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Abstract. A Conditional Tree Pattern (CTP) expands an XML tree pattern with labels
attached to the descendant edges. These labels can be XML element names or Boolean
CTP’s. The meaning of a descendant edge labelled by A and ending in a node labelled by
B is a path of child steps ending in a B node such that all intermediate nodes are A nodes.
In effect this expresses the until B, A holds construction from temporal logic.

This paper studies the containment problem for CTP. For tree patterns (TP), this
problem is known to be coNP-complete. We show that it is PSpace-complete for CTP.
This increase in complexity is due to the fact that CTP is expressive enough to encode
an unrestricted form of label negation: ∗ \ a, meaning ”any node except an a-node”.
Containment of TP expanded with this type of negation is already PSpace-hard.

CTP is a positive, forward, first order fragment of Regular XPath. Unlike TP, CTP
expanded with disjunction is not equivalent to unions of CTP’s. Like TP, CTP is a natural
fragment to consider: CTP is closed under intersections and CTP with disjunction is equally
expressive as positive existential first order logic expanded with the until operator.

1. Introduction

Tree Patterns, abbreviated as TP, are one of the most studied languages for XML documents
and used in almost all aspects of XML data managment. Tree patterns are a natural language:
over trees, unions of tree patterns are equally expressive as positive first order logic [3]. Also,
like relational conjunctive queries, the semantics of TP’s can be given by embeddings from
patterns to tree models [1]. Equivalence and containment of TP’s is decidable in PTime for
several fragments [1], and coNP complete in general [15]. Tree patterns can be represented
as trees, as in Figure 1, or be given a natural XPath-like syntax.

In this paper, we study the expansion of tree patterns with the conditional descendant
axis. We call this expansion Conditional Tree Patterns, abbreviated as CTP. Where the
descendant axis in TP can be written as the transitive reflexive closure of the XPath step
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Figure 1. The tree pattern corresponding to the XPath expression
/p[t]//s[.//v]. The node in the square box denotes the output node.
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Figure 2. Conditional tree pattern corresponding to (1.1).

child::∗, the conditional descendant axis is the transitive closure of child :: p[F1][F2] . . . [Fn],
where n ≥ 0 and each Fi is an XPath expression which might contain the conditional
descendent axis itself, followed by a child step. Syntactically, the expansion is straightforward:
in the tree representation add labels representing conditional tree patterns themselves to the
edges. Figure 2 contains an example which is equivalent to the following XPath-like formula
in which we use (·)∗ to denote the reflexive transitive closure of a path formula:

self :: p[child :: t]/(child :: r)∗/child :: s

[(child :: a[(child :: a)∗/child :: b])∗/child :: v] (1.1)

The edge in Figure 2 labeled by r corresponds to the expression (child :: r)∗/child :: ∗, and
merely states that all intermediate nodes are labeled by r. The other labeled edge shows a
nesting of patterns, corresponding to a nested transitive closure statement: all intermediate
nodes have to be labeled by a and moreover have to start an a-labeled path ending in a
b-node.

Conditional tree patterns are the forward fragment of Conditional XPath [13] without
disjunction and negation. The conditional descendant axis is closely related to the strict
until operator from temporal logic [13, 12].
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Main results. Our main results concern the expressivity of CTP and the complexity of the
containment problem. We consider two types of models: the standard XML trees in which
each node has exactly one label, and trees in which nodes can have an arbitrary number
of labels. These latter, called multi-labeled trees, are the models considered in temporal
logic. All our results hold for both semantics. Models with multiple labels are a convenient
logical abstraction for reasoning about tree patterns expanded with attribute value equalities.
These are expressions of the form @a = c, where a is an attribute, c a constant, meaning
that it holds at a node if and only if the value of the a-attribute of the node equals c. (With
that we can express XPath formulas like //table[@border = ’1’]).

Containment of tree patterns has been studied in [1, 15, 16]. The most relevant results
for this paper are that containment of TP’s is coNP-complete in general [15] and PSpace-
complete when the domain of labels is finite [16]. We show that containment of CTP’s is
PSpace-complete (with both finite and infinite domain of labels). Interestingly, this increase
in complexity is due to the fact that CTP is expressive enough to encode an unrestricted form
of label negation: ∗ \ a, meaning “any node except an a-node”. We show that containment
of TP’s expanded with this form of negation is already PSpace-hard. The matching upper
bound for CTP containment is easily obtained by a translation into Existential CTL [11].
As a contrast we consider the expansion of TP with a safe form of propositional negation
n \ a , which selects nodes with the label containing n and not a, instead of ∗ \ a [2]. Note
that this construct only makes sense on models with multiple labels. With respect to
expressivity, we show that most results for TP can be generalized to CTP. CTP’s can be
interpreted in trees by generalizing the TP-embeddings to simulations known from temporal
logic. Similarly to the characterization for TP in [3], we show that CTP’s with disjunction
and union are equally expressive as positive first order logic expanded with an until operator.
From this we obtain that like TP’s, CTP’s are closed under taking intersections.

Organization. The paper is organized as follows. This section is continued with a few
more comparisons between TP and CTP, related work and a motivating example. Section 2
contains preliminaries. Section 3 contains the expressivity results and Section 4 the results
on the complexity of the containment problem. We end with conclusions and open questions.

Comparing logical properties of TP and CTP. A characteristic difference between TP
and Relational Conjunctive Queries (CQ) is the disjunction property: if A |= B ∨ C, then
A |= B or A |= C. This holds for CQ, but not for TP. A counterexample is //p |= /p ∨ /∗//p.
The languages TP and CTP differ on the following:

Unions: TP expanded with disjunction is equally expressive as unions of TP [3]. However,
CTP with disjunction is more expressive than unions of CTP.

Countermodels: If containment between two TP’s fails, there is a countermodel for it of
polynomial size [15]. Countermodels for CTP containment may be exponential.

Complexity: TP containment is coNP-complete [15] and CTP containment is PSpace-
complete. For both languages this remains true if we add disjunction to the language
(for TP see [16]).

However, there are a few useful technical results that TP and CTP share.

Monotonicity: TP and CTP formulas are preserved under extensions of models at the
leaves (i.e. when the original model is a subtree of the extension). This means that if a
TP (CTP) formula holds in a tree, then it holds in the extensions of the tree.
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Multiple output nodes: The containment problem for TP and CTP formulas with multi-
ple output nodes can be reduced to containment of Boolean TP and CTP formulas (i.e.
when the formula has a single output node which is the root).

Containment for unions: Containment for unions of TPs can be reduced in PTime to
checking a set of containments between TP formulas [15]. This reduction can be seen as
a weak disjunction property. A similar property holds for CTP (see Proposition 4.2).

Multi-labeled models: There is a PTime reduction from the containment problem over
trees in which each node has exactly one label to the containment problem over multi-
labeled trees. This holds for both TP and CTP.

For TP, most of these results are in [15]. Here we show how their proofs can be generalized
to CTP.

Motivation. Tree patterns exhibit a nice tradeoff between expressive power and the com-
plexity of static analysis. However, there are natural scenarios where tree patterns are
not powerful enough, e.g. in Example 1.1. The conditional axis gives us more querying
capabilities while preserving some of the nice properties of tree patterns (see the comparison
above).

Example 1.1. Conditional tree patterns are used to query tree shaped structures. As an
example, take the tree structure of the UNIX file system. In this file system, every file and
directory has different access permissions (read, write or execute) for different type of users
(the user, the group and others). Thus, the file system can be modeled as a tree where each
node corresponds to a directory or a file (labeled by ”dir” and ”file” respectively) and has a
required attribute for each pair (user, access right) which takes values from {0, 1}. A file
can only be a leaf in the tree.

Assume we want to ask for all the files that are readable by the user. This means that
we are looking for precisely those files for which the following permissions hold:

• the file is readable for the user,
• the directory in which the file resides is both readable and executable for the user,
• the same holds recursively for all the directories from the root to the file.

This query can be neatly expressed as a CTP path formula:

/(child :: dir[@(user,read) = 1][@(user,execute) = 1])∗/child :: file[@(user,read) = 1].

Additionally, CTP can express non-trivial constraints over the tree representing the file
system. For instance, the formula

//self :: file[@(other,read) = 1]→ /(child :: dir[@(other,read) = 1][@(other,execute) = 1])∗/∗
imposes the constraint that for all files which are readable it holds that every directory on
the path from the root to this file must be both readable and executable by others.

It is known that the conditional axis cannot be expressed by tree patterns or in Core
XPath [13]. On the other hand, the queries from Example 1.1 can be expressed in the positive
forward fragment of Regular XPath, which is more expressive than CTP. However, we
believe this additional expressive power leads to increase in the complexity (of containment)
than for conditional tree patterns.
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1.1. Related Work. The complexity of tree patterns is studied in a number of papers
and since [16] a virtually complete picture exists for the complexity of the containment
problem for positive fragments of XPath. Miklau and Suciu [15] show that the complexity
of the containment problem for TP with filters, wildcard and descendant is coNP-complete.
Containment and equivalence for fragments of TP were studied before. The most interesting
result is that containment for TP without the wildcard is in PTime [1].

Our conditional tree patterns are a first order fragment of conjunctive regular path
queries. Calvanese et al. [6] show that the complexity of containment of these queries is
ExpSpace-complete, but these are interpreted on general graph models.

Conditional XPath [13] and conditional tree patterns are closely related to branching
time temporal logic CTL [8]. The conditional child axis and the strict until connective are
interdefinable. Kupferman and Vardi [11] show that the containment problem for ∃CTL,
which is the restriction of CTL to formulas having only the ∃ path quantifier in front
of them, is a PSpace-complete problem. The positive ∃CTL-fragment without until was
also studied by Miklau and Suciu [15]. They show that the containment problem for this
fragment is equivalent to the TP-containment problem and thus also coNP-complete.

This paper studies the containment problem without presence of schema information.
A number of complexity results for containment in TP w.r.t DTDs are given in [16]. In
particular, containment for TP with filters, the wildcard and descendent w.r.t DTD is
ExpTime-complete. This hardness result together with an ExpTime upper bound for
Conditional XPath [13], which contains CTP, gives us ExpTime-completeness of containment
for CTP in the presence of DTDs.

2. Preliminaries

We review the basic definitions of XML trees, Regular XPath and its semantics. Then we
present Tree Patterns and Conditional Tree Patterns as sublanguages of Regular XPath.
Tree patterns have an alternative semantics in terms of embeddings [15]. We give such an
“embedding semantics” for Conditional Tree Patterns using “until-simulations” in Section 3.

2.1. Trees. We work with node-labeled unranked finite trees, where the node labels are
elements of an infinite set Σ. Formally, a tree over Σ is a tuple (N,E, r, ρ), where N , the
set of nodes of the tree, is a prefix closed set of finite sequences of natural numbers, E =
{(〈n1, . . . , nk〉, 〈n1, . . . , nk, nk+1〉) | 〈n1, . . . , nk+1〉 ∈ N} is the edge or child relation, r is
the root of the tree, that is the empty sequence, and ρ is the function assigning to each node
in N a finite subset of Σ. We refer a tree over Σ just as a tree if Σ is clear from the context.

Trees in which ρ(·) is always a singleton are called single-labeled or XML trees. Trees
without this restriction are called multi-labeled trees.

We denote by E+ the descendant relation, which is the transitive closure of the edge
relation E, and by E∗ the reflexive and transitive closure of E, and by E(x) the set of all
children of the node x. A node n is a leaf if E(n) is empty. A path from a node n to a
node m is a sequence of nodes n = n0, . . . , nk = m, with k > 0, such that for each i ≤ k,
ni+1 ∈ E(ni). We call a branch any maximal path starting from the root. If mE+n, m is
called an ancestor of n, and if mEn, m is called the parent of n.

If n is in N , by T.n we denote the subtree of T rooted at n. A pointed tree is a pair
T, n where T is a tree and n is a node of T . The height of a pointed tree T, n is the length
of the longest path in T.n.
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Given two trees T1 = (N1, E1, r1, ρ1) and T2 = (N2, E2, r2, ρ2) such that N1 and N2 are
disjoint, we define the result of fusion of T1 and T2, denoted as T1⊕ T2, as the tree obtained
by joining the trees T1 and T2 without the roots under a new common root labeled by the
union of the labels of the roots of T1 and T2. Formally, T1 ⊕ T2 is the tree T = (N,E, r, ρ),
where N = (N1 \ {r1}) ∪ (N2 \ {r2}) ∪ {r}, E = (E1 \ {〈r1, n〉 | n ∈ N1}) ∪ (E2 \ {〈r2, n〉 |
n ∈ N2}) ∪ {〈r, n〉 | 〈r1, n〉 ∈ E1 or 〈r2, n〉 ∈ E2} and

ρ(n) =


ρ1(r1) ∪ ρ2(r2) if n = r,

ρ1(n) if n ∈ N1 \ {r1},
ρ2(n) if n ∈ N2 \ {r2}.

2.2. XPath and Tree Patterns. We define Tree Patterns and Conditional Tree Patterns
as sublanguages of Regular XPath [17].

Definition 2.1 (Forward Regular XPath). Let Σ be an infinite domain of labels. Forward
Regular XPath, RXPath for short, consists of node formulas ϕ and path formulas α which
are defined by the following grammar

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | α ∪ α | α∗,

where p ∈ Σ.

We will use α+ as an abbreviation of α;α∗.
For the semantics of RXPath, given a tree T = (N,E, r, ρ) over Σ, the relation JαKT ⊆

N ×N for a path expression α and the satisfaction relation |= between pointed trees and
node formulas are inductively defined as follows:

• J↓KT = E,
• J?ϕKT = {(n, n) ∈ N ×N | T, n |= ϕ},
• Jα;βKT = JαKT ◦ JβKT ,
• Jα ∪ βKT = JαKT ∪ JβKT ,
• Jα∗KT = (JαKT )∗,

and

• T, n |= >,
• T, n |= p iff p ∈ ρ(n),
• T, n |= ¬ϕ iff T, n 6|= ϕ,
• T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ,
• T, n |= ϕ ∨ ψ iff T, n |= ϕ or T, n |= ψ,
• T, n |= 〈α〉ϕ iff there is a node m with (n,m) ∈ JαKT and T,m |= ϕ.

Sometimes we will write T |= ϕ to denote T, r |= ϕ. If the latter holds, we say that T is
a model of ϕ.

(Conditional) Tree Patterns. Tree patterns are the conjunctive fragment of RXPath without
unions of paths and with a strongly restricted Kleene star operation. Node formulas
correspond to Boolean tree patterns, and path formulas to tree patterns with one output
node.

In the following definitions we again let Σ be an infinite domain of labels. We define
Tree Patterns by restricting the syntax of RXPath as follows:



CONTAINMENT OF CTP 7

Definition 2.2 (Tree Pattern). Tree Patterns (TP) consist of node formulas ϕ and path
formulas α defined by the following grammar:

ϕ ::= p | > | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | ↓+,

where p ∈ Σ.

For example, the tree pattern from Figure 1 can be written as the path formula
α =?(p ∧ 〈↓〉t); ↓+; ?(s ∧ 〈↓〉v). Conditional Tree Patterns are also defined by restricting the
syntax of RXPath, where we allow conditional descendant paths.

Definition 2.3 (Conditional Tree Pattern). Conditional Tree Patterns (CTP) consist of
node formulas ϕ and path formulas defined by the following grammar:

ϕ ::= p | > | ϕ ∧ ϕ | 〈α〉ϕ
α ::= ↓ | ?ϕ | α;α | (↓; ?ϕ)∗; ↓ ,

where p ∈ Σ.

The tree from Figure 2 can be written as the path formula

?(p ∧ 〈↓〉t); (↓; ?r)∗; ↓; ?(s ∧ 〈(↓; ?(a ∧ 〈(↓; ?a)∗; ↓〉b))∗; ↓〉v).

Note that the node formula 〈(↓; ?ϕ)∗; ↓〉ψ is exactly the strict until ∃U(ψ,ϕ) from branching
time temporal logic CTL [11]. We will abbreviate this formula simply as 〈ϕ+〉ψ. Because
of the equivalences 〈α;β〉ϕ ≡ 〈α〉〈β〉ϕ and 〈?ϕ〉ψ ≡ ϕ ∧ ψ, CTP node formulas can be given
the following equivalent definition:

ϕ ::= p | > | ϕ ∧ ϕ | 〈↓〉ϕ | 〈↓+〉ϕ | 〈ϕ+〉ϕ.

Even though the syntax is slightly different, CTP is the conjunctive forward only fragment
of Conditional XPath [13].

Expansions. We consider two expansions of TP and CTP, with negated labels and with
disjunction in node formulas together with union in paths. Negated labels is a restricted
type of negation where only the construct ¬p is allowed in the node formulas. We denote
expansions of the language L with one or two of these features by LS for S ⊆ {¬,∨}.

Query evaluation. In [9] it was shown that the query evaluation problem for Core XPath
is PTime-complete in the combined complexity. As noted in [13], using results on model
checking for Propositional Dynamic Logic, this can be extended to Regular XPath, and thus
to all our defined fragments.

Fact 2.4 ([13]). Let T be a tree, n1, n2 nodes in T , and α a Regular XPath path formula.
The problem whether (n1, n2) ∈ JαKT is decidable in time O(|T | × |α|) with |T | the size of
the tree and |α| the size of the formula.



8 A. FACCHINI, Y. HIRAI, M. MARX, AND E. SHERKHONOV

2.3. Containment. As we are considering two kinds of expressions, path and node expres-
sions, we have different notions of containment.

Definition 2.5. Let ϕ and ψ be two RXPath-node formulas. We say that ϕ is contained
in ψ, notation ϕ ⊆ ψ, if for every T, n, T, n |= ϕ implies T, n |= ψ. Let α and β be two
RXPath-path formulas. We say that

• α is contained as a binary query in β, denoted α ⊆2 β, if for any tree T , JαKT ⊆ JβKT ,
• α is contained as a unary query in β, denoted α ⊆1 β, if for any tree T with root r, and

any node n, (r, n) ∈ JαKT implies (r, n) ∈ JβKT .

Containment over single-labeled trees is denoted by ⊆, and containment over multi-labeled
models by ⊆ML.

Luckily, these three notions are closely related, and containment of path formulas can
be reduced to containment of node formulas and vice versa (cf. also [16, 15]).

Proposition 2.6. Let α and β be two RXPath-path formulas, ϕ and ψ RXPath-node formulas,
in which negation is restricted to labels only.

(i) α ⊆2 β iff α ⊆1 β,
(ii) Let p be a label not occurring in α or in β. Then, α ⊆2 β iff 〈α〉〈↓〉p ⊆ 〈β〉〈↓〉p,
(iii) ϕ ⊆ ψ iff ?ϕ ⊆2?ψ.

All the above items also hold for the case of multi-labeled trees.

Proof. (i) (⇒) Let T = (N,E, r, ρ) be a tree such that (r, n) ∈ JαKT . By the assumption,
we have JαKT ⊆ JβKT . This implies that (r, n) ∈ JβKT , which was required to show.

(⇐) Let T = (N,E, r, ρ) be a tree, n1 and n2 in N such that (n1, n2) ∈ JαKT . Since α
is from the forward fragment of Regular XPath, we have that (n1, n2) ∈ JαKT.n1 . Using the
assumption, we have (n1, n2) ∈ JβKT.n1 . Then by monotonicity, we obtain (n1, n2) ∈ JβKT ,
which was desired.

(ii) (⇒) Suppose α ⊆2 β, and let T, n |= 〈α〉〈↓〉p. Thus there is a descendant m of
n in T such that (n,m) ∈ JαKT and T,m |= 〈↓〉p. By the hypothesis we therefore have
(n,m) ∈ JβKT and thus T, n |= 〈β〉〈↓〉p.

(⇐) Assume 〈α〉〈↓〉p ⊆ 〈β〉〈↓〉p. Consider a tree T = (N,E, r, ρ) and a pair (n,m) ∈
JαKT . Since p does not occur in α, we may assume that T, n 6|= p for every node n ∈ N . We
then define the tree T ′ = (N ′, E′, r, ρ′), where

• N ′ := N ∪ {x},
• E′ := E′ ∪ {〈m,x〉},
• ρ′(y) :=

{
p if y = x,
ρ(y) otherwise.

By definition of T ′, we have T ′,m |= 〈↓〉p and (n,m) ∈ JαKT ′ . Hence, T ′, n |= 〈α〉〈↓〉p.
By the assumption, it implies that T ′, n |= 〈β〉〈↓〉p. Since p holds at x only, and x is a child
of m, we have that (n,m) ∈ JβKT ′ . By definition of T ′, the path between n and m is also in
T . Thus, (n,m) ∈ JβKT , as desired.

Item (iii) easily follows from the definitions.

In light of Proposition 2.6, from now on we consider the containment problem of node
formulas only. We now give an interesting example of CTP containment.
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Example 2.7. Let us consider the CTP node formulas

ϕ = 〈(〈b+〉d)
+〉〈a+〉b and

ψ = 〈(〈c+〉d)
+〉〈a+〉b.

Although it is hard to see from the first glance, ϕ ⊆ ψ holds. Indeed, in every model T of ϕ
either there is a direct child of the root where 〈a+〉b holds, or there is a path r = v1, . . . , vn
in T to the node vn where 〈a+〉b holds and 〈b+〉d holds in every node vi (1 < i < n) on the
path. In the first case, ψ holds at the root since 〈a+〉b holds at the direct child.

Now let’s consider the second case. Let j ∈ {2, . . . , n− 1} be the least number with the
property that vj has a non-empty b-path to the d-descendant. If there is no such number,
then 〈c+〉d holds at every vi, 1 < i < n (as each of them has a direct d-child) and, thus,
T, r |= ψ.

Assume there is such a j. Since vj has a b-node as a child, we have that T, vj |= 〈a+〉b.
Moreover, 〈c+〉d holds at each vi for i < j since vi has a d-node as a child. Thus in this case
we obtain that T, r |= ψ holds too.

3. Expressivity

We extend the semantics of TP given by embeddings of queries into trees to CTP. Instead
of embeddings we need a simulation known from temporal logic.

3.1. Interpreting Conditional Tree Patterns by simulations. The semantics of condi-
tional tree patterns can be defined using simulations developed for LTL [5]. These simulations
generalize the embeddings for tree patterns from [1, 15] with an additional clause for checking
the labels on the edges.

We start with defining the tree pattern analogues of CTP node and path expressions.

Definition 3.1. A conditional tree pattern is a finite tree (N,E, r, ō, ρN , ρE) with labeled
nodes and edges, where N is the set of nodes of the tree, E ⊆ N ×N is the set of edges, r
is the root of the tree, ō is a k-tuple (k > 0) of output nodes, ρN is the function assigning to
each node in N a finite set of labels from Σ and ρE is the function assigning to each pair in
E either ↓ or a Boolean conditional tree pattern.
A Boolean conditional tree pattern is a conditional tree pattern with a single output node
which equals to the root.
A conditional tree patterns is said to have multiple output nodes if the number k = |ō| is
greater than 1.
A tree pattern is a conditional tree pattern whose edges are only labeled by ↓ or >.

To be consistent with the pictorial representation of TP, in CTP patterns an edge labeled
with ↓ is drawn as a single line, while an edge labeled with a CTP node formula is drawn as
a double line with a CTP pattern as the label (e.g. as in Figure 2). The output nodes have
the square shape.

CTP node and path expressions can be translated into (Boolean) conditional tree patterns
with one output node and vice-versa. The translations are given in Appendix A. We denote
the equivalent (Boolean) conditional tree pattern of a CTP path or node expression α or ϕ
by c(α) and c(ϕ), respectively.

Next we generalize the notion of TP-embeddings to CTP-simulations.
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Definition 3.2. Let T = (N,E, r, ō, ρN , ρE) be a conditional tree pattern as in the previous
definition and T ′ = (N ′, E′, r′, ρ′) a tree. A total function f : N → N ′ is called a simulation
from the pattern T into the pointed tree T ′, r′ if it satisfies the following properties:

root preserving: f(r) = r′;
label preserving: if p ∈ ρN (n), then p ∈ ρ′(f(n));
child edge preserving: if nEn′ and ρE(n, n′) =′↓′, then f(n)Ef(n′);
conditional edge simulation: if nEn′ and ρE(n, n′) is not equal to ↓, then f(n)E′+f(n′)

and for every x such that f(n)E′+xE′+f(n′) there is a simulation from the Boolean
conditional tree pattern ρE(n, n′) into T ′.x (the subtree of T ′ rooted at x).

When the pattern is a tree pattern, ↓ and > are the only labels on edges. For the label
>, the ’conditional edge simulation’ clause trivializes to checking that f is an embedding
for the descendant edges. Simulations for tree patterns are thus equivalent to tree pattern
embeddings [1, 15].

The next theorem states that simulations can be used to evaluate conditional tree
patterns.

Theorem 3.3. Let ϕ and α be a CTP node and path expression, respectively. Let T be a
tree and n a node in T .

(i) T, n |= ϕ if and only if there is a simulation from c(ϕ) into T.n.
(ii) (n, n′) ∈ JαKT if and only if there is a simulation from c(α) into T.n which relates the

output node of c(α) to node n′.
(iii) Items (i) and (ii) also hold when T is an infinite tree.

The proof is by mutual induction on the node and path expressions.

Remark 3.4. The notions of (conditional) tree pattern and embedding for tree patterns
and simulation for conditional tree patterns are easily extended to work for expansions of
these languages with negated labels (denoted by TP¬ and CTP¬, respectively).

For (conditional) tree patterns, add a second node labelling function ρ¬N (·) which also
assigns each node a finite set of labels. These are interpreted as the labels which are false at
the node.

For the embeddings and simulations, in Definition 3.2 we add a clause stating that also
negated labels are preserved:

negated label preserving: If p ∈ ρ¬N (n), then p 6∈ ρ′(f(n)).

With these modifications, Theorem 3.3 also holds for TP¬ and CTP¬.

3.2. Expressivity characterization. In this section we give expressivity characterization
for CTP similar to the one for various fragments of XPath in [3]. The exact logical
characterization allows one to compare different fragments of (Regular) XPath and derive
non-trivial closure properties such as closure under intersection. We show that CTP path
formulas correspond to a natural fragment of first order logic (FO) and are closed under
intersections.

For ϕ a formula, let descϕ(x, y) be an abbreviation of the ”until” formula desc(x, y) ∧
∀z(desc(x, z) ∧ desc(z, y)→ ϕ(z)). Let ∃+(child, descϕ) be the fragment of first order logic
built up from the binary relations child and desc, label predicates p(x) for each label p ∈ Σ
and equality ′=′, by closing under ∧, ∨ and ∃ as well as under the rule:

if ϕ(x) ∈ ∃+(child, descϕ), then descϕ(x, y) ∈ ∃+(child, descϕ). (3.1)
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We use ∃+(child, descϕ)(c, s) to denote ∃+(child, descϕ) formulas with exactly two vari-
ables c and s free. Following [3] we restrict the FO fragment to its downward fragment
∃+(child, descϕ)[down](c, s) by requiring that every bound variable as well as s is syntacti-
cally restricted to be a descendant of c or equal to c.

Note that ∃+(child, descϕ)[down](c, s) without the rule (3.1) is the logic
∃+(child, desc)[down](c, s) from [3], and shown there to be equivalent to unions of tree
patterns. Even though ∃+(child, descϕ)[down](c, s) does not contain negation, not every
formula is satisfiable (e.g. desc(x, x)).

We can now characterize conditional tree patterns in terms of ∃+(child, descϕ)[down](c, s).

Theorem 3.5. The following languages are equivalent in expressive power:

• unions of the false symbol and CTP paths which can have disjunctions in the node formulas
• ∃+(child, descϕ)[down](c, s).

Proof. A standard translation TRxy(·) turns any CTP path formula α into an equivalent
formula in ∃+(child, descϕ)[down](c, s). The translation is essentially the semantics of path
and node formulas written in the first order language.

TRxy(∅) = child(x, y) ∧ x = y
TRxy(↓) = child(x, y)
TRxy(?ϕ) = x = y ∧ TRx(ϕ)
TRxy(α1;α2) = ∃z.(TRxz(α1) ∧ TRzy(α2)),

where z is a fresh variable
TRxy((↓; ?ϕ)∗; ↓) = descTRz(ϕ)(x, y)
TRxy(α1 ∪ α2) = TRxy(α1) ∨ TRxy(α2)

TRx(p) = p(x)
TRx(>) = x = x
TRx(ϕ1 ∧ ϕ2) = TRx(ϕ1) ∧ TRx(ϕ2)
TRx(ϕ1 ∨ ϕ2) = TRx(ϕ1) ∨ TRx(ϕ2)
TRx(〈α〉ϕ) = ∃y.(TRxy(α) ∧ TRy(ϕ)),

where y is a fresh variable.

By definition, TRcs(α) is a formula in ∃+(child, descϕ)[down](c, s) and equivalent to α.
For the other direction, let θ ∈ ∃+(child, descϕ)[down](c, s). We use our earlier notation

descψ(x, y) for the ”until” formulas. First we introduce two special formulas >(x) and ⊥(x)
which stand for x = x and desc(x, x), respectively.

We will modify θ in several steps. First we replace child(x, y) and desc(x, y) by the
equivalent desc⊥(x, y) and desc>(x, y), respectively. Then eliminate all equalities by renam-
ing variables. Bring all existential quantifiers inside θ to the front, bring the body into
disjunctive normal form and distribute the disjunctions over the quantifiers. We then end
up with a disjunction of formulas of the form ∃x̄ϕ(c, s), with ϕ a conjunction of formulas
descψ(x, y), p(x), >(x) and ⊥(x). If ϕ contains ⊥ replace ∃x̄ϕ(c, s) with ⊥.

As our target language is closed under unions and ⊥, we only need to translate the
”conjunctive queries” ∃x̄ϕ(c, s). Consider the graph of the variables in ϕ in which two
variables x, y are related if ϕ contains an atom descψ(x, y). If the graph is cyclic, it cannot
be satisfied on a tree and ∃x̄ϕ(c, s) is equivalent to ⊥. If it is a tree, c will be the root.
Assuming that we can rewrite all ψ in the atoms descψ(x, y), we can rewrite it as a conditional
tree pattern. If ψ is a boolean combination of p(z), >(z) and ⊥(z) atoms, this is not hard:
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Simply bring it into disjunctive normal form, and remove each conjunct containing ⊥. If
the result is not empty, then translate to a union of (trivial) conditional tree patterns. If
it is empty, translate descψ(x, y) to a child step. If ψ contains subformulas of the form
descϕ(x, y), we apply the current procedure to it.

Thus assume that the variable graph is a directed acyclic graph. We eliminate undirected
cycles step by step. The length of the cycle equals the number of variables in it. Consider
that the graph contains two paths π1 and π2 both going from x to y and without other
common variables. We show that this subgraph is equivalent to a union of subgraphs with
no or smaller cycles.

In the simplest case, both paths are of length 1 and thus consist of a descψ(x, y) atom.
But then we can use the following equivalence to remove the cycle:

descϕ(x, y) ∧ descψ(x, y) ≡ descψ∧ψ(x, y) (3.2)

So assume the cycle looks like Figure 3.

C' C 

⇡0
1 ⇡0

2

z2z1

x

y

Figure 3. undirected cycle in ϕ

If this is satisfied on a tree (N,E, r, ρ) with assignment g, there are three possibilities:
g(z1) = g(z2), g(z1)E+g(z2) or g(z2)E+g(z1). In each case our original formula is equivalent
to one with a smaller cycle. The three possibilities are

when g(z1) = g(z2): descϕ∧ψ(x, z1) ∧ z1π′1y ∧ z1π′2y
when g(z1)E

+g(z2): descϕ∧ψ(x, z1) ∧ ψ(z1) ∧ z1π′1y ∧ descψ(z1, z2) ∧ z2π′2y
when g(z2)E

+g(z1): descϕ∧ψ(x, z2) ∧ ϕ(z2) ∧ z2π′2y ∧ descϕ(z2, z1) ∧ z1π′1y.

In the first case the length of the cycle decreased by two, in the two other cases by one.
Thus their disjunction is equivalent to the formula of Figure 3. We replace that formula

by this disjunction, bring the result in disjunctive normal form and distribute the disjuncts
out. We again have a disjunction of ”conjunctive queries”. As the new cycles are smaller,
this procedure will terminate, and results in a (big) disjunction of trees.

An important consequence of this result is that CTP patterns are closed under intersec-
tion:

Theorem 3.6. The intersection of two CTP paths is equivalent to ⊥ or a union of CTP
paths.

Theorem 3.5 together with the translation of Regular XPath into FO∗(c, s) from [17]
implies that every union of CTP patterns with disjunctions is in the intersection of first
order logic and positive downward FO∗(c, s). It is an intriguing open problem whether the
converse also holds.
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Figure 4. Patterns ϕ′ and ψ from Proposition 4.2.

4. Containment

Before we determine the exact complexity of the containment problem for CTP and expansions
we prove a number of reductions. Most are generalizations from TP to CTP. The key new
result is the encoding of negated labels in CTP.

4.1. Containment Preliminaries. The following reductions will be used later in our upper
and lower bound proofs.

Multiple output nodes. The main difference between tree patterns and their XPath for-
mulation is that tree patterns can have multiple output nodes. Kimelfeld and Sagiv [10]
(Proposition 5.2) show that for the TP containment problem the number of output nodes is
not important: the problem can be PTime reduced to a containment problem of Boolean
TPs. This is achieved, given ϕ,ψ ∈ TP, by adding a child labeled with a new label ai to
every output node Xi in both ϕ and ψ. Second, to every leaf that is not an output node
or a newly added node, we add a child labeled with >. The same result, using the same
argument, holds for CTP.

Proposition 4.1. Let S ⊆ {∨,¬}. For CTPS patterns with multiple output nodes ϕ,ψ there
are PTime computable Boolean CTPS, ϕ′, ψ′ such that ϕ ⊆ ψ iff ϕ′ ⊆ ψ′. The same holds
for multi-labeled trees.

Disjunctions in the consequent. We now show that the containment problem for both unions
of CTP¬ and unions of TP¬ can be reduced to containments without unions. This is useful in
lower bound proofs, as we can use a union in the consequent to express multiple constraints.

The proof of the following proposition is a slight modification of the proof for TP in [15].

Proposition 4.2. Let ϕ be a CTP¬ (TP¬) formula and ∆ a finite set of CTP¬ (resp. TP¬)
formulas. Then there are PTime computable CTP¬ (TP¬) formulas ϕ′ and ψ such that
ϕ ⊆ ∨∆ iff ϕ′ ⊆ ψ.
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Figure 5. Model for pattern ϕ′ from Proposition 4.2.

If ϕ and ∆ are in CTP (TP), ϕ′ and ψ are in CTP (TP) as well.
The same holds for containment over multi-labeled trees.

Proof. First, for the case of TP¬, the proof from [15] can be readily applied here (using
embeddings which also preserve negated labels, cf Remark 3.4).

Now we prove the proposition for CTP¬. For simplicity, we use the same letter to denote
a CTP¬ formula and its corresponding tree pattern representation. Assume ∆ is {δ1, . . . , δk}.
If ι is a CTP¬ pattern, by ιa we denote the CTP¬ pattern defined as having the root labeled
by a, whose unique child is the root of ι. Consider new labels a and b occurring neither in ϕ
nor ∆. Let γ =

∧
0<`≤k δ

b
` . Note that γ is consistent if every δ` is consistent. Now define ϕ′

as the CTP¬ tree pattern in Figure 4(a), and ψ as the CTP¬ tree pattern in Figure 4(b).
We verify that ϕ ⊆ ∨∆ iff ϕ′ ⊆ ψ. Without loss of generality, we assume that each of

ϕ, δ1, . . . , δk is consistent.
For the direction from left to right, assume ϕ ⊆ ∨∆ and T, n |= ϕ′ for an arbitrary T, n.

This means that there is a path n = m0.....m2k−1 of nodes in T which are labeled with a
and such that:

• for every 0 < ` ≤ k: T,mi |= (δb`)
a, with i ∈ {1, . . . , k − 1} ∪ {k + 1, . . . , 2k − 1},

• T,mk |= (ϕb)a.

By the assumption, it follows that there is an index j such that T,mk |= (δbj)
a. Then, by

Theorem 3.3, there is a simulation f ′ from (δbj)
a into T.mk. The simulation f ′ can be extended

to a simulation f from ψ into T, n in the obvious way such that f is a simulation from (δbi )
a

into T,mk−j+i and the a-descendant edge in ψ is simulated on the path m0, . . .mk−j+1.
Thus, T, n |= ψ.

For the other direction, assume ϕ′ ⊆ ψ and T, n |= ϕ for an arbitrary T rooted at n. As
all δ` are consistent, there are trees T`, n` |= δ`, for each ` ∈ {1, . . . , k}. Let T ′ be the tree
created from T.n and the T`’s depicted in Figure 5 with root r. Then T ′, r |= ϕ′. Because
we assumed ϕ′ ⊆ ψ, then also T ′, r |= ψ, which by Theorem 3.3 implies the existence of a
simulation g from ψ into T ′.r. In particular, the span of k a-nodes in ψ has to be simulated
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on an a-path of length k in T ′. This means that for some j ∈ {1, . . . , k}, g is a simulation
from δj into T.n. By Theorem 3.3 again, T, n |= δj , and thus T, n |= ∨∆.

Note that if ϕ and ∆ are in CTP, then the constructed ϕ′ and ψ are in CTP too.

From single-labeled to multi-labeled trees. We now show that the containment problem over
single-labeled trees can be reduced to a containment problem over multi-labeled trees.

Proposition 4.3. Let S ⊆ {¬,∨}. Given CTPS (TPS) patterns ϕ,ψ, there are PTime
computable CTPS (TPS) patterns ϕ′, ψ′ such that ϕ ⊆ ψ iff ϕ′ ⊆ML ψ

′.

Proof. Let p1, . . . , pn be the labels from Σ occurring in ϕ or ψ. We take ϕ′′ as ϕ, and
ψ′′ := ψ ∨∨1≤i<j≤n(pi ∧ pj)∨

∨
1≤i<j≤n〈↓+〉(pi ∧ pj). The disjuncts added to ψ ensure that

every node of a counterexample is labeled with at most one label. Now we show that ϕ ⊆ ψ
iff ϕ′′ ⊆ML ψ

′′

(⇒) We show the contraposition. Let T be a multi-labeled tree such that T |= ϕ′′

and T 6|= ψ′′. Then let T ′ be the tree obtained from T by restricting the labels ρ′(v) :=
ρ(v) ∩ {p1, . . . , pn} for every node v. Since T does not satisfy ψ′′, the label of every node
in T ′ contains at most one symbol. Because we did not change the valuation of the labels
p1, . . . , pn, for each formula θ constructed from these tags, it holds that T, v |= θ iff T ′, v |= θ.
From this and the fact that the label of each node of T ′ is of size at most one, it follows that
T ′ |= ϕ′′ and T ′ 6|= ψ′′. In order to make a single-labeled tree out of T ′, we add a dummy
symbol q in the label of a node if its label in T ′ is empty. For the resulting tree T ′′ it holds
T ′′ |= ϕ and T ′′ 6|= ψ.

(⇐) Let T be a single-labeled tree such that T |= ϕ and T 6|= ψ. Then this tree can be
considered as a multi-labeled tree. Moreover, T |= ϕ′′ and T 6|= ψ′′ since T does not satisfy
any of the disjuncts in ψ′′.

Our transformation does not introduce negations, but only disjunctions in ψ′′. Thus
the proposition is proven for the cases when S contains disjunction, where we take ϕ′ := ϕ′′

and ψ′ := ψ′′. For the remaining cases (S ⊆ {¬}), although ψ′′ contains disjunctions, by
Proposition 4.2, there exist two PTime computable CTPS (TPS) patterns ϕ′ and ψ′ such
that ϕ′′ ⊆ML ψ

′′ iff ϕ′ ⊆ML ψ
′. This concludes the proof.

Negated labels. We now show that CTP is expressive enough to encode label negation, as far
as the containment problem is concerned.

The trick of the encoding lies in the fact that two nodes connected by a descendent edge
are in either child or descendant of a child relation. Additionally, if we require that neither
of these relations occur at the same time, we can faithfully encode label negation.

Proposition 4.4. Let ϕ and ψ be CTP¬ patterns. There are PTime computable CTP
patterns ϕ′ and ψ′ such that

ϕ ⊆ ψ iff ϕ′ ⊆ ψ′.
This also holds for containment over multi-labeled trees.

Proof. Given a containment problem ϕ ⊆ ψ in CTP¬, we construct an equivalent containment
problem ϕ• ⊆ ψ◦ with ϕ• in CTP and ψ◦ a union of CTP patterns. Applying Proposition 4.2
then yields the desired result.
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Let p1, ¬p1, . . . , pn,¬pn be the labels appearing in ϕ and ψ and their negations. Let
s be a new label and ζ be the formula 〈↓〉(s ∧ ∧i〈↓+〉pi). We define the translation (·)•
inductively:

>• = ζ

(pi)
• = ζ ∧ 〈↓〉(s ∧ 〈↓〉pi)

(¬pi)• = ζ ∧ 〈↓〉(s ∧ 〈↓〉〈↓+〉pi)
(θ ∧ σ)• = θ• ∧ σ•

(〈↓〉ϕ)• = ζ ∧ 〈↓〉ϕ•

(〈ϕ+〉ψ)• = ζ ∧ 〈ϕ•+〉ψ•.
The translation is defined in such a way that for any ϕ, ϕ• implies ζ. Obviously (·)• is a
PTime translation. Let 〈↓∗〉ϕ denote ϕ∨ 〈↓+〉ϕ. Let AX be the disjunction of the following
formulas:

〈↓∗〉(s ∧ 〈↓∗〉ζ) (4.1)∨
i

〈↓∗〉(p•i ∧ (¬pi)•) (4.2)∨
i 6=j
〈↓∗〉(p•i ∧ p•j ). (4.3)

In our intended models, none of these disjuncts are true at the root. The disjunct
(4.1) is technical, (4.2) states that no node makes the encodings of both p and ¬p true,
and (4.3) ensures that no node makes the encoding of two different labels true. We define
ψ◦ = ψ• ∨AX. In case of multi-labeled trees the translation is the same, except that we do
not include the disjunction (4.3) in the definition of ψ◦. Note that although in ψ◦ we have
disjunctions within the scope of a modality, we can (in PTime) rewrite the formula into an
equivalent union of disjunction free formulas.

We now show that ϕ ⊆ ψ iff ϕ• ⊆ ψ◦.
(⇐) We show the contrapositive. Given a single-labeled tree T = (N,E, r, l) such that
T, r |= ϕ and T, r 6|= ψ, we build a single-labeled tree T ′ = (N ′, E′, r′, l′) as follows. The set
of nodes N ′ is the maximal E′-connected subset of N × {0, 1, 2, 3} × {p1, . . . , pn, ]} which
contains the root r′ = (r, 0, ]). The relation E′ is defined as follows: (n′, 0, ]) is the parent
of (n, 0, ]) when n′ is the parent of n in T ; (n, 0, ]) is the parent of (n, 1, ]); (n, 1, ]) is the
parent of (n, 2, pi), i = 1, . . . , n, and (n, 2, pi) is the parent of (n, 3, pi), i = 1, . . . , n. The
labeling l′ is defined as follows: s only labels nodes of the form (n, 1, ]). Then, pi labels
(n, 2, pi) if T, n |= pi and pi labels (n, 3, pi) if T, n 6|= pi. No other nodes are labeled by pi.
In all other cases, we label a node by a fresh label z.

It is clear from the definition that T ′ is a single-labeled tree. Note that T ′ 6|= AX and
that ζ is true at all nodes of type (n, 0, ]), and only at these nodes. Let θ be a formula in
variables {p1, . . . , pn}, and n ∈ N . By induction on θ, we show T, n |= θ iff T ′, (n, 0, ]) |= θ•.

• θ = >. This holds because by construction ζ is true at all nodes of type (n, 0, ]).
• θ = p. We have T, n |= p ⇔ l(n) = p ⇔ l′(n, 2, p) = p ⇔(since (n, 2, p) is the only child of

(n, 1, ]) labeled with p and (n, 1, ]) is labeled by s)
T ′, (n, 1, ]) |= s∧ 〈↓〉p ⇔ (since (n, 1, ]) is the only child of (n, 0, ]) and ζ is always true at
(n, 0, ])) T ′, (n, 0, ]) |= ζ ∧ 〈↓〉(s ∧ 〈↓〉p) ⇔ T ′, (n, 0, ]) |= p•.
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• θ = ¬p. We have T, n |= ¬p ⇔ l(n) 6= p ⇔ l′(n, 3, p) = p ⇔ (since (n, 3, p) is the only
descendent of (n, 1, ]) labeled with p and (n, 1, ]) is labeled by s)
T ′, (n, 1, ]) |= s ∧ 〈↓〉〈↓+〉p ⇔ (since (n, 1, ]) is the only child of (n, 0, ]) and ζ is always
true at (n, 0, ])) T ′, (n, 0, ]) |= ζ ∧ 〈↓〉(s ∧ 〈↓〉〈↓+〉p) ⇔ T ′, (n, 0, ]) |= (¬p)•.
• θ = ϕ1 ∧ ϕ2. We have T, n |= ϕ1 ∧ ϕ2 ⇔ T, n |= ϕ1 and T, n |= ϕ2 ⇔ (by the induc-

tion hypothesis) T ′, (n, 0, ]) |= ϕ•1 and T ′, (n, 0, ]) |= ϕ•2 ⇔ T ′, (n, 0, ]) |= ϕ•1 ∧ ϕ•2 ⇔
T ′, (n, 0, ]) |= (ϕ1 ∧ ϕ2)

•.
• θ = 〈↓〉ϕ. We only show the right to left direction. T ′, (n, 0, ]) |= (〈↓〉ϕ)• ⇔ T ′, (n, 0, ]) |=
ζ ∧ 〈↓〉ϕ• ⇔ ∃m ∈ N ′ such that (n, 0, ])E′m and T ′,m |= ϕ•. But then T ′,m |= ζ because
ϕ• implies ζ. Thus m must be of the form (n′, 0, ]) as only these make ζ true. But then
n′ ∈ N and nEn′ and we may apply the inductive hypothesis to get T, n′ |= ϕ, and thus
T, n |= 〈↓〉ϕ.
• θ = 〈ϕ+〉ψ. We only show the right to left direction. T ′, (n, 0, ]) |= (〈ϕ+〉ψ)• ⇔
T ′, (n, 0, ]) |= ζ ∧ 〈ϕ•+〉ψ• ⇔ ∃m ∈ N ′ such that (n, 0, ])E′+m and T ′,m |= ψ• and
∀m′.(n, 0, ])E′+m′E′+m it holds T ′,m′ |= ϕ•. Now, because ϕ• implies ζ for all ϕ, m and
all nodes m′ are of the form (n′, 0, ]) and thus all in the original model N . Moreover they
stand in the same way in the E relation. Thus we can apply the inductive hypothesis and
obtain T, n |= 〈ϕ+〉ψ.

As a special case, T ′, (r, 0, ]) satisfies ϕ• but not ψ•. Recall that T ′, (r, 0, ]) does not satisfy
the other disjuncts AX of ψ◦ either and thus, T ′, (r, 0, ]) |= ϕ• and T ′, (r, 0, ]) 6|= ψ◦, as
desired.

(⇒) Again we show the contrapositive. Suppose there is a model T = (N,E, r, l)
satisfying ϕ• but not ψ◦ at the root r. Then in particular T, r 6|= AX. Without loss of
generality, we can assume that the simulation from (the conditional tree pattern corresponding
to) ϕ• into T is surjective. (Otherwise the image of ϕ• is a subtree of T and thus by
monotonicity ψ◦ cannot be satisfied at the root of this subtree.) In this model, as a
consequence of the fact that ϕ• implies ζ, every branch has an initial segment satisfying ζ,
immediately followed by a node labeled by s, which is followed by a segment where ζ is
never satisfied because of the first disjunct (4.1) of AX.

We define a tree T ′ = (N ′, E′, r′, l′) whose set of nodes N ′ consists of the nodes of T
where ζ is satisfied, i.e. N ′ = {n ∈ N | T, n |= ζ}; E′ is simply the restriction of E to N ′

and r′ = r. We define l′(n) = pi iff T, n |= p•i , and if T, n 6|= p•i for any i, then we label
n with a fresh variable z. This definition of l′ is well-defined because the falsity of the
disjunction (4.3) in AX ensures that each node makes at most one p•i true in T .

Let θ be a formula in variables {p1, . . . , pn}, and n ∈ N . By induction on θ, we show
that

T, n |= θ• iff T ′, n |= θ. (4.4)

• θ = >. Then T, n |= >• ⇔ (by definition of (·)•) T, n |= ζ ⇔ (by definition of N ′) ⇔
T ′, n |= >.
• θ = p. Then T, n |= p• ⇔ (by definition of the labeling l′) l′(n) = p ⇔ T ′, n |= p.
• θ = ¬p. If T, n |= (¬p)•, then by the falsity of AX, T, n 6|= p•, and thus l′(n) 6= p and
T ′, n 6|= p and thus T ′, n |= ¬p. Conversely, T ′, n |= ¬p ⇔ l′(n) 6= p ⇔ T, n 6|= p•. But
T, n |= ζ and thus either p• or (¬p)• must hold at T, n. Thus T, n |= (¬p)•.
• θ = ϕ1 ∧ ϕ2. Then T, n |= (ϕ1 ∧ ϕ2)

• ⇔ T, n |= ϕ•1 and T, n |= ϕ•2 ⇔ (n ∈ N ′ because
ϕ• implies ζ and thus by the inductive hypothesis) T ′, n |= ϕ1 and T ′, n |= ϕ2 ⇔
T ′, n |= ϕ1 ∧ ϕ2.
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• θ = 〈↓〉ϕ. Then T, n |= (〈↓〉ϕ)• ⇔ T, n |= ζ and T, n |= 〈↓〉ϕ• ⇔ there exists n′ ∈ N
such that nEn′ and T, n′ |= ϕ• ⇔ (by the fact T, n′ |= ζ and, thus, n′ ∈ N ′ and the
inductive hypothesis) there exists n′ ∈ N ′ such that nE′n′ and T ′, n′ |= ϕ ⇔ T ′, n |= 〈↓〉ϕ,
as desired.
• θ = 〈θ+〉τ . Assume T, n |= (〈θ+〉τ)•. Then, by definition of (·)•, T, n |= ζ ∧ 〈θ•+〉τ•.

That means there exists n′ in T with nE+n′ such that T, n′ |= τ• and for all n′′ with
nE+n′′E+n′ it holds T, n′′ |= θ•. By definition of (·)•, the nodes n, n′ and all the nodes
between n and n′ satisfy ζ and thus belong to T ′. By inductive hypothesis, T ′, n′ |= τ
and T ′, n′′ |= θ for all nE+n′′E+n′, which means T ′, n |= 〈θ+〉τ holds. Conversely, assume
T ′, n |= 〈θ+〉τ . By definition of T ′, we have that T, n |= ζ, which is the first conjunct of
(〈θ+〉τ)•. The second conjunct follows by the inductive hypothesis.

As T is a counterexample for ϕ• ⊆ ψ◦, (4.4) implies that T ′ is a counterexample of ϕ ⊆ ψ,
as desired.

The same argument applies for multi-labeled trees. The only change is to remove the
last disjunction (4.3) from AX.

4.2. Lower bounds. In this section we show that the containment for TP¬ is PSpace
hard. This lower bound will carry over to the containment problem for CTP.

Theorem 4.5.

(i) The containment problem for CTP is PSpace-hard.
(ii) The containment problem for TP¬ is PSpace-hard,
(iii) Both results also hold for multi-labeled trees.

Proof. (i) follows from (ii) by Proposition 4.4. (iii) follows from (i) and (ii) by Proposition 4.3.
For proving (ii), we reduce the corridor tiling problem, which is known to be hard for
PSpace [7, 18], to the containment problem for TP¬. We use the construction from the
PSpace-hardness proof for the containment problem of TP with disjunction over a finite
alphabet in [16].

The corridor tiling problem is formalized as follows. Let Til = (D,H, V, b̄, t̄, n) be a
tiling system, where D = {d1, . . . , dm} is a finite set of tiles, H,V ⊆ D2 are horizontal and
vertical constraints, n is a natural number given in unary notation, b̄ and t̄ are tuples over
D of length n. Intuitively, given a corridor of width n, the goal is to construct a tiling
of the corridor using the tiles from D so that the horizontal and vertical constraints are
satisfied and the bottom and top rows are tiled by b̄ and t̄, respectively. We say that a tiling
satisfies the horizontal constraints H(respectively the vertical constraints V ) if for every
1 ≤ i ≤ n, j ∈ N it holds that if d1 and d2 are the tiles on the positions (i, j) and (i+ 1, j)
of the corridor (respectively (i, j) and (i, j + 1)), then (d1, d2) ∈ H ((d1, d2) ∈ V ).

Now we construct in PTime in the length of Til, two TP¬ expressions ϕ and ψ such
that the following holds:

ϕ 6⊆ ψ iff there exists a tiling for Til. (4.5)

By Proposition 4.2, we may without loss of generality construct ψ as a disjunction of TP¬

expressions. To this purpose, we use the string representation of a tiling. Each row of the
considered tiling is represented by the tiles it consists of. If the tiling of a corridor of width
n has k rows, it is represented by its rows separated by the special symbol ]. The top row
is followed by the symbol $. Thus, a tiling is a word of the form u1]u2] · · · ]uk$, where
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each ui is the word of length n corresponding to the i-th row in the tiling. In particular
u1 = b̄ and uk = t̄. For the sake of readability, for expression r, ri denotes the path formula
?r; ↓; ?r; . . . ; ↓; ?r with i occurrences of r.

Let ϕ be
〈?b1; ↓; ?b2; . . . ; ↓; ?bn; ↓; ?]; ↓+ ; ?t1, ↓; . . . ↓; ?tn; ↓〉$.

Intuitively, this expression enforces a tiling to start with a path starting with b̄ and finishing
with t̄ and the final symbol $. Now the formula ψ defines all incorrect tilings and additional
constraints. It is the disjunction of the following TP¬ formulas.

(0) 〈↓+ ; ?(¬d1 ∧ . . . ∧ ¬dm ∧ ¬]); ↓+〉$. There is a position that is labeled neither by a tile
nor a delimiter.

(1) Incorrect length of a row.

(1a)
∨n−1
i=0 〈↓+ ; ?];>i; ↓〉], a row is too short;

(1b) 〈↓+ ; (¬])n+1〉>, a row is too long;
(2)

∨
(d1,d2)6∈H〈↓+; ?d1; ↓; ?d2〉>, some horizontal constraints are violated;

(3)
∨

(d1,d2)6∈V 〈↓+; ?d1; ↓;>n; ↓; ?d2〉>, some vertical constraints are violated.

Note that negated labels are used in (0) and (1b). Also note that the size of ϕ and ψ is
bounded by a polynomial in the size of Til.

We now show (4.5).
(⇐). Assume that there exists a tiling of the corridor. Let s be the string representation

of it. Then, s = u1]u2] . . . ]uk$, where |ui| = n, ui ∈ Dn, u1 = b̄ and uk = t̄. Moreover,
on the one hand if x · y, is an infix of some ui, then (x, y) ∈ H, and on the other hand for
every infix x · u′ · y of length n + 1 of ui] · ui+1, it holds that (x, y) ∈ V . Let Ts be the
corresponding tree, i.e. a single path of |s| nodes {v1, . . . , v|s|} where the labeling is set in
accordance with s, i.e. l(vi) = si. Clearly, Ts is a model of ϕ and not of ψ.

(⇒). Let T be a tree such that T, r |= ϕ and T, r 6|= ψ. Since T, r |= ϕ, there must exist
a path r = v1, . . . , vm in T which starts with b̄ and finishes with t̄$. Moreover, either ] or a
symbol from D is the label of every node vi, 1 ≤ i < m, according to (0).

We define a tiling function g : {0, . . . , n−1}×N→ D assigning a tile to every position in
the corridor as follows: g(i, j) = l(v(n+1)×j+i+1), 1 ≤ i ≤ n, where l is the labeling function
of T . Indeed, this function is well defined, as (1) ensures the correct counting. By formulas
(2) and (3) the tiling defined by g satisfies the horizontal and vertical constraints.

The difference between CTP patterns and TP patterns is that CTP descendent edges
can be labeled by patterns. One might ask whether a bound on the degree of such a labeling
nesting can lead to a lower complexity of the containment problem. Define the until nesting
depth un : CTP→ N as follows.

• un(p) = un(>) = 0,
• un(〈↓〉ϕ) = un(〈↓+〉ϕ) = 1,
• un(ϕ1 ∧ ϕ2) = max{un(ϕ1), un(ϕ2)},
• un(〈ϕ+〉ψ) = un(ϕ) + 1.

Unfortunately, a close examination of the encoding in the lower bound proof and the
encodings in Propositions 4.2 and 4.4 gives a negative answer to the question. Thus we
obtain

Theorem 4.6. The CTP containment problem for formulas of until nesting depth one is
PSpace-hard.
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4.3. Upper bounds. In this section, we show a matching PSpace upper bound for CTP
containment.

The complexity of CTP¬,∨ containment follows from a translation into existential CTL
(∃CTL), whose containment problem is known to be PSpace-complete [11]. The only
small technical issue is that ∃CTL formulas are interpreted over infinite finitely branching
trees. We solve that by relativizing formulas with a new propositional variable s, whose
interpretation will provide the desired finite tree.

Theorem 4.7. The containment problem for CTP¬,∨ is decidable in PSpace. This also
holds for multi-labeled trees.

Proof. We prove the upper bound for the case of multi-labeled trees. The upper bound for
single-labeled trees then follows by Proposition 4.3.

We recall from [11] the definition of ∃CTL. Let Prop be a set of propositional variables.
∃CTL node formulas ϕ and path formulas α are defined by:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃α
α ::= ϕ | α ∧ α | α ∨ α | Xα | (αUα) | (αÛα)

where p ∈ Prop, and asking that in node formulas, the operators X(“next”), U(“until”) and

Û(“dual of until”) are always immediately preceded by ∃.
The semantics for ∃CTL is given by infinite finitely branching trees. ∃CTL path

formulas are interpreted at a (possibly infinite) paths of the tree and ∃CTL node formulas
are interpreted at nodes of the tree. Our reduction will translate CTP¬,∨ formulas to ∃CTL
node formulas, with occurrences of formulas of the form ∃Xϕ and ∃ψUϕ. Semantics of such
formulas is defined as follows, given an infinite tree T = (N,E, r, ρ) and a node n ∈ N .

T, n |= ∃Xϕ iff there exists a node m ∈ N such that nEm and T,m |= ϕ,

T, n |= ∃ψUϕ iff there exists a node m ∈ N such that nE∗m and T,m |= ϕ,

and for all n′ ∈ N with nE∗n′E+m it holds T, n′ |= ψ.

The CTP node formula 〈ϕ+〉ψ corresponds to the strict until operator, which is expressible
in ∃CTL as ∃X∃ψUϕ.

We denote by ⊆∞ the containment relation for ∃CTL node formulas over finitely
branching trees where each branch is infinite.

Let ϕ,ψ be in CTP¬,∨ and let s be a new propositional variable not in ϕ,ψ. The
translation (·)s from CTP¬,∨ to ∃CTL node formulas relativizes every subformula with s
and adjusts the syntax.

(>)s = s ∧ >
(p)s = s ∧ p

(¬p)s = s ∧ ¬p
(ϕ1 ∧ ϕ2)

s = ϕs1 ∧ ϕs2
(ϕ1 ∨ ϕ2)

s = ϕs1 ∨ ϕs2
(〈↓〉ϕ)s = s ∧ ∃Xϕs

(〈ψ+〉ϕ)s = s ∧ ∃X∃ψsUϕs
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We claim that ϕ ⊆ ψ iff ϕs ⊆∞ ψs.
The proof is by contraposition. First assume that for some finite tree T = (N,E, r, ρ)

and node n ∈ N it holds T, n |= ϕ and T, n 6|= ψ. We then construct an infinite tree
which is a counterexample. Let s be a propositional variable not occurring in ϕ or ψ.
Let T s∞ be the infinite tree obtained from T by adding to each leaf in T an infinite path.
The labeling is changed as follows: all new nodes have the empty label set and we add
the label s to the label set of all old nodes. Formally, T s∞ = (N∞, E∞, r, ρ∞), where
N∞ = N ∪ {nm1 , nm2 , . . . | m is a leaf in T} is the set of nodes, E∞ = E ∪ {(m,nm1 ) | nm1 ∈
N∞} ∪ {(nmi , nmi+1) | nmi , nmi+1 ∈ N∞, i ≥ 1} is the set of edges, r is the root and ρ∞ is the
labeling function defined as follows.

ρ∞(n) =

{
ρ(n) ∪ {s} if n ∈ N,
∅ if n ∈ N∞ \N.

We show by induction on the structure of the formula that for every node n ∈ N and
every CTP¬,∨ formula θ, T, n |= θ iff T s∞, n |= θs.

To show this we will use the following two facts which are easy consequences of the
definitions of T s∞ and the translation (·)s:

T s∞, n |= s ⇔ n ∈ N, (∗)
and

T s∞, n |= ϕs ⇒ T s∞, n |= s. (∗∗)
• θ = >. We have T, n |= > iff n ∈ N iff n ∈ N∞ and s ∈ ρ∞(n) iff T s∞, n |= s ∧ > iff
T s∞, n |= (>)s.
• θ = p, p ∈ Σ. We have T, n |= p iff p ∈ ρ(n) iff (since n ∈ N) {p, s} ⊆ ρ∞(n) iff
T s∞, n |= s ∧ p iff T s∞, n |= (p)s.
• θ = ¬p, p ∈ Σ. We have T, n |= ¬p iff p 6∈ ρ(n) iff (since n ∈ N and, thus, s ∈ ρ∞(n))
p 6∈ ρ∞(n) and s ∈ ρ∞(n) iff T s∞, n |= s ∧ ¬p iff T s∞, n |= (¬p)s.
• θ = ϕ1 ∧ ϕ2. We have T, n |= ϕ1 ∧ ϕ2 iff T, n |= ϕ1 and T, n |= ϕ2 iff (by the induction

hypothesis, (*) and (**)) T s∞, n |= ϕs1 and T s∞, n |= ϕs2 iff T s∞, n |= ϕs1 ∧ ϕs2 iff T s∞, n |= ϕs.
• θ = ϕ1 ∨ ϕ2. By the same argument as for ϕ1 ∧ ϕ2.
• θ = 〈↓〉ϕ. We have T, n |= 〈↓〉ϕ iff there exists m ∈ N such that nEm and T,m |= ϕ iff

(by the induction hypothesis, (*), (**) and the fact that n ∈ N) T s∞, n |= s and there
exists m ∈ N∞ such that nE∞m and T s∞,m |= ϕs iff T s∞, n |= s ∧ ∃Xϕs iff T s∞ |= (〈↓〉ϕ)s.
• θ = 〈ψ+〉ϕ. We have T, n |= 〈ψ+〉ϕ iff there exists m ∈ N such that T,m |= ϕ and for

all n′ ∈ N with nE+n′E+m it holds T, n′ |= ψ. Then by the induction hypothesis, (*)
and (**), the latter is equivalent to existence of m ∈ N∞ such that T s∞,m |= ϕs and for
all n′ ∈ N∞ with nE+

∞n
′E+
∞m it holds T s∞ |= ψs. The latter implication holds because

for every node n′ with nE+
∞n
′E+
∞m it holds n′ ∈ N and nE+n′E+m. Equivalently, there

exists n1 ∈ N∞ and m ∈ N∞ such that nE∞n1E
∗
∞m, T s∞,m |= ϕs and for all n′ with

n1E
∗
∞n
′E+
∞m it holds T s∞, n

′ |= ψs. This is equivalent to T s∞, n |= s ∧ ∃X∃ψsUϕs as
desired.

Thus, we obtain both T s∞, n |= ϕs and T s∞, n 6|= ψs.
For the other direction, let T∞ = (N∞, E∞, r, ρ∞) be some infinite tree over Σ such

that T∞, r |= ϕs and T∞, r 6|= ψs. We then remove from the model all nodes without s
and their descendants. Formally, T = (N,E, r, ρ), where N = N∞ \ {n | ∃n′ ∈ N∞.s 6∈
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ρ∞(n′) ∧ n′E∗∞n} is the set of nodes, E = E∞|N×N is the set of edges, r is the root, and
ρ(n) = ρ∞(n) is the labeling function.

By induction we can show that for every CTP¬,∨ formula θ and node n ∈ N , it holds
T∞, n |= θs if and only if T, n |= θs. The two non-trivial cases are the following.

• θ = 〈↓〉ϕ. We have T∞, n |= s ∧ ∃Xϕs iff T∞, n |= s and there exists m ∈ N∞ such
that nE∞m and T∞,m |= ϕs iff T, n |= s and there exists m ∈ N such that nEm and
T,m |= ϕs. The direction from right to left is obvious, while the direction from left to right
because of the following. Since T∞,m |= ϕs, it follows that T∞,m |= s, i.e. s ∈ ρ∞(m).
Then since n ∈ N , we have that m ∈ N too by the definition. The latter also implies that
nEm holds in T and thus that T, n |= s ∧ ∃Xϕs.
• θ = 〈ψ+〉ϕ. We have T∞, n |= s∧∃X∃ψsUϕs iff T∞, n |= s and there exists m ∈ N∞ such

that T∞,m |= ϕs, nE+
∞m and for all n′ ∈ N∞ with nE+

∞n
′E+
∞m it holds T∞, n

′ |= ψs.
This is equivalent to T, n |= s and there exists m ∈ N such that T,m |= ϕs and for all n′

with nE+n′E+m it holds T,m |= ψs, which means T, n |= s∧ ∃X∃ψsUϕs as desired. The
direction from left to write is trivial since T is a substructure of T∞. The direction from
right to left follows from the fact that m ∈ N and all the nodes n′ such that nE+

∞n
′E+
∞m

belong to N as well and, moreover, it holds nE+n′E+m.

Thus, we obtain that T, r |= ϕs and T, r 6|= ψs. Because all nodes of T now make s true, we
can discard the relativization with s in the formulas. Thus obtaining T, r |= ϕ and T, r 6|= ψ.
The only problem is that T is infinite. But using the simulations from Theorem 3.3 it is
easy to see that we can turn T into a finite counterexample.

Thus, we have shown that ϕ ⊆ ψ if and only if ϕs ⊆∞ ψs. The latter containment
problem in ∃CTL is known to be decidable in PSpace. This concludes the proof.

Corollary 4.8. The containment problem for TP¬ is PSpace complete.

However, restricting negation to a safe negation p∧¬q1 ∧ . . .∧¬qn keeps the complexity
of the containment problem for tree patterns in coNP. Note that p ∧ ¬q1 ∧ . . . ∧ ¬qn
only adds expressive power over multi-labeled models, because on single labeled models
p ≡ p ∧ ¬q1 ∧ . . . ∧ ¬qn. The proof of the following result can be found in [14]. Here TP∨,¬

s

is tree patterns expanded with disjunction and the safe negation construct.

Theorem 4.9. The containment problem for TP∨,¬
s

over multi-labeled trees is in coNP.

5. Conclusion

We have shown that adding conditions on the edges of tree patterns gives a boost in expressive
power which comes with the price of a higher – PSpace – complexity for the containment
problem than for tree patterns. We located the source of the extra complexity in the fact
that unrestricted negations of labels can be coded in Conditional Tree Patterns. Adding
negations of labels to tree patterns causes an increase in complexity of the containment
problem from coNP to PSpace.

This paper is a first step in exploring “Regular Tree Patterns” and fragments of it. We
mention some directions for future work.

Miklau and Suciu in [15] mention that existence of a homomorphism between tree
patterns is a necessary but not sufficient condition for containment in TP. Can we extend
the simulations between conditional tree patterns and trees to simulations between queries,
partly capturing containment as for tree patterns?
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What is the complexity of containment of regular tree patterns, i.e. the positive fragment
of Regular XPath without disjunction and union? As the satisfiability (and thus also the
containment) problem for Regular XPath is known to be ExpTime-complete, it must lie in
between PSpace and ExpTime.

There are also interesting characterization questions: what is the exact FO fragment
corresponding to CTP or CTP with disjunction and union? Ten Cate [17] showed that
full Regular XPath (with all four axis relations) expanded with path equalities is equally
expressive as binary FO∗ (First-order logic extended with a transitive closure operator that
can be applied to formulas with exactly two free variables). Is every positive forward binary
FO∗ formula expressible as a Regular Tree Pattern? Is CTP with disjunction and union
equally expressive as FO intersected with positive FO∗? Are unions of CTP equivalent to
unions of the first order fragment of conjunctive regular path queries [6]?
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Appendix A. Translations between CTP and ctp

The following constructions are similar to the tree and graph representations for tree patterns
and conjunctive queries over trees [15, 4]

We define the translation function c(·) which assigns an equivalent conditional tree
pattern with one output node to every CTP formula. The output node of c(ϕ), where ϕ is a
node formula, equals the root.

Let α and ϕ be path and node CTP formulas. We define c(α) and c(ϕ) by mutual
induction on the complexity of the path and node formulas. We take c(α) or c(ϕ) to be the
tree (N,E, r, o, ρN , ρE), where the components are defined according to the cases.

• α =↓. Then N consists of two nodes r and n. The edge relation E is defined as {〈r, n〉}.
Moreover, o := n, ρN (v) = ∅ for v ∈ {r, n} and ρE(〈r, n〉) =↓,
• α =?ϕ. Then c(α) := c(ϕ),
• α = α1;α2. Let c(α1) and c(α2) be the conditional tree patterns for α1 and α2. Then
c(α) is the tree obtained as follows. We fuse the root of c(α2) with the output node of
c(α1) and declare the output node of c(α2) as the output node of c(α). The label of the
fusion node is the union of the labels of the output node of c(α1) and the root of c(α2).
Labels of other nodes and the edges remain the same as in c(α1) and c(α2).
• α = (↓; ?ϕ)∗; ↓. Then N consist of two nodes r and n. The edge relation E is defined as
{〈r, n〉}. Moreover, o := n, ρN (v) = ∅ for v ∈ {r, n} and ρE(〈r, n〉) = c(ϕ).

For node formulas, the output node of the translation result is always defined as the root r.

• ϕ = p. Then N consists of a single node r, E is empty, the labeling ρN (r) = {p}.
• ϕ = >. Similar to the previous case, with the exception that ρN (r) = ∅
• ϕ = ϕ1 ∧ ϕ2. Then c(ϕ) := c(ϕ1)⊕ c(ϕ2), i.e. the fusion of the conditional tree patterns
c(ϕ1) and c(ϕ2).
• ϕ = 〈α〉ϕ1. Let c(α) and c(ϕ1) be the corresponding conditional tree patterns. Then c(ϕ)

is obtained by fusing the output node of c(α) with the root of c(ϕ). The labeling of the
fusion node is defined as the union of the labels of the root of c(ϕ) and the output node
of c(α). Labels of the other nodes and edges remain the same as in c(α) and c(ϕ).

Translation f(·) works the other way around. Let t = (N,E, r, o, ρN , ρE) be a conditional
tree pattern with one output node. We define f(t) by induction on the nesting depth and
the depth of the tree. We first define a mapping ϕ from nodes v ∈ N to CTP node formulas.
The mapping is defined inductively starting from the leaves as follows. Here, for a finite set
S = {p1, . . . , pn}, by ∧S we denote the finite conjunction p1 ∧ . . . ∧ pn. We take ∧∅ to be >.
For a conditional tree pattern t, by rt we denote the root of t. For v a node in pattern t:

ϕ(v) = ∧ρN (v) ∧∧
〈v,v′〉∈E, ρE(v,v′)=t′

〈?ϕ(rt′)〉ϕ(v′) ∧

∧
〈v,v′〉∈E, ρE(v,v′)=↓

〈↓〉ϕ(v′)
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Now let r = v1, . . . , vn = o be the path from the root r to the output node o in t. Let the
expression di, 1 ≤ i ≤ n− 1 be defined by: di =↓ if ρE(vi, vi+1) =↓ and di = (↓; ?ϕ(rt′))

∗; ↓
if ρE(vi, vi+1) = t′. Then the result of the translation f(t) of the conditional tree pattern t
is the CTP path formula:

?ϕ(v1); d1; ?ϕ(v2); d2; . . . ; ?ϕ(vn−1); dn−1; ?ϕ(vn).

For the next proposition we need the definition of equivalence between conditional
tree patterns. Let t be a conditional tree pattern with output nodes ō,|ō|=k, and T
a tree. Then the answer set of t over T is the set Out(t, T ) = {〈g(o1), . . . , g(ok)〉 |
g is a simulation of t in T}. We say that two conditional tree patterns t1 and t2 are equiva-
lent, denoted as t1 ' t2, if Out(t1, T ) = Out(t2, T ) for every tree T .

Proposition A.1. Let ϕ and α be CTP node and path formulas, t a conditional tree pattern.
Then it holds that

(i) f(c(ϕ)) ≡ ϕ and f(c(α)) ≡ α,
(ii) c(f(t)) ' t.

The proof of (i) is by mutual induction on α and ϕ, and the proof of (ii) is by induction on
nesting depth and depth of t.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany
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