quantitative criteria to future work.

Here, our focus is on proving decidability, rather than on establishing precise complexity
bounds, leaving the study of precise bounds to future work. Consequently, we abstract away
from the details of the specification formalism and assume that the specification is given
in terms of deterministic parity word automata (DPW). This allows us to consider all ω-
regular properties. We define and study the DPW probabilistic realizability and synthesis
problems, where the input is a library L of probabilistic components and a DPW A, and
the question is whether one can construct a finite system S from the components in L,
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such that, regardless of the external environment, the traces generated by the system S are
accepted by A with probability 1. Each component in the library can be used an arbitrary
number of times in the construction and there is no apriori bound on the size of the system
obtained. The technical challenge here is dealing with the finiteness of the system under
construction. In [14], as well as in [17], one need not deal with finiteness from the start. In
fact, one can test realizability without being concerned with finiteness of the constructed
system, as finiteness is a consequence of the construction. This is not the case here, where
we need to deal with finiteness from the start. Nevertheless, we are able to show that the
problem is in 2EXPTIME.

Before tackling the full problem, we first consider a restricted version of the problem,
where the specification is given in the form of a parity index on the states of the components,
and the composed system must satisfy the parity condition. We call this the embedded parity
realizability problem. We solve this problem and then show how solving the embedded
parity realizability problem directly allows us to solve the more general DPW probabilistic
realizability problem as well. The key idea here is that by taking the product of the
specification DPW with each of the components, we can obtain larger components each of
whose states has a parity associated with it. The challenge in completing the reduction
is the need to generate a static composition, which does not depend on the history of the
computation. Here we use ideas about synthesis with incomplete information from [13].

2. Background

2.1. Preliminaries.

2.1.1. Labeled Trees. Given a set D of directions, a D-tree is a set T ⊆ D∗ such that (a)
there is an element x0 ∈ T , called the root of T, such that, for all x ∈ T there exists y ∈ D∗

with x = x0 · y, and (b) if x · c is a non-root element of T , where x ∈ D∗ and c ∈ D, then x
is also an element of T . The elements of T are called its nodes. For every node x ∈ T , the
set of successors of x is given by {x · c ∈ T : c ∈ D}. A node with no successors is called a
leaf. A path π of a tree T is a set π ⊆ T such for every pair of nodes x, y in π, there exists
z ∈ D∗ such that x = y · z or y = x · z. A path is infinite if it has no leaf nodes, otherwise
it is finite. A subtree of T is a tree T ′ ⊆ T . For a node x ∈ T , the subtree rooted at x is the
tree {x · y ∈ T : y ∈ D∗}. The full D-tree is D∗. The full subtree at x is the tree whose set
of nodes is x ·D∗.

Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉, where T is a tree and τ : T → Σ
maps each node of T to a letter in Σ. A subtree of 〈T, τ〉, is a Σ-labeled D-tree 〈T ′, τ ′〉,
where T ′ is a subtree of T and τ ′(x) = τ(x), for all x ∈ T ′.

2.1.2. Tree Automata. For a set X, let B+(X) be the set of positive Boolean formulas over
X (i.e., Boolean formulas built from elements in X using ∧ and ∨), including the formulas
True (an empty conjunction) and False (an empty disjunction). For a set Y ⊆ X and
a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning True to elements in Y and
assigning False to elements in X −Y makes θ true. An alternating tree automaton is tuple
A = 〈Σ,D,Q, q0, δ, β〉 , where Σ is the input alphabet, D is a set of directions, Q is a finite
set of states, q0 ∈ Q is an initial state, δ : Q × Σ → B+(D × Q) is a transition function,
and β specifies the acceptance condition that defines a subset of Qω. Each element of



4 Y. LUSTIG, S. NAIN, AND M. Y. VARDI

B+(D×Q) is called an atom. The alternating automaton A runs on Σ-labeled full D-trees.
A run of A over a Σ-labeled D-tree 〈T, τ〉 is a (T × Q)-labeled N-tree 〈Tr, r〉. Each node
of Tr corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy of the
automaton that reads the node x of T and visits the state q. Note that multiple nodes of
Tr can correspond to the same node of T . The labels of a node and its successors have to
satisfy the transition function. Formally, 〈Tr, r〉 satisfies the following conditions:

(1) ǫ ∈ Tr and r(ǫ) = (ǫ, q0).
(2) Let y ∈ Tr with r(y) = (x, q) and δ(q, τ(x)) = θ. Then there exists a set S =

{(c0, q0), (c1, q1), . . ., (cn, qn)} ⊆ D×Q such that S satisfies θ, and for all 0 ≤ i ≤ n, we
have y · i ∈ Tr and r(y · i) = (x · ci, qi). S is allowed to be empty.

An infinite path π of a run 〈Tr, r〉 is labeled by a word in Qω. Let inf(π) be the set of states
in Q that occur infinitely often in r(π). The Büchi acceptance condition is given as β ⊆ Q,
and π satisfies β if inf(π) ∩ β 6= ∅. The parity acceptance condition is given as a function
β : Q → {1, . . ., k}, and π satisfies β if min({β(q) : q ∈ inf(π)}) is even. A run 〈Tr, r〉 is
accepting if all its infinite paths satisfy the acceptance condition. An automaton accepts
a tree iff there exists a run that accepts it. We denote by L(A) the set of all Σ-labeled
D-trees accepted by A.

The transition function δ of an alternating tree automaton is nondeterministic if every
formula produced by δ can be written in disjunctive normal form such that if two atoms
(c1, q1) and (c2, q2) occur in the same conjunction then c1 and c2 must be different. A
nondeterministic tree automaton A is an alternating tree automaton with a nondeterministic
transition function. In this case the transition function returns a set of |D|-ary tuples of

states and can be represented as a function δ : Q× Σ → 2Q
|D|

.

2.1.3. Transducers. A deterministic transducer is a tuple B = 〈ΣI ,ΣO, Q, q0, δ, L〉, where:
ΣI is a finite input alphabet, ΣO is a finite output alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, L : Q → ΣO is an output function labeling states with output
letters, and δ : Q × ΣI → Q is a transition function. We define δ∗ : Σ∗

I → Q as follows:
δ∗(ǫ) = q0 and for x ∈ Σ∗

I and a ∈ ΣI , δ
∗(x · a) = δ(δ∗(x), a). We denote by tree(B), the

ΣO-labeled ΣI -tree 〈Σ∗
I , τ〉, where for all x ∈ Σ∗

I , we have τ(x) = L(δ∗(x)). We say tree(B)
is the unwinding of B. A Σ-labeled D-tree T is called regular, if there exists a deterministic
transducer C such that T = tree(C).

A probability distribution on a finite set X is a function f : X → [0, 1] such that
∑

x∈X f(x) = 1. We use Dist(X) to denote the set of all probability distributions on set
X. A probabilistic transducer, is a tuple T = 〈ΣI ,ΣO, Q, q0, δ, F, L〉, where: ΣI is a finite
input alphabet, ΣO is a finite output alphabet, Q is a finite set of states, q0 ∈ Q is an
initial state, δ : (Q − F ) × ΣI → Dist(Q) is a probabilistic transition function, F ⊆ Q
is a set of exit states, and L : Q → ΣO is an output function labeling states with output
letters. Note that there are no transitions out of an exit state. If F is empty, we say T is
a probabilistic transducer without exits. Note that deterministic transducers are a special
case of probabilistic transducers.

Given a probabilistic transducer M = (ΣI ,Σo, Q, q0, δ, F, L), a strategy for M is a
function f : Q∗ → Dist(ΣI) that probabilistically chooses an input for each sequence of
states. A strategy is memoryless if the choice depends only on the last state in the sequence.
A memoryless strategy can be written as a function g : Q → Dist(ΣI). A strategy is pure
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if the choice is deterministic. A pure strategy is a function h : Q∗ → ΣI , and a memoryless
and pure strategy is a function h : Q→ ΣI .

A strategy f along with a probabilistic transducer M , with set of states Q, induces a
probability distribution on Qω, denoted µf . By standard measure theoretic arguments, it
suffices to define µf for the cylinders of Qω, which are sets of the form β ·Qω, where β ∈ Q∗.
First we extend δ to exit states as follows: for a ∈ ΣI , q ∈ F , q′ ∈ Q, δ(q, a)(q) = 1 and
δ(q, a)(q′) = 0 when q′ 6= q. Then we define µf (q0 · Q

ω) = 1, and for β ∈ Q∗, q, q′ ∈ Q,
µf (βqq

′ ·Qω) = µf (βq)(
∑

a∈ΣI
f(βq)(a)× δ(q, a)(q′)). These conditions say that there is a

unique start state, and the probability of visiting a state q′, after visiting βq, is the same as
the probability of the strategy picking a particular letter multiplied by the probability that
the transducer transitions from q to q′ on that input letter, summed over all input letters.

2.1.4. Graph Induced by a Strategy. Given a directed graph G = (V,E), a strongly connected
component of G is a subset U of V , such that for all u, v ∈ U , u is reachable from v. We
can define a natural partial order on the set of maximal strongly connected components of
G as follows: U1 ≤ U2 if there exists u1 ∈ U1 and u2 ∈ U2 such that u1 is reachable from
u2. Then U ⊆ V is an ergodic set of G if it is a minimal element of the partial order.

Let M be a probabilistic transducer, Q be its set of states, and f be a memoryless
strategy for M . We define the graph induced by f on Q, denoted by GM,f , as the directed
graph (Q,E), where (q1, q2) ∈ E if

∑

a∈ΣI
f(q1)(a) δ(q1, a)(q2) > 0. That is, there is an edge

from q1 to q2 if the transducer can transition from the state q1 to the state q2 on an input
letter that the strategy chooses with positive probability. Given q1, q2 ∈ Q, we say that q2
is reachable from q1 if there is a path from q1 to q2 in GM,f . We say a state is ergodic if it
belongs to some ergodic set of GM,f . An ergodic set is reachable if there is a path from the
start state to some state in the ergodic set. A state q of M is reachable under f , if there is
a path in GM,f from q0 to q.

2.1.5. Library of Components. A library is a set of probabilistic transducers that share the
same input and output alphabets. Each transducer in the library is called a component.
Given a finite set of directions D, we say a library L has width D, if each component in
the library has exactly |D| exit states. Since we can always add dummy unreachable exit
states to any component, we assume, w.l.o.g., that all libraries have an associated width,
usually denoted D. In the context of a particular component, we often refer to elements of
D as exits, and subsets of D as sets of exits. Given a component M from library L, and a
strategy f for M , we say that the exit i ∈ D is selected by f , if the ith exit state of M is
reachable under f .

An index function for a transducer is a function that assigns a natural number, called a
priority index, to each state of the transducer. An index function for a library is a function
that assigns a priority to every state of every component in the library. Given an index
function α for a library L, we define max(α) to be the highest priority assigned by α. We
can assume, w.l.o.g., that max(α) is not larger than twice the maximal number of states in
the components of the library. Given a transducer M , index function α, and a strategy f
for M , we say f visits priority p if there exists a state q of M such that α(q) = p and q is
reachable under f .
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2.2. Reactive Synthesis. Reactive synthesis involves the automated construction of reac-
tive programs from specifications. Given sets I and O of input and output signals, respec-
tively, we can view a program as a function P : (2I)∗ → 2O that maps a finite sequence
of sets of input signals into a set of output signals. A reactive system can be viewed as a
non-terminating program that interacts with an adversarial environment. The environment
generates an infinite sequence of input signals, which are modeled as infinite words over the
alphabet 2I . The execution of the program for a particular input word results in an infinite
computation, which is represented as an infinite word over 2(I∪O).

Given an LTL formula ψ over I ∪ O, realizability of ψ is the problem of determining
whether there exists a program P all of whose computations satisfy the specification ψ. The
correct synthesis of ψ then amounts to constructing such P [17].

The complete behavior of the system can be described by the set of all possible exe-
cutions (i.e. the traces of the system), which is represented as a 2O-labeled 2I -tree, called
an execution tree. The automata-theoretic approach involves constructing a tree automa-
ton that accepts all computation trees all of whose paths satisfy ψ. The solution to the
LTL synthesis problem then consists of a reduction to the nonemptiness problem of tree
automata [17] (an earlier and more complicated solution can be found in [3]). The LTL
synthesis problem is closely related to Church’s problem [4, 18].

The automata-theoretic approach to synthesis has been quite fruitful since the original
work of Pnueli and Rosner [17]. Automata-theoretic methods have been applied successfully
to the synthesis of branching specifications [11] and to synthesis in the presence of incomplete
or hidden information [13]. The work reported in this paper extends the reactive-synthesis
framework to synthesis from probabilistic components.

3. Control-flow Composition from Libraries

We first informally describe our notion of control-flow composition of components from a
library. The components in the composition take turns interacting with the environment,
and at each point in time, exactly one component is active. When the active component
reaches an exit state, control is transferred to some other component. Thus, to define a
control flow composition, it suffices to name the components used and describe how control
should be transferred between them. We use a deterministic transducer to define the transfer
of control. Each library component can be used multiple times in a composition, and we
treat these occurrences as distinct component instances. We emphasize that the composition
can contain potentially arbitrarily many repetitions of each component inside it. Thus, the
size of the composition, a priori, is not bounded. Note that our notion of composition is
static, where the components called are determined before run time, rather than dynamic,
where the components called are determined during run time.

Let L be a library with width D. A composer over L is a deterministic tranducer
C = (D,L,M,M0,∆, λ). Here M is an arbitrary finite set of states. There is no bound
on the size of M. Each Mi ∈ M is the name of an instance of a component from L and
λ(Mi) ∈ L is the type of Mi. We use the following notational convention for component
instances and names: the upright letter M always denotes component names (i.e. states
of a composer) and the italicized letter M always denotes the corresponding component
instances (i.e. elements of L). Further, for notational convenience we often writeMi directly
instead of λ(Mi). Note that while each Mi is distinct, the corresponding components Mi

need not be distinct. Each composer defines a unique composition over components from
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L. The current state of the composer corresponds to the component that is in control. The
transition function ∆ describes how to transfer control between components: ∆(M, i) = M

′

denotes that when the composition is in the ith final state of component M it moves to the
start state of component M ′. A composer can be viewed as an implicit representation of a
composition. We give an explicit definition of composition below.

Definition 3.1 (Control-flow Composition). Let C = (D,L,M,M0,∆, λ) be a composer
over library L with width D, where M = {M0, . . .,Mn}, λ(Mi) = (ΣI ,ΣO, Qi, q

i
0, δi, Fi, Li)

and Fi = {qix : x ∈ D}. The composition defined by C, denoted TC , is a probabilistic
transducer 〈ΣI ,ΣO, Q, q0, δ, ∅, L〉, where Q =

⋃n
i=0(Qi ×{i}), q0 = 〈q00 , 0〉, L(〈q, i〉) = Li(q),

and the transition function δ is defined as follows: For σ ∈ ΣI , 〈q, i〉 ∈ Q and 〈q′, j〉 ∈ Q,

(1) If q ∈ Qi \ Fi, then

δ(〈q, i〉, σ)(〈q′ , j〉) =

{

δi(q, σ)(q
′) if i = j

0 otherwise

(2) If q = qix ∈ Fi, where ∆(Mi, x) = Mk, then

δ(〈q, i〉, σ)(〈q′ , j〉) =

{

1 if j = k and q′ = qk0
0 otherwise

Note that the composition is a probabilistic transducer without exits. When the com-
position is in a state 〈q, i〉 corresponding to a non-exit state q of component Mi, it behaves
like Mi. When the composition is in a state 〈qf , i〉 corresponding to an exit state qf of
component Mi, the control is transferred to the start state of another component as deter-
mined by the transition function of the composer. Thus, at each point in time, only one
component is active and interacting with the environment.

4. Synthesis for Embedded Parity

In this section we consider a simplified version of the general synthesis problem, where each
state of a component in the library has a priority associated with it and the specification
to be satisfied is that the highest priority visited i.o. must be even with probability 1.

Let M be a probabilistic tranducer and α be an index function. A strategy f for M is
winning for the environment if with positive probability the highest priority visited infinitely
often (i.o.) is odd. We say that M satisfies α if there exists no winning strategy for the
environment. Given a composer C over library L, we say that C satisfies α if TC satisfies
α.

Given a library L with width D, an exit control relation is a set R ⊆ D × L. We say
that a composer C = (D,L,M,M0,∆, λ) over L is compatible with R, if the following holds:
for all M,M′ ∈ M and i ∈ D, if ∆(M, i) = M

′ then (i,M ′) ∈ R. Thus, each element of R
can be viewed as a constraint on how the composer is allowed to connect components.

Definition 4.1. The embedded parity realizability problem is: Given a library L with width
D, an exit control relation R for L, and an index function α for L, decide whether there
exists a composer C over L, such that C satisfies α and C is compatible with R. If such a
composer exists, we say that L realizes α under R. The embedded parity synthesis problem
is to find such a composer C if it exists.



8 Y. LUSTIG, S. NAIN, AND M. Y. VARDI

The following theorem allows us to restrict attention to memoryless strategies. It states
that if a winning strategy exists, then a memoryless winning strategy must also exist. Here
we give a direct combinatorial proof, but we note that the result can also be obtained by
adapting the methods in [6], where a similar result was proved for 2–1/2 player stochastic
parity games by Chatterjee et al.

Theorem 4.2. Given a probabilistic transducer M , and index function α, if there exists
a winning strategy for the environment then there exists a pure and memoryless winning
strategy.

Proof. We break up the proof of this theorem in two parts in Lemma 4.3 and Lemma 4.4.
In the first part we show that given a winning strategy f we can find a memoryless winning
strategy f ′ from f . In the second part we show that given a memoryless winning strategy
f ′, we can obtain a pure and memoryless strategy f ′′ from f ′. Together the two lemmas
suffice to complete the proof.

Lemma 4.3. Let M be a transducer and f be a winning strategy for the environment. Then
there exists a memoryless strategy g such that g is winning.

Proof. Let f be a strategy that is winning for the environment. Let Q be the set of states
of M , and let G = (Q,Q × Q) be the complete directed graph on Q. Given q1, q2 ∈
Q, simple(q2, q1) is the set of finite simple paths in G from q2 to q1. Since G is finite,
simple(q2, q1) is also finite. Given a finite path β ∈ Q∗, edges(β) is the set of edges in β.
Given a set of edges W ⊆ (Q×Q), IO(W ) ⊆ Qω is the set of infinite paths in which each
edge in W is visited i.o.

Let V∞ ⊆ Q be the set of states which have positive probability of being visited i.o.
under f , that is, for each state q in V∞, the set of paths in Qω that visit q i.o. has positive
measure under µf . Similarly, let E∞ ⊆ V∞ × V∞ be the set of edges that have positive
probability of being followed infinitely often, i.e., E∞ = {e ∈ (Q × Q) : µf (IO({e})) >
0}. Let G∞ be the directed graph (V∞, E∞). We first show that each maximal strongly
connected component (MSCC) of G∞ is also an ergodic set.

If e = (q1, q2) is an edge in E∞, then in order for an infinite path to to follow this
edge i.o., it must also travel from q2 to q1 i.o. Every finite path from q2 to q1 can be
partitioned into a simple path from q2 to q1 and a finite number of cycles. Thus for each
w ∈ IO({e}), there exists β ∈ simple(q2, q1), such that w ∈ IO(edges(β)). Therefore
IO({e}) ⊆

⋃

β∈simple(q2,q1)
IO(edges(β)). Since µf (IO({e})) > 0, there exists at least one

β ∈ simple(q2, q1) such that µf (IO(edges(β)) > 0 and edges(β) ∈ E∞. Thus each edge in
G∞ can in effect be traversed in the opposite direction by following some path in G∞. So
G∞ does not have an MSCC with an outgoing edge, and thus, is a collection of ergodic sets.

Next we show that there exists some ergodic set X in G∞ such that the highest parity
in X is odd. Given q ∈ Q, let Aq ⊆ Qω denote the event that q is the highest parity state
visited i.o. Since f is winning, there must be some q ∈ Q such that q has odd parity and
the event Aq has positive probability. Then q ∈ V∞, and let X ⊆ V∞ be the ergodic set in
G∞ that contains q. Let Bq ⊆ Qω be the set of paths that visit q i.o. and leave X at most
finitely many times. Since, by the definition of G∞, it is not possible for a path to leave X
i.o. with positive probability, we get µf (Aq −Bq) = 0, and therefore µf (Aq) = µf (Aq ∩Bq).
Now the probability that a suffix of a path remains in X, but does not visit some q′ ∈ X is
zero. This is because, X is strongly connected, and so avoiding q′ loses a positive amount of
probability infinitely many times. In the limit, the probability of remaining in X and never



SYNTHESIS FROM PROBABILISTIC COMPONENTS 9

visiting q′ goes to zero. If there is some p ∈ X such that the parity of p is greater than the
parity of q, then all paths in Aq∩Bq must have suffixes that avoid p, and so µf (Aq∩Bq) = 0,
which contradicts that Aq has positive probability. Therefore q has the highest parity in X.

Finally, since each state inX is visited i.o. with positive probability, then the probability
of visiting some state in X starting from the start state q0 must be positive. Let π ∈ Q∗ be
the shortest finite path starting from q0 and ending in X, such that µf (π ·Qω) > 0.

We now define a memoryless strategy g : Q → Dist(ΣI) that is winning for the envi-
ronment. We first consider the case when q ∈ V∞. Let succ(q) = {q′ : ∃(q, q′) ∈ E∞} be
the successors of q in G∞. Given a ∈ ΣI , we define Nq(a) = {q′ ∈ Q : δ(q, a)(q′) > 0}, and
Dq = {b ∈ ΣI : Nq(b) ⊆ succ(q)}. Given p ∈ Q and β ∈ Q∗, we say that p is activated by
f at β · q, if Σa∈ΣI

f(β · q)(a) δ(q, a)(p) > 0. If Dq is empty, then this implies that, for all
β ∈ Q∗, whenever some q′ ∈ succ(q) is activated by f at β · q, some q′′ 6∈ V∞ must also
be activated by f at β · q. Then any time a path visits q, there is a positive probability
of visiting a state in Q − V∞ next. So a path that visits q and remains in V∞ loses some
finite amount of probability. In the limit, a path visiting q i.o. must have probability zero
because any such path has a suffix in V ω

∞. This contradicts q ∈ V∞. Thus Dq is non-empty
for all q ∈ V∞. We define g : V∞ → Dist(ΣI) as follows: for q ∈ V∞, g(q) is distributed
uniformly over Dq and is 0 elsewhere. We extend g to all of Q as follows: for states in π,
we chose the value of g such that edges in π have positive probability under µg, and for all
other states we let g take an arbitrary value. Then g is a memoryless strategy since it is a
function Q → Dist(ΣI). Consider the graph Gg induced by g on Q. Every edge in E∞ is
also an edge in Gg, and no edges that leave V∞ have been added. Also, all edges in π are
also in Gg. So the set X ⊆ V∞ is a reachable ergodic set of g. Since the highest parity in
X is odd, g is a winning strategy.

Lemma 4.4. Let M be a transducer and f be a winning memoryless strategy for the envi-
ronment. Then there exists a memoryless and pure strategy g such that g is winning.

Proof. Let M = (ΣI ,ΣO, Q, q0, δ, F, L). Given two memoryless strategies f and g, we
say that g refines f , iff ∀q ∈ Q, ∀a ∈ ΣI , g(q)(a) > 0 implies f(q)(a) > 0. The set
of inputs chosen with positive probability at state q by memoryless strategy f is simply
the support of the distribution f(q), denoted support(f(q)). Then g refines f iff ∀q ∈ Q,
support(g(q)) ⊆ support(f(q)). Note that, if g refines f , then Gg is a subgraph of Gf , and
each connected component of Gg is contained in a connected component of Gf .

Now assume that f is a winning memoryless strategy for the environment. Since f is
winning, by Lemma 4.5, there must be at least one reachable ergodic set P ⊆ Q of Gf such
that the highest parity in P is odd. Let q ∈ P be a state with the highest parity. Then if
a memoryless strategy g refines f , such that q lies in a reachable ergodic set of Gg, then g
is also winning. This is because every ergodic set of Gg that contains q must be contained
within some connected component of Gf containing q, and P contains all such components.
So the highest parity in such an ergodic set of Gg must also be odd. Thus it suffices to
give a procedure of stepwise refinement of f , keeping q in a reachable ergodic set at each
step, that terminates in a pure strategy. This is because, at each step of the procedure,
the refined strategy is winning, and so it is also winning at the end. We detail a two stage
procedure below.

Stage 1: In the first stage we only modify f for states within the ergodic set P and each
state is only modified once. At each step we maintain a set S ⊆ P of previously selected
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states. The modified strategy at step k is denoted fk. The set of already selected states
at step k is denoted Sk. The procedure is then defined inductively as follows:
(1) S1 = {q}, and f1 agrees with f on Q−{q} and chooses some input a ∈ support(f(q))

deterministically at q.
(2) Sk+1 = Sk ∪ {pk}, where pk ∈ P −Sk is chosen such that there is an edge (pk, p

′
k) in

Gfk for some state p′k ∈ Sk. fk+1 agrees with fk on Q− {pk}, and fk+1(pk) chooses
input ak ∈ support(fk(pk)) deterministically such that δ(pk, ak)(p

′
k) > 0.

At each step, the size of P −S decreases by one. The prodecure terminates when P −S
is empty. This happens in |P | steps. In order to ensure that the inductive procedure
is sound, we need to show that a suitable choice for pk and ak exists at each step. We
first prove that, for all k < |P |, for all q′ ∈ Q − Sk, all edges leaving q′ in Gf are also
present in Gfk . This is true at the first step. If this is true at step k, then it is also true
at step k + 1, since Q− Sk+1 ⊆ Q− Sk and fk+1 and fk have the same value on states
in Q − Sk+1, so no edges that leave states in Q − Sk+1 are removed at step k + 1. So
the statement holds by induction. Since P is an ergodic set of Gf , for all k < |P |, there
is some edge ek in Gf that starts in P − Sk and ends Sk. Now, by the claim proven
above, ek is also an edge in Gfk . Then the source vertex of ek can be chosen as pk in
step k + 1. Also, because ek = (pk, p

′
k) is an edge in Gfk , there must be some b ∈ ΣI

such that fk(pk)(b) > 0 and δ(pk, b)(p
′
k) > 0. Then we can choose b as ak. Therefore the

inductive construction is well defined.
Next we show that, for all k ≤ |P |, fk refines f , and q is reachable in GfK from

every state in Sk. Let fk refine f . Since fk+1 and fk agree on states in Q − {pk}, and
support(fk+1(pk)) ⊆ support(fk(pk)), we have fk+1 refines f . Let q be reachable in Gfk

from every state in Sk. Since Sk+1 = Sk ∪{pk}, it suffices to show that q is reachable in
Gfk+1

from every vertex in Sk, and there is an edge in Gfk+1
from pk to some vertex in

Sk. The first part is true because fk+1 and fk take the same value on states in Qk, and
the second part follows directly from the definition of fk+1(pk).

Let f ′ = f|P |. Then f
′ refines f , all edges leaving Q− P in Gf are also edges in Gf ′ ,

and q is reachable in Gf ′ from all states in P .

Stage 2: Since P is a reachable ergodic set of Gf , there exists a minimal path π in Gf

that starts from q0 and ends in some state in P . Since the path is minimal, none of its
edges lie in P . Then π is also a path in Gf ′ . Let π = q0, q1, . . ., qn where qn ∈ P . Then
there exists bk ∈ ΣI such that f ′(bk) > 0 and δ(qk, bk)(qk+1) > 0. We define a pure
memoryless strategy g as follows: for states in P , q agrees with f ′; for a state qk in π,
g chooses input bk deterministically; and for a state q′ that is not in P or π, g chooses
some input b ∈ support(f ′(q′)) deterministically.

Then g refines f ′ by construction, and thus g refines f . In order to prove that g is
also a winning strategy, it suffices to show that q belongs to a reachable ergodic set of
Gg.

Now, by construction, π is also a path in Gg, and so some state in P is reachable
from the start state in Gg. Also, q is reachable in Gg from all states in P . Therefore
q is reachable from the start state in Gg. Since P is an ergodic set of Gf , and Gg is a
subgraph of Gf , therefore there is no path in Gg from q to a state in Q− P . Therefore,
if p ∈ Q is reachable from q in Gg, then q is also reachable from p in Gg. Thus q lies in
a reachable ergodic set of Gg.
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Memoryless strategies are important because they induce an ergodic structure on the set
of states. Ergodic sets are useful because they enable us to replace probabilistic reasoning
with combinatorial reasoning. In particular, they have the following crucial properties: (a)
the suffix of a path is contained in some ergodic set with probability 1, and (b) the suffix
of a path is contained in a proper subset of an ergodic set with probability zero [12]. This
allows us to define the winning strategy condition in terms of graph reachability.

Lemma 4.5. Let M be a probabilistic transducer and f be a memoryless strategy for M .
Then f is winning for the environment iff GM,f has a reachable ergodic set whose highest
priority is odd.

Proof. Let Q be the set of states of M , E ⊆ 2Q be the set of ergodic sets of GM,f and
X =

⋃

Y ∈E Y be the set of all ergodic states. We use the following useful property of
ergodic sets [12]: (a)
the suffix of a path is contained in some ergodic set with probability 1, and (b) the suffix of
a path is contained in a proper subset of an ergodic set with probability zero. Formally, we
have, for all β ∈ Q∗, µf (β · (Q−X)ω) = 0, and for all Y ∈ E, q ∈ Y , µf (β · (Y −{q})ω) = 0.

Let odd(Qω) be the set of paths in Qω whose highest parity visited i.o. is odd. If the
highest parity in each ergodic set is even, then every path in odd(Qω) must have a suffix
that is either contained in (Q − X)ω or is contained in Zω, where Z is a proper subset
of some ergodic set. Thus odd(Qω) is contained in the union of

⋃

β∈Q∗ β · (Q − X)ω and
⋃

β∈Q∗,Y ∈E,q∈Y β · (Y − {q})ω. The probability of both these sets of paths is zero under µf .

Thus µf (odd(Q
ω)) = 0, and f is not winning for the environment.

Next, assume that there is a reachable ergodic set Y ′ such that the highest parity in Y ′

is odd. Let q′ ∈ Y ′ be a state with this parity. Since Y ′ is reachable from the start state,
there exists a path π ∈ Q∗, such that π starts from q0 and ends in Y ′ and µf (π · Qω) > 0.
Since Y ′ is an ergodic set, the probability of a path leaving Y ′ after reaching it is 0 [12]. So
we also have µf (π ·Y ′ω) > 0. Consider the set of paths S = π · Y ′ω − π · (Y ′ −{q′})ω. Then
each path in S visits q′ i.o., and therefore, S ⊆ odd(Qω). Now µf (π · (Y

′ −{q′})ω) = 0, and
therefore, µf (odd(Q

ω)) ≥ µf (S) = µf (π ·Y
′ω) > 0. Thus, f is winning for the environment.

When the underlying probabilistic transducer is a composition, ergodic sets acquire
additional structure. Given a composer C and a memoryless strategy f for TC , if a reachable
ergodic set X of GTC ,f contains some state from a component M of TC , then either X is
contained in M or all the reachable states of M are contained in X. Formally:

Lemma 4.6. Let C = (D,L,M,M0,∆, λ) be a composer over L and f be a memoryless
strategy for TC. Let Mi ∈ M and Qi be the state space of Mi. Let X be a reachable ergodic
set of GTC ,f such that X ∩ (Qi×{i}) 6= ∅. Then either X ⊆ Qi×{i} or (Qi×{i})∩Y ⊆ X,
where Y is the set of states of TC that are reachable under f .

Proof. Assume that X ∩ (Qi × {i}) 6= ∅ and X is not contained in Qi × {i}. Let (q, i) ∈
X∩(Qi×{i}) and (q′, j) ∈ X−(Qi×{i}), for some j 6= i. SinceX is ergodic, there is a path π
in GTC ,f from (q′, j) to (q, i). Let s be the first state along π such that s = (q′′, i) ∈ Qi×{i}.
We claim that q′′ = qi0, where q

i
0 is the start state of Mi. Let s′ = (q′′′, k), where k 6= i, be

the predecessor of s in π. By the definition of GTC ,f , there is an edge from s′ to s only if
TC can transition from s′ to s on some input with positive probability. By Definition 3.1,
TC can transition from (q′′′, k) to (q′′, i) only if q′′′ is a final state of Mk and q′′ is the initial
state of Mi. Thus (q

i
0, i) is in X.
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Since X is an ergodic set, if it contains a state s of TC , then it also contains all states
reachable under f from s. By definition, every state in (Qi × {i}) ∩ Y is reachable under f
from (qi0, i). Since X contains (qi0, i), it also contains all states in (Qi × {i}) ∩ Y .

Given a graph G, each of whose vertices is assigned a priority, we say that G has the odd
ergodic property if it has a reachable ergodic set whose highest priority is odd. Consider
a composer C and a memoryless strategy f for TC . Then, by Lemma 4.5, f is winning
for the environment iff GTC ,f has the odd ergodic property. So the probabilistic notion of
winning strategy is reduced to a combinatorial one. However, the graph GTC ,f is very large
as it contains all the internal states of each component explicitly. Further, to show that C
satisfies α, we have to consider every possible memoryless strategy for C. We tackle this
complexity by simplifying the description of a strategy f and graph GTC ,f so as to abstract
away the inner states of components and the choices that f makes on those inner states.
Let M be the state space of C. We aim to replace GTC ,f by a simpler graph G′, whose
set of vertices is M, such that the odd ergodic property is preserved. We first discuss this
transformation informally, and then give formal definitions and proofs.

LetM be a component of TC . If some reachable ergodic set of GTC ,f lies entirely within
M , we say M is a sink. When the highest priority in the ergodic set is odd (resp. even)
we say M is an odd (resp. even) sink for f . Note that a component can be both an odd
and an even sink for a given strategy. Intuitively, we aim to replace the subgraph of GTC ,f

that corresponds to states of M by a single new vertex xM to obtain a new graph G′ and
assign a suitable priority to xM such that the odd ergodic property is preserved by the
transformation. Now if M is not a sink, then, by Lemma 4.6, xM lies in a reachable ergodic
set of G′ iff all reachable states of M lie in a reachable ergodic set of GTC ,f . In this case, we
can simply assign the highest reachable priority in M to xM and the odd ergodic property
is preserved. If, however, M is a sink, then the collapse of M to a single vertex might
introduce new ergodic sets in the graph. That is, xM might lie in an ergodic set of G′ which
has no analogue in GTC ,f . We then have to choose the priority of xM such that the odd
ergodic property is still preserved. There are two cases to consider:

• M is an odd sink for f . Then, by Lemma 4.5, f is winning for the environment. Let fM
denote f restricted to the states in M . Then fM is a memoryless strategy for M that
is winning for the environment, and in every composition involving M , the environment
can simply play fM on the states in M to win. So a component that is an odd sink is not
useful for synthesizing compositions. We note that it is easy to check for and remove any
odd sinks from L in a preprocessing step before attempting synthesis. Checking whether a
particular component is a sink is equivalent to model checking Markov decision processes
and can be done in polynomial time [22]. In the rest of the paper, we assume that the
given library L does not contain components that are odd sinks.

• M is an even sink for f but not an odd sink for f . Then, by Lemma 4.6, every reachable
state in M either lies in an even sink or does not lie in an ergodic set. So no reachable
state in M is part of an ergodic set with odd highest priority. Thus collapsing M to xM
does not remove any ergodic sets with odd highest priority. It only remains to consider
the possibility that the transformation can introduce a new ergodic set whose highest
priority is odd. We can avoid this by assigning a priority of 2max(α) to xM , where
max(α) is the highest parity assigned by the index function α. Then if xM is part of
a reachable ergodic set X ′ in G′, then X ′ has highest priority 2max(α), which is even.
Thus the odd ergodic property is preserved.
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In formalizing the approach given above, instead of explicitly transformingGTC ,f into a more
abstract graph, it is simpler to directly define a suitable graph on the state space M of the
composer C such that the odd ergodic property is preserved. Just as a memoryless strategy
f applied to the composition TC gives rise to the graph GTC ,f , we define a combinatorial
object, called a choice function, such that choice function g together with composer C gives
rise to a graph GC,g.

Definition 4.7 (Choice Function). Given a library L with width D and index function
α, we define the set LABELS(L) ⊆ 2D × {1, . . ., 2max (α)} × L as follows: (X, j,M) ∈
LABELS(L) iff there exists a memoryless strategy f for M such that

• X ⊆ D is the set of exits of selected by f in M .
• If M is an even sink for f , then j = 2max(α).
• Otherwise j is the highest priority visited by f in M .

Given a composer C = (D,L,M,M0,∆, λ) over L, a choice function for C, is a function g :
M → 2D ×{1, . . ., 2max (α)}, such that, for all Mi ∈ M, (g(Mi),Mi) ∈ LABELS(L). The
graph induced by g on C, denoted GC,g, is the directed graph (M, E), where (M1,M2) ∈ E
if ∆(M1, i) = M2 for some i ∈ D such that i ∈ X where g(M1) = (X, j). The priority of a
vertex M ∈ M of GC,g is j where g(M) = (X, j). We say that g has rank r, if GC,g has a
reachable ergodic set whose highest priority is r.

The size of the set LABELS(L) is at most max(α)|L|2|D|. For an arbitrary triple
(X, j,M), we can check whether (X, j,M) ∈ LABELS(L) in time polynomial in |M | using
standard techniques for solving Markov decision processes [22]. Thus LABELS(L) can be
computed in time exponential in the size of L.

Theorem 4.8. Let C be a composer over L. Then there exists a strategy for TC that is
winning for the environment iff there exists a choice function for C that has an odd rank.

Proof. Let C = (D,L,M,M0,∆, λ). Let Qi be the state space of Mi = λ(Mi), for Mi ∈ M,
and let Q =

⋃

(Qi × {i}) be the state space of TC .

Only If : Assume there exists a strategy for TC that is winning for the environment. Then,
by Theorem 4.2, there exists a memoryless winning strategy f . We construct a choice
function g for C as follows: for all Mi ∈ M, g(Mi) = (X, p), where X is the set of exits
of Mi selected by f , and p = 2max(α) if Mi is an even sink for f and otherwise p is the
highest priority in Mi visited by f . Since f is winning, GTC ,f has a reachable ergodic
set H with odd highest priority r. Consider the set H ⊆ M defined as follows: for all
Mi ∈ M, Mi ∈ H if (Qi × {i}) ∩H 6= ∅. Thus, H contains a state of the composer C if
the corresponding component of TC overlaps with the ergodic set H. Since L contains
no components that are odd sinks, and even sinks can not be a part of an ergodic set
whose highest priority is odd, H must contain all the reachable states in each component
named in H.

We claim that H is an ergodic set of GC,g. We first show that H is strongly connected.
Let Mi and Mk be in H. Since all the reachable states of Mi and Mk are contained
in H, in particular their start states are also contained in H. Let these be qi and qk
respectively. Then there is a path in GTC ,f from (qi, i) to (qk, k) because H is an ergodic
set of GTC ,f . Consider the path π from (qi, i) to (qk, k) that contains the least number
of exit states. Let the length of π be n and let (q′i, i) be the first exit state along π.
Suppose ∆(Mi, x) = Mj, where q

′
i is the exit state of Mi in direction x, and let qj be the
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start state of Mj . Then, if g(Mi) = (X, p), we have x ∈ X, so there is an edge from Mi

to Mj in GC,g, and the immediate next state after (q′i, i) in π is (qj, j). The suffix of π
starting from (qj , j) is a path π′ from (qj , j) to (qk, k) of length less than n. Further, by
construction, among all such paths it has the least number of exit states. Assume, by
the induction hypothesis, there is a path from Mj to Mk in GC,g. Since (Mi,Mj) is also
an edge in GC,g, therefore, by induction, there is a path from Mi to Mk in GC,g. Mi and
Mk were chosen arbitrarily in H. So H is strongly connected.

Next, we show that there are no edges that leave H. Assume there is some edge in
GC,g from a vertex Mi ∈ H to a vertex Mj ∈ M−H. Let g(Mi) = (X, p′). Then there
exists x ∈ X such that ∆(Mi, x) = Mj. Let (q′, i) be the exit state of Mi in direction
x. Then (q′, i) is reachable under f and so is (qj, j), where qj is the start state of Mj.
Therefore, there is an edge in GTC ,f from (q′, i) ∈ H to (qj , j) 6∈ H, which contradicts
that H is an ergodic set. Thus no edges leave H in GC,g and H is ergodic.

Finally, we show that the highest priority in H is r. By construction of g, since H
does not contain any even sinks, the priority of a vertex Mi in H is the highest priority
visited in Mi by f . Thus, the highest priority in H is at most the highest priority in
H, which is r. Let (q, j) ∈ H be such that q has priority r. Then the highest priority
visited by f in Mj is r, so g(Mj) = (X, r) for some X ⊆ D. Since Mj ∈ H, the highest
priority in H is r, and g has rank r.

If : Now assume that g is a choice function for C with rank p, for some odd p ≤ max(α).
Then, by the definition of choice function, for all Mi ∈ M, there exists a memoryless
strategy fi for Mi, such that g(Mi) = (Xi, pi) where Xi is the set of exit directions of Mi

under fi, and pi = 2max(α) if Mi is an even sink for fi and otherwise pi is the highest
priority visited by fi.

We define a memoryless strategy f for TC as follows: for all q ∈ Qi, f(q, i) = fi(q).
Since g has rank p, there exists a reachable ergodic set H ⊆ M of GC,g with highest
priority p. Consider the set H = {(q, i) : q ∈ Qi,Mi ∈ H}, which consists of all states in
all components corresponding to the set H. Let Hf be the subset of H that is reachable
under f from the start state of TC . We first show that Hf is strongly connected. Let
(qi, i) and (qk, k) be two arbitrary states in Hf . Then qi is a state of Mi and qk is a state
of Mk. Further, Mi and Mk are both in H. We have the following two cases:
(1) qi is the start state of Mi. Consider the shortest path in GC,g from Mi to Mk. Such

a path exists because H is an ergodic set of GC,g. Let the length of the path be n
and let Mj be the successor of Mi in this path. So there is path of length n − 1 in
GC,g from Mj to Mk. Now, by the definition of GC,g, there exists x ∈ D such that
∆(Mi, x) = Mj and the exit state in direction x is reachable from the start state of
Mi under fi. Thus there is a path in GTC ,f from (qi, i) to (qj , j) where qj is the start
state of Mj . By induction, there is a path in GTC ,f from (qi, i) to (qk, k).

(2) qi is not the start state of Mi. Let g(Mi) = (X, p′), where X ⊆ D. Since p is the
highest priority in H and Mi ∈ H, we have p′ ≤ p ≤ max(α). Thus p′ 6= 2max(α)
and so Mi is not an even sink for f . Also, the library L is assumed to have no
components that are odd sinks. Thus, some exit of Mi must be reachable from qi
under fi. Let this exit be in direction x ∈ D, and let ∆(Mi, x) = Mj. Then there is
a path in GTC ,f from (qi, i) to (qj , j) where qj is the start state of Mj . Now, since qj
is a start state, by the previous case, there is a path from (qj , j) to (qk, k) in GTC ,f .
So there is a path from (qi, i) to (qk, k) and therefore Hf is strongly connected.
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Assume that some edge in GTC ,f leaves Hf . Let there be an edge between (q, i) ∈ Hf

and (q′, j) ∈ Q−Hf . Now Mj can not belong to H because otherwise (q′, j) would be
in Hf . So we have i 6= j and (q, i) must be an exit state of Mi. Therefore there is an
edge in GC,g from Mi ∈ H to Mj ∈ M−H, which contradicts that H is ergodic. Thus
Hf is also an ergodic set.

By Lemma 4.5, it suffices to show that the highest priority in Hf is odd. Now p is
the highest priority in H, and p is odd, which means p 6= 2max(α). So there must exist
Mi ∈ H such that some state q in Mi has priority p and is reachable under fi. Then
(q, i) is in Hf and so Hf has highest priority at least p. Assume some state (q′, j) in Hf

has priority p′ > p. Since q′ is reachable under fj, therefore, we have g(Mj) = (X, p′′),
for some X ⊆ D and p′′ ≥ p′ > p. This contradicts the fact that Mj ∈ H. Thus the
highest priority in the ergodic set Hf is p, which is odd.

Let Γ = LABELS(L). A composer and choice function pair has a natural representation
as a regular Γ-labeled D-tree. Given a composer C = (D,L,M,M0,∆, λ) over L, and a
choice function g for C, we denote by tree(C, g), the regular Γ-labeled full D-tree 〈D∗, τ〉,
where for all x ∈ D∗, we have that τ(x) = (g(∆∗(x)), λ(∆∗(x))). Thus tree(C, g) is the
tree obtained as a result of adding labels to tree(C) such that a node x corresponding to
Mi ∈ M that is labeled with Mi in tree(C) is labeled with (X, j,Mi) where (X, j) = g(Mi).
As we show in the next lemma, the mapping is reversible, in the sense that given a regular
Γ-labeled D-tree, we can obtain a composer and choice function in a natural way.

Lemma 4.9. Let T be a regular Γ-labeled full D-tree. Then there exist a composer C over
L and a choice function g for C such that tree(C, g) = T .

Proof. Since T is regular, there exists a deterministic transducer A = (D,Γ, Q, q0, δ, λ) that
generates T . We define C = (D,L,M,Mq0 , δ

′, λ′) as follows: for all q ∈ Q,

• there is a state Mq in M
• if λ(q) = (X, j,Mi) then λ

′(Mq) =Mi

• for all x ∈ D, δ′(Mq, x) = Mq′ where q
′ = δ(q, x)

We define g : M → 2D × {1, . . ., k} as follows: for all q ∈ Q, g(Mq) = (X, j) where
λ(q) = (X, j,Mi). Then, since (X, j,Mi) ∈ Γ = LABELS(L), g is a choice function.

Let T = 〈D∗, τ1〉 and tree(C, g) = 〈D∗, τ2〉. We need to show that τ1 = τ2. Consider a
node x ∈ D∗. We have τ1(x) = λ(δ∗(x)) and τ2(x) = (g(δ′∗(x)), λ′(δ′∗(x))). Let δ∗(x) = q
and λ(q) = (X, j,M). Then, by construction of C and g, δ′∗(x) = Mq, g(δ

′∗(x)) = g(Mq) =
(X, j), and λ′(δ′∗(x)) = λ′(Mq) =M . Therefore τ2(x) = (X, j,M) = τ1(x).

In light of Lemma 4.9, we can represent an arbitrary regular Γ-labeled full D-tree as
tree(C, g) for some composer C over L and some choice function g for C. Similarly, we can
represent an arbitrary regular L-labeled full D-tree as tree(C) for some composer C over
L.

Since the question of whether a given composition satisfies α boils down to whether
its composer has a choice function that has an odd rank, we find it useful to characterize
regular trees that correspond to choice functions having a particular rank (see [19] for
related results). First, we inductively define the set of marked nodes of a Γ-labeled D-tree
as follows: the root is always marked, and a node y · i, where i ∈ D and y ∈ D∗, is marked
if y is marked and i ∈ X, where (X, j,M) is the label on y · i.
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Lemma 4.10. Let C = (D,L,M,M0,∆, λ) be a composer over library L with width D, α
be an index function for L, g be a choice function for C, and p ≤ max (α). Then g has rank
p iff tree(C, g) has a full subtree T such that:

(1) The root of T is marked.
(2) Every node in T that is marked has priority label at most p.
(3) From each marked node in T there is a path in T to a marked node with priority label

p.

Proof. Only If: Assume g has rank p. Then, by definition, there exists a reachable ergodic
set of GC,g whose highest priority is p. Let Mi ∈ M be a vertex of GC,g that lies in this
ergodic set such that there is a path in GC,g from M0 to Mi and Mi has priority p. Since
Mi is reachable from M0 in GC,g, there exists some x ∈ D∗ such that ∆∗(x) = Mi and x
is marked. Then the node x ∈ tree(C, g) is labeled with (X, p,Mi) for some X ⊆ D. Let
Tx be the full subtree of tree(C, g) rooted at x. We show that Tx has the desired property.
Let y be a node in Tx that is marked and let ∆∗(y) = Mj. Then Mj must lie in the ergodic
set of GC,g containing Mi and g(Mj) = (Y, p′) for some Y ⊆ D and p′ ≤ p. So y is labeled
(Y, p′,Mj) and has a priority label less than or equal to p. All that remains is to show that
some marked node in Tx with a priority label p is reachable from y. Since Mi is reachable
from Mj in GC,g, there must exist x′ ∈ D∗ such that ∆∗(y · x′) = Mi and yx′ is marked.
Then z = yx′ is also labeled (X, p,Mi). Since Tx is a full subtree, and y ∈ Tx, therefore z
also lies in Tx and there is a path from y to z.

If: Let T be a full subtree of tree(C, g) that satisfies the given property. Consider the
set H ⊆ M of vertices in GC,g defined as follows: Mi ∈ H if there exists some marked node
x ∈ T such that ∆∗(x) = Mi. Note that every vertex in H is reachable from M0 in GC,g

and has priority at most p. Consider the subgraph GH of GC,g induced by H. Let H′ be
an ergodic set of GH and let M be an arbitrary vertex in H′. Then there exists a marked
node y ∈ T such that ∆∗(y) = M. Let z = a1a2. . .an ∈ D∗ be such that yz is marked
and has priority label p. Then every node along the path from y to yz is also marked. Let
M

′
1 = ∆∗(y) and M

′
i+1 = ∆∗(ya1. . .ai), for 1 ≤ i < n. Then the priority of M′

n is p and
M

′
1,M

′
2, . . .,M

′
n is a path in GH. Since M

′
1 ∈ H′ and H ′ is an ergodic set of GH, M

′
n must

also lie in H′. Thus the highest priority in H′ is p.
Finally, it suffices to show that no edges leave H in GC,g, as this implies that H′ is also

an ergodic set of GC,g. Consider an edge in GC,g from a vertex M ∈ H to a vertex M
′ ∈ M.

Then there exist X ⊆ D and c ∈ X such that ∆(M, c) = M
′ and g(M) = (X, j) for some

priority j. Since M lies in H, there exists a marked node x ∈ T such that ∆∗(x) = M. Then
x · c is also marked and ∆∗(x · c) = M

′. By the construction of H, M′ lies in H. Thus there
are no edges that leave H.

The conditions given by Lemma 4.10 can be checked by a suitable tree automaton as
follows:

Lemma 4.11. Let L be a library with width D and let p ≤ k. Then there exists an
nondeterministic Büchi tree automaton (NBT) Ap such that Ap accepts a Γ-labeled regular
D-tree T iff T = tree(C, g) for some composer C over L and choice function g with rank p.

Proof. By Lemma 4.9 and 4.10, it suffices to construct an NBT Ap such that Ap accepts
a tree T ′ iff T ′ has a full subtree T that satisfies the three conditions in Lemma 4.10. For
simplicity, the automaton is defined over binary trees, where D = {0, 1}, but the definition
can be easily extended to n-ary trees.
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Let Ap = (Γ, Q, q0, δ, β). We define Q = {search, cut,wait, reach, visit, err}, q0 = search

and β = {visit,wait, cut}. The states of the automaton can then be described as follows:

• search: In this state the automaton is searching for the root of the special subtree.
• cut: This represents a branch not taken.
• wait and reach: In these states the automaton has entered the subtree and is looking for
nodes labeled with p.

• visit: In this state the automaton has just visited a node with label p in the subtree.
• err: This is an error state that is entered if there is a label higher than p in the subtree.

The transition function δ is defined as follows: For all ρ = (X, j,Mi) ∈ Γ,

(1) For q ∈ {cut, err}, δ(q, ρ) = {(q, q)}.
(2) For q = search

δ(q, ρ) =











{(search, cut), (wait, cut)} if X = {0}

{(cut, search), (cut,wait)} if X = {1}

{(search, cut), (cut, search), (wait,wait)} if X = {0, 1}

(3) For q ∈ {wait, reach, visit}, if j > p then δ(q, ρ) = {(err, err)}, if j = p then

δ(q, ρ) =











{(visit, cut)} if X = {0}

{(cut, visit)} if X = {1}

{(visit, visit)} if X = {0, 1}

and if j < p then

δ(q, ρ) =











{(reach, cut)} if X = {0}

{(cut, reach)} if X = {1}

{(reach,wait), (wait, reach)} if X = {0, 1}

In the first stage, Ap guesses the location of the root of the special subtree T . While
searching for this root, Ap remains in the state search. When it encounters the root, it
enters the state wait for the first time. This starts the second stage, where Ap considers
only marked nodes in T . In directions that correspond to a non-marked node, Ap moves
to the state cut and remains there perpetually. From every marked node in T , Ap guesses
a path to another marked node with label p, using the states wait and reach. It starts this
search in state wait, moves to state reach immediately, remains there until it encounters a
marked node with label p, and then moves to state visit. If there is no path from some
node to another node with label p, all runs corresponding to the choice of T as subtree will
eventually get stuck in reach. Thus, some run corresponding to T as the required subtree
is accepting iff T satisfies the required conditions.

Theorem 4.12. Let L be a library with width D, R be an exit control relation for L, and α
be an index function for L. There exists a non-deterministic parity tree automaton (NPT)
B such that, for all composers C over L, B accepts tree(C) iff C satisfies α and C is
compatible with R. Consequently, B is non-empty iff L realizes α under R.

Proof. We define B = BR ∩ Bα, where BR is a safety tree automaton that accepts tree(C)
iff C is compatible with R, and Bα is an NPT that accepts tree(C) iff C satisfies α. Since
the intersection of a safety automaton and an NPT is again an NPT, B is also an NPT.
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Construction of BR: For simplicity, we define the automaton for the case D = {0, 1},
and note that the definition can be easily extended for arbitrary D. BR = {L, {start} ∪
D, start, δR}, where δR is defined as follows: For all M ∈ L,

• δR(start,M) = {(0, 1)}
• For q ∈ D, if (q,M) ∈ R then δR(q,M) = {(0, 1)}

Note that BR has no transitions out of the states 0 and 1 iff the exit control relation R is
violated. Thus BR accepts tree(C) iff C is compatible with R.

Construction of Bα: Let Γ = LABELS(L) and let Ap = (Γ, Q, q0, δ, β) be the NBT
defined in Lemma 4.11. We define A′

p = (L, Q, q0, δ
′, β), where

δ′(q,Mi) =
∨

(X,j,Mi)∈LABELS(L)

δ(q, (X, j,Mi))

While Ap accepts Γ-labeled D-trees, A′
p accepts L-labeled D-trees. A′

p simply simulates
Ap by using its larger transition function to guess the missing portion of the labels. We
can characterize the regular trees accepted by A′

p as follows: for a composer C over L, A′
p

accepts tree(C) iff there exists a choice function for C which has rank p.
Consider the automaton A′

α whose language is the union of the language of each A′
p,

for all odd p ≤ max(α). Let C be a composer over L. Then A′
α accepts tree(C) iff there

exists a choice function for C that has an odd rank. Thus, by Theorem 4.8, A′
α accepts

tree(C) iff C does not satisfy α. Finally, consider the automaton Bα = A′
α, which is the

complement of A′
α. Then Bα accepts tree(C) iff C satisfies α.

Since an NPT is nonempty iff it accepts a regular tree, and L realizes α under R iff
some composer C over L satisfies α and C is compatible with R, therefore B is non-empty
iff L realizes α under R.

The NBT A′
p accepts |D|-ary trees and has O(1) states, with an alphabet of size |L|,

so A′
α is an NBT with O(k) states, where k = max(α). It follows that Bα is a non-

deterministic parity tree automaton (NPT) with kO(k) states and parity index O(k) [15].
Also, BR is a safety automaton with O(|D|) states. Thus, their intersection B is an NPT
with |D|kO(k) states and parity index O(k), whose nonemptiness can be tested in time

|L||D|O(k+|D|)kO(k2+k|D|) [15]. We thus obtain the following:

Theorem 4.13. The embedded parity realizability problem is in EXPTIME.

If an alternating tree automaton is nonempty, then it must accept some regular tree
[15]. Given a regular tree accepted by B, we can obtain a finite transducer that generates
that tree. This transducer is a composer that realizes α under R. Thus, we also obtain a
solution to the embedded parity synthesis problem.

Theorem 4.14. The embedded parity synthesis problem is in EXPTIME.

The complexity of our solution is exponential in both k2, where k is the highest parity
index, as well as |D|, which is the number of exit states in each component. The exponential
dependence on k is expected, as typical algorithms for solving parity games are exponential
in the parity index, cf. [10, 20]. Improving k2 to k is an open challenge. It is also an open
question whether the exponential dependence on |D| can be avoided.

We remark that the embedded parity synthesis problem can be viewed as a 2-player
partial information stochastic parity game. Informally, the game can be described as fol-
lows: The two players are the composer C and the environment E. The C player chooses
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components and the E player chooses paths through the components chosen by C. C cannot
see the moves E makes inside a component. At the start C chooses a component M from
the library L. The turn passes to E, who chooses a sequence of inputs, inducing a path inM
from its start state to some exit x in D. The turn then passes to C, which must choose some
component M ′ in L and pass the turn to E and so on. As C cannot see the moves made by
E inside M , C cannot base its choice on the run of E in M , but only on the exit induced by
the inputs selected by E and previous moves made by C. So C must choose the same next
component M ′ for different runs that reach exit x of M . In general, different runs will visit
different priorities inside M . This is a two-player stochastic parity game where one of the
players does not have full information. If C has a winning strategy that requires a finite
amount of memory, then we can use such a strategy to obtain a suitable finite composer
that satisfies the index function α, thus solving the embedded parity synthesis problem. If
C has no winning strategy or if every winning strategy requires infinite memory, then α is
not realizable from the library L.

We also note that, when viewed in the framework of games, our result is a rare positive
result for partial-information stochastic games. In general, 2-player partial information
stochastic games are known to be undecidable even for co-Buchi objectives (and thus for
parity objectives) [5].

5. Synthesis for DPW Specifications

Let A be a deterministic parity automaton (DPW), M be a probabilistic transducer and L
be a library of components. We say A is a monitor for M (resp. L) if the input alphabet of
A is the same as the output alphabet of M (resp. L). Let A be a monitor for M and let LA

be the language accepted by A. We say a strategy f for M is winning for the environment
iff µf (LA) < 1, i.e., the output of M is rejected by A with positive probability. We say that
M satisfies A if there exists no winning strategy for the environment.

Definition 5.1. The DPW probabilistic realizability problem is: Given a library L and a
DPW A that is a monitor for L, decide whether there exists a composer C over L, such that
TC satisfies A. If such a composer exists, we say that L realizes A. The DPW probabilistic
synthesis problem is to find such a composer C if it exists.

We transform this problem into a version of the embedded parity problem solved in
Section 4. Let A = (ΣO, QA, s0, δA, αA) be a DPW and M = (ΣI ,ΣO, QM , q0, δM , F, L) be
a probabilistic transducer. For s ∈ QA, we denote by M ×As, the probabilistic transducer
(ΣI ,ΣO, QM × QA, (q0, s), δ, F × QA, L

′), where δ((q, s′), a)(q′, s′′) = δM (q, a)(q′) if s′′ =
δA(s

′, L(q)) and 0 otherwise. Given a library L with width D, we define the augmented
library LA = {M × As : M ∈ L, s ∈ QA}. The width of LA is D × QA. We define the
exit control relation RA ⊆ D × QA × LA for LA as follows: for all i ∈ D, s ∈ QA, M ∈ L,
we have (i, s,M × As) ∈ RA. We also extend αA to LA as follows: for (q, s′) ∈ QM × QA,
αA(q, s

′) = αA(s
′). Thus αA is an index function for LA.

Our first step is to treat this augmented library as a new library and solve the embedded
parity synthesis problem for LA with αA as the index function and RA as the exit control
relation. This gives us a tree automaton that accepts LA-labeled (D ×QA)-trees and that
is empty iff LA does not realize αA under RA. Later, we show how to transform this
automaton into another that accepts L-labeled D-trees and is empty iff L does not realize
A. Since, by definition, LA bijectively maps to L ×QA, we find it convenient to use labels
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from L×QA in place of LA. We now define a composer for the augmented library. The states
of the composer are pairs of the form (M, s), where s is a monitor state and M represents
an instance of a component from L. A composer for LA, is a deterministic transducer
C = (D × QA,L × QA,M × QA, (M, s),∆, λ). The following lemma follows directly from
Theorem 4.121.

Lemma 5.2. Let L be a library and A be a DPW that is a monitor for L. There exists an
NPT B that accepts a regular tree T iff T = tree(C) for some composer C over LA such
that TC satisfies αA and C is compatible with RA.

Given a composer C over a library L and a monitor A for L, we can extend C to a
composer over the augmented library LA.

Definition 5.3 (Augmented Composer). Let L be a library and A be a monitor for L. Let
C = (D,L,M,M0,∆, λ) be a composer over L. The augmentation of C by A, denoted CA,
is a composer over LA such that CA = (D ×QA,L ×QA,M×QA, (M0, s0),∆

′, λ′), where

• For all s ∈ QA, M ∈ M, λ′(M, s) = (λ(M), s).
• For all i ∈ D, M ∈ M and s, s′ ∈ QA, ∆((M, s), (i, s′)) = (∆(M, i), s′).

We say CA is an augmented composer. While a composer only keeps track of the transfer
of control between components, the augmented composer also keeps track of the state of
the monitor before and after the control is transferred. To go from augmented composers
to composers, we use techniques from synthesis with incomplete information [13]. We start
by describing a relation between tree(C) and tree(CA). First we need to introduce some
convenient notation.

Let X, Y and Z be finite sets. For a Z-labeled (X × Y )-tree 〈T, V 〉, we denote by
xray(Y, 〈T, V 〉), the (Z × Y )-labeled (X × Y )-tree 〈T, V ′〉 in which each node is labeled by
both its direction in Y and its labeling in 〈T, V 〉. We define operators hideY and wideY .
The operator hideY : (X × Y )∗ → X∗ replaces each letter x · y, where x ∈ X and y ∈ Y ,
by the letter x. The operator wideY maps Z-labeled X-trees to Z-labeled (X × Y )-trees
as follows: wideY (〈X

∗, V 〉) = 〈(X × Y )∗, V ′〉, where for each node w ∈ (X × Y )∗, we have
V ′(w) = V (hideY (w)).

Lemma 5.4. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then tree(CA) = xray(QA, wideQA

(tree(C))).

Proof. Let T be the unlabeled full D-tree and T ′ be the unlabeled full (D ×QA)-tree. Let
tree(C) = 〈T, V 〉. Since tree(C) is a L-labeled D-tree, wideQA

(tree(C)) is a L-labeled
(D ×QA)-tree, and xray(QA, wideQA

(tree(C))) is a (L ×QA)-labeled (D ×QA)-tree. Let
xray(QA, wideQA

(tree(C))) = 〈T ′, V ′〉. Now, by definition, tree(CA) is also a (L × QA)-
labeled (D ×QA)-tree. Let tree(CA) = 〈T ′, V ′′〉. It suffices to prove that V ′′ = V ′.

Let C = (D,L,M,M0,∆, λ) and CA = (D×QA,L×QA,M×QA, (M0, s0),∆
′, λ′). Let

w ∈ T ′ and let (M,s) ∈ L×QA be the direction of w. Then V ′(w) = (V (hideQA
(w)), s) =

(λ(M), s). Then V ′′(u) = λ′(M,s) = (λ(M), s). Therefore V ′′ = V ′.

1Note that even with the slightly modified definition of composer, the results of the previous section still
apply because a pair (M, s) ∈ L ×QA still uniquely identifies an element of LA.
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Theorem 5.5. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then C satisfies A iff CA satisfies αA.

Proof. Let A = (ΣO, QA, s0, δA, αA) and C = (D,L,M,M0,∆, λ). Let Q and Q′ be the
state spaces of TC and TCA

, respectively. Then Q′ = Q×QA. Let q0 be the start state of
TC . Then (q0, s0) is the start state of TCA

. Let LA be the language of A. Given w ∈ Qω,
we denote by out(w), the output sequence produced by TC corresponding to state sequence
w. We define L = {w ∈ Qω : out(w) ∈ LA}. Then a strategy f for TC is winning for the
environment iff µf (L) < 1.

We define a notion of consistency for words in Q′∗ as follows: (q0, s0) is consistent, and
if β ∈ Q′∗ is consistent then, for all q ∈ Q, β · (q, δA(s, q

′)) is consistent, where (q′, s) is the
last letter of β. An infinite path in Q′ω is consistent if all of its finite prefixes are consistent.
We let H denote the set of all consistent paths in Q′ω, and TH denote the subtree of Q′∗

that contains all consistent words in Q′∗. Then TH contains all paths in H. We define R to
be the set of paths in Q′ω where the highest parity visited i.o. is even.

Let g be a strategy for TCA
and µg be the probability measure it induces on Q′ω. Then,

by the definition of LA, for every β ∈ Q′∗ that is not consistent, we have µg(β · Q′ω) = 0.
Therefore, the probability that an infinite path over Q′ is not consistent is zero. So consistent
paths are the only ones that matter probabilistically. In particular, given two strategies g
and g′ for TCA

, such that g(w) = g′(w) for all w ∈ TH , we have µg = µ′g. Thus, in order

to define a strategy for all of Q′∗ it suffices to define it for TH . Also, g is winning for the
environment iff µg(H ∩R) < 1, i.e., the probability that the highest parity visted i.o. in a
consistent path is positive.

Similarly, given a strategy f over TC , we have µf (q0 ·Q
ω) = 1, i.e., the probability of a

path not beginning from the start state is zero. This means that two strategies that agree
on nodes in q0 ·Q

∗ induce the same distribution on Qω. Thus, in order to define a strategy
for all of Q∗, it suffices to define it for q0 ·Q

∗.
Finally, we note that TH is isomorphic to q0 ·Q

ω, with the isomorphism h : TH → q0 ·Q
∗

given by h(w) = hideQA
(w). Let G be the set of all strategies g : TH → Dist(ΣI), and

F be the set of all strategies f : q0 · Q
∗ → Dist(ΣI). Then h can be lifted to a bijection

from F to G as follows: for f ∈ F , g ∈ G, h(f) = f ◦ h and h−1(g) = g ◦ h−1. Then
µf (L) = µh(f)(H ∩ R) and µg(H ∩ R) = µh−1(g)(L). Thus f ∈ F (resp. g ∈ G) is winning

for the environment iff h(f) (resp. h−1(g)) is winning for the environment.

Given a library L and monitor A, we can solve the embedded realizability problem for
the augmented library LA to obtain a regular tree T , where T = tree(C) for some composer
C over LA such that C satisfies αA. Then the tree T ′ = xray(QA, wideQA

(tree(C))) is
also regular, so T ′ = tree(C ′) for some composer C ′ over L. Now we would like to use
C ′ to solve the DPW realizability problem, but C ′ is only guaranteed to satisfy A if C is
the augmentation of C ′ by A. Therefore, to solve the DPW realizability problem, we have
to obtain an automaton that accepts a tree T ′ = tree(C ′) if the augmentation of C ′ by A
satisfies αA.

Theorem 5.6. Let X, Y and Z be finite sets. Given an alternating automaton B over
(Z×Y )-labeled (X×Y )-trees, we can construct an alternating automaton B′ over Z-labeled
X-trees such that B′ accepts a labeled tree 〈X∗, V 〉 iff B accepts xray(Y,wideY (〈X

∗, V 〉)).
Further, B and B′ have the same acceptance condition and |B′| = O(|B|).
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Proof. Let B = (Z×Y,Q, δ, q0, α) be an alternating automaton that accepts (Z×Y )-labeled
(X × Y )-trees. We define automaton B1 = (Z,Q × Y, δ′, (q0, y0), α × Y ) over Z-labeled
(X × Y )-trees, where for each q ∈ Q, y ∈ Y and z ∈ Z, δ′((q, y), z) is obtained from
δ(q, (z, y)) by replacing each atom ((x′, y′), q′) by the atom ((x′, y′), (q′, y′)). So a state
(q, y) in B1 corresponds to a state q in B that reads only nodes in direction y. Then B1

accepts a Z-labeled (X × Y )-tree 〈(X × Y )∗, V 〉 iff B accepts xray(Y, 〈(X × Y )∗, V 〉).
Next, we define alternating automaton B′ = (Z,Q×Y, δ′′, (q0, y0), α×Y ) over Z-labeled

X-trees, where for every (q, y) ∈ Q× Y and z ∈ Z, δ′′((q, y), z) is obtained from δ′((q, y), z)
by replacing each atom ((x, y′), (q′, y′)) by the atom (x, q′). Then for every Z-labeled X-tree
〈X∗, V 〉, we have 〈X∗, V 〉 ∈ L(B′) iff wideY (〈X

∗, V 〉) ∈ L(B1) (See [13] for proof).
Therefore, B′ accepts 〈X∗, V 〉 iff B accepts xray(Y,wideY (〈X

∗, V 〉)), and B′ is the
required automaton.

Given an alternating automaton B, let narrowY (B) denote the corresponding automa-
ton constructed in Theorem 5.6.

Theorem 5.7. Let L be a library and A be a monitor for L. Then there exists an alternating
parity tree automaton (APT) B such that, for all composers C over L, B accepts tree(C)
iff C satisfies A. Consequently, B is non-empty iff L realizes A.

Proof. Let A = (ΣO, QA, s0, δA, αA). Let B
′ be the NPT that accepts tree(C ′) iff C ′ satisfies

αA and C ′ is compatible with RA, for all composers C ′ over LA. Such a B′ exists by Lemma
5.2. Let B = narrowQA

(B′). We show that B, which is an APT, is the required automaton.
Let C be a composer over L. By Theorem 5.5, C satisfies A iff CA satisfies αA. There-

fore, B′ accepts tree(CA) iff C satisfies A. By Lemma 5.4,

tree(CA) = xray(QA, wideQA
(tree(C)))

and by Theorem 5.6, B accepts a tree T iff B′ accepts xray(QA, wideQA
(T )). Thus, B

accepts tree(C) iff C satisfies A. Since an APT is nonempty iff it accepts a regular tree,
and L realizes A iff some composer C over L satisfies A, therefore B is non-empty iff L
realizes A.

Each transducer in the augmented library LA has a set of final states of size |D||QA|.
Thus the automaton B′ has size exponential in both |D| and |QA|. The translation from
B′ to B adds no blowup, but B is an APT, while B′ is an NPT. Since emptiness for an
alternating parity tree automaton can be checked in time exponential in the size of the
automaton [15], therefore B can be be checked for emptiness in time doubly exponential in
|D| and |QA|.

Theorem 5.8. The DPW probabilistic realizability problem is in 2EXPTIME.

Again, if an alternating tree automaton is nonempty, then it must accept some regular
tree [15], and given a regular tree accepted by B, we can obtain a finite transducer that
generates that tree. This transducer is a composer that realizes A. Thus, we also obtain a
solution to the DPW probabilistic synthesis problem.

Theorem 5.9. The DPW probabilistic synthesis problem is in 2EXPTIME.

The doubly exponential upper bound for our solution can be viewed as follows: we
inherit one exponential from the embedded parity solution and the second exponential is
introduced by the use of an APT to deal with incomplete information. It is an open question
whether the second exponential can be avoided.
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6. Discussion and Future Work

Component-based synthesis seeks to build systems that satisfy a given specification using
pre-existing components. This contrasts with classical synthesis, where the aim is to build a
system from scratch. The component-based approach is closer in spirit to how systems are
built in the real world. In this paper, we generalize the component-based synthesis problem
to a probabilistic setting. Our components are modeled as probabilistic transducers and
the specification is given as a deterministic parity automaton. The composition itself is
described by a deterministic transducer, called a composer, which governs the transitions
between components.

We break the problem down in two stages. First we solve a simpler version, which we
call the embedded parity synthesis problem, where the specification is embedded as parities in
the components themselves. Our solution combines techniques from Markov chain analysis
and automata theoretic verification. Then we show how to solve the more general case of a
separate specification, which we call the DPW probabilistic synthesis problem, by reducing
it to the simpler case using techniques from synthesis with incomplete information.

We show that the embedded parity synthesis problem is in EXPTIME and the DPW
probabilistic synthesis problem is in 2EXPTIME. The question of tighter lower and upper
bounds we leave for future work. In particular, it is an open question whether the DPW
probabilistic synthesis problem is in EXPTIME. Another line of work is suggested by the
possibility of probabilistic composers. In recent work, we show that allowing the composer
to be a probabilistic transducer makes the synthesis problem sensitive to the specification
formalism [16]. It turns out that probabilistic composers are more expressive than their
deterministic counterparts for DPW specifications, but they have the same expressive power
for embedded parity specifications.
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