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Abstract. Let Γ be a structure with a finite relational signature and a first-order def-
inition in (R; ∗,+) with parameters from R, that is, a relational structure over the real
numbers where all relations are semi-algebraic sets. In this article, we study the compu-
tational complexity of constraint satisfaction problem (CSP) for Γ: the problem to decide
whether a given primitive positive sentence is true in Γ. We focus on those structures Γ
that contain the relations ≤, {(x, y, z) | x+y = z} and {1}. Hence, all CSPs studied in this
article are at least as expressive as the feasibility problem for linear programs. The central
concept in our investigation is essential convexity: a relation S is essentially convex if for
all a, b ∈ S, there are only finitely many points on the line segment between a and b that
are not in S. If Γ contains a relation S that is not essentially convex and this is witnessed
by rational points a, b, then we show that the CSP for Γ is NP-hard. Furthermore, we
characterize essentially convex relations in logical terms. This different view may open up
new ways for identifying tractable classes of semi-algebraic CSPs. For instance, we show
that if Γ is a first-order expansion of (R; +, 1,≤), then the CSP for Γ can be solved in
polynomial time if and only if all relations in Γ are essentially convex (unless P=NP).
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1. Introduction

Linear Programming is a computational problem of outstanding theoretical and practical
importance. It is known to be computationally equivalent to the problem to decide whether
a given set of linear (non-strict) inequalities is feasible, i.e., defines a non-empty set:

Linear Program Feasibility
INPUT: A finite set of variables V ; a finite set of linear inequalities of the form a1x1 + · · ·+
akxk ≤ a0 where x1, . . . , xk ∈ V and a0, . . . , ak are rational numbers where the numerators
and denominators are represented in binary.
QUESTION: Does there exist an x ∈ R|V | that satisfies all inequalities?

This problem can be viewed as a constraint satisfaction problem, where the allowed
constraints are linear inequalities with rational coefficients, and the question is whether
there is an assignment of real values to the variables such that all the constraints are
satisfied. For formal definitions of concepts related to constraint satisfaction, we refer the
reader to Section 2.1. It is obvious that this problem cannot be formulated with a finite
constraint language; however, we will later on (Proposition 2.12) see that the feasbility
problem for linear programs is polynomial-time equivalent to the constraint satisfaction
problem for the structure

Γlin :=
(
R; {(x, y, z) | x+ y = z},≤, {1}

)
.

It is well-known that linear programming can be solved in polynomial time; moreover,
several algorithms are known that are efficient also in practice. In this article, we study
how far Γlin can be expanded such that the corresponding constraint satisfaction problem
remains polynomial-time solvable. An important class of relations that generalizes the class
of relations defined by linear inequalities is the class of all semi-algebraic relations, i.e.,
relations that have a first-order definition over (R; ∗,+) using parameters from R. By the
fundamental theorem of Tarski and Seidenberg, it is known that a relation S ⊆ Rn is semi-
algebraic if and only if it has a quantifier-free first-order definition in (R; ∗,+,≤) using
parameters from R. Geometrically, we can view semi-algebraic sets as finite unions of finite
intersections of the solution sets of strict and non-strict polynomial inequalities.

We propose a framework for systematically studying the computational complexity of
expansions of Γlin by semi-algebraic relations. In this framework, a constraint satisfaction
problem is given by a (fixed and finite) constraint language Γ. All the constraints in
the input of such a feasibility problem must be chosen from this constraint language Γ
(a formal definition can be found in Section 2.1). This way of parameterizing constraint
satisfaction problems by their constraint language has proved to be very fruitful for finite
domain constraint satisfaction problems [1,7–9,14]. Since the constraint language is finite,
the computational complexity of such a problem does not depend on how the constraints
are represented in the input. We believe that the very same approach is very promising for
studying the complexity of problems in real algebraic geometry. In Section 6 we will discuss
a connection between some of the CSPs with semi-algebraic constraint languages and open
problems in convex geometry and semidefinite programming.

One of the key reasons why linear program feasibility can be decided in polynomial time
is that the feasible regions of linear inequalities are convex. Convexity is not a necessary
condition for tractability of semi-algebraic constraint satisfaction problems, though. It is,
for instance, well-known that linear program feasibility can also be decided in polynomial
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time when some of the input constraints are disequalities, i.e., constraints of the form
a1x1 + · · · + akxk 6= a0 for rational values a0, . . . , ak. However, we show that if Γlin ⊆ Γ
and Γ contains a relation S with rational a, b ∈ S such that on the line segment L between
a and b there are infinitely many points that are not in S, then the CSP(Γ) is NP-hard.
This motivates the notion of essential convexity : a set S ⊆ Rk is essentially convex if for all
p, q ∈ S there are only finitely many points on the line between p and q that are not in S.
One of our central results is a logical characterization of essentially convex semi-algebraic
relations in Section 4. This characterization can be used to show several results that are
briefly described next.

A relation is called semi-linear if it has a first-order definition with rational parameters1

in the structure (R; +,≤). From the perspective of constraint satisfaction, the set of semi-
linear relations is a rich set. For example, every relation S ⊆ Qk with finitely many elements
is semi-linear; thus, every finitary relation on a finite set can be viewed as a semi-linear
relation. In Section 5.1, we show that when we add a finite number of semi-linear relations
to Γlin, then the resulting language either has a polynomial-time or an NP-hard constraint
satisfaction problem. This result is useful for studying optimization problems: note that
linear programming can be viewed as optimizing a linear function over the feasible points
of a set of linear inequalities. This view suggests an immediate generalization: optimize a
linear function over the feasible points of an instance of a constraint satisfaction problem
for semi-linear constraint languages. We completely classify the complexity of this problem
in Section 5.2.

Another application concerns temporal reasoning. A temporal constraint language Γ
is a structure (R;R1, . . . , Rl) with a first-order definition in (R;<). Many computational
problems in artificial intelligence and scheduling can be modeled as constraint satisfaction
problems for temporal constraint languages. The complexity of the CSP for temporal con-
straint languages Γ has been completely classified recently [6]; there are 9 tractable classes
of temporal constraint satisfaction problems. Often, temporal languages are extended with
some mechanism for expressing metric time, i.e., the ability to assign numerical values to
variables and performing some kind of arithmetic calculations [11]. It has been observed
that many metric languages Γ are semi-linear and satisfy Γlin ⊆ Γ, and if such a language
is polynomial-time solvable, then it is a subclass of the so-called Horn-DLR class [21]. Our
result shows that this is not a coincidence: whenever Γ is not a subclass of Horn-DLR, then
the CSP(Γ) is NP-hard.

2. Preliminaries

2.1. Constraint Satisfaction Problems. A first-order formula2 is called primitive posi-
tive (pp) if it is of the form

∃x1, . . . , xn.(ψ1 ∧ · · · ∧ ψm)

1We deviate from model-theoretic terminology as it is used e.g. in [24] in that we only allow rational
and not arbitrary real parameters in first-order definitions. Our definition conincides with the definition of
semi-linear sets given in e.g. [12, 13].

2Our terminology is standard; all notions that are not explicitly introduced can be found in standard
textbooks, e.g., in [19].
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where ψi are atomic formulas, i.e., formulas of the form x = y or S(xi1 , . . . , xik) where S is
the relation symbol for a k-ary relation in Γ. We call such a formula a pp-formula, and as
usual a pp-formula without free variables is called a pp-sentence.

Let Γ = (D;S1, . . . , Sl) be a structure with domain D and a finite relational signature.
The constraint satisfaction problem for Γ (CSP(Γ) in short) is the computational problem
to decide whether a given primitive positive sentence Φ involving relation symbols for the
relations in Γ is true in Γ. The conjuncts in a pp-sentence Φ are also called the constraints of
Φ, and to emphasize the connection between the structure Γ and the constraint satisfaction
problem, we typically refer to Γ as a constraint language. By choosing an appropriate con-
straint language Γ, many computational problems that have been studied in the literature
can be formulated as CSP(Γ) (see e.g. [5, 9]).

When studying the complexity of different CSPs, it is often useful to be able to derive
new relations from old. If Γ = (D;S1, . . . , Sl) is a relational structure and S ⊆ Dk is
a relation, then (Γ, S) denotes the expansion (D;S, S1, . . . , Sl) of the structure Γ by the
relation S. We say that an n-ary relation S is pp-definable in Γ if there exists a pp-formula
φ with free variables x1, . . . , xn such that (x1, . . . , xn) ∈ S iff φ(x1, . . . , xn) holds in Γ.
The following simple but important result explains the importance of pp-definability for
constraint satisfaction problems.

Lemma 2.1 (Jeavons et al. [20]). Let Γ be a relational structure, and let S be pp-definable
over Γ. Then CSP((Γ, S)) is polynomial-time equivalent to CSP(Γ).

2.2. Semi-algebraic and semi-linear relations. We say that a relation S ⊆ Dn is first-
order definable in a structure Γ with domain D if there exists a formula φ(x1, . . . , xn) using
universal and existential quantification, disjunction, conjunction, negation, and atomic for-
mulas over Γ (where x1, . . . , xn denote the free variables in φ) such that φ(a1, . . . , an) is
true over Γ if and only if (a1, . . . , an) ∈ S. We always admit equality when building atomic
formulas, i.e., we have atomic formulas of the form t1 = t2 for terms t1, t2 formed from
function symbols for Γ and variables. We say that S is first-order definable in Γ with pa-
rameters from A, for A ⊆ D, if additionally we can use constant symbols for the elements
of A in the first-order definition of S.

A set S ⊆ Rn is called semi-algebraic if it has a first-order definition in (R; ∗,+) using
parameters from R. Note that the order ≤ of the real numbers is first-order definable in
(R; ∗,+), since

a ≤ b ⇔ ∃c. b = a+ c ∗ c .
We need some basic algebraic and topological concepts and facts.

Definition 2.2 (Section 3.1 in [2]). A set S ⊆ Rn is open if it is the union of open balls,
i.e., if every point of S is contained in an open ball contained in S. A set S ⊆ Rn is closed
if its complement is open. The closure of a set S, denoted S̄, is the intersection of all closed
sets containing S. Equivalently, S̄ = {x ∈ Rn | ∀r > 0 ∃y ∈ S. (y − x)2 < r2}. A point p in
S is a boundary point if for every ε > 0, the n-dimensional open ball with radius ε around
p contains at least one point in S and one point not in S. The set of boundary points is
denoted ∂S. The interior of S, denoted by S◦, is S \ ∂S.

Note that the interior of S consists of all p ∈ S such that there exists an ε > 0 with the
following property: the n-dimensional open ball with radius ε around p is contained in S.
Also note that a finite union of closed sets is closed.
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Proposition 2.3 (Proposition 2.2.2. in [4]). The closure of a semi-algebraic relation is
semi-algebraic.

We use the notion of dimension dim(S) ∈ N of a semi-algebraic set S as defined in [4].

Definition 2.4 (Section 2.8 in [4]). Let S ⊆ Rk be a semi-algebraic set, and let P(S)
be the ring of polynomial functions on S, i.e., the ring of functions S → R which are the
restriction of a polynomial. Then the dimension of S, denoted by dim(S), is the maximal
length of chains of prime ideals of P(S), i.e., the maximal d such that there exist distinct
prime ideals I0, I1, . . . , Id of P(S) with I0 ⊂ I2 ⊂ · · · ⊂ Id.

To work with this definition of dimension, we need some more concepts.

Definition 2.5 (see [4]). Let S ⊆ Rk and T ⊆ Rl be semi-algebraic sets. A function
f : S → T is semi-algebraic if the set {(x1, . . . , xk, y1, . . . , yl) | f(x1, . . . , xk) = (y1, . . . , yl)}
is a semi-algebraic subset of Rk+l.

As usual, bijective functions f : S → T such that S′ ⊆ S is open if and only if f(S′) ⊆ T
is open are called homeomorphisms.

Lemma 2.6 (Propositions 2.8.5, 2.8.9, and 2.8.13 in [4]). Let S ⊆ Rn be semi-algebraic.

• If S = S1 ∪ S2 then dim(S) = max(dim(S1),dim(S2)).
• If there is a semi-algebraic homeomorphism from S to (0, 1)d, then dim(S) = d.
• dim(S̄ \ S) < dim(S).

In particular, if S ⊆ T , then dim(S) ≤ dim(T ).
A set V ⊆ Rn is called an (algebraic) variety if it can be defined as a conjunction of

the form p1 = 0∧ · · · ∧ pm = 0 where p1, . . . , pm are polynomials in the variables x1, . . . , xn
with coefficients from R. We allow terms in polynomials to have degree zero.

Lemma 2.7. Let V ⊆ Rn be a variety and let L ⊆ Rn be a line. If infinitely many points
of L are in V , then L ⊆ V .

Proof. Let V be defined by p1(x1, . . . , xn) = 0 ∧ · · · ∧ pm(x1, . . . , xn) = 0, and let l1, . . . , ln
be univariate linear polynomials such that L = {(l1(x), . . . , ln(x)) | x ∈ R}. For each pi, the
univariate polynomial pi(l1(x), . . . , ln(x)) equals 0 infinitely often. So it is always 0, and it
follows that every point on L satisfies p1 = 0 ∧ · · · ∧ pm = 0.

Theorem 2.8 (Tarski and Seidenberg; Proposition 5.2.2 in [4]). Every first-order formula
over (R; ∗,+,≤) with parameters from R is equivalent to a quantifier-free formula with
parameters from R.

By an interval we mean either an open, half-open, or closed interval with more than
one element. An ordered structure (D;≤, . . .) is o-minimal (see [23], Definition 3.1.18)
if for any first-order definable S ⊆ D with parameters from D there are finitely many
intervals I1, . . . , Im with endpoints in D ∪ {±∞} and a finite set D0 ⊆ D such that S =
D0 ∪ I1 ∪ · · · ∪ Im. The following is an easy and well-known consequence of Theorem 2.8.

Theorem 2.9 (see e.g. [23]). Let R1, . . . , Rn be semi-algebraic relations. Then (R;≤
, R1, . . . , Rn) is o-minimal.

A set S ⊆ Rn is called semi-linear if it has a first-order definition in (R; +,≤) with
parameters from Q; we also call first-order formulas over (R; +,≤) with parameters from



6 M .BODIRSKY, P. JONSSON, AND T. V. OERTZEN

Q semi-linear. It has been shown in [12, 13] that it is decidable whether a given first-
order formula over (R; ∗,+,≤) with parameters from Q defines a semi-linear relation or
not. A set V ⊆ Rn is called a linear set if it can be defined as a conjunction of the form
p1 ≥ 0∧· · ·∧pm ≥ 0 where p1, . . . , pm are linear polynomials in the variables x1, . . . , xn with
coefficients from Q. It is not hard to see that every semi-linear relation S can be viewed as
a finite union of linear sets. We also have quantifier elimination for semi-linear relations.

Theorem 2.10 (Ferrante and Rackoff [15]). Every semi-linear relation has a quantifier-free
definition over (R; +,−,≤) with parameters from Q.

2.3. Definability of Rational Expressions. The following elementary lemma will be
needed for the observation that the feasibility problem for linear programs is polynomial-
time equivalent to CSP(Γlin); it is also essential for the hardness proofs in Section 3 and for
proving the dichotomy result for metric temporal constraint reasoning.

Lemma 2.11. Let n0, n1, . . . , nl ∈ Q be rational numbers. Then the relation {(x1, . . . , xl) |
n1x1 + · · ·+ nlxl = n0} is pp-definable in (R; {(x, y, z) | x+ y = z}, {1}). Furthermore, the
pp-formula that defines the relation can be computed in polynomial time.

Proof. We first note that we can assume that n0, n1, . . . , nl are integers. To see this, suppose
that the rational coefficients n0, . . . , nl are represented as pairs of integers (a0, b0), . . . , (al, bl)

where ai denotes the nominator and bi the denominator. Let c =
∏l
i=0 bi and create a new

sequence of coefficients n′0, . . . , n
′
l = (a0 · c/b0, 1), . . . , (al · c/bl, 1). The resulting equation

is obviously equivalent. It is also clear that it only takes polynomial time to compute such
coefficients.

Before the actual proof, we note that x = 0 is pp-definable by x + x = x, and we
therefore freely use the terms 0 and 1 in pp-definitions. Similarly, x = −1 is pp-definable
by x+ 1 = 0. The proof is by induction on l. We first show how to express equations of the
form n1x1 + n2x2 = x3. By setting x2 to −1 and x3 to 0, this will solve the case l = 1. For
positive n1, n2, the formula n1x1 + n2x2 = x3 is equivalent to

∃u1, . . . , un1 , v1, . . . , vn2 . u1 = x1 ∧
n1−1∧
i=1

x1 + ui = ui+1

∧ v1 = x2 ∧
n2−1∧
i=1

x2 + vi = vi+1

∧ un1 + vn2 = x3 .

However, this formula is exponential in the representation size of n1 and n2, and cannot be
used in polynomial-time reductions.

Let bit(n, i) denote the i-th lowest bit in the binary representation of an integer n and
1 ≤ i ≤ blog nc+ 1. The following formula is equivalent to the previous one (we are still in
the case that both n1 and n2 are positive) and has polynomial length in the representation
size of n1 and n2. Write m1 for blog n1c+ 1 and m2 for blog n2c+ 1.



ESSENTIAL CONVEXITY AND COMPLEXITY OF SEMI-ALGEBRAIC CONSTRAINTS 7

∃a1, ..., am1 , b1, ..., bm2 , c1, ..., cm1 , d1, ..., dm2 . a1 = x1 ∧
m1∧
i=2

ai−1 + ai−1 = ai

∧ b1 = x2 ∧
m2∧
i=2

bi−1 + bi−1 = bi

∧ c1 = bit(n1, 1)a1 ∧
m1∧
i=2

bit(n1, i)ai + ci−1 = ci

∧ d1 = bit(n2, 1)b1 ∧
m2∧
i=2

bit(n2, i)bi + di−1 = di

∧ cm1 + dm2 = x3

If l = 2, and n1 = 0 or n2 = 0, then the proof is similar. If n1 and n2 have different
signs, we replace the conjunct cm1 + dm2 = x3 in the formula above appropriately by
cm1 + x3 = dm2 or dm2 + x3 = cm1 . If both n1 and n2 are negative, then we use the
pp-definition ∃x′3.(−n1x1 − n2x2 = x′3 ∧ x′3 + x3 = 0).

Equalities of the form n1x1+n2x2 = n0 can be defined by ∃x3.(n1x1+n2x2 = x3∧x3 =
n0). Now suppose that l > 2. By the inductive assumption, there is a pp-definition
φ1(x1, x2, u) for n1x1 + n2x2 + u = n0 and a pp-definition φ2(x3, . . . , xl, u) for n3x3 + · · ·+
nlxl = u. Then ∃u.(φ1 ∧ φ2) is a pp-definition for n1x1 + · · · + nlxl = n0. It is clear that
the pp-definition given above can be computed in time which is polynomial in the number
of bits needed to represent the input.

By extending the previous result to inequalities, we prove that CSP(Γlin) and linear
program feasibility are polynomial-time equivalent problems. The dichotomy for metric
temporal reasoning follows immediately by combining this result and Theorem 5.2.

Proposition 2.12. The linear program feasibility problem is polynomial-time equivalent to
CSP(Γlin).

Proof. It is clear that an instance of CSP(Γlin) can be seen as a linear program feasibility
problem, since the three different relations in the constraint language, x + y = z, x = 1,
x ≤ y, are linear.

For the opposite direction, let Φ be an arbitrary instance of the linear program feasibility
problem. Given a linear equality L(x1, . . . , xk) ≡ c1x1+· · ·+ckxk = c0, let φL(x1,...,xk) denote
the pp-definition of L(x1, . . . , xk) in (R; {(x, y, z) | x+y = z}, {1}) obtained in Lemma 2.11.
Construct an instance Ψ of CSP(Γlin) by replacing each occurrence of a linear inequality
constraint c1x1 + · · · clxl ≤ c0 in Φ by a φc1x1+···+clxl−y=0 ∧ y ≤ c0; use fresh variables for
y and for the existentially quantified variables introduced by φL. The resulting formula Ψ
can be rewritten as a primitive positive sentence over Γ without increasing its length and,
by Lemma 2.11, the length of Ψ is polynomial in the length of Φ. Since Φ is satisfiable if
and only if Ψ is satisfiable, this shows that the problems are polynomial-time equivalent.
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3. Hardness

We consider relations that give rise to NP-hard CSPs in this section. We first need some
definitions: a relation S ⊆ Rk is convex if for all p, q ∈ S, S contains all points on the line
segment between p and q. We say that a relation S ⊆ Rk excludes an interval if there are
p, q ∈ S and real numbers 0 < δ1 < δ2 < 1 such that p+ (q− p)y 6∈ S whenever δ1 ≤ y ≤ δ2.
Note that we can assume that δ1, δ2 are rational numbers, since we can choose any two
distinct rational numbers γ1 < γ2 between δ1 and δ2 instead of δ1 and δ2.

Definition 3.1. We say that S ⊆ Rn is essentially convex if for all p, q ∈ S there are only
finitely many points on the line segment between p and q that are not in S.

If S is not essentially convex, and if p and q are such that there are infinitely many
points on the line segment between p and q that are not in S, then p and q witness that S
is not essentially convex. The following is a direct consequence of Theorem 2.9, and we will
use it in the following without further reference.

Corollary 3.2. If S is a semi-algebraic relation that is not essentially convex, then S
excludes an interval. If S is an essentially convex semi-algebraic relation, and a, b are two
distinct points from S, then the line segment between a and b contains an interval I with
I ⊆ S.

The next proposition will be used several times in the sequel; it clarifies the relation
between finite unions of varieties and essentially convex relations.

Proposition 3.3. Let W be a finite union of varieties V1, . . . , Vk ⊆ Rn, and let C ⊆W be
essentially convex. Then, there is an i ≤ k such that C ⊆ Vi.
Proof. Let J ⊆ {1, . . . , k} be minimal such that C ⊆

⋃
i∈J Vi. If |J | = 1, then there is

nothing to show. So suppose for contradiction that there are distinct i, j ∈ J . Then there
must be points a, b ∈ C such that a ∈ Vi and a /∈ Vl for all l ∈ J \ {i}, and b ∈ Vj and
b /∈ Vl for all l ∈ J \ {j}. By essential convexity of C and Corollary 3.2, the line segment L
between a and b must contain an interval I that lies in C. Since J is finite, there must be
l ∈ J such that infinitely many points on I are from Vl. By Lemma 2.7, all points on the
line through a and b are from Vl; this contradicts the choice of a and b.

The rest of the section is divided into two parts. We first prove that if S ⊆ Rk is a
semi-algebraic relation that is not essentially convex and this is witnessed by two rational
points p and q, then CSP((Γlin, S)) is NP-hard. In the second part, we prove that if S ⊆ Rk
is a semi-linear relation that is not essentially convex, then this is witnessed by rational
points and, consequently, CSP((Γlin, S)) is NP-hard.

3.1. Semialgebraic relations and rational witnesses. We begin with the special case
when S is a unary relation. The hardness proof is by a reduction from CSP(({0, 1};R1/3))
where

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} .
This NP-complete problem is also called Positive One-In-Three 3Sat [16, LO4], which
is the variant of One-In-Three 3Sat where we have the extra requirement that in all
input instances of the problem, no clause contains a negated literal.

Lemma 3.4. Let S ⊆ R be a unary relation. If S excludes an interval and this is witnessed
by rational points p and q, then CSP((Γlin, S)) is NP-hard.
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Proof. We know that there are rational numbers 0 < δ1 < δ2 < 1 such that p+ (q− p)y 6∈ S
whenever δ1 ≤ y ≤ δ2. Let

a = sup{δ2 − δ1 | 0 < δ1 < δ2 < 1 and [p+ (q − p)δ1, p+ (q − p)δ2] ∩ S = ∅},
i.e., the least upper bound on the length (scaled to the interval [0,1]) of excluded intervals
between p and q. Choose rational numbers δ1, δ2 such that

• there exists y ∈ [δ1 − d, δ1] such that p+ (q − p)y ∈ S; and
• there exists y ∈ [δ2, δ2 + d] such that p+ (q − p)y ∈ S.
• S ∩ [p+ (q − p)δ1, p+ (q − p)δ2] = ∅.
where d = (δ2 − δ1)/5. It is easy to see that such δ1, δ2 exist; we simply need to find δ1, δ2
such that S ∩ [p+ (q− p)δ1, p+ (q− p)δ2] = ∅ and δ2 − δ1 is sufficiently close to a. Clearly,
for any ε > 0, there exist suitable δ1, δ2 such that a− (δ2 − δ1) < ε.

Now, define p′ = p+ (q − p)(δ1 − d), q′ = p+ (q − p)(δ2 + d), and

U(y) ≡ ∃z.(z = p′ + (q′ − p′)y ∧ S(z) ∧ 0 ≤ y ≤ 1).

Observe that U is pp-definable in Γlin∪{S} by Lemma 2.11 combined by the fact that p′ and
q′ are rational numbers. We claim that U contains at least one point in the interval [0, d′],
at least one point in the interval [1 − d′, 1], and no points in the interval [d′, 1 − d′] where
d′ = 1/7. Let us consider the interval [0, d′]. The point (expressed in p and q) corresponding
to y = 0 is p′ (which equals p+ (q− p)(δ1− d)) while the point corresponding to y = 1/7 is

p′ +
(q′ − p′)

7
= p+ (q − p)(δ1 − d) +

p+ (q − p)(δ2 + d)− p− (q − p)(δ1 − d)

7

= p+ (q − p)(δ1 − d) +
(q − p)((δ2 + d)− (δ1 − d))

7

= p+ (q − p)(δ1 − d) +
(q − p)(δ2 − δ1 + 2d)

7

= p+ (q − p)(δ1 − d) +
(q − p)(5d+ 2d)

7
= p+ (q − p)(δ1 − d) + (q − p)d
= p+ (q − p)δ1

We know that the choice of δ1 and δ2 implies that there is at least one point in S on
the line segment between p+ (q − p)(δ1 − d) and p+ (q − p)δ1. The other two cases can be
proved similarly.

We show NP-hardness by a polynomial-time reduction from CSP(({0, 1};R1/3)). Let φ
be an arbitrary instance of this problem and let V denote the set of variables appearing in
φ. Construct a formula

ψ ≡
∧
v∈V

U(v) ∧
∧

R1/3(vi,vj ,vk)∈φ

vi + vj + vk ≥
6

7
∧

∧
R1/3(vi,vj ,vk)∈φ

vi + vj + vk ≤
11

7
.

Lemma 2.11 implies that ψ is pp-definable in (R; {(x, y, z) | x + y = z}, {1},≤, U) (and,
consequently, pp-definable in (R; {(x, y, z) | x+ y = z}, {1},≤, S)) and the formula can be
constructed in polynomial time. We now verify that the formula ψ has a solution if and
only if φ has a solution.
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Assume that there exists a satisfying truth assignment f : V → {0, 1} to the formula
φ. We construct a solution g for ψ as follows: arbitrarily choose a point t0 ∈ [0, d′] such
that t0 ∈ U and a point t1 ∈ [1 − d′, 1] such that t1 ∈ U . Let g(v) = t0 if f(v) = 0
and g(v) = t1, otherwise. Clearly, this assignment satisfies every literal of the type U(v).
Each literal vi + vj + vk ≥ 6/7 is satisfied, too, since g(vi) + g(vj) + g(vk) = 2 · t0 + t1 ≥
2 · 0 + (1 − d′) = 1 − d′ = 6/7. Similarly, each literal vi + vj + vk ≤ 11/7 is also satisfied:
g(vi) + g(vj) + g(vk) = 2 · t0 + t1 ≤ 2 · d′ + 1 = 9/7.

Assume now instead that there exists a satisfying assignment g : V → R for the formula
ψ. Each variable obtains a value that is in either the interval [0, d′] or in the interval [1−d′, 1].
If a variable is assigned a value in [0, d′], then we consider this variable ‘false’, i.e., having
the truth value 0; analogously, variables assigned values in [1− d′, 1] are considered ‘true’.

We continue by looking at an arbitrary literal R1/3(vi, vj , vk) in φ and its corresponding
inequalities (1) vi+vj+vk ≥ 6/7 and (2) vi+vj+vk ≤ 11/7. If all three variables are assigned
values within [0, d′], then their sum is at most 3d′ = 3/7 which violates inequality (1). If two
of the variables appear within [1−d′, 1], then their sum is a least 0+2(1−d′) = 12/7 which
violates inequality (2); naturally, this inequality is violated if all three variables appear
within [1− d′, 1], too. If exactly one variable appears within [1− d′, 1], then the sum of the
variables is at least 1 − d′ = 6/7 and at most 1 + 2d′ = 9/7. We see that both inequality
(1) and (2) are satisfied. Hence, we can define a satisfying assignment f : V → {0, 1} for φ:

f(v) =

{
0 if 0 ≤ g(v) ≤ d′
1 otherwise

This concludes the proof.

It is now straightforward to lift Lemma 3.4 to relations with arbitrary arities.

Lemma 3.5. Let S ⊆ Rk be a semi-algebraic relation that is not essentially convex, and
this is witnessed by two rational points p = (p1, . . . , pk) and q = (q1, . . . , qk). Let Γ be the
structure (Γlin, S). Then, CSP(Γ) is NP-hard.

Proof. Define

U(y) ≡ ∃z̄.
k∧
i=1

zi = pi + (qi − pi)y ∧ S(z̄) ∧ 0 ≤ y ≤ 1

where z̄ = (z1, . . . , zk). By Corollary 3.2, U excludes an interval and CSP(Γ) is NP-hard
by Lemma 3.4 since U is pp-definable in Γ.

Remark 3.6. If S is not essentially convex and this is witnessed by non-rational points
only, then the problem CSP(Γ) for Γ = (R; {(x, y, z) | x + y = z}, {1},≤, S) might still be
solvable in polynomial time. Consider for instance the binary relation

S = {(x, y)
∣∣ (|x+ y| ≤ 1) ∧ (y =

√
2x→ |x+ y| = 1)} .

Clearly, S is not essentially convex; however, the only witnesses are (
√

2 − 1, 2 −
√

2) and
(−
√

2 + 1,−2 +
√

2) (see Figure 1).
We show that CSP(Γ) can be solved in polynomial time. To see this, define

S′ = {(x, y) | (|x+ y| ≤ 1) ∧ (x 6= 0 ∨ y 6= 0)}
and ∆ = (R; {(x, y, z) | x + y = z}, {1},≤, S′}. We first prove that a primitive positive
sentence is true in Γ if and only if it is true in ∆. Clearly, if a primitive positive sentence is
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y=x√2

Figure 1: Illustration of relation S

true in Γ, then it is also true in ∆, since the relations in ∆ are supersets of the corresponding
relations in Γ. Conversely, suppose that Φ is primitive positive and true in ∆. Let α be
an assignment of the variables of Φ that satisfies all conjuncts in Φ. Since ∆ is semi-linear,
we can assume that α is rational (see Lemma 3.7). The only relations that are different
in Γ and in ∆ are the relations S and S′. Since S′ \ S contains irrational points only, the
assignment α shows that Φ is also true in ∆. Finally, CSP(∆) can be solved in polynomial
time by the results in Section 5.1 (note that the constraint |x + y| ≤ 1 is equivalent to a
conjunction of four linear inequalities).

3.2. Semilinear relations. In the previous section, we showed that there exists a semi-
algebraic relation S that is not essentially convex, but CSP((R; {(x, y, z) | x+y = z}, {1},≤
, S)) is polynomial-time solvable. If we restrict ourselves to semi-linear relations S, then this
phenomenon cannot occur: indeed, in this section we prove that if a semi-linear relation
S is not essentially convex, then this is witnessed by rational points (Lemma 3.9), and
CSP((R; {(x, y, z) | x+ y = z}, {1},≤, S)) is NP-hard.

Lemma 3.7. Every non-empty semi-linear relation S contains at least one rational point.

Proof. Assume first that S is a non-empty unary relation such that S ∩ Q = ∅. If S
contains infinitely many points, then it also contains an interval due to o-minimality of S;
this contradicts that S ∩ Q = ∅. So we assume that S contains a finite number of points.
Consider the unary relation S′ = {min(S)} and note that it can be pp-defined in (Γlin, S) by
S′(x) ≡ S(x)∧x ≤ p where p denotes a suitably chosen rational number. By Theorem 2.10,
S′ has a quantifier-free definition φ over (R; +,−,≤) with parameters from Q, and we can
without loss of generality assume that φ is in disjunctive normal form, and contains a
single disjunct since |S′| = 1. Assume without loss of generality that every conjunct of this
disjunct of φ is of one of the following forms: x ≥ c, x ≤ c, or x 6= c (where c denotes some
rational number). Let a = max{c | (x ≥ c) ∈ φ} and b = min{c | (x ≤ c) ∈ φ}. If a = b
then S′ = {a} and we have a contradiction since a is a rational number. If a < b, then S′

contains an infinite number of points (regardless of the number of disequality constraints
in φ) and we have a contradiction once again.

Assume now that ar(S) = d > 1. Arbitrarily choose a point s = (s1, . . . , sd) ∈ S
with a maximum number of rational components. Assume without loss of generality that
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s1, . . . , sk′ , k
′ < k are rational points and consider the unary relation

U(xk) ≡ ∃x1, . . . , xk−1.(S(x1, . . . , xk) ∧ x1 = s1 ∧ · · · ∧ xk′ = sk′).

We get a contradiction since U ∩Q = ∅, U is non-empty, and U is semi-linear.

Corollary 3.8. Let S ⊆ Rk be a semi-linear relation and let s ∈ S be arbitrary. Then,
every open k-dimensional ball B around s of radius ε > 0 contains a rational point in S.

Proof. If there is an ε such that B does not contain any rational point in S, then there is
a linear set P within B such that S ∩ P only contains irrational points. This contradicts
Lemma 3.7.

A hyperplane is a set V = {x ∈ Rk | p(x) = 0} where p is a linear term such that
∅ ⊂ V ⊂ Rk (this makes sure that the degree of p is one). We do not require that the
coefficients in p are rational; it is important to note that this differs from the definition of
a linear set. If all coefficients appearing in p are rational, then we say that the hyperplane
is rational.

Lemma 3.9. If T is a semi-linear relation that is not essentially convex, then this is
witnessed by rational points, and CSP((Γlin, T )) is NP-hard.

Proof. If there are rational witnesses of the fact that T is not essentially convex, then
NP-hardness follows from Lemma 3.5 and we are done.

Assume now that there exists a relation T that is not essentially convex but T lacks
rational witnesses. Arbitrarily choose such a T with minimal arity k. We first consider the
case when k = 1. Arbitrarily choose witnesses p, q ∈ T . By o-minimality, there are finitely
many intervals I1, . . . , Im with endpoints in R ∪ {±∞} and a finite set D0 ⊆ R such that
T = D0 ∪

⋃m
i=1 Ii. Now, apply the following process to D0 and I1, . . . , Im.

• if there is a point d ∈ D0 and an interval Ij , 1 ≤ j ≤ m, such that d is in Ij , then remove
d from D0 and replace Ij with Ij ∪ {d};
• repeat until D0 is not changed.

After these modifications, the sets I1, . . . , Im are still (open, half-open, or closed) inter-
vals, and for every point d ∈ D0, there exists an εd > 0 such that [d− εd, d+ εd]∩ T = {d}.

Assume without loss of generality that p 6∈ Q. If p ∈ D0, then choose rational numbers
p−, p+ such that p− εp < p− < p < p+ < p+ εp; this is always possible since the rationals
are a dense subset of the reals. Consider the semi-linear relation

T ′(x) ≡ T (x) ∧ p− ≤ x ≤ p+

and note T ′ = {p}. However, p is not a rational number which contradicts Lemma 3.7.
We may thus assume that p 6∈ D0 and that p is a member of an interval I ∈ {I1, . . . , Im}.
Arbitrarily choose one rational point p′ ∈ I; once again, this is possible since the rationals
are a dense subset of the reals. Note that p′, q witness that T is not essentially convex. If
q ∈ Q, then we are done so we assume that q 6∈ Q. We see that q 6∈ D0 by reasoning as
above. Consequently, q is a member of an interval J ∈ {I1, . . . , Im} and I 6= J . Finally
choose a rational point q′ ∈ J and note that p′, q′ are rational points witnessing that T is
not essentially convex.

Assume instead that k > 1. Let Sk denote the set of relations S that satisfy 1, 2, and
3:

(1) S is a semi-linear relation of arity k,
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(2) S is not essentially convex, and
(3) for every pair of witnesses that S is not essentially convex, at least one is irrational.

We now conclude the proof by considering two different cases.

Case 1: There exists an S ∈ Sk and a finite set of rational hyperplanes H1, . . . ,Hh such

that S ⊆
⋃h
j=1Hj . Choose the hyperplanes such that h is minimal. Let v, w ∈ S be

arbitrarily chosen witnesses for the fact that S excludes an interval, and let I denote this
interval.

Suppose first that h = 1, i.e., that there is a single hyperplane H such that S ⊆ H.
Obviously, x = (x1, . . . , xk) ∈ H ⇔ c1x1 + · · · + ckxk = c0 for some rational constants
c0, . . . , ck. We assume without loss of generality that at least one ci, say ck, is non-zero.
Define the relation S′ by

S′(x1, . . . , xk−1) ≡ ∃y.(S(x1, . . . , xk−1, y) ∧ y =
c0 − c1x1 − . . .− ck−1xk−1

ck
) .

Let v′ = (v1, . . . , vk−1) and w′ = (w1, . . . , wk−1), and note that v′, w′ are witnesses of an
excluded interval in S′. If S′ lacks rational witnesses of essential non-convexity, then the
fact that S′ has arity k−1 contradicts the choice of T . Hence, S′ has two rational witnesses
t = (t1, . . . , tk−1) and u = (u1, . . . , uk−1). This implies that

t′ =

(
t1, . . . , tk−1,

c0 − c1t1 − . . .− ck−1tk−1
ck

)
and

u′ =

(
u1, . . . , uk−1,

c0 − c1u1 − . . .− ck−1uk−1
ck

)
are rational witnesses for S, which leads to a contradiction.

Next, suppose that h ≥ 2. Let H ′1 = S ∩ (H1 \
⋃h
j=2Hj) and H ′2 = S ∩ (H2 \⋃

j∈{1,3,...,h}Hj). By the minimal choice of h, H ′1 and H ′2 are non-empty. Furthermore,

they are semi-linear so we can choose rational points pi ∈ H ′i, 1 ≤ i ≤ 2, by Lemma 3.7.
We now claim that at most a finite number of points on the line segment between p1 and
p2 lie in S. Suppose to the contrary that infinitely many points lie on the line segment.
Then, there must be one Hi, i ≥ 1, such that infinitely many points from Hi lie on the line
segment. Hence, Hi (since it is a variety) must contain the entire line by Lemma 2.7. This
leads to a contradiction since p1 and p2 are chosen so that |{p1, p2} ∩Hj | ≤ 1, 1 ≤ j ≤ h.
Thus, we have found rational witnesses for essential non-convexity of S and obtained a
contradiction since S ∈ Sk.
Case 2: There is no S ∈ Sk such that there exists a finite set of rational hyperplanes

H1, . . . ,Hh and S ⊆
⋃h
j=1Hj . Arbitrarily choose S ∈ Sk, let v, w ∈ S be arbitrarily chosen

witnesses for the fact that S excludes an interval, and let I denote such an interval.
If there exists a rational hyperplane H such that {v, w} ⊆ S ∩H, then the semi-linear

relation
S′(x1, . . . , xk) ≡ S(x1, . . . , xk) ∧H(x1, . . . , xk)

excludes an interval and this is witnessed by v and w. Obviously, S′ ∈ Sk and S′ ⊆ H.
This contradicts the assumptions for this case so we assume that {v, w} (and consequently
I) do not lie on any rational hyperplane.

Next, we prove a couple of facts.
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Fact 1: I ⊆ S̄ \ S. We show that there is no point e ∈ I and an ε > 0 such that the open
k-dimensional ball B around e with radius ε satisfies B ∩ S = ∅. Assume to the contrary
that there is a point e ∈ I satisfying this condition. By Corollary 3.8, there exist rational
points in S arbitrary close to v and w. Thus, one can find rational points v′, w′ ∈ S such
that the line segment L between v′ and w′ passes through B and L′ = L ∩B has non-zero
length. In other words, v′ and w′ are rational witnesses of an excluded interval and we have
obtained a contradiction.

Fact 2: There exists a finite set {H1, . . . ,Hh} of rational hyperplanes such that S̄ \ S ⊆⋃h
i=1Hi. Let φ be a first-order definition of S and let ψ = D1∨ · · · ∨Dn be a quantifier-free

definition of S in disjunctive normal form; such a ψ exists due to Theorem 2.10. Note
that every parameter appearing in ψ is rational: initially, every parameter in φ is rational,
the quantifier elimination does not add any irrational parameters, and the conversion to
disjunctive normal form does not introduce any new parameters. Let l1, . . . , lm denote the
literals appearing in φ. For each li ≡ p(x1, . . . , xk)r 0 (where r ∈ {≤, <,=, 6=, >,≥}), create
a hyperplane Hi = {(x1, . . . , xk) ⊆ Rk | p(x1, . . . , xk) = 0}. In other words, we let the
boundary of the subspace defined by li define a hyperplane Hi. It is now easy to see that
S̄ \ S ⊆ ∂S ⊆

⋃m
i=1Hi. Furthermore, every hyperplane H1, . . . ,Hm is rational.

We are now ready to prove the second case of the proof. By Fact 1, I ⊆ S̄ \ S. The set

S̄ \ S is a subset of
⋃h
i=1Hi where H1, . . . ,Hh are rational hyperplanes by Fact 2. Hence,

I is a subset of some Hi by Proposition 3.3, a contradiction.

4. Essentially Convex Relations

Before we present a logical characterization of essentially convex semi-algebraic relations,
we give examples that show that two more naive syntactic restrictions of first-order formulas
are not powerful enough for defining all essentially convex semi-algebraic relations. Both
of those restrictions are motivated by classes of essential convex semi-linear relations that
have appeared in the literature, cf. [21]. When S is a subset of Rn, we write ¬S for the
complement of S, i.e., for Rn \ S.

We start with an example that shows that not every essentially convex semi-algebraic
relation can be defined by conjunctions of first-order formulas of the form

p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ
where p1, . . . , pk are polynomials with coefficients from R, and where φ defines a convex set.
It is easy to see that every relation that can be defined by such a conjunction is essentially
convex.

See Figure 2, left side. The figure shows a 1-dimensional variety C ⊆ R2, given as
{(p(t), q(t)) | t ∈ R} for polynomials p and q. The figure also shows two marked segments
S1, S2 on the curve C. The marked segments are chosen such that one end point is contained
in interior of the convex hull of the other three end points of the segments.

Let S be the set ¬C ∪ S1 ∪ S2. Clearly, S is essentially convex. Now, suppose for
contradiction that S has a definition ψ as described above. Let H be the convex hull of
S1∪S2. The crucial observation is that the set G := (H ∩C)\ (S1∪S2) is infinite. Since no
point from G is in S, there must be a conjunct p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ in ψ that excludes
infinitely many points from G. In particular, the variety V defined by p1 = · · · = pk = 0
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contains infinitely many points from C. As in the proof of Lemma 2.7, one can see that V
must contain C. Hence, all points in S1 ∪ S2 must satisfy φ; but in this case, all points in
G satisfy p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ, a contradiction.

S1

S2

C

B

L

C

o

Figure 2: Examples of essentially convex relations.

Our first example might motivate the following notion of definability: we consider
conjunctions of formulas of the form p1 6= 0∨· · ·∨pk 6= 0∨φ such that for every conjunction
of linear equalities ψ that implies pi = 0 for all i ≤ k, the set defined by φ ∧ ψ is convex.
The set described above can indeed be defined by such a formula. Similarly as before, it is
also easy to see that all relations that can be defined in such a way are essentially convex.
However, we again have an example of a semi-algebraic essentially convex relation that
cannot be defined by such a conjunction.

See Figure 2, right side. The figure shows the boundary B of a doubly infinite cone
with apex o. On the boundary, there is a straight line segment L through o, and a circle C
that cuts L. Let S be the set ¬B ∪ C ∪ (L \ {o}). It can be verified that S is essentially
convex. However, we claim that there is no conjunction as described above that defines
S. The reason is that when p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ is such that p1 = 0 ∧ · · · ∧ pk = 0
describes B, and if φ contains C ∪ (L \ {o}), then it must also contain o in order that
p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ meets the required condition. However, the set ¬B ∪C ∪ L is not
essentially convex since o and points from the cycle exclude an interval.

The correct definition of formulas that correspond to essentially convex sets has to take
these examples into account. We call these formulas convex Horn formulas. Basically, a
convex Horn formula is a conjunction of implications p1 = · · · = pk = 0→ φ such that the
premise defines a variety V , and the formula φ is again convex Horn when restricted to any
convex subset of V . Formally, we have the following definition.

Definition 4.1. The set of convex Horn formulas is the smallest set of first-order formulas
such that

• all formulas defining convex closed semi-algebraic relations over (R; +, ∗,≤) with param-
eters from R are convex Horn;
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• Suppose that p1, . . . , pk are polynomials, φ is a first-order formula that defines a set
U ⊆ Rn, and for every semi-algebraic convex set C contained in the set defined by
p1 = · · · = pk = 0, the set C ∩ U can be defined by a convex Horn formula, and has
strictly smaller dimension than the set defined by ψ ≡ (p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ). Then
ψ is also convex Horn.
• Finite conjunctions of convex Horn formulas are convex Horn.

For example, the formula (x2 − y 6= 0) ∧ (y ≥ 1), describing the half-plane above y = 1
with exception of the standard parabola, is convex Horn. Every convex set C contained in
the set defined by x2− y = 0 consists of at most one point, and hence is 0-dimensional and
can be defined by a convex Horn formula.

We can prove properties about the set of all convex Horn formulas by induction over
the level of a convex Horn formula, which is defined as follows. The level of a formula that
defines a convex closed semi-algebraic relation is 0. Now, suppose we have already defined
convex Horn formulas of level smaller than i, and let ψ be a convex Horn formula that does
not have level smaller than i. Then ψ has level i if it is the finite conjunction of formulas
ψ′ ≡ (p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ) such that for every semi-algebraic convex set C contained
in the set defined by p1 = · · · = pk = 0, the intersection of C with the set defined by φ is
convex Horn, has level at most i− 1, and strictly smaller dimension than the set defined by
ψ′. Since the intersection of sets of dimension n has at most dimension n, it follows directly
from the definition of convex Horn formulas that the level of a convex Horn formula φ is
bounded by the dimension of the set defined by φ.

Looking back at the formula (x2 − y 6= 0) ∨ (y ≥ 1), we claim that it is convex Horn of
level one: every convex set contained in the parabola consists of at most one point, and can
hence be described by a convex Horn formula of level zero. For another example, consider
(x2 − y 6= 0) ∨ (z ≥ 0), i.e., the same parabola in three dimensions on one side side of the
x-y-plane. Each convex subset of x2 − y = 0 is a point, a straight line, or a line segment in
the z direction and can again be described by a level zero convex Horn formula.

We are now ready to logically define essentially convex semi-algebraic sets via convex
Horn formulas. This is done in two steps; we first prove (in Proposition 4.2) that every set
defined by a semi-algebraic convex Horn formula is essentially convex. The rest of the section
is devoted to proving the other direction—the final result can be found in Theorem 4.6.

Proposition 4.2. Any set S defined by a convex Horn formula ψ over (R; ∗,+,≤) is
essentially convex.

Proof. Our proof is by induction over the level of ψ. Let m denote the number of free
variables in ψ. If the level of ψ is 0, then S = {x ∈ Rm | ψ(x)} is a closed convex set and,
in particular, essentially convex.

Assume that all relations defined by convex Horn formulas of level < i are essentially
convex. Arbitrarily choose a convex Horn formula ψ ≡ p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φ with
level i. Define S = {x ∈ Rm | ψ(x)}, V = {x ∈ Rm | p1(x) = · · · = pk(x) = 0}, and
U = {x ∈ Rm | φ(x)}. Since ψ is level-i convex Horn, we know that for every semi-algebraic
convex set C such that C ⊆ V , the set C ∩ U can be defined by a convex Horn formula of
level smaller than i and dim(C ∩ U) < dim(S).

Suppose for contradiction that there are a, b ∈ S and an infinite set I of points on the
line segment L between a and b that is not contained in S. In particular, I ⊆ V since
S = ¬V ∪ U . By Lemma 2.7, all points on the line through a and b are in V . However, a
and b are in S and therefore in U so L∩U is not essentially convex. We now note that L is
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a semi-algebraic convex set that is a subset of V so L∩U can be defined by a convex Horn
formula of level smaller than i. Consequently, L ∩ U is essentially convex by the inductive
assumption which leads to a contradiction.

Finally, suppose that ψ is a finite conjunction of convex Horn formulas of level at most
i. Since the intersection of finitely many essentially convex relations is essentially convex,
we are done also in this case.

Next, we need some preparations for the proof of the converse implication (Theo-
rem 4.6): we show that semi-algebraic relations can be defined by a special type of for-
mula (Lemma 4.4), and that the closure S̄ of an essentially convex relation S is convex
(Lemma 4.5).

Definition 4.3. Let S be a semi-algebraic relation. We say that a first-order formula φ is
a standard defi of S if

• φ(x1, . . . , xk) defines S ⊆ Rk over (R; ∗,+,−,≤) with parameters from R;
• φ is in quantifier-free conjunctive normal form;
• if we remove any literal from φ, then the resulting formula is not equivalent to φ; and
• all literals are of the form t ≤ 0 or t 6= 0.

Lemma 4.4. Every semi-algebraic relation S has a standard definition. If S is even semi-
linear, then it has a standard definition φ that does not involve the function symbol for
multiplication and irrational parameters.

Proof. By Theorem 2.8, we know that S has a quantifier-free definition over (R; ∗,+,≤) with
parameters from R, and it is clear that such a definition can be rewritten in conjunctive
normal form φ. Replace a clause α in φ with a literal of the form a < b by two clauses α1

and α2 obtained from α by replacing a < b by a ≤ b and by a 6= b, respectively. In the
same way we can eliminate occurrences of a = b from φ using ≤. Literals of the form a ≤ b
(a 6= b) can then be replaced by a− b ≤ 0 (and a− b 6= 0, respectively). Finally, we remove
literals from φ as long as the resulting formula is equivalent to the original formula.

If S is semi-linear, then by Theorem 2.10 we know that S has a quantifier-free definition
over (R; +,−,≤) with parameters from Q, and it is then clear that the formula constructed
from φ as above will be a standard definition of S without the function symbol for multi-
plication and irrational parameters.

Lemma 4.5. The closure S̄ of an essentially convex relation S is convex.

Proof. Let a, b ∈ S̄. We will show that all points c on the line segment between a and b are
in S̄. We have to show that for every ε > 0 there is a point c′ in S such that the distance
between c and c′ is smaller than ε. Since a ∈ S̄ and b ∈ S̄, there are points a′ ∈ S and
b′ ∈ S that are closer than ε/2 to a and b, respectively. Let L be the line from a′ to b′. It
is clear that there are infinitely many points on L that are at distance less than ε from c.
Hence, since a′ and b′ are in S and S is essentially convex, there must be one such point in
S, and we are done.

Theorem 4.6. A semi-algebraic relation S ⊆ Rn is essentially convex if and only if it has
a convex Horn definition. Moreover, when S is even semi-linear then S has a semi-linear
convex Horn definition.

Proof. We have already seen in Proposition 4.2 that every relation defined by a convex Horn
formula is essentially convex. We now show the more difficult implication of the statement.
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Let φ be a standard definition of S. The proof is by induction on the dimension d of S. For
d = 0, the set S consists of at most one point, and the statement is trival. Otherwise, if
|S| ≥ 2, then by essential convexity, Corollary 3.2, and Lemma 2.6 we have that dim(S) ≥ 1.

For d > 0, we will construct two formulas φ1, φ2 such that φ is equivalent to φ1 ∧ φ2.
Thereafter, we will show that φ1 is equivalent to a conjunction of convex Horn formulas,
and that φ2 defines a closed convex relation (and consequently is convex Horn). Since finite
conjunctions of convex Horn formulas are also convex Horn, φ is then equivalent to a convex
Horn formula.

We begin by writing all clauses of φ as α→ β where α is either ‘true’ or a conjunction
of polynomial equalities and β is either ‘false’ or a disjunction of inequalities. This is always
possible since a clause

(p1 ≤ 0 ∨ · · · ∨ pk ≤ 0 ∨ q1 6= 0 ∨ · · · ∨ qm 6= 0)

is logically equivalent to

(q1 = 0 ∧ · · · ∧ qm = 0)→ (p1 ≤ 0 ∨ · · · ∨ pk ≤ 0).

Next, we rewrite all clauses α→ β where α is not equal to ‘true’, as (α→ (β ∧ φ)). Let φ1
be the conjunction of all the implications of the type (α→ (β ∧φ)) and φ2 the conjunction
of the remaining implications, i.e., those of the type (true → β). The formula φ1 ∧ φ2 is
clearly equivalent to the formula φ.

We begin by studying the formula φ1. Let α → (β ∧ φ) be a clause from φ1, let V be
the variety defined by α, and let U be the set defined by β ∧ φ. Observe that U ⊆ S. We
now show that the intersection of the set U with a semi-algebraic convex set C ⊆ V can be
defined by a convex Horn formula. We make two claims about the set U ∩ C:

Claim 1. U ∩ C is essentially convex. For arbitrary points a, b ∈ U ∩ C, let Lab denote the
line segment from a to b, and Xab = {x ∈ Lab | x 6∈ U ∩C}. Suppose for contradiction that
there exist a, b ∈ U ∩ C such that Xab is an infinite set. Since a, b ∈ C and C is convex,
Lab ⊆ C which implies that Xab = {x ∈ Lab | x 6∈ U}. Moreover, C ⊆ V so Xab ⊆ V . Now
recall that a, b ∈ S since U ∩C ⊆ U ⊆ S: thus, there are infinitely many points (those that
are in Xab) between a, b ∈ S that are in V but not in U . This shows that no point in Xab

satisfies α→ (β ∧ φ), and Xab ∩ S = ∅. This fact contradicts the essential convexity of S.

Claim 2. U ∩ C has smaller dimension than S. Let T be the set S \ (U ∩ C). It suffices
to show that U ∩ C is a subset of T̄ \ T , because Lemma 2.6 asserts that dim(T̄ \ T ) <
dim(T ) ≤ dim(S).

The set S must contain a point p that is not in V , because if S ⊆ V then we could
replace the clause of φ that was re-written to α→ (β ∧ φ) by β and obtain a formula that
is equivalent to φ; this contradicts the assumption that φ is a standard definition of S.

To show that (U ∩C) ⊆ T̄ \T , let x be an arbitrary point in U ∩C. Only finitely many
points on the line segment between p and x can be from (U ∩ C) ⊆ V , because otherwise
Proposition 3.3 implies that V must contain the entire line between x and p, including p,
a contradiction. Also the set S contains all but finitely many points on the line segment
between p and x: this is by essential convexity of S, since x ∈ U ∩ C ⊆ S and p ∈ S.
Hence, we can choose a sequence of points from T = S \ (U ∩ C) on this line segment that
approaches x, which shows that x ∈ T̄ .
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Since U ∩C is semi-algebraic, essentially convex, and has smaller dimension than S, it
follows by the inductive assumption that it can be defined by a convex Horn formula. Thus,
φ1 is equivalent to a finite conjunction of convex Horn formulas.

We claim that φ2 defines a closed convex set D. This follows from Lemma 4.5, since D
is in fact the closure of S. To see this, observe that D is clearly a closed set, D contains
S, and hence S̄ ⊆ D̄ = D. To prove that D ⊆ S̄, let y be from D \ S. Consider the
clauses α1 → (β1 ∧ φ), . . . , αl → (βl ∧ φ) of φ1, and let Vi, for 1 ≤ i ≤ l, be the variety
{x ∈ Rk | x satisfies αi}. There must be a point q in S that is not contained in the set
W =

⋃
i≤l Vi; otherwise, Proposition 3.3 implies that there exists an i ≤ l such that S ⊆ Vi.

In other words, all points in S satisfy αi. This is in contradiction to the assumption that φ is
a standard definition of S, since in this case the formula φ is equivalent to the formula where
the clause of φ that has been rewritten to αi → (βi∧φ) is replaced by βi. Only finitely many
points on the line segment L between q and y can be from W , because otherwise Lemma 2.7
implies that W contain the entire line between y and q, including q, a contradiction. Hence,
y ∈ S̄.

Finally, consider the case that S is semi-linear. By Lemma 4.4, we can choose φ to be
a standard definition which is semi-linear (and only uses parameters in Q). Then the proof
above leads to a semi-linear convex Horn definition of S.

5. Applications

5.1. Semi-linear constraint languages. We will now show that a finite semi-linear ex-
pansion Γ of Γlin has a polynomial-time tractable constraint satisfaction problem if and only
if all relations of Γ are essentially convex (unless P = NP). Recall that a relation is semi-
linear if it has a first-order definition in (R; +, 1,≤). A quantifier-free first-order formula
in CNF is called Horn-DLR [21] (where ‘DLR’ stands for disjunctive linear relations) if its
clauses are of the form

p1 6= 0 ∨ · · · ∨ pk 6= 0

or of the form
p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ p0 ≤ 0

where p0, p1, . . . , pk are linear terms with rational coefficients. A semi-linear relation is
called Horn-DLR if it can be defined by a Horn-DLR formula.

Theorem 5.1 (see [10, 21, 22]). Let Γ be a structure with domain R whose relations are
Horn-DLR. Then CSP(Γ) is in P.

In this section, we show the following.

Theorem 5.2. Let Γ = (Γlin, S1, . . . , Sl) be a constraint language such that S1, . . . , Sl are
semi-linear relations. Then, either each relation S1, . . . , Sl is Horn-DLR and CSP(Γ) is in
P, or CSP(Γ) is NP-complete.

In order to prove Theorem 5.2, we need to characterize convex and essentially convex
semi-linear relations. This is done in Lemma 5.3 and Theorem 5.4, respectively.

Let P1, . . . , Pn be (possibly unbounded) polyhedra defined such that Pi = {x ∈ Rk | Aix ≤
bi}. Bemporad et al. [3] define the envelope of P1, . . . , Pn (env(P1, . . . , Pn)) as the polyhe-
dron
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{x ∈ Rk | A′1x ≤ b′1, . . . , A′nx ≤ b′n}
where A′ix ≤ b′i is the subsystem of Aix ≤ bi obtained by removing all the inequalities not
valid for the other polyhedrons P1, . . . , Pi−1, Pi+1, Pn. We note that if P1, . . . , Pn are defined
with coefficients from Q, then env(P1, . . . , Pn) can be described by rational coefficients, too.
By combining Theorem 3 with Remark 1 in [3], it follows that

⋃n
i=1 Pi is convex if and only

if
⋃n
i=1 Pi = env(P1, . . . , Pn).

Lemma 5.3. A closed semi-linear relation S is convex if and only if it has a primitive
positive definition in (R; +, 1,≤).

Proof. It is straightforward to verify that relations with a primitive positive definition in
(R; +, 1,≤) are convex; each relation defines a convex set and the intersection of convex
sets is convex itself.

For the converse, let φ = ψ1 ∨ · · · ∨ ψm be a quantifier-free definition of S over the
structure (R; +,−,≤) with parameters from Q, written in disjunctive normal form. If there
is a disjunct ψi that contains a literal p 6= q, for linear terms p and q, then split the disjunct
into two; one containing p− q < 0 and one containing p− q > 0. By repeating this process,
every literal p 6= q can be removed. Similarly, every literal p = q can be replaced by
p− q ≤ 0 ∧ q− p ≤ 0. Thus, we may assume that every literal appearing in the ψi is of the
type p ≤ 0 or p < 0, for a linear term p. Let D1, . . . , Dm be the sets defined by ψ1, . . . , ψm,
respectively.

Now recall that the topological closure operator preserves finite unions, i.e., D̄1 ∪ · · · ∪
D̄m = D1 ∪ · · · ∪Dm. Hence,

S = D1 ∪ · · · ∪Dm ⊆ D̄1 ∪ · · · ∪ D̄m = D1 ∪ · · · ∪Dm = S̄ = S

and S = D̄1 ∪ · · · ∪ D̄m. We now note that if P = {x ∈ Rk | Ax ≤ b, Cx < d} and P 6= ∅,
then P̄ = {x ∈ Rk | Ax ≤ b, Cx ≤ d}, cf. Case (i) of Proposition 1.1 in [17]. Thus, each D̄i

equals {x ∈ Rk | Aix ≤ bi} for some rational Ai, bi. Furthermore, S =
⋃m
i=1 D̄i is convex

so S = env(D̄1, . . . , D̄m). This implies that S = {x ∈ Rk | C1x ≤ d1, . . . , Cmx ≤ dm}
for some rational matrices C1, . . . , Cm and rational vectors d1, . . . , dm. It is easy to see
that each Cix ≤ di is pp-definable in (R; +, 1,≤) by the same technique as in the proof of
Lemma 2.11, and this concludes the proof.

Theorem 5.4. A semi-linear relation S is essentially convex if and only if S is Horn-DLR.

Proof. We first prove that every Horn-DLR relation S is essentially convex. Let φ be a
Horn-DLR definition of S. Suppose for contradiction that there are a, b ∈ S and an infinite
set I of points on the line segment L between a and b is not contained in S. Since φ has
finitely many conjuncts, there is a conjunct ψ in φ that is false for an infinite subset I ′ of I.
If ψ is of the form p1 6= 0 ∨ · · · ∨ pk 6= 0, then all points in I ′ satisfy p1 = · · · = pk = 0. By
Lemma 2.7, the entire line L satisfies p1 = · · · = pk = 0. This contradicts the assumption
that a ∈ L and b ∈ L satisfy φ. If ψ is of the form p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ p0 ≤ 0, then all
points in I ′ satisfy p1 = · · · = pk = 0 and p0 > 0. Again by Lemma 2.7 we find that both
a and b must satisfy p1 = · · · = pk = 0. Since a, b also satisfy ψ, we conclude that both
points satisfy p0 ≤ 0. But then also all points in L must satisfy p0 ≤ 0, which contradicts
the fact that the points in I ′ satisfy p0 > 0.

The other direction of the statement can be derived from Theorem 4.6 as follows. Let
S be an essentially convex semi-linear relation. By Theorem 4.6, S has a semi-linear convex
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Horn definition ψ. We prove by induction on the level of ψ that ψ is Horn-DLR. If the level
is 0, then S is closed and convex and the claim follows from Lemma 5.3. Now suppose that
ψ has level i > 0 and is of the form p1 6= 0∨· · ·∨pk 6= 0∨ψ′, where p1 = · · · = pk = 0 defines
a set V , and ψ′ defines a set U such that for every semi-algebraic convex set C ⊆ V the set
C ∩ U has a convex Horn definition of level strictly smaller than i. Since ψ is semi-linear,
the terms p1, . . . , pk are linear. Hence, V is convex, and by taking C := V in the statement
above we see that V ∩ U has a convex Horn definition of level strictly smaller than i. By
the inductive assumption, V ∩ U has a definition by a Horn-DLR formula φ with clauses
φ1, . . . , φm. Then φ′ =

∧
1≤i≤m(p1 6= 0 ∨ · · · ∨ pk 6= 0 ∨ φi) is clearly Horn-DLR. We claim

that φ′ defines S. First suppose that a ∈ ¬V . In this case, a clearly satisfies φ′ and this is
justified by the fact ¬V ⊆ S. Suppose instead that a ∈ V . Then a satisfies φ′ if and only
if it satisfies φ, and since φ defines V ∩ U this is the case if and only if a satisfies ψ′.

Finally, the statement holds if ψ is the conjunction of finitely many convex Horn for-
mulas (which are Horn-DLR by inductive assumption).

Proof of Theorem 5.2. If all relations of Γ are Horn-DLR, then CSP(Γ) can be solved in
polynomial time (Theorem 5.1). Otherwise, if there is a relation S from Γ that is not Horn-
DLR, then Theorem 5.4 shows that S is not essentially convex, and NP-hardness of CSP(Γ)
follows by Lemma 3.9.

So we only have to show that CSP(Γ) is in NP. Let Φ be an arbitrary instance of
CSP(Γ). By Theorem 2.10 every relation of Γ has a quantifier-free definition in conjunctive
normal form over (R; +,−,≤) with rational parameters. One can now non-deterministically
guess one literal from each clause of in the defining formula for each constraint and verify
– in polynomial-time by Theorem 5.1 – that all the selected literals are simultaneously
satisfiable.

5.2. Generalized linear programming. In this section, we study generalizations of the
following problem.

Linear Programming (LP)

INPUT: A finite set of variables V , a vector c ∈ Q|V |, a number M ∈ Q, and a finite
set of linear inequalities of the form a1x1 + · · · + anxn ≤ a0 where x1, . . . , xn ∈ V and
a0, . . . , an ∈ Q. All rationals are given by numerators and denominators represented in
binary.
QUESTION: Is there a vector x ∈ R|V | that satisfies the inequalities and cTx ≥M?

We generalize LP as follows. Let Γ be a structure (Γlin, R1, . . . , Rm) such thatR1, . . . , Rm
are semi-linear relations.

Generalized Linear Programming for Γ (GLP(Γ))

INPUT: A finite set of variables V , a vector c ∈ Q|V |, a number M ∈ Q, and a finite set Φ
of expressions of the form R(x1, . . . , xk) where R is a relation from Γ and x1, . . . , xk ∈ V .

QUESTION: Is there a vector x ∈ R|V | that satisfies the constraints and cTx ≥M?

This can indeed be viewed as a generalization of LP because of Proposition 2.12: the
problem LP is polynomial-time equivalent to the problem GLP(Γlin).
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Theorem 5.5. Let Γ = (R; Γlin, R1, . . . , Rl) be a structure with semi-linear relations R1, . . . , Rl.
Then, either each Ri is Horn-DLR and GLP(Γ) is in P, or GLP(Γ) is NP-hard.

Proof. If there is an Ri that is not Horn-DLR, then the relation Ri is not essentially convex
by Theorem 5.4, and CSP((Γlin, Ri)) is NP-hard by Theorem 5.2. Clearly, GLP(Γ) is NP-
hard, too.

Assume instead that each Ri is Horn-DLR. We present an algorithm that actually solves
a more general problem that includes GLP(Γ). Let Φ be an arbitrary satisfiable Horn-DLR
formula3 over variable vector x̄ = (x1, . . . , xn) and let c be a rational n-vector.

We assume additionally that Φ∧D is satisfiable for every disequality literal (i.e., literal
p(x̄) 6= a) D appearing in Φ. If Φ ∧ D is not satisfiable, then every occurrence of D in Φ
can be removed without changing the set defined by the formula. Furthermore, this check
can be carried out in polynomial time by Theorem 5.1. Hence, we may assume that Φ
has this additional property (which we will refer to as (∗)) without loss of generality. Let
Φ = Φ′∧Φ′′ where Φ′ consists of the clauses not containing any disequality literal p(x̄) 6= a,
and Φ′′ consists of the remaining clauses.

Given Φ, our algorithm returns one of the following three answers:

• ‘unbounded’: for every K ∈ Q, there exists a solution y such that cT y ≥ K;
• ‘optimum: K’: there exists a K ∈ Q and a solution y such that cT y = K, but there is no

solution y′ such that cT y′ > K;
• ‘optimum is arbitrarily close to K’: there exists a K ∈ Q such that there is no solution
y satisfying cT y ≥ K, but for every ε > 0 there is a solution y′ with cT y′ ≥ K − ε.

We claim that the following algorithm solves the task described above in polynomial time.

Step 1. Maximize cT x̄ over Φ′ (by using some polynomial-time algorithm for linear pro-
gramming). Let K denote the optimum. If K =∞, then return ‘unbounded’ and stop.

Step 2. Check whether Φ ∧ cT x̄ = K is satisfiable. Note that cT x̄ = K has a primi-
tive positive definition in Γlin, which furthermore can be computed in polynomial time by
Lemma 2.11. Therefore this check can be reduced to deciding satisfiability of Horn-DLRs.
If Φ∧ cT x̄ = K is satisfiable, then return ‘optimum: K’. If this is not the case, then return
‘optimum is arbitrarily close to K’.

We first show that the algorithm runs in polynomial time. Step 1 takes polynomial time
since maximizing cT x̄ over Φ′ is equivalent to solving a linear program with size polynomially
bounded in the size of Φ. Finally, Step 2 takes polynomial time due to Lemma 2.11 and
Theorem 5.1.

Next, we prove the correctness of the algorithm. Correctness is obvious if the algorithm
answers ‘optimum: K’ in Step 2. For the remaining cases, we need to make a couple of
observations. Define S = {x ∈ Rn | x satisfies Φ} and S′ = {x ∈ Rn | x satisfies Φ′}.
Let D1, . . . , Dm denote the disequality literals appearing in Φ. Let Hi be the set {x ∈
Rn | x does not satisfy Di}, 1 ≤ i ≤ m, and note that each Hi is a hyperplane.

Observation 1. The formula Φ− ≡ Φ ∧D1 ∧ · · · ∧Dm is satisfiable.

3Note that if we are given an instance of CSP((Γlin, R1, . . . , Rl)), then it can be transformed into an
equivalent Horn-DLR formula in polynomial time since there is only a finite number of relations in the given
structure. Hence, there is no loss of generality in considering Horn-DLR formulas instead of CSP instances.
Also note that the resulting formula is (up to a multiplicative constant depending on the structure) of the
same size as the CSP instance.
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Otherwise, S ⊆ H1∪· · ·∪Hm. The set S is essentially convex and each Hm is a variety,
so there exists an 1 ≤ i ≤ m such that S ⊆ Hi by Proposition 3.3. Consequently, Φ ∧Di is
not satisfiable which contradicts the fact that Φ has property (∗).
Observation 2. For every ε > 0 there is a y ∈ S satisfying |cTw − cT y| < ε.

Let d(·, ·) denote the Euclidean distance in Rn, i.e., d(a, b) =
√∑n

i=1(ai − bi)2, and || · ||
the corresponding norm, i.e., ||a|| =

√
aTa.

Arbitrarily choose a point z that satisfies Φ−; this is always possible by Observation 1.
Consider the line segment L between z and w. Note the following: if H is a hyperplane in
Rn, then either H intersects L in at most one point or L ⊆ H. Also note that w, z ∈ S′
and S′ is convex so L ⊆ S′. Arbitrarily choose a clause C ∈ Φ′′ and assume C = (p1(x̄) 6=
0 ∨ · · · ∨ pk(x̄) 6= 0 ∨ p0(x̄) ≤ 0). Assume that there exist two distinct points a, b ∈ L such
that p1(a) = p1(b) = 0. If so, then every point c ∈ L satisfies p1(c) = 0. This is not possible
since z ∈ L satisfies D1 ∧ · · · ∧Dm, and in particular p1(z) 6= 0. Hence, at most one point
c ∈ L satisfies p(c) = 0, and c is the only point in L that potentially does not satisfy the
clause C. This implies that only finitely many points in L do not satisfy Φ′′, and it follows
that for every δ > 0 there is a point y ∈ S such that d(w, y) < δ.

We proceed by showing that if w, y ∈ Rn and d(w, y) = d, then |cTw − cT y| ≤ ||c|| · d.
This follows from the Cauchy-Schwarz inequality (that is, |aT b| ≤ ||a|| · ||b|| for vectors a, b
in Rn):

|cTw − cT y| = |cT (w − y)| ≤ ||c|| · ||w − y|| = ||c|| · d(w, y) = ||c|| · d.

To find a vector y that satisfies |cTw − cT y| < ε, we simply choose y ∈ S such that
d(w, y) < ε

||c|| ; we know that such a y exists by the argument above.

If the algorithm outputs ‘unbounded’ in Step 2, then arbitrarily choose a sufficiently
large number k and note that there exists a vector w ∈ S′ such that cTw ≥ k. By Obser-
vation 2, there exists a vector y ∈ S such that |cTw − cT y| < 1. Hence, S has unbounded
solutions, too.

Assume finally that the algorithm answers ‘optimum is arbitrarily close to K’ in Step 3;
Observation 2 immediately proves correctness in this case.

6. Open Problems

The most prominent open question is whether there are there are essentially convex relations
S with a first-order definition in (R; ∗,+) such that CSP((Γlin, S)) is NP-hard. Resolving
this question is probably difficult, since the following closely related problem is of unknown
computational complexity:

Feasibility of Convex Polynomial Inequalities
INPUT: A set of variables V , a set of polynomial inequalities each of which defining a con-
vex set; the coefficients of the polynomials are rational numbers where the numerators and
denominators are represented in binary.
QUESTION: Is there a point in R|V | that satisfies all inequalities?

One may note that the problems we have considered could be easier since they are
defined over finite constraint languages. On the other hand, convexity is much more restric-
tive than essential convexity; moreover, we are only given polynomial inequalities (there
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are convex semi-algebraic relations that cannot be defined as the intersection of convex
polynomial inequalities). Still, the computational complexity of the Feasibility Problem of
Convex Polynomial Inequalities is open.

Convex semi-algebraic relations are of particular interest in the quest for efficiently
solvable semi-algebraic constraint languages because of a conjectured link to semidefinite
programming. Every semidefinite representable set is convex and semi-algebraic. Recently,
Helton, Vinnikov and Nie showed that the converse statement is true in surprisingly many
cases and conjectured that it remains true in general [18].
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