Logical Methods in Computer Science
Vol. 4 (2:3) 2008, pp. 1-33 Submitted Jan. 4, 2007
www.Imcs-online.org Published Apr. 10, 2008

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION *

ANDREAS ABEL

Institut fiir Informatik, Ludwig-Maximilians-Universitdt Miinchen
e-mail address: abel@Qtcs.ifi.lmu.de

ABSTRACT. Some type-based approaches to termination use sized types: an ordinal bound
for the size of a data structure is stored in its type. A recursive function over a sized type
is accepted if it is visible in the type system that recursive calls occur just at a smaller
size. This approach is only sound if the type of the recursive function is admissible, i.e.,
depends on the size index in a certain way. To explore the space of admissible functions in
the presence of higher-kinded data types and impredicative polymorphism, a semantics is
developed where sized types are interpreted as functions from ordinals into sets of strongly
normalizing terms. It is shown that upper semi-continuity of such functions is a sufficient
semantic criterion for admissibility. To provide a syntactical criterion, a calculus for semi-
continuous functions is developed.

1. INTRODUCTION

Termination of computer programs has received continuous interest in the history of
computer science, and classical applications are total correctness and termination of par-
tial evaluation. In languages with a notion of computation on the type-level, such as
dependently-typed languages or rich typed intermediate languages in compilers [CW99),
termination of expressions that compute a type is required for type checking and type sound-
ness. Further, theorem provers that are based on the Curry-Howard Isomorphism and offer
a functional programming language to write down proofs usually reject non-terminating pro-
grams to ensure consistency. Since the pioneering work of Mendler [Men87|, termination
analysis has been combined with typing, with much success for strongly-typed languages
[HPS96, [ACG98,, [Gim98), Xi01, BEG™T 04, Bla04]. The resulting technique, type-based termi-
nation checking, has several advantages over a purely syntactical termination analysis: (1) It
is robust w.r.t. small changes of the analyzed program, since it is working on an abstraction
of the program: its type. So if the reformulation of a program (e.g., by introducing a redex)

1998 ACM Subject Classification: D.1.1, F.3.2, F.4.1.

2000 Mathematics Subject Classification: 68N15, 68N18, 68Q42.

Key words and phrases: Type-based termination, sized types, inductive types, semi-continuity, strong
normalization.

* A shorter version of this article has appeared in the proceedings of Computer Science Logic 2006 [Abe06d].

Research supported by the coordination action TYPES (510996) and thematic network Applied Se-
mantics II (IST-2001-38957) of the European Union and the project Cover of the Swedish Foundation of
Strategic Research (SSF).

|E |LOGICAL METHODS © A. Abel
IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (2:3) 2008 © [Creative Commons

http://creativecommons.org/about/licenses

2 A. ABEL

still can be assigned the same sized type, it automatically passes the termination check. (2)
In design and justification, type-based termination rests on a technology extensively studied
for several decades: types. (3) Type-based termination is essentially a refinement of the
typing rules for recursion and for introduction and elimination of data. This is orthogonal
to other language constructs, like variants, records, and modules. Thus, a language can be
easily enriched by such constructs without change to the termination checker. This is not
true if termination checking is a separate static analysis. Orthogonality has an especially
pleasing effect: (4) Type-based termination scales to higher-order functions and polymor-
phism. (5) Last but not least, it effortlessly creates a termination certificate, which is just
the typing derivation.

Type-based termination especially plays its strength when combined with higher-order
datatypes and higher-rank polymorphism, i.e., occurrence of V to the left of an arrow. Let
us see an example. We consider the type of generalized rose trees GRose F'A parameterized
by an element type A and the branching type F'. It is given by two constructors:

leaf : GRose FA
node : A — F(GRose FA) — GRose FA

Generalized rose trees are either a leaf or a nodea fr of a label a of type A and a collection
of subtrees fr of type F'(GRose FA). Instances of generalized rose trees are binary trees
(FA = A x A), finitely branching trees (F'A = List A), or infinitely branching trees (F'A =
Nat — A). Programming a generic equality function for generalized rose trees that is
polymorphic in F' and A, we will end up with the following equations:

EqA=A — A — Bool

eqGRose : (VA.Eq A — Eq(FA)) — VA.EqA — Eq(GRose F A)

eqGRose egF eqA leaf leaf = true
eqGRose eqF eqA (node a fr) (node a’ fr') = (eqA ad') A

(eqF (eqGRose eqF eqA) fr fr')
eqGRose eqF' eqA _ _ = false

The generic equality eqGRose takes two parametric arguments, eqF and egA. The second
one is a placeholder for an equality test for type A, the first one lifts an equality test for an
arbitrary type A to an equality test for the type F'A. The equality test for generalized rose
trees, eqGRose eqF’ eqA, is then defined by recursion on the next two arguments. In the case
of two nodes we would expect a recursive call, but instead, the function itself is passed as
an argument to eqF', one of its own arguments! Nevertheless, eqGRose is a total function,
provided its arguments are total and well-typed. However, with traditional methods, which
only take the computational behavior into account, it will be hard to verify termination of
eqGRose. This is due to the fact that the polymorphic nature of eqF' plays a crucial role. It
is easy to find an instance of eqF' of the wrong type which makes the program loop. Take,

for instance:
eqF : Eq (GRose F' Nat) — Eq (F' (GRose F' Nat))

eqF eq fr fr' = eq (node0 fr) (node 0 fr')

A type-based termination criterion however passes eqGRose with ease: Consider the
indexed type GRose' F'A of generalized rose trees whose height is smaller than ¢. The types
of the constructors are refined as follows:

leaf : VFVAV:.GRose't! FA
node : VEFVAV:. A— GRose' FA — GRose'™ F A

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 3

When defining eqGRose for trees of height < 2 + 1, we may use eqGRose on trees of height
< 1. Hence, in the clause for two nodes, term eqGRose eqF' egA has type Eq(GRose' FA),
and eqF' (eqGRose eqF' eqA) gets type Eq (F (GRose' F'A)), by instantiation of the polymor-
phic type of eqF. Now it is safe to apply the last expression to fr and fr’ which are in
F (GRose' F'A), since node a fr and noded’ fr’ were assumed to be in GRose'™! F A.

In essence, type-based termination is a stricter typing of the fixed-point combinator fix
which introduces recursion. The unrestricted use, via the typing rule (1), is replaced by a
rule with a stronger hypothesis (2):

1 f:A— A f:Vi AQ) — A+ 1)

(1) fixf: A @) fix f: Vn. A(n)
Soundness of rule (2) can be shown by induction on n. To get started, we need to show
fix f : A(0) which requires A(2) to be of a special shape, for instance A(z) = GRose' ' B — C'
(this corresponds to Hughes, Pareto, and Sabry’s bottom check [HPS96]). Then A(0) denotes
functions which have to behave well for all arguments in GRose’ F' B, i. e., for no arguments,
since GRose" F' B is empty. Trivially, any program fulfills this condition. In the step case,
we need to show fix f : A(n + 1), but this follows from the equation fix f = f (fix f) since
f:A(n) — A(n+1), and fix f : A(n) by induction hypothesis.

In general, the index 2 in A(z) will be an ordinal number. Ordinals are useful when
we want to speak of objects of unbounded size, e.g., generalized rose trees of height < w
that inhabit the type GRose” F'A. Even more, ordinals are required to denote the height of
infinitely branching trees: take generalized rose trees with FFA = Nat — A. Other examples
of infinite branching, which come from the area of type-theoretic theorem provers, are the
W-type, Brouwer ordinals and the accessibility predicate [PM92].

In the presence of ordinal indices, rule (2) has to be proven sound by transfinite in-
duction. In the case of a limit ordinal A, we have to infer fix f : A(\) from the induction
hypothesis fix f : Voo < A. A(«). This imposes extra conditions on the shape of a so-called
admissible type A, which are the object of this article. Of course, a monotone A is triv-
ially admissible, but many interesting types for recursive functions are not monotone, like
A(a) = Nat® — Nat® — Nat® (where Nat® contains the natural numbers < «). We will
show that all those types A(«) are admissible that are upper semi-continuous in o, mean-
ing limsup,_,, A(a) € A(X) for limit ordinals A. Function types C'(a) = A(a) — B(a)
will be admissible if A is lower semi-continuous (A(A\) C liminf, .y .A(«)) and B is upper
semi-continuous. Similar laws will be developed for the other type constructors and put
into the form of a kinding system for semi-continuous types.

Before we dive into the mathematics, let us make sure that semi-continuity is relevant for
termination. A type which is not upper semi-continuous is A(z) = (Nat* — Nat') — Nat¥
(see Sect.). Assuming we can nevertheless use this type for a recursive function, we
can construct a loop. First, define successor succ : Vo.Nat® — Nat't! and predecessor
pred : V2. Nat*™' — Nat’. Note that the size index is an upper bound and w is the biggest
such bound for the case of natural numbers, thus, we have the subtyping relations Nat® <
Nat'T! < ... < Nat¥ < Nat*t! < Nat“.

4 A. ABEL

We make the following definitions:

A(r) := (Nat” — Nat') — Nat" f o Vi A() — A(r+1)
f ;= AloopAg. loop (shiftg
shift : V. (Nat* — Nat*™!) ()
— Nat* — Nat' loop : Vi.A(2)
shift = AgAn.pred (g (succn)) loop = fixf

Since Nat* — Nat" is empty, A passes the bottom check. Still, instantiating types to
succ : Nat” — Nat® and loop : (Nat”¥ — Nat*) — Nat” we convince ourselves that the
execution of loop succ indeed runs forever.

1.1. Related Work and Contribution. Ensuring termination through typing is quite an
old idea, just think of type systems for the A-calculus like simple types, System F, System
F“ or the Calculus of Constructions, which all have the normalization property. These sys-
tems have been extended by special recursion operators, like primitive recursion in Godel’s
T, or the recursors generated for inductive definitions in Type Theory (e. g., in Coq). These
recursion operators preserve normalization but limit the definition of recursive functions to
special patterns, namely instantiations of the recursion scheme dictated by the recursion
operator. Taming general recursion fix f through typing, however, which allows the defini-
tion of recursive functions in the intuitive way known from functional programming, is not
yet fully explored. Mendler [Men87] pioneered this field; he used a certain polymorphic typ-
ing of the functional f to obtain primitive (co)recursive functions over arbitrary datatypes.
Amadio and Coupet-Grimal [ACG98| and Giménez |Gim98] developed Mendler’s approach
further, until a presentation using ordinal-indexed (co)inductive types was found and proven
sound by Barthe et al. [BEGT04]. The system X~ presented in loc. cit. restricts types A(z)
of recursive functions to the shape p'F — C(1) where the domain must be an inductive
type p'F indexed by ¢ and the codomain a type C(2) that is monotonic in ¢. This criterion,
which has also been described by the author [Abe04], allows for a simple soundness proof in
the limit case of the transfinite induction, but excludes interesting types like the considered

Eq (GRose' FA) = GRose' FA — GRose' FFA — Bool

which has an antitonic codomain C(z) = GRose' FA — Bool. The author has in previous
work widened the criterion, but only for a type system without polymorphism [Abe03].
Other recent works on type-based termination [Bla04l Bla05, [BGP05] stick to the restriction
of X™. Xi [Xi01] uses dependent types and lexicographic measures to ensure termination of
recursive programs in a call-by-value language, but his indices are natural numbers instead
of ordinals; this excludes infinite objects we are interested in.

Closest to the present work is the sized type system of Hughes, Pareto, and Sabry
[HPS96], Synchronous Haskell [Par00], which admits ordinal indices up to w. Index quan-
tifiers as in Vi. A(z) range over natural numbers, but can be instantiated to w if A(z) is
w-undershooting. Sound semantic criteria for w-undershooting types are already present,
but in a somewhat ad-hoc manner. We cast these criteria in the established mathematical
framework of semi-continuous functions and provide a syntactical implementation in form
of a derivation system. Furthermore, we allow ordinals beyond w and infinitely branching
inductive types that invalidate some criteria for the only finitely branching tree types in
Synchronous Haskell. Finally, we allow polymorphic recursion, impredicative polymorphism
and higher-kinded inductive and coinductive types such as GRose. This article summarizes

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 5

the main results of the author’s dissertation |[AbeO6b]. A shorter version has appeared in
the CSL’06 proceedings [Abe06d].

1.2. Contents. In Section 2] we introduce the syntax of FJ, our A-calculus with higher-
kinded polymorphism, recursion over higher-kinded inductive types and corecursion into
higher-kinded coinductive types. Static semantics (i. e., typing rules) and dynamic semantics
(i.e., reduction rules) are presented there, and we formally express the eqGRose-example
from the introduction in F. In Section Bl we model the types of F as saturated sets of
strongly normalizing terms in order to show termination of well-typed programs. After
these two technical sections we come to the main part of this article: In Section [we
identify compositional criteria for semi-continuous types and in Section [we justify the
absence of certain composition schemes by giving counterexamples. These results are put
in the form of a calculus for semi-continuous types in Section [0l culminating in syntactic
rules for admissible (co)recursion types. We close by giving some practical examples for
admissible types.

1.3. Preliminaries. We assume that the reader is to some extent acquainted with the
higher-order polymorphic lambda-calculus, System F“ (see Pierce’s text book [Pie02]) and
has some knowledge of ordinals, inductive types, and strong normalization.

2. OVERVIEW OF SYSTEM F,

In this section we introduce F, an a posteriori strongly normalizing extension of Sys-
tem F“ with higher-kinded inductive and coinductive types and (co)recursion combinators.
Figure [[l summarizes the syntactic entities.

2.1. Type constructors. We seek to model sized types like GRose'F' A whose first pa-
rameter F' is a type constructor of kind * — %, meaning that it maps types to types. It
is therefore suggestive to take F¥ as basis, which formalizes type constructors of arbitrary
kind and, e.g., lays the foundation for the purely functional language Haskell. In the in-
troduction, we have presented GRoses as built from two (data) constructors leaf and node;
however, for a theoretic analysis it is more convenient to consider GRose ' A as the least
fixed-point of the type constructor AX.1+ (A x F X). For this we write

GRose FA := pAX. 1+ (Ax F X).

Herein, 1 is the unit type and + the disjoint sum. Taking the empty tuple () : 1 to be the
inhabitant of the unit type and inl : A — (A4 B) and inr : B — (A + B) the two injections
into the disjoint sum lets us define the original data constructors:

leaf : GRose F'A

leaf := in(inl())

node : A — F(GRose FA) — GRose F'A
node := AaAfr.in(inr {(a,fr))

(The tag in introduces a inductive type, see below.)

A. ABEL

Polarities, kinds, constructors, kinding contexts.

p
K

R
a,b,A, B, F,.G
C
A

+]=Te

w= x|ord | prk — K

H= ok | PRy — K

= C|X|AX:k.F|FG
s= 1|+ | x| = | Ve | e, | v, | 5] 00 constructor constants

o| A, X :pkr

polarity

kind

pure kind

(type) constructor

kinding context

Constructor constants and their kinds (k % &’ means px — /).

1

*

+
k — % *
+

+ [+

*k — %k — X

J’_

* — ok — %

(/giwk) i>*

ord 5 (ke 5 Ky) 5 Ky
- + +

ord = (ks — Kx) — Ka

ord = ord

ord

unit type

disjoint sum

cartesian product
function space
quantification

inductive constructors
coinductive constructors

successor of ordinal
infinity ordinal

Objects (terms), values, evaluation frames, typing contexts.

rs,tu= clx|Azt|rs term

c = () | pair | fst | snd | inl | inr | case | in | out | fix® | fix” constant (n € N)
v n= Axt|pairtity [inlt |inrt |int || pairt |fix st , value (m < n)
e(-) == _s|fst_|snd_|case_|out_|fixtst ,_ evaluation frame

E() == ei(...en()...

)

I u=o|lz:A|T, X:pr

Reduction t — t'.
(Azt) s —
fst (r, s) —
snd (r,s) —
case (inlr) —
case (inrr) —

(*) z,y € FV(r).

evaluation context (n > 0)
typing context

[s/x]t out (inr) — r

r fixtt s t1., (int) — s(fixts)ty ., (int)
s out (fixl, st1.,) — out(s(fix s)t1.,)
AxAy.xr (%)

AxAy.yr (%) + closure under all term constructs

Figure 1: F,: Syntax and operational semantics.

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 7

2.2. Polarized kinds. Negative recursive types such as uAX. X — 1 allow the coding of
Y and other fixed-point combinators as pure A-terms, so one can write recursive programs
without special syntax for recursion [Men87]. For our purposes, this is counter-productive—
type systems for termination need to identify all uses of recursion. Therefore, we restrict
to positive recursive types pH where H is monotone. In the case of GRose, the underlying
constructor H X =1+ (A x F X) must be monotone, which is the case if F' is monotone.
So GRose F'A is only well-formed for monotone F. To distinguish type constructors by
their monotonicity behavior, also called variance, we equip function kinds with polarities p
[Ste98], which are written before the domain or on top of the arrow. Polarity 4+ denotes co-
variant constructors, — contravariant constructors and o mixed-variant constructors [DC99].
For instance:

A X. X —1 Dok — %
A X. X —- X Dok
AX. Int — (14 X) : %5«
GRose : (*i*)i*i*

Abel [Abe06a] and Matthes [AMO04] provide more explanation on polarities.

2.3. Sized inductive types. We refine inductive types uF' to sized inductive types u®F.
The first argument, a, to u, which we usually write as superscript, denotes the upper
bound for the height of data represented by terms of the inductive type. The index a is a
constructor of kind ord and denotes an ordinal; the relevant ordinal expressions are given
by the grammar
az=1|sal oo

with ¢ an ordinal variable[] If a actually denotes a finite ordinal (a natural number), then the
height is simply the number of data constructors on the longest path in the tree structure
of any element of u®F. Since a is only an upper bound, u®F is a subtype of u’F, written
utF < pPF for a < b, meaning that u is covariant in the index argument. Finally, F < F’
implies u®F < p®F’, so we get the kinding

,u:ordi(*iwk)i)*
for the least fixed-point constructor. For the closure ordinal oo, we have
/LOOF — /LOO+1F,

where oo + 1 is a shorthand for sco, s : ord =+ ord being the successor on ordinals.

Because oo denotes the closure ordinal, the axiom soco = oo is justified. Equality on
type constructors is defined as the least congruent equivalence relation closed under this
equation and 3.

At this point, let us stress that the syntax of ordinals is extremely simple, hence,
equality of types and subtyping is decidable. The user can think of ordinals as of natural
numbers with infinity, although they will be interpreted as real ordinals up to a fairly large
closure ordinal in Section [Bl

LOne could add a constant for the ordinal 0, but for our purposes it is enough that each concrete data
structure inhabits u> F. For checking termination relative sizes are sufficient, which can be expressed using
ordinal variables and successor.

8 A. ABEL

Example 2.1 (Some sized types).

Nat : ord 5 x GRose ord 5 (* A %) bk

Nat = . p'AX. 1+ X GRose = MAFAA. f'AX. 1+ AX FX
List : ord 5 % 5« Tree : ord 5 s S s 5w

List = MM p"2AX. 1+ Ax X Tree = MABAA.GRose' (A X.B — X)A

2.4. Sized coinductive types. Dually to inductive or least fixed-point types puF' we have
coinductive or greatest fixed-point types vF to model infinite structures. For instance
StreamA = vX. A x X contains the infinite sequences over A. The dual to the height of an
inductive data structure is the depth of a coinductive one, i.e., how often one can unwind
the structure. So the size a of a sized coinductive type v®F is a lower bound on the depth
of its inhabitants. Since it is a lower bound, coinductive types are contravariant in their
size index:
V:ord;(*i*)i*.
As for inductive types, the equation v>*F = v>®*+1F holds.

Example 2.2 (Sized streams). On a stream in Stream®A one can safely read off the first a
elements.
Stream : ord = > x

Stream = MM VIAX. Ax X

2.5. Heterogeneous datatypes. If we consider not only fixed-point types, but also fixed-
point constructors, we can treat programs involving so-called nested or heterogeneous types.
A simple example of a heterogeneous type is the type of powerlists PList A which contains

lists of As whose length is a power of two [Hin0OOa]. The type constructor PList : % % can
be modeled as uAXAA. A + X (A x A) which is the least fixed-point of a type constructor

. + + +
of kind (¥ — %) = (x — x).
Sized heterogeneous types are obtained by simply generalizing p and v to
TP ordi>(/<;i>/<;)i>ﬁ
- + +
Ve @ ord — (k— K)— K.
The kind & is required to be pure, i.e., a kind not mentioning ord, for reasons explained in

Section 3.4l All our examples work for pure k.

Example 2.3 (Sized heterogeneous types).

PList ord 5 % 5«

PList := Xi. f'AXAA. A+ X (A x A)
Bush ord 5 % 5«

Bush = X pf'AXAA. 1+ AXx X (X A)
Lam ord &5 % 5 &

Lam = M. g AXA. A+ XAx XA+ X (1+ A)

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 9

The second type, Bush® A, bushy lists, models finite maps from unlabeled binary trees of
height < a into A [AItO1, [Hin00b]. The third type, Lam® A, is inhabited by de Bruijn
representations of untyped lambda terms of height < a with free variables in A [BP99,
AR99).

2.6. Programs. The term language of F is the A-calculus plus the standard constants
to introduce and eliminate unit (1), sum (+), and product (x) types. We write (t1,%2)
for pairt to. Further, there is folding, in, and unfolding, out, of (co)inductive types. The
complete listing of the typing rules can be found in Figure[@lin the appendix, here we discuss
the most important ones. Let k = pR — * a pure kind, F': +k — K, G; : k; for 1 <1i < ||,
a:ord, and V € {u, v}, then we have the following (un)folding rules:

DHt:F(VPF)G L Fr:VelRQG
TY-FOLD = TY-UNFOLD =
I'int: VATIFE QG I Foutr: F(VeF)G
Finally, there are fixed-point combinators fix}) and fix] for each n € N on the term level.
The term fixt s denotes a recursive function with n leading non-recursive arguments; the
n + 1st argument must be of an inductive type. Similarly, fix] s is a corecursive function
which takes n arguments_)and produces an inhabitant of a coinductive type. We abbreviate
ftl oty by ftl__n or ft.
One-step reduction ¢t — ¢’ is defined by the [-reduction axioms given in Figure [
plus congruence rules. Its transitive closure is denoted by —™, and —* is the reflexive-
transitive closure. Interesting are the reduction rules for recursion and corecursion:

fixth sty p(int) — s(fixhs)ty p (int)
out (fixl, st1.,) —— out(s(fix! s)ti n)

A recursive function is only unfolded if its recursive argument is a value, i.e., of the form
int. This condition is required to ensure strong normalization; it is present in the work
of Mendler [Men87], Giménez [Gim98|, Barthe et al. [BFGT04], and the author [Abe(4].
Dually, corecursive functions are only unfolded on demand, i.e., in an evaluation context,
the matching one being out _.

P polarity ordering
AFF:k kinding

A FF=F':x constructor equality

A+ F < F':k higher-order subtyping
t—t reduction

I'kFt: A typing

I' - A fix-adm admissible recursion type

Figure 2: F,: Judgements.

10 A. ABEL

Figure (2] lists the basic judgements of F;, their rules can be found in the appendix. As
pointed out in the introduction, recursion is introduced by the rule
I' F A fix-adm I't+a:ord
[Ffix¥ : (Vazord. As — A(1+1)) — Aa’
Herein, V stands for p or v, and the judgement A fixZ—adm (see Def. [6.3]) ensures that type

A is admissible for (co)recursion, as discussed in the introduction. In this article, we will
find out which types are admissible.

TY-REC

Example 2.4. Now we can code the example from the introduction in F_, with a suitable
coding of true, false and A.

eqGRose : (VA.EqA — Eq(FA)) — VA.EqA — Vi.Eq (GRose' F'A)
eqGRose := AeqF \eqA.
fixt) Aeg A\t1 Ato. case (out t1)
(A_.case (outty) (A_. true) (Any. false))
(Any.case (outts) (A_. false)
(Ang. (eqA (fstnq) (fstng)) A
(eqF eq (sndnq) (sndn2))))

Typing succeeds, by the following assignment of types to variables:

eqF : VYA.EqA — Eq(FA) ti1,ta : GRose'FA
eqgA : EqA _ : 1
eq : Eq(GRose'FA) ny,my : A X F(GRose'FA)

More examples, including programs over heterogeneous types, can be found in the
author’s thesis [Abe06b].

3. SEMANTICS

Hughes, Pareto, and Sabry [HPS96] give a domain-theoretic semantics of sized types.
We, however, follow Barthe et al. [BFGT04] and interpret types as sets of terminating open
expressions and show that any reduction sequence starting with a well-typed expression
converges to a normal form. This is more than showing termination of programs (closed
expressions); our results can be applied to partial evaluation and testing term equality in
type-theoretic proof assistants.

The material in this section is quite technical, but provides the necessary basis for our
considerations in the following sections. The reader may browse it, take a closer look at
the interpretation of types (Sec. B.5l) and then continue with Section [4 coming back when
necessary.

Let S denote the set of strongly normalizing terms. We interpret a type A as a semantic
type [A] C S, and the function space is defined extensionally:

[A— B] ={r|rse[B]forall s e [A]}.
As main theorem, we show that given a well-typed term z1: Ay,...2,: A, Ft: C and
replacements s; € [A4;] for each occurring variable z;, the substitution [§/Z]t inhabits [C].
The proof proceeds by induction on the typing derivation, and in the A-case (here simplified)
r:AFt:B
FAxt: A— B

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 11

it suffices to show (Axt)s € [B] for any s € [A]. However, by induction hypothesis we
know only [s/z|t € [B]. We therefore require semantic types to be closed under weak head
expansion to make this case go through.

Since we are interested in normalization of open terms, we need to set aforementioned
replacements s; to variables x;. This is possible if each semantic type contains all variables,
which has to be generalized to all neutral terms, i.e. terms E[z] with a variable in evaluation
position. These observations motivate our definition of semantic types.

3.1. Semantic types. We define safe (weak head) reduction > by the following axioms.
The idea is that semantic types are closed under >-expansion.

(A\zt) s > [s/z]t ifseS case (inlr) > AxAy.xr (%)
fst (pairrs) > r ifseS case (inrr) > AzAy.yr (%)
snd (pairrs) > s ifres fixths t1. pn (inr) > s(fixks)ty , (in7)
out (inr) > r out (fix; sty) > out (s (fix;s)t1 n)

Side condition (*): z,y ¢ FV(r). Additionally, we close safe reduction under evaluation
contexts and transitivity:

E(t) > E(t) if t >t

t1 > i3 if t1 > t9 and t9 > t3

One-step safe reduction is deterministic, hence, if r > s and r > ¢ then either s =t or s> ¢
ortps.
V:={v, E(x) | v value, E evaluation context}

is the set of >-normal forms, not counting junk terms like fst (\zt).

The relation is defined such that S is closed under >-expansion, meaning t >t € S
implies t € S. In other words, > used in the expansion direction does not introduce diverging
terms. Let %A denote the closure of term set A under >-expansion. In general, the closure
of term set A is defined as

A ="(AU{E(z) | x variable, E(z) € S}).

Closure preserves strong normalization: If A C S then A C S. A term set is closed if
A = A. The least closed set is the set of neutral terms N := (# 0. Intuitively, a neutral
term never reduces to a value, it necessarily has a free variable, and it can be substituted
into any term without creating a new redex. A term set A is saturated if A is closed and
N C A C S (this makes sure that A contains all variables). A saturated set is called a
semantic type.

3.2. Interpretation of kinds. When types are interpreted as sets of terms, the easiest
interpretation of type constructors are set-theoretical operators on term sets, or as we go
higher-order, on operators.

The saturated sets form a complete lattice [«] with least element 1* := N and greatest
element T* := §. It is ordered by inclusion C* := C and has set-theoretic infimum inf* := "
and supremum sup* := J. Let [ord] := O where O = [0; T°] is an initial segment of
the set-theoretic ordinals. With the usual ordering on ordinals, O constitutes a complete
lattice as well. For lattices £ and £/, let £ % ' denote the space of monotone functions

from £ to £ and £ — £ the space of antitone ones. The mixed-variant function kind
[or — K'] is interpreted as set-theoretic function space [k] — [+']; the covariant function

12 A. ABEL

kind ++ — &’ denotes the monotonic function space [x] — [#'] and the contravariant

kind —k — &’ the antitonic space [k] — [+']. For all function kinds, ordering is defined
pointwise: F CPF—F F = F(G) T~ F/(G) for all G € []. Similarly, 1P~ (G) := 1L
is defined pointwise, and so are TPF—+, infp“*“/, and sup?"—r’ .

3.3. Limits and iteration. Inductive types [u®F] are constructed by iterating the oper-
ator [F] [a]-times, starting with the least semantic type L. At limit ordinals, we take the
supremum. If [a] is big enough, latest if [a] = T°9, the least fixed-point is reached, but
our type system also provides notation for the approximation stages below the fixed-point.
For coinductive types, we start with the biggest semantic type T and take the infimum at
limits. It is possible to unify these two forms of iteration, by taking the limsup instead of
infimum or supremum at the limits. The notion of lim sup and iteration can be defined for
arbitrary lattices:

In the following A € O will denote a limit ordinal. (We will only consider proper limits,
i.e., A #0.) For £ a complete lattice and f € O — £ we define:

liminf, 5 f(Oé) = SUPgh<n infao§a<)\ f(Oé)
lim SUPg— A f(Oé) = infoeo<)\ SUPq<a< A f(Oé)
Using inf) f as shorthand for inf,<) f(a), and analogous shorthands for sup, liminf, and
limsup, we have infy f C liminfy f C limsup, f C sup, f. If f is monotone, then even
liminfy f = sup, f, and if f is antitone, then inf) f = limsup, f.
If fe £ — £ and g € £, we define transfinite iteration f%(g) by recursion on a as

follows:
O (9 =g
ot) = F(f9)
A (9) = limsup,_, f*(9)

This definition of iteration works for any f, not just monotone ones. For monotone f,
we obtain the usual approximants of least and greatest fixed-points as pu®f = f*(L) and
vef = fo(T): It is easy to check that uf = sup,\ p®f and v f = inf,<) v f, so our
definition coincides with the usual one.

3.4. Closure ordinal. We can calculate an upper bound for the ordinal T°9 at which all
fixed-points are reached as follows: Let J,, be a sequence of cardinals defined by Jy = |N|
and 3,11 = |P(3,)|. For a pure kind &, let |k| be the number of *s in k. Since [*] consists
of countable sets, |[]| < |P(N)| = Ji, and by induction on &, |[#]| < 3j.41. Since an
(ascending or descending) chain in [x] is shorter than |[x]|, each fixed point is reached
latest at the |[x]|th iteration. Hence, the closure ordinal for all (co)inductive types can be
approximated from above by T°4 =13 .

This calculation does not work if we allow fixed-points of constructors involving ord.
Then the closure ordinal of such a fixed-point would depend on which ordinals are in the
semantics of ord, which in turn would depend on what the closure ordinal for all fixed-points
was—a vicious cycle. However, I do not see a practical example where one want to construct
the fixed point of a sized-type transformer F : (ord > k) 5 (ord > k). Note that this does
not exclude fixed-points inside fixed-points, such as

BTree"V A= p'AX. 1+ X x (/AY. 1+ Ax X xY),

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 13

“B-trees” of height < 12 with each node containing < 7 keys of type A.

Example 3.1 (Number classes). Here we show that higher-kinded strictly-positive induc-
tive types may require strictly higher closure ordinals than strictly-positive inductive types
of kind . Following Hancock [Han02], we can define the number classes as inductive types
as follows:

NCo = u®AX.1 ~ 1

NC; = p™AX.14+ (NCy— X) > Nat™®

NCy := u™AX.14 (NCy— X)+ (NC; — X) 2 p®AX.1+ X + (Nat™ — X)
(NCy — X)

NCs := ,uoo)\X.l—i-(NC() —>X) +(NC1 —>X) +

The second number class NCq is also known as Brouwer ordinals. The law behind this
scheme is: NC, = u>*F,, where Fp X = 1 and F, 1 X = F, X + (u*°F, — X). Each
number class requires a higher closure ordinal, and their limit is the closure ordinal of all
strictly-positive inductive types of kind *. Now let

NumClTree : ord -5 (x =) = x
NumCITree := M. p'AYAF. 1+ (u®F =Y (AX. FX 4 (u™F — X))).

Then NumClTree™ (AX.1) is the type of trees branching over the nth number class at the
nth level. This example suggests that the closure ordinal of certain strictly positive inductive
types of kind (x 5 %) — % is above the one of the strictly-positive inductive types of kind x.
However, the situation is unclear for non-strictly positive inductive types.

3.5. Interpretation of types. For r a term, e an evaluation frame, and A a term set,
let - A={rs|sec A} and e tA = {r | e(r) € A}. If e is strongly normalizing and
A saturated, then e ! A is again saturated. For saturated sets A, B € [*] we define the
following saturated sets:

AFB := inl- AUinr-B = {0}
AXIB = (fst))"*AN(snd)~ B AP = in- A
AEIB = Nyea(-5)"'B AV = (out)7'A

The last two notations are lifted pointwise to operators F € [px — '] by setting Y Q) =
(F(G)V, where V € {u,v}.

Remark 3.2. Our definition of product and function space (inspired by Vouillon [Vou04])
makes it immediate that [x] and operate on saturated sets. But it is just a reformulation
of the usual A[X]B = {r |fstr € Aandsndr € B} and A - B={r|rse Bforall s €
A}

Notice that the finitary or (in the logical sense) positive connectives 1, 4+, and p are
defined via introductions, while the infinitary or negative connectives — and v are defined
via eliminations. (The binary product x fits in either category.)

14 A. ABEL

For a constructor constant C': k, the semantics [C] € [k] is defined as follows:

[+]1(A, B € [+]) = A[B [1] ::
[x](A, B € [+]) = AXB [o] —
[—=1(A, B € []) = A=IB [s](To) . Tord
[(@(F €[] = [8]) = poF [l < To¢) = a1
[vd(Q)(F € [5] 5 [&]) = voF

[Vel(F € [£] — []) = Noerg F(O)

This semantics is extended to arbitrary constructors in the usual way. Let U = |J,[«]. For
a valuation € which partially maps constructor variables X to their interpretation G € U,
we define the partial map [—]g from constructors F' to their interpretation in U by recursion

on F.
[Co = [C]
[XTe = 0(X)
[F Glo = [FTe([G]s)

[NX k. Flo undef. else

where F(G € [k]) == [Flox—g
In the last clause, F is a partial function from [x] to U.

The interpretation [F]y is well-defined for well-kinded F', and these are the only con-
structors we are interested in, but we chose to give a (possibly undefined) meaning to all
constructors. If one restricts the interpretation to well-kinded constructors, one has to de-
fine it by recursion on kinding derivation and show coherence: If a constructor has two
kinding derivations ending in the same kind, then the two interpretations coincide. This
alternative requires a bit more work than our choice.

{ F if F € [x] — [£'] for some &’

Lemma 3.3 (Basic properties of interpretation).
(1) Relevance: If (X) = 6'(X) for all X € FV(F), then [F]g = [Fe-
(2) Substitution: [[G/X]|Fe = [Floix—[a1,)-

Proof. Each by induction on F'. For (2), consider case F' = \Y :x. F'. W.lLo.g., Y &€ FV(G).
By induction hypothesis,

F(H) =[G/ X]F]opyrq = [Floyrx—1Glopyrg) = [Flopx—[610] 1y
using (1) on G. Hence, [[G/X](\Y :x. F)]g = [A\Y : k. Flgix—[c1,)- O]
Although the substitution property holds even for ill-kinded constructors, we only have
for well-kinded constructors that [(AX : k. F) Gy = [[G/X]|F]s. In general, the left hand
side is less defined than the right hand side, e.g., [(AX : %.1) oo]y is undefined, whereas

the interpretation [1]y of its f-reduct is well-defined. In the following we show that for
well-kinded constructors the interpretation is well-defined and invariant under g.

Theorem 3.4 (Soundness of kinding, equality, and subtyping for constructors). Let 6 C
0" € [A], meaning that for all (X : pr’) € A it holds that G := 0(X) € [£'] and G' =
0'(X) e [w], andG=G" ifp=0,GCG ifp=+,and G'CG ifp=—.

(1) If A+ F : k then [F]o C [Flo € [x]-

(2) If A= F=F':k then [Fllg C [F']e € [&].

SEMI-CONTINUOUS SIZED TYPES AND TERMINATION * 15

(3) If A - F < F':k then [Fllg C [F']e € [&].
Proof. Simultaneously by induction on the derivation. L]

Now we can compute the semantics of types, e. g., [[Natl]](ZHa) = Nat® = p*(X — ([
X)#). Similarly, the semantic versions of List, Stream, etc. are denoted by List, Stream, etc.

3.6. Semantic admissibility and strong normalization. For the main theorem to fol-
low, we assume semantic soundness of our yet to be defined syntactical criterion of admis-

sibility (Def. [63)).

Assumption 3.5 (Semantic admissibility). If I' F A fix'-adm and 0(X) € [x] for all
(X:k) € [I'] then A :=[A]g € [ord] — [*] has the following properties:
(1) Shape: A(a) = ex Bi(k,) ... = Bu(k,a) =1 B(k,«) for some K and some
Bi,...,B,,B € K x [ord] — [*]. In case V = u, B(k,a) = Z(k,a)" [=1C(k,a) for
some Z,C. Otherwise, B(k,a) = C(k,a)” for some C.
(2) Bottom-check: Z(k,0)* = L* in case V = p and C(k,0)” = T* in case V = v.
(3) Limit-check: inf <\ A(a) C A(X) for all limit ordinals A € [ord] \ {0}.

In case of recursion (V = p), the condition (Il) ensures that fixts really produces a
function whose n+ 1st argument is of something that looks like an inductive type (Z(k, a)*).
The function can be polymorphic, therefore the intersection (. over an index set K.
Condition (2)) requires Z to exhibit at least for « = 0 the behavior of an inductive type:
Z(k,0)* = L*, which is equivalent to Z(k,0) =). The technical condition (B]) is used in the
following theorem and will occupy our attention for the remainder of this article. In case
of corecursion (V = v), condition (I]) ensures that fix;s maps n arguments into something
like a coinductive type (C(k, «)”), which needs to cover the whole universe T* of terms for
a=0.

Now we show soundness of our typing rules, which entails strong normalization. Let t0
denote the simultaneous substitution of (z) for each z € FV(¢) in ¢.

Theorem 3.6 (Soundness of typing). Assume that the judgement T' F A fixz-adm s sound,
as stated above. Let 0(X) € [k] for all (X :k) € T and 0(x) € [A]g for all (x:A) € T". If
I' Ft¢: B then td € [B]y.

Proof. By induction on the typing derivation. We consider the recursion rule (TY-REC for
V =p).
g I' - A fixt-adm I'ta:ord
' Ffixt: (Verord. Av— A(n+ 1)) — Aa
By hypothesis, A := [A]y € [ord] — [*] is admissible, and « := [a]y € Jord]. Assume an
s € [Virord. Av — AQ+ 1]y € Ngeron A(B) A(B + 1). We show fixts € A(a) by
transfinite induction on «.

In the base case a = 0, by Assumption B.5 we have A(0) = (,cx B1.n(k,0) =] L*
C(k,0). We assume k € K, t; € B;(k,0), then e(r) := fixhy st; ,, 7 is a strongly normalizing
evaluation frame. Since each r € L* = N is neutral, we have e(r) € N' C C(k,0).

In the step case, A(a + 1) = (ex Br.a(k,a + 1) Z(k,a + 1)* C(k,a +1).
We assume k € K, t; € Bi(k,a + 1), and r € Z(k,a + 1)*, which means that