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Abstract. By considering a counting-type argument on Brownian sample paths, we prove
a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid
points of Brownian motion. Because of the nature of the proof we can then apply the
concepts to so-called complex oscillations (or algorithmically random Brownian motion),
showing that their rapid points have the same dimension.

1. Introduction

A popular theme in the study of Brownian motion is the properties and structure of cer-
tain compact sets associated with, or generated by, the process. Although this endeavour
originally started by examining the Lebesgue measure of such sets, very interesting results
were obtained when considering Hausdorff and, subsequently, Fourier dimensions. In this
paper, we take the following as our definition of (one dimensional) Brownian Motion:

Definition 1.1. Given a probability space (Ω,B,P), a Brownian motion is a stochastic
process X from Ω× [0, 1] to R satisfying the following properties:

• Each path X(ω, ·) : [0, 1] → R is almost surely continuous
• X(ω, 0) = 0 almost surely
• For 0 ≤ t1 < t2 · · · < tn ≤ 1, the random variables X(ω, t1),X(ω, t2)−X(ω, t1), . . . ,
X(ω, tn)−X(ω, tn−1) are independent and normally distributed with mean 0 and variance
t1, t2 − t1, . . . , tn − tn−1.

Khinchine’s famous law of the iterated logarithm (see, for instance, p67 of [7]) describes
the local growth of Brownian motion at almost all points of the unit interval. We state the
theorem for completeness. Since the notation will not cause any confusion, we will usually
denote the sample path X(ω, ·) : [0, 1] → R of a Brownian motion simply by X(·).
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Theorem 1.2. For X a one dimensional Brownian motion as above, we have that for any

prescribed t0 on [0, 1]

P

{

lim sup
h→0

X(t0 + h)−X(t0)
√

2|h| log log 1/|h|
= 1

}

= 1.

This implies that almost all points in the unit interval are points of “ordinary” growth.
Though of Lebesgue measure 0, the set of points that violate this growth condition have
other fascinating properties. The points of exceptional growth we will consider are known
as rapid points.

Definition 1.3. t is called an α-rapid point of the sample path X if

lim sup
h→0

|X(t+ h)−X(t)|
√

2|h| log 1/|h|
≥ α.

(We can define the rapid points of any continuous function f analogously by replacing the
sample path X with f in the above.)

Orey and Taylor [12] showed that the set of α-rapid points has Hausdorff dimension
1 − α2, almost surely, and shortly afterwards Kaufman proved they have equal Fourier
dimension [10]. We shall not delve into the theory of Fourier dimension as it relates to sto-
chastic processes here, but the interested reader is referred to [9] for a thorough exploration.
The result of Orey and Taylor is very relevant to the investigations of this paper. Section 3
provides an elementary proof of the result, elements of which are used to prove subsequent
results on complex oscillations.

There has been much activity recently connecting the theory of descriptive complex-
ity with that of Brownian motion. Complex oscillations were introduced by Asarin and
Pokrovskii [1], being functions which are the limit of piecewise linear functions encoded by
strings of high Kolmogorov-Chaitin complexity. It was shown that the set C of complex os-
cillations, also known as generic Brownian motion, has Wiener measure 1. Fouché [5] proved
that there exists a recursive bijection between the set of Kolmogorov-Chaitin random strings
(KC-strings, from hereon) and encoded versions of the complex oscillations. The set C may
be considered an effective representation of Brownian motion, since every property which
holds almost surely for a Brownian motion also holds for a complex oscillation, provided it
has a suitably effective description [4].

Fouché showed in [6] that iterated logarithmic growth is satisfied at all recursive points
in [0, 1] and posed the question, whether iterated logarithmic growth holds with Lebesgue
measure 1. This was answered in the positive by Kjos-Hanssen and Nerode [11]. The
question now becomes whether Orey and Taylor’s result also holds for complex oscillations,
which is what we attempt to answer in this paper.

Complex oscillations, or generic Brownian motion, is also known in the literature as
algorithmically random Brownian motion. For the purposes of this paper, we shall keep
to the term “complex oscillations”, as oft repetition favours the shorter form. It is also
the author’s preference, since it not only refers to the origins of the subject in Kolmogorov
complexity, but also distinguishes it from Brownian motion as a distinct, albeit related,
phenomenon.

We employ some nonstandard analysis in the next section. The purpose is merely to
facilitate the conversion of some standard inequalities into a calculation of the Hausdorff
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dimension of the α-rapid points, following the method in [13], without having to resort to
more cumbersome covering arguments. It should not be too difficult for readers who do not
wish to delve into the nonstandard background to convince themselves that dimension may
be calculated by a method of counting intervals.

As mentioned, section 3 provides an elementary proof of the theorem of Orey and Taylor.
Although the supporting lemmas were formulated largely to support the main result on
complex oscillations, it seemed appropriate to complete the train of thought in this fashion.
The advantage of this method of proof is that it lends itself well to more constructive
applications, as in the sequel. A concise exposition of the most relevant definitions and
results on complex oscillations are presented at the start of section 4. The results of the
previous sections are then applied to show that the α-rapid points of a complex oscillation
do indeed have Hausdorff dimension 1−α2. The methods used throughout to approximate
sets of rapid points are based upon Kaufman’s approximations in the paper [10].

2. A nonstandard formulation of Hausdorff dimension

Some familiarity with nonstandard analysis is assumed. For a full explanation of the con-
cepts involved, [2] provides an excellent introduction. It is however not necessary to follow
this section in order to understand the main results of the paper, since they are formulated
(and, for the most part, proved) without reference to nonstandard analysis.

We first consider the standard definition of Hausdorff dimension. Given a compact set
A on the unit interval (or any bounded subset of R) and ǫ > 0, consider all coverings of the
set by open intervals Bn of lengths smaller than or equal to ǫ. For each cover, form the sum

∞
∑

n=0

‖Bn‖α,

where ‖ · ‖ denotes the length of an interval (i.e., the supremum of the distances between
any two points of the set). For each A and ǫ > 0, take the infimum over all such sums, as
{Bn} ranges over all possible covers of A of diameter ≤ ǫ:

Sǫα(A) = inf
{Bn}

∑

n

‖Bn‖α.

As ǫ decreases to 0, Sǫα(B) increases to a limit measα(A) (which might be infinite) which is
called the α-Hausdorff measure of A, or the Hausdorff measure of A in dimension α.

Definition 2.1. The Hausdorff dimension, dimA, of a compact set A ⊆ [0, 1] is the supre-
mum of all the α ∈ [0, 1] for which, for any cover B of A, measα(B) = ∞. This is equal to
the infimum of all β ∈ [0, 1] for which there exists a cover C of A such that measβ(C) = 0.

We now consider the interval [0, 1], and divide it into 2N sections, where N is a hy-
perfinite (but not finite) natural number. The set {0,△t, 2 △t, . . . , (2N − 1) △t}, where
△t = 2−N , is referred to as the hyperfinite time line with basis 2N . If B is a subset of
the hyperfinite time line, or indeed a subset of the nonstandard reals, we denote by ◦B its
standard part. In [13] a nonstandard version of Frostman’s lemma is proved, which is used
to establish the following:
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Theorem 2.2. Given a compact subset A of [0, 1], there is a subset AT of the hyperfinite

time line T and a hyperfinite number N ∈ ∗
N \N such that ◦AT = A and

◦

( |AT|
Nβ

)

= ∞ for β < α, ◦

( |AT|
Nβ

)

= 0 for β > α

if and only if dimA = α.

This result guarantees the existence of a subset of the hyperfinite time line through
which Hausdorff dimension can be computed using a counting argument, but the following
result shows that any set which satisfies certain properties can be used:

Theorem 2.3. Consider a hyperfinite time line T based on the hyperfinite number 2N , for
a given N ∈ ∗

N \ N. Suppose that a subset A′ of the time line is such that ◦A′ = A and for

some α > 0
◦

( |A′|
2Nβ

)

> 0 for β < α and ◦

( |A′|
2Nβ

)

= 0 for β > α.

Then α = dimA.

3. Rapid points of Brownian motion

We calculate the dimension of the rapid points in two stages. For the purposes of section 4,
the method will be more important than the results.

Lemma 3.1. If A is the set of α-rapid points of X(t), A has a Hausdorff dimension of at

most 1− α2, almost surely.

Proof. We consider a partial covering of Eα, the set of α-rapid intervals of a Brownian
motion, by dyadic intervals, the limit superior of which will form a cover of Eα. Let
n, j ∈ N and let α1 < α. We will consider j to be fixed. Define Bα1,n(ω) to be the random
set

{0 ≤ k ≤ 2n − 1 : ∃t ∈ [k2−n, k2−n + 2−n−j ](2n/2|X((k + 1)2−n)−X(t)|
≥ α1

√

2n log 2)} (3.1)

Note that we can either consider these sets as subsets of the integers or as collections of the

dyadic intervals these integers represent. Let Aα1,n be the event {|Bα1,n(ω)| ≥ 2n(1−α
2

1
)}.

The sets of the form Bα1,n(ω) do not form a cover of the rapid points at each stage n.
However, we can see from continuity that each α-rapid point that can be described as the
limit of a selection of endpoints of dyadic intervals, as in the construction of the set in 3.1,
will be contained in the limit superior of the Bα1,n(ω). Moreover, the same argument can
be made for the rapid points approximable from the left in such a manner, yielding the
same bounds on the Hausdorff dimension, hence achieving the desired result for all α-rapid
points.

We now estimate the probability of Aα1,n. The distribution of |Bα1,n(ω)| is binomial
and the probability of a success (of a point t ∈ [0, 1] being in Aα1,n) is calculated in [10] to

be larger than 2−α
2

1
n(1+o(1)). We now want to calculate the probability P(Aα1,n). For this

we use an estimate from [3] for the tail of the binomial distribution. If S2n denotes the sum
of 2n variables which may take value 1 with probability p and 0 with probability q = 1− p,
then we have that

P{S2n ≥ r} ≤ rq

(r − 2np)2
, (3.2)
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when r > 2np. To see that we may use this estimate, note that the requirement implies

that we must have p < 2−nα
2

1 , which is satisfied in this case.
The estimate now becomes

P(Aα1,n) ≤
2n(1−α

2

1
)(1− 2α

2

1
n(1+o(1)))

(2n(1−α
2

1
) − 2np)2

.

Not only can some quick calculation show that this term tends to zero as n tends to infinity,
but we also have that the sum of all the terms converges, because of the inequalities

P(Aα1,n) ≤ 2n(1−α
2

1
)(1− 2nα

2

1
(1+o(1)))

(2n(1−α
2

1
) − 2np)2

≤ 2−n(1−α
2

1
)

(2n(1−α
2

1
) − 2n2−α

2

1
(1+o(1))n)2

≤ 1

2(1−α
2

1
)n(1− 2−α

2

1
o(1))2

≤ 1

2n(1−α
2

1
)(1− 22α

2

1
(n−1))

since 2−nα
2

1
(1+o(1)) < 1

≤ 1

2n(1−α
2

1
)22α

2

1
(n−1)

≤ 4

2n(1+α
2

1
)
,

where we assume n is large enough so that r− 2n2−α12(1+o(1)) > 0. Seeing the above as the
first step in constructing our cover, we can now proceed to larger values of n and α1 to find
intervals of smaller diameter. For such larger values the above inequalities will still hold.
We also consider, for each larger value of n, a larger value αi, where α1 < αi−1 < αi < α. If
we now consider, for a specific sequence {αi}i∈N, the collection of intervals given by all the
Bαi,n, we obtain a cover of A. Although we have constructed the sets as unions of closed
intervals, they may as well be considered to be made up of open intervals, since the set of
dyadic rationals has Hausdorff dimension 0. Although the compactness of the set ensures
that we could find a finite subcover, we do not actually need to find such a cover here, since
the number of intervals used is small enough. If we now consider the 1−α2

1-Hausdorff sum
for the cover of A obtained by the above process, we get an expression smaller than

∑

|Bαi,n|2−(1−α2

1
)n <

∑

2n(1−α
2

i )2−(1−α2

1
)n =

∑

2(α
2

1
−α2

i )n

which is bounded, as long as we have chosen, for instance, αi > (α + α1)/2 for all i ≥ 2.
Since the above sum is clearly larger than that of any 1−α2

1-Hausdorff sum for any dyadic
cover of the lim sup of the sets Aαi,n, we have that such Hausdorff sums are bounded for

any α1 < α. The lim sup of Aαi,n describes the event that there are more than 21−α
2

i rapid
intervals for arbitrarily large n; by the first Borel-Cantelli lemma this has measure 0, since
the probabilities calculated above converge. Hence, with probability 1, we can find for each
α1 < α a cover of the α-rapid points for which the 1−α2-Hausdorff sum converges, implying
a Hausdorff dimension of at most 1− α2.

We now turn to a requirement which will allow certain sets to have a dimension of no
less than 1− α2:

Lemma 3.2. Suppose 0 < α < 1. Let f be a continuous function and consider an equipar-

tition of [0, 1] into 2n intervals, each of which is further subdivided in a further 2j equal
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pieces. If there exists some c > 0, dependent only on f , such that the relation

|{0 ≤ k ≤ 2n − 1 : ∃t ∈ [k2−n, k2−n + 2−n−j ](2n/2|f((k + 1)2−n)− f(t)|
≥ α

√

2n log 2}|) ≥ c2(1−α
2−ε)n (3.3)

is satisfied for arbitrarily large n and arbitrarily small ε, the α-rapid points of f have

dimension larger than or equal to 1− α2.

Proof. Consider the relation

∀m ∈ N∃n ≥ m∀ε > 0|{0 ≤ k ≤ 2n − 1 : ∃t ∈ [k2−n, k2−n + 2−n−j ] (3.4)

(2n/2|f((k + 1)2−n)− f(t)|) ≥ α
√

2n log 2}| ≥ c2(1−α
2−ε)n.

Everything in this relation is first order and can be transferred to a hyperfinite context; it
follows that

∀M ∈ ∗
N∃N ≥M∀ǫ > 0|{1 ≤ K ≤ 2N − 1 : ∃T ∈ [K2−N ,K2−N + 2−N−j ]

2N/2|F ((K + 1)2−N )− F (T )}| ≥ α
√

2N log 2}| ≥ c2(1−α
2−ǫ)N . (3.5)

(F is an S-continuous nonstandard lifting of f ; see for instance [2] or [13].) Now, instead
of seeing the division of [0, 1] as an equipartition, we can consider it a hyperfinite time
line. Also, remembering the ultrapower construction, each K for which the above holds
implies the existence of a sequence of dyadic rationals which converges to a rapid point. The
hyperfinite dyadic rationals included in the transferred relation therefore exist in the monad
(infinitesimal neighbourhood) of an α-rapid point. The set of such hyperfinite rationals
therefore forms an internal subset of the time line, whose real part is contained in the set of
α-rapid points of Brownian motion. Let this nonstandard set be denoted by E′

α. We know

that there are ≥ c2(1−α
2−ǫ)N points on our time line of 2N elements. To let the quotient

|E′
α|

2Nβ

therefore have real part 0, 2N would have to be raised to a power of at least 1− α2 − ǫ, for
each ǫ > 0. Thus, dimEα ≥ 1− α2.

We now confirm that Brownian motion does indeed satisfy the previous lemma almost
surely, asymptotically.

Lemma 3.3. Given 0 < α < 1, there exists a constant c < 1 such that Brownian motion

satisfies relation (3.3) with probability tending to 1 as n→ ∞; that is,

∀m ∈ N∃n ≥ m∀ε > 0|{0 ≤ k ≤ b2n − 1 : ∃t ∈ [k2−n, k2−n + 2−j ] (3.6)

(2n/2|X((k + 1)2−n)−X(t)| ≥ α
√

2n log 2}| ≥ c2(1−α
2−ǫ)n.

Proof. We again use a binomial distribution on the set of intervals, viewing it as a Bernoulli
trial with probability of success p (as previously used). Using essentially the same estimate
of the binomial tail (but for r failures instead of successes) from [3], we now must satisfy
requirement of r < 2np.

The probability of being an α-rapid interval of length h can be bounded from below

by the probability of the maximum over the unit interval being larger than α
√

2h log h−1,
which in turn (by the reflection principle, see, for instance, p26 of [8]) is twice the probability

of X(1) being larger than α
√

2h log h−1.
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Using the approximation [7]
(

1

y
− 1

y3

)

e−
1

2
y2 ≤ 1√

2π

∫ ∞

y
e−

x2

2 dx,

we find that p > 2−α
2nα−1(2 log h−1)−

1

2 . Now, given r = 2n(1−α
2−ε), it is easily verified

that r < 2np for large n. The approximation of the binomial distribution then yields

P {Sm ≤ r} ≤ (m− r)p

(mp− r)2

≤ (2n − 2(1−α
2−ε)n)2−α

2n

(2n2−nα2(1+o(1)) − 2(1−α2−ε)n)2

≤ 1− 2−(α2+ε)n

2n(1−α2)(2−nα2o(1) − 2−εn)2

=
2(α

2o(1)+ε)n

2n(1−α
2)(2εn − 2α

2no(1))2

Since ε > 0 is fixed in this case, we take n to be large enough so that the second factor
of the denominator is > 1 and also α2o(1) < ε. The approximation then becomes smaller

than 2−n(1−α
2−2ε). This clearly tends to 0 and thus the probability of more than 2(1−α

2−ε)n

successes in 2n trials goes to 1.

It now follows trivially from the previous two lemmas that the α-rapid points of a
Brownian motion have a Hausdorff dimension of 1− α2, almost surely.

This theorem has the following famous result as a simple consequence [12]:

Corollary 3.4. For a Brownian path X,

dim

{

t : lim sup
h→o

X(t+ h)−X(t)

(2h log log h−1)
1

2

= ∞
}

= 1

with probability 1.

Proof. It is easily seen that that for each α, the set of α-rapid points has the property of the
above set, with probability 1 (the iterated logarithm is too weak to “contain” the growth
at the rapid points). The above set therefore contains all the E(α) and has dimension 1,
with probability 1.

In the next section we will repeatedly use the probability that a section contains an

α-rapid point, approximated by hα
2

ho(1), where h is the length of the interval. This is very
close to our approximation of the ratio of intervals which are picked at any stage.

4. Complex oscillations

In this part of the paper we consider the descriptive complexity of Brownian motion. A
thorough treatment of this topic can be found in [4]. After a brief introduction to the con-
cepts, we show how some of the above results also hold for complex oscillations. Throughout
we stick close to the original notation and formulation by Fouché.
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4.1. Kolmogorov complexity and complex oscillations. We denote the set of non-
negative integers by ω, and the product space {−1, 1}ω by N . The set of words over the

alphabet {−1, 1} is denoted by {−1, 1}∗. The usual notation
∑0

r,
∏0
r and ∆0

r is used to

indicate the arithmetical subsets of ωk × N l, k, l ≥ 0. Lebesgue measure is denoted by λ
and the set of Kolmogorov-Chaitin binary strings by KC. The Kolmogorov complexity of
a word α is denoted by K(α).

A sequence (an) of real numbers is said to converge effectively to 0 if for some total
recursive function f : ω → ω, we will have that |an| ≤ (m + 1)−1 when n ≥ f(m), for all
n,m < ω. A subset A of N is of constructive measure 0 if there is a recursive function
φ : ω2 → {−1, 1}∗ such that A ⊂ ∩n∪m [φ(n,m)], where λ(∪n[φ(n,m)]) converges effectively

to 0 as n → ∞. Equivalently, A is of constructive measure 0 if there is a
∑0

1 predicate P
such that, if we define An ⊂ N by

α ∈ An ⇐⇒ ∃kP (n, α(k)),
then A ⊂ ∩nAn, and moreover, λ(An) → 0 effectively as → ∞.

We first consider Asarin and Pokrovskii’s definition of complex oscillations.
For n ≥ 1, we write Cn for the class of continuous functions on [0, 1] that vanish at

0 and are piecewise linear with slope ±√
n on the intervals [(i − 1)/n, i/n], i = 1, . . . , n.

One can associate a binary string a1 . . . an to every x ∈ Cn by setting ai = 1 or ai = −1
according to whether x increases or decreases on the interval [(i − 1)/n, i/n]. We call the
word a1 . . . an the code of x and denote it by c(x). Conversely, every binary string s of length
n clearly defines a unique element of Cn. The associated function is denoted by ψ(s). We
call a sequence (xn) in C[0, 1] complex if xn ∈ Cn for each n and there is a constant d such
that K(c(xn)) ≥ n− d for all n. A function x ∈ C[0, 1] is a complex oscillation if there is a
complex sequence (xn) such that ‖xn − x‖ converges effectively to 0 (in the uniform norm)
as n→ ∞. The following is a fundamental result in the theory of complex oscillations [1]:

Theorem 4.1. A continuous function on the unit interval is almost surely, with respect to

Wiener measure, a complex oscillation.

The theorem further yields information on the rate of convergence, but that will not be
germane to our investigation. We now discuss the fundamental tool in the study of complex
oscillations.

4.2. Effective generating sequences. In order to recursively characterise almost sure
events (with respect to Wiener measure) which are reflected in each complex oscillation, we

use an analogue of a
∏0

2 subset of C[0, 1] of constructive measure 0 [4].
We first introduce some notation, maintaining consistency with [5] throughout. If F is

a subset of C[0, 1], we denote by F the topological closure of F in C[0, 1]. For ε > 0 we let
Oε(F ) be the set {f ∈ C[0, 1] : ∃f∈F ‖f − g‖ < ε}. In the sequel, the complement of F is
denoted by F 0 and F by F 1.

Definition 4.2. (Fouché [5]) A sequence F0 = (Fi : i < ω) in Σ (the Borel subsets of
C[0, 1]) is an effective generating sequence if

1. for F ∈ F0, ε > 0 and δ ∈ {0, 1}, we have, for G = Oε(F
δ) or G = F δ, that W (G) =

W (G);
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2. there is an effective procedure that yields, for each sequence 0 ≤ i1 < · · · < in < ω and
k < ω, a binary rational number βk such that

|W (Fi1 ∩ · · · ∩ Fin)− βk| < 2−k;

3. for n, i < ω, a strictly positive rational number ε and x ∈ Cn, both the relations x ∈
Oε(Fi) and x ∈ Oε(F

0
i ) are recursive in x, ε, i and n.

Given an effective generating sequence (EGS) F0, the algebra F it generates can be
effectively enumerated as a sequence of finite intersections of elements of the EGS or their
complements. F is referred to as the effectively generated algebra generated by F0. For
a total recursive function φ : ω → ω and some effective enumeration (Ti) of F , we say
the sequence (Tφ(n)) is F-semi-recursive. The union of an F-semi-recursive sequence over

all n is termed a
∑0

1(F) set. The complement of a
∑0

1(F) set is called a
∏0

1(F) set. If
for a sequence (Bn) of sets in F there exists a total recursive function φ : ω2 → ω and
an effective enumeration (Ti) of F such that each Bn can be described as

⋃

m Tφ(n,m), it

is called a uniform sequence of
∑0

1(F) sets. The intersection of such a sequence of sets is

called a
∏0

2(F) set.

Theorem 4.3. [4] Let F be an effectively generated algebra of sets. If x is a complex

oscillation, then x is in the complement of every
∏0

2(F) set of constructive measure 0.

The next theorem is also important for our purposes:

Theorem 4.4. [4] If (Ak) is a uniform sequence of Σ0
1(F) sets with

∑

kW (Ak) <∞, then,

for each complex oscillation x, it is the case that x /∈ Ak for all large values of k.

4.3. The rapid points of complex oscillations. We now state the main theorem of the
paper.

Theorem 4.5. The α-rapid points of any complex oscillation have Hausdorff dimension

1− α2.

Proof. In order to effectively describe the rapid points, we adapt an effective generating
sequence used in [4]. The proof that this is actually an EGS proceeds analogously to the
proof in [4], and it would be redundant to reproduce here.

We denote by [M(I) ≤ b] the event [sup{X(t) : t ∈ I} ≤ b]. For I a dyadic subinterval
of [0, 1] and b a computable real number, we consider the events [M(I) ≤ b]. Given a
specific interval of the form [i2−k, (i+1)2−k ], we can form a new Brownian motion Yk,i(t) =

X(t)−X(i2−k). Now let [Mk,i(I) ≤ b] be the event [sup{Yk,i(t) : t ∈ [(i+ 1)2−k − 2−j, (i+

1)2−k]} ≤ b] (j is fixed throughout). We use such sets to form our effective generating
sequence. Although we now consider the rapid points that are approximated from the left
by a dyadic sequence, by the symmetry aspects of Brownian motion, this has the same
Hausdorff dimension as the ones that can be approximated from the right. Computing the
dimension of either will yield the result. Since any rapid point can be approximated as one
or the other (or both), this is sufficient.

In order to do so, we must be able to effectively enumerate them (from the argument
in [4], this will suffice). Since at each stage k the number of processes Yk,i is finite, we only
need to effectively enumerate the right-hand side of the inequalities. Thus, we consider all

b of the form β2−
k
2

√
2k log 2 for some fixed rational β ≤ α. The EGS formed by such sets
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is denoted by F0 and the algebra which it generates by F . Our aim is henceforth to use
this algebra to effectively describe the event of a complex oscillation having more or less
than a certain number of rapid intervals, and hence to find approximations of the Hausdorff
dimension in the sense of Lemmas 3.1 and 3.2.

Firstly we show that a complex oscillation must have at least a certain number of
β, n-rapid intervals for large n. To do so, we consider the number of possible choices of

⌊2(1−β2−ε)n⌋ intervals out of the 2n total intervals at stage n, where ε is a small rational.
Let the set of possible choices of this many intervals per stage n be denoted by Cn,

which clearly has cardinality
(

2n

⌊2n(1−α2−ε)⌋

)

.

Let {Cn,i} denote the i-th choice of intervals in some ordering (e.g. lexicographic) of Cn.
Consider the events

Bβ,n,i =
⋂

I∈Cn,i

[sup{|Yk,i(t)| : t ∈ I} ≥ β2n/2
√

2n log 2].

Thus, each Bβ,n,i is an effective finite conjunction of elements of the EGS and hence in the
algebra F describing the event of all intervals in Cn,i being rapid.

We want to show that, for a complex oscillation x, it is impossible for x not to be
contained in some Bβ,n,i for large n. To do so, we consider the event of always being able

to find a collection of more than 2n − ⌊2(1−β2−ε)n⌋ intervals which are non-rapid – since in
such a case it is impossible to find enough rapid intervals. Hence, let the number of possible

choices of 2n − ⌊2(1−β2−ε)n⌋ intervals out of 2n be effectively enumerated at each stage n
and call the ith member of the collection Dn,i. Let

Aβ,n,i =
⋂

I∈Dn,i

[sup{|Yk,i(t)| : t ∈ I} < β2n/2
√

2n log 2],

which therefore describes the event of all intervals in Dn,i being non-rapid. Since each of
the Aβ,n,i can be described as an effective conjunction of elements of the algebra, we can
find a recursive function ψ : ω × ω → ω for an effective enumeration {Ti} of the algebra
(with T0 assumed to be ∅) such that Aβ,n,i = Tψ(n,i). The function ψ is however not total,
but can easily be extended to be such by setting ψ(n, i) = 0 for i ∈ ω previously undefined.
We form the sets

Aβ,n =
⋃

i

Tψ(n,i),

which then form a uniform sequence of Σ0
1(F) sets. If we can show that

∑

nW (An) < ∞,
we know that for any x ∈ C, x /∈ Ak for large k. This would mean that for each x ∈ C, we
are unable to choose more than 2n − ⌊2(1−β2−ε)n⌋ non-rapid intervals, implying that there

must be ⌊2(1−β2−ε)n⌋ rapid intervals. But we have shown in the proof of Lemma 3.3 that

the probability of such an event Aβ,n for each n is less than 1/2(1−β
2−2ε)n, which completes

the argument.
We now use a similar argument to show that there cannot eventually be more than

⌈2(1−β2)n⌉ rapid intervals out of 2n. We look at possible choices of ⌈2(1−β2)n−1⌉ dyadic
intervals out of 2n and denote the effective numbering of these by C ′

n,i. We consider, for
each n, the event

∃i
(

All intervals in C ′
n,i are β, n-rapid

)

.
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Similarly to the previous, this forms a uniform sequence of Σ0
1(F) sets. According to the

proof of Lemma 3.2, the sum of these sets over n once again converges, implying that, for

large k, no complex oscillation can have more dyadic rapid intervals than 2(1−β
2)n.

Since these estimates will hold for any β < α, we can conclude that the α-rapid intervals
have Hausdorff dimension 1− α2.
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