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ABSTRACT. To provide a categorical semantics for co-intuitionistic logic, one has to face
the fact, noted by Tristan Crolard, that the definition of co-exponents as adjuncts of
co-products does not work in the category Set, where co-products are disjoint unions.
Following the familiar construction of models of intuitionistic linear logic with exponential
“1” | we build models of co-intuitionistic logic in symmetric monoidal closed categories with
additional structure, using a variant of Crolard’s term assignment to co-intuitionistic logic
in the construction of a free category.

PREFACE

This paper sketches a categorical semantics for co-intuitionistic logic, advancing a line of
proof-theoretic research developed in [11 2, Bl Bl [7]. Co-intuitionistic logic, also called dual-
intuitionistic [21, [35] [36], may be superficially regarded as completely determined by the
duality, as in its lattice-theoretic semantics. A co-Heyting algebra is a (distributive) lattice
C such that its opposite C°? is a Heyting algebra. In a Heyting algebra implication B — A
is defined as the right adjoint of meet, so in a co-Heyting algebra C co-implication (or
subtraction) A\ B is defined as the left adjoint of join:

CANB < A A< BvVC

C < B—A ANB < C
A bi-Heyting algebra is a lattice that has both the structure of a Heyting and of a co-
Heyting algebra. The logic of bi-Heyting algebras was introduced by Cecylia Rauszer [30} [31]
(called Heyting-Brouwer logic), who defined also its Kripke semantics; a category-theoretical
approach to the topic is due to Makkai, Reyes and Zolfaghari [28], [32]. The suggestion by
F. W. Lawvere to use co-Heyting algebras as a logical framework to treat the topological
notion of boundary has not been fully explored yet (but see recent work by Pagliani [29]).
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Early research showed that the extension of first order intuitionistic logic with subtrac-
tion yields an intermediate logic of constant domains [26]. In a rich and interesting paper
[I8] T. Crolard showed, essentially by Joyal’s argument, that Cartesian closed categories
with exponents and co-exponents are degenerate; in fact even the topological models of
bi-intuitionistic logic, i.e., bi-topological spaces, are degenerate. Crolard’s motivations are
mainly computational: he studies bi-intuitionistic logic in the framework of the classical Au
calculus, to provide a type-theoretic analysis of the notion of coroutine; then he identifies a
subclass of safe coroutines that can be typed constructively [19]. From our viewpoint, Cro-
lard’s work suggests two directions of research. On one hand, it opens the way to a “bottom
up” approach to safe coroutines, independent of the A\ calculus, i.e., co-intuitionistic corou-
tines [3, 1l 2, [7]. On the other hand, the question arises whether the collapse of algebraic
and topological models may be avoided by building the intuitionistic and co-intuitionistic
sides separately, starting from distinct sets of elementary formulas, and then by joining the
two sides with mixed connectives (mainly, two negations expressing the duality): this is our
variant of bi-intuitionistic logic, presented in [5 [II, [6].

Both of these tasks were advocated by this author and pursued within a project of “logic for
pragmatics” with motivations from linguistics and natural language representation [I], [5 [9].
In the characterization of the logical properties of “illocutionary acts”, such as asserting,
making hypotheses and conjectures one finds in natural reasoning forms of duality that can be
related to intuitionistic dualities. For co-intuitionistic logic Crolard’s term assignment has
been adapted to a sequent-style natural deduction setting with single-premise and multiple-
conclusions. For (our variant of) bi-intuitionistic logic Kripke semantics has been given
(both in S4 and in bi-modal S4) and a sequent calculus has been proposed where sequents
are of the form
;= A;7 or rsc¢c=;7

where I and A are intuitionistic (assertive) formulas and C' and T co-intuitionistic (hypo-
thetical).

But from the viewpoint of category theory a crucial remark by Crolard shows that already
in co-intuitionistic logic there is a problem: namely, only trivial co-exponents exist in the
category Set. Indeed the categorical semantics of intuitionistic disjunction is given by
coproducts [24], which in Set are represented by disjoint unions. On the other hand the
categorical semantics of subtraction is given by co-exponents. The co-exponent of A and
B is an object B, together with an arrow >4 p: B — B4 @ A such that for any arrow
f : B — C @ B there exists a unique f, : By — C such that the following diagram
commutes:

B—t-cea
9A,B Tf*@idA
By & A

It follows that

in the category of sets, the co-exponent Ba of two sets A and B is defined if

and only if A =0 or B ={ (see [I8], Proposition 1.15).
The proof is instructive: in Set, the coproduct @ is disjoint union; thus if A # () # B
then the functions f and >4 p for every b € B must choose a side, left or right, of the
coproduct in their target and moreover f, @14 leaves the side unchanged. Hence, if we take
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a nonempty set C' and f with the property that for some b different sides are chosen by f
and >4 g, then the diagram does not commute.

Thus to have a categorical semantics of co-exponents we need categories where a different
notion of disjunction is modelled. The connective par of linear logic is a good candidate and
a treatment of par is available in full intuitionistic linear logic (FILL) [16], 22], with a proof-
theory and a categorical semantics. The multiple-conclusion consequence relation of FILL
and its term assignment have given motivation and inspiration to our work, as a calculus
where a distinct term is assigned to each formula in the succedent. The language of FILL
has tensor (®), linear implication (—o) and par (p) and a main proof-theoretic concern has
been the compatibility between par and linear implication, namely, to find restrictions on
the introduction of linear implication that guarantee its functional intuitionistic character
and at the same time allow to prove cut-elimination (on this point see also [4]).

Linear co-intuitionistic logic appears already in Schellinx[33] and Lambek [23]. Works by
R. Blute, J. Cockett, R. Sely and T. Trimble on wekly distributive categories [14],[15] provide
a sophisticated technology of natural deduction, proof-nets and categorical models for vari-
ous systems of linear logic without an involutory negation; Cockett and Seely [I7] consider
also non-commutative systems with implications and subtractions. When bozes or other
conditions are given for intuitionistic linear implications and co-intuitionistic subtractions,
these systems provide a suitable categorical proof theory of linear bi-intuitionism.

To construct categorical models of linear co-intuitionistic logic it suffices to notice that in
monoidal categories par can be modelled by a monoidal operation and co-exponents as the
left adjoint of par. The main task then is to model Girard’s exponential why not?: in this
way a categorical semantics for co-intuitionistic logic can be recovered by applying the dual
of Girard’s translation of intuitionistic logic into linear logic, namely:
(p)° = b
(f)°= 0
(CY D)= ?2C°® D°) =72(C°)p?(D°)
(C~D)° = C°~(7D°)
(EFCh,...,Ch)° = 2(E°)E2(CY),....72(CY))
where 0 is the identity of @ and we use “\.” both in linear and in non-linear co-intuitionistic
logic.

The task amounts to dualizing Nick Benton, Gavin Bierman, Valeria de Paiva and Martin
Hyland’s well-known semantics for intuitionistic linear logic [IT]. This may be regarded as a
routine exercise, except that one has to provide a term assignment suitable for the purpose.
In this task we build on a term assignment to multiplicative co-intuitionistic logic, which
has been proposed as an abstract distributed calculus dualizing the linear \ calculus [2] 3] [7]:
in our view such a dualization underlies the translation of the linear A-calculus into the
m-calculus (see [10]).

As a matter of fact, Nick Benton’s mized Linear and Non-Linear logic [12] may give us
not only an easier approach to modelling the exponentials but also the key to a categorical
semantics of (our version of) bi-intuitionistic logic: indeed, by dualizing the linear part of
Benton’s system we may obtain both a proof-theoretic and a category theoretic framework
for mixed co-intuitionistic linear and intuitionistic logic and thus also for bi-intuitionistic
logic - of course, we need to use the exponential why not? and dualize Girard’s translation.
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But then a categorical investigation of linear cointuitionistic logic and of the why not?
exponential is a preliminary step in this direction and has an independent interest.

1. PROOF THEORY

The language of co-intuitionistic linear logic, given an infinite sequence of elementary for-
mulas 71,72, ..., is defined by the following grammar

C,D :=n|L|CpD|C~D]|?C
The rules of sequent-style natural deduction co-ILL for co-Intuitionistic Linear Logic are
given in Table [l As co-intuitionistic linear logic may be quite unfamiliar, we sketch an

assumption substitution
AL A EFT, A AFA
EFT A
1-I 1-E
EET
E-T, L L
~-1 ~-E
EFT,C DFA HEY,CND CFD,A
EFT,C~D,A HETA
-l p-E
EFF7C()701 HFT7C()BOC1 C()FF() C1FF1
EFT,CopCh HETY, T, I'
dereliction storage
EFTD, C HETY,?2C CF?A
ERT, ?2C HETY,7A
weakening contraction
FET EFT, ?2C°C
ERT, ?C E-T,?7C

Table 1: Natural Deduction for co-ILL

intuitive explanation of its proof theory. We think of co-intuitionistic logic as being about
making hypotheses [1I, B [6]. It has a consequence relation of the form

H\ Hy,... H,. (1.1)

Suppose H is a hypothesis: which (disjunctive sequence of) hypotheses Hy or ... or Hj,
follow from H? Since the logic is linear, commas in the meta-theory stand for Girard’s par
and the structural rules Weakening and Contraction are not allowed. A relevant feature,
which we shall not discuss here, is that the consequence relation may be seen as distributed,
i.e., we may think of the alternatives Hy, ..., H, in ([T as lying in different locations [2,[7].

"n accordance with our interpretation of co-intuitionism as a logic of hypotheses, we may write elementary
formulas n as H p, where “#” is a sign for the illocutionary force of hypothesis and p is an atomic proposition.
Such a linguistic analysis plays no explicit role in this paper.
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The main connectives are subtraction A~ B (possibly A and not B) and Girard’s par ApB.
Natural Deduction inference rules for subtraction (in a sequent form) are as follows.

) HET,C DFA . HEFACND CHD,T
~-intro ~-elim

HFT,C~D,A HFATY

Notice that in the ~\-elimination rule the evidence that D may be derivable from C given
by the right premise has become inconsistent with the hypothesis C ~. D in the left premise;
in the conclusion we drop D and we set aside the evidence for the inconsistent alternative.
Namely, such evidence is not destroyed, but rather stored somewhere for future use.

If the left premise of ~-elimination, deriving C'~~ D or A from H, has been obtained by a
~-introduction, this inference has the form

HFA,C DFA,
HF A, Ay, C~D

Then the pair of introduction/elimination rules can be eliminated: using the removed evi-
dence that D with Y are derivable from C' (right premise of the \-elim.) we can conclude
that A1, Ao, T are derivable from H. This is, in a nutshell, the principle of normalization
(or cut-elimination) for subtraction.

The storage operation is made explicit in the rules for the ? operator of linear logic. Here
an entire derivation d of ?A from C (where TA =?Dy,...,7D,,) is set aside; what is ac-
cessible now is something like a non-logical axiom of the form ?C' F?A. However in the
process of normalization the derivation d may be recovered to be used, discarded or copied
in the interaction of a storage rule with dereliction, weakening or contraction: all of this
is conceptually clear, thanks to J-Y. Girard, and has been mathematically analyzed in the
geometry of interaction.

1.1. From Crolard’s classical coroutines to co-intuitionistic ones. Crolard [19] pro-
vides a term assignment to the subtraction rules in the framework of Parigot’s Ap-calculus,
typed in a sequent-style natural deduction system. The Apu-calculus provides a typing system
for functional programs with continuations and a computational interpretation of classical

logic (see, e.g., [20] 34]).
In the type system for the A calculus sequents may be written in the form I' ¢ : A | A,
with contexts I' = x1 : C1,..., 2 : Cp, and A = o1 : Dq,...,a, : D,, where the z; are
variables and the «; are p-variables (or co-names). In addition to the rules of the simply
typed lambda calculus, there are naming rules
FFt:A|la:AA FHt:L|a:AA

FI—[a]t:J_]a:A,A[a] Fl—ua.t:A]A'u
whose effect is to “change the goal” of a derivation and which allow us to represent the
familiar double negation rule in Prawitz Natural Deduction.

Crolard extends the Ap calculus with introduction and elimination rules for subtrac-
tion

2Actually in Crolard [I9] the introduction rule is given in the more general form of \-introduction with
two sequent premises (which we use below) and more general continuation contexts occur in place of j3; the
above formulation is logically equivalent and suffices for our purpose.
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FHt: Al A

I
I' F make-coroutine(t,3) : AN B | 5: B, A h

F'Ft:ANB|A I'x:AFu:BJ|A

N E
'k resume ¢t withz —u:C | A

The reduction of a redex of the form
PHt:A]A

I' - make-coroutine(t,3) : AN B | f: B, A h Fz:AFu:B| A
I' F resume (make-coroutine(t,f))withz—u : C | 8: B, A

~-E
is as follows:

PHt:A]A Dx:AFuB| A

Pkult/z]: B| A
CE[Blult/z]: L | B:B,v:CA
Ik py.[Blut/x]): C | B: B,A

Notice that Crolard’s elimination rule involves an application of the rule ez falso quodlibet,
which is explicit in the definition of the operator resume (see [19], Remark 4.3.). This

seems unavoidable working within the Au calculus, but it may not be desirable outside that
framework.

substitution

(6]

Working with the full power of classical logic, if a constructive system of bi-intuitionistic
logic is required, then the implication right and subtraction left rules must be restricted;
this can be done by considering relevant dependenciesﬁ Crolard is able to show that the
term assignment for such a restricted logic is a calculus of safe coroutines, described as
terms in which no coroutine can access the local environment of another coroutine.

Crolard’s work suggests the possibility of defining co-intuitionistic coroutines directly, in-
dependently of the typing system of the Au-calculus. Since p-variable abstraction and the
u-rule are devices to change the “actual thread” of computation, the effect of removing
such rules is that all “threads” of computation are simultaneously represented in a multiple
conclusion sequent, but variables y that are temporarily inaccessible in a term N are being
replaced by a term y(M) by the substitution N[y := y(M)], where M contains a free vari-
able z which is accessible in the current context. This is the approach pursued in [Il B} []
leading to the present categorical presentation.

1.2. A dual linear calculus for MNJ>#+. We present the grammar and the basic defini-
tions of our dual linear calculus for linear co-intuitionistic logic with subtraction, disjunction
and why not? (?) operator.

Definition 1.1. We are given a countable set of free variables (denoted by z, y, z ...),
and a countable set of unary functions (denoted by x,y,z,...). The terms of our calculus,
denoted by R, are either m-terms, denoted by M, N, or p-terms, denoted by P.

(i) Multiplicative terms, m-terms and p-terms are defined by the following grammar.
3For instance, in the derivation of the right premise I';x : A+ uw : B | A of a subtraction elimination

(\E), there should be no relevant dependency between the formula B and the assumptions in I', but only
between B and A. Similar issues arise in FILL, see [22] and [4], section 4.
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M,N := x| x(M) | connect to(R) | MpN | casel(M) | caser(M) |
| make-coroutine(M,x) | [].
P := postpone(y — N, M) | postpone(M).
R = M|P

(ii) Multiplicative and exponential terms, m-terms and p-terms are obtained by adding to
the above grammar the following clauses:
M,N = ... |[M]]|[M,N].
P = ... |store(Py,...,Pn,My,...,.Mp,y1,...,Yn, %, N)

We usually abbreviate “make — coroutine” as “mkc” and “postpone” as “postp”’. We

often write P for a list P, ..., P, and similarly M for My,..., M,. “[]” is the empty term
(nil).

Definition 1.2. The free variables FV (M) in a term R are defined thus:

FV(x) = {x}
FV(x(M)) = FV(M)
FV(connect to(R)) = FV(R)
FV(MpN) = FV(M)UFV(N)
FV(casel(M)) = FV(caser(M)) = FV(M)
B FV(nke (M,x)) = FV(M)
FV(store(P, M, ..., My, y1,...,¥n, %, N)) = (FV(P)U(FV(M)) ~A{z}) UFV(N)
where = My,...,M,.
FV([)=0 FV([M])=FV(M) FV([M,N]) = FV(M)UFV(N)
FV(postp(x— N,M)) = (FV(N)~{z})UFV(M).

FV(postp(M)) = FV(M).

Definition 1.3. Let || be a binary operation on terms (parallel composition) which is
associative, commutative and has the empty term [| as the identity. Terms generated by
(zero or more) applications of parallel composition are called contexts. Thus contexts are
generated by the following grammar:

C = R|(C|R)
modulo the structural congruences
(i) Rol|(R1 || Rz2) = (Rol[R1)| Rz,
(ii) R()”Rl = Rl”RO,
(iii) (Rollll) = Ro,
(iv) Co||R||Cy = Co||R||Cy if R=R/.

Let Ri||...||Rx be a context, where all R; are non-null , i < k. Notice that the notation
is well-defined by generalized associativity. We write Sz : Ry||...| Ry if all free variables
occurring in Ry, ..., Ry are in the list 7.

Computational contexts, the basic expressions of our calculus, are contexts satisfying some
correctness conditions, that guarantee the identification of a context and rule out circular
structures. Our “calculus of coroutines” is used here in a typed setting, where self referential
structures are not needed.

Definition 1.4. An expression S, : Ri||...|| Ry is a (correct) computational context if it
satisfies the following axioms.

(1) Each term in the set {Ry,..., Ry} contains x and no other free variable.
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(2) In every term of the form postp(y — N, M) the term N contains a free variable y with
y ¢ FV(M) and no other free variable.

(3) In every term store(P, Ni,..., Ny, V1,--.,¥n,2, M) the terms N; are of the forms [N]
or connect to(R) for some N or R.

(4) Let S = store(P,N1,...,Nu,¥1,...,¥n,2, M) occur within a multiplicative computa-
tional context S; write S for S, without S. Then {P, N1,..., N, } is a computational
context S, for some free variable z with 2z # x. We say that S, occurs immediately
within S.

(5) In a computational context S, the nesting of p-terms of the form store within S, has
the structure of a rooted tree, with root S, itself.

A computational context is said multiplicative if it does not contain store terms.

Remark 1.5. By axiom [] the relevant components of a computational context are uniquely
identified. Axiom [l is analogue to the acyclicity condition in proof nets for linear logic.
Axioms [ and [l induce a structure on context that corresponds to that of bozes in proof
nets. Axiom [3] characterizes exponential boxes in our framework.

Definition 1.6 (a-equivalence). Let S, and S,» be computational contexts. To define what

it means that S, and S,/ are a-equivalent, we need to define this property for sets of terms

Sz and Sz that may contain more than one free variable from the lists T and 7', respectively;

therefore they are not correct computational contexts. The definition is by induction on

the number of terms occurring in Sz.

(1) If S, = {z}, then S, = S, iff Sy = {2/} and x = 2/;

(2) If Sz = {x(M)}, then Sz = Sy iff Sy = {x(M")} and M = M'. A similar defini-
tion applies if S, = {connect to(M)} or {casel(M)} or {caser(M)} or {[M]} or
{postp(P)};

(3) If Sz = {MpN}, then Sz = Sy iff Sy = {M'pN'} and M = M’ and N = N'. A similar
definition applies if S, = {[M, N]}.

(4) Let Sz be partitioned as

Sz U {mke(M,y)} U Sgyly := y(M)];
then Sz = S iff Sz can be partitioned as S_, U {mkc(M',y)} U Sz, [y := y(M')] and
S; U{M} = S, U{M'} and, moreover, for all variables v except for a finite number
Szyly = v] = Sgy [y = ).
(5) Let Sz can be partitioned as
S, U{postpone(y — N, M)} U Szy[y := y(M)];

then Sz = Sy iff S can be partitioned as SZU ({postpone(y’ — N', M')}US/ )y :=
y'(z')] and S; = S_, and, moreover, for all variables v except for a finite number
(Szy USN Dy := vl = (S U{N'DIY = 0],

(6) Let Sz be partitioned as S U {S1,...,Sy} where for i <k, S; is a store term with a
set of terms Sz, immediately inside it. Then Sz = Sy iff S can be partitioned in a

similar way as S_, U{S],...,S}} where for i <k the set S?Z{- occurs immediately inside
S’;, for i < k and, moreover

(i) Sy =8

(ii) for all ¢+ < k and for all variables v except for a finite number Sz, [z = v| =

Syayle) = vl.
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Remarks 1.7. (i) Consider the terms make — coroutine, binary postpone and store.
They are binders acting on a whole computational context, rather than on a delimited
scope within a single term. We may call their action remote binding; it is expressed by
a substitution of some m-term x(M) for the free variable z throughout a computational
context S;. One could express remote binding by a more familiar notation, as in the A-
calculus or in the m-calculus; but then the scope of a binder would partition a context and
parallel composition would not appear as a top-level operator only. In the typed case one
could not assign a separate m-term to each formula in the succedent: at best, one could
assign an ”access port” to a unique term assigned to the whole sequent, as in the translations
of linear logic into the m-calculus (see [10]). This would be against a main motivation of
this calculus, namely, to give a “distributed term assignment” for a “multiple conclusion”
co-intuitionistic deductive system. An application of our notation for “remote binding” is
found in section 2] on a probabilistic interpretation of subtraction and par.

(ii) The p-terms binary postpone and store are also local binders of the free variable occur-
ring in their argument. Indeed in a term postpone(y +— N, M) a free variable y occurring
in N becomes locally bound; then y is replaced by y(M) in the computational context,
to express remote binding. In a term store(P,Ni,...,Nu,¥V1i,-..,¥n,2, M) a free vari-
able z becomes bound; then a term z(N;) occurs in the term y;(z(N;)), that replaces the
stored IV; in the computational context. A more complete notation of our p-terms would be
postpone(y > N, M) with y for y and store(P, N1,...,Np,y1,...,¥n, M) with z for z,
explicitly establishing the connection between the locally bound variable and its correspond-
ing unary function. For terms of the form store we are spared the more verbose notation
by the acyclicity axioms, by which the locally bound variable is uniquely identified.

(iii) In the notation of p-terms of the form postpone(y — N, M) it is sometimes convenient
to ignore the distinction between local binding and remote binding and treat the occurrences
in N of the variable y as remotely bound; namely, we can write postpone(y — N[y :=
y(M)],M). Indeed the distinction between local and remote binding can be recovered
from the structure of the terms. This notation allows us to adopt a tree-like notation
for decorated co-intuitionistic Natural Deduction derivations analogue to that of Prawitz’s
Natural Deduction trees decorated with A-terms. On the other hand, such a treatment
seems unmanageable for p-terms of the form store; for them we retain a boz-like notation.

Definition 1.8. Substitution of a term ¢ for a free variable x in a term R is defined as

follows:
z[z = M] = M, yle .= M| =y if x # y;

connect to(R)[z := M| = connect to(R[z := M])
postp(N)[z := M] = postp(N[z := M])
y(N)[z:=M] = y(Nz:= M]);
(NopNy)[z := M] = (Nolz := M])p( N[z := M])
casel(N)[z := M] = casel(N[z:= M]),
caser(N)[z := M] = caser(N[z := M]);
mke(N,y)[z:=M] = mkc(N[z:= M],y),
store(N,¥y,z,N)[x := M] = store(N|[zx := M|,¥,z, N[z := M)
postp(y — (N1), No)[z := M% = postp(y — (N1[z := M]), Nolz := M])).

[R]z := M] = [Rlz - [Ro, Rillz := M] = [Rolx := M], Ry[z := M]]

Proposition 1.9.

i
=
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(i) Sp =z and S, = postp(y) are computational contexts.

(ii) Let Sy = Ri||...||Rn||M and Sy = Rymi1]| - - . | Rm+n be computational contexts where
x #y. We write Syly := N]| for Ry41ly := N]|| ... ||Rm+nly := N]. Then

Sy = Rl [ Rll(Syly == M])
is a computational contexrt (substitution);

(iii) Let Sy and Sy be as in (ii). Then S, = Rl ... || Rm|mke(M, y)||Syly == y(M)] is a
computational contert (make coroutine);

(iv) Let Sy = Ryl ... ||Rm and Sy = Rpt1]| - .. || Rmsn be computational contexts. Then
S, = Sz = casel(2)]||Sy[y := caser(z)]
is a computational context (cases);
(v) Let Sy = Ryl| ... ||Rm||M be a computational context and let x # y. Then
Sy = postp(z — M, y)||Ri| ... || Rm
is a computational context (postpone);
(vi) Let Sy = Ryl ... ||M;||Mizq]| - - ||Rm be a computational context. Then
Sy =Rall.. (MipMipa)||. - (1R} and Sy = Ryl [[Mi, Misa]l| . [ R}
are computational contexts, (par) and (contraction);
(vii) Let Sy = Ri||...||Rm be a computational context. Then
S, =Ry|l...|...||Rm}|[connect to(R)
is a computational contert (unit) and (weakening);

(viii) Let S, = Pi| ... [|Pnl|N1]| - .- ||Nn be a computational context where all terms N; are
of the form [N] or connect to(R) for some N or R. Then

S, =store(Py,..., Py, Ni,....Nu, V1, ¥n, 2, T)
is a computational context (store).

Proof. In all cases the proposition is easily proved by checking that the resulting set of
terms satisfies all the axioms in definition [L4] L]

The operation of S-reduction transforms a computational context S, into a computational
context S.. It may be either local, affecting only the terms where the redex occurs, or a
global operation with side-effects on parts of S,, mainly relabelling the terms that express
binding by make — coroutine, postpone or store.

Definition 1.10. S-reduction of a redex Red in a computational context S, is defined as
follows.
(i) If Red is a m-term N of the following form, then the reduction is local and consists
of the rewriting N ~»g N’ in S, as follows:
postp(connect to(R)) ~3 |[].
casel (NopN1) ~3 No; caser (NopNi) ~»g Nj.
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If the principal operator of Red is a binary postpone or store, then the reduction
is global and consists of the following rewriting. By the axioms in definiton [[L4] Red
occurs inside a computational context S, in the rooted tree of nested p-terms of S,
and the rewriting takes place within S,.

(ii) If Red has the form postp(z — N,mkc(M,y)), then S, is partitioned as
Sy = RedUSyy.[y :=y(M), z = z(mke(M,y))]

(a simultaneous substitution of y(M) for y and of z(mkc(M,y)) for z in Syy.). Then
a reduction of Red transforms the computational context as follows:

S, = Uyz[y := N[z :=M], z:= M]
(iii) If Red is a term with principal operator store, then S, is partitioned as S, US where
S = store(P,Ni,...,Np,y1,--,¥n, 2, N)
Here N is either [M] or connect to(R) or [[My][Mi]].

By the axioms [L4 P, Ny, ..., N, form a computational context S,. Moreover yi(z([M])),
-, ya(2([M])) may occur in S, so we write S, as S, , ., [y1 = yi(z(M)),...,yn =

yn(2(M))].
e If N = [M], then
Sy 58y ywlyr == Nilz := M],... yn := N[z := M]| U{P[z := M|
e If N = connect to(R), where R belongs to S, , then
Sy 5 S, ywly1 = connect to(R), ..., y, := connect to(R)]

o If N = [M(),Ml], then

S0 8 Spgo |y = [ M) [y (2(00)], ..

st = (@), [y (2(31)] |
U{store(N,¥,z, My),store(N,¥,z, M;)}

Remarks 1.11. Here are some informal explanations about our calculus and notations.

(i) In our “distributed” model of computation a redex arises when an m-term M becomes
part of another term; the rewriting of the redex has global effect. On the contrary, a p-term
can only be sub-term of a p-term of the form store, but such nesting has only a structural
significance; no redex is created in this way. A p-term P sits in the “control area”, waiting to
become active as a redex if a suitable m-term is substituted inside it. A term y(M) denotes
a variable y that has become bound because of an operation in which the term M is active;
in some sense y(M) is an input which is no longer accessible. Later in the computation such
an input may become active again in a term R and ready for a substitution by a m-term
N in a rewriting of the form Ry := y(M)] ~» Ry := N].

(ii) When a p-term store(P, N1, ..., Npu, V1, .-, Vn, 2, N) is created, the m-terms Ny, ..., N,
are set aside, together with the local p-terms P, ... P,,, within the new store terms sitting
in the control area, but the “guarding terms” yq,...,y, associated with Ny,..., N, remain
active, since they are part of other terms in the context. Also the free variable z occurring
in the terms P; and N; becomes inaccessible and is substituted with z(/N). Only the term
N is active in the storage operation. If N = [M] then the computation is reactivated in
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m-terms N;[z := M| and the guarding terms y; are destroyed. If N = [My, M;] then both
of the “guarding terms” and the store term are copied; if N = connect to(R) then the
stored terms and the guarding terms are destroyed and replaced by pointers to the term R.

(iii)) A term “make-coroutine” mkc(M,y) jumps from the term M to an input y which
becomes inaccessible and thus is substituted by a term y(M) throughout the computational
context. On the other hand a “postpone” term postp(z — N, M') stores some threads of the
computation from z to N (possibly a list of terms). As a consequence the input z becomes
inaccessible and is substituted by a term z(M’) throughout the computational context. If
M’ is mkc(M, y), then we can reactivate the stored threads N and free the variables z and y
in the computational context. The variable z is substituted by M wherever it occurs, i.e., as
[z := M]. Moreover the threads N are connected to M through the substitution N[z := M]
and the variable y is substituted by N[z := M]. Here we see a calculus with binding and
substitution implemented as “global effects” in a co-intutionistic calculus through terms
originally conceived by Tristan Crolard [19] as extensions of the Ay calculus.

The term assignment to co-ILL in sequent-style Natural Deduction notation is given
in tables @l and Bl Sequents are of the form
r:EcP|M:T
where

e the area of the succedent to the left of “|” may be called “control area”,

e P=P;,..., P, is a sequence of p-terms;

e M : T stands for My : Cy,..., M, : C,, where I' = C4,...,Cp;

o if R=Ry,..., R, then R[z := N] stands for B[z := NJ],..., R,[z := N].

e We shall also use the abbreviation x : T for P | M : T'. If also ¢ : A stands for Q | N : A,
then k : ', : A stands for P,Q | M : T, N : A.

1.3. Examples of multiplicative contexts.
1. The following computational context S,

S, = postp(x) || connect to(postp(x))
is correct. It is typed as follows:

L-elim
x: L >postp(x)

x: L >postp(x) | connect to(postp(z)): L L intro

This derivation may be regarded as the n-expansion of the axiom
z:l>x: L
2. Given the computational contexts S, = x || connect to(x) and S = postp(y), we obtain
a correct computational context by substitution of connect to(x) for y in S
S, = z || postp(connect to(z))
! B-reduces to S =z || [].

3. The following context S’ is not correct: it violates Axiom 2 in definition 4]

S, = postp(y — [x(y),x(2)],mke(z, x)) || mke(y(t), x)
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cut
arrom v:EcP|M:T,M:A r:A>Q | N:A
x:Ap> |z A p— —
x:EvP,Qx:=M]| M:T,Nx:=M]:A

L -intro
r:E>-P|M:T (Re PUM)
x:E>P | M:T, connect to(R): L

We write Q@ for Qlx = x(M)] and N for Nz :=x(M)]
~-intro
v:E>P|M:T',M:C r:D>Q|N:A
v:E>P, @/ |M:1—‘,N/ s Aymke(M,x) : C D

~-elim
z:E>P|M:T,M:C~D r:C>Q|N:D/N:A
2:E>P, @/,postp(:vHM,zHM:l",N/:A

p-intro
v:E>P|M:T,My:Cy, M:C
v:E>P| M:T,MypM : CopCy

p-elim
2:EpQ | N: AN : CopCy
$OZCOI>F0|H02F0 1‘1201DF1|H121—‘1
2: E>Q, Fg, Fll | N:A, Hg:l—‘o, H/lzl—‘l
where ?/0 = Plzg = casel(z)],ﬁlo = Mo[zo := casel(z)],

ﬁll = Pi[xg := caser(z)],ﬁll = M [z := caser(2)]

Table 2: Decorated Natural Deduction for multiplicative co-ILL

Here we write t for mkc(z,x). The following context S, is correct
S. = postp(y = x(y),mke(z, %)) || mke(y(t),x) || x(2)
and is typed as follows:
z:Crz:C z:Cpa:C I y:Croy:C z:Cex:C
z:Crmke(z,x): O\ Cx(2): C y:Crmke(y,x): C N C,x(y): C
z: C>postp(y — x(y),mke(z,x)) | mke(y(t),x) : C N C,x(z) : C

~N-1

~-E

One could check that the above derivation is dual to the derivation
f:A—=Axz: A (Ar.fo)r: A

13
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dereliction
r:Evk:T,M:C
x:Evk:T,[M]:2C

weakening

P I contraction
T K
) :I' M :?C, N 2C
x: Ep>k: T, connect to(R) :?7C roEPRE, :
x:Evk:T,[M,N]:?C
where R € k.

storage
z2:E>P|M:T,M:2C r:C>Q | N:?A
z: Ev>P,store(Q,N,7,x,N) | M :T,[y(x(N))] : 7A
where N = Ny,..., Ny, and ¥ =y1,...,¥m
and ] = y1(x(V)), -, ym(x(V))

Table 3: Decorated Natural Deduction for co-ILL exponential

in the simply typed A-calculus. A more substantial example of computation in our typed
dual linear calculus is given in Appendix, Section [Al

2. MOTIVATIONS: A PROBABILISTIC INTERPRETATION.

In our setting co-intuitionistic logic admits a simple probabilistic interpretation which fits
well in the view of co-intuitionism as a logic of hypotheses. Indeed if co-intuitionistic logic
is about the justification properties of hypotheses, then the co-intuitionistic consequence
relation must be about the preservation of probability assignments from the premise to the
conclusions; a term calculus for such a logic must allow us to compute probabilities and
verify the preservation property. We sketch our result only for the multiplicative linear
fragment, i.e., for typing derivations in the linear system with subtraction and par only.

We find it easier to state our result for a decorated sequent calculus for multiplicative co-
intuitionistic linear logic. Such a calculus is equivalent to our system of decorated sequent-
style natural deduction; in fact its right rules coincide with the introduction rules and using
cut the left rules given below are shown to be equivalent to the elimination rules.

Definition 2.1. To the judgements of linear co-intuitionistic logic we assign events in a
probabilistic setting. We write C, C N'D and C U D for complementation, intersection and
union between events; there is an impossible event () and a certain event (). A probabilistic
assignment is a map ()¥ : judg — events satisfying the following constraints:

if (M :C)’ =Cand (z: D)’ =D, then (mkc(M,z):C~ D)’ =CnND;
if (M(] : Co)P = C(] and (M1 : Cl)P = Cl, then (Mole : C’opC’l)P = C(] @] Cl;
if (M : CopC1)F’ = C then (casel(M):Cp)P CC
and (caser(M):C;)" C C;
(postp(M))? = and (postp(z +— M, N))F = .
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Proposition 2.2. (Decomposition property) Let d be a sequent calculus derivation of
x:Hoty:Cy,... t, : Cy and let ()P : judg — events be an assignment to the judgements
in d satisfying the constraints of Definition[2.1], and suppose H,Cy, ..., C,, are assigned to
x:Hpoty:Cy, ...ty : Cy. There are pairwise disjoint events C} C Cy,...,C), C C,, such
that

(Clu---uC,)NH=H.

The events CY,...,Cl can be constructed from the dependencies of the terms ty, ..., ty.
Example 2.3. Consider the following very simple example:
z:Crax:C y:Dvoy:D
x: Crmke(z,y) : C~D,y(x): D

If the event C is assigned to x : C', and D is assigned to y : D, but also to y(x) : D, then
we have the following inclusions

cCcC DCD
Cc(CnD)uD

We have equality only by assigning CN'D to y(z) : D, as suggested by the dependency of
y(x):Donz:C.

c=cC D=D
C=(CnD)u(CnD)
Proof. By induction on d. The case of assumptions z : H>x : H is obvious and that of cut
is immediate from the inductive hypothesis.

Subtraction right: by inductive hypothesis we may assume that the assignments to the
premises v : EFrk: ', M : C and x : D> ( : A satisfy the conditions of the lemma, i.e., that
(U UC)NE =E and (|JA) ND = D, where the events in I' are pairwise disjoint and
so are those in A. In the term assignment to the conclusion

v:E>k: T mke(M,x): C\ D, (jxz:=x(M)]: A

in all terms ¢ : A the variable x : D has been replaced by x(M), where M : C. We interpret
this fact as the instruction that in the context of the conclusion the disjoint events D'; C D;
must be D; N (C N D) for each D; € A. Then

C=(CnD)u(CND)=(CnD)u(CnDn|JA)=(CnD)u (YD)
hence CNE = [(CND)NE]U[(y;D’;) NE]. Thus
((UiC;) U (CND) U (y;D})) NE = E.

subtraction-L
r:C>P|M:D/M:A
z: 0~ D> Pl :=x(z)],postp(x — M, z) | Mz :=x(2)] : A

Subtraction left: suppose that by inductive hypothesis we have an assignment to the
premise z : C> P | M : DM : A, thus D and D; € A are pairwise disjoint and
(DU (lJA)) N C = C, then obviously (JA)NCND = CnND. Clearly p-terms have empty
assignment.
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par-L
x():CoDﬁo’MQ:FO xliclbﬁl‘ﬁlirl
zZ: C()pcl DFIO, ﬁll ‘ MIO : PQ, Mll I
where ?6 = Plzg := casel(z)],MS = My[xg := casel(z)]

ﬁll = ﬁl [.Z'O = caser(z)],Mll = Ml [wO = caser(Z)]

In the case of par right there is nothing to prove; in the case of par left we only need to
make sure that the events Cp and C; assigned to Cp and € are disjoint. If not, assign Co
to Cy and C1 N Cq to C1, or alternatively Cy N Cy to Cy and Cq to Cf. ]

Remarks 2.4. (i) Since events are assigned to expressions ¢ : X rather than to formulas
X, ift: X and u : X occur in the same context then (¢ : X)¥ and (u : X)¥ are events that
may or may not be disjoint of each other.

(ii) The common sense reading of the co-intuitionistic consequence relation H - Cy,...,C,
is as follows.

If it is justified to make the hypothesis H, then it is justified to make the
hypotheses C1,...,C,.

The probabilistic interpretation gives a mathematical counterpart of this reading.
If the probability of the event H assigned to x : H is greater than zero, then

the conditional probability of the union of the events Cq, ..., C, assigned to
t1:Ch,...,ty : Cp, given H is equal to one.
The indexing of the terms ¢4,...,t, can be regarded as computational devices for verifying

such an interpretation in the sense of the Decomposition Property.

3. CATEGORICAL SEMANTICS
We recall the definition of a symmetric monoidal category.

Definition 3.1. A symmetric monoidal category (SMC) (C,e,1,a, \, p,7), is a category C
equipped with a bifunctor e : C x C — C with a neutral element 1 and natural isomorphisms
a, A\, p and v:

(1) aapc, :Ae(Be(C) " (AeB)e(;

(2) Aa:1eAd - A

(3) pa:Ael = A

(4) yap:AeB -~ Be A.

which satisfy the following coherence diagrams.

QA B,CeD X AeB,C,D

As(Bs(CoD)) (Ao B)s(CeD)

(AeB)eC)eD
idaeap c,p aa,B,c®idp

As((BeC)eD)

(Ae(BeC))eD

XA ,BeC,D
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—1
X4.B,C

(AeB)eC

Ae(Be()
'YA,B'idCL

(BeA)e(C

Be(Ae()

AB.A,C

Ae(leB) — (Ael)e
paeidp
idpeAp
AeB
Ael oot le A
A

The following equality is also required to hold: A\ = p1 : 1

B

YA,BeC

idpeya,c

17

(Be(C)e A

—1
LQB,C,A

Be(CeA)

YA,B

AeB—>BeA

. VB,A
idaeB

AeB

ol — 1.

Given a signature Sg, consisting of a collection of types o; and a collection of sorted function

symbols f; : o1,..

.,on, — 7 and given a SMC (C,e,1,a, \, p,7), a structure M for Sg is an

assignment of an object [o] of C for each type o and of a morphism [f] : [o1]e...e[c,] — [7]

for each function f: o1,...,0, — 7 of Sg.

The types of terms in context A = [M : oy, ...

, M, : 0,] are interpreted as [o1, 09, ..
(... ([o1] @ [o2]) - -.) ® [on]; left associativity is also intended for concatenations of type

'7Un]]

sequences I', A. Thus we need the following functions Split(I',A) : [I', A] — [I'] e [A]

AL if ' =0
= .
) ifA=0
spLit(l,A) 0 itA = A
Split(l, A) eida;aply, , if A=A A
and Join(I', A) : [I'] e [A] — [I', A]
AA fr=9
. por if A=10
Join(lS AV 4 G ifA—A
ar.ar,a; Join(T, A)eidy; if A=A A
Similarly we have Split,(I'1,...,I'y) : [T'1,..., ] — [T1] o... o [I';] and Join,.

The semantics of terms in context is then specified by induction on terms:

[z:0px: 0] =4 idp

[e:o0 f(My,..., M) : 7] =g [x: 00> M :01]e.

o frion M, :ou];[f]

The Ezchange right rule is handled implicitly by symmetry in the model (see [13], Lemma

13):

[t:00M:T,N:7,M :0] = [[.Z'ZUDMZF,MZO',NZT]];O(E%T’T;Z‘dF ® V57Ol 7.0
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(Notice that, as a notational convenience, we are sometimes reusing the names of types to
denote their interpretation as objects). One then proves by induction on the type derivation
that substitution in the term calculus corresponds to composition in the category ([I3],
Lemma 13):

Lemma 3.2. Letx:ov> M :T,M :7 and y: 7> N : A be derivable terms in context, then
[t:00M:T,N[y:=M]|A] =

[t:00M:T,M:7]; idrefy:7>N:A];Join(T,A)
Let M be a structure for a signature Sg in a SMC C. Given an equation in context for Sg
z:o>bM:T,M=N:1
we say that the structure satisfies the equation if the morphisms assigned to = : o > M :

I'M:7andtox:o>M : T, N : 7 are equal. Then given an algebraic theory Th = (Sg, Az),
a structure M for Sg is a model for Th if it satisfies all the axioms in Ax.

Lemma 3.3. Let C be a SMC, Th an algebraic theory and M a model of Th in C. Then
M satisfies the equations in context in Table [J]

z:DoM:T,M:o z:D>M:T,M=N:o
— Refl — Symm
z:DoM:I'’)M=M:o z:DoM: '’ N=M:o

z:DDM:RMo:Ml:U z:DDM:F7M1:M2:U
z:DDM:DMo:Mg:a'

Trans

z:DDM:F,Mgle:U l’ZO'DNZA,N():NllT
2:D>M:T,N[z:= Moy = N[z := M]: A, No[z := Mo] = Ni[x:= Mi]: 7

Subst

Table 4:

3.1. Analysis of the rules of co-intuitionistic linear logic. We work with symmetric
monoidal categories satisfying the dual condition to closure, namely, with monoidal cate-
gories of the form (C,e,~,1,a, A, p,v) such that for all objects A in C, the functor A e —
has a left adjoint — ~. A. We call such monoidal categories left closed.

Given a symmetric monoidal category C, its opposite is also symmetric monoidal. If C is
closed, i.e., A e — has a right adjoint, then certainly C° has a left adjoint. It is well-known
that in a symmetric monoidal closed category C we can construct a model of multiplicative
intuitionistic linear logic, hence it is certainly not surprising that a model of multiplicative
co-intuitionistic linear logic may be constructed in C°. The point of the exercise that
follows, however, is to check that the dual linear calculus given above in Section is
indeed suitable for the construction of such an interpretation. We consider the rules for
each connective in turn.
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3.2. Linear disjunction Par. B.2l1. Par introduction. The introduction rule for Par is of
the form

r:D>kr:0,My: A, M, : B

x:D>k:0O,Myp M : ApB v
This suggests an operation on Hom-sets of the form

®peo:C(D,0eAeB)— C(D,0eApB)
natural in © and D. Givene: D — ©eAeB,d: D' — D and h: © — ©’, naturality yields
Opre(d;e;heidseidp) =d;Ppe(e);heida,n

In particular, letting e = idg @ idg @ idp, d: D — © ¢ Ae B and h = idg we have

Ppe(d) =d; Pe(ide eidy e idp)

By functoriality of e we have id4 e idp = idsep. Hence, writing PAR for ®g(idg  id4ep)
we have ®p o(d) = d; PAR. We define

[x:Dok:0,MpN : ApB] =g [z : D>k :0,M : AN : B]; PAR.

B212. Par elimination. The Par elimination rule has the form
z:D>ok: T N:ApB z:A>(: T y:B>rE&: A
z:Dpbk: Y,([zr:=casel N|: T, &[y :=caser N]: A
This suggests an operation on Hom-sets of the form
Uprra:C(D,TeApB) x C(A,T) x C(B,A) - C(D,T e T'e A)

natural in D, T, T, A. Given morphisms g: D = T e ApB,e: A—T and f: B— A and
alsoa:D' - D,p: T — 7Y ,c:T —-T1"and d: A — A’ naturality yields

Upyroa((asgipeidags), (es¢), (f;d)) =
a;\IlD,T,F,A(g7 €, f)7 p.C'd; JOin(T/7P/7A/)'

In particular, setting e = id4, f = idp and also a = idp, p = idy, we get
Uprralg,e,d) =Vprralg,ida,idp);idy e ced;Join(Y,I',A)
Writing (g)* for ¥p v(g,ida,idp) we define

[2: D> k: Y,(lx:=casel N|: I',{[y := caser N] : A] =4
[z:D>k:Y,N: ApB]*;idyr ez : A>(: T]e[y: Br&: Al;Join(Y, T, A).

B213. Fquations in context. We have equations in context of the form

o — [ rules:
z:Dp>k:O,My: A My : B z: A (: 1" y:Bp&: A
z: D>k O,([x:=casel (MypM;)] =z = My]:T

(3.1)

z:D>k:O,My: A My : B z: A (: 1" y:Bp&: A
z: Dbk O,y := caser (MypM)] =&y := M) : A
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Letq: D —-0OeAeB, m:A—T andn: B — A. Then to satisfy the above equations in
context we need that the following diagram commutes:

idoemen

D—20eAeB™" 00T e A

Y [ ] idgemen

OeApB——0eAeB

We make the assumption that the above decomposition is unique. Moreover, supposing ©
empty and m = idy, n = idp, ¢ = idseidp = idgep We obtain (idseidp; PAR)* = idseidp
and similarly (id4,p)*; PAR = iday,p; hence we may conclude that there is a natural
isomorphism

D—TeAeB
D —TeApB

so we can identify e and p. Finally we see that the following n equation in context are also
satisfied:

o —n rule:
z:Dokr: Y, M:ApB x:Apx: A y:Bry: B
z:Dp>k: Y, casel(M) p caser(M)=M: ApB

(3.2)

3.3. Linear subtraction. B.3l1. Subtraction introduction. The introduction rule for sub-
traction has the form

x:Dor:T,M: A y:B>(: A
x:Dok: T, ly:=y(M)]: Aymkc(M,y): AN B
This suggests a natural transformation with components
Ppra:C(D,TeA) xC(B,A) - C(D,eAe A~ B)

natural in D, ', A. Taking morphismse: D —TeA, f: B— Aanda:D — D,c:T — T,
d: A — A’, by naturality we have

Do ra ((ase;coida), (f;d) =a;Pprale f);cedeids p; Join(I", A’ A\ B)
In particular, taking a = idp, ¢ = idp, d : B — A and f = idg we have:
Oprale,d) =Ppr(e idp);idr e deids. p;Join(I', A, A\ B)
Writing MKC%F(e) for ®pr(e,idp), ®prale, d) can be expressed as the composition
MKCBF(G); tdr ed eida_p

NI

where MKCBF is a natural transformation with components
MKCP 1 : C(D,T'e A) x C(B,B) — C(D,T'e Be A\ B)
so we make the definition

[e:Dok: T (ly:=y(M)],mkc(M,y) : AN B] =4
MKC%F[[JS:DD,%:F,M:A]];idpo[[y:BDQ:A]]oidA\B;Join(F,A,A\B)
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B312. Subtraction elimination. The subtraction elimination rule has the form
r:Dor:I'M: A\ B y: Ar§¢: AN B
x:Dppostp(y— N, M),k : T, ¢ly:=y(M)]: A
This suggests a natural transformation with components
Upra:C(D,I'e(ANDB))xC(A,AeB) = C(D,1eI'e A)

natural in D,I’;A. Givene: D - Te(ANB), f: A— AeBand also a : D' — D,
c:I' =T, d: A — A, naturality yields

Uprra((ase;ceidap), (fideidp)) = a;¥pr ale, f);ced; Join(T', A')
In particular, taking a : D — I' @ (AN B), e = idpe(a- p), ¢ = idr, d : ida, we obtain
Uprala, f)=a;¥pralidrea.p), f); Join(T', A)
Writing POSTP(f) for ®p 1 a(idre(a-p), ) we define

[[‘T : DDPOStp(y'_)]\LM)aH : Paf[y = Y(M)]] —df
[t :Dek:T,M: AN B];idr e POSTP[y : A>¢: A, N : B]; Join(T', A)

N E

B3l3. Equations in context. We have equations in context of the form

~ — [ rule:
z:D>M:T',M: A y:B>N:A 2:A>bL:AL:B
v:D>M:T, [N/:A,redf:A} = [N[y := L[z := M]], L[z := M]]

(3.3)

where N = N[y := Y/(M)], red = postp (z — L,mkc(M,Y)) and L' = L[z := mkc(M, Y)].

Given morphisms n: D —T"e A and m : A — A e B, for these equations to be satisfied we
need the following diagram to commute:

D = FeA
MKC?E (n) ‘( ‘/idr om
le(ANB)eB : leAeB
POSTP(m)eidp

in particular, taking n = id4 we have

A n AeDB

MKCB (id4) L POSTP(m)eidp

(ANB)eB
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Assuming the above decomposition to be unique, we can show that the 7 equation in context
is also satisfied:

~ —n rule
2:D>N:AM:A\B z:Avz: A y:B>y:B
z: D> N : A, [mke(X(M),Y) : A\ B,postp(z — Y (z), M) =M : A\ B

(3.4)

and conclude that there is a natural isomorphism between the maps
A—AeB
ANB— A

i.e., that . is the left adjoint to the bifunctor e.

3.4. Unit. B4l1 Unit rules. The introduction and elimination rules for the unit L are

L introduction
z:Dpk: T
x:Dpk: T, connect to(R): L

where R € k.
The elimination rule is interpreted by a unique map () : L — 1.

1 elimination
x: L >postp(x)

The introduction rule requires a natural transformation with components
(I)D,F : (C(D, F) — (C(D, Ie _L)

natural in D and I. Given morphisms e : D — T, d : D' — D and ¢ : I' — I", naturality
yields

®prri(d;e;c) = d; Ppr(e);e
Letting d : D — I' and e = idr, ¢ = idr., we have
®pr(d) = d;Botr
where we write Botr for ®r(idr). We define
[#:Dv>r: T, connect to(x) : L] =4 [z : D>k : I']; Botr.

B4l2. Equations in contexrt. We may assume the operation Botr to be compatible with the

generalized associativity and commutativity properties of e, so that for I' = C4,...,C, we
have
(I)C1,...Ci,l,...,0n(idF) . C10---OCZ'O_L,O---CH = ‘I)F(idp) . C10---OCHOJ_
for all ¢ < n. Together with naturality of Botr these yield the equations in context
rx:Dpkr: T
2:Dpk: T, [connect to(R;) = connect to(R;)]
RZ‘,RJ' S

(3.5)

x:Dek: T (R; €K)
y:Ex(: I (Rj€()
y : E>(, [connect to(R;) = connect to(R;)]
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that correspond to the rewiring properties of L-links in the proof-net representation by
[14) [15]. Moreover the equation in context

1 — B rule

z:Dpr: T y:L>postp(y) (R € k) (3.6)

x:Dp[k: I',postp(connect to(R)) =k : I

requires that for any m : D — I the following diagram commutes:

m;Bo

D——=Tel
X Lidr'O?}\A
T.

Assuming that this decomposition is unique and taking m = id4 we have that Bot 4;id4
(); Aa = id4. Arguing as before, we see that there is a natural isomorphism

D—Tel
D—Tel
(so we identify L and 1) and that the following equation in context is satisfied:
1 —n rule:
z:Dpkr: T M: L x: L >postp(x)

z:Dpk: T, [connect to(postp(M)): L =M : L]

Let £ be the signature having
e the types given by the following grammar on a collection of ground types ~:
A=~ L|ApA|ANA
e a collection of sorted function symbols including connect to(—), postp(—), p(—,—),
casel(—), caser(—), mkc(—,—), postp(—, —).
We have proved the following

Theorem 3.4. Let T = (L, A) be a theory with signature L having as azioms the equations
in context in Table[f] and in (31) - (3-7). Let (C,e,1,~,a, X, p,7) be a symmetric monoidal
left-closed category and M a structure for L in C. Then M satisfies the equations in A.

Moreover, define the syntactic category as the category C which has the formulas of
multiplicative co-intuitionistic linear logic as objects and typed terms of the form = : E<k : I’
(modulo renaming of the variable z) as morphisms. Set z : Evk: ' = y: E>(: I iff
k = (ly := z] is derivable from equations in context in Table @ and in BI]) - (37)). Then
we have

Theorem 3.5. The syntactic category is a symmetric monoidal left-closed category.

From this fact the categorical completeness theorem follows.
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4. EXTENSION TO CO-INTUITIONISTIC LINEAR LOGIC WITH COPRODUCTS AND
EXPONENTIAL

Let £L? be L extended with additive disjunction @& and the familiar functions inl : A —
A@®B,inr: B+ A® B and case : A BXx (A — C)x (B — C)— C. Then it is
easy to extend the above result to show that if C has also the structure of coproducts, then
a structure for L% in C satisfies also the theory 7% where A is extended with familiar
equations in context for inl, inr and case. We shall not pursue this extension here.

The extension of 7 to a theory with the exponential ? (why not?) is less simple. On
one hand, one can dualize Benton, Bierman, De Paiva, Hyland’s definition of a linear
category [11, [13] and obtain in this way a sound and complete categorical semantics for co-
intuitionistic linear logic. The construction of weakly distributive categories with storage
operators based on proof-nets by Blute, Cockett and Seely [14] provides a categorical model
for both exponentials ! and ?. On the other hand, the semantics for the exponential ! can
recovered in the context of Nick Benton’s treatment of Linear Non Linear logic [12]. After
dualizing the linear part of LINL one should be able to recover the semantics for 7 and at the
same time obtain a framework where the duality of intuitionistic and co-intuitionistic logic
can be studied. We leave the development of this approach to future work and focus on the
categorical semantics of the multiplicative and exponential 7 fragment of co-intuitionstic
linear logic.

4.1. Co-intuitionistic linear categories. We begin by dualizing the definition of a linear

category [11], 13].

Definition 4.1. A dual linear category C consists of

(1) A symmetric monoidal left-closed category together with

(2) asymmetric co-monoidal monad (7,7, u,n_ _,n, ) (namely, the functor? is co-monoidal
with respect to p and the linear transformation n, . are co-monoidal) such that
(i) - each free 7-algebra (7A, p4) carries naturally the structure of a commutative -
monoid (i.e., for each (7A, ua) there are distinguished monoidal natural transformations
ia: L —=7A and ca :TApTA =7 A which form a commutative monoid and are algebra
morphisms);
(ii) - whenever f: (?A,ua) — (?B, up) is a morphism of free algebras, then it is also a
monoid morphism.

Remarks 4.2. By Maietti, Maneggia de Paiva and Ritter (see [27], Prop. 25), condition
2(ii) is equivalent to the requirement that p is a monoidal morphism.

(i) To say that the functor ? is symmetric co-monoidal means that it comes equipped with
a comparison natural transformation ng g :7(ApB) -7?Ap?B and a morphismn; 71 — L,
satisfying

NLpA)—2 71 74 and 2(Ap L) 2 24071

LT’)\A LDJ_ pidra L?PA Lidm ©n
A

A< 1 oA A< 2401
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NA o, B,C na peidc

2((ApB)pC) 2255 2(Ap B)p 20" 22 (24 0 7B)p 2C

oo —1 -1
'aA,B,C"/ LQ?A,?B,?C

W(Ap(BpQ)) fm== 1Ap7(BpC) —— 1Ap(?Bp?0)

DA,BpC idra puB,c

2ApB) 22 240?B  and naturality: ?(ApB) ——" s ?Ap?B

l?’yA,B [’Y?A,?B l’(jpg) l?f@?g

2BpA) =5 7B p7A 2A'pB') 2L 2 A 7B

(ii) To say that n and p are co-monoidal is to say that the following diagrams commute:

agng ——7Ap?B and L RN

AN

?7(ApB)

HA@B

?2(ApB) —2% ?2(ApB) and 7?71 s 7]

A, B ?DLL lnj_

?2(?Ap?B) nap =1

n

n74,78

MAQTIB —= 74078

(iii) To say that the natural transformations is : L —7A and c4 :7Ap?A —7A are monoidal
means that they are compatible with the comparison maps, i.e., that the following diagrams
commute:

L Lol 222 oy Lol 22 ou0B
ul / ng @MT [M )\—p[ THA,B
7L 7Lp?l—=71 L—="ApB)
(?Ap?A) p (7B p?B) 222 ?Ap 7B
(?7Ap?B)p(?Ap?B) na.B

NA,BOPNA B
NApB)p?(ApB) ———=(ApB)

where iso is the canonical isomorphism derived from symmetry and associativity;
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Y and P2Ap7A -4 74
DLT THA HAQRA
TL— 1A 7740774 fa
n7?A,7A

2TApTA) —= 774

7ca

(iv) Finally for the free algebra morphisms to be monoid morphism we require that the
following diagrams commute:

24074 -2 24 ]
A W#A] T#A X ]#A
A
7Ap?7A ——= 174 A
C?7A

4.2. Term and equations in context. To sketch a proof that a dual linear category is a
model of co-intuitionistic linear logic with storage operator ? we give the term in context and
the equation in context relevant to the dereliction, weakening, contraction and storage rules.
These conditions are dual to those in Figures 4.1-4.5 in G. M. Bierman’s thesis [13], pp. 112-
142. Since in our context the exponential rules for dereliction, weakening and contraction do
not involve let constructions, some of these conditions result immediately from properties
of substitution. There are three Equations in Context expressing “f8 reductions” for the

v:E>k:T,M:7C r:0>Q| N:?A
v:Evr:T, store(Q,N,¥,x, M) | F(x(M)) : 7A

dereliction
r:Evk:T,M:C
x:Evk:T,[M]:2C

weakening )
B r contraction
Lo LPh v:EbFr:T,M:2C,N :2C
x: Ev>k: T, connect to(R) :7C
x:EFk:T,[M,N]:2C
where R € k.

Table 5: Term in context judgements for the ? storage operator
storage operator in Table [l Finally there are Categorical Equations in Context in Table [71

The key decision, discussed at length in G. M. Bierman’s thesis [13] pp. 127-131, arises in
the analysis of the Dereliction-Storage reduction given by the equation in context in Table
[l By repeating for the rules of dereliction and storage the kind of analysis done for par,
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Dereliction - Storage:
v:Ebk:T,M:C r:C>Q| N:?A
v:Evk: T, [store(Q,N,v,x, [M]) | (x([M])) :7A =

=Qlz:=M] | N[z := M]:?A]

Contraction - Storage:
v:E>k:T,My:?7C, My :7C r:C>Q| N:?A

v:Ev kT, [store(Q, N,¥,x, [Mo, Mi]) | §(x([Mo, M1])) : 7A =
= store(Q, N,¥,x, M), store(Q, N,¥,x, Mi]) |
([F(x(Mo)), F(x(M1))]) : 7A]
where ?A =?Dy,...7D,, and ([y(x(My)),5(x(M1))]) :?A stands for
[y1(x(Mo)), y1(x(M))] : 7Dy, ..., [ym(x(Mo)), ym (x(M1))] : ?Din

Weakening - Storage:
v:Epk:T r:C>Q | N:?A Rer

v:E>k: T, [store(Q,N,¥,x, connect to(R)) |
J(x(connect to(R)) : 7A = | ([connect to(R)]) : ?A]
where ?A =7Dy,...7D,, and | ([connect To(R)]) : TA stands for
| connect to(R) : ?Dy,...,connect to(R): 7Dy,

Table 6: Equations in context for the 7 storage operator

subtraction and unit, we see that in order to model the storage rule we need a natural
transformation ®pr : C(E,T'e?A) x C(A,7A) — C(E,I'e?A). By naturality considerations
this is given by its action ®r(idrez4,d) =4 d* on morphisms d : A —7A. Similarly, for the
dereliction rule we need a natural transformation ¥ : C(_, A) — C(_,7A) and by applying
Yoneda’s Lemma we see that its action is given by a morphism 74 : A —7A.

We can certainly define a functor 7 : C(A,T') — C(?A,?T") by f — (f;nr)*. Now by the
equation in context for dereliction-storage we have that following the diagram commutes:

224 80" 994

A
ma ]
7A
Assuming the above decomposition to be unique, we have (n4)* = id74 and thus the

derivations
ma: x:TA> [x] 774 and Tna: z:7Apstore([[z]],y,x,2) | y(x(2)) :77A
must be identified. Now it can be shown that identifying 1.4 and ?n4 forces the functor ?

to be idempotent: ?7f = 7f. In order to avoid such collapse, the functor 7 is only assumed
to be a K modality, and the properties of S4 are given by the natural transformations
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Monad:
z:7A> [store([[z]],y,x%,2) | y/(¥/(2)) : A =z :?4]
Algebra 1
v:Ebk:T',M:?2C r:C>P|N:?A
v:Evr: T, Plx:=x(M)],
[store((N, connect to(R)), (7.y),x, M) | 7(x(M)) : ?A, y(x(M)) : 7A =
= store(N,¥,x, M) | §(x(M)) : ?A, connect to(R') : 7A]
where R € PUN and R’ € Pz :=x(M)]U¥(x(M))

Algebra_2 o
v:E>k:T,M:?C x:C>P | N:7A Ny :7A N; :7A
v:E>k:T, Plz:=x(M)],
[store((W, [No, M), (7, ), M) | F(x(M)) : 2, y(x(M)) :74 =
— store(F, No, M), (7, 30,710, M) | Tx(M)) : 2, [yo(x(M)), 72 (x(M))] : 24]

Monoid 1
v:Evk:T,M:?7C RexrUM

v:E>k: T, [[M, connect to(R)]:7C = M :7C|

Monoid 2
v:E>k:T,M:7C RerUM

v:Evk: T, |[connect to(R),M]:?C =M :7C|

Monoid 3
v:Evk:T,My:7C, My :7C

UZEDIQZF, [[Mo,Ml] 70 = [Ml,Mo] 70]

Monoid 4
v:E>k: T, My:7C, My :7C, My :7C

v:E>k: F, [[[Mo,Ml],MQ] 70 = [M(), [Ml,MQ]] ?O}

Table 7: Categorical Equations in Context

n:A—7A and p:??7A —7A of the monad (7,n, ). Here pa is given by the proof
z 17A D> store(z,y,%, 2) | y(x(2)) :7A
and the commutative diagram required by the definition of a monad

7A

T wA
A

,
774 <2 24

identifies id>4 : x :7A > x :7A with the following derivation 7na; ua:
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Ma :
z:Avz: A
x:Av[z] 7A fia:
z:1Ab2:?A 2 :Ap|[a]] ”‘?A 2 MAb 2 A 2 2Ava A
t:77 2/ 1A store(a),y %, 2) | vy (F () :7A

z 7A> store([[z]],y,%, 2) |
z 7A>store([[z]],y, %, z) store(z,y',x',t) | y'(¥'(t)) : 7A
where ¢t = y(x(2)) :77A

The normal form of the derivation 714; 4 is the following one:
z ?Ap store([[2]],y,%,2) | ¥ (¥ (2)) : 74

as in the Categorical Equation in Context for Monad of Table[[l Further details are left to
the reader.

5. CONCLUSION.

In order to provide a categorical semantics for co-intuitionistic logic - given that as re-
marked by Tristan Crolard [I8] co-exponents in the category Set are trivial - we have given
a categorical semantics for intuitionistic multiplicative and exponential co-intuitionistic lin-
ear logic, from which our desired results follows by dualizing J-Y. Girard’s embedding of
intuitionistic logic into intuitionistic linear logic.

In this task we started from a term assignment to multiplicative co-intuitionistic logic, which
has been proposed as an abstract distributed calculus dualizing the linear A calculus [2] 3] [7]:
in our view such dualization underlies the translation of the linear A-calculus into the -
calculus (see [10]). Our dual distributed calculus is itself a restriction to a co-intuitionistic
consequence relation of Crolard’s term assignment to subtraction in the framework of the
Au-calculus: to subtraction introduction and elimination rules and to their 8 reduction global
operations of binding and global substitution are assigned; these operations may appear as
notationally awkward at first sight but are forced on us by the removal of the p-rule and of
the p-variable abstraction used in Crolard’s approach. A computational application of our
notation is suggested in the proof of the Decomposition Property (Proposition 22). Since
the dependencies of a variable y : C' from n binders make — coroutine and postpone are
represented in a term y(t1(...t,(M)...)) : C by the terms t; : D;, this representation can be
used to compute the assignment of a probabilistic event C to such a term according to the
assignments D; to the terms ¢; : D; and to prove that probabilities are preserved from the
premise to the disjunction of the conclusions in a multiplicative co-intuitionistic derivation.

Our work required a lengthy exercise on well-known results by Benton, Bierman, Hyland
and de Paiva[l1l 13], with the considerable help given by Blute, Cockett, Seely and Trimble’s
work [I4], [I5]. To assess the merits and advantages of our work we need to evaluate the
syntax for the exponential rules: here again the storage rule may appear notationally quite
heavy, but it is a straightforward implementation of the act of storing. On the other hand
the advantages of working in the dual system are completely evident in the treatment
of dereliction and contraction, where the awkward let operations and related naturality
conditions are replaced by simple operations on lists. Finally, the treatment of weakening is
also completely standard, thanks also to Blute, Cockett, Seely and Trimble’s work [14] [15]
on the notion of rewiring.
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APPENDIX A. EXAMPLE

Consider the following computation in the simply typed A-calculus. We write N for (A D
A) D (AD A) and N+ for (C~\C)~ (C\O).

ARARPA (NfARA XA f f2)(AgAP ANy A ggy)h : N ~op (i)
ARARA (NfARA Nz A f fo) Ay hhy) 1 N~ (ii)

AARA A Ay hhy) Ay hhy)z : N~ (iii)
MARA A (YA hhy)hhe : N~ (iv)
AARA Nz A hhhha : N (v)

In Table [§] we give a Natural Deduction derivation in “tree form” with the assignment of
the term (ii) = Ah.(Af.A\z.f fx)(Ay.hhy) : N. In Table @l we consider a Natural Deduction
derivation of n : Nt = P, Py, P3, Py | in the subtraction only fragment of co-intuitionistic
logic; such a derivation is exactly dual of that in Table Bl it is also in “tree form”, in fact
it yields the same tree as in Table 8 read from bottom up. Its term assignment, with the
p-terms Py, P», P3, Py in the conclusion, belong to a dual calculus defined in [I] and briefly
described here, with the property that to each § reduction in the simply typed A calculus
there corresponds a set of rewritings of the computational context in the dual calculus and
a reduction sequence tq,ts,... of simply typed A terms terminates if and only if the dual
sequence ti, t4, ... terminates (see [1I, section 6.1). The derivation in Table [0l results from
that in Table [ by one step of normalization.

The grammar of the dual calculus for the subtraction-only fragment of co-intuitionism is as
follows (see [I], section 6, definition 10):

M = z|x(M) | mkc(M,x)
¢ = | [M,...,M,] for some n.
P = postp(y = Ly := y(M)], M).



32 GIANLUIGI BELLIN

(1) (4) N . 3)

)\z.ffz::A%A h:AoA y:
@ @ /
h:A—>< /hy

ANz f fe:N hh}lj:A

t
\ 3)
//%hy:AﬂA
—

tu:f{—>A
(4)
A fAz.ff2) (A\y.hhy)N

Ah.tu

Table 8: Natural Deduction tree for (ii) F Ah.(Af.A\x.f fz)(Ay.hhy) : N

Here non-empty lists ¢ are flattened and occur only within p-terms. A notion of term
expansion allows to define the substitution of a flat list for a free variable in (a flat list of)
terms, yielding a flat list. In this way we take care of contraction of discharged conclusions
resulting from a subtraction elimination. A conclusion introduced by weakening is assigned
an empty list. To decorate natural deduction trees we use a notation which ignores the
distinction between local and remote binding, as discussed in Note [[7] (iii). Notice that the
grammar of the dual calculus used in this section is actually a fragment of the grammar of
the linear dual calculus presented in this paper A

Next we translate the co-intuitionistic natural deduction derivations of Tables[d and [I0linto
co-intuitionistic linear logic. In Tables [l and [[2 we adapt the graphical notation of Tables
and [I0] to our linear calculus and notice that that the derivation in Table [I2] results from
that in Table [[1] by applying two normalization steps, a subtraction reduction followed by
a storage - contraction reduction. The graphical notation should help to catch a glimpse of
the reduction process more vividly. Here we present the Natural Deduction derivation of
Table [l in the sequent-style typing judgements of our official calculus.

“We have not explored the possibility of assigning the empty list to the formulas ?C introduced by
weakening also in the linear calculus; this would distinguish the case of weakening from that of the 1-
introduction rule, where terms of the form connect to (R) would still be used.
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(2) : P, = postp(g — [ma, m1],m3) (4): Py = postp(e — [ms, my4],n)

(1)s Py = posta(b - [1].9) (3) s Py = posta(d -+ [y, )

(2) (1)

ml—mkc ax ):C\C
=x(a):C
m —mkc b,a):C
2 (0): /b)C

b:b%g):c
(1) (4) (3)
= (ml):C\C m4:mk>(c y):C~C
e 7 v=rienc

@ @,
ms=mkc(d,c) :C\C/
\ A =c(d):C

Red m3 = mkc(e, j) : N+ |d a(j):C

Aot

Table 9: co-IL tree for the dual of (ii) F Ah.(Af Ax.f fx)(Ay.hhy) : N

Sequent-style Natural Deduction. (i) The derivation D corresponding to the graph
inside box By, ps of Table [[1lis as follows.
, d:Cv |d:C c:Cp |e:C
d:Cv | mke(d,c): C\C,c(d):C y:Co> |y:C
—_— ~~

o d:Cv |ms:C~Cimke(c,y): C\C,y(e): C
—_—— <~
maq Y
de: d:Co | [ms] 2(C ~C),[ma 2(C~C),y:C
L k:iONCo |k:ONC T OO | [[ms)[ma]] 2(C~C),y: C
N k:C N~ Crpostp(d— y, k) | [[ms][mad]][d :=d(k)] :?(C ~ C)
P M

Applying the ?-E rule with major premise j :7(C' \ C)>j :7(C ~ C) we obtain a derivation

of the following sequent:
J:(C N C) > store(Ps, M,yo,k,7) | yo(k(5)) :7(C \ C).
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(1) : P = postp(b — [z], €) (4) : Py = postp(e - [ms, mg, mj, mi],n)
(3") : Py =postp(d' > [y'],ma2)  (3"): P§' = postp(d” — [y"],m1)
Redex Redex
(4) (3")

m) *mkc(c ! y) c\C
(1) ! y"=y(c"):C
~
my =mkc(d” ,c):C\C
. ¢ =c(d"):C

(4) () wreaguye
mg:mlé@'w%@')-c |
(4) (3") v

N 1 _ .
mi=mie(d )\C %):C Red m; =nkc(a,x) : C r=x(a):C

dl:d(’?nz):c
3"
Red’ my = mkc(b,a) : C

=a(b):C

b:bee):C
(1)
g:e:e(:n) :O\NC
(4)

n:ll\IL

Table 10: co-IL tree for the dual of (iii) - Ah.Az.(Ay.hhy)(Ay.hhy)z : N

Finally, by applying subtraction introduction to it with the axiom
e:C N Cp | e:C~ C we obtain a derivation D; of the following sequent:

e:ONC v StOI’e(ngM, y07k7j(e)) | yo(k(.] (6))) ?(C ~ C’),mkc(e,j) : NJ_
Store Yo
where N+ = (O~ C)\?(C ~ O).

(ii) By applying the same steps as in derivation D, but relabelling of the terms, we obtain
a derivation Dy of the following sequent:

g:C~Cprpostp(b— x,g) | [[mi][me]][b :=Db(g)] :7(C \C)

P1 MO

where m; = mkc(b, a), my = mkc(a,x), b =b(g), a = a(b) and = = x(a).
(iii) Now if we apply D; to Dy with the formula mkc(e, j) : N+ as major premise of subtrac-
tion elimination then we obtain a derivation DV ending with following sequent:

e:C~ C > Store postp(g — My,mkec(e, j)) | yo :7(C ~\ C)
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(2) : P, = postp(g — [[m1][ma]], m3)

Redex
(1) : P, = postp(b+— z,9) (4") : Py = postp(e — [y1],n)
(2)
I
[[ma][ma]] :?(C'\ C)
My
dm 1:7(C\C)
O oW
[mg]:??C\C) m1:mkc(a\,x) /m:x(a) [yo]:f’(iC\C)
1r>:mkc(b\,a) /a:a(b)/ - _W_Z_YE(li(]_)) ___________
M=[ms)ma]]
b=b(g):C (4‘) Bk)]w
M:?(iC\C)
[ma]:?7(CNC)
(1) — (3)

[ms]:7|C\C) 1n4:}c(c7 ):C\C
5 K y=y(c):

~_
ms=mkc(d,c :C\C/
c=c(d):C

d:dek):C

(3)

k:C’|\C

g=g(m3):C~\C

(2)

\

Red mj3 = mke(e, j) : N* store(Ps, M, yo,k, j) 1L (3) : Py = postp(d'— v, j)

T _ ) I
\ //_l':j(e):?(C\C

\
\
\
\
\
\
|
¢
\
\
\
\
\
\
\

G)—=—==----

Table 11: linear co-IL analysis of the proof in Table

The pair introduction / elimination inferences determines the only Redex in DT. A final
subtraction elimination with the axiom n : N+ >n : N1+ concludes the derivation in our
example.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany
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(1) : P = postp(b > z,¢) (4') : Py = postp(e — [[y2][y1]],n)
(4)
[[y2][y:]]
~
- [y2] [yl
y2 = yo(k2) y2 = yo(ks2)
o I G I
| I I I
| B, ! \ B, \
I | I I | [
| ke =X([ma])- | - k= k([ma]) -
[mﬂ:?%C\C) [ml]:?%C\C)
(1)
mi=mkc(a,x) z=x(a)
mo=mkc(b,a IS
a:a(b):C/
—
b:beg):c
(1)
g:e:e(:n):C\C
(4)
n:li\lL

Table 12: linear co-IL analysis of the proof in Table
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