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Abstract. We consider quantifier-free spatial logics, designed for qualitative spatial rep-
resentation and reasoning in AI, and extend them with the means to represent topological
connectedness of regions and restrict the number of their connected components. We in-
vestigate the computational complexity of these logics and show that the connectedness
constraints can increase complexity from NP to PSpace, ExpTime and, if component
counting is allowed, to NExpTime.

1. Introduction

The field of Artificial Intelligence known as qualitative spatial reasoning is concerned
with the problem of representing and manipulating spatial information about everyday,
middle-sized entities. In recent decades, much activity in this field has centred on spatial

logics—formal languages whose variables range over geometrical objects (not necessarily
points), and whose non-logical primitives represent geometrical relations and operations in-
volving those objects. (For a recent survey, see [10].) The hope is that, by using a formalism
couched entirely at the level of these geometrical objects, we can avoid the expressive—hence
computationally expensive—logical machinery required to reconstruct them in terms of sets
of points.

What might such qualitative spatial relations typically be? Probably the most inten-
sively studied collection is the set of six topological relations illustrated—for the case of
closed disc-homeomorphs in R2—in Fig. 1. These relations—DC (disconnection), EC (ex-
ternal connection), PO (partial overlap), EQ (equality), TPP (tangential proper part) and
NTPP (non-tangential proper part)—were popularized in the seminal treatments of spatial
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logics by Egenhofer and Franzosa [17] and Randell et al. [42]. Counting the converses of
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NTTP(X,Y ) TTP(X,Y ) EQ(X,Y ) PO(X,Y ) DC(X,Y )EC(X,Y )

X Y X and Y

Figure 1: The RCC-8-relations illustrated for disc-homeomorphs in R2

the two asymmetric relations TPP and NTPP, the resulting eight relations are frequently
referred to under the moniker RCC-8 (for region connection calculus). To see how this col-
lection of relations gives rise to a spatial logic, let r1, r2 and r3 be disc-homeomorphs in R2,
and suppose that r1, r2 stand in the relation TPP, while r1, r3 stand in the relation NTPP.
A little experimenting with diagrams suffices to show that r2, r3 must stand in one of the
three relations PO, TPP or NTPP. As we might put it, the RCC-8-formula

(

TPP(r1, r2) ∧ NTPP(r1, r3)
)

→
(

PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3)
)

is valid over the spatial domain of disc-homeomorphs in the plane: all assignments of such
regions to the variables r1, r2 and r3 make it true. Similar experimentation shows that, by
contrast, the formula

TPP(r1, r2) ∧ NTPP(r1, r3) ∧ EC(r2, r3),

is unsatisfiable: no assignments of disc-homeomorphs to r1, r2 and r3 make this formula
true.

More generally, let L be a formal language featuring some collection of predicates and
function symbols having (fixed) interpretations as geometrical relations and operations.
The formulas of L may then be interpreted over any collection of subsets of some space
T for which the relevant geometrical notions make sense: we refer to the elements of such
a domain of interpretation as regions. Let K be a class of domains of interpretation for
L. The notion of the satisfaction of an L-formula by a tuple of regions, and, derivatively,
the notions of satisfiability and validity of an L-formula with respect to K, can then be
understood in the usual way. We call the pair (L,K) a spatial logic. If all the primitives
of L are topological in character—as in the case of RCC-8—we speak of a topological logic.
For languages featuring negation, the notions of satisfiability and validity are dual in the
usual sense. The primary question arising in connection with any spatial logic is: how do
we recognize the satisfiable (dually, the valid) formulas? From an algorithmic point of view,
we are particularly concerned with the decidability and complexity of these problems.

A second example will make this abstract characterization more concrete. Constraints
featuring RCC-8 predicates give us no means to combine regions into new ones; and it is
natural to ask what happens when this facility is provided. Let T be a topological space.
A subset of T is regular closed if it is the topological closure of an open set in T . The
collection of regular closed sets forms a Boolean algebra with binary operations +, · and a
unary operation −. Intuitively, we are to think of r1 + r2 as the agglomeration of r1 and
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r2, r1 · r2 as the common part of r1 and r2, and −r as the complement of r. Further, the
RCC-8-relations illustrated above can be generalized, in a natural way, so that they apply to
regular closed subsets of any topological space T . (Details are given below.) By augmenting
the language RCC-8 with the function symbols +, · and −, we obtain the more expressive
formalism originally introduced in [57] under the name BRCC-8 (Boolean RCC-8), which we
may interpret over any algebra of regular closed subsets of some topological space. Again,
we can ask which of these formulas are satisfiable or valid over the class of domains in
question. For instance, the formula

EC(r1 + r2, r3)→
(

EC(r1, r3) ∨ EC(r2, r3)
)

,

asserting that, if the sum of two regions r1 and r2 stands in the relation of external con-
nection to a region r3, then one of the summands does as well, turns out to be valid; by
contrast, the formula

EC(r1, r2) ∧ EC(r1,−r2),

asserting that r1 is externally connected to both r2 and its complement, is unsatisfiable.
Arguably, the topological primitive with the longest pedigree in the spatial logic liter-

ature is the relation now generally referred to as C (for contact). Intuitively, two regions
are to be thought of as being in contact just in case they either overlap or have touching
boundaries. This relation was originally introduced by Whitehead ([56], pp. 294, ff.) under
the name extensive connection, and formed the starting point for his region-based recon-
struction of space. More recently, it has been studied within the framework of Boolean

contact algebras [12, 16]. It turns out that, in the presence of the operations +, · and −, all
of the RCC-8-relations can be expressed in terms of the relations of equality and contact,
and vice versa. Accordingly, and in order to unify these two lines of research, we shall
denote the language BRCC-8 by C in this paper.

One familiar topological property that has been notable by its absence from the spatial
logic literature, however, is connectedness (or, as it is occasionally called, ‘self-connect-
edness’ [6]). This lacuna is particularly surprising given the recognized significance of this
concept in qualitative spatial reasoning [10]. The availability of connectedness as a prim-
itive relation greatly expands the expressive power of topological logics, and in particular
increases their sensitivity to the underlying domain of quantification. For example, let the
connectedness predicate c be added to the language RCC-8, yielding the language RCC-8c;
and consider the RCC-8c-formula

∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

EC(ri, rj).

This formula states that regions r1, r2 and r3 are connected, and that any two of them touch
at their boundaries without overlapping. It is easily seen to be satisfiable over the domain
of regular closed sets in R2; however, it is not satisfiable over the domain of regular closed
sets in R. For a non-empty, regular closed subset of R is connected if and only if it is a non-
punctual, closed interval (possibly unbounded); and it is obvious that no three such intervals
can touch in pairs without overlapping. More tellingly, consider the RCC-8c-formula

c(r1) ∧
∧

1≤i<j≤4

EC(ri, rj),

stating that r1 is connected, and that any two of r1, . . . , r4 touch at their boundaries with-
out overlapping. This formula is satisfiable over the regular closed subsets of R, as shown in
Fig. 2. However, such an arrangement is only possible provided at least two of the regions
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r1 r3 r4r2r4

r2
r3

r4

Figure 2: A configuration of regular closed regions in R satisfying the RCC-8c-formula
c(r1) ∧

∧

1≤i<j≤4 EC(ri, rj): the region r1 is connected, while r2, r3 and r4 have
infinitely many components, with a common accumulation point on the boundary
of the r1-region.

r2, r3 and r4 have infinitely many components. If—for whatever reason—our spatial ontol-
ogy does not countenance regions with infinitely many components, the formula becomes
unsatisfiable. Thus, simple logics featuring the connectedness predicate are sensitive to the
underlying topological space, and indeed to the choice of subsets of that space we count
as regions. By contrast, we shall see below that topological logics lacking the connected-
ness predicate—even ones much more expressive than RCC-8—are remarkably insensitive
to the spatial domains over which they are interpreted. More generally, the above examples
give a hint of the interesting mathematical challenges which the property of connectedness
presents us with in the context of almost any topological logic.

It is surprising that only sporadic attempts have been made to investigate the expressive
power and computational complexity of topological logics able to talk about the connected-
ness of regions [8, 51, 57, 40]. The present paper rectifies this omission by introducing the
unary predicates c and c≤k (for k ≥ 1). We read c(r) as ‘region r is connected’ and c≤k(r)
as ‘region r has at most k connected components.’ Our aim is to provide a systematic
study of the impact of these predicates on the computational complexity of the satisfia-
bility problem for topological logics. We restrict attention in this paper to quantifier-free

languages—i.e. those in which formulas are Boolean combinations of atomic formulas—in
line with the constraint satisfaction approach of [47]—since first-order spatial logics are
generally undecidable [27, 14, 11, 36].1 For an overview of first-order topological logics,
see [41].

Specifically, we consider three principal base languages, characterized by various collec-
tions of topological primitives, and investigate the effect of augmenting each of these base
languages with the predicates c and c≤k. The weakest of these base languages, denoted B,
features only the region-combining operators +, · and −, together with the equality pred-
icate. Thus, B is essentially just the language of Boolean algebra equations: as such, this
language can express no really characteristic topological properties; further, its satisfiability
problem, when interpreted over the class of regular closed algebras of topological spaces, is
easily seen to be NP-complete. If, however, we add the connectedness predicate c, we ob-
tain the language Bc—a fully-fledged topological logic able to simulate (in a sense explained
below) the contact relation C, and hence all the RCC-8-relations. More ambitiously, we can

1One of the notable exceptions in this regard is Tarski’s theory of elementary geometry, which can be
regarded as a first-order spatial logic whose domain of interpretation is the set of points in the Euclidean
plane. The precise computational complexity of this logic—essentially the first-order fragment of the system
set out by Hilbert [29]—is still unknown, with the current lower bound being NExpTime [18] and the upper
bound ExpSpace [4].
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add to B all of the predicates c≤k (for k ≥ 1), to obtain the language Bcc. An indication of
the resulting increase in expressiveness is that the satisfiability problem for the same class
of interpretations jumps from NP to ExpTime (in the case of Bc) and NExpTime (in the
case of Bcc).

Our next base language is C (alias BRCC-8), which we encountered above. When
interpreted over the class of all regular closed algebras of topological spaces, the satisfiability
problem for this language is still NP-complete [57]. By extending C with the predicates c
and c≤k (for k ≥ 1), however, we obtain the more expressive languages Cc and Ccc, whose
satisfiability problems for the same class of interpretations again jump fromNP to ExpTime

and NExpTime, respectively.
Our final base language has its roots in the seminal paper by McKinsey and Tarski [37].

Following the modal logic tradition, we call it S4u, that is, Lewis’ system S4 extended
with the universal modality. (For more information on the relationship between spatial and
modal logic see [54, 21] and references therein.) The variables of this language may be taken
to range over any collection of subsets of a topological space (not just regular closed sets),
and its primitives include the operations of union, intersection, complement and topological
interior and closure. Since the property of being regular closed is expressible in S4u, this
language may be regarded as being more expressive than C. When interpreted over the
class of power sets of topological spaces, the satisfiability problem for S4u is PSpace-
complete. By extending S4u with the predicates c and c≤k (for k ≥ 1), however, we
obtain the languages S4uc and S4ucc, whose satisfiability problems, for the same class of
interpretations, once again jump to ExpTime and NExpTime, respectively.

Thus, the addition of connectedness predicates to topological logics leads to greater ex-
pressive power and higher computational complexity. However, this increase in complexity
is ‘stable’: over the most general classes of interpretations, the extensions of such differ-
ent formalisms as B and S4u with connectedness predicates are of the same complexity.
Another interesting result is that, by restricting these languages to formulas with just one
connectedness constraint of the form c(r), we obtain logics that are still in PSpace, while
two such constraints lead to ExpTime-hardness. In fact, if the connectedness predicate is
applied only to regions that are known to be pairwise disjoint, then it does not matter how
many times this predicate occurs in the formula: satisfiability is still in PSpace.

The rest of this paper is organized as follows. Section 2 presents the syntax and se-
mantics of our base languages (together with some of their variants), and Section 3 extends
these languages with connectedness predicates. Section 4 introduces the first main in-
gredient of our proofs—a representation theorem allowing us to work with Aleksandrov
topological spaces rather than arbitrary ones. Such spaces can be represented by Kripke
frames with quasi-ordered accessibility relations, and topological connectedness in these
frames corresponds to graph-theoretic connectedness in the (non-directed) graphs induced
by the accessibility relation. Based on this observation, we can prove the upper bounds
in a more-or-less standard way using known techniques from modal and description logic;
by contrast, the lower bounds are more involved and unexpected. Section 5 presents the
proofs of these complexity results. Section 6 considers the computational behaviour of our
topological logics when interpreted over various Euclidean spaces Rn, and lists some open
problems.
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.

.

(a) (b) (c)

X X◦ X◦−

Figure 3: (a) A closed set in the plane, (b) its interior and (c) the closure of its interior.
Note that X◦ ⊆ X◦− ⊆ X.

2. Background: topological logics without connectedness

A topological space is a pair (T,O), where T is a set and O a collection of subsets
of T containing ∅ and T , and closed under arbitrary unions and finite intersections. The
elements of O are referred to as open sets; their complements are closed sets. If O is clear
from context, we refer to the topological space (T,O) simply as T . Given any X ⊆ T ,
the interior of X, denoted X◦ , is the largest open set included in X, and the closure of
X, denoted X− , is the smallest closed set including X. These sets always exist. It is
convenient, where the space T is clear from context, to denote T by 1, the empty set by

0, and, for any X ⊆ T , the complement T \X by X. Evidently, X− = ((X)◦). If X ⊆ T ,
the subspace topology on X is the collection of sets OX = {O ∩X | O ∈ O}. It is readily
checked that (X,OX ) is a topological space.

Let T be a topological space. A subset of T is called regular closed if it is the closure
of an open set. We denote the set of regular closed subsets of T by RC(T ). It is a standard
result (for example, [31], pp. 25–27) that, for any topological space T , the collection of sets
RC(T ) forms a Boolean algebra, with the top and bottom elements 1 = T and 0 = ∅,
respectively, Boolean operations given by

X + Y = X ∪ Y, X · Y = (X ∩ Y )◦−, −X = (X)−, (2.1)

and Boolean order ≤ coinciding with the subset relation. In the context of the Euclidean
plane R2, the regular closed sets are—roughly speaking—those closed sets with no ‘filaments’
or ‘isolated points’ (Fig. 3). When dealing with the Boolean algebra RC(T ), for some
topological space T , we generally write X + Y in preference to X ∪ Y (though these are,
formally, equivalent); similarly, we generally write X ≤ Y in preference to X ⊆ Y .

We establish a general framework for defining the topological languages studied in this
paper. Fix a countably infinite set R. We refer to the elements of R as region variables (or,
more simply: variables) and denote them by r, s, etc. possibly with sub- or superscripts.
Let F be any set of function symbols (of fixed arities) and P any set of predicate symbols
(of fixed arities). In practice, the symbols in F and P may be assumed to have fixed
topological interpretations, along the lines indicated in Section 1. For example, F might
contain function symbols denoting the operations +, · and − on regular closed sets defined
in (2.1); likewise, P might contain predicates denoting the RCC-8 relations. The L(F,P )-
terms, τ , are given by the rule:

τ ::= r | fn(τ1, . . . , τn),

where r is a variable in R, fn a function symbol of arity n in F , and the τi L(F,P )-terms.
The L(F,P )-formulas, ϕ, are given by the rule:

ϕ ::= pn(τ1, . . . , τn) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ¬ϕ,
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where pn is a predicate symbol of arity n in P , and ϕ1, ϕ2 are L(F,P )-formulas. The
topological language L(F,P ) is the set of L(F,P )-formulas. We shall write L in place of
L(F,P ) if F and P are understood. As usual, formulas of the form pn(τ1, . . . , τn) and
¬pn(τ1, . . . , τn) are called literals. Notice that, for the purposes of this paper, topological
languages involve no quantifiers.

We now turn to the semantics of these languages. A topological frame is a pair of the
form (T, S), where T is a topological space, and S ⊆ 2T . We refer to the elements of S
as regions; there is no requirement for S to be closed under any operations. A topological

model on (T, S) is a triple M = (T, S, ·M), where ·M is a map from R to S, referred to
as a valuation. Assuming the function symbols in F and predicates in P to have standard
interpretations, any topological model M determines the truth-value of an L-formula in the
obvious way. We write M |= ϕ if the formula ϕ is true in M.

Let K be a class of topological frames and ϕ a formula of a topological language L. We
say that ϕ is satisfiable over K if M |= ϕ for some topological frame (T, S) in K and some
topological model M on (T, S); dually, ϕ is valid over K if M |= ϕ for every topological
frame (T, S) in K and every topological model M on (T, S). As usual, ϕ is valid if and only
if ¬ϕ is not satisfiable. The satisfiability problem for L-formulas over topological frames in
K is the decision problem for the set

Sat(L,K) =
{

ϕ ∈ L | ϕ is satisfiable over K
}

,

that is: given an L-formula ϕ, decide whether it is satisfiable in a topological model based
on a topological frame from K. A topological logic is a pair (L,K), where L is a topological
language (whose primitives are taken to have fixed topological interpretations) and K a
class of topological frames.

In the sequel, except where indicated to the contrary, we generally speak of frames,
models, logics etc., taking the qualifier ‘topological’ to be implicit.

The primary motivation for introducing the notion of a frame (T, S) is to provide a
mechanism for confining attention to those subsets S of the space T which we regard as
bona fide regions. For example, it is frequently observed (see, e.g., [22]) that no clear sense
can be given to the question of whether a given physical object occupies a topologically
closed, semi-closed or open region of space. Consequently, spatial logics in AI conventionally
identify regions differing only with respect to boundary points. A convenient way to finesse
the issue of boundary points in a topological space T is to restrict attention to the regular
closed sets RC(T ). For, given any closed subset X of T , there exists a unique Y ∈ RC(T )
such that X◦ ⊆ Y ⊆ X (see Fig. 3). Moreover, these regular closed sets, as noted above,
form a Boolean algebra with +, · and − providing reasonable reconstructions of the intuitive
operations of agglomeration, intersection, and complementation, respectively. In this paper,
we shall be principally concerned with the classes of frames All and RegC given by

All = {(T, 2T ) | T a topological space},

RegC = {(T,RC(T )) | T a topological space}.

One word of caution: the Boolean algebras RC(R2) and RC(R3) include many sets which
are not at all obviously suited to model regions occupied by physical objects. For this
reason, we may decide to interpret our languages over topological frames (T, S) where S
is a sub-algebra of RC(T ), a restriction which turns out to have interesting mathematical
consequences (see, e.g., [41]).
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With these semantic preliminaries behind us, we now survey some of the most familiar
topological logics occurring in the AI literature. This survey will occupy the remainder of
this section. Remember: our aim in the sequel is to investigate the effect of increasing the
expressive resources available to these logics by adding predicates expressing connectedness
and related notions.

The logic RCC-8: We begin with a formal account of the topological language RCC-8,
which we encountered in Section 1. As a preliminary, we define the following six binary
relations on RC(T ), where T is any topological space:

DC(X,Y ) iff X ∩ Y = ∅,
EC(X,Y ) iff X ∩ Y 6= ∅ but X◦ ∩ Y ◦ = ∅,
PO(X,Y ) iff X◦ ∩ Y ◦ , X◦ \ Y and Y ◦ \X are all non-empty,
EQ(X,Y ) iff X = Y,

TPP(X,Y ) iff X ⊆ Y but X 6⊆ Y ◦ and Y 6⊆ X,
NTPP(X,Y ) iff X ⊆ Y ◦ but Y 6⊆ X.

(2.2)

All of these relations except TPP and NTPP are symmetric. Counting the converses of TPP
and NTPP, we thus obtain eight binary relations altogether: these eight relations are easily
seen to be jointly exhaustive and mutually exclusive over non-empty elements of RC(T ). In
Fig. 1, we illustrated them in the special case where the relata are closed disc-homeomorphs
in the plane. We remark in passing that, when restricted to closed disc-homeomorphs in
the plane, these relations are actually the atoms of a finite relation algebra [15, 35].

We now define the language RCC-8 by

RCC-8 = L(∅, {DC,EC,PO,EQ,TPP,NTPP}),

with the symbols DC, EC, PO, EQ, TPP, NTPP taken to be binary predicates. There are
no function symbols; so RCC-8-terms are simply variables.

We always interpret this language over (some sub-class of) RegC—that is: variables are
always taken to range over (certain) regular closed sets of (certain) topological spaces. The
semantics for RCC-8 may then be given by specifying the interpretations of the predicates
in obvious way, thus:

M |= DC(r1, r2) iff DC(rM1 , r
M
2 ),

M |= EC(r1, r2) iff EC(rM1 , r
M
2 ),

etc.

Note the overloading of the symbols DC, EC, etc. here: on the left-hand sides of these
equations, they are predicates of RCC-8; on the right-hand side, they denote the relations
on RC(T ) defined in (2.2). Since these predicates will always be used with their standard
meanings, no confusion need arise. In the literature, the language RCC-8 is sometimes sub-
ject to the additional restriction that variables range only over non-empty regular closed
subsets of the space in question. We do not impose this requirement, remarking, how-
ever, that non-emptiness is anyway expressible in RCC-8 (on our interpretation) by adding
conjuncts of the form ¬DC(r, r).

It is known that Sat(RCC-8,RegC) is NP-complete [43]. (Proofs of all the complexity
results mentioned in this section are discussed in Section 4.)
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The logic BRCC-8: Since, as we have observed, the regular closed subsets of a topological
space form a Boolean algebra, it makes sense to augment RCC-8 with function symbols de-
noting the obvious operations and constants of this Boolean algebra. The language BRCC-8
(for Boolean RCC-8, [57]) is defined by:

BRCC-8 = L({+, ·,−,0,1}, {DC,EC,PO,EQ,TPP,NTPP}),

where the function symbols + and · are binary, − is unary, and 0 and 1 are nullary (i.e. in-
dividual constants). Again, we confine attention to the class of frames RegC, with the
function symbols interpreted as the obvious operations on regular closed sets. Formally:

(τ1 + τ2)
M = τM1 + τM2 , (−τ)M = −(τM), 0M = 0,

(τ1 · τ2)
M = τM1 · τ

M
2 , 1M = 1.

Note the overloading of the symbols: on the left-hand side of these equations, they are
function symbols of BRCC-8; on the right-hand side, they denote the corresponding Boolean
algebra operations in RC(T ) as defined in (2.1). The predicates are interpreted in the same
way as for RCC-8.

Despite its increased expressive power, BRCC-8 is in the same complexity class as
RCC-8—at least when interpreted over arbitrary topological spaces. That is: the problem
Sat(BRCC-8,RegC) is NP-complete [57]. (However, as we shall see below, this situation
changes even under very mild restrictions on the class of frames.)

The logic C: We can re-formulate BRCC-8 more elegantly using the binary predicates =
(equality) and C (contact). The language C is defined by:

C = L({+, ·,−,0,1}, {C,=}).

As with RCC-8 and BRCC-8, we confine our attention to the class of frames RegC. The
equality predicate = denotes identity (as usual), and the contact predicate C is interpreted
as follows:

M |= C(τ1, τ2) iff τM1 ∩ τ
M
2 6= ∅.

That is: two regions are taken to be in contact just in case they intersect. Notice that
C(τ1, τ2) is not equivalent to the condition τ1 ·τ2 6= 0 (a shorthand for ¬(τ1 ·τ2 = 0)), which
states that the interiors of τ1 and τ2 intersect. In the context of any logic involving the
function symbols +, ·, −, 0, 1 and the equality predicate, we standardly write τ1 ≤ τ2 as
an abbreviation for τ1 · (−τ2) = 0; ¬(τ1 ≤ τ2) is abbreviated by τ1 � τ2.

Evidently, C(τ1, τ2) is equivalent to ¬DC(τ1, τ2), and = is just another symbol for EQ;
hence, BRCC-8 is at least as expressive as C. Conversely, it is easy to verify that the four
remaining RCC-8-relations can easily be equivalently expressed in C, as follows:

EC(τ1, τ2) ↔ (τ1 · τ2 = 0) ∧ C(τ1, τ2),
PO(τ1, τ2) ↔ (τ1 · τ2 6= 0) ∧ (τ1 � τ2) ∧ (τ2 � τ1),

TPP(τ1, τ2) ↔ (τ1 ≤ τ2) ∧ C(τ1,−τ2) ∧ (τ2 � τ1),
NTPP(τ1, τ2) ↔ ¬C(τ1,−τ2) ∧ (τ2 � τ1).

Hence, we may regard the languages C and BRCC-8 as equivalent.
The predicate C has an interesting history. Originally introduced by Whitehead [56]

under the name ‘extensive connection,’ it provided the inspiration for many of the early
approaches to topological logics in AI. To avoid confusion with the familiar topological
property of connectedness, Whitehead’s relation is now generally referred to as contact.
Investigation of the contact-structure of the regular closed algebras of topological spaces
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gave rise to the study of so-called Boolean connection algebras (BCAs). The relationship
between BCAs and the topological spaces that generate them is now well-understood [49,
16, 12, 13]. Our logic C (that is: BRCC-8) is, in essence, the quantifier-free fragment of the
first-order theory of BCAs. For an up-to-date account of this work, see [3].

The logic Cm: As formulas in C are built from C-terms using the binary predicates τ1 = τ2
and C(τ1, τ2), they are not capable of expressing, for example, the predicate EC3(τ1, τ2, τ3)
stating that three regions τ1, τ2, τ3 are externally connected and have some common border.
One way to extend the expressive power of C is to generalize the contact predicate and
consider its extension Cm with arbitrary k-ary contact relations Ck(τ1, . . . , τk), for k ≥ 2.
The language Cm is defined by:

Cm = L({+, ·,−,0,1}, {Ck | k ≥ 2} ∪ {=}).

Again, we confine attention to the class of frames RegC. The predicates Ck are interpreted
as follows:

M |= Ck(τ1, . . . , τk) iff τM1 ∩ · · · ∩ τ
M

k 6= ∅.

The ternary predicate EC3(τ1, τ2, τ3) above can now be expressed in a straightforward way:

EC3(τ1, τ2, τ3) = C3(τ1, τ2, τ3) ∧ EC(τ1, τ2) ∧ EC(τ1, τ3) ∧ EC(τ2, τ3),

which is not expressible in C. Obviously, the predicates C and C2 have identical semantics;
thus, C is a sub-language of Cm. Again, the increased expressive power makes no difference
to the complexity class: Sat(Cm,RegC) is still NP-complete [21].

The logic B: We mention at this point a sub-language of C so inexpressive that no distinc-
tively topological facts can be expressed in it, but which will nevertheless prove significant
in the sequel. The language B, again interpreted over sub-classes of RegC, is defined by:

B = L({+, ·,−,0,1}, {=}).

Thus, B is the language of the variety of Boolean algebras. In the present context, it can
be seen as capturing the essential content of mereology—the logic of ‘part-whole’ relations.
(For a discussion of the relationship between mereology and Boolean algebra, see [53, 28].)
Trivially, Sat(B,RegC) is NP-complete.

The logic S4u: Returning to matters topological, we come to the most expressive topo-
logical logic to have been considered in the literature. The language S4u is defined by:

S4u = L({∪,∩, · , ·◦ , ·− ,0,1}, {=}),

and we write τ1 ⊆ τ2 as an abbreviation for τ1 ∩ τ2 = 0. We interpret the terms of this
language as follows:

(τ1 ∩ τ2)
M = τM1 ∩ τ

M
2 , (τ)M = τM = T \ τM, 0M = 0 = ∅,

(τ1 ∪ τ2)
M = τM1 ∪ τ

M
2 , (τ◦)M = (τM)◦ , 1M = 1 = T,

(τ−)M = (τM)− ,

(2.3)

where M is a model over some frame (T, S). As before, we have deliberately equivocated
between function symbols in our formal language and the operations they denote. Since
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these operations do not in general preserve the property of being regular closed, it is un-
natural to confine attention to the frame class RegC. Accordingly, we standardly interpret
S4u over the class All of all frames.

The richer term-language of S4u means that, even though = is the only predicate,
we are still able to formulate distinctively topological (not just mereological) statements.
Consider, for example, the formula

(

r◦1 ∩ r
−
2 6= 0

)

→
(

r◦1 ∩ r2 6= 0
)

.

This formula states that, if an open set r◦1 intersects the closure of a set r2, then it also
intersects r2. Thus, it is valid over the class of frames All.

The language S4u may be regarded as the richest of all the languages considered here,
in the following sense. Given a Cm-term τ , we define inductively the S4u-term τ † as follows:

1† = 1, 0† = 0, r† = r◦− (r a variable),

(−τ1)
† =

(

τ †1
)−
, (τ1 · τ2)

† = (τ †1 ∩ τ
†
2)

◦−
, (τ1 + τ2)

† = τ †1 ∪ τ
†
2 .

If ϕ is a Cm-formula, let ϕ† be the S4u-formula obtained by replacing every occurrence of

τ1 = τ2 in ϕ with τ †1 = τ †2 and every occurrence of Ck(τ1, . . . , τk) in ϕ with τ †1 ∩ · · · ∩ τ
†
k 6= 0.

For any topological space T , the regular closed subsets of T are exactly the sets of the form
X◦− , where X ⊆ T . Hence, as the variable r ranges over 2T , the S4u-term r† = (r◦)−

ranges over exactly the regular closed subsets of T . Using this observation, it is readily
checked that ϕ is satisfiable over a frame (T,RC(T )) if and only if ϕ† is satisfiable over the
frame (T, 2T ). Thus, we may informally regard any logic (L,RegC), where L is a fragment
of Cm, as contained within the logic (S4u,All).2

Furthermore, the logic (S4u,All) has essentially the same expressive power as the
modal logic S4 (under McKinsey and Tarski’s [37] topological interpretation) extended
with the universal and existential modalities ∀ and ∃ of [24]. More precisely, define S4u to
be the set of terms formed using the variables in R together with the function symbols

∪, ∩, · , ·◦ , ·− , ∀, ∃, 0, 1.

Here, ∃ and ∀ are unary, with the remaining symbols having their usual arities. Given any
interpretation M, we define τM for any S4u-term τ using (2.3) together with:

(∃τ)M =

{

T if τM 6= ∅,

∅ if τM = ∅;
(∀τ)M =

{

T if τM = T ,

∅ if τM 6= T .

Thus, ∃ is interpreted as the discriminator function, and ∀ as its dual. We say that an S4u-
term τ is valid if τM = T for any model M over any topological frame (T, S). By replacing
each equality τ1 = τ2 with the term ∀

(

(τ1∩τ2)∪ (τ1∩τ2)
)

and the Boolean connectives with
the corresponding function symbols, we obtain a validity-preserving embedding of S4u into
S4u-terms. On the other hand, it is well known (see, e.g., [1, 30]) that every S4u-term can
be equivalently transformed to a term without occurrences of ∀ and ∃ in the scope of ◦ , − , ∀
and ∃. Any such term can easily be rewritten as an equivalent S4u-formula by replacing ∀τ
and ∃τ with τ = 1 and τ 6= 0, respectively, and by replacing Boolean function symbols with
the corresponding Boolean connectives. (Note, however, that this transformation in general
results in an exponential increase in size.) As the validity and satisfiability problems for

2That RCC-8 is a simple fragment of S4u was first observed by Bennett [5]; see also [45, 39] (in fact,
RCC-8 and BRCC-8 can be embedded into the modal logic S5 [58]).
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both S4 and S4u are known to be PSpace-complete [34, 39, 2], it follows that the problem
Sat(S4u,All) is PSpace-complete as well.

In this section, we introduced the languages RCC-8, B, BRCC-8 (=C), Cm and S4u.
The variables of these languages range over certain distinguished subsets of some topological
space, and their non-logical symbols denote various fixed primitive topological relations and
operations. The topological space in question and its collection of distinguished subsets
together form a (topological) frame; and the pair of a language and a class of frames is a
(topological) logic. In particular, we interpreted RCC-8, B, BRCC-8 (=C) and Cm over the
frame-class RegC, and the language S4u over the frame-class All. We explained how all
of these logics can be seen as fragments of (S4u,All), which has essentially the expressive
power of the modal logic S4u. We observed that the complexity of the satisfiability problems
for all of these logics is known. However, none of the above languages can express the
property of being a connected region. Our question is: what happens to the complexity of
satisfiability when that facility is provided?

3. Topological logics with connectedness

A topological space T is connected just in case it is not the union of two non-empty,
disjoint, open sets. Note that this definition can be expressed by the following S4u-formula
(see [51]):

(

r◦ ∪ (r)◦ = 1
)

→
(

(r = 1) ∨ (r = 0)
)

.

A subset X ⊆ T is connected in T if the topological space X (with the subspace topology) is
connected. If X ⊆ T , a maximal connected subset of X is called a (connected) component of
X. Every set is the disjoint union of its components (of which there is always at least one);
a set is connected just in case it has exactly one component. If T and T ′ are topological
spaces, a function f : T → T ′ is continuous if the inverse image under f of every open subset
of T ′ is open in T (equivalently: if the inverse image of every closed subset of T ′ is closed
in T ). The image of a connected set under a continuous function f is always connected; in
fact, if X ⊆ T has k ≥ 1 components then f(X) has at most k components.

The simplest way to introduce connectedness into topological logics is to restrict at-
tention to frames over connected topological spaces. For example, consider the classes of
frames given by

Con = {(T, 2T ) | T a connected topological space},

ConRegC = {(T,RC(T )) | T a connected topological space}.

Thus, it makes sense to consider the problems Sat(L,ConRegC) for L any of RCC-8, B, C
or Cm, as well as the problem Sat(S4u,Con). An alternative, and more flexible, approach,
however, is to expand the languages in question. Let c be a unary predicate. If L is one of
the topological languages introduced in Section 2, denote by Lc (L with connectedness) the
result of augmenting the topological primitives of L by c. Formally, if L = L(F,P ),

Lc = L(F,P ∪ {c}).

The predicate c is given the expected fixed interpretation as follows:

M |= c(τ) iff τM is connected.

Thus, from the languages RCC-8, B, C, Cm and S4u, we obtain RCC-8c, Bc, Cc, Cmc, S4uc.
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Consider, for example, the language Bc, which includes the formula
(

c(r1) ∧ c(r2) ∧ (r1 · r2 6= 0)
)

→ c(r1 + r2). (3.1)

It is a well-known fact that, if T is a topological space, any two connected subsets of
T with non-empty intersection have a connected union; further, if X is connected, and
X ⊆ Y ⊆ X− , then Y is also connected. But if r and s are regular closed subsets of T ,
then r◦ ∪ s◦ ⊆ r + s ⊆ (r◦ ∪ s◦)− . It follows that (3.1) is valid over RegC. At the other
end of the expressive spectrum, consider the language S4uc, which includes the formula

(

c(r1) ∧ (r1 ⊆ r2) ∧ (r2 ⊆ r
−
1 )

)

→ c(r2). (3.2)

Using one of the facts we have just alluded to, it follows that (3.2) is valid over All.
The predicate c can be generalized in the following way. Let c≤k be a unary predicate,

where k ≥ 1 is represented in binary. If L is one of the languages introduced in Section 2,
we denote by Lcc (L with component counting) the result of augmenting the topological
primitives of L by all of the predicates c≤k (k ≥ 1). Formally, if L = L(F,P ),

Lcc = L(F,P ∪ {c≤k | k ≥ 1}).

The predicates c≤k are given fixed interpretations as follows, where M is a model over some
frame (T, S):

M |= c≤k(τ) iff τM has at most k components in T .

Thus, from the languages RCC-8, B, C, Cm and S4u, we obtain RCC-8cc, Bcc, Ccc, Cmcc,
S4ucc. We write ¬c≤k(τ) as c≥k+1(τ) and abbreviate c≤1(τ) by c(τ). Thus, we may regard
Lc as a sub-language of Lcc. To illustrate, consider the Bcc-formula

(

c≤k(r1) ∧ c≤l(r2) ∧ (r1 · r2 6= 0)
)

→ c≤l+k−1(r1 + r2). (3.3)

Using the same argument as for (3.1), this formula is easily shown to be valid over RegC.
For rich topological languages, such as S4uc, the predicates c

≤k give us—in some sense—
no expressive power that c does not already give us. Let τ be an S4uc-term and r1, . . . , rk
variables not occurring in τ . Consider the S4uc-formulas

(

τ =
⋃

1≤i≤k

ri
)

∧
∧

1≤i≤k

c(ri), (3.4)

(

τ =
⋃

1≤i≤k+1

ri
)

∧
∧

1≤i≤k+1

(

ri 6= 0
)

∧
∧

1≤i<j≤k+1

(

τ ∩ r−i ∩ r
−
j = 0

)

(3.5)

together with some model M over a topological frame (T, S). Let us assume that (T, S)
has the property that, if r ∈ S, and s is a component of r, then s ∈ S—a very natural
requirement for topological frames. If (3.4) is true in M, then τM is seen to have at
most k components. Conversely, if τM has at most k components, then, by modifying the
regions assigned to r1, . . . , rk if necessary, we easily obtain a model M′ satisfying (3.4). It
follows that, if ϕ is an S4ucc-formula, then any instance of c≤k(τ) having positive polarity
may be equisatisfiably replaced by (3.4) (with fresh variables r1, . . . , rk). Similarly, any
instance of c≥k(τ) having positive polarity may be equisatisfiably likewise replaced by (3.5).
However, while the number of symbols in the predicate c≤k is proportional to log k, the
number of symbols in (3.4) is proportional to k. That is: S4uc-formulas are in general
exponentially longer than the S4ucc-formulas they replace. So, although the component-
counting predicates c≤k can usually be eliminated in this way, doing so may affect the
complexity of the satisfiability problem.
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The main contribution of this paper is to determine the computational complexity of the
satisfiability problems for topological logics based on the languages Lc and Lcc, where L is
any of the languages introduced in Section 2. To date, there are only two known complexity
results for such logics. On the one hand, according to [40], satisfiability of S4ucc-formulas
over All is NExpTime-complete, which gives the NExpTime upper bound for all of the
other logics considered in this section. On the other, according to [57], satisfiability of
C-formulas is PSpace-complete over ConRegC.

4. Aleksandrov spaces.

The close connection between spatial logics and the modal logic S4u mentioned above
suggests that instead of topological semantics one may try to employ Kripke semantics
(which gives rise to topological spaces with a very transparent structure) and the corre-
sponding modal logic machinery.

Recall that Kripke frames for S4u are pairs of the form (W,R), whereW is a set, and R
is a reflexive and transitive relation on W ; such frames are also called quasi-orders. Every
quasi-order (W,R) can be regarded as a topological space by declaring X ⊆ W to be open

if and only if X is upward closed with respect to R, that is, if x ∈ X and xRy then y ∈ X.
In other words, for every X ⊆W ,

X◦ =
{

x ∈ X | ∀y ∈W (xRy → y ∈ X)
}

.

The most important property distinguishing topological spaces T induced by quasi-orders is
that arbitrary (not only finite) intersections of open sets in T are open. Topological spaces
with this property are called Aleksandrov spaces. It is also known (see, e.g., [7]) that every
Aleksandrov space is induced by a quasi-order.

Another important feature of such topological spaces is that the topological notion
of connectedness in T coincides with the graph-theoretic notion of connectedness in the
undirected graph induced by (W,R). More precisely, one can easily check that a set X ⊆W
is connected in T if and only if, for any points x, y ∈ X, there is a path x = x1, . . . , xn = y
such that, for all i, 1 ≤ i < n, we have xi ∈ X and either xiRxi+1 or xi+1Rxi.

Henceforth, we shall identify an Aleksandrov space with the quasi-order generating it,
alternating freely between topological and graph-theoretic perspectives. Denote by Alek

the class of finite Aleksandrov frames. A topological model based on an Aleksandrov space
will be called an Aleksandrov model.

The next lemma, originating in [37] and [33], shows that, for many topological logics, it
suffices to work with finite Aleksandrov spaces. It can be proved by the standard filtration
argument (see, e.g., [9]).

Lemma 4.1. For every finite set Θ of S4u-terms closed under subterms and every topo-

logical model M = (T, S, ·M), there exist an Aleksandrov model A = (TA, 2
TA , ·A) and a

continuous function f : T → TA such that |TA| ≤ 2O(|Θ|) and τA = f(τM), for every τ ∈ Θ.

This lemma has a number of important consequences. First, it follows immediately that
Sat(S4u,All) = Sat(S4u,Alek). Using the translation ·† of B-terms and Cm-formulas into
S4u defined in Section 2, we obtain Sat(Cm,RegC) = Sat(Cm,Alek ∩ RegC), etc. The
PSpace upper bound for Sat(S4u,All) follows from Lemma 4.1 and the fact (well-known
in modal logic) that the model A in Lemma 4.1 can be ‘unravelled’ into a forest of trees of
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Figure 4: Quasi-saw.

clusters,3 with the length of branches not exceeding the maximal size of terms in Θ—the
so-called tree-model property of S4u. Finally, the fact that f is continuous guarantees that
the number of components in f(τM) does not exceed the number of components in τM,
which will be used in the case of logics with connectedness predicates.

For the topological logics with B-terms only, say Cmcc, even simpler Aleksandrov models
are enough. Call a quasi-order (W,R) a quasi-saw if W = W0 ∪W1, for some disjoint W0

and W1, and R is the reflexive closure of a subset of W1×W0. In this case we also say that
the points in Wi are of depth i in (W,R); see Fig. 4. Aleksandrov models over quasi-saws
will be called quasi-saw models.

Lemma 4.2. For every finite Aleksandrov model A = (TA,RC(TA), ·
A), with TA induced

by a quasi-order (W,RA), there is a quasi-saw model B = (TB ,RC(TB), ·B) such that TB
is induced by (W,RB) with RB ⊆ RA and, for every B-term τ , (i) τB = τA, and (ii) τ has

the same number of components in A and B.

Proof.Let W0 be the set of maximal points in (W,RA)—the set of points from the final
clusters in (W,RA), to be more precise—i.e.,

W0 = {v ∈W | vRAu implies uRAv, for all u ∈W}.

In every final cluster C ⊆ W0 with |C| ≥ 2 we select some point and denote by U the set
of all such selected points. Then we set V0 = W0 \ U and V1 = W \ V0, and define RB to
be the reflexive closure of RA ∩ (V1 × V0). Clearly, (W,RB) is a quasi-saw, with V0 and V1
being the sets of points of depth 0 and 1, respectively. For every variable r, let rB = rA.
As the extension of a B-term τ in A is regular closed and A is finite, it is straightforward
to show:

if y ∈ τA then there exists z ∈ V0 such that yRAz and z ∈ τA. (4.1)

We now prove (i) and (ii) by induction on the construction of τ .

(i) The basis of induction follows from the definition.
Case τ = −τ1. We have x ∈ ((τ1)

−)A iff

[def.] ∃y ∈W
(

xRAy and y /∈ τA1
)

iff [(4.1)] ∃y ∈ V0
(

xRAy and y /∈ τA1
)

iff [IH] ∃y ∈ V0
(

xRBy and y /∈ τB1
)

iff [def.] x ∈ ((τ1)
−)B.

Case τ = τ1 + τ2. We have (τ1 + τ2)
A = τA1 ∪ τ

A
2 = τB1 ∪ τ

B
2 = (τ1 + τ2)

B, with the
middle equation following by IH.

3A cluster in a quasi-order (W,R) is any set of the form {x ∈ W | xRy and yRx}, for some y ∈ W .
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Figure 5: k-fork for k = 4.

(ii) As RB ⊆ RA, the number of connected components of τA in A cannot be greater than
the number of components of τB in B. Conversely, suppose that X is a component of
τA in A. As τA is regular closed, it is the closure under R−

A of the set of final clusters
in X. It follows immediately from the definition of RB that all non-final points in
X have precisely the same RB- and RA-accessible final points. This means that X is
connected in (W,RB) as well.

Recall now that every satisfiable Cm-formula is satisfiable in a finite Aleksandrov model,
and so, by Lemma 4.2, in a quasi-saw model (over RegC). The following lemma imposes
restrictions on the branching factor and the number of points of depth 1 in such models.
Let us call a k-fork any partial order of the form depicted in Fig. 5.

Lemma 4.3. If a Cm-formula ϕ is satisfiable (over RegC) then it is satisfiable in a quasi-

saw model over the disjoint union of n-many ki-forks, 1 ≤ i ≤ n, where n ≤ |ϕ| and each

ki does not exceed the largest value k such that the predicate Ck occurs in ϕ.

Proof. Without loss of generality, we may assume that all the literals in ϕ involving equality
are of the form τ = 0 or τ 6= 0. Suppose that M |= ϕ and Λ is the set of all literals of ϕ that
are true in M. By Lemmas 4.1 and 4.2, there is a quasi-saw model B = (TB ,RC(TB), ·

B)
with TB induced by a partial order (WB, RB) and B |= Λ (and so B |= ϕ).

We construct a quasi-saw model A = (TA,RC(TA), ·
A) induced by a disjoint union of

forks (WA, RA) and a map f : TA → TB as follows:

• for each literal (τ 6= 0) ∈ Λ, we select a point x ∈ τB of depth 0, add a fresh 1-
fork ({u, v}, {(u, v)}∗) to (WA, RA), where R

∗ denotes the reflexive closure of R, and set
f(u) = x, f(v) = x;
• for each literal Ck(τ1, . . . , τk) ∈ Λ, either (i) there is a point x of depth 0 in B with
x ∈ τB1 ∩· · ·∩τ

B

k or (ii) there exists a point y of depth 1 in B such that y ∈ τB1 ∩· · ·∩τ
B

k , in

which case there are (not necessarily distinct) points x1, . . . , xk of depth 0 with xi ∈ τ
B
i ; in

the former case we add a fresh 1-fork ({u, v}, {(u, v)}∗) to (WA, RA) and set f(u) = x and
f(v) = x; in the latter case we add a fresh k-fork ({u, v1, . . . , vk}, {(u, vi) | 1 ≤ i ≤ k)}∗)
to (WA, RA) and set f(u) = y and f(vi) = xi, for 1 ≤ i ≤ k.

Define ·A by taking v ∈ rA iff f(v) ∈ rB, for every v of depth 0, and u ∈ rA iff there is
v ∈ rA of depth 0 with uRAv, for every u of depth 1. By definition, rA is regular closed in
A, and it is easily checked that A |= Λ.

As an immediate consequence of Lemma 4.3 we obtain the following:

Corollary 4.4. Sat(Cm,RegC), Sat(C,RegC), Sat(B,RegC) and Sat(RCC-8,RegC) are
all NP-complete.

The reader may wonder at this point whether lower complexities can be achieved if
we consider various sub-logics of the logics mentioned in this corollary. The answer is that
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they can. For example, maximal tractable (polynomial) fragments of RCC-8 were identified
in [44, 46], and it was shown in [26] that the problem of determining the satisfiability of a
conjunction of atomic formulas of RCC-8 over the class RegC is NLogSpace-complete.

We close this section with some remarks about logics interpreted over connected spaces.
The language C can distinguish between connected and disconnected spaces, because the
formula

¬C(r,−r) ∧ (r 6= 0) ∧ (r 6= 1) (4.2)

is satisfiable, but only in models over disconnected spaces. By contrast, the languages B
and RCC-8 cannot distinguish between connected and disconnected spaces:

Sat(RCC-8,RegC) = Sat(RCC-8,ConRegC),

Sat(B,RegC) = Sat(B,ConRegC).

Indeed, suppose that an RCC-8-formula ϕ is satisfied in a quasi-saw model A with the
underlying quasi-order (WA, RA) constructed in the proof of Lemma 4.3. To make this
model connected, we can simply add to WA a new point w of depth 0 and extend RA by
the arrows uRAw, for all u of depth 1 in A. It is easy to see that, under the same valuation
as in A, ϕ is satisfiable in the extended connected model. For the less expressive language
B, it suffices to add a new point of depth 1 to A and connect it to all points of depth 0;
details are left to the reader.

On the other hand, equipping even the weakest spatial logics such as RCC-8 or B with
the connectedness predicates (or even just interpreting them over connected spaces) inval-
idates various model-theoretic properties employed above—most notably the ‘tree-model’
property, heavily used in the proof of Lemma 4.3. Consider, for example, the Bc-formula
¬c(r) ∧ c(1). Its smallest satisfying quasi-saw model is illustrated in Fig. 6. Note that
this model cannot be transformed to a forest, because the underlying frame must stay con-
nected. Indeed, as we shall see in the next section, to satisfy Bc-formulas, or C-formulas
in connected spaces, quasi-saw models with exponentially many points in the length of the
formulas may be required. It is these phenomena that are responsible for the increased
complexity of satisfiability which we shall encounter below.

5. Computational complexity

We are now in a position to prove tight complexity results for spatial logics in the range
between Bc and S4ucc. The NExpTime upper bound for all the logics considered in this
paper was obtained in [40]:

Theorem 5.1 ([40]). Sat(S4ucc,All) is in NExpTime.

The idea of the proof is based on the following observations. Let ϕ be any S4ucc-
formula. Evidently, ϕ is satisfiable if and only if there exists a set Φ of S4ucc-literals,
involving all the atoms occurring in ϕ, such that: (i) Φ is satisfiable; and (ii) Φ ∪ {ϕ} is
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satisfiable in propositional logic (where we treat all the atoms as propositional variables).
Since propositional satisfiability can be checked in NP, it suffices to restrict attention to
S4ucc-formulas which are conjunctions of literals—i.e. those of the form:

(

ρ = 0
)

∧
m
∧

i=1

(

τi 6= 0
)

∧
n
∧

i=1

c≤ki(σi) ∧

p
∧

i=1

c≥k
′
i(σ′i). (5.1)

The conjuncts of the form c≥k
′
i(σ′i) can be eliminated using the following lemma [40]:

Lemma 5.2 ([40]). Let ϕ be any S4ucc-formula, and τ an S4u-term. Then, for every

n ≥ 0, there exists an S4uc-formula ψ, with |ψ| bounded by a polynomial function of n+ |τ |,
such that ϕ ∧ ψ is satisfiable if and only if ϕ ∧ c≥2n(τ) is satisfiable.

By repeated applications of Lemma 5.2, it is then a straightforward matter to trans-
form (5.1), in polynomial time, into an equisatisfiable formula of the form

ψ =
(

ρ = 0
)

∧
m
∧

i=1

(

τi 6= 0
)

∧
n
∧

i=1

c≤ki(σi). (5.2)

Suppose that ψ is true in some model M over a space T , and let Θ be the set of terms
occurring in ψ. Let A and f be as guaranteed by Lemma 4.1. Then τA = f(τM) for all
τ ∈ Θ, and f is continuous, whence A |= ψ. Thus, if ψ is satisfiable, then it is satisfied over
a topological space whose size is bounded by an exponential function of |ψ|, which gives the
NExpTime upper bound of Theorem 5.1.

We turn next to the language S4uc. By similar reasoning to the above, we may with-
out loss of generality confine attention to the problem of determining the satisfiability of
formulas of the form

ψ =
(

ρ = 0
)

∧
m
∧

i=1

(

τi 6= 0
)

∧
n
∧

i=1

(

c(σi) ∧ (σi 6= 0)
)

. (5.3)

Theorem 5.3. Sat(S4uc,All) is in ExpTime.

Proof. The proof is by reduction to the satisfiability problem for propositional dynamic
logic PDL with converse and nominals, which is known to be ExpTime-complete [23,
Section 7.3]. Let ψ be as in (5.3). Take two atomic programs α and β and, for each σi,
a nominal ℓi. For a term τ , denote by τ ‡ the PDL-formula obtained by replacing in τ ,
recursively, each sub-term ϑ◦ with [α∗]ϑ. Thus the transitive and reflexive accessibility
relation of the modal logic S4 is simulated by α∗, and the universal modality ∀ (see the end
of Section 2) is simulated by [γ], where γ = (β ∪ β− ∪ α ∪ α−)∗. Consider now the formula

ψ′ = [γ]¬ρ‡ ∧
m
∧

i=1

〈γ〉τ ‡i ∧
n
∧

i=1

(

〈γ〉(ℓi ∧ σ
‡
i ) ∧ [γ](σ‡i → 〈(α ∪ α

−;σ‡i ?)
∗〉ℓi)

)

.

It is easy to see that ψ′ is satisfiable if and only if ψ is satisfiable: the first conjunct of ψ′

states that ρ is empty, the second that all τi are non-empty, the third states that each σi
holds at a point where ℓi holds and that from each σi-point there is a path (along α ∪ α−)
to ℓi which lies entirely within σi.
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If ψ is parsimonious in its use of connectedness, we can do somewhat better. Denote
by S4uc

1 the set of S4uc-formulas with at most one occurrence of an atom of the form c(τ).

Theorem 5.4. Sat(S4uc
1,All) is PSpace-complete.

Proof. The lower bound follows from [34]. We sketch a nondeterministic PSpace algorithm
recognizing Sat(S4uc

1,All). We may assume without loss of generality that the input ψ
has the form (5.3), with n ≤ 1. If n = 0, i.e. if ψ does not contain a conjunct of the form
c(σ)∧(σ 6= 0), then a standard satisfiability checking algorithm for S4u is applied. Assume,
then, that n = 1 in (5.3); and write σ for σ1. Set B = {ρ◦ , ρ} ∪ {τ, τ | τ ∈ term(ψ)}, where
term(ψ) is the set of all sub-terms of ψ. A subset t of B is called a type for ψ if ρ◦ ∈ t and
τ ∈ t iff τ /∈ t, for all τ ∈ B.

Now, guess a type tσ containing σ and start (m + 1) S4-tableau procedures (see, e.g.,
[19, 25]) with inputs τ1 ∩ ρ

◦ , τ2 ∩ ρ
◦ , . . . , τm ∩ ρ

◦ , and
⋂

tσ ∩ ρ
◦ in the usual way, expanding

nodes branch-by-branch, and recovering the space once branches are checked. We may as
well assume that the nodes of these tableaux are types. Suppose t is a type occurring in one
of them. If σ ∈ t, it suffices to check that t can be connected by a σ-path of ≤ 2|ψ| points to
tσ. This can be done in PSpace by the following non-deterministic subroutine. We start
with t and count from 1 to 2|ψ|. At each step we guess a new type t

′ with σ, ρ◦ ∈ t
′, and

check that

• either (i) τ ∈ t
′ for all τ◦ ∈ t, or (ii) τ ∈ t, for all τ◦ ∈ t

′ (in the former case, t′ is accessible
from t, in the latter, the other way around);
• an S4-tableau with root t′ can be constructed (which can be discarded after completion).
Note that, although this tableau may contain types t′′ with σ ∈ t

′′, these types can never
threaten the connectedness of σ, since they are all accessible from the root t′ of the
tableau, and so are connected to both t and tσ, by the transitivity of the accessibility
relation.

If both checks are successful and t
′ = tσ, the subroutine succeeds; if t

′ 6= tσ we set t = t
′ and

continue to the next step (provided that the step number < 2|ψ|, otherwise the subroutine
fails). Clearly, this subroutine succeeds if there is a σ-path connecting t and tσ and fails in
every computation otherwise; moreover, it requires only polynomial memory to store the
tableau for t′ and the step number.

To reduce notational clutter we denote, for any topological space T , the (singleton)
frame-class {(T, 2T )} simply by T , and the (singleton) frame-class {(T,RC(T ))} simply by
RC(T ). This notation is not entirely uniform, but it should be obvious what is meant.

As shown in [51] (see also Theorem 6.1 below), Sat(S4u,Con) = Sat(S4u,Rn) for any
n ≥ 1. Recalling now that the modal logic S4 is PSpace-hard, we immediately obtain the
following:

Corollary 5.5. Sat(S4u,Con) and Sat(S4u,Rn) are all PSpace-complete for any n ≥ 1.

The proof of Theorem 5.4 can be generalized in various ways. For example, assume that
ψ = ψ1 ∧ ψ2 is an S4uc-formula in which ψ2 =

∧

1≤i<j≤n(σi ∩ σj = 0), where {σ1, . . . , σn}
is the collection of all σi such that c(σi) occurs in ψ1. A straightforward extension of the
algorithm in the proof of Theorem 5.4 shows that satisfiability of ψ is still in PSpace. Thus,
if the connectedness predicate is applied only to regions that are known to be pairwise
disjoint, then it does not matter how many times this predicate occurs in the formula:
satisfiability is still in PSpace.
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Our next theorem gives matching lower bounds for Theorem 5.4 and Corollary 5.5.

Theorem 5.6. Sat(Cc1,RegC) is PSpace-hard. In fact, the problems Sat(C,ConRegC)
and Sat(C,RC(Rn)) for all n ≥ 1 are PSpace-hard.

Proof. Let L be a language in PSpace. Then there is a polynomial-space-bounded deter-

ministic Turing machineM recognizing L. Without loss of generality, we may assume that,
given some input ~a ∈ L on the tape, M starts in the initial state, reaches the accepting state

(with the resulting tape being empty and the head positioned over the first cell) and then
moves to the halting state, from which no transition is possible. Moreover, throughout the
computation the machine never goes to the left of the first cell and to the right of the s’th
cell, where s = p(|~a|) for some polynomial p(·).

Let Q and Σ be the set of states and the alphabet of M , respectively. The instructions
of M are of the form (q, a) → (q′, a′, d), d ∈ {+1, 0,−1}, with their standard meaning. A
configuration of M is a word c of the form

a1, . . . , ai−1, (q, ai), ai+1, . . . , as, (5.4)

where a1, . . . , as (aj ∈ Σ) is the current contents of the tape, q ∈ Q the current state, and i
the current position of the head. If a configuration c

′ is obtained from a configuration c by
applying one instruction of M then we write c→ c′.

It will be convenient for us to represent M as the following set T of 4-tuples, where t, b
are two fresh auxiliary symbols (see Fig. 7):

• (a, t, a, t) and (a, b, a, b), for every a ∈ Σ,
• (a′, (q′, b), (q′, a′), b) and (a′, t, (q′, a′), (q′, t)), for all a′ ∈ Σ and q′ ∈ Q,
• ((q, a), t, (q′, a′), b), for every instruction (q, a)→ (q′, a′, 0) in M ,
• ((q, a), t, a′, (q′, b)), for every instruction (q, a)→ (q′, a′,−1) in M ,
• ((q, a), (q′, t), a′, b), for every instruction (q, a)→ (q′, a′,+1) in M .
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Figure 7: Tile types T for the Turing machine M .

We call these 4-tuples tile types and, for each T ∈ T , denote its four components by left(T ),
top(T ), right(T ) and bot(T ), respectively. Configurations of M will be encoded on the left-
and right-hand sides of the tile types in sequences Tk1 , . . . , Tks such that

top(Tks) = t, top(Tki) = bot(Tki+1
), for 1 ≤ i < s, and bot(Tk1) = b. (5.5)

By the definition of T , every such sequence Tk1 , . . . , Tks gives rise to two configurations
c = left(Tk1), . . . , left(Tks) and c′ = right(Tk1), . . . , right(Tks) of M with c→ c′.
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Now we describe the computations of M in terms of C-formulas. While constructing
the formulas, we will assume that A is a connected quasi-saw model induced by (W,R) and
W0 is the set of points of depth 0 in (W,R).

We need s variables T 1
k , . . . , T

s
k , for each Tk ∈ T , and three additional variables B0, B1

and B2. Consider the following C-formulas:

B0 +B1 +B2 = 1, (5.6)

B0 ·B1 = 0, B1 ·B2 = 0, B2 · B0 = 0. (5.7)

If the conjunction of (5.6)–(5.7) holds in A then every point x ∈ W0 is precisely in one of
(Bℓ)A, 0 ≤ ℓ ≤ 2. We will use the Bℓ to introduce ‘direction’ in our quasi-saw model in the
following sense. If x1, x2 ∈W0 and zRxi, i = 1, 2, then there are only three possibilities:

• x1 and x2 are regarded as ‘identical’ whenever x1, x2 ∈ (Bℓ)A, for 0 ≤ ℓ ≤ 2,
• x2 is a ‘successor’ of x1 whenever x1 ∈ (Bℓ)A and x2 ∈ (Bℓ⊕1)A, for 0 ≤ ℓ ≤ 2,
• x1 is a ‘successor’ of x2 whenever x1 ∈ (Bℓ⊕1)A and x2 ∈ (Bℓ)A, for 0 ≤ ℓ ≤ 2,

where ⊕ denotes addition modulo 3. (Here we remind the reader that τ1 · τ2 = 0 holds in
a quasi-saw model A iff τA1 and τA2 contain no common points of depth 0. This means, in
particular, that (τ1 · τ2)

A = ∅ may hold even though τA1 ∩ τ
A
2 6= ∅, i.e., A |= C(τ1, τ2).)

Suppose also that the following formulas hold in A:
∑

Tk∈T
T ik = 1, 1 ≤ i ≤ s, (5.8)

T ik1 · T
i
k2

= 0, 1 ≤ i ≤ s, Tk1 , Tk2 ∈ T , k1 6= k2, (5.9)

T ik1 · T
i+1
k2

= 0, 1 ≤ i < s, top(Tk1) 6= bot(Tk2), Tk1 , Tk2 ∈ T , (5.10)

T 1
k = 0, bot(Tk) 6= b, Tk ∈ T , (5.11)

T sk = 0, top(Tk) 6= t, Tk ∈ T . (5.12)

Then, by (5.8)–(5.9), for every x ∈ W0 there is a unique sequence of tile types Tk1 , . . . , Tks
with x ∈ (T iki)

A, for 1 ≤ i ≤ s. In this case we set lefti(x) = left(Tki), top
i(x) = top(Tki), etc.

We also set left(x) = left1(x), . . . , lefts(x), right(x) = right1(x), . . . , rights(x). Then, by (5.5)
and (5.10)–(5.12), both left(x) and right(x) are configurations of M and left(x)→ right(x).

Consider now the following formulas, for 1 ≤ i ≤ s, 0 ≤ ℓ ≤ 2, Tk1 , Tk2 ∈ T :

¬C(Bℓ · T ik1 , B
ℓ⊕1 · T ik2), right(Tk1) 6= left(Tk2), (5.13)

¬C(Bℓ · T ik1 , B
ℓ · T ik2), k1 6= k2. (5.14)

Suppose that all of (5.6)–(5.14) are true in A. It easy to see that, if x, y ∈ W0 and there
exists z ∈W with zRx and zRy, then:

right(x) = left(y) whenever x ∈ (Bℓ)A and y ∈ (Bℓ⊕1)A, for 0 ≤ ℓ ≤ 2; (5.15)

left(x) = left(y) and right(x) = right(y) whenever x, y ∈ (Bℓ)A, for 0 ≤ ℓ ≤ 2. (5.16)

Finally, we require the following formulas:

T 1
i1
· · · · · T sis 6= 0, (5.17)

T 1
j1
· · · · · T sjs 6= 0, (5.18)

where left(Ti1), . . . , left(Tis) is the initial configuration (with ~a written on the tape) and
right(Tj1), . . . , right(Tjs) is the accepting configuration (with empty tape and the head scan-
ning the first cell). Denote the conjunction of (5.6)–(5.18) by Ψ(M,~a). Clearly, the length
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of this C-formula is polynomial in the size ofM and ~a. We proceed to show: (i) if Ψ(M,~a) is
satisfiable over ConRegC, thenM accepts ~a; (ii) ifM accepts ~a, then Ψ(M,~a) is satisfiable
over RC(Rn) for any n ≥ 1. This proves the theorem.

Suppose Ψ(M,~a) is satisfiable over ConRegC. By Lemmas 4.1 and 4.2, it is satisfied
in some model A over a finite connected quasi-saw (W,R). From (5.17) and (5.18), choose
points u, u′ of depth 0 such that left(u) is the initial configuration and right(u′) the accepting
configuration. Since (W,R) is connected, there exists a sequence u0, v1, . . . , um−1, vm, um
with the points ui of depth 0 and the points vj of depth 1, such that: u0 = u, um = u′,
and, for all i (1 ≤ i ≤ m), (vi, ui−1) ∈ R and (vi, ui) ∈ R. We may assume without loss
of generality that the ui and vj are all distinct. It should be noted that left(ui) is not the
accepting configuration for any i ≤ m. For brevity, we write ci for left(ui) and cm+1 for
right(um). We shall show that c0, . . . , cm, cm+1 contains a sub-sequence that is an accepting
run of M . From (5.15) and (5.16), and the fact that left(x) → right(x) for any point x,
we see that, for all i (0 ≤ i ≤ m), one of the following conditions holds: (i) ci = ci+1;
(ii) ci → ci+1; or (iii) ci ← ci+1. We shall presently establish the following claim:

Claim 5.7. If 0 ≤ j ≤ m and cj ← cj+1, then there exists k such that j + 1 < k ≤ m and

ck = cj .

Taking this claim on trust for the moment, define the sub-sequence cj0 , cj1 , . . . by setting j0
to be the largest j ≤ m such that cj = c0, and, for i ≥ 0, ji+1 to be the largest j ≤ m such
that cj = cji+1, until we eventually reach (say), cjK = cm. It is then immediate from the
claim that cji → cji+1 = cji+1

for all i (0 ≤ i < K), and we have the desired accepting run
of M .
Proof of Claim 5.7. The claim is proved by (decreasing) induction on j. For j = m,
the result is trivial, since cm+1 has no successor configurations. Assume, then, that 0 ≤
j < m, and the claim holds for all larger values of j up to m. Let k be the largest number
(j+1 ≤ k ≤ m+1) such that cj+1 = ck. Thus, k ≤ m (since cj+1 is, by assumption, not the
accepting configuration), and ck → ck+1 (since otherwise, using the inductive hypothesis,
we could find a larger value k′ with cj+1 = ck′). Thus, cj ← cj+1 = ck → ck+1. But M is
deterministic, so cj = ck+1, completing the induction, and proving the claim.

The proof of the converse direction is straightforward: for an accepting computation
c0 → · · · → cm+1 ofM on ~a, we construct a model A over RC(R). Define the closed intervals
I0, . . . , Im in R by

Ij =











(−∞, 0], if j = 0,

[i− 1, i], if 0 < j < m,

[m− 1,+∞), if j = m.

Note that, given any valuation over RC(R) in which all the variables T ik are interpreted
as unions of the intervals I0, . . . , Im, we may meaningfully write statements of the form
left(Ij) = c and right(Ij) = c, for 0 ≤ j ≤ m, and c a configuration of M . Now define such

a valuation ·A in which, for all j (0 ≤ j ≤ m), Ij ⊆ (Bℓ)A if and only if j ≡ ℓ (mod 3); and,
for all j (0 ≤ j < m), left(Ij) = cj and right(Ij) = cj+1. It can be readily checked that the
resulting model satisfies Ψ(M,~a). For n > 1, we may construct a model of Ψ(M,~a) over
RC(Rn) by cylindrification of A in the obvious way.
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Corollary 5.8. Sat(C,ConRegC), Sat(Cc1,RegC) and Sat(C,RC(Rn)) for any n ≥ 1 are

all PSpace-complete.

Proof. Follows from Theorems 5.4, 5.6 and Corollary 5.5.

Having established a lower bound for Cc1, we now proceed to do the same for the
larger language Cc. Observe that when constructing a model for an S4uc

1-formula with one
positive occurrence of c(τ), in the proof of Theorem 5.4, we could check the ‘connectability’
of two τ -points by an (exponentially long) path using a PSpace-algorithm, because we
did not need to keep in memory all the points on the path. However, if two statements
c(τ1) and c(τ2) have to be satisfied, then, while connecting two τ1-points using a path, one
has to check whether the τ2-points on that path can be connected by a path, which, in
turn, can contain another τ1-point, and so on. The crucial idea in the proof below is to
simulate infinite binary (non-transitive) trees using quasi-saws. Roughly, the construction
is as follows. We start by representing the root v0 of the tree as a point also denoted by
v0 (see Fig. 8), which is forced to be connected to an auxiliary point w by means of some
c(τ0). On the connecting path from v0 to w we represent the two successors v1 and v2
of the root, which are forced to be connected in turn to w by some other c(τ1). On each
of the two connecting paths, we again take two points representing the successors of v1
and v2, respectively. We treat these four points in the same way as v0, reusing c(τ0), and
proceed ad infinitum, alternating between τ0 and τ1 when forcing the paths which generate
the required successors. Of course, we also have to pass certain information from a node
to its two successors. Such information can be propagated along connected regions. Note
now that all points are connected to w. To distinguish between the information we have to
pass from distinct nodes of even (respectively, odd) level to their successors, we have to use
two connectedness formulas of the form c(fi + a), i = 0, 1, in such a way that the fi points
form initial segments of the paths to w and a contains w. The fi-segments are then used
locally to pass information from a node to its successors without conflict. We now present
the reduction in more detail.

Theorem 5.9. Sat(Cc,RegC) and Sat(Cc,ConRegC) are ExpTime-hard.

Proof. The proof is by reduction of the following problem. Denote by Df2 the bimodal
logic (with 21 and 22) determined by Kripke models based on the full infinite binary tree
G = (V,R1, R2) with functional accessibility relations R1 and R2. Consider the global

consequence relation |=f
2 defined as follows: χ |=f

2 ψ iff K |= χ implies K |= ψ, for every
Kripke model K based on G. This global consequence relation is ExpTime-hard, see,

e.g., [52]. We construct a Cc-formula Φ(χ,ψ), for any Df2 -formulas χ, ψ, such that (i)

|Φ(χ,ψ)| is polynomial in |χ| + |ψ|, (ii) if Φ(χ,ψ) is satisfiable over RegC then χ 6|=f
2 ψ,

and (iii) if χ 6|=f
2 ψ then Φ(χ,ψ) is satisfiable over ConRegC. While constructing Φ(χ,ψ),

we will assume that A is a quasi-saw model induced by (W,R) and W0 is the set of points
of depth 0 in (W,R).

Let sub(χ,ψ) be the closure under single negation of the set of subformulas of χ, ψ. For
each ϕ ∈ sub(χ,ψ) we take a fresh variable qϕ, and for each 2iϕ ∈ sub(χ,ψ), a pair of fresh

variables mi,j
ϕ , j = 0, 1. We also need fresh variables a and sij, for j = 0, 1 and 0 ≤ i ≤ 6.

Let d = s00 + s01. Intuitively, d simulates the domain of the binary tree, where s00 and s01
stand for nodes with even and, respectively, odd distance from the root. Suppose that the
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Figure 8: First 4 steps of encoding the full binary tree using 7-saws.

following Cc-formulas hold in A
(

a = s60
)

∧
(

a = s61
)

∧
(

a 6= 0
)

∧ c(f0 + a) ∧ c(f1 + a), (5.19)
∧

0≤k<k′≤6

(

skj · s
k′

j = 0
)

∧
∧

0≤k<k′≤6
|k−k′|>1

¬C(skj , s
k′

j ), (5.20)

where fj = s0j+s
1
j+s

2
j+s

3
j+s

4
j+s

5
j , for j = 0, 1. It follows that, for j = 0, 1, if there is a point

x0 ∈ (s0j)
A ∩W0 then there is a (not necessarily unique) sequence of points x1, x2, x3, x4, x5

from the same component of fAj such that xi ∈ (sij)
A ∩W0, 1 ≤ i ≤ 5. Points x2 and x4

will be used to construct similar sequences for the two successors of the node represented
by x0: if (5.19)–(5.20) and

s2i0 ≤ s01 and s2i1 ≤ s00, for i = 1, 2, (5.21)

hold in A and x0 ∈ (s0j)
A ∩W0, then one can recover from A the infinite binary tree with

the root at x0. The formula
(

q¬ψ · s
0
0 6= 0

)

∧
(

d ≤ qχ
)

(5.22)

ensures then that there is x0 ∈ (s00)
A ∩W0, the root of the tree, in which ¬ψ holds, and χ

holds everywhere in the tree, while the formulas

d · q¬ϕ = d · (−qϕ), d · qϕ1∧ϕ2
= d · (qϕ1

· qϕ2
), (5.23)
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for all ¬ϕ,ϕ1 ∧ ϕ2 ∈ sub(χ,ψ), capture the meaning of the Boolean connectives from
sub(χ,ψ) relativized to d. The formulas, for all 2iϕ ∈ sub(χ,ψ) and j = 0, 1,

¬C(fj ·m
i,j
ϕ , fj · (−m

i,j
ϕ )), (5.24)

s0j · q2iϕ = s0j ·m
i,j
ϕ , (5.25)

s2ij ·m
i,j
ϕ = s2ij · qϕ (5.26)

are used to propagate information regarding 2iϕ along the components of fj using the

markers mi,j
ϕ . We define Φ(χ,ψ) to be the conjunction of all the above formulas. Clearly,

|Φ(χ,ψ)| is polynomial in |χ|+ |ψ| and contains only two occurrences of the connectedness
predicate, c, in (5.19).

Suppose that Φ(χ,ψ) is satisfied over RegC; we proceed to show that χ 6|=f
2 ψ. By

Lemmas 4.1 and 4.2, Φ(χ,ψ) is satisfied in a finite quasi-saw model A induced by some
(W,R). Denote by W0 the set of points of depth 0 in (W,R). Our aim is to construct, by
induction, a Kripke model K based on the full infinite binary tree G = (V,R1, R2) such that
K |= χ and K, v0 6|= ψ, for the root v0 of G. The points of V will be copies of some points
in dA ∩W0. If v ∈ V is a copy of x ∈W , then we write x = κ(v).

Step 0. Take some x0 ∈ (q¬ψ · s
0
0)

A ∩W0. It exists by (5.22). Take a fresh v0 and let

κ(v0) = x0 and G
0 = ({v0}, ∅, ∅) and set v0 |= p for each propositional variable p ∈ sub(χ,ψ)

such that x0 ∈ q
A
p .

Step n+ 1. Suppose that we have already constructed Gn = (V n, Rn1 , R
n
2 ) and defined

a valuation in G
n for the variables in sub(χ,ψ). Let v be a point of minimal co-depth in

G
n which does not have R1- and R2-successors yet, and let κ(v) = x ∈ (s0j)

A ∩W0, for

some j ∈ {0, 1}. We have x ∈ fAj , and so by (5.19), there is a finite path π from x to

some w ∈ (s6j)
A ∩W0 such that all the points on this path belong to (fj + a)A, and so to

⋃6
k=0(s

k
j )

A. Fix such a path π. By the first conjunct of (5.20), x 6= w and in view of the

second conjunct of (5.20), of all (skj )
A on the path π the set (s0j)

A can only be in contact

with (in fact, externally connected to) (s1j )
A. Take the last point y1 ∈ (s1j)

A∩W0 on π. By a

similar argument, the next point of depth 0 on π can only be from (s2j )
A. Let x1 be the last

point in (s2j )
A∩W0 on π. In the same way we find the last point y2 ∈ (s3j)

A of depth 0 on π,

and then the last point x2 ∈ (s4j )
A∩W0 on π. Let v1, v2 be fresh copies of x1, x2, respectively,

i.e., κ(vi) = xi, i = 1, 2. Now we set Gn+1 = (V n ∪ {v1, v2}, R
n
1 ∪ {(v, v1)}, R

n
2 ∪ {(v, v2)}),

and vi |= p for each propositional variable p ∈ sub(χ,ψ) such that xi ∈ q
A
p , for i = 1, 2. Note

that, by (5.21), x1, x2 ∈ (s0j⊕1)
A, where ⊕ denotes addition modulo 2, and we can move on

to Step n+ 2.

Step ω. Finally, we set V =
⋃

n<ω V
n, R1 =

⋃

n<ω R
n
1 , R2 =

⋃

n<ω R
n
2 , G = (V,R1, R2).

Clearly, G is the full binary tree with functional R1 and R2. The Kripke model K is based
on G with the valuation defined by the inductive procedure above.

It remains to show by induction that, for every ϕ ∈ sub(χ,ψ) and every v ∈ V ,

κ(v) ∈ qAϕ iff K, v |= ϕ.

The basis of induction follows from the definition, and the case of Boolean connectives
from (5.23). Suppose now that v is the point considered at Step n+ 1 above. Let i = 1 or
2 and vi ∈ V be such that (v, vi) ∈ Ri (it is defined uniquely as Ri is functional). We have
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Figure 9: A 7-saw for v.

κ(v) ∈ (s0j)
A, for either j = 0 or j = 1, and, by (5.21), κ(vi) ∈ (s0j⊕1)

A. Then κ(v) ∈ qA
2iϕ

iff, by (5.25), κ(v) ∈ (mi,j
ϕ )A iff, by (5.24), κ(vi) ∈ (mi,j

ϕ )A iff, by (5.26), κ(vi) ∈ qAϕ , iff, by
IH, K, vi |= ϕ iff, by functionality of Ri, K, v |= 2iϕ.

Suppose, finally, that χ 6|=f
2 ψ; we proceed to show that Φ(χ,ψ) is satisfied over

ConRegC, thus completing the proof of the theorem. Let K be a model for Df2 based
on the full infinite binary tree G = (V,R1, R2) with root v0 such that K |= χ and K, v0 6|= ψ.
We construct a connected quasi-saw model A satisfying Φ(χ,ψ). The model A will be in-
duced by the quasi-saw (W,R) constructed by induction from (infinitely many copies of)
the 7-saws shown in Fig. 9. For each node v of the infinite binary tree G, we take a fresh
7-saw S

v = (Sv , Rv), where Sv = {yvi , z
v
i | 0 ≤ i ≤ 5} ∪ {wv}, zvi R

vyvi , for 0 ≤ i ≤ 5,
zvi R

vyvi+1, for 0 ≤ i < 5, and zv5R
vwv , and identify the following points

yv2 = yv10 , yv4 = yv20 , wv1 = wv2 = wv ,

if v1 and v2 are the R1- and R2-successors of v. We present our construction in a step-by-step
manner (see Fig. 8).

Step 0. We set W 0 = {yv00 , w}, R
0 = ∅ and define a valuation ·A0 on W 0 by taking

• (s00)
A0 = {yv00 }, (s01)

A0 = ∅,
(si0)

A0 = (si1)
A0 = ∅, for 0 < i ≤ 5, and aA0 = (s60)

A0 = (s61)
A0 = {w};

• qA0
ϕ =

{

yv00 | K, v0 |= ϕ
}

, for ϕ ∈ sub(χ,ψ);

• (mi,0
ϕ )A0 = {yv00 }, if K, v0 |= 2iϕ, and (mi,0

ϕ )A0 = ∅, otherwise, and (mi,1
ϕ )A0 = ∅, for

i = 1, 2 and 2iϕ ∈ sub(χ,ψ).

Step n+ 1. Suppose now that v is a node of minimal co-depth in G such that the
constructed quasi-saw (W n, Rn) contains yv0 but does not contain a copy of Sv for v and let
v1 and v2 be the R1- and R2-successors of v. Then we take a fresh 7-saw S

v and ‘hook’ it to
(W n, Rn) by identifying the first point of Sv with yv0 and its last point with w (see Fig. 8):

W n+1 =W n ∪ {yv1 , y
v1
0 , y

v
3 , y

v2
0 , y

v
5} ∪ {z

v
i | 0 ≤ i ≤ 5},

Rn+1 = Rn ∪ {(zv2i−1, y
vi
0 ), (zv2i, y

vi
0 ) | i = 1, 2} ∪ {(zv0 , y

v
0), (z

v
5 , w)}

∪ {(zvi , y
v
i ), (z

v
i−1, y

v
i ) | i = 1, 3, 5},

and define the valuation ·An+1 by taking pAn+1 = pAn ∪ pAv , where ·Av is defined for the new
points as follows:

• (s0j)
Av = {zv0} and (s0j⊕1)

Av = {zv2i−1, y
vi
0 , z

v
2i | i = 1, 2};

• (s2ij )
Av = {zv2i−1, y

vi
0 , z

v
2i} and (s2ij⊕1)

Av = {zv0 | y
v
0 ∈ (s2ij⊕1)

An}, for i = 1, 2;

• (sij)
Av = {zvi−1, y

v
i , z

v
i } and (sij⊕1)

Av = ∅, for i = 1, 3, 5;
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• aAv = (s6j )
Av = (s6j⊕1)

Av = {zv5},

• qAv
ϕ =

{

zv0 | K, v |= ϕ
}

∪
{

zv2i−1, y
vi
0 , z

v
2i | K, vi |= ϕ, i = 1, 2

}

, for ϕ ∈ sub(χ,ψ);

• (mi,j
ϕ )Av =

⋃6
i=0(s

i
j)

Av , if K, v |= 2iϕ, and (mi,j
ϕ )Av = ∅, otherwise, and

(mi,j⊕1
ϕ )Av =

{

zv0 | y
v
0 ∈ (mi,j⊕1

ϕ )An
}

∪
{

zv2i−1, y
vi
0 , z

v
2i | K, vi |= 2iϕ

}

,

for 2iϕ ∈ sub(χ,ψ), i = 1, 2;

where j = 0 if v is of even co-depth in G and j = 1 otherwise, and ⊕ denotes addition
modulo 2.

Step ω. Finally, we set W =
⋃

n<ωW
n, R =

⋃

n<ω R
n and ·A =

⋃

n<ω ·
An .

Note that yv1 and yv3 are required to make the set of points in fAj representing a node

v of G disconnected from the subset of fAj representing another node v′ of G and thus

satisfy (5.24); yv5 are required to satisfy the last conjunct of (5.20). We leave the remaining
details to the reader.

Corollary 5.10. Sat(Cc,RegC) and Sat(Cc,ConRegC) are ExpTime-complete.

Proof. Follows from Theorems 5.3 and 5.9.

The argument of Theorem 5.9 goes through unproblematically when we restrict atten-
tion to the spaces Rn for n ≥ 3, thus showing that Sat(Cc,RC(Rn)) is ExpTime-hard for
these values of n. If n = 2, however, this approach fails. The difficulty is that the construc-
tion of the model A of Φ(χ,ψ) from the Kripke structure K will result in sets (skj )

A that
have infinitely many components lying in a bounded region of the plane. These infinitely
many components will give rise to accumulation points, meaning that we can no longer
guarantee the truth of the formulas ¬C(skj , s

k′

j ) of (5.20) and (5.24). Fortunately, the proof

can be rescued, either by means of the finite model property for |=f
2 , or, alternatively, via

the following explicit construction based on polynomial-space alternating Turing machines.
We remind the reader, in this connection, that APSpace = ExpTime (see e.g., [32]).

Theorem 5.11. The problems Sat(Cc,RC(Rn)) for all n ≥ 2 are ExpTime-hard.

Proof. Let M be an alternating Turing machine that uses ≤ p(n) cells on each input of
length n, for some polynomial p(·). Let qY and qN be the accepting and rejecting states
of M , respectively (they have no transitions from them). Without loss of generality we
assume that every branch of the computation tree of M is of finite length and its final state
is either qY or qN (indeed, for if it is not the case we can augment M with a subroutine
that at each step of M increases the current step number written on an auxiliary tape and
makes M go into the rejecting state qN whenever the step number reaches the total number
of configurations of M ; as M uses a polynomial working tape, we need only a polynomial
number of cells on that auxiliary tape to represent the maximum number of configurations
of M). All states of M (except qY and qN ) are divided into existential and universal
states. We assume without loss of generality that there are exactly two transitions from
each state, i.e., for q ∈ Q \ {qY , qN}, a ∈ Σ and j = 1, 2, we have (q, a)→j (q

′, a′, d), where
d ∈ {−1, 0,+1}. We assume that M never goes beyond special markers at the beginning
and the end of the tape. We denote p(n) by s, and employ propositional variables with the
following intuitive meanings:
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• Hq,i, for 1 ≤ i ≤ s and q ∈ Q, to say that the head is scanning the ith cell and the state
is q,
• Sa,i, for 1 ≤ i ≤ s and a ∈ Σ, to say that the ith cell contains a,
• A to say that the computation is accepting.

Let χM be the conjunction of the following formulas, for all i, 1 ≤ i ≤ s,

Hq,i ∧ Sa,i → 2j(Hq′,i+d ∧ Sa′,i), for (q, a)→j (q
′, a′, d), j = 1, 2, d ∈ {−1, 0,+1},

Hq,i ∧ Sa,k → 2jSa,k, for each k 6= i and j = 1, 2,

HqY ,i → A,

Hq,i ∧ (31A ∧32A)→ A, for each universal state q ∈ Q,

Hq,i ∧ (31A ∨32A)→ A, for each existential state q ∈ Q.

Let ~a = a1, . . . , an be an input. For convenience, let ai be blank, for each n < i ≤ s. Write

ψ~a = (Hq0,1 ∧ Sa1,1 ∧ · · · ∧ Sas,s)→ A,

where q0 is the initial state of M . Clearly, M accepts ~a iff χM |=
f
2 ψ~a. Moreover, since

we assume Turing machines to terminate each branch of a computation in qY or qN after a
finite number of steps, it follows that M accepts ~a if and only if A is satisfied at the root
of every finite binary tree such that

(a) χM is satisfied in every point of the tree,
(b) every point satisfying Hq,i, for q ∈ Q \ {qY , qN} and 1 ≤ i ≤ s, has a pair of successors

(in particular: is not a leaf node),
(c) Hq0,1 ∧ Sa1,1 ∧ · · · ∧ Sas,s is satisfied at the root.

Denote by Φ′(χM , ψ~a) the conjunction of formulas (5.19)–(5.20) and (5.22)–(5.26), con-
structed for χM and ψ~a in the proof of Theorem 5.9, together with the following replacement
of (5.21), for 1 ≤ k ≤ s and q′ ∈ Q \ {qY , qN}:

qHq′,k
· s2i0 ≤ s01 and qHq′,k

· s2i1 ≤ s00, for i = 1, 2. (5.27)

If Φ′(χM , ψ~a) is satisfied in a model over RC(Rn), for n ≥ 2, then it follows from the

proof of Theorem 5.9 that χM 6|=
f
2 ψ~a, and thus M does not accept ~a. Conversely, if M

does not accept ~a, then there is a finite binary tree satisfying (a)–(c); we then construct a
model of Φ′(χM , ψ~a) over RC(R2) by representing nodes of the finite binary tree together
with the ‘sink’ node w (see Fig. 8) by rectangles of decreasing dimensions.

Having established a lower bound for Cc, we now proceed to do the same for the larger
language Ccc.

Theorem 5.12. Sat(Ccc,RegC) is NExpTime-hard. In fact, Sat(Ccc,ConRegC) and

Sat(Ccc,RC(Rn)) for all n ≥ 2 are NExpTime-hard.

Proof. The proof is by reduction of the NExpTime-complete 2d × 2d tiling problem [55]:
Given d < ω, a finite set T of tile types—i.e., 4-tuples of colours T = (left(T ), top(T ),
right(T ), bot(T ))—and a T0 ∈ T , decide whether T can tile the 2d × 2d grid in such a way
that T0 is placed onto (0, 0). In other words, the problem is to decide whether there is a
function f from {(n,m) | n,m < 2d} to T such that top(f(n,m)) = bot(f(n,m + 1)), for
all n,m+1 < 2d, right(f(n,m)) = left(f(n+1,m)), for all n+1,m < 2d, and f(0, 0) = T0.
We construct a Ccc-formula Θ(T , T0, d) such that (i) |Θ(T , T0, d)| is polynomial in |T | and
d, (ii) if Θ(T , T0, d) is satisfiable over RegC then T tiles the 2d × 2d grid, with T0 being
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placed onto (0, 0), and (iii) if T tiles the 2d × 2d grid, with T0 being placed onto (0, 0),
then Θ(T , T0, d) is satisfiable over RC(Rn), n ≥ 2. While constructing the formula, we will
assume that A is a quasi-saw model induced by (W,R) and W0 is the set of points of depth
0 in (W,R).

We partition all points of W0 with the help of a pair of variable triples H0,H1,H2 and
V 0, V 1, V 2. Suppose that the formulas, for 0 ≤ ℓ ≤ 2,

H0 +H1 +H2 = 1, (5.28)

H0 ·H1 = 0, H1 ·H2 = 0, H2 ·H0 = 0, (5.29)

and their V -counterparts hold in A. Then every point in W0 is in exactly one of the (Hℓ)A,
0 ≤ ℓ ≤ 2, and exactly one of the (V ℓ)A, 0 ≤ ℓ ≤ 2 (these variables play the same role as
the Bℓ in the proof of Theorem 5.6).

To encode coordinates of the tiles in binary, we take a pair of variables Xj and Yj, for

each j, d ≥ j ≥ 1. For n < 2d, let nX be the B-term X ′
d ·X

′
d−1 · · · · ·X

′
1, where X

′
j = Xj

if the jth bit in the binary representation of n is 1, and X ′
j = −Xj otherwise. For a point

u ∈ W0, we denote by X(u) the binary d-bit number n, called the X-value of u, such that
u ∈ nAX (note that the X-value is defined uniquely for the points in W0); the jth bit of
X(u) is denoted by Xj(u). The term mY , the Y -value Y (u) of u and its jth bit Yj(u) are
defined analogously. For a point u ∈ W0 we write coor(u) for (X(u), Y (u)). We will use
the variables Xi and Yj to generate the 2d × 2d grid, which consists of pairs (nX ,mY ), for

n,m < 2d. Consider the following formulas, for 0 ≤ ℓ ≤ 2,

¬C(Xk ·H
ℓ, (−Xk) ·H

ℓ), d ≥ k ≥ 1, (5.30)

¬C(Xj · (−Xk) ·H
ℓ, (−Xj) ·H

ℓ⊕1), d ≥ j > k ≥ 1, (5.31)

¬C((−Xj) · (−Xk) ·H
ℓ, Xj ·H

ℓ⊕1), d ≥ j > k ≥ 1, (5.32)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·H
ℓ, (−Xk) ·H

ℓ⊕1), d ≥ k > 1, (5.33)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·H
ℓ, Xi ·H

ℓ⊕1), d ≥ k > i ≥ 1, (5.34)

¬C(Xd · · · · ·X1 ·H
ℓ, Hℓ⊕1), (5.35)

where ⊕ denotes addition modulo 3. Suppose that A satisfies (5.28)–(5.35). If u, v ∈ W0

and zRu and zRv, for some z ∈W , then (cf. (5.15) and (5.16))

• X(v) = X(u) whenever u, v ∈ (Hℓ)A, for 0 ≤ ℓ ≤ 2,
• X(v) = X(u) + 1 < 2d whenever u ∈ (Hℓ)A and v ∈ (Hℓ⊕1)A, for 0 ≤ ℓ ≤ 2,
• X(u) = X(v) + 1 < 2d whenever v ∈ (Hℓ)A and u ∈ (Hℓ⊕1)A, for 0 ≤ ℓ ≤ 2.

Indeed, if u, v ∈ (Hℓ)A then, by (5.30), X(u) = X(v). If u ∈ (Hℓ)A and v ∈ (Hℓ⊕1)A

then, by (5.35), X(u) < 2d − 1. Let k be the minimal number such that u ∈ (−Xk)
A, i.e.,

u ∈ ((−Xk) ·Xk−1 · · · · ·X1 ·H
ℓ)A. Then, by (5.33), v ∈ XA

k and, by (5.34), v ∈ (−Xi)
A,

for all i, k > i ≥ 1. By (5.31) and (5.32), v ∈ (−Xj)
A iff u ∈ (Xj)

A, for all d ≥ j > k. It

follows that X(v) = X(u) + 1. The case of v ∈ (Hℓ)A and u ∈ (Hℓ⊕1)A is similar.
Suppose now that (5.28)–(5.35) with their the Y -counterparts (Xi and H

ℓ replaced by
Yi and V

ℓ, respectively) hold in A. It follows that for every u, v ∈ W0 with zRu and zRv,
for some z ∈W , we have

|X(u)−X(v)| ≤ 1 and |Y (u)− Y (v)| ≤ 1, (5.36)
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u u

Figure 10: 8-neighbours vs. 4-neighbours.

which means that every point of depth 0 may be surrounded by all of its 8-neighbours (in
the sense that they have a common predecessor of depth 1). We are, however, interested
only in the 4-neighbours since only the 4-neighbours restrict the tile that can be assigned
to the point. Formally, given a pair (n,m) in the 2d × 2d grid, denote by 4-nb(n,m) the
set that consists of (n,m) and its (at most four) neighbours in the grid, i.e., (n − 1,m),
(n+1,m), (n,m−1), (n,m+1); see Fig. 10. Let G be a fresh variable, which will represent
the points of the grid. Suppose now that in addition the formulas

¬C(G ·X1 · Y1, G · (−X1) · (−Y1)), ¬C(G · (−X1) · Y1, G ·X1 · (−Y1)) (5.37)

hold in A. Then, by (5.37), if u, v ∈ GA ∩W0 and zRu and zRv, for some z ∈ W , then
either X1(u) = X1(v) or Y1(u) = Y1(v), and thus, by (5.36), coor(u) ∈ 4-nb(coor(v)) and
coor(v) ∈ 4-nb(coor(u)).

Suppose now that the following formulas are true in A as well:

G · 0X · 0Y 6= 0, G · (2d − 1)X · (2
d − 1)Y 6= 0,

c(G · (0X + (2d − 1)Y )), c(G · ((2d − 1)X + 0Y )). (5.38)

These constraints guarantee that in the connected set (G · (0X + (2d − 1)Y ))
A there are

points u(0,n) and u(n,2d−1), for n < 2d, such that coor(u(0,n)) = (0, n) and coor(u(n,2d−1)) =

(n, 2d − 1). Similarly for the connected set (G · (2d − 1)X + 0Y )
A. This gives us the border

of the 2d × 2d grid we are after (see Fig. 11 (a)). And the constraints

c(G·((−X1)+0Y )), c(G·(X1+0Y )), c(G·(0X+(−Y1))), c(G·(0X+Y1)) (5.39)

ensure that we can find inner points of the grid (see Fig. 11 (b)).
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Figure 11: Satisfying (a) c(G · (0X + (2d − 1)Y )) and (b) c(G · ((−X1) + 0Y )), for d = 2, in
a quasi-saw model.
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Figure 12: Satisfying Θ(T , T0, d), for d = 2, in (a) a quasi-saw model and (b) R2.

It is to be noted, however, that in general u 6= v even if coor(u) = coor(v). In other
words, the constructed points do not necessarily form a proper 2d × 2d grid. Let

b =
(

X1 · (−Y1)
)

+
(

(−X1) · Y1
)

and w =
(

(−X1) · (−Y1)
)

+
(

X1 · Y1
)

.

Points in bA and wA can be thought of as black and white squares of a chess board.
Observe that if u, v ∈ bA ∩W0 and coor(u) 6= coor(v) then u and v cannot belong to the
same component of bA. Thus, there are at least 2d−1 components in both bA and wA. Our
next pair of constraints

c≤2d−1

(b) and c≤2d−1

(w) (5.40)

says that bA and wA have precisely 2d−1 components. In particular, if u, v ∈ W0 belong
to the same component of bA then coor(u) = coor(v). This gives a proper 2d × 2d grid on
which we encode the tiling conditions. The formulas

∑

Tk∈T
Tk = G, (5.41)

Tk1 · Tk2 = 0, for Tk1 , Tk2 ∈ T , k1 6= k2, (5.42)

say that every point in GA ∩W0 is covered by precisely one tile and

¬C(Hℓ · V ℓ′ · Tk1 , H
ℓ · V ℓ′ · Tk2), for Tk1 , Tk2 ∈ T , k1 6= k2, (5.43)

for 0 ≤ ℓ, ℓ′ ≤ 2, says that all points in the same component of (Hℓ · V ℓ′)A are covered by
the same tile. That the colours of adjacent tiles match is ensured by

¬C(Hℓ · Tk1 , H
ℓ⊕1 · Tk2), for Tk1 , Tk2 ∈ T with right(Tk1) 6= left(Tk2), (5.44)

¬C(V ℓ · Tk1 , V
ℓ⊕1 · Tk2), for Tk1 , Tk2 ∈ T with top(Tk1) 6= bot(Tk2), (5.45)

for 0 ≤ ℓ ≤ 2. Finally, we have to say that (0, 0) is covered with T0:

0X · 0Y ≤ T0. (5.46)

One can check that the conjunction Θ(T , T0, d) of these Ccc-formulas is as required. For
instance, a quasi-saw model A satisfying Θ(T , T0, d) (if a tiling exists) is shown in Fig. 12 (a):
all points belong to GA, solid white points to wA, solid black to bA and grey to both of the
sets. Note that each point of depth 0 has at most 4 predecessors (of depth 1) and the same
number of neighbours (points of depth 0 that share a common point of depth 1).
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The second statement of the theorem follows from the fact that the model constructed
above can be embedded in RC(Rn) for all n ≥ 2: indeed, in R2, we may represent tiles as
octagons (see Fig. 12(b)), taking G to be the union of all those tiles. Note that the tiles’
corners are cut to ensure that every tile has at most 4 neighbours and thus bA and wA have
precisely 2d−1 components.

As a consequence of Theorems 5.1 and 5.12 we obtain:

Corollary 5.13. Sat(Ccc,RegC) and Sat(Ccc,ConRegC) are NExpTime-complete.

We now consider lower complexity bounds for the languages Bc and Bcc, which will be
obtained by reduction of satisfiability in Cc and Ccc, respectively. The basic idea is that
two connected closed sets are in contact if and only if their union is connected and they are
non-empty; in other words, the formula

c(τ1) ∧ c(τ2)→
(

C(τ1, τ2) ↔ c(τ1 + τ2) ∧ (τ1 6= 0) ∧ (τ2 6= 0)
)

is a Cc-validity. Thus, if a Ccc-formula contains a subformula C(τ1, τ2), where τ1 and τ2
denote connected non-empty regions, then we may replace that subformula by c(τ1 + τ2),
thus eliminating an occurrence of C. The problem we face, of course, is that this ‘reduction’
of C to c cannot be directly applied to our formulas in which τ1 and τ2 are not necessarily
connected and non-empty. The next three lemmas show how to overcome this problem.

We write ϕ[ψ] to indicate that ϕ contains a positive occurrence of ψ; then ϕ[ψ/χ]
denotes the result of replacing all positive occurrences of ψ in ϕ by χ. Recall that topological
spaces are allowed to be empty. There is exactly one frame based on the empty topological
space, and exactly one model over that frame. (It is trivial to check whether a formula ϕ is
satisfied in this model.) Accordingly, we define:

ǫϕ =

{

0 = 1, if ϕ is satisfied over the empty space,

⊥, otherwise.

Lemma 5.14. Let ϕ[C(τ1, τ2)] be a Ccc-formula, and t, t1, t2 fresh variables. Then ϕ is

equisatisfiable (in RegC and ConRegC) with the formula

ϕ∗ = ǫϕ∨
(

ϕ[C(τ1, τ2)/(t = 0)] ∧
(

(t = 0)→ c(t1+t2) ∧
∧

i=1,2

(

(ti 6= 0)∧(ti ≤ τi)∧c(ti)
)

))

.

Proof. If ϕ is satisfiable over the empty space, there is nothing to prove; so assume
otherwise. Evidently, |=

∧

i=1,2

(

(ti 6= 0) ∧ (ti ≤ τi) ∧ c(ti)
)

∧ c(t1 + t2)→ C(τ1, τ2), whence

|= ϕ∗ → ϕ. Conversely, let A |= ϕ, for an Aleksandrov model A = (T,RC(T ), ·A); we
then construct A

∗ = (T,RC(T ), ·A
∗
), where rA

∗
= rA, for all variables occurring in ϕ. If

A 6|= C(τ1, τ2), then setting tA
∗
= T secures A∗ |= ϕ∗. If, on the other hand, A |= C(τ1, τ2),

then there is z ∈ τA1 ∩ τ
A
2 . As the space is Aleksandrov, there is a minimal open subset V

of A containing z. Set tA
∗
= ∅ and tA

∗

i = τAi ∩ V
− (1 ≤ i ≤ 2). It is routine to check that

both of the tA
∗

i are regular closed and connected. Moreover, their sum is connected, since
they share the point z. This secures A∗ |= ϕ∗.
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We note that the above lemma does not work in any Rn, as intersecting sets do not
necessarily share an open subset.

Suppose T is a topological space, and S a regular closed subset of T . Then S is itself
a topological space (with the subspace topology), which has its own regular closed algebra.
The following lemma is tedious to show in full generality, but simple for finite Aleksandrov
spaces (which, by Lemma 4.1, is sufficiently general for our purposes). We state it here
without proof.

Lemma 5.15. If S ∈ RC(T ), then RC(S) = {S ·X | X ∈ RC(T )}. Furthermore, denoting

the Boolean operations in RC(S) by +S, ·S and −S, etc., we have, for any X,Y ∈ RC(S):
(i) X +S Y = X +Y , (ii) X ·S Y = X ·Y , (iii) −SX = S · (−X), (iv) 1S = S and 0S = 0;

(v) X has the same number of components in S and T .

For a formula ϕ and a variable s, define ϕ|s to be the result of replacing every maximal

term τ occurring in ϕ by the term s · τ . For any model M = (T,RC(T ), ·M), define M|s

to be the model over the topological space sM (with the subspace topology) obtained by

setting rM|s = (s · r)M for all variables r.

Lemma 5.16. For any Ccc-formula ϕ, M |= ϕ|s iff M|s |= ϕ.

Proof. Using Lemma 5.15 (i)–(iv), we can show by structural induction on terms that

(s · τ)M = τM|s , for any B-term τ . The result then follows by Lemma 5.15 (v).

Lemma 5.17. Let ϕ[¬C(τ1, τ2)] be a Ccc-formula, and s, t, t1, t2 fresh variables. Then ϕ is

equisatisfiable in RegC with the formula

ϕ∗ = ǫϕ ∨
(

(s 6= 0) ∧ ϕ[¬C(τ1, τ2)/(t = 0)]|s ∧

(

(t · s = 0) → ¬c(t1 + t2) ∧
∧

i=1,2

(

c(ti) ∧ (τi · s ≤ ti)
))

)

,

and ϕ is equisatisfiable in ConRegC with ϕ∗ ∧ c(s).

Proof. Again, we may assume that ϕ is not satisfiable over the empty space. Evidently,
∧

i=1,2 (c(ti) ∧ (τi · s ≤ ti))∧¬c(t1+t2)→ ¬C(τ1 ·s, τ2 ·s) is a Ccc-validity. So any model A of

ϕ∗ is a model of ϕ|s, whence, by Lemma 5.16, A|s |= ϕ. Note that A|s is connected whenever
A |= c(s). Conversely, suppose A |= ϕ[¬C(τ1, τ2)], for a quasi-saw model A induced by
(W,R). LetWi (i = 0, 1) be the set of points of depth i in (W,R). Without loss of generality,
we may assume that every point in W0 has an R-predecessor in W1. If A |= C(τ1, τ2), let
A
∗ be exactly like A except that sA

∗
and tA

∗
are both the whole space. Then A

∗ |= ϕ∗.
On the other hand, if A 6|= C(τ1, τ2) then, for i = 1, 2, we add an extra point ui to W to
connect up the points in τAi (if there are any). Formally, let W ∗ = W ∪ {u1, u2}, where
u1, u2 6∈W , and let R∗ be the reflexive closure of the union of R and {(z, ui) | z ∈ τ

A
i ∩W1},

for i = 1, 2. Note that (W ∗, R∗) is connected if (W,R) is connected. Clearly, W is a regular
closed subset of the topological space (W ∗, R∗). Now define the model A∗ over (W ∗, R∗) by
setting sA

∗
=W , tA

∗
= ∅, tA

∗

i = τAi ∪ {ui} (i = 1, 2), and rA
∗
= rA for all other variables r.

Thus, A = A
∗
|s, whence, by Lemma 5.16, A∗ |= ϕ|s, and so A

∗ |= ϕ[¬C(τ1, τ2)/t 6= 0]|s. By

construction, A∗ |=
∧

i=1,2 (c(ti) ∧ (τi · s ≤ ti)) ∧ ¬c(t1 + t2). Thus, A
∗ |= ϕ∗.
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As a consequence of Lemma 5.14 and 5.17, we obtain

Theorem 5.18. Sat(Bc,RegC) and Sat(Bc,ConRegC) are both ExpTime-complete.

Sat(Bcc,RegC) and Sat(Bcc,ConRegC) are both NExpTime-complete.

Proof. Given a Cc-formula, by repeated applications of Lemmas 5.14 and 5.17, we can com-
pute an equisatisfiable Bc-formula in polynomial time. Similarly, given a Ccc-formula, we
can compute an equisatisfiable Bcc-formula in polynomial time. It then follows from Theo-
rem 5.9 that Sat(Bc,RegC) is ExpTime-hard, and from Theorem 5.12 that Sat(Bcc,RegC)
is NExpTime-hard. Noting that Lemmas 5.14 and 5.17, and Theorems 5.9 and 5.12 all
hold when we restrict attention to connected spaces, we obtain the remaining statements
of the theorem.

We mention here that although Lemma 5.17 does not hold for Rn, a simple modification
of the proof of Theorem 5.18 can be used to show the following:

Theorem 5.19. Sat(Bc,RC(Rn)) is ExpTime-hard and Sat(Bcc,RC(Rn)) is NExpTime-

hard, for any n ≥ 3.

Proof. Consider the formula Φ′(χM , ψ~a) constructed in the proof of Theorem 5.11. It
contains only negative occurrences of the predicate C. So, we can iteratively apply the
transformation of Lemma 5.17 to obtain a Bc-formula Φ∗. Denote by s the product of
all regions s that have been used to relativize the formula. It follows from the proof of
Theorem 5.11 that if M does not accept ~a then Φ′(χM , ψ~a) is satisfiable in a quasi-saw
model, for which we construct a new quasi-saw model A∗ over (W ∗, R∗) as described in the
proof of Lemma 5.17. It follows from the proof of Lemma 5.17 that A

∗ |= Φ∗. We then
embed the graph of the quasi-saw model A∗ into Rn by associating with each point of depth 0
an n-dimensional ball with attached cylinders, which touch only if there is a respective point
of depth 1. As Φ∗ is a Bc-formula and A∗ |= Φ∗, Φ∗ is satisfied in the constructed model over
RC(Rn). Conversely, if Φ∗ is satisfiable over RC(Rn) then, by Lemmas 4.1 and 4.2, it is
satisfied in a quasi-saw model A. As

∧

i=1,2 (c(ti) ∧ (τi · s ≤ ti))∧¬c(t1+t2)→ ¬C(τ1·s, τ2·s)

is a validity, A is a model of Φ′(χM , ψ~a)|s, whence, by Lemma 5.16, A|s |= Φ′(χM , ψ~a) and
thus, M does not accept ~a.

For the second statement of the Theorem, we proceed in a similar fashion, using
Lemma 5.17 to remove all (negative) occurrences of C in the formula Θ(T , T0, d) con-
structed in the proof of Theorem 5.12.

6. Topological logics over Euclidean spaces

So far, we have been mainly concerned with the computational complexity of various
topological logics interpreted over the very general classes of frames All, Con, RegC and
ConRegC. In this section, we discuss what happens when we restrict consideration to the
specific topological spaces R, R2 or R3.

For languages without connectedness predicates, there is little work to do. For the
languages B and RCC-8, we have, for all n ≥ 1:

Sat(B,RC(Rn)) = Sat(B,RegC),

Sat(RCC-8,RC(Rn)) = Sat(RCC-8,RegC).
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These equations can be established by embedding any model over RegC into one over the
domain RC(Rn) in such a way that the satisfaction of formulas in the relevant language is
unaffected. A suitable embedding for RCC-8 is described in [43]; the case of B is even more
straightforward.

The corresponding equations fail for the languages C, Cm and S4u. For example, we saw
that the C-formula (4.2) is satisfiable over frames in RegC, but only when the underlying
space is disconnected. Thus, Sat(C,RC(Rn)) 6= Sat(C,RegC), whence Sat(S4u,Rn) 6=
Sat(S4u,All), for all n ≥ 1. However, it turns out that (4.2) is, so to speak, the only fly
in the ointment:

Theorem 6.1 ([51]). Let T be any connected, dense-in-itself, separable metric space. Then

Sat(S4u, T ) = Sat(S4u,Con).

Hence, Sat(S4u,K) = Sat(S4u,Con) for any class of frames K included in Con and con-
taining Rn for any n, and similarly, Sat(C,K) = Sat(C,ConRegC) for any class of frames
K included in ConRegC and containing RC(Rn) for any n.

The predicate c, however, changes the above picture dramatically.

Theorem 6.2. The problems Sat(RCC-8c,RC(R)), Sat(RCC-8c,RC(R2)) and

Sat(RCC-8c,RC(R3)) are all different.

Proof. Let ri (1 ≤ i ≤ 5) and ri,j (1 ≤ i < j ≤ 5) be variables. As we observed in Section 1,
the formula

ϕ1 =
∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

EC(ri, rj)

is not satisfiable over RC(R), since the non-empty, regular closed, connected subsets of R
are exactly the closed, non-punctual intervals. On the other hand, ϕ1 is visibly satisfiable
over RC(Rn) for all n ≥ 2.

Now consider the formula

ϕ2 =
∧

{

DC(ri,j , rk,l)
∣

∣

∣
1 ≤ i < j ≤ 5, 1 ≤ k < l ≤ 5, {i, j} ∩ {k, l} = ∅

}

∧
∧

{

TPP(ri, rj,k)
∣

∣

∣
1 ≤ i ≤ 5, 1 ≤ j < k ≤ 5, i ∈ {j, k}

}

∧
∧

1≤i<j≤5

c(ri,j).

Think of the regions (assigned to) r1, . . . , r5 as ‘vertices’ and the regions (assigned to) ri,j
(1 ≤ i < j ≤ 5) as ‘edges’, with ri,j connecting ri and rj . The literals of ϕ2 having the form
TPP(ri, rj,k) ensure that ‘vertices’ (are non-empty and) are contained in any ‘edges’ which
involve them. The literals of ϕ2 having the form DC(ri,j , rk,l) ensure that ‘edges’ lacking a
common ‘vertex’ are not in contact. It is easy to construct a model for this formula over
RC(Rn) for all n > 2. To show that ϕ2 is not satisfiable over RC(R2), suppose otherwise;
we show, contrary to fact, that the graph K5 has a plane embedding.

To avoid notational clutter, take ri (1 ≤ i ≤ 5) and ri,j (1 ≤ i < j ≤ 5) to denote
regular closed sets of R2 satisfying ϕ2. For any point p in any of the ri,j, let ε

′
p be the

minimum Euclidean distance to any point q in any rk,l such that {i, j} ∩ {k, l} 6= ∅; let
εp = max(1, ε′p); and let Dp be the closed disc centred on p of radius εp/3. For all i, j
(1 ≤ i < j ≤ 5), let r′i,j =

⋃

{Dp | p ∈ ri,j}. The following are simple to verify: (i) r′i,j
is regular closed; (ii) the open set (r′i,j)

◦ is connected (hence path-connected) and contains

both ri and rj; (iii) for all k, l (1 ≤ k < l ≤ 5) such that {i, j} ∩ {k, l} 6= ∅, r′i,j ∩ r
′
k,l = ∅.
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r1

r2

Figure 13: Two non-intersecting, connected, closed sets r1 and r2 on a torus: note that r1
and r2 are connected, but r1 ∩ r2 is not.

For all i (1 ≤ i ≤ 5), choose a point vi ∈ ri and, for all i, j, (1 ≤ i < j ≤ 5), join vi and
vj with an arc αi,j lying in r′i,j. It is straightforward to draw these arcs in such a way that,

for each i, the arcs with vi as an endpoint meet only at vi. However, if {i, j} ∩ {k, l} = ∅,
the arcs αi,j and αk,l do not intersect.

Corresponding remarks apply to B:

Theorem 6.3. The problems Sat(Bc,RC(R)), Sat(Bc,RC(R2)) and Sat(Bc,RC(R3)) are

all different.

Proof. Almost identical to Theorem 6.2, noting that, for r, s connected, DC(r, s) if and
only if r + s is not connected.

It is not known whether Sat(Bc,RC(R3)) and Sat(Bc,ConRegC) are different. How-
ever, Sat(S4u,Rn) 6= Sat(S4u,Con) for all n ≥ 1. To see this, we rely on the following
fact:

Theorem 6.4 ([38], p. 137). If r1 and r2 are non-intersecting closed sets in Rn, and points

x and y are connected in r1 and also in r2, then x and y are connected in r1 ∩ r2.

The formula

(r1 ∩ r2 = 0) ∧
∧

i=1,2

(

(r−i ⊆ ri) ∧ c(ri)
)

∧ ¬c(r1 ∩ r2) (6.1)

states that r1 and r2 are non-intersecting, closed, connected regions having connected com-
plements, such that the intersection of their complements is not connected. This formula
is not satisfiable over any Rn, by Theorem 6.4. However, it is satisfiable over T for many
natural, connected topological spaces T . For example, let T be a torus, and let r1 and
r2 be interpreted as rings in T , arranged as in Fig. 13; it is then obvious that r1 and r2
satisfy (6.1).

Thus, for all of our base languages L, the language Lc (and therefore also Lcc) is more
sensitive than L to the spatial domain over which it is interpreted. Since we know the
complexity of the satisfiability problems for Lc and Lcc for very general classes of spatial
domains, the question naturally arises as to the complexity of these problems for spatial
domains based on low-dimensional Euclidean spaces.

For n = 1, we have a reasonably complete picture.

Theorem 6.5. Sat(Bc,RC(R)) is in NP.

Proof. Future-past temporal logic formulas (FP-formulas, for short) are constructed from
propositional variables pi, i < ω, using the Boolean connectives ∧, ¬, ⊤, and temporal
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operators 3F (‘some time in the future’) and 3P (‘some time in the past’). A model (R, V )
for FP consists of the real line R and a valuation V mapping each propositional variable
pi to a subset V (pi) of R. The truth-relation |= between pointed models (R, V, x) and
FP-formulas φ is defined as follows (the clauses for the Boolean connectives are standard):

• (R, V, x) |= pi iff x ∈ V (pi);
• (R, V, x) |= 3Fφ iff there is y > x such that (R, V, y) |= φ, and symmetrically for 3Pφ.

An FP-formula φ is satisfiable if there exists (R, V, x) with (R, V, x) |= φ. Enumerating the
region variables as r1, r2, . . ., we define a translation ·∗ from B-formulas to FP-formulas as
follows:

r∗i = pi, (−τ)∗ = ¬τ∗,

(τ1 · τ2)
∗ = τ∗1 ∧ τ

∗
2 , (τ1 + τ2)

∗ = τ∗1 ∨ τ
∗
2 ,

0∗ = ⊥, 1∗ = ⊤,

(τ1 = τ2)
∗ = ¬3F3P¬(τ

∗
1 ↔ τ∗2 ), (c(τ))∗ = ¬3F3P (τ

∗ ∧3F (¬τ
∗ ∧3F τ

∗)),

(¬ϕ)∗ = ¬ϕ∗, (ϕ1 ∧ ϕ2)
∗ = ϕ∗

1 ∧ ϕ
∗
2,

(ϕ1 ∨ ϕ2)
∗ = ϕ∗

1 ∨ ϕ
∗
2,

where τ , τ1, τ2 range over B-terms, and ϕ, ϕ1, ϕ2 over B-formulas. This translation can
clearly be computed in polynomial time. It is routine to verify that a Bc-formula ϕ is
satisfiable over RC(R) if and only if ϕ∗ is satisfiable over the temporal flow (R, <). But
the satisfiability problem for FP-formulas over (R, <) is known to be in NP (see, e.g., [20],
Theorem 2.4).

The exact complexities of the problems Sat(Bcc,RC(R)), Sat(RCC-8c,RC(R)) and
Sat(RCC-8cc,RC(R)) are not known, though an upper bound of PSpace is provided by
our next theorem.

Theorem 6.6. Sat(S4ucc,R) is in PSpace.

Proof. The proof is by reduction to the propositional temporal logic with Since and Until
over the real line, for which satisfiability is known to be PSpace-complete [48]. Recall that
linear temporal logic formulas (LTL-formulas, for short) are constructed from propositional
variables pi, i < ω, using the Boolean connectives ∧, ¬, ⊤, and binary temporal operators S
(‘since’) and U (‘until’). A model (R, V ) for LTL consists of the real line R and a valuation
V mapping each propositional variable pi to a subset V (pi) of R. The truth-relation |=
between pointed models (R, V, x) and LTL-formulas φ is defined as follows (the clauses for
the Boolean connectives are standard):

• (R, V, x) |= pi iff x ∈ V (pi);
• (R, V, x) |= φSψ iff there exists y < x such that (R, V, y) |= ψ and for all z with y < z < x,
(R, V, z) |= φ;
• (R, V, x) |= φUψ iff there exists y > x such that (R, V, y) |= ψ and for all z with x < z < y,
(R, V, z) |= φ.

An LTL-formula φ is satisfiable if there exists (R, V, x) with (R, V, x) |= φ.
Suppose now that we are given an S4ucc-formula ϕ. Without loss of generality, we may

assume that no nested interior and closure operators occur in ϕ (by introducing additional
variables, we can always transform ϕ into an equisatisfiable formula of length 2|ϕ| without
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nested topological operators). Let K be the maximum number k such that c≤k(τ) occurs
in ϕ.

Our PSpace algorithm for checking the satisfiability of such a ϕ proceeds as follows.
To simplify the exposition, we introduce a new unary predicate ∞(·), with the following
semantics (for models M over R):

M |=∞(τ) iff some bounded interval includes infinitely many components of τM.

(Note that ∞ is not part of the language S4ucc.) Now, we first guess a conjunction χ of
literals of the forms τ1 = τ2, τ1 6= τ2, c

=k(τ) and c≥K+1(τ) such that (i) for each subformula
of ϕ of the form τ1 = τ2, χ contains either τ1 = τ2 or τ1 6= τ2, and (ii) for each subformula of
the form c≤k(τ), it contains one of c=0(τ), . . . , c=K(τ), c≥K+1(τ), where c=k(τ) abbreviates
c≤k(τ) ∧ c≥k(τ). The literals in χ give in an obvious way the truth-values to the atoms in
ϕ, and we check whether ϕ, as a propositional formula, is true under this valuation. If this
is indeed the case, it only remains to verify whether χ is satisfiable over R. This can be
done by expressing χ as an equisatisfiable LTL-formula χ∗.

To this end, we non-deterministically replace each literal of the form c≥K+1(τ) in χ
with either ∞(τ) or the conjunction

(τ = r1 ∪ r2) ∧ (r−1 ∩ r
−
2 ∩ τ = 0) ∧ c=K(r1) ∧ (r2 6= 0),

where r1 and r2 are fresh variables. It is not difficult to see that χ is satisfiable if and only
if some conjunction χ̂ obtained in this way is also satisfiable; moreover, the length of χ̂ is
linear in the length of χ. Note that χ̂ is not necessarily an S4ucc-formula (because it may
contain occurrences of ∞); however, all terms in χ̂ are S4u-terms.

Now, the meaning of S4u-terms over R can be expressed with the help of LTL-formulas:
for an S4u-term τ we construct the LTL-formula τ∗ according to the following definition:

r∗i = pi, 0∗ = ⊥, 1∗ = ⊤,

τ∗ = ¬τ∗, (τ1 ∩ τ2)
∗ = τ∗1 ∧ τ

∗
2 , (τ1 ∪ τ2)

∗ = τ∗1 ∨ τ
∗
2 ,

(τ◦)∗ = (τ∗ S ⊤) ∧ τ∗ ∧ (τ∗ U ⊤)

and τ− is treated as an abbreviation for τ◦ . As τ does not have nested interior and closure
operators, the length of τ∗ is linear in the length of τ . Let M be a topological model over
R. Set VM(pi) = pMi . It can be shown by induction on the structure of an S4u-term τ that
(R, VM, x) |= τ∗ if and only if x ∈ τM.

We now map each literal ψ of χ̂ into an LTL-formula ψ∗ with (intuitively) the same
meaning as ψ. First, we translate literals of the form (τ1 = τ2) or (τ1 6= τ2) into LTL-
formulas as follows:

(τ1 = τ2)
∗ = 2F2P (τ

∗
1 ↔ τ∗2 ),

(τ1 6= τ2)
∗ = 3F3P¬(τ

∗
1 ↔ τ∗2 ),

where 3Fψ = ⊤ U ψ, 2F = ¬3F¬ψ, 3Pψ = ⊤ S ψ, 2Pψ = ¬3P¬ψ.
Next, we translate literals of the form ∞(τ) into LTL-formulas as follows:

(∞(τ))∗ = 3P3F ((¬(τ∗ U τ∗) ∧ ¬(¬τ∗ U ¬τ∗)) ∨ (¬(τ∗ S τ∗) ∧ ¬(¬τ∗ S ¬τ∗))) . (6.2)

We claim that the formula on the right-hand side of (6.2) is true (at all points in R) if and
only if there exists a bounded interval of R which includes infinitely many components of τ .
For if x ∈ R is such that (R, V, x) |= ¬(τ∗U τ∗)∧¬(¬τ∗U¬τ∗), under some valuation V , then
every interval to the right of x (i.e., whose left-hand endpoint is x) contains infinitely many
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components of τ ; and similarly for the second disjunct. Conversely, if there exists a bounded
interval of R which includes infinitely many components of τ , then these components must
have some accumulation point x. But then either every interval to the right of x contains
infinitely many components of τ , or every interval to the left of x does (or both); in the
former case, x satisfies ¬(τ∗ U τ∗) ∧ ¬(¬τ∗ U ¬τ∗), in the latter case, the second disjunct
in (6.2) is satisfied.

It is much harder to translate atoms of the form c=k(τ). To do this, we will require
LTL-formulas of the form:

βψ(η, ξ) = (ψ ∧ η) U
((

(ψ ∧ η) ∧ ((¬ψ ∧ ξ) U ⊤)
)

∨ (¬ψ ∧ ξ)
)

.

It is readily seen that if βψ(η, ξ) is true at a point x then there is y > x such that either (i)

ψ ∧ η is true everywhere in (x, y)4 and ¬ψ ∧ ξ is true at y, or (ii) ψ ∧ η is true everywhere
in (x, y] and ¬ψ ∧ ξ is true in (y, z], for some z > y. In other words, if βψ(η, ξ) ∧ ψ is true
at x then η is true at all points from (x,∞) that belong to the same connected component
of ψ as x, while ξ is true immediately to the right of that connected component.

To count the connected components of (extensions of) terms τ , we construct LTL-
formulas θτk , where k is a natural number not exceeding K. Take ⌊log2K⌋+1 fresh variables
vτn, . . . , v

τ
1 to represent a connected component number in binary. The formula θτk contains

the following conjuncts:

τ∗ ∧ vτi →
(

¬τ∗ U ⊤ ∨ βτ∗(v
τ
i ,⊤) ∨ 2F (τ

∗ ∧ vτi )
)

, for n ≥ i ≥ 1,

τ∗ ∧ ¬vτi →
(

¬τ∗ U ⊤ ∨ βτ∗(¬v
τ
i ,⊤) ∨ 2F (τ

∗ ∧ ¬vτi )
)

, for n ≥ i ≥ 1,

τ∗ ∧ vτj ∧ ¬v
τ
h → next-intτ∗(v

τ
j ) ∨ 2F¬τ

∗, for n ≥ j > h ≥ 1,

τ∗ ∧ ¬vτj ∧ ¬v
τ
h → next-intτ∗(¬v

τ
j ) ∨ 2F¬τ

∗, for n ≥ j > h ≥ 1,

τ∗ ∧ ¬vτh ∧ v
τ
h−1 ∧ · · · ∧ v

τ
1 → next-intτ∗(v

τ
h) ∨ 2F¬τ

∗, for n ≥ h ≥ 1,

τ∗ ∧ ¬vτh ∧ v
τ
h−1 ∧ · · · ∧ v

τ
1 → next-intτ∗(¬v

τ
i ) ∨ 2F¬τ

∗, for n ≥ h > i ≥ 1,

where
next-intτ∗(η) = β¬τ∗(⊤, η) ∨

(

τ∗ U β¬τ∗(⊤, η)
)

.

It can be seen that if next-intτ∗(η)∧ τ∗ is true at x then η is true at some y > x that belongs
to the next connected component of τ to the right of x. The first two formulas ensure that
inside the current connected component of τ , the bits of the counter remain constant. The
remaining conjuncts ensure proper counting; cf. (5.31)–(5.34). So, we set

(c(τ)=k)∗ = 3F3P

(

0τ ∧ τ
∗ ∧ ((τ∗ S ¬τ∗) ∨ 2P¬τ

∗ ∨ 2P τ
∗) ∧ θτk ∧ 2F θ

τ
k

∧ 3F (kτ ∧ τ
∗ ∧ ((τ∗ U ¬τ∗) ∨ 2F¬τ

∗ ∨ 2F τ
∗)
)

,

where kτ is the binary representation of k using the counter variables vτn, . . . , v
τ
1 (e.g.,

0τ = ¬vτn ∧ · · · ∧ ¬v
τ
1 ). Clearly, the length of (c(τ)=k)∗ is polynomial in the length of τ and

log2K.
Finally, we construct the LTL-formula χ∗ by replacing each conjunct ψ in χ̂ with ψ∗.

Clearly, the length of χ∗ is polynomial in the length of ϕ. We leave it to the reader to verify
that χ∗ is satisfiable if and only if χ̂ is satisfiable over R. Since the satisfiability problem
for LTL over R is in PSpace [48], this completes the proof.

4As usual, (x, y] = {z ∈ R | x < z ≤ y} and (x, y) = {z ∈ R | x < z < y}.
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Corollary 6.7. The problems Sat(Cc,RC(R)), Sat(Ccc,RC(R)), Sat(S4uc,R) and

Sat(S4ucc,R) are all PSpace-complete; the problems Sat(Bcc,RC(R)), Sat(RCC-8c,RC(R))
and Sat(RCC-8cc,RC(R)) are all (NP-hard and) in PSpace.

Proof. Theorems 5.6 and 6.6.

This concludes our discussion of the complexity of satisfiability for topological logics
interpreted over R.

Over R2, topological logics become harder to analyze. The encodings used to obtain
lower complexity bounds in Section 5 apply unproblematically to Euclidean spaces of dimen-
sion at least 2. In particular, Theorem 5.9 states that Sat(Cc,RC(Rn)) is ExpTime-hard,
for all n ≥ 2, whence Sat(S4uc,Rn) is ExpTime-hard, for all n ≥ 2. Similarly, Theorem 5.12
states that Sat(Ccc,RC(Rn)) is NExpTime-hard, for all n ≥ 2, whence Sat(S4ucc,Rn) is
NExpTime-hard, for all n ≥ 2.

Upper bounds for Sat(Cc,RC(Rn)), Sat(S4uc,Rn), Sat(Ccc,RC(Rn)) or Sat(S4ucc,Rn),
where n ≥ 2, are not known. However, for the smaller language RCC-8, upper bounds are
known from the literature in the case where the spatial domain is limited to certain well-
behaved regions in R2. One such domain is the set D of closed disc-homeomorphs in R2,
with which we began this paper. We mention the following remarkable fact, the proof of
which is too involved to repeat here:

Theorem 6.8 ([50]). The problem Sat(RCC-8, (R2,D)) is NP-complete.

Finally, we remark that, if n ≥ 3, no upper complexity bound is currently known for
the problem Sat(Bc,RC(Rn)), or, therefore, for any more expressive spatial logic.

7. Conclusion

In this paper, we have investigated the effect of augmenting various topological logics
in the qualitative spatial reasoning literature with predicates able to express the property
of connectedness. We considered three principal base languages: B, the language of the
variety of Boolean algebras; C, the extension of the well-known language RCC-8 with region-
combining operations; and S4u, the extension of Lewis’ system S4 with a universal operator,
under the topological interpretation of McKinsey and Tarski. And we considered two kinds
of connectedness predicate: c(r), for ‘region r is connected’; and c≤k(r), for ‘region r has
at most k connected components.’ For each base language L, we defined the languages
Lc (by adding the predicate c) and Lcc (by adding the predicates c≤k(r) for k ≥ 1); and
we considered the complexity of the satisfiability problems for L, Lc and Lcc over various
natural (classes of) spatial domains, both very general—as in the case of RegC, ConRegC,
All and Con—and also very specific—as in the case of RC(Rn) and Rn for various n.

We showed that, whereas the base languages display a surprising indifference to the
frames over which they are interpreted, the corresponding languages with connectedness
predicates are highly sensitive in this regard. We also showed that the addition of connect-
edness predicates increases the complexity of satisfiability over general classes of frames—
typically from NP or PSpace (for the base language L) to ExpTime (for the corresponding
language Lc) and NExpTime (for the language Lcc). We observed that this increase in
complexity is ‘stable’: over the most general classes of frames, the extensions of such differ-
ent formalisms as B and S4u with connectedness predicates are of the same complexity. We
further observed that by restricting these languages to formulas with just one connectedness
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RegC ConRegC RC(Rn) RC(R2) RC(R)
n ≥ 3

RCC-8 NP
Cor. 4.4

RCC-8c NP
Cor. 4.4

≥NP ≤PSpace,≥NP

RCC-8cc NP
Cor. 4.4

≥NP ≤PSpace,≥NP

B NP
Cor. 4.4

Bc ExpTime
Thm. 5.18

ExpTime
Thm. 5.18

≥ExpTime
Thm. 5.18

≥NP NP
Thm. 6.5

Bcc NExpTime
Thm. 5.18

NExpTime
Thm. 5.18

≥NExpTime
Thm. 5.18

≥NP ≤PSpace,≥NP

C NP
Cor. 4.4

PSpace
Cor. 5.8

Cc ExpTime
Cor. 5.10

ExpTime
Cor. 5.10

≥ExpTime
Thm. 5.9

≥ExpTime
Thm. 5.9

PSpace

Ccc NExpTime
Cor. 5.13

NExpTime
Cor. 5.13

≥NExpTime
Thm. 5.12

≥NExpTime
Thm. 5.12

PSpace

Cm NP
Cor. 4.4

PSpace

Cmc ExpTime ExpTime ≥ExpTime ≥ExpTime PSpace

Cmcc NExpTime NExpTime ≥NExpTime ≥NExpTime PSpace

All Con Rn, n ≥ 3 R2 R

S4u PSpace [34, 39, 2] PSpace
Cor. 5.5

S4uc ExpTime
Thm. 5.3

ExpTime
Thm. 5.3

≥ExpTime ≥ExpTime PSpace

S4ucc NExpTime
Thm. 5.1

NExpTime
Thm. 5.1

≥NExpTime ≥NExpTime PSpace
Thm. 6.6

Table 1: Satisfiability complexity for the topological logics considered in this paper.

constraint of the form c(r), we obtain logics that are still in PSpace, while two such con-
straints lead to ExpTime-hardness. Finally, we turned our attention to the complexity of
the satisfiability problems for these languages when interpreted over Euclidean spaces, sum-
marizing what is currently known and stating several open problems. The results obtained
are summarized in Table 6.
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