
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 13:1–13:29
https://lmcs.episciences.org/

Submitted Nov. 01, 2022
Published Nov. 22, 2023

A MODEL OF ACTORS AND GREY FAILURES

LAURA BOCCHI a, JULIEN LANGE b, SIMON THOMPSON a, AND A. LAURA VOINEA a,c

aUniversity of Kent, Canterbury, UK
e-mail address: l.bocchi@kent.ac.uk, s.j.thompson@kent.ac.uk

bRoyal Holloway, University of London, Egham, UK
e-mail address: julien.lange@rhul.ac.uk

cUniversity of Glasgow, Glasgow, UK
e-mail address: laura.voinea@glasgow.ac.uk

Abstract. Existing models for the analysis of concurrent processes tend to focus on
fail-stop failures, where processes are either working or permanently stopped, and their
state (working/stopped) is known. In fact, systems are often affected by grey failures:
failures that are latent, possibly transient, and may affect the system in subtle ways that
later lead to major issues, such as crashes, limited availability or overload.

We introduce a model of actor-based systems with grey failures, based on two interlinked
layers: an actor model, given as an asynchronous process calculus with discrete time, and a
failure model that represents failure patterns that can be injected into the system. Our
failure model captures not only fail-stop node and link failures, but also grey failures, which
might be partial or transient.

We give a behavioural equivalence relation based on weak barbed bisimulation to compare
systems on the basis of their ability to recover from failures, and on this basis we define
some desirable properties of reliable systems. By doing so, we reduce the problem of
checking reliability properties of systems to the problem of checking bisimulation.

1. Introduction

Many real-world computing systems are affected by non-negligible degrees of unpredictability,
such as unexpected delays and failures, which are not straightforward to capture accurately.
Several works contribute towards a formal account of unpredictability, for example in the
context of process calculi – potentially including session types – by extending calculi to
model node failures [FGL+96, RH97], link failures [APN17], and a combination of link
and node failures [BH03]; these calculi also add a variety of program constructs to deal
with failures including escapes [CGY16], interrupts [HNY+13], exceptions [FLMD19], and
timeouts [LZ05, BY07, LP11]. Most existing models assume a fail-stop model of failure,

Key words and phrases: actor system, asynchronous process calculus, behavioural equivalence, barbed
bisimulation, fail-stop, failure injection, grey failure, recovery.

This work has been partially supported by EPSRC project EP/T014512/1 (STARDUST) and the BehAPI
project funded by the EU H2020 RISE under the Marie Sklodowska-Curie action (No: 778233).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:13)2023
© L. Bocchi, J. Lange, S. Thompson, and L. Voinea
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-7177-9395
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0002-2350-301X
https://orcid.org/0000-0003-4482-205X
http://creativecommons.org/about/licenses

13:2 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

where processes are either working or permanently stopped, and their state of being either
working or stopped is known. In fact, systems are often affected by grey failures: failures
that are latent, possibly transient, and may affect the system in subtle ways that later lead
to major issues, such as crashes, limited availability and overload. The symptoms of grey
failure tend to be ambiguous. Several kinds of grey failure have been studied in the last
decade such as transient failure (e.g., a component is down at periodic intervals), partial
failure (only some sub-components are affected), or slowdown [GSS+18]. In a distributed
system, processes may have different perceptions as to the state of health of the system (aka
differential observation) [HGZ+17]. Grey failures tend to be behind many service incidents
in cloud systems, and in these situations traditional fault tolerance mechanisms tend to be
ineffective or counterproductive [HGZ+17]. Diagnosis can be challenging and lengthy: for
example, the work in [LHS20] estimates a median time for the diagnosis of partial failures
to be 6 days and 5 hours. One of the main causes of late diagnosis is ambiguity of the
symptoms and hence difficulty in correlating failures with their effects.

In this paper we make a first step towards a better understanding of the correlation
between failures and symptoms via static formal analysis. We focus on the distributed actor
model of Erlang [Arm13], which is known for its effectiveness in handling failures and has
been emulated in many other languages, e.g., the popular Akka framework for Scala [Wya13].

We define a formal model of actor-based systems with grey failures, which we call ‘cursed
systems’. More precisely, we introduce two interlinked models: (1) a model of systems,
which are networks of distributed actors; (2) a model of (grey) failures that allows us to
characterise ‘curses’ as patterns of grey failures to inject in the system. This model of
failures can represent node failures (with loss of messages in the node’s mailbox), node
slowdowns, link failures (with loss of the message in transit), and link slowdowns. The
aforementioned instances of failure can be specified at the granularity of single nodes and
links, to capture total and partial failures, and at the granularity of (discrete) time instants,
to capture permanent, transient, and periodic failures. For example, a failed node can be in
a failed state for a while before being restarted. The model of systems allows one to specify
whether a node is restarted from the initial state (reset) or from a checkpoint. To capture the
ambiguity of symptoms of grey failure we assume that actors have no knowledge of the state
of health of other actors. However, actors can observe the presence (or absence) of messages
in their own mailboxes and hence can infer the effects of failure from the communications
that they have (not) received. In Erlang, a key mechanism for detecting and dealing with
failure is the use of timeouts, which are one of the main ingredients of our system model.

Modelling failures as a separate layer allows us to compare systems recovery strategies
with respect to specific failure patterns. This is a first step towards analysing the resilience
of systems to failures, and assessing the effect of failure on different parts of the system. We
introduce a behavioural equivalence, based on weak barbed bisimulation, to compare systems
affected by failures. We show that reliability properties of interest, namely resilience and
recoverability, can be reduced to the problem of checking weak barbed bisimulation between
systems with failures. Furthermore, we introduce a notion of augmentation, based on weak
barbed bisimulation, to model and analyse the improvement of a system with respect to its
recoverability against certain kinds of failure.

Synopsis. The paper is structured as follows. In Section 2, we give an informal overview of
the system model, and compare it with related work. Next we introduce the models of failure
(Section 3) and systems (Section 4). In Section 5 we give a behavioural equivalence between

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:3

systems with failures, and show how it is used to model properties of interest. Section 7
describes prospective applications and promising directions of this work. Section 8 discusses
conclusions and related work.

Extensions with respect to the conference paper. This work is an extended version
of the conference paper appeared in COORDINATION 2022 [BLTV22] with the following
additional contributions:

• The syntax and semantics of systems have been extended to model checkpoints. We have
added Section 4.2 to show that the extension can still express the systems in [BLTV22]
(Proposition 4.11). In a new section, Section 5.3, we show that the notion of n-recoverability
given in [BLTV22] is not suitable for systems with checkpoints. We have therefore added,
in Section 5.3, a more relaxed notion of n-recoverability for checkpointing systems.

• We found a flaw in the definition of n-recoverability given in [BLTV22]. We have fixed in
this extended version. In Section 5.1 we give an amended definition of n-recoverability
alongside the one given in [BLTV22], and discuss the differences by examples.

• In [BLTV22] we informally stated a relationship between two reliability properties we
defined in that work: ‘resilience is equivalent to 0-recoverability’. In a new section of this
extended version, Section 5.2, we give the formal proof of this equivalence based on our
amended definition of n-recoverability.

• The examples in Section 5 have been improved to reflect the feedback from the presentation
of the conference. For instance, Example 5.6 has been framed to show the role of redundancy
in fault-tolerance and how we can express it with our framework.

• Following feedback at the conference presentation, we have extended the section of related
works. In particular, we have added a comparison with the works in [Gär99] and [DCMA17].
Due to the particular relevance of the work in [Gär99], we have also added a new subsection,
Section 5.4, with a more technical discussion on how our work relates to the more general
definitions of fault-tolerance given in [Gär99].

• We have added a Section 7 with a discussion of prospective applications of this work.

2. Informal overview

Actor-based systems are modelled using a process calculus with three key elements, following
the actor model of Erlang: (1) time and timeouts, (2) asynchronous communication based
on mailboxes with pattern-matching, and (3) actor nodes and injected failures.

Time and timeouts. Timeouts are essential for an actor to decide when to trigger a
recovery action. Time is also crucial to observe the effects of failure patterns including
quantified delays or down-times of nodes and links. We based our model of time on the
Temporal Process Language (TPL) [HR95], a well understood extension of CCS with discrete
time and timeouts. Delays are processes of the form sleep.P that behave as P after one
time unit. Timeouts are modelled after the idiomatic receive...after pattern in Erlang.
Concretely, the Erlang pattern below (left) is modelled as the process below (right):

13:4 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

receive

Pattern1 -> P1;

...

PatternN -> PN

after

m -> Q

end

?{p1.P1, . . . , pN .PN} after m Q

where p1, . . . , pN is a set of patterns, each associated with a continuation Pi, with
i ∈ {1, . . . , N}, and Q is the timeout handler, executed if none of the patterns can be
matched with a message in the mailbox within m time units. Following TPL, an action
can be either a time action or an instantaneous communication action, and time actions
can happen only when communication actions are not possible (maximal progress [HR95]).
Concretely, we define the systems behaviour as a reduction relation with two kinds of
actions: communication actions −⇀ and time actions ∼∼▷ . While TPL is synchronous and
only prioritises synchronisations over delays, we model asynchronous communications and
prioritise any send or receive action over time actions. Thus, in our model, by maximal
progress, communications have priority over delays.

The state of an actor at a time t is modelled as n[P](M)(t), where n is the actor
identifier (unique in the system), M the mailbox, and P the process run by that actor.
System Rt below is the parallel composition of actors n1 and n2:

Rt = n1[sleep.!n2 a.0](∅)(t) ∥ n2[?a.P after 1 Q](∅)(t)

Although each actor in Rt has its own local time t explicitly represented, which makes it
easy to inject failures compositionally, our semantics keeps the time of parallel components
synchronized (as in TPL). In Rt, node n1 is deliberately idling and n2 is temporarily blocked
on a receive/timeout action, so no communication can happen, and thus only a time action
is possible, updating both actors’ times and triggering the timeout in n2:

Rt ∼∼▷ n1[!n2 a.0](∅)(t+ 1) ∥ n2[Q](∅)(t+ 1)

Mailboxes. Each pair of actors can communicate via two unidirectional links. For example,
(n1, n2) denotes the link for communications from n1 to n2. An interaction involves three
steps: (I) the sending actor sends the message by placing it in the appropriate link, (II) the
message reaches the receiver’s mailbox, and (III) the receiving actor processes the message.
These three steps allows us to capture e.g., effects of failures in senders versus receivers, on
nodes versus links, and to model latency. Consider the system

Rc = n1[!a.0](∅)(t) ∥ n2[?a.P after 2 Q](b)(t)

Step (I), the sending of a message, is illustrated below on Rc:

Rc −⇀ n1[0](∅)(t) ∥ 1.(n1, n2, a) ∥ n2[?a.P after 2 Q](∅)(t) = R′
c (2.1)

1.(n1, n2, a) models a latent message in link (n1, n2) with content a. Prefix 1 is the
average network latency (assumed to be a constant). Due to latency, the message can only
be added to the receiver’s mailbox after one time step:

R′
c ∼∼▷ n1[0](∅)(t+ 1) ∥ (n1, n2, a) ∥ n2[?a.P after 1 Q](∅)(t+ 1) (2.2)

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:5

These floating messages (n1, n2, a) with no latency are similar to messages in the ether [SFE10],
in the global mailbox [LNPV18], or to the floating messages in [LSZ19].

Step (II) is the reception of the message, and happens as illustrated below (omitting
the idle actor n1), where message a is added to the mailbox of n2:

(n1, n2, a) ∥ n2[?a.P after 1 Q](∅)(t+ 1) −⇀ n2[?a.P after 1 Q](a)(t+ 1)

Step (III) is the processing of the message, as illustrated below:

n2[?a.P after 1 Q](a)(t+ 1) −⇀ n2[P](∅)(t+ 1)

where message a in the mailbox matches the receive pattern (made up of a single atom
a) and is therefore processed. Mailboxes give us an expressive model of communication
for modern real-world systems. An alternative model of communication is peer-to-peer
communication, used e.g., in Communicating Finite State Machines (CFSM) [BZ83] and
Multiparty Session Types [HYC16, CDYP16], where a receiver must specify from whom the
message is expected. This makes it difficult to accurately capture interactions with public
servers, or patterns like multiple producers-one consumer.

In the interaction above, note that n2 processes message a because it matches pattern a;
this would be the case even if there were an older message b in the mailbox, if that message
did not match that pattern a. Alternative models, like Mailbox CFSMs [BBO12, BGF+21],
typically do not model the selective receive pattern (e.g., pattern-matching in Erlang) shown
above. Without selective receive, participants can easily get stuck if messages are received
out of order. One can encode peer-to-peer communication over FIFO unidirectional channels
by using pattern matching with selective receive: using the sender’s identifier in the message
and in the receive pattern. A similar communication model to ours was proposed in [MV11].

Localities and failures. The actor construct is similar to that used to model locality for
processes [Cas01], and also studied in relation to failures [BH03, RH01, FH07, FH08] but
using a fail-stop untimed model. We use actor nodes to model the effects of injected failures
on specific nodes and links.

Referring to system R′
c in (2.1), by placing floating messages into a link with latency

before they reach the receiver’s mailbox we can observe the effects of link failure as message
loss. Assume link (n1, n2) is down at time t:

R′
c −⇀ n1[0](∅)(t) ∥ n2[?a.P after 2 Q](∅)(t)

the floating message gets lost which in turn would end up causing a timeout in n2. Similarly,
in the case of node failure, node n1 in system Rc, seen earlier in (2.1), would go into a
crashed node state before sending the message, hence triggering a timeout in n2:

Rc −⇀ n1[↓](∅)(t) ∥ n2[?a.P after 2 Q](∅)(t)

Assumptions. When a node crashes and comes back up again later on, it will come up
with the same node identifier. This is consistent with Distributed Erlang, where by default
all nodes are named; on the other hand, if we were resuscitating processes, we would need
to name them for this to be possible. For simplicity, we assume nodes are not created at
run-time, focusing on fixed topologies. Extending the language with the capability of creating
new nodes is relatively straightforward, and can be done in a similar way to π-calculus
restriction. We assume that behaviour within a node is sequential: actors can be composed in

13:6 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

parallel but processes cannot, hence limiting communication to distributed communications
between nodes.

We choose to focus on inter-node communication on its own, because there already exist
good strategies (e.g, in Erlang and Elixir) for dealing with in-node failure through the use
of a supervision hierarchy, supervision strategies, and let-it-crash philosophy. Messages in
transit when a node goes down remain in transit and may enter the mailbox after this node
is resumed.

We allow a restricted (external) version of choice, based on the communication patterns
found in Erlang. Free, or completely unrestricted choice, while central to many process
algebras, for example CCS, tends to be less used in practice.

3. A model of failures

Let N be the set of node identifiers in a system. The model of failures is defined to be the
∆ function:

∆ : N× (N ∪N ×N) 7→ { ↓ , ↑ , ⟳ }

mapping each discrete time t ∈ N, node n ∈ N , and link (n1, n2) ∈ N × N to a value
representing the state of health of that node or link, at that time. The symbol ↑ denotes
the “healthy” state, ↓ identifies the failure of a node or link, and ⟳ indicates a node or
link slowdown.

The failure scenarios covered by ∆ include node crash, message loss, slow processes or
slow networks. If node n is down at time t, written ∆(t)(n) = ↓ , then it will perform no
action until it is resumed, if ever. If n is resumed at time t′, then its state at time t′ will be
set to the initial state (see Definition 4.6 for the formal definition). If link (n1, n2) is down
at time t, written ∆(t)(n1, n2) = ↓ , then any message in transit on that link at time t will
be lost. If node n is slow at time t, written ∆(t)(n) =⟳ , then any actions of the process
running in n are delayed for one time step, and may resume at time t+ 1 if ∆(t+ 1)(n) = ↑ .
If link (n1, n2) is slow at time t, written ∆(t)(n1, n2) =⟳ , then the delivery of any message
in transit on that link at time t will not happen at that time, and so will be delayed by at
least one time unit. This delay is in addition to the network latency, which is modelled as a
constant. Failures can be permanent or transient, as shown below by examples.

Example 3.1 (Permanent and transient failures). Permanent node failure after a certain
point in time, say t = 10, can be modelled by the definition ∆1 below. Function ∆2 shows a
transient periodic structural failure of node n, with each period having 100 time units of
healthy state and 100 of down state.

∆1(t)(n) =

{
↑ if t < 10

↓ otherwise
∆2(t)(n) =

{
↑ if t div 100 mod 2 = 0

↓ otherwise

One could similarly model transient degrading failure by setting uptimes when t = n2 for
(n ∈ N).

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:7

Systems
R ::= n[P]Q(M)(t) node

| (n1, n2,m)(t) floating message
| u.(n1, n2,m)(t) latent message
| n[↓]Q(∅)(t) crashed node
| ∅ empty
| R ||R parallel

Processes
P ::= !{nimi.Pi}i∈I send

| ?{pi.Pi}i∈I afterP receive-timeout
| sleep.P sleep
| save.P check-point
| µt.P fixed-point
| t recursive variable
| 0 inaction

Values
V ::= a atom

| n node id
| X variable

Message

m ::= Ṽ message tuple

Mailbox
M ::= ∅ | M ·m

Receive Patterns
E ::= X | a pattern element

p ::= Ẽ pattern tuple

Figure 1. Syntax

[Var1] (X, a) ⊢match [a/X] [Var2] (X, n) ⊢match [n/X]

[Atom] (a, a) ⊢match [a/a]
[Tuple]

(E, V) ⊢match σ (Ẽ, Ṽ) ⊢match σ

(EẼ, V Ṽ) ⊢match σσ

[Mbox1]
(E,m) ⊢match σ

(E,m ·M) ⊢match σ
[Mbox2]

(E,m) ̸⊢match (E,M) ⊢match σ

(E,m ·M) ⊢match σ

Figure 2. Matching rules

4. Calculus for cursed systems

This section presents the model for actor based systems. The syntax of the calculus is given
in Figure 1.

Systems are nodes n[P]Q(M)(t), messages (floating or latent), crashed nodes
n[↓]Q(∅)(t), empty systems ∅, and parallel compositions of systems R ||R. The term
n[P](M)(t) denotes the state of node n ∈ N at time t where P is the process running in
n, Q is the saved checkpoint process, and M is the mailbox of n. A mailbox is a (possibly
empty) list of messages. A message m is a tuple of values, which can be atoms a, node ids n
or variables X. Messages are read from a mailbox via pattern matching.

We define the pattern matching function in the style of [MV11] through the derivations

in Figure 2. Given a pattern Ẽ and a message (tuple) Ṽ , (Ẽ, Ṽ) ⊢match σ the match function

returns a substitution σ. Note that the match is only defined if Ẽ and Ṽ have the same size,
and if the pattern and message match. We write (E,m) ̸⊢match when message m does not

13:8 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

match pattern E. Juxtaposition denotes concatenation of pattern and value tuples, and,
since we assume that variables appear uniquely in pattern tuples, σσ is the union of the two
substitutions.

A floating message (n1, n2,m)(t) represents a message m in link (n1, n2). Latent messages
u.(n1, n2,m)(t) are floating messages which can only reach the receiver’s mailbox after a
latency u. We assume all sent messages have a latency defined as a constant L, which
abstracts the average network latency.

Looking at processes, a term of the form !{nimi.Pi}i∈I chooses to send to node ni a
message mi and continues as Pi. Term ?{pi.Pi}i∈I afterP tries to pattern match a message
from the mailbox against one of the patterns pi, and continues as Pi given that the matching
succeeds for pi, timing out after one time unit if no message matches and executing P .
Process sleep.P consumes a time unit and then continues as P . Process save.P saves the
current state as a checkpoint process. Process µt.P is for recursion, and t is the recursive
call. Finally, 0 is the idle process.

Remark 4.1. We use notation ?{pi.Pi}i∈I after uP as syntactic sugar for nesting u
timeouts1 and sleepu.P for the sequential composition of u delays with continuation P .

Recall (Section 3) that we fix the set of system’s nodes N , and the domain of ∆ is
N ∪ (N ×N), that is the set of nodes and links between pairs of nodes. Our unit of analysis
is a cursed system defined below.

Definition 4.2 (Cursed system). A cursed system is a pair (R,∆) where R is a system, ∆
is a curse.

The semantics of cursed systems is given in Def. 4.3 as a reduction relation over systems
that is parametric on ∆. We write R1 ≡ R2 to mean that the systems R1 and R2 are the
same up-to associativity and commutativity of ||, plus 0.(n1, n2,m)(t) ≡ (n1, n2,m)(t) and
R ∥ ∅ ≡ R.

Definition 4.3 (Operational semantics for cursed systems). Reduction is the smallest
relation on cursed systems over communication actions denoted by −⇀, and time actions
denoted by ∼∼▷ , that satisfies the rules in Figure 3. We use −→ when −→∈ {−⇀, ∼∼▷ }. For
readability, in the rules we assume ∆ fixed and write R −→ R′ instead of (R,∆) −→ (R′,∆).

The first set of rules in Figure 3a is for actors actions, happening at a time t, when the
nodes and links are in a healthy state i.e. ∆(t)(n) = ↑ . In rule [Snd], n chooses to send a
message mj to node nj , and continues as Pj . Modelling asynchronous communication, a
latent message L.(n, nj,mj)(t) is introduced in the system, where L is the network latency
constant. Rule [Sched] delivers a floating message to the receiver’s mailbox. Rule [Rcv],
retrieves the first message m in the mailbox that matches one of the receive patterns pj .
The match function returns a substitution σ that is applied to the continuation process Pj

associated with pattern pj ; and m is removed from the mailbox. Rule [Checkpoint] saves the
current state P as a checkpoint process for that node n. Finally, Rule [Rec] allows a node
with a recursive process to proceed with a communication or a time action.

1As Q(u) where Q(0) = ?{pi.Pi}i∈I afterP and Q(i+ 1) = ?{pi.Pi}i∈I afterQ(i).

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:9

[Snd]
∆(t)(n) = ↑ j ∈ I

n[!{nimi.Pi}i∈I]Q(M)(t) −⇀ n[Pj]Q(M)(t) ||L.(n, nj,mj)(t)

[Sched]
∆(t)(n1) = ↑ ∆(t)(n2, n1) = ↑

(n2, n1,m)(t) || n1[P]Q(M)(t) −⇀ n1[P]Q(M ·m)(t)

[Rcv]
∆(t)(n) = ↑ j ∈ I, (pj ,m) ⊢match σ ∀i ∈ I, (pi,M1) ̸⊢match

n[?{pi.Pi}i∈I afterP]Q(M1 ·m ·M2)(t) −⇀ n[Pjσ]Q(M1 ·M2)(t)

[Checkpoint]
−

n[save.P]Q(M)(t) −⇀ n[P]P (M)(t)

[Rec]
∆(t)(n) = ↑ n[P [µt.P/t]]Q(M)(t) −→ n[P ′]Q(M)(t′)

n[µt.P]Q(M)(t) −→ n[P ′]Q(M)(t′)

(a) Actor/Node actions

[Sleep]
∆(t)(n) = ↑

n[sleep.P]Q(M)(t)∼∼▷ n[P]Q(M)(t+ 1)

[Latency]
∆(t)(n1, n2) = ↑ u > 0

u.(n1, n2,m)(t)∼∼▷ (u− 1).(n1, n2,m)(t+ 1)

[Timeout]
∆(t)(n) = ↑ ∀i ∈ I, (pi,M) ̸⊢match

n[?{pi.Pi}i∈I afterP]Q(M)(t)∼∼▷ n[P]Q(M)(t+ 1)

(b) Time actions

[NLate]
∆(t)(n) =⟳

n[P]Q(M)(t)∼∼▷ n[P]Q(M)(t+ 1)
[MsgLoss]

∆(t)(n1, n2) = ↓ u ≥ 0

u.(n1, n2,m)(t) −⇀ ∅

[MsgLate]
∆(t)(n1, n2) =⟳ u ≥ 0

u.(n1, n2,m)(t)∼∼▷u.(n1, n2,m)(t+ 1)
[NDown]

∆(t)(n) = ↓
n[P]Q(M)(t) −⇀ n[↓]Q(∅)(t)

[DownLate]
∆(t)(n) = ↓

n[↓]Q(∅)(t)∼∼▷ n[↓]Q(∅)(t+ 1)
[NUp]

∆(t)(n) = ↑
n[↓]Q(∅)(t) −⇀ n[Q]Q(∅)(t)

(c) Failure actions

[Str]
R1 ≡ R′

1 R1 −→ R2 R2 ≡ R′
2

R′
1 −→ R′

2

[ParCom]
R1 −⇀ R′

1

R1 ||R2 −⇀ R′
1 ||R2

[ParTime]
R1 ∼∼▷R′

1 R2 ∼∼▷R′
2 R1 ||R2 ̸−⇀

R1 ||R2 ∼∼▷R′
1 ||R′

2

(d) System actions

Figure 3. Reduction rules

13:10 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

Time actions. The second set of rules, in Figure 3b, is for time-passing reduction in absence
of failures. Rules [Sleep] and [Timeout] model reduction of time consuming and receiving
with timeout processes, respectively. Rule [Timeout] can only be applied if none of the
messages in the mailbox is matching any of the patterns {pi}i∈I yielding an urgent receive
semantics [Mur19] reflecting the receive primitive in Erlang. Rule [Latency] allows time
passing for latent messages. Note that, by setting u′ = max(u − 1, 0), if a receiver node
crashes, all latent/floating messages remain in the link until the node is able to receive them,
i.e. in a healthy state. We omit the rules for state-preserving time passing for idle nodes
and n[0](M)(t).

Failure actions. The third set of rules, in Figure 3c, models the effects of failures injected
at time t. Rule [NLate] models a delay, injected by ∆(t)(n) =⟳ , in the execution of the
process P in a node n: a time unit elapses without any action in P . Rule [MsgLoss] models
a lossy link at time t, injected by ∆(t)(n1, n2) = ↓ , and permanently deletes a message
u.(n1, n2,m)(t) in transit. Rule [MsgLate] models a slow link, injected by ∆(t)(n1, n2) =⟳ ,
by allowing time to pass but without decreasing the latency u of the message. Rule [NDown]

models an instantaneous node that crash injected by ∆(t)(n) = ↓ , and erases the process
and mailbox of the node. Rule [DownLate] allows time to pass for a crashed node. In rule
[NUp] a crashed node is restarted with its saved checkpoint process Q and empty mailbox.
Σ is a mapping from N to processes, that gives the initial process of each actor node. We
assume that the node identifier is unchanged when restarting the node.

Runtime System actions. The last set of rules given in Figure 3d models system actions.
In rule [ParCom] a communication action of system part R1 is reflected in the composite
system R1 ||R2. In rule [ParTime] time actions need to be reflected in all the parts of
a system. A whole system can have a time action only if all parts of the system have
no communication or failure actions to perform at the current time (Ri −⇀−). [Str] is for
communication and time actions of structurally equivalent systems.

4.1. Basic properties of systems reductions. In the remainder of this section we discuss
two properties of cursed systems: time-coherence (the semantics keeps clocks synchronized)
and non-Zenoness. We start by defining the time of a system. All definitions below apply
straightforwardly to cursed systems by fixing a ∆.

Definition 4.4 (Time of a system). Let t range over N∪{∗}. We define the synchronization
(partial) function δ:

δ(∗, t) = δ(t, ∗) = t δ(∗, ∗) = ∗ δ(t, t) = t

δ(t1, t2) returns a time or a wildcard ∗, and is undefined if t1 ̸= t2 and neither t1 nor t2 is a
wildcard. We define time(R) as a partial function over systems:

time(R) =

∗ R = ∅
t R = n[P]Q(M)(t) or R = n[↓]Q(M)(t) or

R = (n1, n2,m)(t) or R = u.(n1, n2,m)(t)

δ(time(R1), time(R2)) R = R1 ||R2

We can now define time-coherence of a system, holding when all its components have
the same time.

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:11

Definition 4.5 (Time coherence). R is time coherent if time(R) is defined.

For example, system n1[P]Q1(M)(t) ∥ (n1, n2,m)(t) ∥ ∅ is time-coherent, while system
n1[P]Q1(M)(t) ∥ (n1, n2,m)(t+ 1) ∥ ∅ is not.

The time function is also useful to characterise systems where all actors are coherently
at time 0 and in their initial state.

Definition 4.6 (Initial system). Let Σ and Γ be mappings from N to processes such that
Σ(n) is the initial process of n and Γ(n) is the initial checkpoint of n. Note that by the
definition of processes ↓ is not a process, and so nodes are never crashed in the initial state.
A system R is initial if time(R) = 0 and

R ≡ n1[Σ(n1)]Γ(n1)(∅)(0) || . . . || nm[Σ(nm)]Γ(nm)(∅)(0)

with {1, . . . ,m} = N . A cursed system (R,∆) is initial if R is initial.

We assume any system R to start off as initial and hence, by Prop. 4.8, to be time-
coherent.

Next we show that the reduction over systems preserves time-coherence, hence all
reachable systems are coherent.

Lemma 4.7 (Time-coherence invariant). If R is time-coherent and R −→ R′ then R′ is
time-coherent.

The proof of the lemma is straightforward, by induction on the derivation. In fact, the
only rule that updates the time of a parallel composition is [ParTime] which requires time
passing for all parallel processes. The fact that if R is initial then time(R) is defined (as 0)
yields the following property. We let −→∗ be the transitive closure of the reduction relation.

Proposition 4.8. Let R be initial, if R −→∗ R′ then R′ is time-coherent.

We assume any system R to start off as initial and hence, by Prop. 4.8, to be time-
coherent.

Next, we give a desirable property for timed models: non-Zenoness. This prevents an
infinite number of communication actions at any given time (Zeno behaviours). Besides
yielding a more natural abstraction of a real world system, non-Zenoness simplifies analysis;
for example, we can assume that the set of states reachable without time passing is finite.
We start by defining a non-instantaneous process.

Definition 4.9 (Non-instantaneous process). We define function ninst(P) inductively as
follows:

ninst(P)=

∧

i∈I ninst(Pi) if P = !{nimi.Pi}i∈I or P = ?{pi.Pi}i∈I after Q

ninst(Q) if P = µX.Q

true if P = sleep .Q

false if P = X or P = 0

We say that P is non-instantaneous if ninst(P) = true. We say that R is non-instantaneous
if all nodes in R run non-instantaneous processes.

Proposition 4.10 (Non-Zenoness). Let R be non-instantaneous. If R −→∗ R′ then there is
a finite number of R′′ such that R′ −⇀ R′′.

13:12 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

The proof is straightforward by induction on the structure of R′. Intuitively, any
non-instantanous actor can only make a finite number of instantaneous actions at any given
time, and hence at time time(R′). Hereafter we assume systems to be non-instantaneous,
and hence non-Zeno.

4.2. Reset vs Checkpointing Systems. We call reset systems those systems obtained
using the grammar for systems but without the save processes save.P , and where Γ = Σ.
Reset systems model systems where each node reacts to (presumed) failure by restarting the
execution from the initial state. More formally:

Proposition 4.11 (Reset systems). If R is reachable from an initial reset system then for
all n[P]Q(M)(t) and R′ such that R = n[P]Q(M)(t) ||R′ we have Q = Σ(n).

The property above is proved straightforwardly by coinduction, showing that having
checkpoint Σ(n) in all nodes is a property of initial reset systems and an invariant of reset
systems preserved by reduction (by case analysis on the reduction rules).

Reset systems are common in Erlang: robustness is provided by a supervision hierarchy
which explicitly describes the ways in which parts of the system are restarted when they or
other parts fail. Restarts can escalate: if a component repeatedly restarts, then its parent
process may itself have to be restarted.

While Erlang provides no explicit mechanism for checkpointing, it is possible to save
state periodically using bulk storage known as ETS-tables. These provide global storage from
which state can be retrieved, always assuming that the tables themselves are preserved. Disk-
based ETS-tables (DETS-tables) provide more permanent storage, but with an associated
time cost.

In fact, in the short version of this article [BLTV22] we focussed on a formalisms that
corresponds to reset systems. Here, we explore a more general setting, to show a more
interesting relationship of our work to the ones in [Gär99][DCMA17], and particularly to
the notion of non-masking fault-tolerance therein.

5. Properties of cursed systems

In this section we define a behavioural relation between cursed systems, as a weak barbed
bisimulation, which is the standard choice since we have a reduction semantics [SW01].
The aim is to compare the systems’ abilities to preserve ‘normal’ functionality when they
are affected by failures. We abstract from the fact that some parts of the system may be
deadlocked, as long as healthy actors can keep receiving the messages they expect. Mailbox-
based (rather than point-to-point) communication and pattern matching allow us to capture
e.g., multiple-producer scenarios where a consumer can receive the expected feeds as long as
some producers are healthy.

Our behavioural relation also abstracts from time, to disregard the delays introduced
by recovering actions, and only observes the effects of such delays (we do not focus on
efficiency). Essentially, two systems are equivalent when actors receive the same messages,

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:13

abstracting from senders, in a time-abstract way.2 On the basis of this equivalence we define
recoverability and augmentation.

We start by defining weak barbed simulation for cursed systems.

Definition 5.1 (Barb). The ready actions of P are defined inductively as follows:

rdy(!{nimi.Pi}i∈I) = {! nimi}i∈I rdy(?{pi.Pi}i∈I after P) = {? pi}i∈I
rdy(0) = rdy(t) = rdy(sleep.P) = ∅ rdy(µt.P) = rdy(P)

Let R ↓ x be the least relation satisfying the rules below.

n[P](M)(t) ↓ x if ! n′m ∈ rdy(P) ∧ x = ! n′m ∨ ? p ∈ rdy(P) ∧ x = ? n p
(n1, n2,m) ↓ ! n2m
(R1 ∥ R2) ↓ x if R1 ↓ x or R2 ↓ x

If R ↓ x we say that R has a barb on x.

Barbs abstract from (i.e., do not include in the model of observation) the sender of a
message. This allows us to disregard the identity of the senders, following mailbox-based
communications in actor-based systems. Scenarios where the identity of the sender is
important can be encoded by using node identifiers as message content.3 We observe m and
p to retain expressiveness with respect to channel-based scenarios, as discussed in Section 6.1.

Example 5.2 (Examples on barbs). Consider a system RR with a consumer node c receiving
data d from two replicas r1 and r2. If the messages from both replicas are delayed then the
consumer notifies a monitor node m (omitted here for simplicity):

RR = c[µt.?d.t. after 2 !m fail](∅)(0) ∥ r1[µt.!c d.t](∅)(0) ∥ r2[µt.!c d.t](∅)(0)
Regarding our choice of barbs in this example, the consumer needs to receive regular

feeds d, no matter whether they are from r1 or r2. Abstracting away from the identity of
the sending replica is directly captured by our definition of barbs. In fact, the set of barbs
of RR is {! c d, ? c d}.

A system defined in the same way as RR but with only one replica, e.g. obtained by
removing node r2, or with one of the replicas down, e.g. obtained by substituting node r2
with r2[↓](∅)(0), would have the same set of barbs as RR, namely {! c d, ? c d}.

It is worth noting that if the identity of the sender does matter, it can be observed by
encoding the identity into the messages being sent by the sender:

R′
R = c[µt.{?n1 d.t., ?n2 d.t. after 2 !m fail](∅)(0) ∥

r1[µt.!c n1 d.t](∅)(0) ∥ r2[µt.!c n2 d.t](∅)(0)
The set of barbs of R′

R is {! c n1 d, ! c n2 d, ? c n1 d, ? c n2 d}. If node r2 was removed or
crashed, the set of barbs would be affected, becoming {! c n1 d, ? c n1 d, ? c n2 d}, and making
it possible to distinguish among senders.

2Abstracting from timing and message senders is an assumption of our model that we adopted for the
sake of generality: it allows us to capture scenarios where the timing and order of the messages does not
matter (e.g., multiple producers). On the other hand the model can encode scenarios where such orders
matter. It can, for example, support Erlang-style actor behaviour. Erlang does not guarantee temporal order
of messages between different processes in general, however between any two processes it does guarantee that
messages sent directly between them will be received in the same order. Erlang behaviour can be encoded in
our model if messages are extended to include the identity of the sender and a counter (e.g., as atoms) to
guarantee message origin and ordering.

3This is precisely how sender information is communicated in Erlang.

13:14 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

Definition 5.3 (Weak barbed simulation). Recall −→∈ {−⇀, ∼∼▷ }. A weak (time-abstract)
barbed simulation is a binary relation S between cursed systems such that (R1,∆1)S(R2,∆2)
implies:

(1) If (R1,∆1) −→ (R′
1,∆1) then there exists R′

2 such that (R2,∆2) −→∗ (R′
2,∆2) and

(R′
1,∆1)S(R′

2,∆2).
(2) If R1 ↓ x for some x, then there exists R′

2 such that (R2,∆2) −→∗ (R′
2,∆2) and R′

2 ↓ x.

We say (R1,∆1) is weak barbed similar to (R2,∆2), written (R1,∆1) ≲ (R2,∆2), if there
exists some weak barbed simulation S such that (R1,∆1)S(R2,∆2).

Definition 5.4 (Weak barbed bisimulation). We say that S is a weak barbed bisimulation
if S and S−1 are weak barbed simulations. We say (R1,∆1) is weak barbed bisimilar to
(R2,∆2), written (R1,∆1) ≈ (R2,∆2), if there exists some weak barbed bisimulation S such
that (R1,∆1)S(R2,∆2).

The rules in Figure 3 embody mailbox-based communication. These rules allow us to
observe messages ‘in flight’, and so allow us to observe that some such messages have been
affected by a curse, reflecting an insecure communication medium. Note, however, that it is
not possible to directly observe the contents of mailboxes; this can only be done indirectly –
and in general, partially – by observing the behaviour of receive statements.

If we fix a system, we can use Definition 5.3 to compare behaviours of that system with
different curses, namely to determine when a system maintains its (desirable) behaviour
even when cursed. Namely, Definition 5.3 provides a means to study the ability of a systems
to tackle failure, or its resilience. Formally (Definition 5.5) we define resilience as the ability
of a system to behave ‘normally’ despite failure injection. In the following, we let ↑ be the
curse function that assigns ↑ to all nodes and links at all times.

Definition 5.5 (Resilience). Initial (R,∆) is resilient if (R, ↑) ≈ (R,∆).

Example 5.6 (Resilience). Consider the system R below and curse ∆ for which (p, c) is
down at time 1

R = p[sleep .!c item.0](∅)(0) ∥ c[?item.0 after 3 0](∅)(0)

Fix the latency constant as 1 time unit. System R is not resilient with respect to ∆ since
(R,∆) ̸≲ (R, ↑). Intuitively, observe that (R, ↑) reaches the terminated state

(p[0](∅)(2) ∥ c[?item.0 after 1 0](item)(2), ↑)

with no barbs, whereas (R,∆) finally gets stuck in the state

(p[0](∅)(3) ∥ c[0](∅)(3) ∥ (p, c, item),∆)

with an orphan message and barb ?c item.
Different strategies can be applied to modify R so that it correctly handles the delays

specified by ∆. One is to tune the timeouts in the code so that it can handle the curse ∆.
Concretely, consider the following variant R′ of R, that increases the timeout value of one
unit:

R′ = p[sleep .!c item.0](∅)(0) ∥ c[?item.0 after 4 0](∅)(0)
One can verify that (R′,∆) ≈ (R′, ↑) and hence R′ is resilient with respect to ∆.

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:15

Example 5.6 shows a non-resilient cursed system (R,∆) and a resilient variant (R′,∆)
obtained by tuning the timeout in R. In the following Example 5.7 we provide two additional
resilient variants of (R,∆) obtained using time-redundancy (e.g., retry strategies) and space-
redundancy (e.g., replication). Redundancy has been shown [Gär99] to be a necessary
condition for fault-tolerance. Resilience gives a tool to assess whether a ‘redundant’ system
is indeed attaining the intended fault-tolerance.

Example 5.7 (Resilience and redundancy). Consider (R,∆) from Example 5.6 and, again,
fix the latency constant as 1 time unit. We define a variant of R, called RT , where
time-redundancy is attained by retrying the communication once more in case of timeout

RT = p[sleep .!c item.0](∅)(0) ∥ c[?item.0 after 3 (?item.0 after 3 0)](∅)(0)

Similarly, we define a variant of R, called RS , where space-redundancy is applied by adding
an extra producer:

RS = p[sleep .!c item.0](∅)(0) ∥ c[?item.0 after 3 0](∅)(0)
∥ p′[sleep .!c item.0](∅)(0)

One can verify that both RT and RS are resilient with respect to ∆ from Example 5.6.

Our definition of resilience sets the behaviour of a system without curses as a model
of expected behaviour. By Definition 5.5, any deviation from the expected behaviour, even
a temporary one, makes a system non-resilient. This is a very strict characterization of
fault-tolerance. For example, resilience is too strong to capture the effects of more complex
retry-strategies than those applied in RT from Example 5.7, as shown in the Example 5.8
below.

Example 5.8 (Resilience and more complex retry strategies). Consider ∆ from Example 5.6,
latency of 1 time unit, and a variant RTT of RT , where time-redundancy affects both
processes:

RTT = p[µX. sleep .!c item. ?{ok .0, retry.X}](∅)(0) ∥
c[µX. ?item. !p ok. 0 after 3 (!p retry. X)](∅)(0)

System RTT is not resilient with respect to ∆ from Example 5.6 because the nodes add
some communications to acknowledge correct interaction or coordinate on a retry iteration.

In the remaining of this section, we study a less restrictive characterization than resilience,
which we call recoverability, to allow for some deviation from the expected behaviour as
long as the system eventually resumes the expected behaviour. In Section 5.1 we discuss
recoverability. In Section 5.2 we show a relation between resilience and recoverability. In
Section 5.3 we provide a more general account of reliability that can easily capture reset and
checkpointing systems. Section 5.1 is based on the notion of n-recoverability first introduced
in [BLTV22], which is fixed and improved. Section 5.3 is new.

5.1. Recoverability for reset-systems. We define n-recoverability as the ability of a
system to display the expected behaviour after time n. The definition from [BLTV22] had
several issues that we have amended in this work. The original definition is as follows:

Definition 5.9 (n-Recoverability (from [BLTV22])). Let n ∈ N and (R,∆) initial. (R,∆)
is n-recoverable if (R,∆) −→∗ (R′,∆) and time(R′) = n, implies (R, ↑) ≈ (R′,∆).

13:16 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

Example 5.10 (Counterexample). Fix a latency of 1 time unit and a generic ∆ that does not
affect any node or link at time 0. System Rce below reduces to R′

ce after a communication
action

Rce = n1[!n2 a.0](∅)(0) ∥ n2[sleep .?a.0](∅)(0)
R′

ce = n1[0](∅)(0) ∥ n2[sleep .?a.0](∅)(0) ∥ 1.(n1, n2, a)(0)

For Rce to be 0-recoverable, since (Rce,∆) −⇀ (R′
ce,∆), one should have (R′

ce,∆) ≈ (Rce, ↑)
which does not hold for any ∆ because of a difference in barbs– hence not even for ∆ =↑.

Example 5.10 shows that Definition 5.9 is too strict to capture the intended meaning of
n-recoverability. In [BLTV22] for example, 0-recoverability is (wrongly) set to correspond to
resilience. Definition 5.9 requires that all states at time n are bisimilar to the initial state,
and this is too strict since several actions may naturally happen in a time unit.

We provide a weaker definition of n-recoverability, using universal quantification over
paths of actions at time n and existential quantification on the states on each of these paths,
which is set to better represent the intuition. First, we define the concept of n-entry, which
is the set of states that are, for some execution, the first state to be reached at time n. Then
a n-path is the maximal path from a n-entry where states are at time n.

Definition 5.11 (n-Entry). Let n ∈ N and (R0,∆) be an initial state. If n = 0 then (R0,∆)
is the only 0-entry for itself. If n > 0, (R,∆) is a n-entry for (R0,∆) if there exists an
execution (R0,∆) −→∗ (R′,∆)⇝ (R,∆) with time(R) = n.

A n-entry (R,∆) is the first state to be reached at time n. Observe that in Definition 5.11
if n > 0 then it is always the case that time(R′) = n − 1. We define an execution
(R1,∆) ⇀∗ (Rm,∆) to be a sequence of configurations (Ri,∆), with 1 ≤ i ≤ m− 1 such
that (Ri,∆) ⇀ (Ri+1,∆).

Definition 5.12 (n-Path). Let n ∈ N and (R0,∆) be an initial state. Execution (R1,∆) ⇀∗

(Rm,∆) is a n-path for (R0,∆) if: (1) (R1,∆) is a n-entry for (R0,∆), and (2) (Rm,∆)
cannot make other actions than time actions.

Observe that in Definition 5.12 a n-path (R1,∆) ⇀∗ (Rm,∆) includes no time actions.

Definition 5.13 (n-Recoverability (new)). Let n ∈ N and (R0,∆) be an initial state.
(R0,∆) is n-recoverable if for all of its n-paths (R1,∆) ⇀∗ (Rm,∆) there is i ∈ {1, . . . ,m}
such that (Ri,∆) ≈ (R0, ↑).

Definition 5.13 says that in any arbitrary n-path there exists a state (Ri,∆) reachable
at time n that is weak-barbed bisimilar to (R0, ↑).

Example 5.14 (n-Recoverability). Consider the system R below (and any ∆ that does not
affect the system at times 0 and 1):

R = n1[!n2 a.∅](∅)(0) ∥ n2[?a.∅](∅)(0)

(R,∆) reduces to the successfully terminated system (R′,∆) with

R′ = n1∅(1) ∥ n2∅(1)

at time zero.

Example 5.15 (n-recoverability and more complex retry strategies). Consider ∆ from
Example 5.7, latency of 1 time unit, and a variant RTT of RT , where time-redundancy

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:17

affects both processes:

RTT = p[µX. sleep .!c item. ?{ok .0, retry.X} after 5 0](∅)(0) ∥
c[µX. ?item.!p ok.0 after 4 (!p retry. X)](∅)(0)

System RTT is not resilient with respect to ∆ from Example 5.6 because the nodes add
some communications to acknowledge correct interaction or coordinate on a retry iteration.
It is however n-recoverable with n = 6.

By Definition 5.13, checking resilience and n-recoverability is reduced to the problem of
checking weak barbed bisimulation. Note that, in Definition 5.13, the number of R′ that
can be reached from R is finite, because the execution up to R′ lasts for n time units and,
by Proposition 4.10, a system can perform only a finite number of actions in a finite amount
of time.

In the following, we show that resilience is equivalent to 0-recoverability. This fact was
conjectured for not formally proven in [BLTV22]. This result is given in Section 5.2.

5.2. Resilience is equivalent to 0-recoverability. Equivalence of resilience and 0-
recoverability (Theorem 5.22) is based on two facts:

(1) for all initial systems R, (R,∆) ≳ (R, ↑), given in Lemma 5.19, and
(2) for all initial and 0-recoverable systems R, (R,∆) ≲ (R, ↑), given directly in Theo-

rem 5.22.

Lemma 5.19 is based on a property that we call ↑-consistency. ↑-consistency correlates the
syntactic structure cursed system and their corresponding counterparts with curse ↑ , as
they evolve.

Definition 5.16 (↑-consistency). Two systems R∆ and R↑ are ↑-consistent if there exist
R, Ru, Rd, and Rf such that

R↑ = R ||Ru ||Rf R∆ = R ||Rd

and:

• Ru and Rd are parallel compositions of the same (possibly empty) set of nodes.
• the nodes in Rd are all down, i.e., of the form n[↓]Q(∅)(t),
• Rf is the parallel composition of a (possibly empty) set of latent or floating messages.

Intuitively, ↑-consistency defines a structural relation between the evolution of a system
with and without curses: R models the parts of the system (if any) that R↑ and R∆ have in
common; Ru and Rd are the nodes that are up in R↑ and down in R∆, respectively (they
model the difference between R↑ and R∆ wrt. crashed nodes); moreover, R↑ may have some
additional floating messages, represented by Rf , that have been lost in R∆.

↑-consistency enjoys two properties. The first one, given in Lemma 5.17, is that
instantaneous actions preserve ↑-consistency and does not decrease the number of down
nodes in the cursed system. The second one, given in Lemma 5.18, ensures that the barbs
of the cursed system are always a subset of those of the uncursed counterpart.

Lemma 5.17. If R∆ and R↑ are ↑-consistent and (R∆,∆) −⇀ (R′
∆,∆) then

(1) there exists R′
↑ such that (R ↑ , ↑) −⇀ (R′

↑ , ↑) and R′
∆ and R′

↑ are ↑-consistent
(2) the set of down nodes in R∆ is a subset of the set of down nodes in R↑.

13:18 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

Proof. By induction on the derivation. In case of actions by [Snd], [Sched], [Rcv], and
[Checkpoint] all yield that there is R′ such that R′

↑ = R′ ||Ru ||Rf and R′
∆ = R′ ||Rd.

Moreover, no down nodes are introduced in R′
∆ and hence R′

∆ and R′
↑ are ↑-consistent.

Rule [NUp] cannot be applied at time 0. The only possible failure actions are [MsgDown]
and [NDown]. In case for [MsgDown], there exist R′ and R′

f such that R′
↑ = R′ ||Ru ||R′

f

and R′
∆ = R′ ||Rd where R′ is as R but without the lost message, and R′

f is as Rf but

with the addition of the lost message. The set of down nodes does not change, hence R′
∆

and R′
↑ are ↑-consistent, yielding the thesis for this case. In case of [NDown], R′

↑ is of the

form R′ ||R′
u ||Rf and R′

↑ is for the form R′ ||R′
d where R′ is as R but without the node

that went down, R′
d is as Rd but with the addition in parallel with the node that went down,

similarly for R′
u but the node in this case is still up. The set of down nodes has increased in

R′
∆. It follows that R

′
∆ and R′

↑ are ↑-consistent.
The cases for [Rec], [Str], and [ParCom] are immediate by induction.

Lemma 5.18 (↑-consistency). If R∆ and R↑ are ↑-consistent then R∆ ↓ x implies R↑ ↓ x.

Proof. By ↑-consistency, there exist R, Ru, Rd, and Rf such that R↑ = R ||Ru ||Rf and
R∆ = R ||Rd. By Definition 5.1 the barbs of R↑ is the union of barbs of R, Ru, and Rf ,
and the set of barbs of R∆ is the union of the barbs of R and Rd. We only need to show that
Rd does not have barbs that R↑ does not have. This follows trivially from Definition 5.16
since Rd is the parallel composition of down nodes and hence has no barbs.

We can now prove a more general property of cursed systems at time 0:

Lemma 5.19. Let ≲0 be the restriction of ≲ obtained considering only communication
actions −⇀ in Figure 3 (i.e., no time-consuming actions ∼∼▷) on systems R such that
time(R) = 0. It holds that

(R, ↑) ≲0 (R,∆)

Proof. By coinduction, observing that initial systems are ↑-consistent, ↑-consistency is
preserved by communication actions by Lemma 5.17 and ensures that R∆ ↓ x implies
R↑ ↓ x by Lemma 5.18.

We next show an intuitive property that will be useful to show equivalence of resilience
and 0-reliability: (R,∆) and (R, ↑) are weak barbed bisimilar at time 0 if no time actions
or failures happen (Lemma 5.21). This is proved by coinduction via Lemma 5.20 ensuring
that actor/node transitions preserve equivalence of barbs in the evolution of cursed and
uncursed systems.

Lemma 5.20. If time(R) = 0, R is fail-free, and −⇀ is an actor/node action then

(1) (R,∆) −⇀ (R′,∆) ⇔ (R, ↑) −⇀ (R′, ↑)
(2) (R,∆) −⇀ (R′,∆) ⇒ R′ is fail-free.

Proof. By induction on the derivation proceeding by case analysis on the last rule used. The
base cases, for rules [Snd], [Sched], [Rcv], and [Checkpoint], are mechanical. The inductive
cases for rules [Rec], [Str], and [ParCom], are straightforward by inductive hypothesis.

Lemma 5.21. Let ≈↑
0 be the restriction of ≈ obtained considering only actor/node actions in

Figure 3 (i.e., no failure and no time-consuming actions) and time(R) = 0 with R fail-free.
It holds that

(R,∆) ≈↑
0 (R, ↑)

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:19

Proof. This lemma holds by coinduction, observing that time(R) = 0 and hence, by
Lemma 5.20, (R,∆) −⇀ (R′,∆) if and only if (R, ↑) −⇀ (R′, ↑) with R′ fail-free.

We are not able to state the main results: equivalence of resilience and 0-recoverability.

Theorem 5.22 (0-recoverability and resilience). An initial cursed system (R,∆) is resilient
if and only if it is 0-recoverable.

Proof. The only if case is immediate since resilience implies the existence of a state, the initial
one, such that (R, ↑) ≈ (R,∆). For the if case, we assume (R,∆) to be 0-recoverable: for all
path of executions of (R,∆) at time 0 (i.e., 0-paths of (R,∆)) there exists a state (R′,∆)
in that path such that time(R′) = 0 and (R, ↑) ≈ (R′,∆). Fix a path (R,∆) −→∗ (R′,∆).
Consider a generic intermediate state (R′′,∆) such that (R,∆) −→∗ (R′′,∆) −→∗ (R′,∆).
The reductions to (R′′,∆) can be by either (i) one of the Actor/node actions, or by (ii) one
of the instantaneous failure actions ([MsgLoss] or [NodeDown]).

Observe that, for all R and ∆, the relation ((R,∆), (R, ↑)) is a bisimulation if we
consider a restriction of the reduction relation that only uses actions that is actor/node
actions with no failure and no time-consuming actions (Lemma 5.21, using the fact that R
is initial and hence fail-free). So, if only actions (i) are possible in the reduction of (R,∆)
then (R′′,∆) ≈ (R′′, ↑) by Lemma 5.21. If there are only (i) actions at time 0, since any
state reachable from (R,∆) at time 0 is bisimilar to the corresponding state reached by
(R, ↑) then (R,∆) is resilient. Hence done.

The argument proceeds similarly in case of (ii) actions that preserve the corresponding
barbs of the system with ∆ and the one with ↑ . Assume therefore that, possibly after
a number of barb-preserving reductions by (i) or (ii), the system with ∆ and the one
with ↑ reach states (R′′,∆) and (R′′′, ↑), respectively, where R′′ and R′′′ have different
barbs. By Lemma 5.18 it can only be the case R′′ ̸↓ x and R′′′ ↓ x. By hypothesis
we have that (R′′,∆) −⇀∗ (R′,∆) ≈ (R, ↑). We also know that (R, ↑) −⇀∗ (R′′′, ↑) with
R′′′ ↓ x. Hence (R′,∆) can reach a state that has barb x and is bisimilar to (R′′′, ↑). This
shows (R,∆) ≳ (R, ↑). The fact that (R,∆) ≲ (R, ↑) by Lemma 5.19 yields the thesis
(R,∆) ≈ (R, ↑).

5.3. Recoverability for checkpointing systems. The definition of recoverability in the
previous section formalises a system restarting from the initial state, and does not capture
checkpointing systems that recover to intermediate states. In this section we add definition of
bisimulation up to a particular time, and also a notion of n-recoverability for checkpointing
systems. This is illustrated with an example of a system that is not n-recoverable but that
is n-checkpoint recoverable.

We introduce a notion of weak barbed simulation up to n where n is a relative time, up
to which we want to compare behaviour (ignoring what happens afterwards).

Definition 5.23 (Weak barbed simulation up to n). Recall −→∈ {−⇀, ∼∼▷ }. A weak barbed
simulation up to n is a set of binary relations Sr for r ≤ n between cursed systems such
that:

(1) r = 0: (R1,∆1)S0(R2,∆2) for all R1, ∆1, R2 and ∆2;
(2) r > 0 and (R1,∆1)Sr(R2,∆2) implies:

13:20 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

(a) If (R1,∆1) −→ (R′
1,∆1) and s = time(R′

1)− time(R1) ≤ r, then there exists R′
2

such that (R2,∆2) −→∗ (R′
2,∆2) and (R′

1,∆1)S(r−s)(R′
2,∆2).

(b) If R1 ↓ x for some x, then there exists R′
2 such that (R2,∆2) −→∗ (R′

2,∆2) and
R′

2 ↓ x.

We say (R1,∆1) is weak barbed similar to (R2,∆2) up to n, written (R1,∆1) ≲n (R2,∆2),
if there exists some weak barbed simulation up to n, Sn, such that (R1,∆1)Sn(R2,∆2).
By point (1), weak barbed simulation up to 0 holds for all pairs of systems, whereas weak
barbed simulation is morally equivalent to weak barbed simulation up to ∞.

Definition 5.24 (Weak barbed bisimulation up to n). We say that Sn is a weak barbed
bisimulation up to n if Sn and Sn−1 are weak barbed simulations up to n. We say that
(R1,∆1) and (R2,∆2) are weak barbed bisimilar up to n, written (R1,∆1) ≈n (R2,∆2), if
there exists some weak barbed bisimulation up to n, Sn, such that (R1,∆1)Sn(R2,∆2).

It is a straightforward consequence of these definitions that if two systems are (bi-)similar
up to n then they are (bi-)similar up to r for any r < n, and two systems are (bi-)similar if
and only if they are (bi-)similar up to n for all n.

We now define a variant of n-recoverability that, based on weak barbed bisimulation up
to n, aims to characterise recoverability for systems that use checkpoints to recover from
failures.

Definition 5.25 (n-checkpoint-recoverable). For all R′′ reachable from (R, ↑) such that

time(R′′) < n and (R, ↑) ≈time(R′′) (R,∆) there exists R′ such that time(R′) < n and
(R,∆) −→∗ (R′,∆) and (R′,∆) ≈ (R′′, ↑).

Informally, a cursed system (R,∆) that behaves correctly up to a state at time t,
can always reach a later state (R′,∆) which is bisimilar to the state (R′′, ↑). Suppose
that (R, ↑) ≈t (R,∆), where t ≤ n. Then for any R′′ reachable from (R, ↑) such that
time(R′′) = t there exists R′ that by time n displays the remaining behaviour of the correct
(uncursed) system, that is (R′′, ↑). In contrast to Definition 5.13 this definition does not
require that (R′,∆) exhibits the complete behaviour of (R, ↑) but only the behaviour after
a certain point, for example from a checkpoint onwards. In contrast to Definition 5.13,
Definition 5.25 does not require the recovered system (R′,∆) to exhibit the complete
behaviour of the uncursed system since its initial state (i.e., have the same behaviour of
(R, ↑)) but only the behaviour of (R, ↑) after a certain point (i.e., (R′′, ↑)) for example from
a checkpoint onwards.

Example 5.26 (n-checkpoint-recoverability). Consider a variant RTT of RT from Exam-
ple 5.7, latency of 1 time unit, and ∆ that curses node p to go down at time 2:

RTT = p[?order.save.sleep .!c item. ?ok .0 after 3 0](∅)(0) ∥
c[!p order.?item. !p ok.0 after 3 (!p failed.?item. !p ok.0 after 5 0)](∅)(0)

System RTT used checkpointing to restart from an intermediate state in the event of
failure. In the case of the node p to going down at time 2, the system reduces in a number
of steps to:

R′
TT = p[sleep .!c item. ?ok .0 after 3 0](∅)(3) ∥

c[?item. !p ok.0 after 5 0)](∅)(3) ∥ 1.(c, p, failed)(3)

It is this state that makes system RTT not n-recoverable with respect to ∆ both because
node c sends message failed in its timeout process and the communication of the order

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:21

message does not get repeated when the rest of interaction is repeated. While the failed
message is not read by p, it adds an additional barb to the cursed system (RTT ,∆) that is
not matched by the uncursed system (RTT , ↑).

The system is however n-checkpoint-recoverable with n = 4, R′
TT further reduces to

p[!c item. ?ok .0 after 2 0](failed)(4) ∥ c[?item. !p ok.0 after 4 0)](∅)(4)

from which state the cursed system exhibits the behaviour of the uncursed system from time
2 (or from the checkpoint) onwards.

5.4. Fault-tolerance: a more general perspective. In [Gär99], the author gives a
theoretical definition of the problem of fault tolerance along two dimensions: safety (the
system does not reach bad states, although it can possibly stop due to faults) and liveness
(the system eventually reaches good states, hence in case of bad behaviour it eventually
recovers). In this context, the guarantee of both safety and liveness is called masking
fault-tolerance, of only safety is called fail-safe fault-tolerance, and of only liveness is called
non-masking fault-tolerance.

In our framework, we can characterise these three kinds of fault-tolerance by using our
simulation relation:

• (R,∆) ≈ (R, ↑) - masking fault-tolerance: R cursed by ∆ has all and only the behaviour
of healthy system R.

• (R,∆) ≲ (R, ↑) - fail-safe: R cursed by ∆ has only the behaviour of healthy system R.
• (R,∆) ≳ (R, ↑) - non-masking fault tolerant : R cursed by ∆ has only the behaviour of
healthy system R.

Resilience, given in Definition 5.5, corresponds to the safety and liveness combination of
masking fault-tolerance. We have shown in Example 5.7 that masking-failure can be attained
by using space redundancy (e.g., replication of nodes as in the multiple producers scenario)
and time redundancy (e.g., retry-strategies). In fact, the author in [Gär99] substantiates that
redundancy is a necessary condition for fault tolerance. Fail-safe fault tolerance, while easier
to attain, is not the most desirable property in many real-world scenarios: a systems that
just stops to prevent ‘bad’ actions, may not be a suitable model when you want eventually
consistency despite perturbations to the ideal course of actions. Intuitively, both fail-safe
fault tolerance and non-masking fault tolerance for cursed system can be expressed by
using the notion of weak barbed simulation given in Definition 5.3, as shown above. The
formulation of non-masking fault tolerant as (R,∆) ≳ (R, ↑) is very general. In principle,
this definition consider fault tolerant any system that performs an infinite sequence of actions
among which, sometimes, a correct action happens to make the system progress. Practically
we would want to see that the behaviour added is not random, but follows a sensible pattern
of restart, reset or another benign behaviour. In this paper we have put most emphasis on
non-masking fault tolerance, but focussing on more stringent definitions of non-masking
fault-tolerance: some unforeseen sequence of actions may be visible at some point, but after
some recovery actions, at a time that is not later than n, the system will revert to the
required behaviour by restarting from the beginning (n-recoverability for reset systems) or
from the point of failure (n-recoverability for checkpointing systems). These definitions are
intentionally non-general, with the aim of capturing known recovery patterns. We leave as a
future work the extension of n-recoverability to cater for periodic failures.

13:22 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

A similar approach, of characterising masking/fail-safe/non-masking fault tolerance
using simulation was followed by [DCMA17] but with a clear distinction of good versus
faulty states (using coloured Kripke structures). More on the relationship with [DCMA17]
is discussed in Section 8.

6. Augmentation of cursed systems

Augmentation of a cursed system is the result of adding or modifying some behaviour
in the initial system to improve the system’s ability of handling failures. The following
definition applies to reset systems as it is based on n-recoverability. A corresponding notion
of augmentation could be given for checkpointing systems by using, in Definition 6.1, n-
checkpoint-recoverability instead of n-recoverability. In the remaining of this section we
focus on reset systems.

Definition 6.1 (Augmentation). RI is an augmentation of R if time(RI) = time(R) and:

i) transparency: (R, ↑) ≈ (RI, ↑)
ii) improvement: there exist ∆ and n such that (RI,∆) is n-recoverable and (R,∆) is

not n-recoverable.

Moreover, we say that an augmentation is preserving if, for all n and ∆, (R,∆) is n-
recoverable implies (RI,∆) is n-recoverable.

Example 6.2 (Augmentation). Consider the small producer-consumer system R below,
composed of a producer node np, a queue node nq, and a consumer node nc. The producer
recursively sends items to the queue and sleeps for a time unit. The queue expects to receive
an item within three time units that then gets sent to the consumer. In case of a timeout
the queue loops back to the beginning and awaits an item from the producer. The consumer
recursively receives items from the queue. We fix the latency of the system to L = 1.

R = nq[µt. ? item.sleep. ! nc item.t after 3 t](∅)(0) ||
np[µt. ! nq item.sleep.t](∅)(0) || nc[µt. ? item.sleep.t after 4 t](∅)(0)

RI =R || np′ [µt. ! nq item.sleep.t](∅)(0)
The augmented producer-consumer RI adds behaviour to the system by having a second
producer node np′ . RI improves the resilience to a producer node or its link failing or being
slow. For example the curse function ∆(np) injecting node delay for the producer node
between time 1 and 3 and ↑ otherwise impacts the first system R but not its augmented
counterpart RI. R is 4-recoverable while RI is 0-recoverable. Moreover, RI preserving
augmentation of system R.

6.1. Augmentation with scoped barbs. Augmentations often need to introduce ad-
ditional behaviour into actors. One may want to disregard part of ‘behind the scenes’
augmentation when comparing the behaviour of cursed systems using the relation in Defini-
tion 5.4. For simplicity, instead of adding scope restriction to the calculus, we extend barbs
with scopes to hide behaviour of some nodes or links. With mailboxes, all interactions to a
node are directed to the one mailbox. Defining scope restriction only on node identifiers
would be less expressive than scope restriction based on channels, e.g., it would not be
possible to hide specific communications to a node, while in channel-based calculi one can

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:23

use ad-hoc hidden channels. To retain expressiveness, we define scope restriction that takes
into account patterns in the communication between nodes.

Definition 6.3 (Scoped barb). Let N be a finite set of elements of the form ! n p or ? n p
where n ∈ N and p is a pattern. R ↓N x if: (1) R ↓ x, (2) x ̸∈ N , and (3) if x = ! nm then
for all ! n p ∈ N , (p,m) ̸⊢match. If R ↓N x we say that R has a N -scoped barb on x.

We extend Def. 5.4 using ↓N instead of ↓ , obtaining scoped weak-barbed bisimulation
≈N , and Def. 6.1 to use ≈N . This setting allow us to analyse producer consumer scenarios,
or more complex ones, like the Circuit Breaker pattern [Nyg18] widely used in distributed
systems.

Example 6.4 (Circuit breaker). Consider system (R,∆) with a client nc and a service ns,
and its augmentation RI with a circuit breaker running on node ns:

R = nc[µt. ! ns request. ? reply.sleep.t after 40](∅)(0) ||
ns[µt. ? request.sleep. ! nc reply.t after 4 t](∅)(0)

RI = nc[µt. ! ns request. ?{reply.sleep.t, ko.Pf} after 80](∅)(0) ||
ns[µt. ?X1.!n1X1. ?X2.!ncX2.t after 4P ′

f after 4 t](∅)(0) ||
n1[µt. ?{request.sleep.!ns reply.t, ruok.sleep.!ns imok.t} after 6 t](∅)(0)

Pf = µt′. ? retry.sleep.t after 5 t′

P ′
f = ! nc ko.sleep.µt

′. ! ns ruok. ? imok.sleep. ! nc retry.t after 3 t′

with a ∆(nc, ns) injecting link slow ⟳ at times 1, 2, and 3 and healthy otherwise,
and latency to L = 1. The impact of failure on the R makes it unrecoverable, as the
link delay cascades to node nc. We augment R with a circuit breaker process which
runs on the previous server node ns that monitors for failure, prevents faults in one part
of the system and controls the retries to the service node now n1. The node ns for-
wards messages between nodes nc and n1, and in case of a timeout checks the health
of ns and tells node nc when it can safely retry the request. When comparing R and
RI for resilience, recoverability or transparency we wish to abstract from the additional
behaviour introduced by the circuit breaker pattern for which we use Def. 6.3 with:
N = {! ns ruok, ? ns imok, ? ns reply, ? n1 request, ! ns reply, ? n1 ruok, !ns imok,
!nc ko, !nc retry, ?nc ko, ?nc retry}. This effectively hides the entire behaviour of n1 and
node ns’s health checking behaviour. Using the extended definition we find that for the
same curse function system RI is 0-recoverable. Similarly, for the curse function delays link
(ns, n1) at times 1, 2, and 3, RI is 0-recoverable.

7. Prospective applications

This work is a first step towards an analysis of mailbox systems with failures and has the
purpose of clarifying the problem space. An informal validation of the relevance of the work
was attained through interaction with our industry partners, in particular Erlang Solutions
Ltd. and Actyx AG, as well as in applying it to a collection of real-world case studies and
patterns, such as the circuit breaker in Section 6.4.

To support analysis and development of real-world systems, we aim to build on the
current work. In this section we discuss two potential applications; their development goes
beyond the scope of the formal setting given in the current work.

13:24 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

7.1. Analysis of cursed systems. Encoding the models of failures and systems into
verification tools like UPPAAL is fairly straightforward. We provide a prototype encoding
here. A straightforward encoding only supports analysis of a system against a specific ∆
‘traces’, and so, by repeating this analysis, to a limited set of curse cases.

As a more powerful development, we are working on generalizing the notion of ∆ to a
symbolic entity, that can finitely characterise infinite patterns, together with a tractable
algorithm to determine simulation that is parametric with respect to this symbolic ∆. This
feature would allow it to be determined whether a system model is resilient with respect to
a given set of curses, or synthesise the curses that a system can or cannot deal with.

Code generation or synthesis would, in turn support top-down or bottom-up development,
(respectively). Existing approaches to code generation provide seamless links between process-
calculi-based models and Erlang code. For example, the tool described in [BOV23], which
presents a proof of concept of a theoretical advance, can generate Erlang gen statem code
from a process-calculus specification and extract specifications from Erlang gen statem code.
The circular transformation described above is possible thanks to the code structure induced
by Erlang gen statem itself, which yields modular code that is structured as a finite state
machine and hence has a straightforward correspondence with its model. A similar approach
could be taken to our modelling of failure scenarios by supporting a richer process calculus
that includes time and timeouts.

7.2. Test support. A second direction is to use property-based testing (PBT), as imple-
mented by QuickCheck [CH00], initially for Haskell and Erlang, and subsequently for a
variety of other languages. Property-based testing replaces unit tests by tests of logical
properties of the system under test (SUT), expressed in a universal fragment of first-order
logic. A universal property is evaluated at a randomly generated set of values, and any
counter-example is systematically shrunk to a simplest such example, according to some size
metric. Successful application of property-based testing therefore depends on three things:
being able to express relevant properties of a system in a logical form; being able to generate
values from relevant domains in a way that optimises coverage of the domain; and being
able to “shrink” values in an effective and efficient way. PBT can be seen as a complement
to more heavyweight verification approaches: for example, it is worthwhile subjecting a
candidate theorem to PBT before embarking on developing a formal proof.

Stateful systems in Erlang [CPS+09] and other languages can subject to PBT using
state machine models. The state machine provides an abstract model of the system, and
is used to guide testing of the SUT: random sequences of transitions of the state machine
exercise the SUT, and shrinking simplifies and shortens counter-example traces.

In the context of the work presented here, QuickCheck can be used to test systems in
which failure is modelled explicitly in a state machine model, but could also be extended to
include modelling of the symbolic ∆ function discussed above – e.g. using logical constraints
– and to generate and shrink instances of ∆ with particular properties.

8. Conclusion and related work

We introduced a model for actor-based systems with grey failures and investigated the
definition of behavioural equivalence for it. We used weak barbed bisimulation to compare
systems on the basis of their ability to recover from faults, and defined properties of resilience,
recoverability and augmentation. We reduced the problem of checking reliability properties of

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:25

systems to a problem of checking bisimulation. We introduced scope restriction for mailboxes
based on patterns, which allows us to model relatively complex real-world scenarios like the
Circuit Breaker.

As further work we plan to extend the recovery function Σ to model check-pointing of
intermediate node states. Note that Σ can already be set as an arbitrary process, but a more
meaningful extension would account for the way in which checkpoints are saved. Moreover, we
plan to add a notion of intermittent correctness, to model recovery with partial checkpoints
rather than re-starting from the initial state, or intermittent expected/unexpected behaviour.
Another area of future work is to use the characteristic formulae approach [GS86, Ste89], a
method to compute simulation-like relations in process algebras, to generate formulae for the
properties introduced and reduce them to a model checking problem that can be offloaded
to a model checker.

A related formalism to our model is Timed Rebeca [ACI+11], which is actor-based and
features similar constructs for deadlines and delays. Timed Rebeca actors can also use a ‘now ’
function to get their local times. Extending our calculus with ‘now ’ and allowing messages
to have time as data sort, would allow us to model scenarios e.g., where a node calculates
the return-trip time to another node and changes its behaviour accordingly. While Timed
Rebeca can encode network delays (adding delays to receive actions – using a construct
called ‘after ’), it does not model links explicitly. Explicit links and separation between curses
and systems make it easier in our calculus to compare systems with respect to recoverability.
Rebeca was encoded in McErlang [ACI+11] and Real-Time Maude [SKÖ+15] for verification.
We have ongoing work on encoding our model in UPPAAL. Our main challenge in this
respect is to formalise a meaningful and manageable set of curses to verify the model against.

In [FH07], Francalanza and Hennessy introduced a behavioural theory for DπF, a
distributed π-calculus with with nodes and links failures. For a subset of DπF, they also
developed a notion of fault-tolerance up to n-faults [FH08], which is preserved by contexts,
and which is related to our notion of resilience. The behavioural theory in [FH07] is based
on reduction barbed congruence. The idea is to use a contextual relation to abstract from
the behaviour of hidden nodes/links, while still observing their effects on the network, e.g.,
as to accessibility and reachability of other nodes. The scoped barbs in Section 6.1 have
the similar purpose of hiding augmentations while observing their effects on recoverability.
However, because of asynchronous communication over mailboxes (while DπF is based on
synchronous message passing), our notion of hiding is less structural (i.e., based on nodes
and links) and more application-dependent (i.e., based on patterns). At present, we have left
pattern hiding out of the semantics, but further investigation towards a contextual relation
that works for hidden patterns is promising future work. DπF studies partial failures but
does not consider transient failures and time. On the other hand, DπF features mobility
which we do not support. In fact, we rely on the assumption of fixed networks: since our
observation is based on patterns (and ignores senders) we opted for relying on a stable
structure to simplify our reasoning on what augmentation vs recoverability means, leaving
mobility issues for future investigation.

Most ingredients of the given model (e.g., timeouts [LZ05, BY07, LP11], mailboxes
[MV11], localities [RH97][BH03][Cas01]) have been studied in literature, often in isolation.
We investigated the inter-play of these ingredients, focussing on reliability properties. One of
the first papers dealing with asynchronous communication in process algebra is by de Boer
et al. [dBKP92], where different observation criteria are studied (bisimulation, traces and
abstract traces) following the axiomatic approach typical of the process algebra ACP [BK84].

13:26 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

An alternative approach has been followed by Amadio et al. [ACS98] who defined asynchro-
nous bisimulation for the π-calculus [MPW92]. They started from operational semantics
(expressed as a standard labelled transition system), and then considered the largest bisim-
ulation defined on internal steps that equates processes only when they have the same
observables, and which is closed under contexts. The equivalence obtained in this way is
called barbed congruence [MS92]. Notably, when asynchronous communication is considered,
barbed congruence is defined assuming as observables the messages that are ready to be
delivered to a potential external observer. Merro and Sangiorgi [MS98] have subsequently
studied barbed congruence in the context of the Asynchronous Localised π-calculus (ALπ),
a fragment of the asynchronous π-calculus in which only output capabilities can be trans-
mitted, i.e., when a process receives the name of a channel, it can only send messages
along it, but cannot receive on it. Another line of research deals with applying the testing
approach to asynchronous communication; this has been investigated by Castellani and
Hennessy [CH98] and by Boreale et al. [BNP99, BNP02]. These papers consider an asyn-
chronous variant of CCS [Mil89]. Testing discriminates less than our equivalence, concerning
choice, and observes divergent behaviours which we abstract from. Lanese et al. [LSZ19]
look at bisimulation for Erlang, focussing on the management of process ids. Besides the
aforementioned work by Francalanza and Hennessy [FH07, FH08], several works look at
distributed process algebras with unreliable communication due to faults in the underlying
network. Riely and Hennessy [RH97] study behavioural equivalence over process calculi with
locations. Amadio [Ama97] extends the π-calculus with located actions, in the context of a
higher-order distributed programming language. Fournet et al. [FGL+96] look at locations,
mobility and the possibility of location failure in the distributed join calculus. The failure
of a location can be detected and recovered from. Berger and Honda [BH03] augment the
asynchronous π-calculus with a timer, locations, message-loss, location failure and the ability
to save process state. They define a notion of weak bisimulation over networks. Their
model however does not include timeout, link delays, or a way of injecting faults. Cano
et al. [CCDGP19] develop a calculus and type system for multiparty reactive systems that
models time dependent interactions. Their setting is synchronous and their focus is on
proving properties as types safety or input timeliness, while ours is comparing asynchronous
systems with faults.

In Section 5.4 we discussed two related works: one characterising fault-tolerance using
safety and liveness [Gär99], and one [DCMA17] instantiating such characterisation using
simulation. One of the main differences of our work with [DCMA17] is the communication
model: the work in [DCMA17] uses coloured Kripke structures, whereas we use an asyn-
chronous process calculus with explicit actor-based features. Another difference is the model
of failure and the characterization of good versus bad states. Usually, fault-tolerance is
studied against a well define model of failure and set of failure scenarios. Systems that can
recover from arbitrary failures, called self-stabilizing [Gär99] are difficult to build and verify.
Hence models for foult-tolerant systems normally have a model of failures within. In our
case, this would be a set of ∆ functions. In [DCMA17] there is an explicit and statical
labelling (colouring) of each state as good or bad. In contrast, we observe deviations from
the behaviour of the same system but without failures, so that a bad state is actually one
that breaks the bisimulation relation with the corresponding uncursed system. Finally, in
[Gär99][DCMA17], there is no clear distinction between the notion of fault – a defect of the
system – and its concrete manifestation as a symptom. Our model of failure, that separates

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:27

system from curses yields a more agnostic view of what a bad state is that supports modular
reasoning on the relationship between causes and symptoms.

References

[ACI+11] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Arni Hermann Reynisson, Steinar Hugi Sigur-
darson, and Marjan Sirjani. Modelling and simulation of asynchronous real-time systems using
timed rebeca. EPTCS, 58:1–19, 2011. doi:10.4204/eptcs.58.1.

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asynchro-
nous pi-calculus. Theor. Comput. Sci., 195(2):291–324, 1998. doi:10.1016/S0304-3975(97)
00223-5.

[Ama97] Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
Proc. COORDINATION, volume 1282 of LNCS, pages 374–391. Springer, 1997. doi:10.1007/
3-540-63383-9_92.

[APN17] Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In Proc.
FORTE, volume 10321 of LNCS, pages 1–16. Springer International Publishing, 2017. doi:
10.1007/978-3-319-60225-7_1.

[Arm13] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
Dallas, TX, 2 edition, 2013.

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. Proc.
ACM Program. Lang. (POPL), 47:191–202, 2012. doi:10.1145/2103656.2103680.

[BGF+21] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes, and Amrita
Suresh. A unifying framework for deciding synchronizability. In Proc. CONCUR, volume
203 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CONCUR.2021.14.

[BH03] Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended π-calculus.
ENTCS, 39(1):21–46, 2003. doi:10.1016/S1571-0661(05)82502-2.

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication. Inf.
Control., 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

[BLTV22] Laura Bocchi, Julien Lange, Simon Thompson, and A. Laura Voinea. A model of actors and
grey failures. In Proc. COORDINATION, volume 13271 of LNCS, pages 140–158. Springer,
2022. doi:10.1007/978-3-031-08143-9_9.

[BNP99] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. A theory of “may” testing for asyn-
chronous languages. In Proc. FoSSaCS, volume 1578 of LNCS, pages 165–179. Springer, 1999.
doi:10.1007/3-540-49019-1_12.

[BNP02] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Trace and testing equivalence on
asynchronous processes. Inf. Comput., 172(2):139–164, 2002. doi:10.1006/inco.2001.3080.

[BOV23] Laura Bocchi, Dominic Orchard, and A. Laura Voinea. A Theory of Composing Protocols. Art
Sci. Eng. Program., 7(2), 2023. doi:10.22152/programming-journal.org/2023/7/6.

[BY07] Martin Berger and Nobuko Yoshida. Timed, distributed, probabilistic, typed processes.
In Proc. APLAS, volume 4807 of LNCS, pages 158–174. Springer, 2007. doi:10.1007/

978-3-540-76637-7_11.
[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–

342, 1983. doi:10.1145/322374.322380.
[Cas01] Ilaria Castellani. Process algebras with localities. In Handbook of Process Algebra, pages 945–1045.

North-Holland / Elsevier, 2001. doi:10.1016/b978-044482830-9/50033-3.
[CCDGP19] Mauricio Cano, Ilaria Castellani, Cinzia Di Giusto, and Jorge A. Pérez. Multiparty Reactive

Sessions. Research Report 9270, INRIA, April 2019. URL: https://hal.archives-ouvertes.
fr/hal-02106742.

[CDYP16] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. MSCS, 26(2):238–302, 2016. doi:
10.1017/S0960129514000188.

[CGY16] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty sessions.
MSCS, 26(2):156–205, 2016. doi:10.1017/S0960129514000164.

https://doi.org/10.4204/eptcs.58.1
https://doi.org/10.1016/S0304-3975(97)00223-5
https://doi.org/10.1016/S0304-3975(97)00223-5
https://doi.org/10.1007/3-540-63383-9_92
https://doi.org/10.1007/3-540-63383-9_92
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.1016/S1571-0661(05)82502-2
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1007/978-3-031-08143-9_9
https://doi.org/10.1007/3-540-49019-1_12
https://doi.org/10.1006/inco.2001.3080
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/b978-044482830-9/50033-3
https://hal.archives-ouvertes.fr/hal-02106742
https://hal.archives-ouvertes.fr/hal-02106742
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000164

13:28 L. Bocchi, J. Lange, S. Thompson, and L. Voinea Vol. 19:4

[CH98] Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous languages.
In Proc. FSTTCS, volume 1530 of LNCS, pages 90–101. Springer, 1998. doi:10.1007/

978-3-540-49382-2_9.
[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of Haskell

programs. In Proc. ICFP, pages 268–279. ACM, 2000. doi:10.1145/351240.351266.
[CPS+09] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans Svensson, Thomas Arts,

and Ulf Wiger. Finding Race Conditions in Erlang with QuickCheck and PULSE. SIGPLAN
Not., 44(9):149–160, aug 2009. doi:10.1145/1631687.1596574.

[dBKP92] Frank S. de Boer, Jan Willem Klop, and Catuscia Palamidessi. Asynchronous communication
in process algebra. In Proc. LICS, pages 137–147. IEEE Computer Society, 1992. doi:10.1109/
LICS.1992.185528.

[DCMA17] Ramiro Demasi, Pablo F. Castro, Thomas S. E. Maibaum, and Nazareno Aguirre. Simulation
relations for fault-tolerance. Form. Asp. Comput., 29(6):1013–1050, nov 2017. doi:10.1007/
s00165-017-0426-2.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In Proc. CONCUR, volume 1119 of LNCS, pages 406–421. Springer,
1996. doi:10.1007/3-540-61604-7_67.

[FH07] Adrian Francalanza and Matthew Hennessy. A theory for observational fault tolerance. JLAMP,
73(1-2):22–50, 2007. doi:10.1007/11690634_2.

[FH08] Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence of
node and link failure. Inf. Comput., 206(6):711–759, 2008. doi:10.1016/j.ic.2007.12.002.

[FLMD19] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. Proc. ACM Program. Lang. (POPL), 3:1–29, 2019.
doi:10.1145/3290341.

[Gär99] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous envi-
ronments. ACM Comput. Surv., 31(1):1–26, 1999. doi:10.1145/311531.311532.

[GS86] Susanne Graf and Joseph Sifakis. A modal characterization of observational congruence on finite
terms of CCS. Inf. Control., 68(1-3):125–145, 1986. doi:10.1016/S0019-9958(86)80031-6.

[GSS+18] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan Sundararaman,
Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey, Deepthi
Srinivasan, Biswaranjan Panda, Andrew Baptist, Gary Grider, Parks M. Fields, Kevin Harms,
Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,
Mingzhe Hao, and Huaicheng Li. Fail-slow at scale: Evidence of hardware performance faults in
large production systems. ACM Trans. Storage, 14(3):23:1–23:26, 2018. doi:10.1145/3242086.

[HGZ+17] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang, Murali Chin-
talapati, and Randolph Yao. Gray failure: The achilles’ heel of cloud-scale systems. In Proc.
HotOS, pages 150–155, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3102980.3103005.

[HNY+13] Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei Honda.
Practical interruptible conversations. In Proc. RV, pages 130–148. Springer, 2013. doi:{10.
1007/978-3-642-40787-1_8}.

[HR95] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf. Comput.,
117(2):221–239, 1995. doi:10.1006/inco.1995.1041.

[HYC16] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. J.
ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

[LHS20] Chang Lou, Peng Huang, and Scott Smith. Understanding, detecting and localizing partial
failures in large system software. In Proc. NDSI, pages 559–574. USENIX Association, 2020.
URL: https://www.usenix.org/conference/nsdi20/presentation/lou.

[LNPV18] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. A theory of reversibility for
Erlang. JLAMP, 100:71–97, 2018. doi:10.1016/j.jlamp.2018.06.004.

[LP11] Hugo A. López and Jorge A. Pérez. Time and exceptional behavior in multiparty structured
interactions. In Proc. WS-FM, volume 7176 of LNCS, pages 48–63. Springer, 2011. doi:10.
1007/978-3-642-29834-9_5.

[LSZ19] Ivan Lanese, Davide Sangiorgi, and Gianluigi Zavattaro. Playing with bisimulation in erlang. In
Models, Languages, and Tools for Concurrent and Distributed Programming: Essays Dedicated

https://doi.org/10.1007/978-3-540-49382-2_9
https://doi.org/10.1007/978-3-540-49382-2_9
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1631687.1596574
https://doi.org/10.1109/LICS.1992.185528
https://doi.org/10.1109/LICS.1992.185528
https://doi.org/10.1007/s00165-017-0426-2
https://doi.org/10.1007/s00165-017-0426-2
https://doi.org/10.1007/3-540-61604-7_67
https://doi.org/10.1007/11690634_2
https://doi.org/10.1016/j.ic.2007.12.002
https://doi.org/10.1145/3290341
https://doi.org/10.1145/311531.311532
https://doi.org/10.1016/S0019-9958(86)80031-6
https://doi.org/10.1145/3242086
https://doi.org/10.1145/3102980.3103005
https://doi.org/{10.1007/978-3-642-40787-1_8}
https://doi.org/{10.1007/978-3-642-40787-1_8}
https://doi.org/10.1006/inco.1995.1041
https://doi.org/10.1145/2827695
https://www.usenix.org/conference/nsdi20/presentation/lou
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1007/978-3-642-29834-9_5
https://doi.org/10.1007/978-3-642-29834-9_5

Vol. 19:4 A MODEL OF ACTORS AND GREY FAILURES 13:29

to Rocco De Nicola on the Occasion of His 65th Birthday, volume 11665 of LNCS, pages 71–91.
Springer International Publishing, 2019. doi:10.1007/978-3-030-21485-2_6.

[LZ05] Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. In Proc. FoSSaCS,
volume 3441 of LNCS, pages 282–298. Springer, 2005. doi:10.1007/978-3-540-31982-5_18.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,
1989. doi:10.5555/534666.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc. ICALP, volume 623 of LNCS,
pages 685–695. Springer, 1992. doi:10.1007/3-540-55719-9_114.

[MS98] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In Proc. ICALP,
volume 1443 of LNCS, pages 856–867. Springer, 1998. doi:10.1007/BFb0055108.

[Mur19] Maurizio Murgia. Input urgent semantics for asynchronous timed session types. JLAMP, 107:38–
53, 2019. doi:10.1016/j.jlamp.2019.04.001.

[MV11] Dimitris Mostrous and Vasco T. Vasconcelos. Session typing for a Featherweight Erlang. In
Proc. COORDINATION, volume 6721 of LNCS, pages 95–109. Springer, 2011. doi:10.1007/
978-3-642-21464-6_7.

[Nyg18] Michael T Nygard. Release it!: design and deploy production-ready software. Pragmatic Bookshelf,
2018.

[RH97] James Riely and Matthew Hennessy. Distributed Processes and Location Failures. In Proc.
ICALP, volume 1256 of LNCS, pages 471–481. Springer, 1997. doi:10.1007/3-540-63165-8_
203.

[RH01] James Riely and Matthew Hennessy. Distributed processes and location failures. Theor. Comput.
Sci., 266(1-2):693–735, 2001. doi:10.1016/S0304-3975(00)00326-1.

[SFE10] Hans Svensson, Lars-Åke Fredlund, and Clara Benac Earle. A unified semantics for future
Erlang. In Proc. ACM SIGPLAN workshop on Erlang, pages 23–32. ACM, 2010. doi:10.1145/
1863509.1863514.

[SKÖ+15] Zeynab Sabahi-Kaviani, Ramtin Khosravi, Peter Csaba Ölveczky, Ehsan Khamespanah, and
Marjan Sirjani. Formal semantics and efficient analysis of timed rebeca in real-time maude. Sci.
Comput. Program., 113:85–118, 2015. doi:10.1016/j.scico.2015.07.003.

[Ste89] Bernhard Steffen. Characteristic formulae. In Proc. ICALP, volume 372 of LNCS, pages 723–732.
Springer, 1989. doi:10.1007/BFb0035794.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[Wya13] Derek Wyatt. Akka Concurrency. Artima Incorporation, Sunnyvale, CA, USA, 2013.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-21485-2_6
https://doi.org/10.1007/978-3-540-31982-5_18
https://doi.org/10.5555/534666
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/BFb0055108
https://doi.org/10.1016/j.jlamp.2019.04.001
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/3-540-63165-8_203
https://doi.org/10.1007/3-540-63165-8_203
https://doi.org/10.1016/S0304-3975(00)00326-1
https://doi.org/10.1145/1863509.1863514
https://doi.org/10.1145/1863509.1863514
https://doi.org/10.1016/j.scico.2015.07.003
https://doi.org/10.1007/BFb0035794

	1. Introduction
	2. Informal overview
	3. A model of failures
	4. Calculus for cursed systems
	4.1. Basic properties of systems reductions
	4.2. Reset vs Checkpointing Systems

	5. Properties of cursed systems
	5.1. Recoverability for reset-systems
	5.2. Resilience is equivalent to 0-recoverability
	5.3. Recoverability for checkpointing systems
	5.4. Fault-tolerance: a more general perspective

	6. Augmentation of cursed systems
	6.1. Augmentation with scoped barbs

	7. Prospective applications
	7.1. Analysis of cursed systems
	7.2. Test support

	8. Conclusion and related work
	References

