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Abstract. In this paper we show that ωB- and ωS-regular languages satisfy the following
separation-type theorem

If L1, L2 are disjoint languages of ω-words both recognised by ωB- (resp. ωS)-
automata then there exists an ω-regular language Lsep that contains L1, and
whose complement contains L2.

In particular, if a language and its complement are recognised by ωB- (resp. ωS)-
automata then the language is ω-regular.

The result is especially interesting because, as shown by Bojańczyk and Colcombet, ωB-
regular languages are complements of ωS-regular languages. Therefore, the above theorem
shows that these are two mutually dual classes that both have the separation property.
Usually (e.g. in descriptive set theory or recursion theory) exactly one class from a pair
C, Cc has the separation property.

The proof technique reduces the separation property for ω-word languages to profinite
languages using Ramsey’s theorem and topological methods. After that reduction, the
analysis of the separation property in the profinite monoid is relatively simple. The whole
construction is technically not complicated, moreover it seems to be quite extensible.

The paper uses a framework for the analysis of B- and S-regular languages in the context
of the profinite monoid that was proposed by Toruńczyk.

1. Introduction

The classes of ωB- and ωS-regular languages are extensions of ω-regular languages proposed
by Bojańczyk and Colcombet in [BC06]. The idea is to define asymptotic properties of ω-
words. The standard example is the following ωB-regular language

{an0ban1ban2b . . . : the sequence ni is bounded} ⊆ {a, b}ω .

The main technical contribution of [BC06] is the following theorem.

Theorem 1.1 (Theorem 4.1 in [BC06]). The complement of an ωB-regular language is
effectively ωS-regular and vice versa.
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In this paper we show that both these classes admit the separation property. In general,
a class of languages C has the separation property with respect to a class D, if the following
condition holds:

For every pair of disjoint languages L1, L2 from C there exists a language
Lsep ∈ D such that1

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

In that case we say that Lsep separates L1 and L2. If not mentioned otherwise, the
class D is taken as C ∩ Cc.

Usually, one class from a pair of dual classes C, Cc has the separation property and the
other one does not. Below we recall some known separation-type theorems. The first one
is a simple observation about Borel sets.

Theorem 1.2 (Theorem II 22.16 in [Kec95]). Let η < ω1. Every two disjoint Π0
η languages

can be separated by a language that belongs to Π0
η ∩Σ0

η. On the other hand, there exists

a pair of disjoint languages in Σ0
η that cannot be separated as above.

The following theorem is an important extension to the projective hierarchy.

Theorem 1.3 (Lusin (see [Kec95]). If L1, L2 ∈ Σ1
1 are two disjoint analytic sets then there

exists a Borel set separating them. There exists a pair of disjoint co-analytic (i.e. Π1
1) sets

that cannot be separated by any Borel set.

The above theorem has its counterpart for regular languages of infinite trees. There
is a correspondence between the parity index of a tree automaton and the topological
complexity of the tree-language recognised by it. In particular, alternating (1, 2)-parity
tree automata (ATA) recognise analytic languages, (0, 1)-parity ATA recognise co-analytic
sets, while weak alternating automata recognise only Borel languages. The following two
theorems are analogous to the above one in the tree-regular context.

Theorem 1.4 (Rabin [Rab70], also Kupferman, Vardi [KV99]). If L1, L2 are two disjoint
regular tree languages recognised by (1, 2)-parity ATA then there exists a language separat-
ing them recognisable by a weak alternating automaton (thus Borel).

Theorem 1.5 (Hummel, Michalewski, Niwiński [HMN09]). There exists a pair of tree-
languages recognised by (0, 1)-parity ATA that cannot be separated by any Borel set.

The above theorem is extended for higher levels of the alternating index hierarchy
in [AMN12]. Theorem 1.4 relies on the fact that every alternating (1, 2)-parity tree automa-
ton is equivalent to a nondeterministic (1, 2)-parity tree automaton.

In this work we show that both classes of ωB- and ωS-regular languages have the
separation property with respect to ω-regular languages. The proposed constructions are
effective. The result is especially interesting since these are two mutually dual classes (see
Theorem 1.1 above). As a consequence of the separation properties we obtain the following
corollary.

Corollary 1.6. If a given language of ω-words L and its complement Lc are both ωB-regular
(resp. ωS-regular) then L is ω-regular.

1To distinguish the complement from the closure we denote the complement of a set X by Xc.
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The above result in the case of ωB-regular languages was independently known by some
researchers in the area. Nevertheless, to the best of the author’s knowledge, it has never
been published.

To prove the main result we reduce the separation property of ω-word languages to the
case of profinite words. For this purpose we use B- and S-automata introduced in [Col09].
As shown in [Tor12] it is possible to define a language recognised by a B- or S-automaton

as a subset of the profinite monoid Â∗. An intermediate step in our reasoning is proving
the separation property for B- and S-regular languages of profinite words.

The paper is organised as follows. In Section 2 we introduce basic notions. Section 3
defines the automata models we use. In Section 4 we prove separation results for languages
of profinite words recognised by B- and S-automata. Section 5 contains the crucial technical
tool, Theorem 5.1, that enables to transfer separation results for languages of profinite words
to the case of ω-words. In Section 6 we use this theorem to show that ωB- and ωS-regular
languages have the separation property. Section 7 contains a direct and simpler proof
of the separation property for the ωB-regular case. This proof was proposed by Thomas
Colcombet, we present it here with his kind permission. Finally, in Section 8 we give
acknowledgements.

2. Basic notions

We work with two models (ωB and ωS) at the same time. Therefore, we introduce a notion
ωT to denote one of the models: ωB or ωS. By T we denote the corresponding finite word
automata (B or S). By A we denote a finite alphabet. Elements of A∗ are called finite
words while Aω is the set of ω-words.

2.1. Monoids. We use monoids and Ramsey’s theorem to decompose ω-words into finite
ones.

Definition 2.1. A (finite) monoid is a (finite) algebraic structure M equipped with an
operation · : M2 → M that is associative (a · (b · c) = (a · b) · c) and with a distinguished
element 1 ∈M that satisfies 1 · a = a · 1 = a.

The operation · is called product and 1 is called the neutral element.
An element e ∈M is called idempotent if e · e = e.

Observe that the set of all finite words A∗ has a natural structure of monoid with the
operation of concatenation and 1 defined as the empty word.

Definition 2.2. A function h : M → N is a homomorphism between monoids M,N if it
preserves the product:

h(s · t) = h(s) · h(t).

Now we define the monoid representing possible runs of a nondeterministic automaton.
It can be seen as an algebraic formalisation of the structure used by Büchi [Büc62] in his
famous complementation lemma.

Definition 2.3. Let A be a nondeterministic automaton with states Q. Define Mtrans(A)
as P(Q×Q). Let the neutral element be {(q, q) : q ∈ Q} and product:

s · t = {(p, r) : ∃q∈Q (p, q) ∈ s ∧ (q, r) ∈ t} .



4 MICHA L SKRZYPCZAK

Let hA : A∗ →Mtrans(A) map a given finite word w to the set of pairs (p, q) such that
the automaton A has a run over w starting in p and ending in q.

It is easy to check that Mtrans(A) is a finite monoid and hA is a homomorphism.

2.2. Profinite monoid. In this subsection we introduce the profinite monoid Â∗. A formal
introduction to profinite structures can be found in [Alm03] or [Pin09]. We refer to [Pin09].

First we provide a construction of the profinite monoid Â∗. The idea is to enhance the
set of all finite words by some virtual elements representing sequences of finite words that
are more and more similar.

Let K0,K1, . . . be a list of all regular languages of finite words. Let X = 2ω. Each
element x ∈ X can be seen as a sequence of bits, the bit x(n) indicates whether our virtual

word belongs to the language Kn.
Define µ : A∗ → X by the following equation:

µ(w)n =

{
1 if w ∈ Kn,

0 if w /∈ Kn.

The function µ defined above is an embedding of A∗ into X. Let Â∗ ⊆ X be the closure

of µ(A∗) in X with respect to the product topology of X. Therefore, Â∗ contains µ(A∗)
and the limits of its elements. To simplify the notion we identify w ∈ A∗ with its image

µ(w) ∈ Â∗.

Example 2.4 (Proposition 2.5 in [Pin09]). Let wn = an! for n ∈ N. A simple automata-
theoretic argument shows that for every regular language K, either almost all words (wn)n∈N
belong to K or almost all do not belong to K. Therefore, the sequence (µ(wn))n∈N is

convergent coordinate-wise in X. The limit of this sequence is an element of Â∗ − µ (A∗).

The following fact summarises basic properties of Â∗.

Fact 2.1 (Proposition 2.1, Proposition 2.4, and Theorem 2.7 in [Pin09]). Â∗ is a compact

metric space. A∗ (formally µ (A∗)) is a countable dense subset of Â∗. Â∗ has a structure of
a monoid that extends the structure of A∗ and the concatenation is continuous.

It turns out that the operation assigning to every regular language of finite words

K ⊆ A∗ its topological closure K ⊆ Â∗ has good properties (see Theorem 2.6). Therefore,
we introduce the following definition.

Definition 2.5. A profinite-regular language is a subset of Â∗ of the form K for some
regular language K ⊆ A∗.

Using this definition, we can denote a generic profinite-regular language as K for K
ranging over regular languages. Using the definition of µ one can show the following easy
fact.

Fact 2.2. A language of profinite words M ⊆ Â∗ is profinite-regular if and only if it is of
the form

M =
{
x ∈ X : x ∈ Â∗ ∧ xn = 1

}
, (2.1)

for some n ∈ N. In that case M = Kn.
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The structures of profinite-regular and regular languages are in some sense identical.
This is expressed by the following fact.

Theorem 2.6 (Theorem 2.4 in [Pin09]). The function K 7→ K ⊆ Â∗ is an isomorphism
of the Boolean algebra of regular languages and the Boolean algebra of profinite-regular
languages. Its inverse is M 7→ µ−1(M) ⊆ A∗ (when identifying A∗ with µ(A∗) we can write
M 7→M ∩A∗ ⊆ A∗).

By the definition of Â∗ and fact that regular languages are closed under finite intersec-
tion, we obtain the following important fact.

Fact 2.3. The family of regular languages of profinite words is a basis of the topology of

Â∗.

The topology of Â∗ is the product topology. Therefore, a sequence of finite words

W = w0, w1, . . . is convergent to w ∈ Â∗ if and only if (µ(wn))n∈N ⊆ X is convergent
coordinate-wise to w. The following fact formulates this condition in a more intuitive way.

Fact 2.4. A sequence of finite words W = w0, w1, . . . is convergent to w ∈ Â∗ if and only
if for every profinite-regular language K either:

• w ∈ K and almost all words wn belong to K,
• w /∈ K and almost all words wn do not belong to K.

The topology of Â∗ is defined in such a way that it corresponds precisely to profinite-
regular languages. The following fact summarises this correspondence.

Fact 2.5 (Proposition 4.2 in [Pin09]). A language M ⊆ Â∗ is profinite-regular if and only

if it is a closed and open (clopen) subset of Â∗.

Proof. First assume that M = K is a regular language of profinite words. Equation (2.1)
in Fact 2.2 defines a closed and open set.

Now assume that M is a closed and open subset of Â∗. Recall that profinite-regular

languages form a basis for the topology of Â∗ (Fact 2.3). Since M is open so it is a

union of base sets
⋃

j∈J Kj . Since M is a closed subset of a compact space Â∗, M is

compact. Therefore, only finitely many languages among
{
Kj

}
j∈J

form a cover of M . But

a finite union of profinite-regular languages is a profinite-regular language. Therefore, M is
profinite-regular.

2.3. Ramsey-type arguments. In this subsection we recall Ramsey’s theorem and show
its application to finite monoids. This technique was used by Büchi in his complementation
lemma [Büc62]. Additionally, we recall some extensions of Ramsey’s theorem to compact
spaces. In the following, by [N]2 we denote the set of all unordered pairs of natural numbers.

Theorem 2.7 (Ramsey). Assume that α : [N]2 → C is a function that assigns to every pair
of numbers {n,m} ∈ [N]2 a colour α({n,m}) ∈ C. Additionally, assume that the set of
colours C is finite. Then there exists an infinite monochromatic set S ⊆ N: a set S such
that for some colour c ∈ C and every pair of numbers {n,m} ⊂ S we have

α({n,m}) = c.

The following theorem shows an application of Ramsey’s theorem to the ω-word case.
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Theorem 2.8. Let M be a finite monoid and h : A∗ → M be a homomorphism. Then for
every ω-word u ∈ Aω there exists a sequence of finite words w0, w1, w2, . . . and two elements
s, e of the monoid M such that:

(i) u = w0w1w2 . . .,
(ii) h(w0) = s,
(iii) h(wn) = e for every n > 0,
(iv) s · e = s and e · e = e.

A pair (s, e) satisfying the above constraints is often called a linked pair, see [PP04].
To simplify the properties in the above theorem we introduce the following definition.

Definition 2.9. For a given homomorphism h : A∗ → M we say that the type (or h-type)
of a decomposition u = w0w1 . . . is t = (s, e) if: s · e = s, e · e = e, h(w0) = s, and h(wn) = e
for all n > 0.

Using the above definition we can restate Theorem 2.8 as: for every ω-word u and
homomorphism h there exists some decomposition of u of some type t = (s, e). A priori
there may be two decompositions of one ω-word of two distinct types.

There is an extension of finite-colour Ramsey’s theorem to the case where colours form
a compact metric space. To state it formally we use the following definitions.

Definition 2.10. Assume that W = w0, w1, . . . is a sequence of finite words. We say
that Z = z0, z1, . . . is a grouping of W if there exists an increasing sequence of numbers
0 = i0 < i1 < . . . such that for every n ∈ N we have

zn = winwin+1 . . . win+1−1.

Note that if W is a decomposition of an ω-word u and W is of h-type t = (s, e) then
every grouping of W is also a decomposition of u of h-type t. The notion of grouping
introduces a stronger version of convergence.

Definition 2.11. We say that a sequence of finite words W = w0, w1, . . . is strongly con-

vergent to a profinite word w if every grouping of W is convergent to w.

The following result can be seen as a simple extension of the Ramsey theorem to the
case of the profinite monoid.

Theorem 2.12 (Bojańczyk, Kopczyński, Toruńczyk [BKT12]). Let W = w0, w1, . . . be an
infinite sequence of finite words. There exists a grouping Z of W such that Z strongly

converges in Â∗.

For the sake of completeness we give a proof of this fact below. The theorem holds in

general, where instead of Â∗ is any compact metric monoid. Also, the notion of convergence
can be strengthened in the thesis of the theorem: all the groupings of W converge in a
uniform way. In this paper we use only the above, simplified form.

Proof. Let K be a regular language and Z = z0, z1, . . . be a sequence of finite words. Define
a function αK,Z : [N]2 → {0, 1} that takes a pair of numbers i < j and returns 1 if and only
if zizi+1 . . . zj−1 belongs to K. By Theorem 2.7, there exists a monochromatic set S ⊆ N

with colour c ∈ {0, 1} such that for every pair i < j ∈ S we have αK,Z({i, j}) = c.
Now, take a sequence of finite words W . Let K0,K1, . . . be an enumeration of all

regular languages and let W 0 = W . We proceed by induction for i = 0, 1, . . .. Assume that
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W i = wi
0, w

i
1, . . . is defined. First define zi as wi

0. Now, let S = {n0, n1, . . .} be an infinite
monochromatic set with respect to αKi,W i . Define

W i+1 =
(
wi
n0
wi
n0+1 . . . w

i
n1−1

)
,
(
wi
n1
wi
n1+1 . . . w

i
n2−1

)
,
(
wi
n2
wi
n2+1 . . . w

i
n3−1

)
, . . .

Note that W i+1 is a suffix of a grouping of W i. Since S is monochromatic and by the
definition of αK,Z, we know that:
(∗) For every grouping of W i+1 either all words in the grouping belong to Ki or all of them
do not belong.

We claim that our sequence Z = z0, z1, . . . is strongly convergent. Let Y be a grouping
of Z and let K = Ki be a regular language. Observe that almost all words in Y (all except
first at most i words) are obtained by grouping words in W i+1. Therefore, by (∗), either
almost all words of Y belong to K or almost all of them do not belong to K. Fact 2.4

implies that Y is convergent in Â∗.
Now observe that almost all words in Y belong to Ki if and only if almost all words in

Z belong to Ki. Therefore, the limit of Y does not depend on the choice of Y . It means

that Z is strongly convergent in Â∗.

2.4. Notation. In this paper we deal with three types of languages: of finite words, of
profinite words, and of ω-words. To simplify reading of the paper, we use the following
conventions:

• finite and profinite words are denoted by w, z,
• sequences of finite words are denoted by W,Z, Y ,
• ω-words are denoted by u, v,
• regular languages of finite words are denoted by K,
• profinite-regular languages are, using Theorem 2.6, denoted by K,
• general languages of profinite words are denoted by M ,
• languages of ω-words (both ω-regular and not) are denoted by L.

3. Automata

In this section we provide definitions of four kinds of automata: ω-word models ωB- and
ωS-automata and their finite word variants B- and S-automata.

The ωB- and ωS-automata models were introduced in [BC06], we follow the definitions
from this work. The B- and S-automata models were defined in [Col09]. For the sake of
simplicity, we use only the operations {nil, inc, reset} (without the check operation). As
noted in Remark 1 in [Col09], this restriction does not influence the expressive power.

The four automata models we study here are part of a more general theory of regular
cost functions that is developed by Colcombet [Col09, Col13]. In particular, the theory of
B- and S-automata has been extended to finite trees in [CL10].

All four automata models we deal with are built on the basis of a counter automaton.
The difference is the acceptance condition that we introduce later.

Definition 3.1. A counter automaton is a tuple A = 〈A,Q, I,Γ, δ〉, where:

• A is an input alphabet,
• Q is a finite set of states,
• I ⊆ Q is a set of initial states,
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qIstart qM

a,nil

b,nil

b,nil

a, inc

b, reset

Figure 1: An example of an ωB-automaton AωB.

• Γ is a finite set of counters,

• δ ⊆ Q×A× {nil, inc, reset}Γ ×Q is a transition relation.

All counters store natural numbers and cannot be read during a run. The values of the
counters are only used in an acceptance condition.

In the initial configuration all counters equal 0. A transition (p, a, o, q) ∈ δ (sometimes

denoted p
a,o
−→ q) means that if the automaton is in a state p and reads a letter a then it can

perform counter operations o and go to the state q. For a counter c ∈ Γ a counter operation
o(c) can:

o(c) = nil leave the counter value unchanged,
o(c) = inc increment the counter value by one,
o(c) = reset reset the counter value to 0.

A run ρ of the automaton A over a word (finite or infinite) is a sequence of transitions
as for standard nondeterministic automata. Given a run ρ, a counter c ∈ Γ, and a position
rc of a word where the counter c is reset, we define val(c, ρ, rc) as the value stored in the
counter c at the moment before the reset rc in ρ.

To simplify the constructions we allow ǫ-transitions in our automata. The only re-
quirement is that there is no cycle consisting of ǫ-transitions only. ǫ-transitions can be
removed using nondeterminism of an automaton and by combining a sequence of counter
operations into one operation. Such a modification may change the exact values of counters,
for instance when we replace inc, reset by reset. However, the limitary properties of the
counters are preserved (the values may be disturbed only by a linear factor).

3.1. ωB- and ωS-automata. First we deal with automata for ω-words, following the defi-
nitions in [BC06]. An ωT-automaton (for ωT ∈ {ωB, ωS}) is just a counter automaton. A
run ρ of an ωT-automaton over an ω-word u is accepting if it starts in an initial state in I,
every counter is reset infinitely many times, and the following condition is satisfied:

ωB-automaton: the values of all counters are bounded during the run,
ωS-automaton: for every counter c the values of c during subsequent resets in ρ tend to

infinity (i.e. the limit of the values of c is ∞).

An ωT-automaton A accepts an ω-word if it has an accepting run on it. The set of all
ω-words accepted by A is denoted L(A).

Example 3.2. Consider the ωB-automaton AωB depicted on Figure 1. AωB guesses (by
moving to the state qM) to measure the length of some blocks of letters a. It accepts an
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ω-word u if and only if it is of the form

u = an0ban1b . . . with lim inf
i→∞

ni <∞.

We can also treat AωB as an ωS-automaton. In that case the language recognised by
AωB is

{u ∈ {a, b}ω : u = an0ban1b . . . and lim sup
i→∞

ni =∞}.

It is easy to check that a nondeterministic Büchi automaton can be transformed into
an equivalent ωB- (resp. ωS)-automaton. Therefore, all ω-regular languages are both ωB-
and ωS-regular.

3.2. B- and S-automata. In the finite word models the situation is a little more compli-
cated than in the ωB- and ωS-automata models. The automaton not only accepts or rejects
a given word but also it assigns a value to a word.

Formally, a T-automaton (for T ∈ {B,S}) is a counter automaton that is additionally
equipped with a set of final states F ⊆ Q. An accepting run ρ of an automaton over a finite
word w is a sequence of transitions starting in some initial state in I and ending in some
final state in F .

The following equations define val(A, w) — the value assigned to a given finite word
by a given automaton. We use the convention that if a set of values is empty then the
minimum of this set is ∞ and the maximum is 0. The variable ρ ranges over all accepting
runs, c ranges over counters in Γ, while rc ranges over positions where the counter c is reset
in ρ. As noted at the beginning of this section, we do not allow explicit check operation,
we only care about the values of the counters before resets.

B-automaton AB:

val(AB, w) = min
ρ

val(ρ) and val(ρ) = max
c

max
rc

val(c, ρ, rc),

S-automaton AS:

val(AS, w) = max
ρ

val(ρ) and val(ρ) = min
c

min
rc

val(c, ρ, rc).

The following simple observation is crucial in the subsequent definitions.

Lemma 3.3. For a given number n, a B-automaton AB, and an S-automaton AS the
following languages of finite words are regular:

L(AB ≤ n) = {w : val(AB, w) ≤ n} ,

L(AS > n) = {w : val(AS, w) > n} .

Proof. We can encode a bounded valuation of the counters into a state of a finite automaton.
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qIstart qF

a, inc

b,nil

ǫ, reset

Figure 2: An example of an S-automaton AS.

3.3. Languages. The above definitions give a semantics of a T-automaton in terms of a
function val(A, .) : A∗ → N∪{∞}. As noted in [Tor12], it is possible to define the language

recognised by such an automaton as a subset of the profinite monoid Â∗. We successively
define it for B-automata and S-automata. In both cases the construction is justified by
Lemma 3.3.

B case: Fix a B-automaton AB and define

L(AB) :=
⋃

n∈N

L(AB ≤ n) ⊆ Â∗. (3.1)

S case: Fix an S-automaton AS and define

L(AS) :=
⋂

n∈N

L(AS > n) ⊆ Â∗. (3.2)

Note that the sequences of languages in the above equations are monotone: increasing in
(3.1) and decreasing in (3.2).

There exists another, equivalent way of defining languages recognised by these automata
[Tor12]. One can observe that the function val(A, .) assigning to every finite word its value

has a unique continuous extension on Â∗. The languages recognised by B- and S-automata
can be defined as val(A, .)−1(N) and val(A, .)−1({∞}) respectively. In this work we only
refer to the definitions (3.1) and (3.2).

Example 3.4. Consider the S-automaton AS depicted in Figure 2. The automaton mea-
sures the number of letters a in a given word. Then it guesses that the word is finished
and moves to the accepting state. For every finite word w the value val(AS, w) equals the
number of letters a in w.

The language L(AS) does not contain any finite word. It contains a profinite word w
if for every n the word w belongs to the profinite-regular language defined by the formula
“the word contains more than n letters a” (i.e. w ∈ L(AS > n)). In particular, the limit of
the sequence (an!)n∈N from Example 2.4 belongs to L(AS).

Lemma 3.5. Every B-regular language is an open subset of Â∗ and dually every S-regular
language is closed.

Proof. By equations (3.1) and (3.2), a B-regular language is a sum of profinite-regular
languages and an S-regular language is an intersection of profinite-regular languages. By
Fact 2.5, profinite-regular languages are closed and open, therefore their sum is open and
the intersection is closed.
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The converse of Lemma 3.5 is false as there are uncountably many open subsets of Â∗.
We finish the definitions of automata models by recalling the following theorem.

Theorem 3.6 (Fact 2.6 and Corollary 3.4 in [BC06], Theorem 8 and paragraph Closure

properties in [Tor12]). Let T ∈ {B,S, ωB, ωS}. The class of T-regular languages is effectively
closed under union and intersection. The emptiness problem for T-regular languages is
decidable.

Therefore, it is decidable whether given two T-regular languages are disjoint.

4. Separation for profinite languages

In this section we show the following theorem.

Theorem 4.1. Let T ∈ {B,S}. Assume that the languages of profinite words M1,M2 ⊆ Â∗

are recognised by T-automata and M1 ∩ M2 = ∅. Then there exists a profinite-regular

language Ksep ⊆ Â∗ such that

M1 ⊆ Ksep and M2 ⊆ Ksep
c
.

The proof of the theorem consists of two parts, for the two cases of T ∈ {B,S}:
Lemma 4.2 and Theorem 4.4.

First we prove the case when T = S. The presented proof uses a general topological
fact: the separation property of closed (i.e. Π0

1) sets in a zero-dimensional Polish space.

Lemma 4.2. A pair of disjoint S-regular languages of profinite words can be separated by
a profinite-regular language.

Proof. Take two S-regular languages M1,M2 ⊆ Â∗.

Since Â∗ is a zero-dimensional Polish space, the Π0
1-separation property holds for Â∗

(see Theorem 22.16 in [Kec95]). By Lemma 3.5 every S-regular language is Π0
1 in Â∗,

therefore M1,M2 can be separated in Â∗ by a set Msep that is closed and open. By Fact 2.5,
the language Msep is profinite-regular.

Instead of using the Π0
1-separation property, one can provide the following straightfor-

ward argument that uses the compactness of Â∗. We know that M1 is a closed subset of a

compact space Â∗ so M1 is itself compact. Assume that M2 is recognised by an S-automaton
AS. By (3.2) we obtain

M2 =
⋂

n∈N

L(AS > n) ⊆ Â∗.

For n ∈ N define Nn := L(AS > n)
c

— the complement of the profinite-regular language

L(AS > n). Clearly M1 ⊆
⋃

nNn because M1 and M2 are disjoint. Fact 2.5 and Lemma 3.3

imply that the sets Nn are open subsets of Â∗. Therefore, the family (Nn)n∈N is an open
cover of M1. Since M1 is compact, there is n0 ∈ N such that

M1 ⊆ N0 ∪N1 ∪ . . . ∪Nn0
= Nn0

.

Therefore, Nn0
is a profinite-regular language that separates M1 and M2.

Remark 4.3. The language Nn0
can be computed effectively.

Proof. It is enough to observe that n0 can be taken as the minimal n such that M1 does not
intersect the profinite-regular language L(AS > n). Such n exists by the above argument.
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Now we proceed with the separation property for B-regular languages. By Lemma 3.5

we know that B-regular languages are open sets in Â∗. An easy exercise shows that in
general open sets do not have the separation property. Thus, to show the following theorem
we need an argument that is a bit more involved than in the case of S-regular languages.

Theorem 4.4. A pair of disjoint B-regular languages of profinite words can be separated
by a profinite-regular language.

We obtain the above theorem by applying the following observation.

Lemma 4.5. For every B-regular language MB ⊆ Â∗ there exists a profinite-regular lan-

guage KR ⊆ Â∗ such that

MB ⊆ KR and MB ∩A∗ = KR ∩A∗.

Moreover, the language KR can be computed effectively.

Proof. Take a B-automaton AB recognising MB. Define a new automaton AR by removing
from AB all the counters and all the counter operations. What remains are transitions,

initial states, and final states. Put KR = L(AR) ⊆ Â∗. Of course MB ⊆ L(AR) by the

definition of MB. Clearly L(AR) ∩A∗ = L(AR) by Theorem 2.6. What remains to show is
that L(AR) ⊆MB.

Take a finite word w ∈ L(AR). Observe that AB has an accepting run on w because
w ∈ L(AR). So val(AB , w) ≤ |w| because AB cannot do more increments than the number
of positions of the word. Therefore w ∈MB.

Proof of Theorem 4.4. Take two disjoint B-regular languages M1,M2 ⊆ Â∗. Define Ksep to

be the language KR from Lemma 4.5 for M1. Thus we know that M1 ⊆ KR. We only need
to show that M2∩KR = ∅. Assume the contrary, that MI := M2∩KR 6= ∅. Since B-regular

languages are open sets in Â∗, MI is an open set. Since A∗ is dense in Â∗ so MI contains
a finite word w ∈ A∗. But by the definition of KR in that case w ∈ M1. So w ∈ M1 ∩M2

— a contradiction to the disjointness of M1,M2.

Remark 4.6. Both separation results for B- and S-regular languages are effective: there
is an algorithm that inputs two counter automata, verifies that the intersection of the
languages is empty, and outputs an automaton recognising a separating language.

Proof. By Theorem 3.6 it is decidable if two B- (resp. S)-regular languages are disjoint. As
observed in Remark 4.3 and Lemma 4.5, both constructions can be performed effectively.

5. Reduction

This section contains a proof of our crucial technical tool — Theorem 5.1. It is inspired by
the reduction theorem from [Tor12].

Intuitively, ωB- and ωS-automata are composed of two orthogonal parts, we can call
them the ω-regular part and the asymptotic part. The ω-regular part corresponds to states
and transitions of the automaton, while the asymptotic part represents quantitative condi-
tions that can be measured by counters. In this section we show how to formally state this
division. It can be seen as an extension of the technique presented in [BC06].
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Theorem 5.1. Fix an ωT-automaton A and a type t = (s, e) in the trace monoid Mtrans(A).

There exists a T-regular language of profinite words Mt ⊆ Â∗ with the following property:
If u is an ω-word and W = w0, w1, . . . is a decomposition of u of type t then the following

conditions are equivalent:

(1) u ∈ L(A),
(2) there exists a grouping Z of W that strongly converges to a profinite word z ∈Mt,
(3) there exists a grouping Z of W that converges to a profinite word z ∈Mt.

Additionally, one can ensure that Mt ⊆ h−1
A (e). The construction of a T-automaton

recognising Mt is effective given A and t.

The rest of this section is devoted to showing the above theorem. We fix for the whole
proof an ωT-automaton A = 〈A,Q, I,Γ, δ〉 and a type t = (s, e) in Mtrans(A).

Intuitively, the requirement for a decomposition W to be of the type t corresponds to
the ω-regular part of A while the convergence of W to an element of Mt takes care of the
asymptotic part of A.

Let us put Ke = h−1
A (e) and assume that Be = 〈A,Qe, {qI,e}, δe, Fe〉 is a deterministic

finite automaton recognising the regular language Ke. We will ensure that Mt ⊆ Ke.
First we show how to construct a language Mt, later we prove its properties. The

definition of Mt depends on whether T = B or T = S. The first case is a bit simpler.
Case T = B The language Mt is obtained as the union of finitely many B-regular

languages indexed by states q ∈ Q:

Mt =
⋃

q∈Q

L(Aq),

for B-automata Aq that we describe below. Intuitively, an automaton Aq measures loops

in A starting and ending in q.
If for no q0 ∈ I we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq) = ∅. Assume otherwise.

First we give an informal definition of Aq:

• it is obtained from A by interpreting it as a finite word B-automaton,
• it has initial and final state set to q,
• it checks that all the counters are reset in a given word,
• it checks that a given word belongs to Ke,
• it resets all the counters at the end of the word.

Now we give a precise definition of Aq = 〈A,Qq, Iq,Γq, δq, Fq〉. Let:

• Qq = {∗} ∪ Q×Qe × {⊥,⊤}
Γ,

• Iq = {(q, qI,e, (⊥,⊥, . . . ,⊥))},
• Γq = Γ,
• Fq = {∗},

and let δq contain the following transitions:

• (p, r, b)
a,o
−→ (p′, r′, b′) if p

a,o
−→ p′ ∈ δ, r

a
−→ r′ ∈ δe and for every c ∈ Γ we have

b′(c) = b(c) ∨ (o(c) = reset),

• (q, r, (⊤,⊤, . . . ,⊤))
ǫ,o
−→ ∗ for o = (reset, reset, . . . , reset) if r ∈ Fe.

The state ∗ is the only final state used to perform the reset at the end of a word. During
a run, the automaton Aq simulates A and Be in parallel, using Q and Qe. Additionally, a
vector in {⊥,⊤}Γ denotes for every counter whether it was already reset in a word or not.
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Case T = S In that case the language Mt is obtained as the union of finitely many
S-regular languages indexed by pairs (q, τ) ∈ Q× {←,→}Γ:

Mt =
⋃

(q,τ)

L(Aq,τ ).

Intuitively, an automaton Aq,τ recognises loops q →∗ q as before. Additionally, the vector τ
denotes whether a given counter c ∈ Γ obtains bigger values before the first reset (τ(c) =→)
or after the last reset (τ(c) =←) on a given finite word. The following definition formalises
this property. A similar technique of assigning a reset type to a finite run can be found
in [BC06].

Definition 5.2. Let ρ be a run of some counter automaton A over an ω-word u. Let k ∈ N

be a position in u and let c ∈ Γ be a counter of A. Let:

• VL be the number of increments of c between the last reset before k and k,
• VR be the number of increments of c between k and the first reset after k.

If there is no reset of c at some side of k then the respective value is 0. Define the end-type

of c on ρ in k (denoted as Etp(c, ρ, k)) by the following equation:

Etp(c, ρ, k) =

{
→ if VL < VR,

← if VL ≥ VR.

As before if for no q0 ∈ I, we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq,τ ) = ∅. Assume
otherwise. We start with an informal definition of Aq,τ :

• it is obtained from A by interpreting it as a finite word S-automaton,
• it has initial and final state set to q,
• it checks that all the counters are reset in a given word,
• it checks that a given word belongs to Ke,
• for every counter c ∈ Γ:
– if τ(c) =← then Aq,τ skips the first reset of c and all the previous increments of c but

resets c at the end of a given word,
– if τ(c) =→ then Aq,τ acts on c exactly as A (with no additional reset at the end of the

word).

Formally, let Aq,τ = 〈A,Qq,τ , Iq,τ ,Γq,τ , δq,τ , Fq,τ 〉 such that

• Qq,τ = {∗} ∪ Q×Qe × {⊥,⊤}
Γ,

• Iq,τ = {(q, qI,e, (⊥,⊥, . . . ,⊥))},
• Γq,τ = Γ,
• Fq,τ = {∗},

and δq,τ contains the following transitions:

• (p, r, b)
a,o′

−→ (p′, r′, b′) if p
a,o
−→ p′ ∈ δ, r

a
−→ r′ ∈ δe, and for every c ∈ Γ we have:

– b′(c) = b(c) ∨ (o(c) = reset),
– if b(c) = ⊥ and τ(c) =← then o′(c) = nil, otherwise o′(c) = o(c),

• (q, r, (⊤,⊤, . . . ,⊤))
ǫ,o
−→ ∗ if r ∈ Fe and for every c ∈ Γ we have o(c) = reset if τ(c) =←

and o(c) = nil otherwise.

Now we proceed with the proof that the above constructions give us the desired language
Mt. First note that in both cases the constructed automata explicitly verify that a given
word belongs to Ke. Therefore, Mt ⊆ Ke.
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We start by taking an ω-word u and its decomposition W = w0, w1, . . . of the type t.

5.1. Implication (1)⇒ (2). Assume that there exists an accepting run ρ of A over u. We
want to construct a grouping Z = z0, z1, . . . of W such that:

S.1 for n > 0 we have zn ∈ Ke,
S.2 all counters in Γ are reset by ρ in every word zn,
S.3 the state that occurs in the run ρ at the end-points of all the words zn is some fixed

state q ∈ Q,
S.4 there exists a vector τ ∈ {←,→}Γ such that for every counter c and every position k

between successive words zn, zn+1 in u we have Etp(c, ρ, k) = τ(c),
S.5 the sequence of words Z is strongly convergent to some profinite word z.

The grouping Z is obtained in steps. Observe that all the above properties are preserved
when taking a grouping of a sequence. S.1 is already satisfied by the sequence W . First,
we group words of W in such a way to satisfy S.2 using the fact that the run ρ is accepting.
Then we further group the sequence to satisfy S.3 and S.4 — some state and value of Etp
must appear in infinitely many end-points. Finally, we apply Theorem 2.12 to group the
sequence into a strongly convergent one.

Now, it suffices to show that z ∈ Mt. First, observe that ρ is a witness that there is a
path from I to q and from q to q in A.

We consider two cases:

Case T = B: Since ρ is accepting, there exists a constant l such that the values of all
counters during ρ are bounded by l. We show that for every n > 0 we have zn ∈ L(Aq ≤

l). It implies that z ∈ L(Aq ≤ l) and therefore z ∈ L(Aq) ⊆Mt.
Observe that ρ induces a run ρn of Aq on zn. By S.1, S.2, and S.3 we know that ρn

is an accepting run of Aq — it starts in the only initial state and ends in ∗. Since Aq

simulates all the resets of A, we know that val(ρn) ≤ l and therefore val(Aq, zn) ≤ l.
Case T = S: We show that for every l ∈ N the sequence Z from some point on satisfies

val(Aq,τ , zn) > l
2 . It implies that for every l we have z ∈ L(Aq,τ > l) and therefore

z ∈ L(Aq,τ ).
Since ρ is accepting, for every constant l, from some point on, all the counters are

reset with a value greater than l. Assume that the last reset with the value at most l
occurs before the word zN . We show that for n ≥ N we have val(Aq,τ , zn) > l

2 . Let ρ′n
be the sequence of transitions of ρ on zn. Observe that ρ′n induces a run ρn of Aq,τ on
zn. As before, ρn is accepting by S.1, S.3, and S.2. Take a counter c ∈ Γ and a reset of
this counter rc in ρn. Consider the following cases, recalling Definition 5.2:
• rc corresponds to the first reset of c in the run ρ′n. Since Aq,τ did not skip rc, τ(c) =→.

Therefore, c has more increments after the beginning of zn than before it in ρ. There-
fore val(c, ρn, rc) >

l
2 .

• rc corresponds to a reset of c in the run ρ′n but not the first one. In that case
val(c, ρn, rc) = val(c, ρ′n, rc) > l.
• rc is the additional reset performed by Aq,τ at the end of the word zn. In that case
τ(c) =← so c has greater or equal number of increments before the end of the word
zn than after it in ρ. Therefore val(c, ρn, rc) >

l
2 .

In all three cases val(c, ρn, rc) >
l
2 . So we have shown that

val(Aq,τ ) ≥ val(ρn) >
l

2
.
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5.2. Implication (2) ⇒ (3). This implication is trivial since strong convergence entails
convergence.

5.3. Implication (3) ⇒ (1). Let Z be a grouping of W such that Z converges to a limit
z ∈Mt.

We consider two cases:

Case T = B: Since z ∈ Mt, there exists a state q ∈ Q such that z ∈ L(Aq). Therefore,

z ∈ L(Aq ≤ l) for some l. Since L(Aq ≤ l) is an open set and z is a limit of Z, almost
all elements of Z belong to L(Aq ≤ l). Assume that for n ≥ N we have zn ∈ L(Aq ≤ l).
Let ρn be a run that witnesses this fact. By the construction of Aq, the run ρn induces
a run ρ′n of A on zn. Also, since ρn is accepting, ρ′n resets all the counters at least once.

By the assumption about t, there exists a run ρ′0 of A on z0 that starts in some state
in I and ends in q, and a sequence of runs ρ′n on zn for 0 < n < N that lead from q to
q. Therefore, we can construct an infinite run ρ of A on u being the concatenation of
the runs ρ′n on the words zn for n ∈ N. We show that if rc is a reset of a counter c in
ρ that appears after the word zN then val(c, ρ, rc) ≤ 2 · l. Since there are only finitely
many resets of counters before the word zN , this bound suffices to show that the run ρ
is accepting.

Observe that the increments in ρ correspond to the increments in the runs ρn. Also, ρ
performs all the resets that appear in runs ρn except the resets at the end of the words.
There can be at most one such skipped reset in a row because every counter is reset in
every run ρ′n. Therefore, val(c, ρ, rc) ≤ 2 · l.

Case T = S: Let q, τ be parameters such that z ∈ L(Aq,τ ). Therefore, for every l ∈ N we

have z ∈ L(Aq,τ > l). As Z is convergent to z and languages L(Aq,τ > l) are open, it
means that

∀l ∃N ∀n≥N val(Aq,τ , zn) > l. (5.1)

As above we construct a run ρ over u that first leads on z0 from some state of I to q
and later consists of a concatenation of runs over words zn. Let ρ′0 be any run of A that
leads from I to q on z0. For n > 0 we pick a run ρn in such a way that it is accepting
and2

val(ρn) = val(Aq,τ , zn).

Observe that by (5.1), we obtain

lim
n→∞

val(Aq,τ , zn) = lim
n→∞

val(ρn) =∞. (5.2)

For n > 0 by ρ′n be denote the run of A on zn induced by ρn. Similarly as in the
previous case, runs ρ′n for n ∈ N can be combined into a run ρ of A on u. By the
construction of Aq,τ , ρ resets every counter infinitely often.

Let rc be a position in u where a counter c ∈ Γ is reset during ρ. Assume that rc is
contained in a word zn and n > 1 — we do not care about first two words.

Consider two cases:
(τ(c) =→): In that case ρ performs the same increments and resets of c as the runs ρn.

Therefore, val(c, ρ, rc) ≥ val(ρn).

2Since there are only finitely many runs of an automaton on a finite word, there always exists a run
realising the value val(Aq,τ , zn), no matter whether the value is finite or not.
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(τ(c) =←): If rc is not the first reset of c in ρ′n then the value of c before rc in ρ is
the same as in ρn. Assume that rc is the first reset of c in ρ′n. Note that ρn−1

performs an additional reset of c at the end of zn−1. This reset does not appear in ρ
so val(c, ρ, rc) ≥ val(ρn−1).

In all the cases
val(c, ρ, rc) ≥ min (val(ρn−1), val(ρn)) ,

so the values of c before successive resets tend to infinity by (5.2). It means that ρ is an
accepting run and u ∈ L(A).

6. Separation for ω-languages

In this section we show the main result of the paper. The technique is to lift the separation
results for T-regular languages of profinite words into the ω-word case.

Theorem 6.1. Let T ∈ {B,S}. If L1, L2 are disjoint languages of ω-words both recognised
by ωT-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction is effective.

The rest of the section is devoted to showing this theorem. As observed by Thomas
Colcombet, in the case of T = B the thesis can be proved directly, without referring to
profinite words. This simpler proof is presented in Section 7 with his kind permission.
However, the T = B case is also treated here for two reasons: first it reveals the symmetry
and generality of the “profinite approach”, second it can be used as a guideline for the more
complex case of T = S.

Let i ∈ {1, 2} and M i
trans denote the trace-monoid for an ωT-automaton Ai recognising

Li. Let hi = hiAi
be the canonical homomorphisms from Â∗ to M i

trans. Define Tpi as the

set of types ti = (si, ei) in the trace-monoid M i
trans.

For every type ti = (si, ei) ∈ Tpi define M i
ti
⊆ Â∗ as the T-regular language of profinite

words given by Theorem 5.1 for A = Ai and t = ti. By the statement of the theorem we

know that M i
ti
⊆ h−1

i (ei).

Definition 6.2. For a pair of types t1 = (s1, e1) ∈ Tp1, t2 = (s2, e2) ∈ Tp2, we say that t1, t2
are coherent if there exist finite words ws, we ∈ A∗ such that: hi(ws) = si and hi(we) = ei
for i = 1, 2.

An important application of Theorem 5.1 is the following lemma.

Lemma 6.3. If a pair of types t1 ∈ Tp1, t2 ∈ Tp2 is coherent then the languages M1
t1
,M2

t2
are disjoint.

Proof. Take coherent types t1 = (s1, e1) and t2 = (s2, e2).

Assume that there exists a profinite word w ∈ M1
t1
∩ M2

t2
. Since w ∈ h−1

i (ei) for
i = 1, 2, there exists a sequence W = w1, w2, . . . of finite words converging to w such that
h1(wn) = e1 and h2(wn) = e2 for all n > 0. Moreover, by coherency of t1, t2 there exists a
finite word w0 such that h1(w0) = s1 and h2(w0) = s2. Let u = w0w1w2 . . . We show that
u ∈ L1 ∩ L2 — a contradiction.
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Take i ∈ {1, 2}. Observe that u = w0w1 . . . is a decomposition of u of hi-type ti.
Additionally observe that the sequence W converges to w and w belongs to M i

ti
. So, by

Theorem 5.1 we have u ∈ Li.

Take a pair of coherent types t1, t2. Since the languages M1
t1
,M2

t2
are disjoint, we can

use Theorem 4.1 to find a separating profinite-regular language Rt1,t2 ⊆ Â∗ such that

M1
t1
⊆ Rt1,t2 and M2

t2
⊆ Rt1,t2

c
.

Now we can introduce the ω-regular language Lsep separating L1, L2.

Definition 6.4. Consider a coherent pair of types (t1, t2). Let St1,t2 be defined as follows:
St1,t2 is the language of ω-words u such that there exists a decomposition u = w0w1 . . . of
types t1, t2 with respect to h1, h2, such that every grouping of (wn)n∈N from some point on
belongs to the regular language Rt1,t2 .

Note that the above definition can be expressed in MSO so St1,t2 is an ω-regular lan-
guage.

Let Lsep be the ω-regular language defined as

Lsep =
⋃

t1,t2

St1,t2 ,

where the sum ranges over pairs of coherent types.

Clearly Lsep is an ω-regular language. What remains is to show the following lemma.

Lemma 6.5. The language Lsep separates L1 and L2.

Proof. First observe that L1 ⊆ Lsep. Take u ∈ L1. We want to construct a decomposition
W = w0, w1, . . . of u such that:

• the hi-type of W is ti for i = 1, 2 and some pair of coherent types (t1, t2) in Tp1 × Tp2,

• the sequence W is strongly convergent to some profinite word w ∈ Â∗.

The sequence W is obtained in steps. First we use Theeorem 2.7 to find a decomposition
of u with respect to both monoids M1

trans,M
2
trans at the same time. Such decomposition

satisfies the first bullet above. Then, using Theorem 2.12, we can group our sequence into
W in such a way that W is strongly convergent.

By Theorem 5.1, there exists a grouping Z of W that converges to a profinite word
z ∈ M1

t1
⊆ Rt1,t2 . But since W is strongly convergent, z = w. Therefore, by the strong

convergence of W , every grouping of W converges to w ∈ Rt1,t2 . So every grouping of u
from some point on belongs to Rt1,t2 as in the definition of Lsep. Therefore, u ∈ Lsep.

Now we show that L2 ∩ Lsep = ∅. Assume otherwise, that there exists an ω-word
u ∈ L2 ∩ Lsep. Since u ∈ Lsep, there exists a coherent pair of types t1, t2 such that u ∈
St1,t2 . Therefore, u can be decomposed as u = w0w1 . . . of types t1, t2 respectively. Let
W = w0, w1, . . . Because u ∈ L2 so by Theorem 5.1 there exists a grouping Z of W with
a limit z ∈ M2

t2
. But by the definition of St1,t2 almost all words in Z belong to Rt1,t2 so

z ∈ Rt1,t2 . Since Rt1,t2 ∩M2
t2

= ∅, we have the required contradiction.
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Now we can deduce the corollary from the introduction.

Corollary 6.6. If a given language of ω-words L and its complement Lc are both ωB-regular
(resp. ωS-regular) then L is (effectively) ω-regular.

Proof. Let L be a language of ω-words such that L and Lc are both ωT-regular. By
Theorem 6.1 there exists an ω-regular language Lsep that separates L and Lc. But in
that case Lsep = L so L is ω-regular.

7. A direct proof of separation for ωB-regular languages

As observed by Thomas Colcombet, the separation property for ωB-regular languages can
be shown directly, without referring to profinite words. This simpler proof is presented here
with his kind permission.

Let L(A) be an ωB-regular language recognised by an ωB-automaton A. Consider a
Büchi automaton A′ obtained from A by removing all the counter operations (similarly to
Lemma 4.5) and requiring that every counter is reset infinitely often.

Clearly, the language recognized by A′ is ω-regular and L(A) ⊆ L(A′).

Claim 7.1. If u = wzz . . . is an ultimately periodic ω-word in L(A′) then u ∈ L(A).

Proof. Observe that A′ has an ultimately periodic accepting run ρ on u. By the acceptance
condition of A′, every counter c of A is reset infinitely often during ρ. Since ρ is ultimately
periodic, the values of the counter c are bounded in ρ. Therefore, u ∈ L(A).

It means that, since an ω-regular language is entirely defined by the ultimately periodic
ω-words it contains [Büc62], L(A′) is the least ω-regular language that contains L(A). It also
means that it depends only on L(A) but not on the specific automaton A that recognizes
it. Let us call this language Closure(L(A)).

Consider now two ωB-regular languages of empty intersection L1 and L2. Assume
Closure(L1) intersects Closure(L2) then, since these languages are ω-regular, there is an
ultimately periodic ω-word in this intersection. But according to Claim 7.1, this ultimately
periodic ω-word belongs to both L1 and L2. A contradiction.

It follows that if L1 and L2 are disjoint then Closure(L1) (respectively Closure(L2))
are separators. Also, this construction shows that in order to construct a separator of two
ωB-regular languages, only one language needs to be known.
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languages. In STACS, pages 396–407, 2012.

[BC06] Miko laj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285–296, 2006.
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