
Logical Methods in Computer Science
Vol. 3 (4:10) 2007, pp. 1–32
www.lmcs-online.org

Submitted Jan. 6, 2007
Published Nov. 15, 2007

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS:

TYPE INFERENCE IN DUAL LIGHT AFFINE LOGIC.

VINCENT ATASSI a, PATRICK BAILLOT a, AND KAZUSHIGE TERUI b

a LIPN - UMR 7030, CNRS - Université Paris 13, F-93430 Villetaneuse, France
e-mail address: {vincent.atassi,patrick.baillot}@lipn.univ-paris13.fr

b National Institute of Informatics, Tokyo, Japan
e-mail address: terui@nii.ac.jp

Abstract. In a previous work Baillot and Terui introduced Dual light affine logic (DLAL)
as a variant of Light linear logic suitable for guaranteeing complexity properties on lambda
calculus terms: all typable terms can be evaluated in polynomial time by beta reduction
and all Ptime functions can be represented. In the present work we address the problem of
typing lambda-terms in second-order DLAL. For that we give a procedure which, starting
with a term typed in system F, determines whether it is typable in DLAL and outputs
a concrete typing if there exists any. We show that our procedure can be run in time
polynomial in the size of the original Church typed system F term.

1. Introduction

Several works have studied programming languages with intrinsic computational com-
plexity properties. This line of research, Implicit computational complexity (ICC), is moti-
vated both by the perspective of automated complexity analysis, and by foundational goals,
in particular to give natural characterisations of complexity classes, like Ptime or Pspace.
Different calculi have been used for this purpose coming from primitive recursion, lambda
calculus, rewriting systems (e.g. [BC92, MM00, LM93]). . . A convenient way to see these
systems is in general to describe them as a subset of programs of a larger language satisfying
certain criteria: for instance primitive recursive programs satisfying safe/ramified recursion
conditions, rewriting systems admitting a termination ordering and quasi interpretation,
etc. . .

Inference. To use such ICC systems for programming purpose it is natural to wish
to automatize the verification of the criterion. This way the user could stick to a simple

1998 ACM Subject Classification: F.4.1; F.2.2; D.1.1.
Key words and phrases: Linear logic, lambda calculus, implicit computational complexity, type inference,

polynomial time complexity, polymorphic types, Light linear logic.
a Partially supported by projects NO-CoST (ANR, JC05 43380), CRISS (ACI), GEOCAL (ACI).
b Partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (4:10) 2007

c© V. Atassi, P. Baillot, and K. Terui
CC© Creative Commons

http://creativecommons.org/about/licenses

2 V. ATASSI, P. BAILLOT, AND K. TERUI

programming language and the compiler would check whether the program satisfies the
criterion, in which case a complexity property would be guaranteed.

In general this decision procedure involves finding a certain witness, like a type, a
proof or a termination ordering. Depending on the system this witness might be useful to
provide more precise information, like an actual bound on the running time, or a suitable
strategy to evaluate the program. It might be used as a certificate guaranteeing a particular
quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light linear logic
(LLL) ([Gir98]), a variant of Linear logic which characterises polynomial time computation,
within the proofs-as-programs correspondence. It includes higher-order and polymorphism,
and can be extended to a naive set theory ([Ter04]), in which the provably total functions
correspond to the class of polynomial time functions.

The original formulation of LLL by Girard was quite complicated, but a first simplifi-
cation was given by Asperti with Light affine logic (LAL) ([AR02]). Both systems have two
modalities (one more than Linear logic) to control duplication. There is a forgetful map to
system F terms (polymorphic types) obtained by erasing some information (modalities) in
types; if an LAL typed term t is mapped to an F-typed term M we also say that t is a
decoration of M .

So an LAL program can be understood as a system F program, together with a typing
guarantee that it can be evaluated in polynomial time once that program is written and
evaluated in the right syntax (see below). As system F is a reference system for the study
of polymorphically typed functional languages and has been extensively studied, this seems
to offer a solid basis to LAL.

However LAL itself is still difficult to handle and following the previous idea for the
application of ICC methods, we would prefer to use plain lambda calculus as a front-end
language, without having to worry about the handling of modalities, and instead to delegate
the LAL typing part to a type inference engine. The study of this approach was started in
[Bai02]. For it to be fully manageable however several conditions should be fulfilled:

(1) a suitable way to execute the lambda-terms with the expected complexity bound,
(2) an efficient type inference,
(3) a typed language which is expressive enough so that a reasonable range of programs is

accepted.

The language LAL presents some drawback for the first point, because the LAL typed
terms need to be evaluated with a specific graph syntax, proof-nets, in order to satisfy the
polynomial bound, and plain beta reduction can lead to exponential blow-up.

In a previous work ([BT04]) we addressed this issue by defining a subsystem of LAL,
called Dual light affine logic (DLAL). It is defined with both linear and non-linear function
types. It is complete for Ptime just as LAL and its main advantage is that it is also Ptime
sound w.r.t. beta reduction: a DLAL term admits a bound on the length of all its beta
reduction sequences. Hence DLAL stands as a reasonable substitute for plain LAL for
typing issues.

Concerning point 2, as type inference for system F is undecidable ([Wel99]) we do not
try to give a fully-fledged type inference algorithm from untyped terms. Instead, to separate
the polymorphic part issue from the proper DLAL part one, we assume the initial program
to be already typed in F. Either the system F typing work is left to the user, or one could
use a partial algorithm for system F typing for this preliminary phase.

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 3

So the contribution of the present work is to define an efficient algorithm to decide if
a system F term can be decorated in a DLAL typed term. This was actually one of the
original motivations for defining DLAL. We show here that decoration can be performed in
polynomial time. This is obtained by taking advantage of intuitions coming from proof-nets,
but it is presented in a standard form with a first phase consisting in generating constraints
expressing typability and a second phase for constraints solving. One difficulty is that the
initial presentation of the constraints involves disjunctions of linear constraints, for which
there is no obvious Ptime bound. Hence we provide a specific resolution strategy.

The complete algorithm is already implemented in ML, in a way that follows closely
the specification given in the article. It is modular and usable with any linear constraints
solver. The code is commented, and available for public download (Section 7). With this
program one might thus write terms in system F and verify if they are Ptime and obtain a
time upper bound. It should in particular be useful to study further properties of DLAL
and to experiment with reasonable size programs.

The point 3 stressed previously about expressivity of the system remains an issue which
should be explored further. Indeed the DLAL typing discipline will in particular rule out
some nested iterations which might in fact be harmless for Ptime complexity. This is related
to the line of work on the study of intensional aspects of Implicit computational complexity
([MM00, Hof03]).

However it might be possible to consider some combination ofDLAL with other systems
which could allow for more flexibility, and we think a better understanding of DLAL and
in particular of its type inference, is a necessary step in that direction.

Related work. Inference problems have been studied for several ICC systems (e.g.
[Ama05], [HJ03]). Elementary linear logic (EAL, [Gir98, DJ03]) in particular is another
variant of Linear logic which characterises Kalmar elementary time and has applications to
optimal reduction. Type inference for propositional EAL (without second-order) has been
studied in [CM01],[CRdR03],[CDLRdR05] and [BT05] which gives a polynomial time pro-
cedure. Type inference for LAL was also investigated, in [Bai02, Bai04]. To our knowledge
the present algorithm is however the first one for dealing with polymorphic types in an
EAL-related system, and also the first one to infer light types in polynomial time.

This article is an extended version of the paper [ABT06]. Its main novelties are the
following ones:

• it is self-contained and complete proofs are provided for the theorems;
• a new section has been added discussing the problem of type inference with data-type

domain specification (Section 6);
• the section on the implementation of the algorithm and examples of type inference (Sec-

tion 7) has been developed, with in particular more examples like the predecessor and
polynomials.

Acknowledgements. The authors wish to thank Laurent Régnier for useful discus-
sions related to the topic of this paper.

2. From system F to DLAL

The language LF of system F types is given by:

T,U ::= α | T → U | ∀α.T .

4 V. ATASSI, P. BAILLOT, AND K. TERUI

We assume that a countable set of term variables xT , yT , zT , . . . is given for each type
T . The terms of system F are built as follows (here we write MT to indicate that the term
M has type T):

xT (λxT .MU)T→U ((MT→U)NT)U (Λα.MU)∀α.U ((M∀α.U)T)U [T/α],

with the proviso that when building a term Λα.M , α does not occur free in the types
of free term variables of M (the eigenvariable condition). The set of free variables of M is
denoted FV (M).

It is well known that there is no sensible resource bound (i.e. time/space) on the ex-
ecution of system F terms in general. On the other hand, we are practically interested in
those terms which can be executed in polynomial time. However the class P of such terms
is neither recursively enumerable nor co-recursively enumerable. This can be verified for
instance in the following way, by reduction of the problem of solvability of Diophantine
equations. For each Diophantine equation P (x) = 0, build a lambda term MP such that,
when a binary word w is given, MP (w) returns ǫ if P (x) = 0 has an integer solution n with
−|w| ≤ n ≤ |w|, and returns a word of length 2|w| otherwise. Then MP ∈ P iff P (x) = 0
has an integer solution. There is also a complementary reduction, establishing our claim.
Actually a stronger result is shown in [BMM07]: the class P is Σ0

2-complete.
So we are naturally led to the study of sufficiently large subclasses of P. The system

DLAL gives such a class in a purely type-theoretic way.
The language LDLAL of DLAL types is given by:

A,B ::= α | A ⊸ B | A⇒ B | §A | ∀α.A .

We note §0A = A and §k+1A = §§kA. The erasure map (.)− from LDLAL to LF is defined
by:

(§A)− = A−, (A ⊸ B)− = (A⇒ B)− = A− → B−,

and (.)− commutes with the other connectives. We say A ∈ LDLAL is a decoration of T ∈ LF

if A− = T .
A declaration is a pair of the form xT : B with B− = T . It is often written as x : B

for simplicity. A judgement is of the form Γ;∆ ⊢ M : A, where M is a system F term,
A ∈ LDLAL and Γ and ∆ are disjoint sets of declarations. The intuition is that the (free)
variables in Γ are duplicable (non-linear), while the ones in ∆ are not (they are linear).
When ∆ consists of x1 : A1, . . . , xn : An, §∆ denotes x1 : §A1, . . . , xn : §An. The type
assignment rules are given on Figure 1. Here, we assume that the substitution M [N/x]
used in (§ e) is capture-free. Namely, no free type variable α occurring in N is bound in
M [N/x]. We write Γ;∆ ⊢DLAL M : A if the judgement Γ;∆ ⊢M : A is derivable.

Examples of concrete programs typable in DLAL are given in Section 7.
Recall that binary words, in {0, 1}∗, can be given in system F the type:

WF = ∀α.(α → α) → (α→ α) → (α→ α) .

A corresponding type in DLAL, containing the same terms, is given by:

WDLAL = ∀α.(α −◦ α) ⇒ (α−◦ α) ⇒ §(α−◦ α) .

The depth d(A) of a DLAL type A is defined by:

d(α) = 0, d(∀α.B) = d(B),
d(A ⊸ B) = max(d(A), d(B)), d(§A) = d(A) + 1,
d(A⇒ B) = max(d(A) + 1, d(B)).

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 5

;xA−
: A ⊢ xA−

: A
(Id)

Γ;xA−
: A,∆ ⊢M : B

Γ;∆ ⊢ λxA−
.M : A ⊸ B

(⊸ i)
Γ1;∆1 ⊢M : A ⊸ B Γ2;∆2 ⊢ N : A

Γ1,Γ2;∆1,∆2 ⊢ (M)N : B
(⊸ e)

xA−
: A,Γ;∆ ⊢M : B

Γ;∆ ⊢ λxA−
.M : A⇒ B

(⇒ i)
Γ;∆ ⊢M : A⇒ B ; z : C ⊢ N : A

Γ, z : C;∆ ⊢ (M)N : B
(⇒ e) (*)

Γ1;∆1 ⊢M : A

Γ1,Γ2;∆1,∆2 ⊢M : A
(Weak)

x1 : A,x2 : A,Γ;∆ ⊢M : B

x : A,Γ;∆ ⊢M [x/x1, x/x2] : B
(Cntr)

; Γ,∆ ⊢M : A

Γ; §∆ ⊢M : §A
(§ i)

Γ1;∆1 ⊢ N : §A Γ2;x : §A,∆2 ⊢M : B

Γ1,Γ2;∆1,∆2 ⊢M [N/x] : B
(§ e)

Γ;∆ ⊢M : A

Γ;∆ ⊢ Λα.M : ∀α.A
(∀ i) (**)

Γ;∆ ⊢M : ∀α.A

Γ;∆ ⊢ (M)B− : A[B/α]
(∀ e)

(*) z : C can be absent.
(**) α does not occur free in Γ,∆.

Figure 1: Typing system F terms in DLAL

A type A is said to be Π1 if it does not contain a negative occurrence of ∀; like for instance
WDLAL.

The fundamental properties of DLAL are the following [BT04]:

Theorem 2.1.

(1) For every function f : {0, 1}∗ −→ {0, 1}∗ in DTIME[nk], there exists a closed term M
of type WDLAL −◦ §dWDLAL with d = O(log k) representing f .

(2) Let M be a closed term of system F that has a Π1 type A in DLAL. Then M can be

normalized in O(|M |2
d
) steps by β-reduction, where d = d(A) and |M | is the structural

size of M . Moreover, the size of any intermediary term occurring in normalization is

also bounded by O(|M |2
d
).

Although DLAL does not capture all Ptime algorithms P, the result 1 guarantees that
DLAL is at least expressive enough to represent all Ptime functions. In fact, DLAL is as
expressive as LAL even at the level of algorithms, because there exists a generic translation
from LAL to DLAL given by:

(!A)o = ∀α.((Ao ⇒ α) ⊸ α), (.)o commutes with other connectives than !.

See the full version of [BT04] (forthcoming) for details.
The result 2 on the other hand implies that if we ignore the embedded types occurring

in M , the normal form of M can be computed in polynomial time (by ordinary β-reduction;
that is the difference from LAL).

Now, let MWF→WF be a system F typed term and suppose that we know that it has a
DLAL type WDLAL −◦ §dWDLAL for some d ≥ 0. Then, by the consequence of the above
theorem, we know that the term M is Ptime. In fact, given a binary word w ∈ {0, 1}∗,
consider its Church coding w of type WDLAL. Then we have that (M)w has type §dWDLAL,

6 V. ATASSI, P. BAILLOT, AND K. TERUI

and can thus be evaluated in O(|w|2
d+1

) steps. Thus by assigning a DLAL type to a given
system F term, one can statically verify a polynomial time bound for its execution.

In order to use DLAL for resource verification of system F terms, we address the
following problem:

Problem 2.2 (DLAL typing). Given a closed term MT of system F, determine if there is
a decoration A of T such that ⊢DLAL M : A.

(Here the closedness assumption is only for readability.)
In the sequel, we show that there is a polynomial time algorithm for solving the DLAL

typing problem.

3. Localization of DLAL type inference

To solve the DLAL typing problem, the main obstacle is that the typing rules of DLAL
are not syntax-directed. In particular, the rule (§ i) does not correspond to any constructs
of system F terms, and the rule (§ e) involves term substitution. These features make local
reasoning on types impossible.

To overcome the difficulty, we introduce (following [AR02]) an intermediary syntax
which is more informative than system F terms, but not more informative than DLAL
derivations themselves (in 3.1). In particular, it has explicit constructs for (§ i). In addition,
we replace the global typing rules of DLAL (which involve substitution) with some local
typing rules and a set of conditions (in 3.3 and 3.4). We then show that our Local typing
rules and conditions exactly characterise system F terms typable in DLAL (in 3.5).

3.1. Pseudo-terms. We begin with introducing an intermediary syntax, which consists of
DLAL⋆ types and pseudo-terms.

First we decompose A ⇒ B into !A ⊸ B. The language LDLAL⋆ of DLAL⋆ types is
given by:

A ::= α | D ⊸ A | ∀α.A | §A ,

D ::= A | !A .

There is a natural map (.)⋆ from LDLAL to LDLAL⋆ such that (A ⇒ B)⋆ = !A⋆
⊸ B⋆

and commutes with the other operations. The erasure map (.)− from LDLAL⋆ to LF can be
defined as before. A DLAL⋆ type is called a bang type if it is of the form !A, and otherwise
called a linear type. In the sequel, A,B,C stand for linear types, and D for either bang or
linear types.

We assume there is a countable set of term variables xD, yD, zD, . . . for each D ∈
LDLAL⋆. The pseudo-terms are defined by the following grammar:

t, u ::= xD | λxD.t | (t)u | Λα.t | (t)A | §t | §̄t ,

where A is a linear type andD is an arbitrary one. The idea is that § corresponds to the main
door of a §-box (or a !-box) in proof-nets ([Gir87, AR02]) while §̄ corresponds to auxiliary
doors. But note that there is no information in the pseudo-terms to link occurrences of §
and §̄ corresponding to the same box, nor distinction between §-boxes and !-boxes.

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 7

There is a natural erasure map from pseudo-terms to system F terms, which we will

also denote by (.)−, consisting in removing all occurrences of §, §̄, replacing xD with xD−

and (t)A with (t)A−. When t− = M , t is called a decoration of M .
Let t be a pseudo-term and u be a subterm of t. We say that u is a door-extreme

subterm of t if the following holds: if u is of the form u = §u′ or u = §̄u′ then §u and §̄u are
not subterms of t.

As an example consider t = (x §§y). Its door-extreme subterms are {t, x, §§y, y}, and
§y is a subterm of t but not a door-extreme subterm.

For our purpose, it is sufficient to consider the class of regular pseudo-terms, given by:

u ::= xD | λxD.t | (t)t | Λα.t | (t)A ,

t ::= §mu ,

where m is an arbitrary value in Z and §mt denotes § · · · §t (m times) if m ≥ 0, and §̄ · · · §̄t
(−m times) if m < 0.

In other words, a pseudo-term is regular if and only if it does not contain any subterm
of the form §§̄u or §̄§u.

3.2. Pseudo-terms and proof-nets. In this section we illustrate the links between pseudo-
terms and proof-nets. It is independent of the sequel and can be skipped without problem.

The translation (.)⋆ from DLAL to LAL gives a mapping on derivations; therefore a
DLAL type derivation corresponds to an LAL proof and thus to a proof-net ([AR02]). To
facilitate the reading we will use here a ‘syntax-tree like’ representation for intuitionistic
LAL proof-nets.

As an example consider the following term:

M = (λf.(f)((f) x))((λh.h) g) .

It can be given the typing x : §α ⊢M : §α, with the derivation of Fig. 2. The corresponding
(intuitionistic) proof-net is given on Fig. 4. For readers more familiar with the classical
representation of proof-nets (in the style of e.g. [AR02]), the corresponding representation
is given on Fig. 3.

; f2 : α ⊸ α ⊢ f2 : α ⊸ α ; x : α ⊢ x : α

; f2 : α ⊸ α, x : α ⊢ (f2) x : α ; f1 : α ⊸ α ⊢ f1 : α ⊸ α

; f1 : β, f2 : β, x : α ⊢ (f1) ((f2) x) : α

f1 : β, f2 : β; x : §α ⊢ (f1) ((f2) x) : §α

f : β; x : §α ⊢ (f) ((f) x) : §α

; x : §α ⊢ λf.(f) ((f) x) : β ⇒ §α

; h : β ⊢ h : β

;⊢ λh.h : β ⊸ β ; g : β ⊢ g : β

; g : β ⊢ (λh.h) g : β

g : β;x : §α ⊢ (λf.(f) ((f) x))((λh.h) g) : §α

where β = α ⊸ α.

Figure 2: Example: DLAL derivation for M .

The pseudo-term corresponding to the previous derivation is:

t = (λf.§(§̄f)((§̄f) §̄x))§((λh.h) §̄g) .

It is represented graphically on Fig. 5: to § and §̄ correspond respectively opening and
closing doors.

8 V. ATASSI, P. BAILLOT, AND K. TERUI

? ? ! ?§ §

AX
AX

AX
AX

AX

AX

AX

CUT

CUT

⊗⊗⊗

℘

℘

⊗

§A⊥§A ?(A ⊗ A⊥)

Figure 3: Classical Proof-Net corresponding to the example.

@

f

@

g

@

x

λf

λh

h

@

§

!

α

α

!(α ⊸ α)

α ⊸ α

!(α ⊸ α)α ⊸ α

(α ⊸ α) ⊸ (α ⊸ α) α ⊸ α
§α

§α

α ⊸ α

!(α ⊸ α)!(α ⊸ α)

!(α ⊸ α) ⊸ §α

§α

α ⊸ α
α

Figure 4: Example of Proof-Net.

In a proof-net, a box can be thought of as an opening door connected to a certain
number (possibly none) of closing doors. If in the proof-net of Fig. 4 we disconnect opening
doors from closing doors we get the graph of Fig. 5, corresponding to the pseudo-term.

Our method for type inference relies on a procedure for deciding if a pseudo-term
comes from a DLAL derivation. This essentially corresponds to deciding if a pseudo-term

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 9

@

f

@

g

@

x

λf

λh

h

@

α

α

!(α ⊸ α)

α ⊸ α

!(α ⊸ α)α ⊸ α

(α ⊸ α) ⊸ (α ⊸ α) α ⊸ α
§α

§α

!(α ⊸ α)

!(α ⊸ α) ⊸ §α

§α

α

α ⊸ α

α ⊸ α

γ1 γ2

!(α ⊸ α)

Figure 5: Example: graph corresponding to pseudo-term.

corresponds to a proof-net, that is to say in particular deciding whether opening and closing
doors can be matched in such a way to yield a correct distribution of boxes.

3.3. Local typing condition. We now describe a way to assign types to pseudo-terms
in a locally compatible way. A delicate point in DLAL is that it is sometimes natural to
associate two types to one variable x. For instance, we have x : A;⊢DLAL x : §A in DLAL,
and this can be read as x : !A ⊢ x : §A in terms of DLAL⋆ types. We thus distinguish
between the input types, which are inherent to variables, and the output types, which are
inductively assigned to all pseudo-terms. The condition (i) below is concerned with the
output types. In the sequel, D◦ denotes §A if D is of the form !A, and otherwise denotes
D itself.

A pseudo-term t satisfies the Local typing condition if the following holds:

(i) one can inductively assign a linear type to each subterm of t in the following way (here
the notation t : A indicates that t has the output type A):

xD : D◦
t : B

λxD.t : D ⊸ B
t : D ⊸ B u : A D◦ = A

(t)u : B

t : A
§t : §A

t : §A

§̄t : A
t : A

Λα.t : ∀α.A
t : ∀α.A

(t)B : A[B/α]

10 V. ATASSI, P. BAILLOT, AND K. TERUI

(ii) when a variable x occurs more than once in t, it is typed as x!A,
(iii) t satisfies the eigenvariable condition. Namely, for any subterm of the form Λα.u and

any free term variable xD in u, α does not occur free in D.

We also say that t is locally typed.
The Local typing rules are syntax-directed, and assign a unique type to each pseudo-

term whenever possible. Notice that there is a type mismatch between D and A in the
application rule whenD is a bang type. This mismatch will be settled by the Bang condition
below.

3.4. Boxing conditions. It is clear that local typability is not a sufficient condition for
typability in DLAL, as it does not ensure that doors §, §̄ are well placed so that boxes
can be built around them. Moreover, it does not distinguish §- and !- boxes. We therefore
impose additional conditions on locally typed pseudo-terms.

We consider words over the language L = {§, §̄}∗ and ≤ the prefix ordering. If t is a
pseudo-term and u is an occurrence of subterm in t, let doors(t, u) be the word inductively
defined as follows. If t = u, let doors(t, u) = ǫ. Otherwise:

doors(§t, u) = § :: (doors(t, u)),
doors(§̄t, u) = §̄ :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A,u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u), where ti is the subterm containing u.

That is to say, doors(t, u) collects the modal symbols §, §̄ occurring on the path from the
root to the node u in the term tree of t. We define a map s : L → Z by:

s(ǫ) = 0,

s(§ :: l) = 1 + s(l),

s(§̄ :: l) = −1 + s(l).

A word l ∈ L is weakly well-bracketed if ∀l′ ≤ l, s(l′) ≥ 0, and is well-bracketed if this
condition holds and moreover s(l) = 0: think of § and §̄ resp. as opening and closing
brackets.

Bracketing condition. Let t be a pseudo-term. We say that t satisfies the Bracketing
condition if:

(i) for any occurrence of free variable x in t, doors(t, x) is well-bracketed;
(ii) for any occurrence of an abstraction subterm λx.v of t:

(ii.a) doors(t, λx.v) is weakly well-bracketed, and
(ii.b) for any occurrence of x in v, doors(v, x) is well-bracketed.

This condition is sufficient to rule out the canonical morphisms for dereliction and
digging, which are not valid in DLAL (nor in EAL):

λx§A.§̄x : §A ⊸ A, λx§A.§x : §A ⊸ §§A .

Since doors(§̄x, x) = §̄ and doors(§x, x) = §, they do not satisfy the Bracketing condition
(ii.b).

Remark 3.1. On the graph representation of pseudo-terms, conditions (i), (ii.a) and (ii.b)
can be visualised as conditions of bracketing holding on certain paths of the graph: for
instance condition (ii.b) means that any (top-down) path from a λx binder to an edge
corresponding to an occurrence of x is well-bracketed (considering the opening and closing

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 11

doors). For instance the pseudo-term graph of Fig. 5 satisfies these conditions; we show on
the Figure two paths γ1, γ2 that have to be well-bracketed according to (ii.b).

Bang condition. Let t be a locally typed pseudo-term. A subterm u is called a bang
subterm of t if it occurs as (t′)u in t for some t′ : !A ⊸ B. We say that t satisfies the Bang
condition if for any bang subterm u of t,

(i) u contains at most one occurrence of free variable x!C , and it has a bang type !C.
(ii) for any subterm v of u such that v 6= u and v 6= x, s(doors(u, v)) ≥ 1.

This condition is sufficient to rule out the canonical morphisms for monoidalness
!A⊗!B−◦!(A⊗ B) and §A−◦!A which are not valid in LAL (the following terms and types
are slightly more complicated since LDLAL⋆ does not explicitly contain a type of the form
A−◦ !B):

λx!(A⊸B).λy!B⊸C .λz!A.(y)§((§̄x)§̄z) , λx§A.λy!A⊸B .(y)§(§̄x) .

In the first pseudo-term, the bang subterm §((§̄x)§̄z) contains more than one free variable.
In the second pseudo-term, the bang subterm §(§̄x) has a free variable x with a linear type.
Hence they both violate the Bang condition (i).

Remark 3.2. The intuition behind the Bang condition might be easier to understand on
the graph representation of pseudo-terms. The idea is that in a proof-net, the argument
of a non-linear application should be enclosed in a box, with at most one free variable, as
in the Example of Fig. 4. This is enforced on the pseudo-term by Bang conditions (i) and
(ii). Condition (ii) indeed forces the root of the argument of the application to start with
an opening door, and this opening door can only be matched by a closing door on the edge
corresponding to the free variable x.

Λ-Scope condition. The previous conditions, Bracketing and Bang, would be enough
to deal with boxes in the propositional fragment of DLAL. For handling second-order
quantification though, we need a further condition to take into account the sequentiality
enforced by the quantifiers. For instance consider the following two formulas (the second
one is known as Barcan’s formula):

(1) §∀α.A ⊸ ∀α.§A , (2) ∀α.§A ⊸ §∀α.A .

Assuming α occurs free in A, formula (1) is provable while (2) is not. Observe that we can
build the following pseudo-terms which are locally typed and have respectively type (1) and
(2):

t1 = λx§∀α.A.Λα.§((§̄x)α) , t2 = λx∀α.§A.§Λα.§̄((x)α) .

Both pseudo-terms satisfy the previous conditions, but t2 does not correspond to a DLAL
derivation.

Let u be a locally typed pseudo-term. We say that u depends on α if the type of u
contains a free variable α. We say that a locally typed pseudo-term t satisfies the Λ-scope
condition if: for any subterm Λα.u of t and for any subterm v of u that depends on α,
doors(u, v) is weakly well-bracketed.

Coming back to our example: t1 satisfies the Λ-scope condition, but t2 does not, because
(x)α depends on α and nevertheless doors(§̄((x)α), (x)α) = §̄ is not weakly well-bracketed.

We now give a reformulation of the Bang condition (ii), which will be useful later:

12 V. ATASSI, P. BAILLOT, AND K. TERUI

Lemma 3.3. Assume that t is a locally typed regular pseudo-term that satisfies the Brack-
eting condition and that u is a bang subterm of t that satisfies the Bang condition (i). If u
has a free variable call it x. Then the Bang condition (ii) holds for u iff:

for any door-extreme subterm v of u such that v 6= u, v 6= x, s(doors(u, v)) ≥ 1; and
s(doors(u, x)) = 0, if u has a free variable x.

Proof. As for the ‘only-if’ direction, it suffices to show that s(doors(u, x)) = 0 whenever
u has a free variable x. By the Bracketing condition, there is a subterm w of t such that
doors(w, x) is well-bracketed (w is of the form λx.v, or w = t if x is free in t). Therefore
s(doors(w, u)) ≥ 0 and s(doors(w, x)) = 0, so s(doors(u, x)) ≤ 0. Let u′ be the smallest
subterm of u strictly containing x. We have s(doors(u, u′)) ≥ 1 and −1 ≤ s(doors(u′, x)) ≤ 1,
so s(doors(u, x)) = 0.

To show the ‘if’ direction, let v be a subterm of u such that v 6= u. If u has a free
variable x we also assume that v 6= x. If v is a door-extreme subterm then s(doors(u, v)) ≥ 1.
Otherwise there are two door-extreme subterms v1, v2 of u such that:

• v1 ⊆ v ⊆ v2, where ⊆ denotes the subterm relation,
• v1 is an immediate distinct door-extreme subterm of v2.

Because of regularity, we have:

either s(doors(u, v2)) > s(doors(u, v)) > s(doors(u, v1)),

or s(doors(u, v2)) < s(doors(u, v)) < s(doors(u, v1)).

Moreover we know that s(doors(u, v2)) ≥ 1 and s(doors(u, v1)) ≥ 0 (because if v1 = x then
s(doors(u, v1)) = 0, and otherwise s(doors(u, v1)) ≥ 1). Therefore we have s(doors(u, v)) ≥
1.

3.5. Correctness of the conditions. So far we have introduced four conditions on pseudo-
terms: Local typing, Bracketing, Bang and Λ-scope. Let us call a regular pseudo-term sat-
isfying these conditions well-structured. It turns out that the well-structured pseudo-terms
exactly correspond to the DLAL typing derivations.

Lemma 3.4. Let M0 be a system F term. If

x1 : A1, . . . , xm : Am; y1 : B1, . . . , yn : Bn ⊢DLAL M0 : C,

then there is a decoration t of M0 with type C⋆ and with free variables x
!A⋆

1

1 , . . . , x
!A⋆

m
m ,

y
B⋆

1

1 , . . . , y
B⋆

n
n which is well-structured.

Proof. One can build a (possibly non-regular) decoration M+
0 of M0 by induction on the

derivation. Depending on the last typing rule used (see Figure 1), M+
0 takes one of the

following forms:

(Id) xA⋆

(⊸ i) λxA⋆

.M+ (⊸ e) (M+)N+

(⇒ i) λx!A⋆

.M+ (⇒ e) (M+)§N+[§̄z!C⋆

/z]
(Weak) M+ (Cntr) M+[x/x1, x/x2]
(∀ i) Λα.M+ (∀ e) (M+)B⋆

(§ i) §M+[§̄x
!A⋆

i

i /xi, §̄y
§B⋆

j

j /yj] (§ e) M+[N+/x],

where M+ in (§ i) has free variables xA1

1 , . . . , xAm
m , yB1

1 , . . . , yBn
n .

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 13

It is easy to verify that M+
0 admits Local typing with the output type C⋆ and has the

free variables x
!A⋆

1

1 , . . . , x
!A⋆

m
m , y

B⋆
1

1 , . . . , y
B⋆

n
n .

Moreover, one can show by induction on the derivation thatM+
0 satisfies the Bracketing,

Bang and Λ-scope conditions. Let us just remark:

• The rules (⊸ i) and (⇒ i) introduce new abstraction terms λxA⋆

.M+ and λx!A⋆

.M+, re-
spectively. The Bracketing condition (ii.b) for them follows from the Bracketing condition
(i) for M+.

• The rule (⇒ e) introduces a new bang term §N+[§̄z!C⋆
/z]. It satisfies the Bang condition

(i) because N contains at most one linear variable z. The condition (ii) holds because N+

satisfies the Bracketing condition, and thus we have doors(N+, u) ≥ 0 for any subterm
occurrence u.

Observe also that the Bracketing condition is maintained because the § added before
N+ and the §̄ added before the variable z match each other, so z remains well-bracketed,
and condition (i) is preserved; since we add a § on N , condition (ii.a) is maintained as
well; and as bounded variables of N are left unmodified, (ii.b) is obviously still verified.

We also have to make sure that the substitution of §̄z for z does not violate the Λ-scope
condition. It follows from the eigenvariable condition for N , which ensures that z does
not depend on any bound type variable.

• The rule (Cntr) conforms to the Local typing condition (ii).
• The rule (∀ i) introduces a new type abstraction Λα.M+. The Λ-scope condition for it

follows from the Bracketing condition for M+.
• The rule (§ i) clearly preserves the Bracketing condition. It is also clear that the sub-

stitution involved does not cause violation of the Bang condition (as xi’s and yj’s have
linear types in M+, and thus do not appear in any bang term), and the Λ-scope condi-
tion (as xi’s and yj’s do not depend on any bound type variable due to the eigenvariable
condition).

• The rule (§ e) involves substitution. The term M+[N+/x] satisfies the Λ-scope condition
since substitution is capture-free, and thus no free type variable in N+ becomes bound
in M+[N+/x].

Finally, the required regular pseudo-term t is obtained from M+
0 by applying the fol-

lowing rewrite rules as many times as possible:

§̄§u −→ u, §§̄u −→ u.

It is clear that all the conditions are preserved by these rewritings.

To show the converse direction, the following Lemma plays a crucial role:

Lemma 3.5 (Boxing). If §t : §A is a well-structured pseudo-term, then there exist pseudo-
terms v : A, u1 : §B1, . . . , un : §Bn, unique (up to renaming of v’s free variables) such
that:

(1) FV (v) = {xB1

1 , . . . , xBn
n } and each xi occurs exactly once in v,

(2) §t = §v[§̄u1/x1, . . . , §̄un/xn] (substitution is assumed to be capture-free),
(3) v, u1, . . . , un are well-structured.

Proof. Given §t, assign an index to each occurrence of § and §̄ in §t to distinguish occurrences
(we assume that the outermost § has index 0). By traversing from the root of the syntactic
tree, one can find closing brackets §̄1, . . . , §̄n that match the opening bracket §0 in §0t.

14 V. ATASSI, P. BAILLOT, AND K. TERUI

Replace each §̄iui : Bi with a fresh and distinct free variable xBi

i (1 ≤ i ≤ n), and let §v be
the resulting pseudo-term. This way one can obtain v, u1, . . . , un, such that condition (2)
holds.

Strictly speaking, it has to be checked that the substitution does not cause capture of
type or term variables. Let us consider the case of type variables: suppose that ui contains
a subterm s that depends on a bound variable α of §v. Then §0t contains a subterm of
the form Λα.v′[§̄iui[s]/xi]. However, doors(v′′, s) with v′′ = v′[§̄iui[s]/xi] cannot be weakly
well-bracketed because §̄i has to match the outermost opening bracket §0. This contradicts
the Λ-scope condition for §0t. Hence the case of type variable capture is solved. A similar
argument using the Bracketing condition shows that the substitutions do no cause term
variable capture either.

As to condition (1), we claim that v does not contain a free variable other than
x1, . . . , xn. If there is any, say y, then it is also a free variable of t, thus the Bracket-
ing condition for §0t implies that doors(§0t, y) is well-bracketed, and thus there is a closing
bracket that matches §0 in the path from §0t to y. That means that y belongs to one of u1,
. . . , un, not to v. A contradiction.

Let us now check condition (3). As to the Bracketing condition (i) for v, let li =
doors(§0t, §̄iui) for each 1 ≤ i ≤ n. Then we have s(l) ≥ 1 for all ǫ 6= l ≤ li and
s(li) = 1, and the same is true of the list doors(§0v, xi). Therefore, doors(v, xi) is well-
bracketed for each 1 ≤ i ≤ n. (ii.a) and (ii.b) are easy. As for ui (1 ≤ i ≤ n), notice
that s(doors(§0t, ui)) = 0. This means that for any subterm occurrence u′ of ui, we have
s(doors(ui, u

′)) = s(doors(§0t, u
′)). Therefore, the Bracketing condition for ui reduces to

that for §0t.
The Λ-scope condition for v, u1, . . . , un easily reduces to that for §0t.
As to the Local typing condition, the only nontrivial point to check is whether v satisfies

the eigenvariable condition. Suppose that xi depends on a variable α which is bound in
v. Then §0t contains a subterm of the form Λα.v′[§̄iui/xi] and ui depends on α. However,
doors(v′′, ui) with v′′ = v′[§̄iui/xi] cannot be weakly well-bracketed because §̄i should match
the outermost opening bracket §0. This contradicts the Λ-scope condition for §0t.

To show the Bang condition for v (it is clear for u1, . . . , un), suppose that v con-
tains a bang subterm v′. We claim that v′ does not contain variables x1, . . . , xn. If it
contains any, say xi, then §0t contains v′′ = v′[§̄iui/xi] and the Bang condition for §0t im-
plies that s(doors(v′′, §̄iui)) ≥ 1. On the other hand, we clearly have s(doors(§0t, v

′′)) ≥ 1
because v′′ contains the closing bracket §̄i that matches §0. As a consequence, we have
s(doors(§0t, §̄iui)) ≥ 2. This means that §̄i does not match §0, a contradiction. As a conse-
quence, v′ does not contain x1, . . . , xn. So v′ occurs in §0t, and therefore satisfies the Bang
condition.

Now we can prove:

Theorem 3.6. Let M be a system F term. Then

x1 : A1, . . . , xm : Am; y1 : B1, . . . , yn : Bn ⊢DLAL M : C

if and only if there is a decoration t of M with type C⋆ and with free variables x
!A⋆

1

1 , . . . , x
!A⋆

m
m ,

y
B⋆

1

1 , . . . , y
B⋆

n
n which is well-structured.

Proof. The ‘only-if’ direction has already been proved. As for the ‘if’ direction, we prove the

following: if a pseudo-term t : C⋆ is well-structured and FV (t) = {x
!A⋆

1

1 , . . . , x
!A⋆

m
m , y

B⋆
1

1 , . . . ,

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 15

y
B⋆

n
n } for some DLAL types A1, . . . , Am, B1, . . . , Bn, then we have Γ;∆ ⊢DLAL t

− : C, where
Γ = x1 : A1, . . . , xm : Am and ∆ = y1 : B1, . . . , yn : Bn. The proof proceeds by induction
on the size of t.

• When t = x
!A⋆

i

i for some 1 ≤ i ≤ m, C⋆ must be §A⋆
i by Local typing, and we have

Γ;∆ ⊢DLAL xi : §Ai. Likewise, if t = y
B⋆

j

j for some 1 ≤ j ≤ n, we have Γ;∆ ⊢DLAL yj : Bj .

• When t = λz!A⋆
0 .u :!A⋆

0 ⊸ C⋆
0 , u : C⋆

0 is also well-structured; observe in particular that
the Bracketing condition for t implies the same for u. By induction hypothesis, we have
z : A0,Γ;∆ ⊢DLAL u

− : C0, and hence

Γ;∆ ⊢DLAL λz
A−

0 .u− : A0 ⇒ C0.

The case when z has a linear type is similar.
• When t = Λα.u : ∀α.C⋆

0 , u : C⋆
0 is also well-structured. Hence one can argue as above;

notice in particular that the eigenvariable condition on t ensures that one can apply the
rule (∀ i) to u−.

• When t = (u)B⋆ : C⋆
0 [B⋆/α], u : ∀α.C⋆

0 is well-structured, and the induction hypothesis
yields Γ;∆ ⊢DLAL u

− : ∀α.C0. We therefore obtain Γ;∆ ⊢DLAL (u−)B− : C0[B/α].
• It is impossible to have t = §̄u, because it clearly violates the Bracketing condition.
• When t = §t′ : §C⋆

0 , the Boxing Lemma gives us well-structured terms v : C⋆
0 , u1 : §C⋆

1 ,
. . . , uk : §C⋆

k such that

(1) FV (v) = {z
C⋆

1

1 , . . . , z
C⋆

k

k } and each zi occurs exactly once in v,
(2) §t′ = §v[§̄u1/z1, . . . , §̄uk/zk].
By the induction hypothesis, we have

; z1 : C1, . . . , zk : Ck ⊢DLAL v
− : C0 and Γ;∆i ⊢DLAL u

−
i : §Ci

for 1 ≤ i ≤ k, where (∆1, . . . ,∆k) is a partition of ∆ such that each ∆i contains the free
variables occurring in ui. Hence by rules (§ i), (§ e) and (Cntr), we obtain

Γ;∆ ⊢DLAL v
−[u−1 /z1, . . . , u

−
k /zk] : §C0.

• When t = (t′)t′′ and t′′ is not a bang subterm, one can argue as above. When t′′ is a bang
subterm, t′ and t′′ are locally typed as t′ :!A⋆−◦C⋆ and t′′ : §A⋆. They are well-structured,
and moreover:

(i) t′′ contains at most one free variable x
!A⋆

i

i , which is among {x1, . . . , xm},
(ii) for any subterm v of t′′ such that v 6= t′′ and v 6= xi, s(doors(u, v)) ≥ 1.

By the induction hypothesis on t′ (and by the fact that t′′ does not contain any variable
of linear type), we have

Γ;∆ ⊢DLAL (t′)− : A⇒ C.

On the other hand, the condition (ii) above entails that t′′ is either the variable xi or of
the form §u. In the former case, A⋆ = A⋆

i and we have:

Γ;∆ ⊢ (t′)− : A⇒ C ;xi : A ⊢ xi : A

Γ;∆ ⊢ (t′)−xi : C .

In the latter case, we can apply the Boxing Lemma. Then the conditions (i) and (ii)
entail that there is a well-structured term v : A⋆ with a free variable z such that t′′ =
§u = §v[§̄xi/z]. Notice here that z has a linear type A⋆

i , and by renaming, one can assume

16 V. ATASSI, P. BAILLOT, AND K. TERUI

w.l.o.g. that z = xi in v. Therefore, we obtain:

Γ;∆ ⊢ (t′)− : A⇒ C ;xi : Ai ⊢ v
− : A

Γ;∆ ⊢ (t′)−v− : C .

As a consequence of Theorem 3.6, our DLAL typing problem (Problem 2.2) boils down
to:

Problem 3.7 (decoration). Given a system F termM , determine if there exists a decoration
t of M which is well-structured.

4. Parameterization and constraints generation

To solve the decoration problem (Problem 3.7), one needs to explore an infinite set
of decorations. This can be effectively done by introducing an abstract kind of types and
terms with symbolic parameters (in 4.1), and expressing the conditions for such abstract
terms to be materialized by boolean and integer constraints over those parameters (in 4.2
and in 4.3).

4.1. Parameterized terms and instantiations. Let us begin with introducing a term
syntax with parameters. We use two sorts of parameters: integer parameters n,m, . . .
meant to range over Z, and boolean parameters b1,b2, . . . meant to range over {0, 1}. We
also use linear combinations of integer parameters c = n1 + · · ·+nk, where k ≥ 0 and each
ni is an integer parameter. In case k = 0, it is written as 0.

The set of parameterized types (p-types for short) is defined by:

F ::= α | D ⊸ A | ∀α.A ,

A ::= §cF ,

D ::= §b,cF .

where b is a boolean parameter and c is a linear combination of integer parameters. Infor-
mally speaking, the parameter c in §b,cF stands for the number of modalities ahead of the
type, while the boolean parameter b serves to determine whether the first modality, if any,
is § or !. In the sequel, A,B,C stand for linear p-types of the form §cF , and D for bang
p-types of the form §b,cF , and E for arbitrary p-types.

When A is a linear p-type §cF , B[A/α] denotes a p-type obtained by replacing each

§c
′
α in B with §c

′+cF and each §b,c′α with §b,c′+cF . When D = §b,cF , D◦ denotes the
linear p-type §cF .

We assume that there is a countable set of variables xD, yD, . . . for each bang p-type
D. The parameterized pseudo-terms (p-terms for short) t, u . . . are defined by the following
grammar:

u ::= xD | λxD.t | (t)t | Λα.t | (t)A ,

t ::= §mu .

We denote by parbool(t) the set of boolean parameters of t, and by parint(t) the set of
integer parameters of t. An instantiation φ = (φb, φi) for a p-term t is given by two maps
φb : parbool(t) → {0, 1} and φi : parint(t) → Z. The map φi can be naturally extended to

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 17

linear combinations c = n1 + · · ·+ nk by φi(c) = φi(n1) + · · ·+ φi(nk). An instantiation φ
is said to be admissible for a p-type E if for any linear combination c occurring in E, we
have φi(c) ≥ 0, and moreover whenever §b,cF occurs in E, φb(b) = 1 implies φi(c) ≥ 1.
When φ is admissible for E, a type φ(E) of DLAL⋆ is obtained as follows:

φ(§cF) = §φi(c)φ(F), φ(§b,cF) = §φi(c)φ(F) if φb(b) = 0,

= !§φi(c)−1φ(F) otherwise,

and φ commutes with the other connectives. An instantiation φ for a p-term t is said to be
admissible for t if it is admissible for all p-types occurring in t. When φ is admissible for t,

a regular pseudo-term φ(t) can be obtained by replacing each §mu with §φi(m)u, each xD

with xφ(D), and each (t)A with (t)φ(A).
As for pseudo-terms there is an erasure map (.)− from p-terms with their p-types to

system F terms consisting in forgetting modalities and parameters.
A free linear decoration (free bang decoration, resp.) of a system F type T is a linear

p-type (bang p-type, resp.) E such that (i) E− = T , (ii) each linear combination c occurring
in E is a single integer parameter m, and (iii) the parameters occurring in E are mutually
distinct. Two free decorations T 1 and T 2 are said to be disjoint if the set of parameters
occurring in T 1 is disjoint from the set of parameters in T 2.

The free decoration M of a system F term M (which is unique up to renaming of
parameters) is obtained as follows: first, to each variable xT we associate a parameterized

variable xT = xD in such a way that (i) D is a free bang decoration of T , and (ii) whenever
xT1 and yT2 are distinct variables, the free bang decorations D1, D2 associated to them are
disjoint. M is now defined by induction on the construction of M :

λxT .M = §mλxT .M, (M)N = §m((M)N),

Λα.M = §mΛα.M, (M)T = §m((M)A),

where all newly introduced parameters m are chosen to be fresh, and the p-type A in
the definition of (M)T is a free linear decoration of T which is disjoint from all p-types
appearing in M .

The key property of free decorations is the following:

Theorem 4.1. Let M be a system F term and t be a regular pseudo-term. Then t is
a decoration of M if and only if there is an admissible instantiation φ for M such that
φ(M) = t.

Proof. We first prove that for any system F type T , any free bang decoration D of T and
any DLAL⋆ type E, we have E− = T iff there is an admissible instantiation φ for D
such that φ(D) = E. This statement, as well as a similar one with respect to free linear
decorations and linear DLAL⋆ types, can be simultaneously proved by induction on T .
Then the Theorem can be shown by induction on M .

Hence our decoration problem (Problem 3.7) boils down to:

Problem 4.2 (instantiation). Given a system F term M , determine if there exists an
admissible instantiation φ for M such that φ(M) is well-structured.

For that we will need to be able to state the four conditions (Local typing, Bracketing,
Bang, and Λ-scope) on p-terms; they will yield some constraints on parameters. In the
sequel, we will speak of linear inequations, meaning in fact both linear equations and linear
inequations.

18 V. ATASSI, P. BAILLOT, AND K. TERUI

xD : D◦ : Adm(D)

t : §cF : M

§mt : §m+cF : M∪{m + c ≥ 0}

t : A : M
λxD.t : §0(D ⊸ A) : M∪ Adm(D)

t : §c(D ⊸ B) : M1 u : A : M2

(t)u : B : M1 ∪M2 ∪ {c = 0} ∪ U(D◦, A)

t : A : M
Λα.t : §0∀α.A : M

t : §c(∀α.B) : M

(t)A : B[A/α] : M∪ {c = 0} ∪ Adm(A)

Figure 6: Local typing and M(t) constraints.

4.2. Local typing constraints. First of all, we need to express the unifiability of two
p-types E1 and E2. We define a set U(E1, E2) of constraints by

U(α,α) = ∅,

U(D1 ⊸ A1,D2 ⊸ A2) = U(D1,D2) ∪ U(A1, A2),

U(∀α.A1,∀α.A2) = U(A1, A2),

U(§c1F1, §
c2F2) = {c1 = c2} ∪ U(F1, F2),

U(§b1,c1F1, §
b2,c2F2) = {b1 = b2, c1 = c2} ∪ U(F1, F2).

It is undefined otherwise. It is straightforward to observe:

Lemma 4.3. Let E1, E2 be two linear (bang, resp.) p-types such that E−
1 = E−

2 . Then
U(E1, E2) is defined. Moreover, when φ is an admissible instantiation for E1 and E2, we
have φ(E1) = φ(E2) if and only if φ is a solution of U(E1, E2).

Proof. By induction on E1.

For any p-type E, define

Adm(E) = {c ≥ 0 : c occurs in E} ∪ {b = 1 ⇒ c ≥ 1 : §b,cF occurs in E}.

Then φ is admissible for E if and only if φ is a solution of Adm(E).
Now consider the free decoration M of a system F typed term M . We assign to each

subterm t of M a linear p-type B and a set M of constraints (indicated as t : B : M) as on
Figure 6. Notice that any linear p-type is of the form §cF . Moreover, since t comes from a
system F typed term, we know that t has a p-type §c(D ⊸ B) when t occurs as (t)u, and
§c(∀α.B) when t occurs as (t)A. In the former case, we have (D◦)− = A−, so that U(D◦, A)
used in the application rule is always defined. As a consequence, for any M a unique p-type
and a unique set of constraints M(M) are obtained. Finally, observe that M satisfies the
eigenvariable condition.

Let Ltype(M) be M(M) ∪ {b = 1 : x§
b,cF occurs more than once in M}.

Lemma 4.4. Let M be a system F term and φ be an instantiation for M . Then φ is
admissible for M and φ(M) satisfies the Local typing condition if and only if φ is a solution
of Ltype(M).

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 19

4.3. Boxing constraints. We consider the words over integer parameters m, n . . . , whose
set we denote by Lp. Let t be a p-term and u an occurrence of subterm of t. We define,
as for pseudo-terms, the word doors(t, u) in Lp as follows. If t = u, let doors(t, u) = ǫ.
Otherwise:

doors(§mt, u) = m :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A,u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u) where ti is the subterm containing u.

The sum s(l) of an element l of Lp is a linear combination of integer parameters defined by:

s(ǫ) = 0, s(m :: l) = m + s(l).

For each list l ∈ Lp, define wbracket(l) = {s(l′) ≥ 0 | l′ ≤ l} and bracket(l) = wbracket(l) ∪
{s(l) = 0}.

Given a system F term M , we consider the following sets of constraints:

Bracketing constraints. Bracket(M) is the union of the following sets:

(i) for each occurrence of free variable x in M , bracket(doors(M,x));
(ii) for each occurrence of an abstraction subterm λx.v of M :

(ii.a) wbracket(doors(M,λx.v)),
(ii.b) for any occurrence of x in v, bracket(doors(v, x)).

Bang constraints. A subterm u that occurs in M as (t)u with t : §c
′
(§b,cF ⊸ B) is

called a bang subterm of M with the critical parameter b. Now Bang(M) is the union of
the following sets: for each bang subterm u of M with a critical parameter b,

(i) {b = 0} if u has strictly more than one occurrence of free variable, and

{b = 1 ⇒ b′ = 1} if u has exactly one occurrence of free variable x§
b
′,c′F ′

.
(ii) {b = 1 ⇒ s(doors(u, v)) ≥ 1 : v subterm of u such that v 6= u and v 6= x}∪

{b = 1 ⇒ s(doors(u, x)) = 0}.
(where x is the free occurrence of variable in u, if there is one, otherwise the second

set in the union is removed)

Remark 4.5. Note that if t is a p-term and φ is an instantiation, the pseudo-term φ(t)
might have more subterms than t. In fact subterms of the p-term t are in correspondence
with door-extreme subterms of the regular pseudo-term φ(t).

For instance if t = §mx and φ(m) = 2, the subterms of t and φ(t) are respectively
{§mx, x} and {§2x, §x, x}. The door-extreme subterms of φ(t) are {§2x, x}.

This is why we had to add in the Bang constraints (ii) the condition {b = 1 ⇒
s(doors(u, x)) = 0} (see Lemma 3.3).

Λ-Scope constraints. Scope(M) is the union of the following sets:

(i) wbracket(doors(u, v)) for each subterm Λα.u of M and for each subterm v of u that
depends on α.

We denote Const(M) = Ltype(M) ∪ Bracket(M) ∪ Bang(M) ∪ Scope(M).

Remark 4.6. Instead of using p-terms, the parameters and constraints might be visualized
on pseudo-terms graphs. Using our running example of Fig. 5 we can decorate it with
parameters mi: see Fig. 7. Each mi stands for a possible sequence of doors: if it is
instantiated with k ≥ 0 (resp. k ≤ −1) then this will correspond to k (resp. (−k))
opening (resp. closing) doors. Then, for instance, the Bracketing constraints correspond to

20 V. ATASSI, P. BAILLOT, AND K. TERUI

conditions on the parameters occurring along certain paths of the graph (as indicated in
Remark 3.1). As an example the Bracketing constraint (ii.b) for the binder λf and the two
free occurrences of f gives here {m3 ≥ 0, m3+m4 = 0, m3+m5 ≥ 0, m3+m5+m6 = 0}.

@

f

@

g

@

x

λf

λh

h

@

m1

m3

m7

m8

m10

m11

m5

m2

m9

m6

m4

Figure 7: Example of parameterized pseudo-term graph.

Theorem 4.7. Let M be a system F term and φ be an instantiation for M . Then: φ is
admissible for M and φ(M) is well-structured if and only if φ is a solution of Const(M).

Moreover, the number of (in)equations in Const(M) is quadratic in the size of M .

Proof. Clearly, the above constraints are almost direct parameterizations of the correspond-
ing conditions given in the previous section. Let us just examine the Bang condition.

Suppose that φ(M) satisfies the Bang condition. For each (parameterized) bang sub-
term u with the critical parameter b in M , one of the following two happens:

• φ(u) is not a bang subterm of φ(M) (in the sense of the previous section). Namely,
φ(b) = 0. In this case, φ is a solution of the equation b = 0, and also of b = 1 ⇒ b′ = 1

if u has a free variable x§
b
′,c′F ′

.
• φ(u) is a bang subterm of φ(M). Namely, φ(b) = 1. In this case, u contains at most one

variable by the Bang condition. Hence the equation b = 0 does not belong to Bang(M).

Moreover, if u has a free variable x§
b
′,c′F ′

, φ(x) must have a bang type and so φ(b′) = 1.
Hence φ is a solution of b = 1 ⇒ b′ = 1.

It is straightforward to observe that φ is a solution of the equations in (ii), by using Lemma
3.3. Therefore, φ is a solution of Bang(M).

Now suppose the converse and let u be a (parameterized) bang subterm with the critical
parameter b in M . Suppose also that φ(u) is a bang subterm of φ(M). This means that
φ(b) = 1. Since φ is supposed to be a solution of Bang(M), u must contain at most one free

variable, say x§
b
′,c′F ′

. Moreover, we have φ(b′) = 1, which means that φ(x) has a bang type
in φ(M). Therefore, φ(M) satisfies the Bang condition (i). As φ satisfies the conditions

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 21

in (ii) and φ(b) = 1 we get that φ(u) satisfies the condition in Lemma 3.3, hence by this
Lemma we obtain that φ(u) satisfies the Bang condition (ii).

5. Solving the constraints

Having described a way to collect a set of constraints from a given system F term, there
just remains to give a fast algorithm to solve them. Our method proceeds as follows: first
solve the boolean constraints, which corresponds to determine which !-boxes are necessary
(in 5.1), and then solve the integer constraints, which corresponds to complete the decoration
by finding a suitable box structure (in 5.2).

5.1. Solving boolean constraints. We split Const(M) into three disjoint sets Constb(M),
Consti(M), Constm(M):

• A boolean constraint s ∈ Constb(M) consists of only boolean parameters. s is of one of
the following forms:

b1 = b2 (in Ltype(M)), b = 1 (in Ltype(M)),
b = 0 (in Bang(M)), b = 1 ⇒ b′ = 1 (in Bang(M)).

• A linear constraint s ∈ Consti(M) deals with integer parameters only. A linear constraint
s is of one of the following forms:

c1 = c2 (in Ltype(M)),
c ≥ 0 (in Ltype(M), Bracket(M), Scope(M)),
c = 0 (in Ltype(M) and Bracket(M)).

• A mixed constraint s ∈ Constm(M) contains a boolean parameter and a linear combina-
tion and is of the following form:

b = 1 ⇒ c = 0 (in Bang(M)),
b = 1 ⇒ c ≥ 1 (in Ltype(M) and Bang(M)).

We first try to find a solution of Constb(M), and then proceed to the other constraints.

This does not cause loss of generality, because Constb(M) admits a minimal solution when-
ever solvable. Let us consider the set of instantiations on boolean parameters and the
extensional order ≤ on these maps: ψb ≤ φb if for any b, ψb(b) ≤ φb(b).

Lemma 5.1. There is a polynomial time algorithm to decide whether Constb(M) has a
solution or not. Moreover, the algorithm returns a minimal solution whenever there exists
any.

Proof. Our algorithm is based on the standard resolution procedure. Let B := Constb(M).
Apply repeatedly the following steps until reaching a fixpoint:

• if b1 = b2 ∈ B and b1 = i ∈ B with i ∈ {0,1}, then let B := B ∪ {b2 = i};
• if b1 = b2 ∈ B and b2 = i ∈ B with i ∈ {0,1}, then let B := B ∪ {b1 = i};
• if (b = 1 ⇒ b′ = 1) ∈ B and b = 1 ∈ B, then let B := B ∪ {b′ = 1}.

22 V. ATASSI, P. BAILLOT, AND K. TERUI

It is obvious that this can be done in a linear number of steps and that the resulting system
B is equivalent to Constb(M).

Now, if B contains a pair of equations: b = 0,b = 1, then it is inconsistent, and hence
Constb(M) does not have a solution. Otherwise, define the boolean instantiation ψb by

ψb(b) := 1 if b = 1 ∈ B;
:= 0 otherwise.

It is clear that ψb is a solution of B. In particular, observe that any constraint of the form
(b = 1 ⇒ b′ = 1) in B is satisfied by ψb. Moreover any solution φb of B satisfies ψb ≤ φb.

Therefore, ψb is a minimal solution of Constb(M).

5.2. Solving integer constraints. When φb is a boolean instantiation, φbConstm(M) de-
notes the set of linear constraints defined as follows:

• for any constraint of the form (b = 1 ⇒ I) in Constm(M), where I is a linear (in)equation
(of the form c ≥ 1 or c = 0), I belongs to φbConstm(M) if and only if φb(b) = 1.

Then we clearly have:

(*) (φb, φi) is a solution of Const(M) if and only if φb is a solution of Constb(M) and φi is
a solution of φbConstm(M) ∪ Consti(M).

Lemma 5.2. Const(M) admits a solution if and only if it has a solution ψ = (ψb, ψi) such

that ψb is the minimal solution of Constb(M).

Proof. Suppose that Const(M) admits a solution (φb, φi). Then by the previous Lemma,

there is a minimal solution ψb of Constb(M). Since ψb ≤ φb, we have ψbConstm(M) ⊆
φbConstm(M). Since φi is a solution of φbConstm(M)∪Consti(M) by (*) above, it is also a
solution of ψbConstm(M)∪Consti(M). This means that (ψb, φi) is a solution of Const(M).

Coming back to the proof-net intuition, Lemma 5.2 means that given a syntactic tree
of term there is a most general (minimal) way to place !-boxes (and accordingly ! subtypes
in types), that is to say: if there is a DLAL decoration for this tree then there is one with
precisely this minimal distribution of !-boxes.

Now notice that ψbConstm(M) ∪ Consti(M) is a linear inequation system, for which a
polynomial time procedure for searching a rational solution is known ([Kac79, Kar84]).

Lemma 5.3. ψbConstm(M)∪Consti(M) has a solution in Q if and only if it has a solution
in Z.

Proof. Clearly the set of solutions is closed under multiplication by a positive integer.

Theorem 5.4. Let M be a system F term. Then one can decide in time polynomial in the
cardinality of Const(M) whether Const(M) admits a solution.

Proof. First decide if there is a solution of Constb(M), and if it exists, let ψb be the minimal
one (Lemma 5.1). Then apply the polynomial time procedure to decide if ψbConstm(M) ∪
Consti(M) admits a solution in Q. If it does, then we also have an integer solution (Lemma
5.3). Otherwise, Const(M) is not solvable.

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 23

By combining Theorems 3.6, 4.1, 4.7 and 5.4, we conclude that the DLAL typing
problem (Problem 2.2) can be solved in polynomial time:

Theorem 5.5. Given a system F term MT , it is decidable in time polynomial in the size
of M whether there is a decoration A of T such that ⊢DLAL M : A.

6. Data-types and typing with domain specification

6.1. Data-types. Now that we have a type inference procedure, we can reexamine the
data-types in system F and the corresponding types in DLAL.

Consider for instance the system F type for unary integers:

NF = ∀α.(α → α) → (α→ α) .

We denote by k the Church integer for k.
If we apply the type inference procedure to the Church integer 2, we obtain the following

family of parameterized types with constraints as result:






























A = §n1∀α.§n2 [§b3,n3(§b4,n4α ⊸ §n5α) ⊸ §n6(§b7,n7α ⊸ §n8α)]
b3 = 1, b4 = b7 = 0
n4 = n5, n7 = n8,
n3 + n4 = n6 + n7

n7 ≥ n4

ni ≥ 0, nj ≥ bj for 1 ≤ i ≤ 8 and j = 3.

It is easy to check that conversely, any solution to this system gives a type suitable
for all Church integers. We denote by N (A) this set of constraints. If D is a free bang
decoration of NF , we define N (D) = N (D◦).

Observe that the type NDLAL = ∀α.(α ⊸ α) ⇒ §(α ⊸ α) is obtained by a solution of
this system (φ(n3) = φ(n6) = 1, φ(ni) = 0 for i 6= 3, 6, φ(b3) = 1, φ(b4) = φ(b7) = 0) but
it is not the only one. For instance the following types are also suitable DLAL types for
Church integers:

• N ′
DLAL = ∀α.(α ⊸ α) ⇒ (§α ⊸ §α),
obtained with φ0 defined as the previous φ, but for φ0(n6) = 0, φ0(n7) = φ0(n8) = 1.

• §∀α.§2(§α ⊸ §α) ⇒ §(§3α ⊸ §3α),
obtained with φ1(ni) = 1 for i = 1, 4, 5, 6; φ1(ni) = 3 for i = 3, 7, 8; φ1(n2) = 0,

φ1(b3) = 1, φ1(b4) = φ1(b7) = 0.

In the same way we can characterise the DLAL types for the Church representations
of binary words, with a linear free decoration A of the system F type WF and the following
set of constraints W(A).















































A = §n1∀α.§n2 [§b3,n3(§b4,n4α ⊸ §n5α) ⊸ §n6 [§b7,n7(§b8,n8α ⊸ §n9α) ⊸ §n10(§b11,n11α ⊸ §n12α)]]
b3 = b7 = 1, b4 = b8 = b11 = 0
n4 = n5, n8 = n9, n11 = n12,
n3 + n4 = n6 + n7 + n8,
n7 + n8 = n10 + n11,
n11 ≥ n8

n11 ≥ n4

ni ≥ 0, nj ≥ bj for 1 ≤ i ≤ 12 and j = 3, 7.

24 V. ATASSI, P. BAILLOT, AND K. TERUI

6.2. Typing with domain specification. Actually the DLAL typability of a term
MWF→WF of system F is not sufficient to ensure that M is Ptime computable. To il-
lustrate this point, we consider for simplicity unary Church integers and terms of type
NF → NF . Observe that the following term of system F has type NF → NF and represents
the exponentiation function (2n) over unary integers:

exp = λn.Λβ.(n β → β)(2 β).

Thus the term exp does not represent a Ptime function but. . . it is typable in DLAL, with
for instance the type:

∀α.[(α ⇒ §α) ⊸ (α⇒ §α)] ⊸ ∀β.[(β ⊸ β) ⇒ §(β ⊸ β)].

The trick here is that this DLAL type does not allow the term exp to be applied to all
Church integers. Indeed the only closed terms of type ∀α.[(α ⇒ §α) ⊸ (α ⇒ §α)] are 0
and 1. So we do obtain a Ptime term but over a restricted, finite domain. . .

In general we are therefore not just interested in mere typability but in typability with
meaningful types. Indeed we generally want the terms to be typable in DLAL in such a
way that they can be applied to arguments of certain data-types (unary integers, lists. . .).
This can be enforced by adding some specification about the domain of the function.

Let M be a system F term of type T . We call a domain specification of M a list
Dom = 〈(x1, s1), . . . , (xk, sk)〉 such that for each i:

• xi is a bound variable of M ,
• si ∈ {N,W},
• if si = N (resp. si = W), then xi is of type NF (resp. WF) in M .

For instance for the previous example of term exp we can take Dom = {(n,N)}.
Here we restrict to NF , WF for simplicity, but this definition could be extended to other

data-types of system F such as lists, binary trees. . .
Now we consider the free decoration M . Let DomConst(M,Dom) be the union of N (Di)

(resp. W(Di)) for all bound variables xDi

i such that (xi,N) (resp. (xi,W)) is in Dom.
Finding a DLAL type for M such that, in the resulting DLAL typed term, each xi

from Dom can be instantiated with a Church integer or binary word, is thus equivalent to
finding a solution of Const(M) which also satisfies DomConst(M,Dom). In the previous
example of exp and the domain specification Dom, there is not any such solution.

We have:

Theorem 6.1. Let M be a System F term and Dom be a domain specification. One can
decide in time polynomial in the cardinality of Const(M) ∪ DomConst(M,Dom) whether it
admits a solution.

Proof. It is sufficient to observe that the constraints in N (D) (where D is a decoration of
NF or WF) also satisfy the properties used to prove Lemma 5.1, Lemma 5.2 and Lemma
5.3.

Note that for Lemma 5.3 for instance the argument would not be valid anymore (at
least in an obvious way) if we added constraints of the form n = 1 or n ≤ 1.

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 25

Therefore one can perform DLAL decoration for system F terms in polynomial time
even with domain specification.

7. Implementation and examples

7.1. Overview. We designed an implementation of the type inference algorithm. The
program is written in functional CAML and is quite concise (less than 1500 lines). A
running program not only shows the actual feasibility of our method, but is also a great
facility for building examples, and thus might allow for a finer study of the algorithm.

Data types as well as functions closely follow the previous description of the algorithm:
writing the program in such a way tends to minimise the number of bugs, and speaks up
for the robustness of the whole proof development.

The program consists of several successive parts:

(1) Parsing phase: turns the input text into a concrete syntax tree. The input is a system F
typing judgement, in a Church style syntax with type annotations at the binders. It is
changed into the de Bruijn notation, and parameterized with fresh parameters. Finally,
the abstract tree is decorated with parameterized types at each node.

(2) Constraints generation: performs explorations on the tree and generates the boolean,
linear and mixed constraints.

(3) Boolean constraints resolution: gives the minimal solution of the boolean constraints,
or answers negatively if the set admits no solution.

(4) Constraints printing: builds the final set of linear constraints.

We use a solver employing the simplex algorithm to solve the linear constraints. It runs
in time O(2n), which comes in contrast with the previous result of polynomial time solving,
but has proven to be the best in practice.

We now have to define the objective function that we will give to the solver. Basically,
to minimize the resulting complexity bound, we should have an objective function which
minimizes the nesting depth of the boxes of the typed term. To achieve this, we would
have to minimize the maximum of the sums of door parameters from the root to each node
(this corresponds to the depth of the proof-net, which yields the bound of Theorem 2.1).
This clearly calls for a minimax objective function. Unfortunately, this does not fit into the
linear programming setting that we are currently using: our objective function can only be
a ponderated sum of variables.

So, we chose to simply put as objective function the sum of door parameters. A little
trick is needed in order to handle the case of variables which are not of positive domain,
and could lead to the absence of an optimal solution. Once this special case is handled, the
solver always gives sensible results in practice.

The program, together with some examples, is available at:
http://www-lipn.univ-paris13.fr/~atassi/

7.2. Two examples: reversing of list and predecessor.

http://www-lipn.univ-paris13.fr/~atassi/

26 V. ATASSI, P. BAILLOT, AND K. TERUI

7.2.1. List reversing. Let us consider the reversing function on binary words. It can be de-
fined by a single higher-order iteration on the type WF , with the untyped term
λw.λso.λsi.(w) step0 step1 base, with :

• base term: base = λz.z,
• step terms: step0 = λa.λx.(a)(so)x, step1 = λa.λx.(a)(si)x.

We obtain as system F term the following one, denoted rev:

λlW .Λβ.λsoβ→β .λsiβ→β.(l (β → β))
λaβ→β.λxβ.(a)(so)x
λaβ→β.λxβ.(a)(si)x λzβ.z .

As discussed in Section 6.2 to obtain a meaningful typing we need to force the domain
of the term to be that of binary words. For that a simple way is to apply the term to a
particular argument, for instance: Λα.λsoα→α.λsiα→α.λxα.(si)(so)(si)(so)x, representing
the word 1010. Since rev involves higher-order functionals and polymorphism, it is not so
straightforward to tell, just by looking at the term structure, whether it works in polynomial
time or not.

Given rev(1010) as input (coded by ASCII characters), our program produces 200
(in)equations on 76 variables. After constraint solving, we obtain the result:

(λlW .Λβ.λso!(β−◦β).λsi!(β−◦β).
§(§̄((l (β −◦ β))
§λaβ−◦β .λxβ.(a)(§̄so)x
§λaβ−◦β .λxβ.(a)(§̄si)x)
λzβ .z)

Λα.λso!α→α.λsiα→α.§λxα.(§̄si)(§̄so)(§̄si)(§̄so) .x .

It corresponds to the natural depth-1 typing of the term rev, with conclusion typeWDLAL ⊸

WDLAL. The solution ensures polynomial time termination, and in fact its depth guarantees
normalization in a quadratic number of β-reduction steps.

7.2.2. Predecessor on unary integers. We now turn to another example which illustrates
the use of polymorphism: the predecessor function on unary integers.

We consider a slight simplification of the term given by Asperti ([Asp98]). The simpli-
fication is not needed for typability, but is just chosen to facilitate readability.

For that we consider:

• pairs represented in the following way: < P,Q > : λz.(z) P Q,
• terms for projection and an application combinator for pairs:

fst = λx.λy.x,
snd = λx.λy.y,
appl = λx.λy.(x)y .

We will do an iteration on type NF , with:

• base term: < I, x > (where I = λx.x),
• step term: λp. < f, (p) appl >.

The untyped term will then be λn.((n) step base) snd.
Let us specify the system F typing of the subterms:

• < P,Q >= λz(β→β)→(β→β).(z) P β→β Qβ : ((β → β) → (β → β)) → β,

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 27

• snd, appl : (β → β) → β → β,
• step = λp((β→β)→(β→β))→β .λz(β→β)→(β→β).(z) fβ→β (p) appl(β→β)→(β→β) :

(((β → β) → (β → β)) → β) → (((β → β) → (β → β)) → β),

• base = λz(β→β)→(β→β).(z) Iβ→β x : ((β → β) → (β → β)) → β .

The overall F-typed term for predecessor, denoted pred is thus:

λn∀α.(α→α)→(α→α).Λβ.λfβ→β.λxβ .

(

(n ((β → β) → (β → β)) → β)

λp((β→β)→(β→β))→β.λz(β→β)→(β→β).(z) fβ→β (p) appl(β→β)→(β→β)

λz(β→β)→(β→β).(z) λaβ.a x)

)

λxβ→β.λyβ .y .

Observe that this term is linear (as Asperti’s original one). Again, to force a meaningful
typing we apply the term pred to a Church integer argument, here the integer 2.

The program then produces 220 equations, for 130 parameters. The solver produces a
solution, yielding the following type for the subterm pred:

(∀α.(α ⊸ α) ⇒ §(α ⊸ α)) ⊸ (∀α.(α ⊸ α) ⇒ §(α ⊸ α)),

which corresponds to the NDLAL ⊸ NDLAL type.

7.3. Experiments with larger examples: polynomials. In order to test our type infer-
ence program with larger examples it is interesting to consider a family of system F terms of
increasing size. The family of terms representing polynomial functions over unary integers
is a natural candidate for this goal, since in particular it is important for the encoding of
polynomial time Turing machines in the system ([AR02, BT04]).

Therefore we wrote a CAML program which given a polynomial P outputs a system
F term representing P and with type NF → NF , that can then be fed to the DLAL type
inference program.

There is however a subtlety that needs to be stressed. Recall that in order to represent
polynomial functions in LAL or DLAL with suitable types it is necessary to use type
cœrcions ([AR02, BT04]). These cœrcions are needed just for typing reasons, and not
for computational ones. However, if we consider the system F terms underlying the LAL
or DLAL terms for polynomials the cœrcions are still present and correspond to explicit
subterms.

So if we want our system F terms representing polynomials to be typable in DLAL we
need to anticipate on the need for cœrcions. Therefore our program generating system F
terms for polynomials is guided by the encoding of polynomials in DLAL, in particular it
takes into account the placement of subterms for cœrcions (even if the terms are not yet
typed with modalities during this phase). It should be stressed that this increases con-
siderably the size of the resulting term: in practice inside the resulting term the subpart
accounting for the management of cœrcions is larger than the subpart performing a compu-
tational task. . . This makes however a good test for our type inference program, since the
typing is not trivial and will put into use a large number of parameters and constraints.

In the following we will:

28 V. ATASSI, P. BAILLOT, AND K. TERUI

• describe the encoding of polynomials used,
• report on experiments of our type inference program on terms of this family.

Encoding of polynomials.
We recall from [BT04] the rules for cœrcions on type NDLAL derivable in DLAL:

n : NDLAL;∆ ⊢ t : A

;m : NDLAL, §∆ ⊢ C1[t] : §A
(Coerc-1)

Γ;n : §NDLAL,∆ ⊢ t : A

Γ;m : NDLAL,∆ ⊢ C2[t] : A
(Coerc-2)

where C1[.] and C2[.] are contexts, which contain as free variables some variables of the
environments:

C1[x] = (m(λg.λp.(g (succ p))))(λn.x)0,

C2[x] = (λn.x)(m succ 0) .

Here succ is the usual term for successor.
Similarly we define the term coerc = λn.(n) succ 0, which can be given in DLAL any

type NDLAL ⊸ §kNDLAL with k ≥ 0.
Multiplication can be represented by the (untyped) term mult = λn.λm.u with u =

((m) λk.λf.λx.(n) f (k) f x) 0. It can be given in DLAL the type NDLAL ⇒ NDLAL ⊸

§NDLAL.
Now, in order to give multiplication any type: §kNDLAL ⊸ §kNDLAL ⊸ §k+2NDLAL

with k ≥ 0 we can use cœrcions:

...
n : NDLAL;m : NDLAL ⊢ u : §NDLAL

Coerc-1
;n2 : NDLAL,m : §NDLAL ⊢ C1[u] : §2NDLAL

Coerc-2
;n2 : NDLAL,m2 : NDLAL ⊢ C2[C1[u]] : §2NDLAL

§-i ×k
;n2 : §kNDLAL,m2 : §kNDLAL ⊢ C2[C1[u]] : §k+2NDLAL

Note that there is here a small abuse of notation as now the free variable of C1[.] is
called n2 (similarly for C2[.]).

We will associate to each polynomial P of N[X] a system F term tP of type NF → NF

representing it, and which is typable inDLAL. We first describe the encoding of monomials.
We define the term tXn by induction on n:

tX0 = λx.1 , tX1 = λx.x , tXn+1 = λx.C1[(λn2.λm2.C2[C1[u]]) (tXn) x (coerc) x],

for n ≥ 1.
The term tXn can be given in DLAL the type NDLAL ⊸ §4nNDLAL. Actually a better

encoding of monomials could be given, with a lower depth, but we stick here to this one for
simplicity. To show that tXn can be typed with NDLAL ⊸ §4nNDLAL note that it is easy
to observe for tX0 and tX1, and supposing it for tXn we get for tXn+1 (N in this derivation
stands for NDLAL):

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 29

. . .
§ i × 4n

⊢ λn2.λm2.C2[C1[u]] : §4nN ⊸ §4nN ⊸ §4n+2N

. . .

; x1 : N ⊢ (tXn)x1 : §4nN

; x1 : N ⊢ (λn2.λm2.C2[C1[u]]) (tXn) x1 : §4nN ⊸ §4n+2N

. . .

; x2 : N ⊢ (coerc) x2 : §4nN

; x1 : N, x2 : N ⊢ (λn2.λm2.C2[C1[u]]) (tXn) x1 (coerc) x2 : §4n+2N
§i

x1 : N, x2 : N ;⊢ (λn2.λm2.C2[C1[u]]) (tXn) x1 (coerc) x2 : §4n+3N
contr

x : N ;⊢ ((λn2.λm2.C2[C1[u]]) (tXn) x (coerc) x : §4n+3N
coerc-1

; x : N ⊢ C1[(λn2.λm2.C2[C1[u]]) (tXn) x (coerc) x] : §4n+4N
⊸i

⊢ λx.C1[(λn2.λm2.C2[C1[u]]) (tXn) x (coerc) x] : N ⊸ §4(n+1)N

Now, once tXn has been defined it is easy to represent monomials with coefficient, αnX
n

and, using the term for addition and cœrcions again, arbitrary polynomials:
j

∑

i=1
αni

Xni .

Experiments of type inference.
We wrote a small program implementing this encoding, which, given a polynomial,

produces a system F term representing it. Then we used it to test our DLAL type inference
program. We give the results of the experiments on a few examples, in the array of Figure
8, where tP denotes the F term representing a polynomial. Again we stress that the large
size of tP, even for small polynomials, is due to the cœrcions (for instance the encoding of
x5 without cœrcions produces a term of size 322 — which is not typable however) and to
the fact that all types are written explicitly in the term, since it is written in à la Church
style syntax.

In the array the following quantities are reported:

• the size of tP is the number of symbols of the term;
• the column # Par stands for the number of parameters in the resulting parameterized

term,
• the time (in seconds) for generating the set of linear constraints is divided in two parts:

• GEN is the time taken by the program for parsing the input, generating the whole
constraints and solving the boolean part,

• SIMPL is the time taken to simplify the set of constraints (this is a preprocessing
before using the solver).

• # Cons is the cardinality of the set of of linear constraints generated by the program,
• Sol is the time taken by the solver (LPsol) to solve the set of constraints.

Recall that N ′
DLAL = ∀α.(α ⊸ α) ⇒ §α ⊸ §α. We think that the fact that we

obtain a N ′
DLAL type instead of NDLAL on the right-hand-side is not significative here:

we could force obtention of a NDLAL type instead by techniques similar to that of domain
specification of Section 6 (adding a constraint of the form p = 0).

Note that the type obtained is slightly smaller (containing fewer § and of smaller depth)
than the one described above: we obtain the type NDLAL ⊸ §4n−3N ′

DLAL for tXn , and it
is possible to check that this is indeed a suitable type in general.

Observe that on these examples the respective times needed for generating the con-
straints and solving the boolean part (GEN) on the one hand, and for simplifying the
linear constraints (SIMPL) on the other, are comparable. The time needed to solve the
linear constraints (Sol) is comparatively smaller.

We also generated the system F terms representing the same polynomials but without
subterms for cœrcions, and noted with our program that type inference in DLAL for these
terms fails: cœrcions are indeed necessary.

30 V. ATASSI, P. BAILLOT, AND K. TERUI

P = Xn Size of tP # Par GEN SIMPL # CONS Sol Type obtained 4n
X2 380 520 0.1 0.1 844 0.0 N ⊸ §5N ′ 8
X3 750 1009 0.3 0.7 1649 0.1 N ⊸ §9N ′ 12
X4 1120 1498 0.9 1.7 2454 0.2 N ⊸ §13N ′ 16
X5 1490 1987 1.9 3.3 3259 0.4 N ⊸ §17N ′ 20
X6 1860 2476 3.5 5.5 4064 0.6 N ⊸ §21N ′ 24
X7 2230 2975 5.9 4.8 4869 0.8 N ⊸ §25N ′ 28
X8 2600 3454 9.0 6.9 5674 1.1 N ⊸ §29N ′ 32
X9 2970 3943 13.2 12.4 6479 1.5 N ⊸ §33N ′ 36
X10 3340 4432 18.5 21.0 7284 1.0 N ⊸ §37N ′ 40
X16 5560 7336 86.6 80.5 12114 5.8 N ⊸ §61N ′ 64
X32 11480 15190 810.0 381.3 24994 30.5 N ⊸ §125N ′ 128

In the array N (resp. N ′) stands for NDLAL (resp. N ′
DLAL).

Figure 8: Type inference for terms representing polynomials.

Even though the family of terms tXn is a particular case, these examples illustrate
the fact that our algorithm is manageable with lambda-terms of reasonable size, and gives
results in a sensible time.

8. Discussion and further work for the case of propositional DLAL

It should be stressed that our method can be applied to type untyped lambda-terms in
propositional (quantifier-free) DLAL. Indeed, propositional DLAL can naturally be seen
as a subsystem of DLAL. Given an untyped term t, we can thus proceed in the following
way (in the lines of previous works for EAL or LAL like [CM01, Bai02]):

(1) search for the principal simple type of t,
(2) using the principal simple type derivation of t, search for a valid DLAL decoration

by using our method.

If we find a suitable decoration then it will give a derivation in propositional DLAL (simply
because the underlying system F derivation does not use quantification). It can be checked
that this method is complete (for instance by a simple adaptation of the argument in
[Bai04]): if the term is typable in propositional DLAL, then a suitable decoration of the
principal simple type decoration will be found.

However, the bound on this procedure given by Theorem 5.5 is polynomial w.r.t. the
size of the principal simple type derivation of t, and not w.r.t. to the size |t| of the untyped
term t itself.

Still, we strongly believe that our method can be adapted in order to give an algorithm
performing type inference in propositional DLAL for an untyped term t in time polynomial
in |t|.

The starting point is that it is known that simple type inference can be done in polyno-
mial time by using a shared representation of types. If one designs an algorithm performing
together simple type inference and decoration with parameters, one can presumably obtain,
instead of a free decoration of t, a suitable decoration with a number of parameters poly-
nomial in |t| (by taking advantage of the shared representation of types) and a constraints
system also polynomial in |t|. Hence in the end type inference would be polynomial w.r.t.

VERIFICATION OF PTIME REDUCIBILITY FOR SYSTEM F TERMS: TYPE INFERENCE IN DLAL 31

|t|. We also believe that in this way we would obtain a notion of principal propositional
DLAL type. This would be analogous to the work of [CRdR03] for EAL, but could give a
single principal type scheme instead of a finite family of principal type schemes.

However in the present paper we preferred to follow the approach starting with a system
F typed term in order to be able to consider second-order DLAL typing, which is more
interesting for expressivity reasons (propositional DLAL is not complete for polynomial
time computation). The case of polynomial time type inference for propositional DLAL is
left for future work.

9. Conclusion

We showed that typing of system F terms in DLAL can be performed in a feasible way,
by reducing typability to a constraints solving problem and designing a resolution algorithm.
This demonstrates a practical advantage of DLAL over LAL, while keeping the other
important properties. We illustrated the manageability of our algorithm by implementing
it in CAML and giving some examples of type inference. Note that other typing features
could still be automatically inferred, like cœrcions (see [Ata05] for the case of EAL).

This work illustrates how Linear logic proof-net notions like boxes can give rise to
techniques effectively usable in type inference, even with the strong boxing discipline of
DLAL, which extends previous work on EAL. We expect that some of these techniques
could be adapted to other variants of Linear logic, existing (like Soft linear logic) or to be
defined in the future.

References

[Ama05] R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae, 65:29–60,
2005.

[Asp98] A. Asperti. Light Affine Logic. In Proceedings of 13th Annual IEEE Symposium on Logic in
Computer Science (LICS’98), pages 300-308, IEEE Computer Press, 1998.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Transactions on Computational
Logic, 3(1):1–39, 2002.

[Ata05] V. Atassi. Inférence de type en logique linéaire élémentaire. Master’s thesis, Université Paris
13, 2005.

[ABT06] V. Atassi, P. Baillot, and K. Terui. Verification of Ptime reducibility for system F terms via
Dual Light Affine Logic. In Proceedings of Computer Science Logic (CSL’06), volume 4207 of
LNCS, pages 150–166. Springer, 2006.

[Bai02] P. Baillot. Checking polynomial time complexity with types. In Proceedings of 2nd IFIP Inter-
national Conference on Theoretical Computer Science (IFIP TCS’02), pages 370–382, Mon-
treal, Kluwer Academic Press, 2002.

[Bai04] P. Baillot. Type inference for light affine logic via constraints on words. Theoretical Computer
Science, 328(3):289–323, 2004.

[BT04] P. Baillot and K. Terui. Light types for polynomial time computation in lambda-calculus. In
Proceedings of 19th Annual IEEE Conference on Logic in Computer Science (LICS’04), pages
266–275. IEEE Computer Press, 2004.

[BT05] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic. In Proceed-
ings of 7th International Conference on Typed Lambda Calculi and Applications (TLCA’05),
volume 3461 of LNCS, pages 55–70. Springer, 2005.

[BC92] S. Bellantoni and S. Cook. New recursion-theoretic characterization of the polytime functions.
Computational Complexity, 2:97–110, 1992.

[BMM07] G. Bonfante, J.-Y. Marion and J.-Y. Moyen. Quasi-interpretations, a way to control resources.
To appear in Theoretical Computer Science, 2007.

32 V. ATASSI, P. BAILLOT, AND K. TERUI

[CDLRdR05] P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Elementary affine logic and the call-
by-value lambda calculus. In Proceedings of 7th International Conference on Typed Lambda
Calculi and Applications (TLCA’05), volume 3461 of LNCS, pages 131–145. Springer, 2005.

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic with linear constraints.
In Proceedings of 5th International Conference on Typed Lambda Calculi and Applications
(TLCA’01), volume 2044 of LNCS, pages 76–90, 2001.

[CRdR03] P. Coppola and S. Ronchi Della Rocca. Principal typing in Elementary Affine Logic. In Proceed-
ings of 6th International Conference on Typed Lambda Calculi and Applications (TLCA’03),
volume 2701 of LNCS, pages 90–104, LNCS, 2003.

[DJ03] V. Danos and J.-B. Joinet. Linear logic and elementary time. Information and Computation,
183(1):123–137, 2003.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 143:175–204, 1998.
[Hof03] M. Hofmann. Linear types and non-size-increasing polynomial time computation. Information

and Computation, 183(1):57–85, 2003.
[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional pro-

grams. In Proceedings of 30th ACM Symposium on Principles of Programming Languages
(POPL’03), pages 185–197, 2003.

[Kac79] L. G. Kachian. A polynomial algorithm for linear programming. Soviet Mathematics Doklady,
20:191–194, 1979.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica 4(4):
373–396, 1984.

[LM93] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time. Fundamenta
Informaticae, 19:167–184, 1993.

[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter with time
bound certifications. In Proceedings of 7th International Conference on Logic and Automated
Reasoning (LPAR’00), volume 1955 of LNCS, pages 25–42. Springer, 2000.

[Ter01] K. Terui. Light affine lambda-calculus and polytime strong normalization. In Proceedings of
16th Annual IEEE Symposium on Logic in Computer Science (LICS’01), pages 209–220. IEEE
Computer Society, 2001.

[Ter04] K. Terui. Light affine set theory: a naive set theory of polynomial time. Studia Logica, 77:9–40,
2004.

[Ter07] K. Terui. Light affine lambda-calculus and polytime strong normalization. Archive for Math-
ematical Logic, 46(3):253–280, 2007.

[Wel99] J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1–3),pages 111-156, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. From system F to DLAL
	3. Localization of DLAL type inference
	3.1. Pseudo-terms
	3.2. Pseudo-terms and proof-nets
	3.3. Local typing condition
	3.4. Boxing conditions
	3.5. Correctness of the conditions

	4. Parameterization and constraints generation
	4.1. Parameterized terms and instantiations
	4.2. Local typing constraints
	4.3. Boxing constraints

	5. Solving the constraints
	5.1. Solving boolean constraints
	5.2. Solving integer constraints

	6. Data-types and typing with domain specification
	6.1. Data-types
	6.2. Typing with domain specification

	7. Implementation and examples
	7.1. Overview
	7.2. Two examples: reversing of list and predecessor
	7.3. Experiments with larger examples: polynomials

	8. Discussion and further work for the case of propositional DLAL
	9. Conclusion
	References

