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Abstract. We present an algorithm which computes the Landau constant up to any
given precision.

1. Introduction

For most of the mathematical constants used today, like π, e or ζ, very efficient algorithms
to approximate these constants are known. There are, however, rare cases such as Bloch’s,
Landau’s or the Hayman-Wu constant, where conjectures and rough bounds on such con-
stants are known but the exact value is unknown. Recently, an algorithm to approximate
Bloch’s constant was given in [Rettinger 2008]. We continue this line of research and present
a similar algorithm to approximate Landau’s constant up to any precision.

Because of the close connection between the Landau and Bloch constants we can reuse
many of the ideas (and motivations) on the computation of the Bloch constant in this
paper. A core component of the algorithm, namely the computation of maximum discs
in the image of a (normalised) holomorphic function, is totally different. So injectivity
does not play any role any longer. What is more, however, homotopy methods used in the
algorithm for Bloch’s constant do not work any longer. This is due to the fact that for discs
which need not be schlicht, several overlapping parts of the pre-image come into play. To
decide whether the images do indeed overlap is in general not even computable. Though
the ideas of the algorithm are inspired by Type-2 theory of effectivity, we formulate our
results totally independently of this theory. In this way we hope that our result is accessible
to a wider audience. Finally, we improve even on the parts which could be taken literally
from the algorithm for Bloch’s constant to narrow the gap between the theory and possible
implementations.

Landau’s constant (see [Landau 1929]) gives a quantitative version of the fact that non-
constant holomorphic functions are open. More precisely, it states that for any r > 0 and
any holomorphic function f defined on a disc Dr(z0) := {z ∈ C | |z−z0| < r} with f ′(z0) 6= 0
there exists a disc of radius |f ′(z0)| · r · c inside the image f(Dr(z0)), where the constant
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c > 0 does not depend on f ! Obviously c is bounded from above; thus the supremum, the
so called Landau constant λ, exists. The best upper bound known for λ,

λ ≤
Γ(1

3) · Γ(5
6)

Γ(1
6)

,

is at the same time conjectured to be the exact value of λ. However the best lower bound
known so far is

1

2
< λ.

(see [Robinson 1938] and [Rademacher 1943]).
Putting this in decimal representation gives

0.5 < λ ≤ 0.54325...

i.e. all we know is the constant up to 4 · 10−2.
In this paper we will give an algorithm to compute Landau’s constant λ up to any

precision in the sense that on input n ∈ N some rational number q with |q − λ| < 2−n can
be computed.

The main idea of our algorithm is to compute for several normalised functions the
corresponding λ-values. Following the definition, it seems that we have to take the infimum
for all normalised functions, which could not be done in finitely many steps. We will
overcome this problem by a compactness argument in Section 5. In the next section we
recall a few notations and fix the machine model which we will use throughout this paper.
In Section 3 we introduce a subset of all holomorphic functions such that λ is already
determined by this smaller, compact class. In Section 4 we will then show how λf of a
single function can be approximated and, finally, in Section 5 we prove the computability
of Landau’s constant.

2. Preliminaries

We begin this section with a few remarks on the model underlying our algorithms. Our
main algorithm (Section 5) will only compute on finite words, where we assume some
straightforward, standard encodings (representations) of the dyadic numbers, i.e. numbers
of the form m · 2n with m,n ∈ Z, by such words. We do not need any operations on infinite
words or other structures like R or C, and therefore our algorithms could be implemented
by classical Turing machines. If some value is given as input to our machine, we also say
that the machine computes something on this value. In addition, to simplify things, we use
a second model for intermediate results where we allow infinite sequences as input. One
can think of this model as a classical Turing machine which can in addition ask some kind
of oracle for single elements of the input. The output, however, will always be a finite
word which will be returned after a finite number of steps. This second model is only used
for simplification reasons, and our final algorithm to compute Landau’s constant will not
depend on this model.

Let Dr(z0) := {z ∈ C | |z − z0| < r} denote the open disc of radius r with centre z0

and let Dr(z0) denote its topological closure, i.e. Dr(z0) := {z ∈ C | |z − z0| ≤ r}. To
simplify notation we use Dr := Dr(0) and D = D1. A normalised (holomorphic) function on
a domain D, 0 ∈ D, is a holomorphic function f with f ′(0) = 1. The space of normalised
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functions on D is denoted by N (D). For given domain A ⊆ C we denote the radius of the
largest disc in A by l(A), i.e.

l(A) = sup{r | ∃z.Dr(z) ⊆ A}.
Given a holomorphic function f with D ⊆ dom(f) let λf (D) denote the radius of the largest
disc in f(D), i.e.

λf (D) = l(f(D)).

Finally let λf := λf (D) and the Landau constant λ be the infimum of all λf with f ∈ N (D).
Obviously, λ is already the infimum of all λf for normalized f with the additional condition
f(0) = 0.

Throughout this paper we use most of the time only very basic results of complex
analysis covered by most textbooks (see e.g. [Ahlfors 1966]). The only somewhat more
advanced result from complex analysis is Koebe’s 1/4 Lemma (see e.g. [Rudin 1987]):

Theorem 1 (Koebe’s 1/4 Lemma). Let f be an injective holomorphic function on some
disc Dr. Then Dr·|f ′(0)|·1/4(f(0)) ⊆ f(Dr).

The representations of the objects we use throughout this paper are introduced next,
where we implicitly use some kind of efficiently computable pairing function without further
mention.

Let Y denote the class of dyadic numbers, i.e.

Y := {m · 2n | n,m ∈ Z}.
We could use rational numbers as well but having implementations in mind, we stick to the
efficiently implementable dyadic numbers. Identifying complex numbers z = x + ι · y and
pairs (x, y), where we denote the imaginary unit by ι, we can represent elements of the set
Y[ι] of complex dyadics simply by pairs of dyadic numbers. In this way, it should be clear
that there are efficient algorithms to approximate operations like ·, /,+,− on the complex
dyadics, in the sense that, given complex dyadics z, z′ 6= 0 and some n ∈ N, we can easily
compute a dyadic number y such that |y − z/z′| < 2−n etc. To simplify notation, we say
that we can compute a value z up to precision 2−n if we can, on input n and z, compute a
(complex) dyadic y such that |y − z| < 2−n. If we can compute z up to precision 2−n for
all n, then we say that we can compute z up to any precision.

Let furthermore I denote the class of intervals [c, c′]× [d, d′] where c, c′, d, d′ are dyadics.
We consider these intervals as sets of complex numbers. Let Π be a finite alphabet. Then
Π∗ denotes the set of finite sequences (words) over Π, ε the empty sequence, and Π∞ the
set of infinite sequences over Π. As usually, we think of Π∞ as a topological space where
{wΠ∞ | w ∈ Π∗} is a basis of the topology. It is well known that Π∞ with the above
topology is a compact space.

In our algorithm we need to approximate holomorphic functions in a certain function
space. We will do this by representing this function class by Π∞ for Π = {1, 2, 3, 4}. To
simplify things we will first define, for given interval I ∈ I, the representation Ψ∞I of the
complex numbers in I. To this end, let for a given interval I = [c, c′]× [d, d′], the intervals

[c, c′′]× [d, d′′], [c′′, c′]× [d, d′′], [c′′, c′]× [d′′, d′], [c, c′′]× [d′′, d′],

where c′′ = (c + c′)/2 and d′′ = (d + d′)/2, be denoted by I1, I2, I3 and I4, respectively.
With these preliminaries, we use sequences α0, α1, . . . of numbers in Π := {1, 2, 3, 4} to
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represent complex numbers where we define ΨI : Π∗ → I by

ΨI(ε) = I,
ΨI(wα) = (ΨI(w))α

for all I ∈ I, w ∈ Π∗ and α ∈ Π, and finally

Ψ∞I (α0α1 . . .) =
⋂
i

ΨI(α0α1 . . . αi),

i.e. we define complex numbers by suitable nested intervals.
Let now m1,m2, . . . denote a sequence of positive dyadics such that

∑
i≥1mi · εi con-

verges for all ε ∈ [0, 1). Then the set of sequences a1, a2, . . . of complex numbers where
the absolute values of the real and imaginary parts of ai are bounded by mi for all i ≥ 1
defines a class Fm1,m2,... of holomorphic functions on D by identifying a sequence a1, a2, . . .
with the power series 1 +

∑
i≥1 ai · zi. We are interested only in power series where the first

coefficient is 1 because this class represents exactly the derivatives of normalized holomor-
phic functions. We use Ψ to define a representation of these holomorphic functions: Let
t1, t2, . . . be a sequence of natural numbers such that any natural number is encountered
infinitely often, e.g. 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, . . .. Then for a given sequence α1, α2, . . .
with αi ∈ Π and any n ∈ N the sequence t1, t2, . . . defines the subsequence αn1 , αn2 , . . . of
all those elements αnj such that tnj = n. In this way we can define a mapping

Ψ∞m1,m2,... : Π∞ → Fm1,m2,...

by

Ψ∞m1,m2,...(α1α2 . . .) = 1 +
∑
n≥1

Ψ∞[−mn,mn]×[−mn,mn](αn1αn2 . . .) · zn.

To simplify notations we denote, for given holomorphic function f : D → C, the anti-
derivative of f , which maps 0 to 0, by

∫
f , i.e.

∫
f : D → C, (

∫
f)(0) = 0 and (

∫
f)′ = f .

Notice that
∫

Ψ∞m1,m2,...(α1α2 . . .) ∈ N (D) with the above settings. A proof of the following
theorem can for example be found in [Mueller 1987] or [Rettinger 2008b].

Theorem 2. Let α1, α2, . . ., m1, m2, . . . and t1, t2, . . . be as above. Furthermore let b1,
b2, . . . be a sequence of positive dyadic numbers such that with

f = Ψ∞m1,m2,...(α1α2 . . .),

for all n ≥ 1 we have
∀z ∈ D1−2−n .|f(z)| < bn.

Then, on input r ∈ Y ∩ (0, 1), z ∈ Y[ι] and

α1, α2, . . . , m1,m2, . . . , t1, t2, . . . , b1, b2, . . . and n ∈ N,
we can compute

∫
f(z), f(z) and f (n)(z) on D up to any precision.
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3. λ-bounding Functions

Similar to the β-bounding functions in [Rettinger 2008] we define here a class Fλ of holomor-
phic functions which determines λ in the sense that λ = inff∈Fλ λf . Unlike [Rettinger 2008]
we use different bounds on the coefficients of the corresponding power series and, further-
more, use the compactness of Π∞ together with the mapping Ψ∞ rather than compactness
of the class Fλ itself.

To start with we will prove suitable upper bounds on (the derivative of) functions f
whose λ-values approximate λ:

Lemma 1. Let c > 1 be given. Then for any f ∈ N (D) and w ∈ D with |f ′(w)| ≥
c/(1− |w|2) we have

λf ≥ c · λ.

Proof. Let w ∈ D and f ∈ N (D) with |f ′(w)| ≥ c/(1 − |w|2) be given. Let g : D → D be
the automorphism

z 7→ (z + w)/(1 + wz).

Then f ◦ g(0) = f(w), (f ◦ g)′(0) = f ′(w) · (1− |w|2), and

h :=
1

f ′(w) · (1− |w|2)
f ◦ g

is a normalised function. Therefore
1

c
· λf◦g ≥

1

|f ′(w)| · (1− |w|2)
· λf◦g ≥ λh ≥ λ.

As f(D) = f ◦ g(D) the statement of the lemma follows.

To simplify things we fix some value c > 1, say c = 1 + 2−100 for the time being. To
find λ it suffices to consider all λf of all normalised functions f with |f ′(z)| ≤ c/(1− |z|2)
for all z ∈ D. This immediately gives us a bound on the coefficients of the corresponding
power series:

Lemma 2. Let f be a normalised function such that |f ′(z)| ≤ c/(1 − |z|2) for all z ∈ D.
Then f ′(z) =

∑
n an · zn with

(a) a0 = 1 and
(b) |an| ≤ c · e · (n+ 2)/2 for all n ≥ 1.

(Here e denotes the Euler constant.)

Proof. Item (a) is obvious because f is assumed to be normalised.
By the Cauchy inequality we have for given n and r ∈ (0; 1)

|an| ≤
1

rn
sup
|z|=r
|f ′(z)| ≤ 1

rn
· c

1− r2
.

Choosing r :=
√
n/(n+ 2) we get

|an| ≤
1

rn
· c

1− r2
≤ c ·

(
1 +

2

n

)n
2

· n+ 2

2
≤ c · e · n+ 2

2
.

Let, for n ≥ 1, mn be some dyadic approximation such that

c · e · (n+ 2)/2 ≤ mn ≤ c · e · (n+ 2)/2 + 2−n.
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Then we have for given ε ∈ (0; 1)

1 +
∑

n≥1mn · εn ≤ c·e
2 · (

∑
n ε

n +
∑

n(n+ 1) · εn) +
∑

n 2−n − c · e

≤ c·e
2 ·
(

1
1−ε + 1

(1−ε)2

)
+ (2− c · e).

A similar bound does also hold for the corresponding derivatives:∑
n≥1

n ·mn · εn−1 ≤ c · e
(1− ε)3

+
c · e

2 · (1− ε)2
+ 2.

Thus we can easily compute a sequence b1, b2, . . . of bounds such that Theorem 2 can be
applied. To simplify notations let

Ψ∞ := Ψ∞m1,m2,....

In the definition of Ψ∞ above the coefficients of the corresponding power series in Ψ∞(Π∞)
can get larger than we considered so far because, to simplify things, we bound the real and
imaginary parts of the n-th coefficient by mn, not the absolute value of the coefficient itself.
Thus an additional factor

√
2 is sufficient in the following corollary. Due to the structure

of our algorithm, however, we can get rid of this additional factor in implementations by
restricting Π∞ to a proper subclass by a simple test for the absolute value of the coefficients.

We can summarize the essence of this section by the following corollary:

Corollary 1. Let c > 1 and let, for n ≥ 1, mn be some dyadic number such that

c · e · n+ 2

2
≤ mn ≤ c · e ·

n+ 2

2
+ 2−n.

Then

(a) λ = inf{λ∫ f | f ∈ Ψ∞(Π∞)},
(b) we can compute on given dyadic complex number z ∈ D, α ∈ Π∞, n ∈ N and r ∈

Y ∩ (0; 1)

(i) f (n)(z) and
(ii) upper bounds

µ′r :=
√

2 ·
(
c · e

2
·
(

1

1− r
+

1

(1− r)2

)
+ (2− c · e)

)
and

µ′′r :=
√

2 ·
(

c · e
(1− r)3

+
c · e

2 · (1− r)2
+ 2

)
of sup{|f ′(z)| | z ∈ Dr} and sup{|f ′′(z)| | z ∈ Dr}, respectively,

up to any precision, where f :=
∫

Ψ∞(α).

4. The λ-value of a single Function

In this section we will show how λf can be approximated. More precisely, we will give
lower bounds on λf which are at the same time approximately upper bounds for λ. This
will be enough to compute λ up to any precision in the end. To this end, let α1α2 . . . be a
fixed sequence in Π∞ which will be fed to all algorithms considered in this section as input.
Furthermore, we will denote the corresponding functions Ψ∞(α1 . . .) and

∫
Ψ∞(α1 . . .) by

f ′ and f , respectively.
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As in the case of Bloch’s constant, it suffices to search large discs in the image of a
proper sub-domain of the unit disc to approximate λf . One advantage of this is that we have
to search only on a bounded image for such discs. The following lemma can be proven by a
simple transformation of holomorphic functions f(z) 7→ 1

rf(r · z) (see e.g. [Conway 1978]).

Lemma 3. Let r with 0 < r < 1 and a domain D with Dr ⊆ D ⊆ D be given. Then

rλ ≤ λf (D) ≤ λf .

Now, approximating the image f(Dr) can be done straightforwardly. Furthermore, with
quite basic methods, the largest disc inside such an approximation could be found easily.
We are doing exactly this by the ε-covering grids which we introduce next. However, an
approximation will not necessarily mean that we have an approximation of λf : there indeed
exist examples, where small changes of f can lead to a large change in λf . That means that
the homotopic methods used in [Rettinger 2008] cannot be used here. Instead, we will show
that the approximations we get by ε-covering grids for small ε are still suitable to bound λ
from above.

Definition 1. Let ε > 0 and a bounded subset A ⊆ C be given. Then an ε-covering grid
of A is a tuple (ε, δ,G) where 0 < δ ≤ ε/4 is some dyadic number and G is a non-empty,
finite subset of δZ× δZ such that

(a) A ∩ (δZ× δZ) ⊆ G and
(b) ∀z ∈ G.∃a ∈ A.|z − a| ≤ ε/4.

Notice, that for any ε > ε′ > 0 and any ε′-covering grid (ε′, δ, G) of a set A, the tuple
(ε, δ,G) is an ε-covering grid of A. In this sense any ε′-covering grid of a set A is also an
ε-covering grid.

Following the notation of Section 2, l(A) denotes the radius of the largest disc inside a
domain A ⊆ C. Furthermore let

l(ε, δ,G) := δ + max
z∈G

min
y∈(δZ×δZ)\G

|z − y|

for an ε-covering grid (ε, δ,G). Then the easy to compute value l(ε, δ,G) gives us an
approximation of the largest disc inside the ”covered set”

D(ε, δ,G) :=
⋃
z∈G

D 3
4
ε(z).

More precisely we get the following result:

Lemma 4. Let (ε, δ,G) be an ε-covering grid of A ⊆ C. Then

l(A) ≤ l(ε, δ,G) ≤ l (D(ε, δ,G)) .

Proof. We start by proving the left inequality: Let Dr(z) be some disc with Dr(z) ⊆ A. We
can assume that r > δ because otherwise we have r ≤ δ ≤ l(ε, δ,G) anyway. There exists
some y ∈ G such that |y − z| ≤ δ. Let furthermore x ∈ δZ× δZ be some point with x 6∈ G.
Then we have D|x−y|(y) 6⊆ A and thus D|x−y|+δ(z) 6⊆ A. Therefore |x− y|+ δ ≥ r and the
statement follows.

The right inequality follows immediately from the following claim:

Claim 1. Let x ∈ G be given and r := δ+minz∈(δZ×δZ)\G |x−z|. Then Dr(x) ⊆ D(ε, δ,G).
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Let us assume that there exist y 6∈ D(ε, δ,G) =
⋃
z∈GD 3

4
ε(z) such that |x − y| < r.

Then there also exists some point z′ ∈ δZ × δZ such that |x − z′| < r and |z′ − y| <
√

2δ.
As
√

2δ < 3/4 · ε, z′ cannot belong to G because otherwise y would belong to
⋃
z∈GD 3

4
ε(z).

Furthermore, as z′ 6= x and x, z′ ∈ δZ × δZ there exists some z ∈ δZ × δZ such that

y

z’

z

x

r

Figure 1: Proof of Claim 1

|z − z′| ≤
√

2 · δ and |z − x| ≤ |z′ − x| − δ < r − δ, which means z ∈ G by the definition of
r and furthermore

|z − y| ≤ 2 ·
√

2 · δ ≤ 2 ·
√

2

4
· ε < 3

4
· ε

in contradiction to y 6∈
⋃
z∈GD 3

4
ε(z).

Besides, an ε-covering grid of f(Dr) can be easily computed:

Lemma 5. For given dyadic numbers ε > 0 and 0 < r < 1 as input, we can compute an
ε-covering grid of f(Dr).
Proof. Following the notation of Theorem 2 we can compute a dyadic upper bound µ′r on
the maximum of the values |f ′(z)| with z ∈ Dr. Furthermore let δD > 0 be a dyadic lower
bound on ε/(16 · µ′r) and

GD := Dr ∩ (δDZ× δDZ).

Notice that 0 ∈ GD and thus GD 6= ∅. Furthermore we can compute for every z ∈ GD some
approximation dz with |dz − f(z)| ≤ ε/16.

Then (ε, ε/4, G) is an ε-covering grid of f(Dr), where

G =
⋃
z∈GD

{y ∈ ε

4
Z× ε

4
Z | |dz − y| ≤

3

2
· ε

8
}.

To see item (a) of Definition 1 let y ∈ f(Dr) ∩
(
ε
4Z×

ε
4Z
)

be given. Furthermore let

x ∈ Dr such that f(x) = y. Then there exists some z ∈ GD with |z − x| <
√

2 · δD and we
get

|y − dz| = |f(x)− dz|
≤ |f(x)− f(z)|+ |f(z)− dz|
≤ µ′r · |x− z|+ ε

16

≤
√

2 · ε16 + ε
16

≤ 3
2 ·

ε
8

To see item (b) of Definition 1 let now y ∈ G be given. Then there exist z ∈ GD such
that |dz − y| ≤ (3/2) · (ε/8) and we have

inf
a∈f(Dr)

|y − a| ≤ |y − f(z)| ≤ |dz − y|+ |f(z)− dz| ≤
3

2
· ε

8
+

ε

16
=
ε

4
.
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Up to this point we have followed the naive way of computing large discs in approxi-
mations of f(Dr). We have already argued that this will not necessarily give us appropriate
bounds on λf . The main step we will take next is to show that for suitable r̂ > r and suit-
ably small ε we get that for any ε-covering grid (ε, δ,G) of f(Dr) we have D(ε, δ,G) ⊆ f(Dr̂),
which in the end allows us to show that the bound given by l(ε, δ,G) is actually not too
bad.

Lemma 6. On given dyadic number 0 < r < 1 we can compute dyadic numbers ε > 0 and
r̂ with r < r̂ < 1 such that for any ε-covering grid (ε, δ,G) of f(Dr) we have⋃

z∈G
D 3

4
ε(z) ⊆ f(Dr̂).

Proof. As f is not constant, we can compute ρ > 0 and r̂ such that 0 < r < r̂ < 1 and
|f ′(z)| ≥ ρ for all z ∈ C with |z| = r̂. Furthermore, following the notation of Corollary 1,
we can compute a dyadic upper bound µ′′r̂ on the maximum of |f ′′(z)| for z ∈ Dr̂. Let ∆ be
a dyadic number with

0 < ∆ ≤ ρ/(4µ′′r̂) and 2 ·∆ < r̂ − r.
Then we have |f ′(z)| ≥ ρ/2 for all z ∈ Dr̂ \ Dr̂−2∆ and, with r := r̂ −∆ we have 0 < r <
r < r̂ < 1. By choice of ∆ we do have actually more: f is injective on D∆/2(z) for each
z ∈ C with

r −∆/2 ≤ |z| ≤ r + ∆/2.

Thus we can apply Koebe’s 1/4-Lemma to get the following claim:

Claim 2. For each z ∈ C with r−∆/2 ≤ |z| ≤ r+∆/2 and each y with |f(z)−y| < ρ ·∆/16
we have y ∈ f(Dr̂).

Assume now, that there exists some z0 with |z0| < r − ∆/2 and some y0 with |y0 −
f(z0)| < ρ·∆/16 and y0 /∈ f(Dr). Then for the holomorphic function h : D→ C, determined
by h(z) := y0−f(z) for all z ∈ D, we have h(z) 6= 0 for all z ∈ Dr, i.e. |h| takes its minimum
on the boundary ∂Dr = {z | |z| = r}. Therefore there exists some z with |z| = r and

|h(z)| ≤ |y0 − f(z0)| < ρ · ∆

16
.

Thus by Claim 2 we have y0 ∈ f(Dr̂), i.e. we can extend Claim 2 as follows:

Claim 3. For each z ∈ C with |z| ≤ r+ ∆/2 and each y with |f(z)− y| < ρ ·∆/16 we have
y ∈ f(Dr̂).

Let now ε := ρ ·∆/16, (ε, δ,G) be some ε-covering grid of f(Dr) and x ∈
⋃
z∈GD 3

4
ε(z).

Then there exists some z ∈ G with |z − x| < (3/4) · ε and, by condition (b) in Definition 1,
there exist y ∈ f(Dr) such that |z−y| ≤ (1/4)·ε. Thus we have |x−y| < (1/4)·ε+(3/4)·ε =
ρ ·∆/16 and, by Claim 3 we have x ∈ f(Dr̂) which proves the lemma.

Finally, we can combine the results of this section as follows:

Corollary 2. Given α1α2 . . . in Π∞ and n ∈ N, we can compute a dyadic number l such
that (1− 2−n)λ ≤ l ≤ λf , where f =

∫
Ψ∞(α1α2 . . .).

Proof. Given some n ∈ N we can compute by Lemma 6 first some ε > 0 and r̂ < 1 with r̂ >
1− 2−n such that for any ε-covering grid (ε, δ,G) of f(D1−2−n) we have D(ε, δ,G) ⊆ f(Dr̂).
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Then, by Lemma 5 we can compute an ε-covering grid (ε, δ,G) of f(D1−2−n) and compute
l := l(ε, δ,G). Finally, by Lemma 4 and Lemma 3 we get

(1− 2−n) · λ ≤ λf (D1−2−n) ≤ l ≤ l(D(ε, δ,G)) ≤ λf (Dr̂) ≤ λf .

5. The Main Theorem

The proof of our main theorem can now be simply done by covering the space of λ-bounding
functions by neighbourhoods given by the algorithm of the previous section.

Theorem 3. We can compute approximations to the Landau constant up to any precision.

Proof. Let n ∈ N be given. We proceed in steps t = 0, 1, . . . as follows. For each t we
consider the set

Wt := {w1∞ | w ∈ Πt},
i.e. the set of infinite words starting with an arbitrary (finite) word followed by infinitely
many 1. Now we apply the algorithm given in Corollary 2 to each word ω in Wt and receive
an value l(ω) such that

(1− 2−n)λ ≤ l(ω) ≤ λ∫ Ψ∞(ω).

If for any ω ∈ Wt information on any symbol outside the leading t symbols of ω are asked
by the algorithm, then we go to the next step t + 1. Otherwise l := infω∈Wt l(ω) is an
appropriate approximation of λ, i.e. (1− 2−n)λ ≤ l ≤ λ.

The latter is obvious, because, as none of the algorithms asks any information outside
the leading words w ∈ Πt, the results on w1∞ equals the results on wν for all ν ∈ Π∞.
Thus l is indeed the infimum over all approximations to λ∫ f of all f ∈ Ψ∞(Π∞).

It remains, therefore, to prove that for each n there does indeed exist some t such
that our algorithm stops after this step. This can be seen as follows: As the algorithm of
Corollary 2 stops on all α ∈ Π∞, there exist for each α some n(α) such that no information
is asked by the algorithm on any symbol beside the leading n(α) symbols of α. Thus the
computation of the algorithm is identical for all words which coincides with α on the first
n(α) symbols. This means that for each α there exists an open neighbourhood of α in
Π∞ such that the algorithm is identical on any word in this neighbourhood. As Π∞ is
compact, there is a finite sub-covering of Π∞ by such neighbourhoods. Let α1,...,αm be the
corresponding words. Then the algorithm will stop in step

t := max{n(αi) | 1 ≤ i ≤ m}
or before.

The most interesting open problem is whether the conjectures on the Landau and Bloch
constant hold. If so, the constant can clearly be computed in polynomial time. To this end,
our algorithm and the algorithm given in [Rettinger 2008] can present holomorphic functions
which are very near the optimum for β- and λ-values, thus giving possibly new insights on
the kind of functions involved.

Concerning our algorithm the main intriguing problem is to improve the complexity
bound, which is roughly double exponential, to an acceptable running time. The problem
on reducing the time complexity of our algorithm is that the functions we have to consider
can explode when reaching the boundary ∂D, where evaluation can be quite expensive.



ON COMPUTABLE APPROXIMATIONS OF LANDAU’S CONSTANT 11

References

[Ahlfors 1966] Ahlfors, L., Complex analysis, McGraw-Hill, New York, 1966.
[Conway 1978] Conway, J.B., Functions in One Complex Variable, Graduate Texts in Mathematics 11,

Springer Verlag, Berlin/Heidelberg, 1978.
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