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Abstract. We present several known formalizations of theorems from computational com-
plexity in bounded arithmetic and formalize the PCP theorem in the theory PV1 (no for-
malization of this theorem was known). This includes a formalization of the existence and
of some properties of the (n, d, λ)-graphs in PV1.

1. Introduction

The aim of this paper is to show that a lot of complexity theory can be formalized in low
fragments of arithmetic like Cook’s theory PV1.

Our motivation is to demonstrate the power of bounded arithmetic as a counterpart to
the unprovability results we already have or want to obtain, and generally to find out how
complexity theory behaves in different worlds of bounded arithmetic.

Concerning the unprovability results, Pich [24] proves that under certain hardness as-
sumptions the theory TNC1 , the true universal first-order theory in the language contain-
ing names for all uniform NC1 algorithms, cannot prove polynomial circuit lower bounds
on SAT formalized naturally by a sentence LB(SAT, nk). In fact, that result generalizes
basically to any theory weaker than PV1 in terms of provably total functions. The ques-
tion whether PV1 proves LB(SAT, nk) remains open even if we allow standard complexity-
theoretic hardness assumptions, see the discussion in Section 2.

Generally, it would be interesting to arrive at a complexity-theoretic statement, not
necessarily circuit lower bounds, whose provability in PV1 unexpectedly contradicts some
other natural hypothesis. To understand better what are plausible candidates for such
statements it might help us to investigate the theorems which are provable in low fragments
of arithmetic.

In the present paper we will describe the formalization of just a few results; however,
this should suffice to illustrate the power of the respective theories. Actually, many classical
theorems from complexity theory have been already formalized in bounded arithmetic. In
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the table closing this section we list some representative examples. It should be understood
that any of the formalized results is accompanied by a lot of other theorems that are
formalizable in a similar fashion. In fact, some of the formalizations are so evident that
they are used without a proof as a folklore. This is the case of Cook-Levin’s theorem whose
formalization we nevertheless describe for expository reasons in Section 4 as it gives us the
opportunity to introduce some notions. For more details concerning the list see Section 3.

The main original contribution of this paper is a formalization of the exponential PCP
theorem in the theory APC1 and the PCP theorem in the theory PV1. Perhaps the most
challenging part here was to formalize properties of the (n, d, λ)-graphs needed to derive
the PCP theorem. These are usually obtained using algebraic techniques involving norms
over real vector spaces coming all the way down to the fundamental theorem of algebra
etc. In order to avoid formalization of this machinery (and it is not clear whether this
could be done) we employ certain approximations to derive slightly weaker properties of
the (n, d, λ)-graphs in the theory PV1 which, however, suffice to derive the PCP theorem
in PV1.

As the exponential PCP theorem follows trivially from the PCP theorem, the expo-
nential version is actually also provable in PV1. The PV1 proof of the PCP theorem uses
(among many other tools) the exponential PCP theorem but scaled down to constant size
instances so that to prove the scaled down version we need to reason only about sets of con-
stant size. On the other hand, in APC1 we perform the standard proof of the exponential
PCP theorem directly by formalizing a reasoning with p-time definable sets. Hence, the
APC1 proof shows different techniques to be available in low fragments of arithmetic.

The paper is organized as follows. In Section 2 we describe general properties of our
formalizations and define theories of bounded arithmetic in which these formalizations take
place. In Section 3 we discuss theorems that have been already formalized in bounded arith-
metic as well as the new ones obtained in this paper. Section 4 illustrates a formalization
of the Cook-Levin theorem in PV1. In Section 5 we prove the exponential PCP theorem
in APC1. Section 6 formalizes pseudorandom constructions in PV1 which are then used in
Section 7 to formalize the PCP theorem in PV1.

Theory Theorem Reference

PV1 Cook-Levin’s theorem Section 4
(n, d, λ)-graphs Section 6
the PCP theorem Section 7

PV1 +WPHP (PV1) PARITY /∈ AC0 [18]
APC1 BPP, ZPP, AM,... [15]

Goldreich-Levin’s theorem [11]
the exponential PCP theorem Section 5

HARDǫ Impagliazzo-Wigderson’s derandom. [14]
HARDA Nisan-Wigderson’s derandomization [13]
T 1
2 + rWPHP (PV2) SP

2 ⊆ ZPPNP [17]
APC2 Graph isomorphism in coAM [17]

APC
⊕pP
2 Toda’s theorem [5]

The theories are listed from the weakest to the strongest one.
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2. Formalizations in bounded arithmetic: initial notes

The usual language of arithmetic contains well known symbols: 0, S,+, ·,=,≤. To encode
reasoning about computations it is helpful to consider also symbols ⌊x2 ⌋, |x| and # with the
intended meaning “the whole part of x

2”, “the length of the binary representation of x”, and

x#y = 2|x|·|y|. The language L containing all these symbols was used by Buss [4] to define
the theory S1

2 (see below).
All theories we will work with, a subset of theories collectively known as bounded

arithmetic, contain L as a part of their language.

The defining properties of symbols from L are captured by a set of basic axioms denoted
as BASIC which we will not spell out, cf. Kraj́ıček [18].

A quantifier is sharply bounded if it has the form ∃x, x ≤ |t| or ∀x, x ≤ |t| where t is
a term not containing x. A quantifier is bounded if it is existential bounded: ∃x, x ≤ t
for x not occuring in t, or universal bounded: ∀x, x ≤ t for x not occuring in t. By Σb

0

(=Πb
0 = ∆b

0) we denote the set of all formulas in the language L with all quantifiers sharply
bounded. For i ≥ 0, the sets Σb

i+1 and Πb
i+1 are the smallest sets satisfying

(a) Σb
i ∪ Πb

i ⊆ Σb
i+1 ∩ Πb

i+1

(b) Σb
i+1 and Πb

i+1 are closed under ∧,∨ and sharply bounded quantification

(c) Σb
i+1 is closed under bounded existential quantification

(d) Πb
i+1 is closed under bounded universal quantification

(e) the negation of a Σb
i+1-formula is Πb

i+1

( f ) the negation of a Πb
i+1-formula is Σb

i+1.

In words, the complexity of bounded formulas in language L (formulas with all quantifiers
bounded) is defined by counting the number of alternations of bounded quantifiers, ignoring
the sharply bounded ones. For i > 0, ∆b

i denotes Σb
i ∩ Πb

i .

An example of a bounded arithmetic theory is the theory S1
2 introduced by Buss [4].

The language of S1
2 is L and its axioms consist of BASIC and Σb

1-PIND scheme which is
the following kind of polynomial induction for Σb

1-formulas A:

A(0) ∧ ∀x, (A(⌊x/2⌋) → A(x)) → ∀xA(x)

Buss [4] showed that whenever S1
2 proves a formula of the form ∃y,A(x, y) for Σb

1-formula
A, then there is a p-time (i.e. polynomial time) function f such that A(x, f(x)) holds for
all x.

Theories of bounded arithmetic generally cannot prove the totality of functions with
superpolynomial growth of length. This follows from a theorem of Parikh [23]. In particular,
∀k ∃x, |x| = k is unprovable. Consequently, if we want to prove in bounded arithmetic a
statement of the form “for all k, n, there is an nk-size circuit (encoded by a binary string
of some number, i.e. ∃x, |x| = nk) s.t. ...” we need to quantify the exponent k outside of
the respective theory. That is, in such cases instead of proving

T ⊢ “for all k, n, there is an nk-size circuit s.t. ...”

we prove

“for all k, T ⊢ for all m,n s.t. |m| = n, there is an nk-size circuit s.t. ...”

Informally speaking, only the “feasible part” of the theorem is provable inside the theory.
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In our formalizations numbers encode binary strings in a natural way. We then follow
the convention that inputs of circuits, algorithms or functions are represented by binary
strings. For example, when talking about nk-size circuit lower bounds the number of inputs
of nk-size circuits is the length of some number, i.e ∃x, n = |x|. However, it does not
necessarily follow that n is smaller, say, ∃x, n = ||x||. To indicate sizes of objects inside
our theories we employ the shorthand notation x ∈ Log ↔ ∃y, x = |y| and x ∈ LogLog ↔
∃y, x = ||y||.

On the contrary, for example Razborov [25] considered (second-order) formalizations of
circuit lower bounds (corresponding in first-order logic to the formalization) where p-size
(i.e. polynomial size) circuits with n inputs were required to satisfy n ∈ LogLog. Thus,
in his formalization, truth tables of functions computed by p-size circuits are encoded by
binary strings. The respective theory is much stronger with respect to such formalization;
it is as if it could manipulate with exponentially big objects. Formalizing known theorems
is then easier and proving unprovability results is on the other hand formally much harder.

Similarly, in propositional proof complexity there are candidate hard tautologies for
strong proof systems like Extended Frege which express circuit lower bounds on SAT (and
other functions), see formulas ¬Circuitt(f) in Razborov [26] or τ(tts,k)f in Kraj́ıček [19].
Using a standard translation into first-order logic they again correspond to the formalization
where truth tables of SAT are encoded by binary strings. Therefore, by the known relation
between propositional proof systems and bounded arithmetics, the hardness of such formulas
for Extended Frege would imply a conditional unprovability of superpolynomial circuit lower
bounds on SAT in PV1 formalized in such a way that the theory PV1 would be exponentially
stronger than it is with respect to the formalization of circuit lower bounds LB(SAT, nk)
considered in Pich [24]. The formalization LB(SAT, nk) follows the convention of our
current paper.

However, the fact advocated here, that a lot of complexity theory is formalizable in theo-
ries like PV1, suggests that it might be also hard to obtain the unprovability of LB(SAT, nk)
in PV1. Actually, the unprovability of LB(SAT, nk) in PV1 would imply that there is no
provable witnessing of errors of p-time algorithms claiming to solve SAT which is itself
(interesting and) a reason to expect hardness of such unprovability result, see Pich [24].

2.1. Theory PV1: formalized p-time reasoning. PV1 introduced in Kraj́ıček-Pudlák-
Takeuti [20] is a conservative extension of an equational theory PV introduced by Cook
[8].

The language of PV and PV1 consists of symbols for all p-time algorithms given by
Cobham’s characterization of p-time functions, cf. [7]. In particular, it contains L. By a
slight abuse of the notation we denote the language of PV1 and PV also PV . A PV -formula
is a first-order formula in the language PV . The hierarchy of Σb

i(PV )- and Πb
i (PV )-formulas

is defined similarly to Σb
i and Πb

i (in first-order logic with equality) but in the language of
PV .

In PV we can define p-time concepts and prove their basic properties. More precisely,
every p-time function can be straightforwardly defined as a PV -function. Therefore, in the
theory PV1, which is a universal first-order theory, we can reason about p-time concepts.
We can interpret provability in PV1 as capturing the idea of what can be demonstrated when
our reasoning is restricted to manipulation of p-time objects. However, strictly speaking,
this description would also fit the theory S1

2 which in addition uses NP-concepts in induction.
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Anyway, it is a natural question which properties of p-time concepts are provable using only
such p-time reasoning.

It can be shown that PV1 proves Σb
0(PV )-induction, cf. Kraj́ıček [18]. That is, for any

Σb
0(PV )-formula A, PV1 proves

A(0) ∧ ∀x(A(x) → A(x + 1)) → ∀xA(x)

In PV we can speak about formulas, circuits, Turing machines and other similar notions
which can be encoded using finite sequences of numbers. These are encodable in PV in
a well-behaved way so that basic operations on sequences like concatenation are definable
by terms, i.e. by functions in the language. For more details see Kraj́ıček [18] where the
function (w)i which extracts the ith element from a sequence w is shown to be ∆b

1-definable
in S1

2 but the definition is given by a p-time predicate so it can be written as an open
PV -formula.

All PV -functions have well-behaved ∆b
1-definitions in S1

2 . Hence, S1
2 can be seen as an

extension of PV1, cf. Buss [4]. Moreover, Buss’s witnessing theorem [4] implies that S1
2

is ∀Σb
1-conservative over PV1. This means that when proving a ∀Σb

1 statement in PV1 we
can actually use S1

2 . In particular, we will use an induction scheme denoted as Πb
1-LLIND

which is provable in S1
2 and says that for any Πb

1(PV )-formula A the following holds,

A(0) ∧ ∀x ≤ ||a|| (A(x) → A(x + 1)) → A(||a||)
In Proposition 6.12, we will also use an induction scheme which we denote Πb

1-LPIND.
It is a weaker form of Πb

1-PIND, cf. Kraj́ıček [18], so it is derivable in S1
2 . Πb

1-LPIND says
that for any Πb

1(PV )-formula A the following implication holds:

A(a) ∧A(a2) ∧ [∀l ≤ ||b||, (A(a⌊(l−1)/2⌋) ∧A(a⌈(l−1)/2⌉) → A(al))] → A(a||b||)

2.2. Theory APC1: formalized probabilistic p-time reasoning. To reason about
probabilistic p-time concepts we will use an extension of PV1 in which Jeřábek [15] de-
veloped a well-behaved notion of probability based on an approximate counting.

In this section, we recall a part of his work which we will use to formalize the exponential
PCP theorem.

The dual (or surjective) pigeonhole principle for f , written as dWPHP (f), is the
universal closure of the formula

x > 0 → ∃v < x(|y| + 1)∀u < x|y|f(u) 6= v

For a set of functions Γ, dWPHP (Γ) := {dWPHP (f)|f ∈ Γ}.

The theory APC1 is defined as PV1 + dWPHP (PV ) where PV stands for the set of
PV -functions.

When a number a is used in a context which asks for a set it is assumed to represent
the integer interval [0, a), e.g. X ⊆ a means that all elements of X are less than a. If X ⊆ a,
Y ⊆ b, then X × Y := {bx+ y|x ∈ X, y ∈ Y } ⊆ ab and X∪̇Y := X ∪ {y + a|y ∈ Y } ⊆ a+ b.

We will often work with rational numbers which are assumed to be represented by pairs
of integers in the natural way. By a definable set we mean a collection of numbers satisfying
some formula, possibly with parameters.
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Let n,m ∈ Log, C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets.We write
C : X ։ Y if Y ⊆ C[X], i.e. ∀y ∈ Y ∃x ∈ X, C(x) = y. The following definitions are taken
from Jeřábek [15].

Definition 2.1 (in APC1). Let X,Y ⊆ 2n be definable sets, and ǫ ≤ 1. We say that the
size of X is approximately less than the size of Y with error ǫ, written as X �ǫ Y , if there
exists a circuit G, and v 6= 0 such that

G : v × (Y ∪̇ǫ2n) ։ v ×X

The sets X and Y have approximately the same size with error ǫ, written as X ≈ǫ Y , if
X �ǫ Y and Y �ǫ X.

A number s identified with the interval [0, s), so X �ǫ s means that the size of X is at
most s with error ǫ.

Definition 2.2 (in APC1). Let X ⊆ 2|t| be a definable set and 0 ≤ ǫ, p ≤ 1. We define

Prx<t[x ∈ X] �ǫ p iff X ∩ t �ǫ pt

and similarly for ≈.

The definition of �ǫ is an unbounded ∃Πb
2-formula so it cannot be used freely in bounded

induction. This problem was solved by Jeřábek [15] by working in a suitable conservative
extension of APC1.

Definition 2.3 (in PV1). Let f : 2k 7→ 2 be a truth-table of a Boolean function with k
inputs (f is encoded as a string of 2k bits, hence k ∈ LogLog). We say that f is (worst-
case) ǫ-hard, written as Hardǫ(f) if no circuit C of size 2ǫk computes f . The function f is
average-case ǫ-hard, written as HardAǫ (f), if for no circuit C of size ≤ 2ǫk:

|{u < 2k|C(u) = f(u)}| ≥ (1/2 + 2−ǫk)2k

Proposition 2.4 (Jeřábek [13]). For every constant ǫ < 1/3 there exists a constant c such
that APC1 proves: for every k ∈ LogLog such that k ≥ c, there exist average-case ǫ-hard
functions f : 2k 7→ 2.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed in the
inductive clauses for introduction of new function symbols. This means that the language
of PV1(α), denoted also PV (α), contains symbols for all p-time oracle algorithms.

Definition 2.5 (Jeřábek [13]). The theory HARDA is an extension of the theory PV1(α)+
dWPHP (PV (α)) by the axioms

1. α(x) is a truth-table of a Boolean function in ||x|| variables
2. x ≥ c→ HardA1/4(α(x))

3. ||x|| = ||y|| → α(x) = α(y)

where c is the constant from the previous lemma.

Theorem 2.6 (Jeřábek [13, 15]). HARDA is a conservative extension of APC1. Moreover,
there is a PV (α)-function Size such that HARDA proves: if X ⊆ 2n is definable by a circuit
C, then

X ≈ǫ Size(C, 2
n, e)

where ǫ = |e|−1

We will abuse the notation and write Size(X, ǫ) instead of Size(C, 2n, e).
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Definition 2.7 (in APC1). If X ⊆ 2|t| is defined by a circuit and ǫ−1 ∈ Log, we put

Prx<t[x ∈ X]ǫ :=
1

t
Size(X ∩ t, ǫ)

Jeřábek [15] showed that these definitions are well-behaved:

Proposition 2.8. (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n be definable sets and ǫ, δ < 1. Then

i) X ⊆ Y ⇒ X �0 Y
ii) X �ǫ Y ∧ Y �δ Z ⇒ X �ǫ+δ Z
iii) X �ǫ X

′ ∧ Y �δ Y
′ ⇒ X × Y �ǫ+δ+ǫδ X

′ × Y ′

Proposition 2.9. (in APC1)

1. Let X,Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ǫ, δ, θ, γ ≤ 1, γ−1 ∈ Log. Then
i) X �ǫ Y ⇒ 2n − Y �ǫ+δ 2n −X
ii) X ≈ǫ s ∧ Y ≈δ t ∧X ∩ Y ≈θ u⇒ X ∪ Y ≈ǫ+δ+θ+γ s+ t− u

2. Let X ⊆ 2n × 2m and Y ⊆ 2m be definable by circuits, t �ǫ Y and s �δ Xy for every
y ∈ Y , where Xy := {x| 〈x, y〉 ∈ X}. Then for any γ−1 ∈ Log

st �ǫ+δ+ǫδ+γ X ∩ (2n × Y )

3. (Chernoff’s bound) Let X ⊆ 2n,m ∈ Log, 0 ≤ ǫ, δ, p ≤ 1 and X �ǫ p2
n. Then

{w ∈ (2n)m| |{i < m|wi ∈ X}| ≤ m(p− δ)} �0 c4
m(cǫ−δ2)2nm

for some constant c, where w is treated as a sequence of m numbers less than 2n and wi

is its i-th member.

3. Previous formalizations of complexity theory and our contribution

Many classical theorems from complexity theory have been already formalized in bounded
arithmetic. In the following sections we present some representative examples from different
areas of complexity theory. The last section describes the formalizations that are obtained
in this paper.

3.1. NP-completeness. Actually, formalization of some theorems is a folklore used with-
out a proof. For example, Cook-Kraj́ıček [9] mention that NP-completeness of SAT can be
formalized in PV1.

Theorem 3.1 (Cook-Levin’s theorem in PV1).

(a) For every Σb
1-formula φ(x), there is a PV -function f(x) such that

PV1 ⊢ φ(x) ↔ ∃ySAT (f(x), y)

where SAT (z, y) is an open PV -formula which holds iff truth assignment y satisfies
propositional formula z.

(b) For each k we have a PV -function f such that PV1 proves: for any M,x,

∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1 ↔ ∃y, |y| ≤ 3|M ||x|2k, SAT (f(M,x), y)

where M(x, z, w) = 1 is an open PV -formula which holds iff w is an accepting compu-
tation of Turing machine M on input x, z (so we are slightly abusing the notation as
M is actually a free variable in the formula M(x, z, w) = 1) and |M | is the length of
M ’s code.
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Note that formulations (a) and (b) are essentially equivalent since the formula ∃w, z; |z|, |w| ≤
|x|k,M(x, z, w) = 1 is Σb

1 and any Σb
1-formula φ(x) is equivalent in PV1 to a formula

∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1 for some k and M . In (b) we have in addition also an
explicit bound on y.

For expository reasons we present a proof of (b) in Section 4.

3.2. Randomized computation. The main application of approximate counting in APC1

is in the formalization of probabilistic algorithms in APC1 and complexity classes like BPP
and AM. Jeřábek’s formalizations involve many other results we will not state explicitly like
“promise BPP ⊆ P/poly” (Lemma 3.10 in Jeřábek [15]), Rabin-Miller algorithm (Example
3.2.10 in Jeřábek [14]) but also principles like Stirling’s bound on binomial coefficients.

Definition 3.2 (Jeřábek [15]). (in APC1) A PV -function r and a PV -predicate A define a
BPP language if for each x either Prw<r(x)[¬A(x,w)] �0 1/4 or Prw<r(x)[A(x,w)] �0 1/4.

Theorem 3.3 (Jeřábek [15]). Let A be a PV -predicate and r a PV -function. There are
Σb
2-formulas σ+(x), σ−(x) and Πb

2-formulas π+(x), π−(x) such that APC1 proves

Prw<r(x)[¬A(x,w)] �0 1/4 ⇒ π+(x) ⇒ σ+(x) ⇒ Prw<r(x)[¬A(x,w)] �0 1/3

Prw<r(x)[A(x,w)] �0 1/4 ⇒ π−(x) ⇒ σ−(x) ⇒ Prw<r(x)[A(x,w)] �0 1/3

In particular, any definable BPP language is in Σb
2 ∩ Πb

2.

In [17] Jeřábek formalized Cai’s [6] result stating that SP
2 ⊆ ZPPNP in the theory

T 1
2 + rWPHP (PV2). The complexity class SP

2 consists of languages for which there exists
a p-time predicate R such that

x ∈ L⇒ ∃y∀zR(x, y, z)

x /∈ L⇒ ∃z∀y¬R(x, y, z)

where |y|, |z| are implicitly bounded by a polynomial in |x|.
The theory T 1

2 is defined as S1
2 but with induction for Σb

1-formulas, PV2 denotes func-
tions computable in polynomial time relative to NP, and rWPHP (PV2) is a set of axioms

x > 0 → ∃y < x(|y| + 1)(g(y) ≥ x|y| ∨ f(g(y)) 6= y)

for PV2-functions f, g.
Note that rWPHP (f, g) follows from dWPHP (f).

Theorem 3.4 (Jeřábek [17]). (in T 1
2 +rWPHP (PV2)) The complexity class SP

2 is contained
in ZPPNP . That is, for each p-time relation R defining a language L ∈ SP

2 , there exists
ZPPNP -predicate P definable in T 1

2 + rWPHP (PV2) such that the same theory proves
x ∈ L⇔ P (x).
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3.3. Circuit lower bounds. In [18, Section 15.2] Kraj́ıček proves PARITY /∈ AC0 in the
theory PV1 +WPHP (PV1). By WPHP (PV1) he denotes the set of axioms

a > 0 → ∃y ≤ 2a∀x ≤ a, f(x) 6= y

for every PV1-function symbol f(x) where f may have other arguments besides x and they
are treated as parameters in the axioms.

It is known that WPHP (PV1) and dWPHP (PV ) are equivalent over S1
2 . Further, the

theory PV1 + dWPHP (PV ) is ∀Σb
1-conservative over

PV1 + {∃y < a#a ∀x < a, f(x) 6= y| for PV-functions f}
(noted in Jeřábek [16] as a corollary of earlier results).

Theorem 3.5 (Kraj́ıček [18], Section 15.2). Let d, k be arbitrary constants. Then the theory
PV1 + WPHP (PV1) proves that for any sufficiently large n ∈ Log there are no depth d
circuits of size ≤ knk computing PARITY (x1, ..., xn).

In [25] Razborov developes a logical formalism supporting his feeling that S1
2 is the right

theory to capture that part of reasoning in Boolean complexity which led to actual lower
bounds for explicitly given Boolean functions. He formalizes lower bounds for constant-
depth circuits over the standard basis, lower bounds for monotone circuits, lower bounds
for constant-depth circuits with MOD-q gates, and lower bounds for monotone formulas
based on communication complexity.

Importantly, his formalizations presented in second-order logic correspond in first-order
logic to the formalization where the number of inputs of circuits in the respective theorems
is in LogLog. This makes it more suitable for encoding into the propositional setting but
it also makes the formalization results formally weaker.

3.4. Interactive proofs. Jeřábek [17] formalized the equivalence of public-coin and private-
coin interactive protocols in the theory APC2 := T 1

2 + dWPHP (PV2). This is illustrated
on the example of the isomorphism problem: given two structures G0 and G1 (as tables) of
the same signature, determine whether G0 ≃ G1.

Definition 3.6 (Jeřábek [15]). (in APC2) A pair 〈φ, r〉 where φ(x,w) is a Σb
1-formula, and

r is a PV -function, defines an AM language if for each x either Prw<r(x)[¬φ(x,w)] �1
0 1/4

or Prw<r(x)[φ(x,w)] �1
0 1/4 where �1

0 denotes �0 relativized with a Σb
1-complete oracle.

Theorem 3.7 (Jeřábek [17]). (in APC2) Graph nonisomorphism is in AM.

3.5. Cryptography. Recently, Dai Tri Man Le [11] formalized Goldreich-Levin’s theorem
in APC1.

Theorem 3.8 (Dai Tri Man Le [11]). (in APC1) Let f : {0, 1}n → {0, 1}n be a function
computed by a circuit of size t, and suppose that there exists a circuit C of size s such that

Pr(x,r)∈{0,1}2n [C(f(x), r) =

n
⊕

i=1

xiri]ǫ ≥
1

2
+

1

p(n)
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If ǫ = 1
poly(n) is sufficiently small, then there is a circuit C ′ of size at most (s+ t)poly(n, 1/ǫ)

and q = poly(n) such that

Pr(x,r′)∈{0,1}n×{0,1}q [f(C ′(f(x), r′)) = f(x)]ǫ ≥
1

4p(n)
− 15ǫ

2

3.6. Complexity of counting. In [5], Buss, Ko lodziejczyk and Zdanowski derived Toda’s
theorem in an extension of the theory APC2.

For a fixed prime p ≥ 2, they denote by Ck
p for k ∈ [p] quantifiers counting mod p. The

intended meaning of Ck
px ≤ tA(x) is that the number of values x ≤ t for which A is true is

congruent to k mod p. See [5] for the explicit list of axioms defining Ck
p .

A ⊕pP formula is a formula which is either atomic, or of the form Ck
px ≤ tA(x) where A

is sharply bounded. Σ
b,⊕pP
0 = Π

b,⊕pP
0 is the set of formulas obtained as the closure of ⊕pP

formulas under Boolean connectives ∨,∧,¬ and under sharply bounded quantifiers. For
i ≥ 1, the strict formula sets Σ̂b,⊕pPi are defined in the usual way by counting the number
of alternations of bounded quantifiers.

T
1,⊕pP
2 is the theory axiomatized by the axioms for PV1 symbols, the Ck

p axioms for

sharply bounded formulas A(x), and Σ̂
b,⊕pP
1 -IND.

APC
⊕pP
2 := T

1,⊕pP
2 + dWPHP (PV

⊕pP
2 ) where PV

⊕pP
2 means functions that can be

computed in polynomial time relative to NP⊕pP .
Σb
∞(⊕p) denotes formulas formed from bounded existential, universal, and Cp quanti-

fiers.
In APC

⊕pP
2 , we say that a language is in BP · ⊕pP if there exists PV1 functions f and

u such that for all x,

x ∈ L⇔ Prr<u(x)[f(x, r) /∈ ⊕1
pSAT ] �0 1/4

x /∈ L⇔ Prr<u(x)[f(x, r) /∈ ⊕0
pSAT ] �0 1/4

where ⊕i
pSAT is the set of propositional formulas φ such that the number of satisfying

assignments of φ is congruent to i mod p for some prime p.

Theorem 3.9 (Buss, Ko lodziejczyk, Zdanowski [5]). APC
⊕pP
2 proves that any Σb

∞(⊕p)
formula defines a property in BP·⊕pP.

3.7. Derandomization. The approximate counting developed in APC1 relies on a formal-
ization of the derandomization result by Nisan and Wigderson [22].

Definition 3.10 (Jeřábek [15]). (in APC1) A definable randomized algorithm is given by
a pair of PV -functions f, r such that

∃w < r(x) f(x,w) 6= ∗ → Prw<r(x)[f(x,w) = ∗] �0 1/2

where ∗ is a special symbol signaling a rejecting computation.

The special symbol ∗ could be avoided but it is useful for denoting a “failure-state” of
probabilistic algorithms. It can be used when the input random string does not encode the
expected structure, say a graph or a formula.
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Theorem 3.11 (Jeřábek [13]). Let F be a randomized algorithm that is definable in S1
2 +

dWPHP (PV ). Then there are PV -functions h and g such that HARDA proves

∃y y = F (x) ↔ h(x, α(g(x))) 6= ∗
∃y y = F (x) → h(x, α(g(x))) = F (x)

Jeřábek [14] formalized also Impagliazzo-Wigderson’s [12] derandomization which draws
the same conclusion assuming only worst-case hardness. This turned out to be much harder
than the Nisan-Wigderson construction mainly because list decoding of error-correcting
codes used in the construction requires several algebraic tools concerning finite fields.

Theorem 3.12 (Jeřábek [14]). Let F be a randomized algorithm that is definable in S1
2 +

dWPHP (PV ), and let ǫ > 0. Then there are PV -functions h and g such that HARDǫ

proves
∃y y = F (x) ↔ h(x, α(g(x))) 6= ∗

∃y y = F (x) → h(x, α(g(x))) = F (x)

Here, HARDǫ is defined as an extension of S1
2(α), i.e. relativized S1

2 , by the following
axioms:

1. α(x) : 2||x|| → 2
2. x ≥ c→ Hardǫ(α(x))

for a standard constant c.

3.8. Contribution of our paper: the PCP theorem and the (n, d, λ)-graphs. We
add to the list of formalized results mentioned in previous sections formalizations of the
exponential PCP theorem, the PCP theorem, and certain pseudorandom constructions in-
volving the so called (n, d, λ)-graphs which are needed in the proof of the PCP theorem.
The exponential PCP theorem was proved in Arora-Safra [2], and the PCP theorem is orig-
inally from Arora-Safra [2] and Arora et.al. [3]. In [10] Dinur gave a simpler proof of the
PCP theorem which we will formalize.

Definition 3.13. (in APC1) Let k, k′, d be constants, x ∈ {0, 1}n for n ∈ Log. Further,

let w ∈ {0, 1}knk
(represent random bits), π be a k′nk

′
-size circuit with m inputs where m

might differ from n, and D be a knk-time algorithm.
Denote by Dπ,w(x) the output of D on input x and with access to π specified by (random

bits) w as follows. D computes π on at most d different inputs: first, it produces strings
ŵ1, ..., ŵd where each ŵi ∈ {0, 1}m, then it computes π(ŵ1), ..., π(ŵd) and finally computes
its output which is either 1 or 0.

We formulate the exponential PCP theorem in APC1 as follows. For an explanation
and a discussion concerning the choice of the formulation see Section 5.

Theorem 3.8 (The exponential PCP theorem in APC1). There are constants d, k, k′ and a
knk-time algorithm D (given as a PV -function) computing as in Definition 3.13 such that
APC1 proves that for any x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y) → ∃k′nk′size circuit π ∀w < 2kn
k

,Dπ,w(x) = 1

∀y¬SAT (x, y) → ∀k′nk′size circuit π, Pr
w<2knk [Dπ,w(x) = 1] �0 1/2
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We also formalize pseudorandom constructions involving the (n, d, λ)-graphs in PV1 but
leave the presentation of these results to Section 6 as it would require introducing too many
definitions now.

In order to formalize the PCP theorem we use the notion of probability Pr on spaces of
polynomial size poly(n) for n ∈ Log which is assumed to be defined in a natural way using
an exact counting of sets of polynomial size which is also assumed to be defined in PV1 in
a standard way. The notion of probability Pr should not be confused with the definition of
Pr in APC1. We formulate (the more important implication of) the PCP theorem in PV1
as follows.

Definition 3.14. (in PV1) Let k, c, d be constants, x ∈ {0, 1}n, n ∈ Log,w ∈ {0, 1}c logn,
π ∈ {0, 1}dnc

, and be D be a knk-time algorithm.
Denote by Dπ,w(x) the output of D on input x and with access to π specified by w as

follows. D uses at most c log n random bits w and makes at most d nonadaptive queries to
locations of π, i.e. D can read bits πi1 , ..., πid for i1, ..., id produced by D. Then it computes
its outputs, 1 or 0.

In Definition 3.14 we abuse the notation and use the shortcut Dπ,w(x) in different
meaning than in Definition 3.13. This should not lead into confusion.

Theorem 7 (The PCP theorem in PV1). There are constants d, k, c and a knk-time algo-
rithm D (given as a PV -function) computing as in Definition 3.14 such that PV1 proves
that for any x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y) → ∃π ∈ {0, 1}dnc ∀w < nc,Dπ,w(x) = 1

∀y¬SAT (x, y) → ∀π ∈ {0, 1}dnc

, P rw<nc[Dπ,w(x) = 1] ≤ 1/2

Note that the exponential PCP theorem follows from the PCP theorem. Hence, the
exponential version is also provable in PV1. The PV1 proof of the PCP theorem uses (among
many other tools) the exponential PCP theorem but scaled down to constant size instances
so that to prove the scaled down version we need to reason only about sets of constant size.
On the other hand, in APC1 we perform a reasoning with p-time definable sets. Hence, the
APC1 proof shows different tools to be available in low fragments of arithmetic.

4. The Cook-Levin theorem in PV1

This section serves mainly as an illustration of some techniques available in PV1 which we
later use freely in our arguments.

Theorem 4.1. (The Cook-Levin theorem in PV1) For each k, we have a PV -function f
such that PV1 proves: for any M,x,

∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1 ↔ ∃y, |y| ≤ 3|M ||x|2k , SAT (f(M,x), y))

where M(x, z, w) = 1 is an open PV -formula which holds iff w is an accepting computation
of Turing machine M on input x, z, and |M | is the length of M ’s code.

Proof. First, we show that for some PV -function f , PV1 proves (∗):

∀M,x, z, w; |z|, |w| ≤ |x|k∃y; |y| ≤ 3|M ||x|2k (M(x, z, w) = 1 → SAT (f(M,x), y))

The Turing machine M is represented as a binary string encoding a tuple (Q,Σ, b, F, ρ)
where Q is the set of states, Σ is the set of tape symbols, b ∈ Q is the initial state, F ⊆ Q
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is the set of accepting states, and ρ ⊆ ((Q− F ) × Σ) × (Q× Σ × {−1, 1}) is the transition
function.

We assume that the open PV -formulas M(x, z, w) = 1 and SAT (x, y) are already
constructed in a well-behaved way.

The propositional formula f(M,x) will be built from atoms Ti,j,s with intended inter-
pretation “tape cell i of M contains symbol j at step s”, atoms Hi,s for “M ’s head is at
tape cell i at step s”, and atoms Qq,s for “M is in state q at step s”. These atoms are
assumed to be encoded in a standard way.

Given M,x we define f(M,x) gradually by introducing more and more complex func-
tions. This is supposed to illustrate the way in which PV1 introduces new functions.

Let us start with a definition of function finput(x, y) mapping x, y to a conjunction of
|y| atoms representing first |y| bits of binary string x:

finput(x, 0) := 0

finput(x, si(y)) := ′finput(x, y) ∧ T|y|,i,0 ′ if |y| ≤ |x| ∧ x|y| = i , i = 0, 1

where ′A ∧B′ is a code of the conjunction of propositional formulas encoded in A and B.
Next, put fins(M,x) :=′ finput(x, x) ∧Qb,0

′.

Then, define fsymb(M,x, [t, l,m]) =′ fins(M,x)∧G′ whereG is a conjunction of formulas
(Tt′,l′,m′ → ¬Tt′,l′′,m′) for all l′ 6= l′′ and t′,m′ such that [t′, l′,m′], [t′, l′′,m′] ≤ [t, l,m]. This
guarantees that cell t′ ≤ t contains only one symbol at step m′ ≤ m.

fsymb(M,x, 0) := fins(M,x)

fsymb(M,x, si([t, l,m])) := ′fsymb(M,x, [t, l,m]) ∧ (Tt′,l′,m′ → ¬Tt′,l′′,m′) ′

if l′ 6= l′′ ∧ [t′, l′,m′], [t′, l′′,m′] ≤ [t, l,m] , i ∈ {0, 1}
Similarly, define fstate(M,x, [t, l,m]) by extending fsymb(M,x, [t, l,m]) with

1. Qt′,m′ → ¬Qt′′,m′ for t′ 6= t′′ (M cannot be in two different states at step m′)
2. Ht′,m′ → ¬Ht′′,m′ for t′ 6= t′′ (Head cannot be in two different positions at step m′)
3. Tt′,l′′,m′ ∧ Tt′,l′,m′+1 → Ht′,m′ for l′ 6= l′′ and t′, t′′ ≤ t; l′, l′′ ≤ l;m′ ≤ m

Further, in this way introduce function ftrans capturing M ’s transition function ρ.

ftrans(M,x, c) := ′fstate(M,x, [|x|k , |x|k, |x|k])∧
(Hj,c ∧Qq,c ∧ Tj,σ,c →

∨

(q,σ,q′,σ′,d)∈ρ
(Hj+d,c+1 ∧Qq′,c+1 ∧ Tj,σ′,c+1)

′

Finally, f(M,x) :=′ ftrans(M,x, |x|k) ∧∨

r∈F,t≤|x|k Qr,t
′.

This defines a PV -function f . To see that (∗) holds, given M,x,w, we define y assigning
0 or 1 to atoms of the formula f(M,x) as follows:

1. y(Tj,i,0) = 1 iff xj = i for i = 0, 1 and j < |x|.
y(Tj,i,t) = 1 iff w says that tape cell j of M at step t contains i

2. y(Hj,c) = 1 iff w says that at step c head is in position j
3. y(Qr,t) = 1 iff w contains M in state r at step t

Informally, if w indeed encodes an accepting computation of Turing machine M on
input x, z, then the previous definition produces y which satisfies all conjuncts in formula
f(M,x) because these are copying the conditions from the definition of M(x, z, w) = 1.
Therefore, we can conclude that M(x, z, w) = 1 → SAT (f(M,x), y) in the theory PV1.

Analogously, PV1 ⊢ ∀M,x, y,∃w, z(SAT (f(M,x), y) →M(x, z, w) = 1).
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5. The exponential PCP theorem in APC1

The exponential PCP theorem was proved in Arora-Safra [2]. We formalize it in the theory
APC1 basically following the presentation in Arora-Barak [1]. However, there is a crucial
change: we cannot use the Fourier transformation to derive the linearity test because it
would require manipulations with exponentially big objects and it is not clear whether this
could be done (for example, using a representation by circuits). Instead, we formalize the so
called majority correction argument as it is presented in Moshkovitz [21]. Other parts of the
proof work without much change. It is essential that all sets used to express probabilities
are definable by p-size circuits so that APC1 can work with them and the proof itself does
not use more than basic operations on these sets which are available in APC1.

Recall Definition 3.13 introducing the predicate Dπ,w(x). The algorithm D will rep-
resent the so called verifier of probabilistically checkable proofs π. The verifier is usually
defined so that π is allowed to be any string of arbitrary length and D has an oracular access
to π, it can ask for any bit of π. Then, for a language L, L ∈ PCP (poly(n), 1) standardly
means that there is a p-time algorithm D such that:

1. If x ∈ L, then there is a string π (proof) such that D with input x of length n and poly(n)
random bits asks for at most O(1) bits of π and accepts (with probability 1);

2. If x /∈ L, then for any π, D with input x of length n and poly(n) random bits asks for at
most O(1) bits of π and accepts with probability ≤ 1/2.

The exponential PCP theorem says that NP ⊆ PCP (poly(n), 1). As the verifier uses

poly(n) random bits, the proof π can be seen as a string of size 2poly(n). In our formalization,
n ∈ Log so bounded arithmetic cannot encode the exponentially big proofs by binary strings.
In order to be able to speak about them we represent such proofs by p-size circuits. More
precisely, for a k′nk

′
-size circuit π with m inputs and x ∈ {0, 1}m, π(x) is the x-th bit of

the proof represented by π. Hence, the condition 1.) in our formulation of the exponential
PCP theorem will look formally stronger but it follows trivially from the standard proof.
In condition 2.) our D will recognize errors only in proofs that are represented by k′nk

′
-size

circuits. We can interpret it as if the proofs that are not represented by such circuits were
automatically rejected. Alternatively, we could also represent proofs by oracles which would
maybe better reflect the nature of the exponential PCP theorem. However, then we would
need to perform the formalization in the theory APC1 extended by such oracles.

As the NP-completeness of SAT is provable in PV1 it is sufficient to show in APC1 that
SAT ∈ PCP (poly(n), 1). This should justify Theorem 3.8 as the right formulation of the
exponential PCP theorem in APC1.

Proof. (of Theorem 3.8) For any x ∈ {0, 1}n, the algorithm D firstly reduces SAT instance
x to a set of quadratic equations: It obtains 3SAT formula equivalent to x by introducing
new variable for each gate of the formula encoded in x and clauses representing the gate.
For each clause of the form x1 ∨ x2 ∨ x3 it produces two equations (1 − x1)y = 0 and
y − (1 − x2)(1 − x3) = 0 where y is a new variable. Analogously for other possible clauses,
if some xi occurs in the clause negatively, 1 − xi in the resulting equations is replaced by
xi. In this way D produces a set of quadratic equations which is solvable in F2 if and only
if x is satisfiable. More precisely, there is k0 such that if x encodes a propositional formula
with n0 variables it can be efficiently mapped to a set of m ≤ |x|k0 quadratic equations on
n1 ≤ |x|k0 variables u1, ..., un1 (w.l.o.g. u1 = 1). The set of equations can be represented
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by an m× n21 matrix A and a string b ∈ {0, 1}m satisfying:

∃y SAT (x, y) → ∃u Au⊗ u = b

∀y ¬SAT (x, y) → ∀u Au⊗ u 6= b

where u ∈ {0, 1}n1 and u⊗ u is a vector of bits uiuj , i, j ∈ [n1] ordered lexicographically.

The algorithm D will interpret k′nk
′
-size circuits π with n21+n1+1 inputs b, z, z′, where

b ∈ {0, 1}, z ∈ {0, 1}n1 , z′ ∈ {0, 1}n2
1 , as circuits allowing us to access functions fπ = WH(u)

and gπ = WH(u ⊗ u) for some u ∈ {0, 1}n1 in the following way, π(0, z, z′) = WH(u)(z)
and π(1, z, z′) = WH(u ⊗ u)(z′). Here, WH(u)(z) := Σn1

i=1uizi mod 2. Similarly for
WH(u⊗ u)(z′). WH stands for “Walsh-Hadamard”.

For any x ∈ {0, 1}n, the algorithm D with ≤ knk random bits w = rl1, ..., r
l
7 for

l = 1, ...,m0, where m0 is a constant, rl1, r
l
2, r

l
3 ∈ {0, 1}n1 , rl4, r

l
5, r

l
6 ∈ {0, 1}n2

1 , rl7 ∈ {0, 1}m
and with access to an k′nk

′
-size circuit π accepts if and only if for each l = 1, ...,m0, π

passes the following tests

• “linearity”: f(rl1 + rl2) = f(rl1) + f(rl2) and g(rl4 + rl5) = g(rl4) + g(rl5)
• “gπ encodes u⊗ u”: g′(rl1 ⊗ rl2) = f ′(rl1)f ′(rl2)
• “gπ encodes a satisfying assignment”: g′(z) = Σm

i=1(r
l
7)ibi for z representing the sum

Σm
i=1(r

l
7)i(Aiu⊗ u) where Aiu⊗ u is the lefthand-side of the i-th equation in Au⊗ u = b

Here, f = fπ, g = gπ, f ′(rl1) = f(rl1 + rl3) + f(rl3), f
′(rl2) = f(rl2 + rl3) + f(rl3) and similarly

g′(rl1 ⊗ rl2) = g(rl1 ⊗ rl2 + rl6) + g(rl6), g′(z) = g(z + rl6) + g(rl6).

For any x ∈ {0, 1}n, if ∃ySAT (x, y) then there is u ∈ {0, 1}n1 solving the corresponding

equations Au⊗ u = b. Thus there is a k′nk
′
-size circuit π with n21 + n1 + 1 inputs given by

π(0, z, z′) := WH(u)(z) and π(1, z, z′) := WH(u⊗u)(z′) which passes all the tests: for any
w, the linearity is clearly satisfied by the definition. Further:

g′(rl1 ⊗ rl2) = g(rl1 ⊗ rl2 + rl6) + g(rl6) = g(rl1 ⊗ rl2) = Σn1
i,j=1uiuj(r

l
1)i(r

l
2)j

= Σn1
i=1ui(r

l
1)iΣ

n1
j=1uj(r

l
2)j = f(r)f(r′) = f ′(r)f ′(r′)

and as Au⊗ u = b also g′(z) = Σm
i=1(r

l
7)ibi.

Now we will show that the algorithm D recognizes incorrect proofs with high probability.
The argument relies on the Test of linearity which we prove in Section 5.1.

Proposition 5.1 (Test of linearity in APC1). Let ǫ be sufficiently small, ǫ−1 ∈ Log and
let f be a function on n1 ∈ Log inputs represented by a circuit such that for each linear
function g with n1 inputs,

Prx∈{0,1}n1 [f(x) = g(x)]ǫ < p

Then Prx,y[f(x+ y) = f(x) + f(y)]ǫ �11ǫ+13ǫ2+2ǫ3 max{29/32, 1/2 + p/2}.
(We abuse the notation and use f also in place of circuits representing f . Note that g is
represented by n1 coefficients.)

Claim 5.2 (Local decoding in APC1). Let s < 1/4, ǫ ≤ 1 and f be a function on n1 ∈
Log inputs represented by a circuit such that there is a linear function fl which satisfies
Prx<2n1 [f(x) = fl(x)]ǫ ≥ 1 − s. Then for each x < 2n1 ,

Prr<2n1 [fl(x) = f(x+ r) + f(r)]ǫ �6ǫ 1 − 2s.

Proof. (of the claim) By the assumption and Proposition 2.9 1.i), for x < 2n1 ,
{r|f(r) 6= fl(r)} ∩ 2n1 �2ǫ s2

n1 and {r|f(x + r) 6= fl(x + r)} ∩ 2n1 �2ǫ s2
n1 which implies
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{r|f(r) 6= fl(r) ∨ f(x+ r) 6= fl(x + r)} ∩ 2n1 �4ǫ 2s2n1 . By linearity of fl, for any x < 2n1 ,
{r|fl(x) 6= f(x+ r) + f(r)} ⊆ {r|fl(r) 6= f(r) ∨ fl(x+ r) 6= f(x+ r)}.

Thus, Prr[fl(x) = f(x+ r) + f(r)]ǫ �6ǫ 1 − 2s, which proves the claim.

Assume that ∀y¬SAT (x, y), so ∀u,Au ⊗ u 6= b and let π be arbitrary circuit of size

k′nk
′
. Further, let ǫ be sufficiently small, ǫ−1 ∈ Log and denote by Dπ,w

1 (x), Dπ,w(x) with
m0 = 1, i.e. D performing only one round of testing.

If for each linear function gl, Pr
x∈{0,1}n2

1
[g(x) = gl(x)]ǫ < 31/32 or for each linear

function fl, Prx∈{0,1}n1 [f(x) = fl(x)]ǫ < 31/32, then by the test of linearity, we have

Prw[Dπ,w
1 (x) = 1]ǫ �13ǫ+13ǫ2+2ǫ3 63/64. Otherwise, there are linear functions gl, fl such

that by local decoding, for each x ∈ {0, 1}n2
1 , it holds Prr[gl(x) = g′(x)]ǫ �6ǫ 15/16 where

g′(x) = g(x + r) + g(r) and for each x ∈ {0, 1}n1 , Prr[fl(x) = f ′(x)]ǫ �6ǫ 15/16 where
f ′(x) = f(x+ r) + f(r).

We need to show that even in the latter situation verifier D accepts with small probabilty.
For this, we distinguish two cases: 1. gl 6= WH(u ⊗ u), i.e. ∃x, y, gl(x ⊗ y) 6= fl(x)fl(y);
2. gl = WH(u ⊗ u). Here, by the linearity of fl, we have fl = WH(u) for some u and
flfl = WH(u⊗ u).

Claim 5.3. If gl 6= WH(u⊗ u), then Prr1,r2 [gl(r1 ⊗ r2) 6= fl(r1)fl(r2)] �2ǫ 1/4

Proof. Let U,W be matrices such that gl(x⊗ y) = xUy and fl(x)fl(y) = xWy.
If U 6= W , then {r2 ∈ 2n1 |Ur2 6= Wr2} �0 2n1/2 as witnessed by the following circuit:

Let (i, j) be a position where U and W differ. Consider the circuit mapping r2 from
{r2 ∈ 2n1 |Ur2 6= Wr2} to r̂2 where r̂2 < 2n1/2 is obtained from r2 by erasing its jth

bit (r2)j . For each r2 < 2n1/2, let r02 < 2n be such that r2 = r̂02 and (r02)j = 0 and let

r12 < 2n1 be such that r2 = r̂12 and (r12)j = 1. Then, for each r2 < 2n/2, r02 or r12 is in
{r2 ∈ 2n1 |Ur2 6= Wr2}.

Furthermore, if U 6= W , we similarly observe that {r1 ∈ 2n1 |r1Ur2 6= r1Wr2} �0 2n/2
for each r2 < 2n1 . Hence, by Proposition 2.9 2., {〈r1, r2〉 |gl(r1⊗r2) 6= fl(r1)fl(r2)} �ǫ 22n/4.
This proves the claim.

Suppose now that gl 6= WH(u⊗ u). As {〈r1, r2〉 |g′(r1 ⊗ r2) = f ′(r1)f ′(r2)} is a subset
of

{

〈r1, r2〉 | g′(r1 ⊗ r2) = gl(r1 ⊗ r2) ∧ gl(r1 ⊗ r2) = fl(r1)fl(r2)

∧ f ′(r1) = fl(r1) ∧ f ′(r2) = fl(r2)
}

∪
{

〈r1, r2〉 | g′(r1 ⊗ r2) 6= gl(r1 ⊗ r2) ∨ f ′(r1) 6= fl(r1) ∨ f ′(r2) 6= fl(r2)
}

which is �28ǫ 15/16(22n1 ) by Claim 5.3, we can conclude that

Prw[Dπ,w
1 (x) = 1]ǫ �2ǫ Prr1,r2 [g′(r1 ⊗ r2) = f ′(r1)f ′(r2)]ǫ �28ǫ 15/16.

It remains to consider the case that gl = WH(u⊗u). For each u < 22n1 , R = {r|Σiri(Aiu⊗
u) 6= Σiribi}∩2m �0 2m/2 as it is witnessed by the following circuit. Let j be the first such
that Aju⊗u 6= bj. The circuit maps each r ∈ R to r̂ where r̂ < 2m/2 is obtained from r by

erasing its jth bit rj. For each r < 2m/2, let r0 < 2m be such that r = r̂0 and r0j = 0 and

let r1 < 2m be such that r = r̂1 and r1j = 1. Then, for each r < 2m/2, r0 ∈ R or otherwise

Σir
0
i (Aiu⊗ u) = Σir

0
i bi and hence r1 ∈ R.
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Furthermore, assuming gl = WH(u⊗ u), {r|g′(z) = Σiribi} is a subset of

{r|Σri(Aiu⊗ u) = Σiribi ∧ gl(z) = g′(z)} ∪ {r|gl(z) 6= g′(z)}
Thus, Prw[Dπ,w

1 (x) = 1]ǫ �2ǫ Prr[g
′(z) = Σiribi]ǫ �10ǫ 9/16.

In all cases, Prw[Dπ,w
1 (x) = 1]ǫ �28ǫ 63/64 so

{w ∈ 23n1+n2
1+m|Dπ,w

1 (x) = 0} �30ǫ 1/64(23n1+n2
1+m)

Therofore, for sufficiently big constant m0, Chernoff’s bound from Proposition 2.9 with
δ2 := c30ǫ + 1/1002 and sufficiently small ǫ implies that Pr

w<2knk [Dπ,w(x) = 1] �0 1/2.

To conclude the proof of the exponential PCP theorem in APC1 it thus remains to
derive the Test of linearity.

5.1. Test of linearity in APC1. In this section we prove Proposition 5.1 in the theory
APC1.

We cannot use the Fourier transformation argument directly as in Arora-Barak [1]
which would require to prove the existence of exponentially long Fourier expansions (and it
is not clear if this could be managed, for example, using a representation by p-size circuits).
Instead we formalize the so called majority correction argument. Our presentation is a
minor modification of Moshkovitz [21].

Let ǫ > 0 be sufficiently small and ǫ−1 ∈ Log. Define gǫ : 2n 7→ 2 by

gǫ(x) = 1 ≡def Pry<2n [f(y) + f(x+ y) = 1]ǫ ≥ 1/2

Therefore, for any x < 2n, Px := Pry<2x [gǫ(x) = f(y) + f(x+ y)]ǫ ≥ 1/2. Hence, gǫ(x)
is the majority value of the expression f(y) + f(x+ y) for possible y’s.

We will now derive three claims that can be combined into a proof of Proposition 5.1.

Claim 5.4. Pr〈x,y〉[f(x+ y) 6= f(x) + f(y)]ǫ �8ǫ+13ǫ2+2ǫ3
1
2Prx[f(x) 6= gǫ(x)]ǫ

Proof. This holds trivially if Size({x|gǫ(x) 6= f(x)} ∩ 2n, ǫ) = 0. Otherwise, define sets

T := {〈x, y〉 |f(x+ y) 6= f(x) + f(y)} and G := {x|gǫ(x) 6= f(x)}.
Then,

Prx<2n,y<2n [f(x+ y) 6= f(x) + f(y)]ǫ

≥ Size(T ∩ (G× 2n) ∩ 22n, ǫ)/22n

=
Size((G ∩ 2n) × 2n, ǫ)

22n
· Size(T ∩ (G× 2n) ∩ 22n, ǫ)

Size((G ∩ 2n) × 2n, ǫ)

By Proposition 2.8 iii), (G ∩ 2n) × 2n ≈ǫ Size(G ∩ 2n, ǫ)2n, so the first fraction in the
expression above is ≈2ǫ Prx<2n [gǫ(x) 6= f(x)]ǫ.

Further, for each x ∈ G ∩ 2n, Px ≥ 1/2 and in particular, 2n/2 �ǫ Tx = {y| 〈x, y〉 ∈ T}.
Hence, by Proposition 2.9 2., Size(G, ǫ)2n/2 �3ǫ+ǫ2 T ∩ (G× 2n), and

Size(T ∩ (G× 2n) ∩ 22n, ǫ)

Size((G ∩ 2n) × 2n, ǫ)
�4ǫ+ǫ2

Size(G, ǫ)2n

2Size((G ∩ 2n) × 2n, ǫ)
�2ǫ 1/2

Applying now Proposition 2.8 iii) we obtain Claim 5.4.
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Claim 5.5. If Pr〈x,y〉[f(x+ y) 6= f(x) + f(y)]ǫ <
3
32 , then ∀x < 2n, Px >

3
4 .

Proof. Fix x < 2n and define

A := {〈y, z〉 |gǫ(x) = f(y) + f(x+ y) ∧ gǫ(x) = f(x+ z) + f(z)}
B := {〈y, z〉 |gǫ(x) 6= f(y) + f(x+ y) ∧ gǫ(x) 6= f(x+ z) + f(z)}

Then, Pry,z[f(y) + f(x+ y) = f(z) + f(x+ z)]ǫ = Pry,z[〈y, z〉 ∈ A ∪B]ǫ.
By 2.9 1.ii), (A∪B)∩22n = (A∩22n)∪ (B∩22n) ≈3ǫ Size(A∩22n, ǫ)+Size(B ∩22n, ǫ).

Thus, Pry,z[〈y, z〉 ∈ A ∪B]ǫ ≈4ǫ Pry,z[〈y, z〉 ∈ A] + Pry,z[〈y, z〉 ∈ B].
Next, let A′ := {y|gǫ(x) = f(x+ y) + f(x)}. Using Proposition 2.8 iii) twice, A∩ 22n is

(A′∩2n)× (A′∩2n) ≈2ǫ Size(A
′∩2n, ǫ)Size(A′∩2n, ǫ). Therefore, Pry,z[〈y, z〉 ∈ A] ≈3ǫ P

2
x .

As by Proposition 2.9 1.i), {y|gǫ(x) 6= f(x + y) + f(y)} ∩ 2n = 2n − A′ ∩ 2n is ≈2ǫ

2n − Size(A′ ∩ 2n, ǫ), we analogously obtain Pry,z[〈y, z〉 ∈ B] ≈9ǫ (1 − Px)2. Therefore,
Pry,z[f(y) + f(y + x) = f(z) + f(x+ z)] ≈17ǫ P

2
x + (1 − Px)2.

Define now,
C := {〈y, z〉 |f(y + z) 6= f(y) + f(z)}
D := {〈y, z〉 |f(y + z) 6= f(x+ y) + f(x+ z)}

Then, 22n − (C ∩ 22n) ∪ (D ∩ 22n) ⊆ (A ∪ B) ∩ 22n and by Proposition 2.8 i) we have
22n − (C ∩ 22n) ∪ (D ∩ 22n) �0 (A ∪B) ∩ 22n.

By Proposition 2.9 1.ii), (C ∩ 22n) ∪ (D ∩ 22n) �3ǫ Size(C ∩ 22n, ǫ) + Size(D ∩ 22n, ǫ),
so 22n − Size(C ∩ 22n, ǫ) − Size(D ∩ 22n, ǫ) �4ǫ 22n − (C ∩ 22n) ∪ (D ∩ 22n).

Moreover, by the assumption, Pry,z[f(y) + f(z) 6= f(y + z)]ǫ < 3/32 and similarly,
Pry,z[f(y + z) 6= f(x+ y) + f(x+ z)]ǫ < 3/32. Therefore,

Pry,z[f(y) + f(x+ y) = f(z) + f(x+ z)]ǫ �5ǫ 13/16

This shows that P 2
x + (1 − Px)2 �22ǫ

13
16 and 2(Px − 1

4)(Px − 3
4) + 10

16 �22ǫ
13
16 . As Px ≥ 1/2,

Px < 3/4 would imply 10
162n �22ǫ

13
162n contradicting dual weak pigeonhole principle. Hence,

Claim 5.5 follows.

Claim 5.6. If Prx,y[f(x+ y) 6= f(x) + f(y)]ǫ < 3/32, then gǫ is linear.

Proof. By Claim 5.5, ∀x, y < 2n,

Prz[gǫ(x) 6= f(x+ z) + f(z)]ǫ �3ǫ 1/4

Prz[gǫ(y) 6= f(y + z) + f(z)]ǫ �3ǫ 1/4

Prz[gǫ(x+ y) 6= f(y + z) + f(z + x)]ǫ �3ǫ 1/4

Therefore,

Prz[gǫ(x) = f(x+ z) + f(z) ∧ gǫ(y) = f(y + z) + f(z)

∧ gǫ(x+ y) = f(y + z) + f(z + x)]ǫ �16ǫ 1/4

The last estimation implies that if ǫ is sufficiently small, there exists z0 (and we can efficiently
find it) such that

gǫ(x) = f(x+ z0) + f(z0)

gǫ(y) = f(y + z0) + f(z0)

gǫ(x + y) = f(y + z0) + f(z0 + x)

which shows that gǫ(x) + gǫ(y) = gǫ(x+ y) and proves Claim 5.6.
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We can now derive Proposition 5.1. Assume that for each linear function g we have
Prx[g(x) = f(x)]ǫ < p. By Claim 5.6, Prx,y[f(x+ y) 6= f(x) + f(y)]ǫ ≥ 3/32 or gǫ is linear.
This means that either Prx,y[f(x + y) = f(x) + f(y)]ǫ �3ǫ 29/32 or Prx[gǫ(x) = f(x)] < p.
In the latter case, Prx[gǫ(x) 6= f(x)] �3ǫ 1 − p and by Claim 5.4,
Prx,y[f(x+ y) = f(x) + f(y)]ǫ �11ǫ+13ǫ2+2ǫ3 1/2 + p/2.

6. Pseudorandom constructions in PV1

In order to derive the PCP theorem in PV1 we will need to prove in the theory PV1 the
existence and some properties of the (n, d, λ)-graphs (see their definition below). While the
construction itself is very combinatorial, its analysis uses algebraic techniques, e.g. proper-
ties of eigenvectors, which we do not know how to formalizable in PV1.

Using an equivalent combinatorial definition of the (n, d, λ)-graphs it is possible to
derive their existence and main properties by only combinatorial tools. However, we need
it for the algebraic equivalent and the implication producing the algebraic (n, d, λ)-graphs
from the combinatorial (n, d, λ)-graphs is one of those which seem to require the algebraic
techniques we are trying to avoid.

Therefore, we will employ an approximation of some algebraic tools which will allows
us to derive slightly weaker results about the algebraic (n, d, λ)-graphs that are, however,
sufficient to derive the PCP theorem.

For the history of the field leading to the results presented in this section see Arora-
Barak [1, Chapter 21].

6.1. Definition and some properties of the (n, d, λ)-graphs. In PV1 we say that a
graph G is d-regular if each vertex appears in exactly d edges. We allow G to have multiple
edges and self-loops. The random-walk n×nmatrix A of a d-regular graph G with n vertices
consists of elements Ai,j being the number of edges between the i-th and the j-th vertex in
G divided by d. All our graphs will be undirected, hence, their random-walk matrices will
be symmetric. For any k and a graph G with n vertices, we denote by Gk the graph with n
vertices which has an edge between the ith and the jth vertex for each k step path between
the ith and the jth vertex in G.

We would like to define now the second largest eigenvalue of G denoted as λ(G). The
parameter λ(G) corresponds to a certain expansion property of G (see Proposition 6.4) and
normally it is defined as the maximum value of ||Ax|| over all vectors x in n-dimensional

real vector space such that ||x|| = 1 and Σixi = 0. Here, ||y|| = (Σiy
2
i )1/2 and A is the

random-walk matrix of graph G with n vertices. In PV1 we will approximate this definition
using a sufficiently dense net of rational numbers.

The theory PV1 proves that each x is the value of an expression of the form Σ
|x|
i=02

iyi
for yi ∈ {0, 1} which is encoded in a natural way. In PV1 we write that x ∈ Qn/m if
x = (x1, ..., xn) and each xi is a

b or −a
b for a ∈ [m] ∪ {0}, b ∈ [m] = {1, ...,m} where a, b

are represented by products of such expressions Σi2
iyi, yi ∈ {0, 1}. These products are

also encoded in a natural way. In such cases we might write a = c · d to specify that a is
represented by a product of c and d where c, d might be products of other expressions of
the form Σi2

iyi.
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Let L be a sufficiently big constant, then SQRT is a function which given nonnegative
r ∈ Q/m, m > 1, produces SQRT (r) ∈ Q/(Lm)7 such that

0 ≤ (SQRT (r))2 − r ≤ 1

L

where we ignore the difference between SQRT (r) and the value of the expression it encodes.
Moreover, SQRT satisfies the following: If input r is a fraction of the form c·c·e

d·d·f ∈ Q/m

where c, d are sums Σi2
iyi with yi ∈ {0, 1} (and e, f might be products of such sums), then

SQRT (
c · c · e
d · d · f ) =

c

d
· SQRT (

e

f
) (∗)

which is illustrating the representation of the number encoded in SQRT (r). The represen-

tation of c2e
d2f guarantees that SQRT does not need to perform factorization.

The function SQRT is essentially the usual algorithm approximating square root by
a digit-by-digit search. We will assume that SQRT works as follows: given r ∈ Q/m, it
first finds out maximal e, f ∈ [m] such that the current representation of r is e·e

f ·f
p
q for

some p, q ∈ [m], and then by a digit-by-digit search it finds the first c ∈ [L7m6] such that
SQRT (r) which is ec

2fLqm4 ∈ Q/(Lm)7 satisfies 0 ≤ ( ec
2fLqm4 )2 − r ≤ 1

L . To get such c we

want to satisfy c2 − 4pqL2m8 ≤ 4Lm6. Thus c ≤ 2
√
pqLm4 + 2

√
Lm3 ≤ 7m6. The value

c is then produced by a p-time algorithm approximating 2
√
pqLm4 so it is unique and its

existence is provable in PV1.

For x ∈ Qn/m, put ||x|| := SQRT (Σix
2
i ) where the input Σix

2
i ∈ Q/(nm2n) is computed

so that if each xi = ±aic
bid

for some common c, d, then Σix
2
i is represented as e·c·c

f ·d·d for some

e, f .
By the definition, if x ∈ Qn/m, x 6= 0, then x

||x|| ∈ Qn/((Lnm2n)7m) and using (∗),

|| x
||x|| || = 1. Note that ||x|| might be a fraction so we assume that x

||x|| is rearranged

appropriately.
However, by ||x||2 we always mean 〈x, x〉 where 〈x, y〉 := Σixiyi for x, y ∈ Q/m. The

n-dimensional unite vector is defined as 1 := (1/n, ..., 1/n).

The parameter λ(G) is defined as the maximum value of ||Ax|| over all possible vec-

tors x ∈ Qn/(Ln)(Ln)
L

such that ||x|| = 1 and 〈x,1〉 = 0. Here again, the vector

Ax ∈ Qn/(n(d(Ln)(Ln)
L

)n) (with elements of length poly(n)) is computed so that if each
xi = ±aic

bid
for some common c, d, then (Ax)j = ± c·ej

d·fj for some ej , fj.

We will not need to prove ∃y, y = λ(G) in PV1 but we will work with formulas of the
form λ(G) ≤ y which are Πb

1. To see this note that in λ(G) ≤ y we universally quantify

over all x’s in Qn/(Ln)(Ln)
L

. For each j, there are ≤ mj ways how to represent b ∈ [m] as

a product of j numbers so this is a universal quantification over ≤ 2n
O(1)

x’s. For each such
x, predicates ||x|| = 1 and ||Ax|| ≤ y are computable in time nO(1).

Definition 6.1. A d-regular graph G with n vertices is (n, d, λ)-graph if λ(G) ≤ λ < 1.

We will often use Cauchy-Schwarz inequality in PV1 which can be obtained in the
standard way.

Proposition 6.2. (Cauchy-Schwarz inequality in PV1) For every n,m and x, y ∈ Qn/m,

〈x, y〉2 ≤ ||x||2 · ||y||2 and therefore, if n ∈ Log (and thus ||x|| exists), also 〈x, y〉 ≤ ||x|| · ||y||.
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Proof. If y = 0, the inequality holds. Otherwise, let z := x − 〈x,y〉
〈y,y〉y. Then, 〈z, y〉 =

〈x, y〉 − 〈x,y〉
〈y,y〉 〈y, y〉 = 0. Therefore, ||x||2 = ( 〈x,y〉〈y,y〉)

2||y||2 + ||z||2 = 〈x,y〉2
||y||2 + ||z||2 ≥ 〈x,y〉2

||y||2 .

In Peano Arithmetic, regular graphs G satisfy λ(G) ≤ 1 but in PV1 we will have just
λ(G) ≤ 1 + ǫ + 1/L for any rational ǫ > 0. Fortunately, this is enough to derive the PCP
theorem in PV1.

Proposition 6.3. For any d and any rational ǫ > 0, PV1 proves that for any d-regular
graph G with n ∈ Log vertices, λ(G) < 1 + ǫ+ 1/L.

Proof. As the statement we want to prove is ∀Σb
1, by ∀Σb

1-conservativity of S1
2 over PV1, we

can work in the theory S1
2 .

Let A be the random-walk matrix of G. We want to show that λ(G) < 1 + ǫ + 1/L.

Using Cauchy-Schwarz inequality, for every x ∈ Qn/(Ln)(Ln)
L

such that ||x|| = 1,

||Ax||2 = Σi(ΣjAi,jxj)
2 ≤ Σi(ΣjA

2
i,jΣjx

2
j) ≤ ΣiΣjA

2
i,j ≤ ΣiΣjAi,j = Σi1 = n

As Ai,j = Aj,i, we have 〈x,Ay〉 = Σi(xiΣjAi,jyj) = Σj(yjΣi(xiAj,i)) = 〈Ax, y〉 and

||Ax||4 = 〈Ax,Ax〉2 =
〈

A2x, x
〉2 ≤ ||A2x||2 where A2 is the random-walk matrix of G2, so

also ||A2x||2 ≤ n and ||Ax||4 ≤ n. This shows that

∀k ≤ K log log n (∀A, ||Ax||2 ≤ n1/(2
k) → ∀A, ||Ax||2 ≤ n1/(2

k+1))

where K is a sufficiently big constant depending only on ǫ and the universal quantifier before
A goes only over random-walk matrices of d-regular graphs with n vertices. Note also that

n1/(2
k) might be irrational but we can assume that it is approximated with a sufficiently

small constant error so that the predicate ||Ax||2 ≤ n1/(2
k) is Πb

1.

Then, by Πb
1-LLIND (available in S1

2), we have ∀A, ||Ax||2 ≤ n1/(log n)
K

which is <
(1 + ǫ)2 by the choice of K and therefore ||Ax|| ≤ 1 + ǫ+ 1/L.

We can now prove that the (n, d, λ)-graphs satisfy a useful expansion property. The
term λd

Ln2 occuring in its formulation is an error resulting from our approximations in PV1.

Proposition 6.4. (in PV1) If G is (n, d, λ)-graph with n ∈ Log vertices V and edges E,
then for every S ⊆ V, |S| ≤ n/2,

|E(S, V − S)| ≥ d|S|(1 − λ)

2
− λd

Ln2

where E(S, T ) denotes the set of edges (i, j) ∈ E with i ∈ S, j ∈ T .

Proof. It suffices to show:

|E(S, V − S)| ≥ (1 − λ)
d|S||V − S|

n
− λ

Ln2

Let x ∈ Qn/n be the following vector: xi = |V − S| if i ∈ S and xi = −|S| if i ∈ V − S.
Put Z := Σi,jAi,j(xi − xj)

2 for the random-walk matrix A of G. Then,
Z = 2

d |E(S, V − S)|(|S| + |V − S|)2. As A’s rows and columns sum up to one, we have also

Z = Σi,jAi,jx
2
i − 2Σi,jAi,jxixj + Σi,jAi,jx

2
j = 2||x||2 − 2 〈x,Ax〉
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Further, Σxi = 0 and x
||x|| ∈ Qn/((Lnn2n)7n) so ||Ax|| = ||A x

||x|| ||||x|| ≤ λ||x||. By Cauchy-

Schwarz inequality, 〈x,Ax〉 ≤ ||x|| · ||Ax||. Therefore,

1

d
|E(S, V − S)|(|S| + |V − S|)2 ≥ (1 − λ)||x||2 − λ/L

It remains to observe that ||x||2 = |S||V − S|(|S| + |V − S|)
In the following proposition we use the notion of probability Pr on sets of polynomial

size poly(n) for n ∈ Log. We assume that this is defined in PV1 in a natural way using an
exact counting of sets of polynomial size poly(n), n ∈ Log which is also definable in PV1 in
a usual way. This should not be confused with the definition of Pr in APC1.

Proposition 6.5. For any d, l < L, PV1 proves that for each (n, d, λ)-graph G with n ∈ Log
vertices V , for any S ⊆ V, |S| ≤ |V |/2,

Pr(i,j)∈E(Gl)[i ∈ S ∧ j ∈ S] ≤ |S|
|V |(

|S|
|V | + 2λl)

where E(Gl) denotes the set of all edges in Gl.

Proof. For empty S the statement holds. Otherwise put S := {i1, ..., i|S|}. If 〈x,1〉 = 0,

then 〈Ax,1〉 = 0 for the random-walk matrix A of G. As Al is the random-walk matrix

of dl-regular graph Gl, Al−1 ∈ Qn×n/dl−1 and Al−1x
||Al−1x|| ∈ Qn/(Ln((dl−1n)nn)2n)7(dl−1n)nn

for x ∈ Qn/n. By the choice of d, l, this does not exceed the range (Ln)Ln
L

and we can
apply λ(G) ≤ λ to obtain ||Alx|| ≤ λl||x|| for any x ∈ Qn/n with 〈x,1〉 = 0. Now, use the
inequality from the proof of Proposition 6.4:

|E(S, V − S)|
dl

≥ |S||V − S|(1 − λl)

|V | − λl

Ln2

Then, Pr(i,j)∈E(Gl)[i ∈ S ∧ j ∈ S] = 1
|V |Σ

|S|
m=1(1 − Pr[j /∈ S|i = im]) is

|S|
|V |(1 − Σ

|S|
m=1

|E(im, V − S)|
|S|dl ) =

|S|
|V |(1 − |E(S, V − S)|

|S|dl ) ≤ |S|
|V |(

|S|
|V | + 2λl)

6.2. A technical tool. Sometimes we will need to use an assumption which has the form

“||Ax|| ≤ λ for x ∈ Qn/(Ln)(Ln)
L

” even for x’s exceeding the range fixed by (Ln)(Ln)
L

. We
will now prove a simple approximation lemma which allows this in some cases. It illustrates
a type of approximation which we use more often. The matrix A in its formulation will not
need to represent a random-walk matrix. In our applications A will be a result of certain
operations on random-walk matrices.

Proposition 6.6. (in PV1) Let A be an n × n matrix of elements from Q/(2L2n5d), for

n ∈ Log. Further, let s ∈ Log. If ||Ax||2 ≤ y(||x||2 + 1/L) for any x ∈ Qn/(Ln)(Ln)
L
, then

for any x ∈ Qn/m,

||Ax||2 ≤ (y(1 +
1

L
) +

1

L
)(||x||2 +

1

Ls
)
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Proof. For x ∈ Qn/m and s ∈ Log, define ||x||′ in the same way as ||x|| but with SQRT
redefined so that 0 ≤ (SQRT (||x||2))2 − ||x||2 ≤ 1/(Ls).

It suffices now to approximate x
||x||′ , x 6= 0 by c ∈ Qn/(Ln)(Ln)

L
with ||c||2 ≤ 1 such

that |||A x
||x||′ ||2 − ||Ac||2| ≤ 1

L . Then,

||Ax||2 ≤ ||A x
||x||′ ||2(||x||2 + 1

Ls) ≤ (y(||c||2 + 1/L) + 1
L)(||x||2 + 1

Ls) ≤
≤ (y(1 + 1/L) + 1

L)(||x||2 + 1
Ls)

The approximation: for each i, | xi

||x||′ | ≤ 1 so we can find ci (i.e. PV1 can prove its

existence) such that 0 ≤ xi

||x||′ − ci ≤ 1/(18L5n13d2). Then ||c||2 ≤ || x
||x||′ ||2 ≤ 1 and

for each l, |Al,i
xi

||x||′ − Al,ici| ≤ 1/(9L3n8d). Hence, |(A x
||x||′ )l − (Ac)l| ≤ 1/(9L3n7d). As

(A x
||x||′ )l, (Ac)l ≤ 3L2n6d, we can conclude |||A x

||x||′ ||2 − ||Ac||2| ≤ 1/L

Using a similar approximation, we will derive one more useful lemma.

For any n × n matrix A with elements from Q/m, we say that ||A|| ≤ 1 iff for every

x ∈ Qn/(Ln)(Ln)
L

, ||Ax||2 ≤ (1 + 2/L)(||x||2 + 1/L).

Proposition 6.7. For any λ and d < L, PV1 proves the following. Let A be a random-walk
matrix of a d-regular graph G with n ∈ Log vertices such that λ(G) ≤ λ ∈ Q/(Ln2). Let J
be n× n matrix such that Ji,j = 1/n for every i, j. Then,

A = (1 − λ)J + λC

for some C with ||C|| ≤ 1

Proof. Define C := 1
λ(A − (1 − λ)J) ∈ Qn×n/(2L2n5d). We want to prove that for any

x ∈ Qn/(Ln)(Ln)
L

, ||Cx||2 ≤ (||x||2 + 1/L)(1 + 2/L). Decompose x as x = α1 + y for some

α ∈ Q/((Ln)(Ln)
L

)n+1 where 〈1, y〉 = 0.
Similarly as in Proposition 6.6, approximate y

||y|| by vector c with ||c||2 ≤ 1 so that

||A y
||y|| ||2 ≤ ||Ac||2 + λ2/L and c

||c|| ∈ Qn/(Ln)(Ln)
L

. This time we can do it without the

absolute value because all elements of A are positive. Note also that for d < L the range of
c

||c|| does not exceed (Ln)(Ln)
L

.

Since A1 = 1 and J1 = 1, we have Cα1 = α1. As 〈y,1〉 = 0, Jy = 0 and Cy = 1
λAy.

Using 〈Ay,α1〉 = 0 and ||Ac|| ≤ λ||c||, we obtain,

||Cx||2 = ||α1 + 1
λAy||2 = ||α1||2 + || 1λAy||2 ≤ ||α1||2 + 1

λ2 (||Ac||2 + λ2

L )(||y||2 + 1
L) ≤

||α1||2 + (1 + 2/L)(||y||2 + 1/L) ≤ (1 + 2/L)(||x||2 + 1/L)

6.3. The tensor product. The explicit construction of the (n, d, λ)-graphs needs two
graph products, the tensor product and the replacement product, which we describe in this
and the next section. More details about the tensor product and the replacement product
can be found in [1, Section 21.3.3] resp. [1, Section 21.3.4] .

Definition 6.8. (in PV1) If A = {ai,j}i,j=1,...,n is the n×n random-walk matrix of d-degree
graph G and A′ = {a′i′,j′} is the n′ × n′ random-walk matrix of d′-degree graph G′, then

the random-walk matrix of G ⊗G′, denoted as A⊗ A′ is the nn′ × nn′ matrix that in the
〈i, i′〉th row and the 〈j, j′〉th column has the value ai,ja

′
i′,j′ .
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This means that G⊗G′ has a cluster of n′ vertices for every vertex in G. If (i, j) is an
edge in G and (i′, j′) is an edge in G′, then there is an edge between the i′-th vertex in the
cluster corresponding to i and the j′-th vertex in the cluster corresponding to j. Therefore,
G⊗G′ has degree d′d and nn′ vertices. We can see matrix A⊗A′ as consisting of blocks of
the form ai,jA

′, that is, intuitively, A ⊗ A′ is matrix A with elements multiplied by copies
of A′.

In Peano Arithmetic, λ(G ⊗ G′) ≤ max{λ(G), λ(G′)} for regular graphs G,G′. The
standard derivation of this bound uses the existence of an orthogonal basis of eigenvectors for
symmetric matrices which uses the fundamental theorem of algebra (applied to determinant
of matrix A−xI consisting of exponentially many terms). We do not know how to formalize
this in PV1. Instead, we will derive a weaker bound which is sufficient for our purposes.

Note first a simple consequence of Cauchy-Schwarz inequality.

Proposition 6.9. (in PV1) For every two n × n matrices A,B and x ∈ Qn/m where

n ∈ Log, we have ||(A +B)x|| ≤ ||Ax|| + ||Bx|| + 1/L1/2.

Proof. ||(A+B)x||2 = 〈(A+B)x, (A+B)x〉 = ||Ax||2 + 2 〈Ax,Bx〉 + ||Bx||2 ≤
≤ ||Ax||2 + 2||Ax||||Bx|| + ||Bx||2 ≤ (||Ax|| + ||Bx||)2

and so ||(A +B)x|| ≤ ||Ax|| + ||Bx|| + 1/L1/2.

Proposition 6.10. PV1 proves that if G is a d-regular graph with n ∈ Log vertices and G′

is a d′-regular graph with n′ ∈ Log vertices such that d, d′ < L, λ(G) ≤ λ ∈ Q/(Ln2) and
λ(G′) ≤ λ′ ∈ Q/(L(n′)2), then

λ(G⊗G′) ≤ ((1 + 6/L)2 + 1/L)(max{λ + λ′ − λλ′, λλ′, λ′, λ}) + 3/L1/2

(Note that PV1 does not need to know that λ(G) ≤ 1 or λ(G′) ≤ 1.)

Proof. Let A be the random-walk matrix of G of the form n×n and A′ be the random-walk
matrix of G′ of the form n′ × n′. By Proposition 6.7 A = (1 − λ)Jn + λC for some C with
||C|| ≤ 1 and n× n all 1/n matrix Jn. Similarly, A′ = (1 − λ′)Jn′ + λ′C ′ for some C ′ with
||C ′|| ≤ 1 and n′ × n′ all 1/n′ matrix Jn′ .

As tensor product satisfies (A+B)⊗C = A⊗C+B⊗C and A⊗(B+C) = A⊗B+A⊗C,

for any x ∈ Qnn′
/(Lnn′)(Lnn

′)L we have (∗):

||A⊗A′x|| ≤ (1 − λ)||(Jn ⊗ Jn′)x|| + (1 − λ)λ′||(Jn ⊗ C ′)x||
+λ(1 − λ′)||(C ⊗ Jn′)x|| + λ′λ||(C ⊗ C ′)x|| + 3/L1/2

If Σixi = 0, then Jn⊗Jn′x = 0. If x ∈ Qn/(Ln)(Ln)
L

, ||Jnx||2 = 1
n(Σixi)

2 ≤ ||x||2 where

we used 〈x, (1, ..., 1)〉2 ≤ n||x||2 which follows from Cauchy-Schwarz inequality. Therefore,
||Jn|| ≤ 1 and similarly ||Jn′ || ≤ 1.

If λ > 1 or λ′ > 1, we can trivially upper bound the term corresponding to 1 − λ resp.
1−λ′ in (∗) by 0. In all cases, to finish the proof it suffices to show that for any n×n matrix

A ∈ Qn×n/(2L2n5d), n′ × n′ matrix B ∈ Qn′×n′
/(2L2(n′)5d) such that ||A|| ≤ 1, ||B|| ≤ 1,

for any x ∈ Qnn′
/(Lnn′)(Lnn

′)L with ||x|| = 1, ||(A ⊗B)x|| ≤ (1 + 6/L)2 + 1/L holds.

For any x ∈ Qnn′
/m′ and i ∈ [n′] define xi ∈ Qn/m so that for each j ∈ [n],

xij = Σk∈{n′(j−1)+1,...,n′j}Bi,(k−n′(j−1))xk
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Then, ||(A ⊗B)x||2 = Σi∈[n′]||Axi||2 and as by Proposition 6.6 for each i,

||Axi||2 ≤ (Σj∈[n](x
i
j)

2 + 1/(Ln′))((1 + 1/L)(1 + 2/L) + 1/L), we have,

||(A⊗B)x||2 ≤ (1/L + Σi∈[n′]Σj∈[n](x
i
j)

2)(1 + 6/L)

Since also ||Bx||2 ≤ (||x||2 + 1/(Ln))((1 + 1/L)(1 + 2/L) + 1/L), for each j ∈ [n],

Σi∈[n′](Σk∈{n′(j−1)+1,...,n′j}Bi,(k−n′(j−1))xk)2 ≤ (
1

Ln
+ Σk∈{n′(j−1)+1,...,n′j}(xk)2)(1 +

6

L
)

Therefore, if ||x|| = 1, then ||(A ⊗ B)||2 ≤ (1/L + (1 + 6/L)(1 + 1/L))(1 + 6/L), and
||(A⊗B)x|| ≤ (1 + 6/L)2 + 1/L.

6.4. The replacement product. If G is an n-vertex d-degree graph, we can give a number
from 1 to d to each neighbor of each vertex and then the rotation map Ĝ : [n]×[d] 7→ [n]×[d]
maps a pair 〈v, i〉 to 〈u, j〉 where u is the i-th neighbor of v and v is the j-th neighbor of u.
Using this rotation map, we define the replacement product.

Let G,G′ be graphs such that G has n vertices and degree D, and G′ has D vertices
and degree d. Further, let A,A′ denote the random-walk matrices of G and G′ respectively,
and Â be the permutation matrix corresponding to the rotation map of G which means
that Â is an nD × nD matrix whose (i, j)th column is all zeroes except a single 1 in the

(i′, j′) position where (i′, j′) = Ĝ(i, j). Then the replacement product of G and G′, denoted
G⊘G′, is the graph with the random-walk matrix

A⊘A′ := 1/2Â + 1/2(In ⊗A′)

where In is n× n 0-1 matrix with 1’s only on the diagonal.
This means that G⊘G′ has a copy of G′ for every vertex in G and if (i, j) is an edge in

G then there are d parallel edges between the i′-th vertex in the copy of G′ corresponding
to i and the j′ vertex in the copy of G′ corresponding to j where i′ is the index of j as
neighbor of i and j′ is the index of i as neighbor of j in G. Therefore, G ⊘ G′ has degree
2d and nD vertices.

Proposition 6.11. (in PV1) Let d,D < L. Suppose G is a D-degree graph with n ∈ Log
vertices and G′ is a d-degree graph with D vertices. If λ(G) ≤ 1 − ǫ ∈ Q/(Ln2) and
λ(H) ≤ 1 − δ ∈ Q/(LD2) for n ∈ Log, rational ǫ and rational δ ∈ [0, 1], then

λ((G⊘H)3) ≤ (1 − ǫδ2/8)(1 + 8/L1/2)9 + δ2/(2L1/2) + 2/L1/2

In Proposition 6.11, Peano Arithmetic could prove λ(G ⊘ H) ≤ 1 − ǫδ2

24 following the

argument in Arora-Barak [1]. In [1] this is derived using the equation λ(Gl) = λ(G)l which
uses the existence of an orthogonal basis of eigenvectors for symmetric matrices. Again, in
PV1 we prove just a weaker bound for (G ⊘ H)3 (i.e. not for the product G ⊘ H but its
power) which is sufficient for our purposes.

Proof. Let A resp. B be the random-walk matrix of graph G with n vertices resp. graph
H with D vertices and Â be the permutation matrix corresponding to the rotation map of
G. By definition, A⊘B = 1

2(Â+ In ⊗B) and

(A⊘B)3 =
1

8
(Â3 + Â(I ⊗B)Â+ (I ⊗B)Â2 + (I ⊗B)2Â+ Â2(I ⊗B)+

+ Â(I ⊗B)2 + (I ⊗B)Â(I ⊗B) + (I ⊗B)3)
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By Proposition 6.7, B = δJ + (1− δ)C for some C with ||C|| ≤ 1 and D×D all 1/D matrix
J . Therefore,

(I ⊗B)Â(I ⊗B) = δ2(I ⊗ J)Â(I ⊗ J) + δ(1 − δ)(I ⊗ J)Â(I ⊗ C)+

+ δ(1 − δ)(I ⊗ C)Â(I ⊗ J) + (1 − δ)2(I ⊗ C)Â(I ⊗ C)

Since ||C|| ≤ 1 and ||I|| ≤ 1, for any x with ||x|| ≤ 1, we have ||(I ⊗C)x||2 ≤ (1 + 6/L)4 as
in the proof of Proposition 6.10. Similarly, ||(I ⊗ J)x||2 ≤ (1 + 6/L)4.

If a matrix A satisfies ||Ax||2 ≤ (1 + 6/L)4 for ||x|| ≤ 1, then for any B and x,
||(AB)x||2 = ||A Bx

||Bx|| ||2(SQRT (||Bx||2))2 ≤ (1 + 6
L)4(SQRT (||Bx||2))2. Consequently,

||(AB)x|| ≤ (1 + 6/L)2||Bx|| + 1/L1/2.

As ||Â|| ≤ 1, this shows that for any x, ||x|| ≤ 1 and δ ∈ [0, 1],

||((I ⊗B)Â(I ⊗B))x|| ≤ δ2||((I ⊗ J)Â(I ⊗ J))x|| + (1 − δ2)((1 +
6

L
)8+

+ (1 +
6

L
)4/L1/2 + (1 +

6

L
)2/L1/2 +

1

L1/2
) +

3

L1/2

Further, for any x, ||x|| = 1 and δ ∈ [0, 1],

||(I ⊗B)x|| ≤ δ||(I ⊗ J)x|| + (1 − δ)||(I ⊗ C)x|| + 1/L1/2 ≤ (1 + 6/L)2 + 2/L1/2

Hence, ||(I ⊗ B)x||2 ≤ (1 + 8/L1/2)4, and using an analogous argument as above we can
bound ||(A ⊘B)3x||. For any x, ||x|| = 1,

||(A ⊘B)3x|| ≤ (1 − δ2

8
)(1 + 8/L1/2)9 +

δ2

8
||((I ⊗ J)Â(I ⊗ J))x|| + 2/L1/2

Observe that (I ⊗ J)Â(I ⊗ J) = A⊗ J because (I ⊗ J)Â(I ⊗ J) is the random-walk matrix
of a graph with the number of edges between its nodes (i, j) and (i′, j′) being the number

of k’s in [D] for which there is k′ such that Ĝ(i, k) = (i′, k′). That is,

((I ⊗ J)Â(I ⊗ J))(i,j),(i′,j′) =
1

D
ai,i′ = (A⊗ J)(i,j),(i,j′)

Then, by Proposition 6.10, for any x, ||x|| = 1 such that Σi, xi (and so Jx = 0) we have:

||(I ⊗ J)Â(I ⊗ J)x|| = ||(A⊗ J)x|| ≤ (1 − ǫ)((1 + 6/L)2 + 1/L) + 3/L1/2

which completes the proof.

6.5. The construction of the (n, d, λ)-graphs. Finally, we are ready to construct the
(n, d, λ)-graphs in the theory PV1, see Arora-Barak [1, Chapter 21] for the history of the
result. However, we will do it just for n’s of the form ck where c is a constant and k ∈ LogLog.
It is possible to extend the construction to any n (cf. [1]) but at least a straightforward
application of the extension requires algebraic techniques which we are avoiding. More
specifically, it uses a converse of Proposition 6.4 which in turn uses facts about eigenvectors
derived from the fundamental theorem of algebra. Nevertheless, the weaker construction is
sufficient to derive the PCP theorem in PV1.

Proposition 6.12. For any rational c ∈ (0, 1) there are d, b and L (the constant from the
definition of λ(G)) such that PV1 proves that for each k ∈ LogLog and n = (2d)100k there
is a (2d)b-regular graph Gn with n vertices and λ(Gn) < c.
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Proof. For c ∈ (0, 1), let e be such that 1/2e < c and b > e be a sufficiently big constant.
Then, define ((2d)100k , (2d)b, 1/2e)-graphs in PV1 as follows.

1. Let H be a ((2d)100, d, 0.01)-graph where d is a sufficiently big constant so that such a
graph exists. Let G1 be a ((2d)100, (2d)b, 1

2b
)-graph and G2 be a ((2d)200, (2d)b, 1

2b
)-graph.

These graphs can be found by brute force, cf. [1]. More precisely, as our H take the graph
H from the proof of Theorem 21.19 in [1] and as our G1, G2 take Gb

1, G
b
2 for G1, G2 from

the same proof in [1].

2. For (2d)100k with k > 2, define Gk := ((G⌊(k−1)/2⌋ ⊗G⌈(k−1)/2⌉) ⊘H)b

Note that for given (2d)100k , Gk is produced by a specific p-time computation which
exists provably in PV1.

Claim 6.13. For every (2d)100k , Gk is a ((2d)100k , (2d)b, 1/2e)-graph.

Proof. The claim is proved by Πb
1(PV )-LPIND induction. As graphs Gk are constructed by

a p-time function, the statement we want to obtain is ∀Σb
1. Hence, by ∀Σb

1-conservativity
of S1

2 over PV1, we can work in the theory S1
2 (which proves Πb

1(PV )-LPIND).
For k = 1, 2, PV1 can verify the claim directly. For (2d)100k with k > 2, let nk be the

number of vertices of Gk. If n⌊(k−1)/2⌋ = (2d)100⌊(k−1)/2⌋ and n⌈(k−1)/2⌉ = (2d)100⌈(k−1)/2⌉ ,
then nk = n⌊(k−1)/2⌋n⌈(k−1)/2⌉(2d)100 = (2d)100k .

Considering the degree, if G = G⌊(k−1)/2⌋ has degree (2d)b, then (G ⊗ G) has degree

(2d)2b, (G⊗G) ⊘H has degree 2d and Gk has degree (2d)b.
The eigenvalue analysis: if λ(G) ≤ 1/2e (which is a Πb

1(PV )-formula), then assuming
L is sufficiently big, 1/2e ∈ Q/(Ln2) and by Proposition 6.10 λ(G⊗G) ≤ 2/2e. Hence, by
Proposition 6.11,

λ(((G ⊗G) ⊘H)3) ≤ (1 − (1 − 2/2e)
(0.99)2

8
)(1 + 8/L1/2)9 +

(0.99)2

2L1/2
+ 2/L1/2

The conclusion λ(((G ⊗ G) ⊘ H)b) ≤ 1/2e is a consequence of the fact that the assump-

tion λ(G) ≤ λ implies λ(Gb) ≤ λb(1 + 4/L) + 3db/L1/2 (where L is quantified after d, b

so the term 3db/L1/2 can be made arbitrarily small). To see that the implication holds,
note that similarly as in the proof of Proposition 6.5, λ(G) ≤ λ implies that for any
x ∈ Qn/((Ln3)nn) with 〈x,1〉 = 0, we have ||Abx|| ≤ λb||x|| where Ab ∈ Qn×n/db is
the random-walk matrix of Gb. We need a similar bound even for x /∈ Qn/((Ln3)nn). For-
tunately, if x /∈ Qn/((Ln3)nn), ||x|| = 1, 〈x, 1〉 = 0, we can again approximate x by vector
c ∈ Qn/((Ln3)nn): for each i, |xi| ≤ 1 (otherwise ||x|| > 1) so we can find ci ∈ Q/((Ln3)nn)
such that |xi− ci| ≤ 1/(Ln2) and 〈c, 1〉 = 0. The values ci are produced provably in PV1 by
a p-time algorithm which choses i0 satisfying xi0 ≥ 1/(Ln2), then finds the smallest ci > xi
such that ci − xi < 1/(Ln3), ci ∈ Q/(Ln3), i 6= i0 and puts ci0 = Σi 6=i0ci ∈ Q/((Ln3)nn).

The chosen c satisfies ||c||2 ≤ 1 + 3/(Ln) and |(Abx)j − (Abc)j | ≤ db/(Ln). Since also

(Abx)j , (A
bc)j ≤ 2dbn, we have |||Abx||2 − ||Abc||2| ≤ 5d2b/L and

||Abx||2 ≤ λ2b(||c||2 + 1/L) + 5d2b/L ≤ λ2b(1 + 4/L) + 5d2b/L

Thus, ||Abx|| ≤ λb(1 + 4/L) + 3db/L1/2.
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Note that in the previous proposition, d does not depend on L and b can be chosen
arbitrarily big.

7. The PCP theorem in PV1

The PCP theorem obtained in Arora-Safra [2] and Arora et.al. [3] (see Arora-Barak [1,
Chapter 22] for the history of the theorem) is a strengthening of the exponential PCP
theorem in which the verifier D uses only O(log n) random bits. Using these random bits,
D asks for at most O(1) bits of the given proof π. Hence, π can be seen as a string of size
poly(n). In particular, it can be represented by a binary string in our formalization.

We will follow Dinur’s [10] simplified proof of the PCP theorem as it is presented in
Arora-Barak [1]. This will go rather smoothly (once we have a suitable formalization of
the (n, d, λ)-graphs) because the proof is combinatorial and it needs to count only sets of
polynomial size. These are subsets of {1, ..., poly(n)} where n ∈ Log for which we assume
to have exact counting in PV1 defined in a natural way.

Recall the verifier Dπ,w(x) from Definition 3.14. In the standard definition, π would
be allowed to be a string of arbitrary length and D would have an oracular access to π, it
could ask for any bit of π. Then, for a language L, L ∈ PCP (log n, 1) standardly means
that there is a p-time algorithm D such that:

1. If x ∈ L, then there is a string π such that D with input x of length n and O(log n)
random bits asks for at most O(1) bits of π and accepts (with probability 1);

2. If x /∈ L, then for any π, D with input x of length n and O(log n) random bits asks for
at most O(1) bits of π and accepts with probability ≤ 1/2.

The PCP theorem says that NP = PCP (log n, 1). In our formalization, proofs π will
be represented by p-size strings, hence, the statement of the PCP theorem is modified
accordingly. As in the case of the exponential PCP theorem, we could alternatively represent
proofs π by oracles which would maybe better reflect the nature of the PCP theorem but
then we would need to formalize the PCP theorem in a theory extended by such oracles.

In this Section we use the notion of probability Pr on spaces of polynomial size poly(n)
which is assumed to be defined in a natural way using the exact counting of sets of polyno-
mial size in PV1. This should not be confused with the definition of Pr in APC1.

First we formalize the easier implication of the PCP theorem: PCP (log n, 1) ⊆ NP .

Theorem 7.1. Let c, d, k be arbitrary constants, then PV1 proves that for any knk-time
algorithm D there exists 2kcn2kc-time algorithm M such that for each x ∈ {0, 1}n:

∃π ∈ {0, 1}dnc ∀w < nc,Dπ,w(x) = 1 → ∃y ∈ {0, 1}dnc

M(x, y) = 1

∀π ∈ {0, 1}dnc

Prw<nc[Dπ,w(x) = 1] ≤ 1/2 → ∀y ∈ {0, 1}dnc

M(x, y) = 0

Proof. Given a knk-time algorithm D, define the algorithm M as follows. M accepts x, y if
and only if y = (y0, ..., ync−1) ∈ {0, 1}dnc

with yi’s in {0, 1}d and for all the yi’s the algorithm
D on input x, random bits i and with access to π which results in d bits yi accepts.

Suppose there is π ∈ {0, 1}dnc

such that for each w < nc, D on input x with bits
rw ∈ {0, 1}d obtained from d-times accessing π accepts. Then for y = (y0, ..., ync−1) with
yw = rw we have that for each yi ∈ y the algorithm D on input x and with access to π
which results in d bits yi accepts. Therefore, M(x, y) = 1.
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Now assume that for any π ∈ {0, 1}dnc

, Prw<nc[Dπ,w(x) = 1] �0 1/2. Then for
any y = (y0, ..., ync−1) with yi’s in {0, 1}d there is yi such that D on x, random bits i,
and with access to π resulting in yi rejects. Otherwise, for some π ∈ {0, 1}dnc

we have
{w < nc|Dπ,w(x) = 1} = nc contradicting the assumption. Hence, M(x, y) = 0 .

As the NP-completeness of SAT is provable in PV1, the important implication of the
PCP theorem, PCP (log n, 1) ⊆ NP , can be stated in PV1 as Theorem 7.

Theorem 7 (The PCP theorem in PV1). There are constants d, k, c and a knk-time algo-
rithm D (given as a PV-function) computing as in Definition 3.14 such that PV1 proves
that for any n ∈ Log and x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y) → ∃π ∈ {0, 1}dnc ∀w < nc Dπ,w(x) = 1

∀y¬SAT (x, y) → ∀π ∈ {0, 1}dnc

Prw<nc[Dπ,w(x) = 1] ≤ 1/2

The proof is summarized at the end of this section. It is a sequence of certain reductions
between the so called CSP instances (CSP stands for constraint satisfaction problem) so we
need to start with a reformulation of Theorem 7 in terms of these reductions.

Definition 7.2 (in PV1). Let q,W be constants, and n,m ∈ Log. A qCSPW instance φ
is a collection of circuits φ1, ..., φm (called constraints) mapping [W ]n to {0, 1}. Each φi is
encoded by a binary string, it has n inputs which are taking values that are bit strings in
{0, 1}logW but depends on at most q of them: for every i ∈ [m] there exist f1, ..., fq ∈ [n]
and f : {0, 1}q 7→ {0, 1} such that φi(u) = f(uf1 , ..., ufq ) for every u ∈ [W ]n. We say that q
is the arity of φ. By qCSP instance we mean a qCSP instance with binary alphabet.

An assignment u ∈ [W ]n satisfies φi if φi(u) = 1, and instance φ is satisfiable if val(φ) :=

maxu∈[W ]n
Σm

i=1φi(u)
m = 1.

We will not need to prove the totality of the function val(φ) in PV1. It will be sufficient
for us to work with formulas of the form val(φ) ≤ y which are Πb

1.

Definition 7.3 (in PV1). Let q, q′,W,W ′ be arbitrary constants. A p-time function f
(given as a PV-function) mapping qCSPW instances to q′CSPW ′ instances, abbreviated as
f : qCSPW → q′CSPW ′, is a CL-reduction (short for complete linear-blowup reduction) if
for every qCSPW instance φ:

• Completeness: If φ is satisfiable then so is f(φ).
• Linear blowup: If there are m constraints in φ, then f(φ) has at most Cm constraints

and alphabet W ′, where C can depend on q (but not on m or the number of variables in
φ).

For a constant k, a function f is CLk-reduction if it is a CL-reduction computable in time
knk.

Theorem 7 then follows from the following proposition.

Proposition 7.4. There are constants q0 ≥ 3, ǫ0 > 0 and a CL-reduction f : q0CSP →
q0CSP such that PV1 proves that for every q0CSP instance φ, every ǫ < ǫ0,

val(φ) ≤ 1 − ǫ→ val(f(φ)) ≤ 1 − 2ǫ
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Proof. (of Theorem 7 from Proposition 7.4) The statement we want to derive is a ∀Σb
1-

formula. Hence, we can work in the theory S1
2 . As q0 ≥ 3, q0CSP is a generalization of

3SAT and by the NP-completeness of 3SAT (derived similarly as the NP-completeness of

SAT), for some k′, there is a k′nk
′
-time function h mapping propositional formulas to q0CSP

instances such that for every n ∈ Log and x ∈ {0, 1}n, ∃ySAT (x, y) → val(h(x)) = 1 and
∀y¬SAT (x, y) → val(h(x)) ≤ 1− 1/m where m ∈ Log is the number of constraints in h(x).
Applying Proposition 7.4 we obtain a knk-time function f logm ◦h for some constant k such
that

∃ySAT (x, y) → val(f logm ◦ h(x)) = 1

∀y¬SAT (x, y) → val(f logm ◦ h(x)) ≤ 1 − ǫ0

Here, we used Πb
1-LLIND (available in S1

2) for Πb
1-formulas val(f i(φ)) ≤ 1 − 2iǫ where

i ≤ |m|. Therefore, for some constants d′, c′, and an algorithm D′ which given any formula
x and proof π accepts if and only if π encodes a satisfying assignment to randomly chosen
constraint in f logm ◦ h(x) we have:

∃ySAT (x, y) → ∃π ∈ {0, 1}d′nc′ ∀wD′π,w(x)=1

∀y¬SAT (x, y) → ∀π ∈ {0, 1}d′nc′

Prw[D′π,w(x) = 1] ≤ 1 − ǫ0

The gap can be amplified to 1/2 by choosing sufficiently many (but constant number of)
constraints in f logm ◦ h(x) and accepting if and only if π encodes satisfying assignments to
all of them. This requires Chernoff’s bound but only over sets of polynomial size for which
we have exact counting in PV1.

Proposition 7.4 is an immediate consequence of the following two statements. The first
one provides us a CL-reduction producing CSP instances which increase the gap between 0
and the minimal number of unsatisfied constraints. However, the alphabet of the resulting
instances increases too. The second statement takes it back to binary while losing just a
factor of 3 in the gap.

Proposition 7.5 (Gap amplification in PV1). For every l, q there are W, ǫ0 and a CL-
reduction gl,q : qCSP → 2CSPW such that PV1 proves that for every qCSP instance φ and
for every ǫ < ǫ0

val(φ) ≤ 1 − ǫ→ val(gl,q(φ)) ≤ 1 − lǫ

Proposition 7.6 (Alphabet reduction in PV1). There is d such that for any W there is a
CL-reduction h : 2CSPW → dCSP such that PV1 proves that for every 2CSPW instance
φ, and for each ǫ

val(φ) ≤ 1 − ǫ → val(h(φ)) ≤ 1 − ǫ/3

Proposition 7.4 can be obtained from previous two propositions by taking l = 6 in
Proposition 7.5 and q = max{d, 3} for d from Proposition 7.6.

We firstly derive Proposition 7.6 using the following application of the exponential PCP
theorem which is scaled down so that we need to reason only about sets of constant size.

Proposition 7.7. There are constants d, k′ and an algorithm D such that for every s, PV1
proves: given any s-size circuit C with 2n1 inputs, D runs in time sk

′
, examines ≤ d bits

in the provided strings and
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1. If C(u1, u2) = 1 for u1, u2 ∈ {0, 1}n1 , there is a string π3 of size 2s
k′

such that

∀w < 2s
k′

D(WH(u1),WH(u2),π3),w(C) = 1.

2. For bit strings π1, π2, π3 where π1, π2 ∈ {0, 1}2n1 , π3 ∈ {0, 1}2s
k′

, if

Pr
w<2sk

′ [D(π1,π2,π3),w(C) = 1] ≥ 1/2

then

Prw<2n1 [(π1)w = WH(u1)(w)] ≥ 0.99 and Prw<2n1 [(π2)w = WH(u2)(w)] ≥ 0.99

for some u1, u2 ∈ {0, 1}n1 such that C(u1, u2) = 1.

Proof. (of Proposition 7.6 from Proposition 7.7) The CL-reduction h works as follows. Let
φ be a 2CSPW instance with constraints φ1, φ2, ..., φm on variables u1, ..., un which are
taking values that are in {0, 1}logW . Each constraint φS(ui, uj) is a circuit applied to the

bit strings representing ui, uj . Without loss of generality s ≤ 24 logW is an upper bound on
the size of this circuit.

Given such φ, h replaces each variable ui by a sequence Ui = (Ui,1, ..., Ui,W ) of W binary
variables (Ui is long enough to represent WH(ui)). Then, for each constraint φS(ui, uj)
it applies Proposition 7.7 where φS(ui, uj) is the circuit whose assignment is being veri-

fied. The resulting sk
′
-time algorithm D can be represented as a 2s

O(1)
-size dCSP instance

ψS(Ui, Uj ,ΠS) where Ui, Uj play the role of π1, π2 and 2s
k′

new binary variables ΠS play
the role of π3. The arity d of ψS(Ui, Uj ,ΠS) is the number of bits D reads in the proof
which is a fixed constant independent of W and ǫ. The instance ψS(Ui, Uj ,ΠS) contains one
constraint for each possible random string in D, so the fraction of its satisfied constraints
is the acceptance probability of D. The CL-reduction h thus maps 2CSPW instances φ to
dCSP instances ψ where each φS(ui, uj) is replaced by a dCSP instance ψS(Ui, Uj ,ΠS).

As 2s
O(1)

is a constant independent of m and n, linear blowup is preserved.

If φ is satisfiable, then by property 1 in Proposition 7.7 so is ψ. We want to show that
if some assignment satisfies more than 1− ǫ/3 fraction of the constraints in ψ, then we can
construct an assignment for φ satisfying more then 1−ǫ fraction of its constraints: For each i,
if Ui is 0.99-close to some linear function WH(ai), i.e. Prx[Ui,x = WH(ai)(x)] ≥ 0.99, then
use (the determined) ai as the assignment for ui, and otherwise use arbitrary string. The
algorithm is p-time because the size of each Ui is constant. If the decodings ai, aj of Ui, Uj

do not satisfy φS(ui, uj), then by property 2 in Proposition 7.7 at least half of constraints
in ψS is not satisfied. Hence, the fraction of unsatisfied constraints in φ is < 2ǫ/3.

Proof. (of Proposition 7.7) PV1 can prove the statement from Proposition 7.7 simply by
examining all possible cases of which there is a constant number. Hence, the provability of
the statement follows from it being true. Nevertheless, we present also the standard proof
itself.

The algorithm D firstly reduces the problem of satisfiability of the given circuit C with
s wires (inputs are considered as wires in the circuit) to the question of solvability of a set
of quadratic equations with t = sO(1) variables similarly as in the proof of the exponential
PCP theorem. D expects π3 to contain linear functions f, g which are WH(z) and WH(z⊗
z) respectively for z ∈ {0, 1}t satisfying the set of quadratic equations and checks these
functions as in the exponential PCP theorem. Moreover, D checks that π1 and π2 are 0.99-
close to some linear functions. That is, if D accepts π1, π2, π3 with probability ≥ 1/2, it is
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because the set of quadratic equations is satisfiable and Prw[(π1)w = WH(u1)(w)] ≥ 0.99,
Prw[(π2)w = WH(u2)(w)] ≥ 0.99 for some u1, u2 ∈ {0, 1}n1 .

Finally, D checks that π1, π2 encode strings whose concatenation is the same as the
first 2n1 bits of the string encoded by f (without loss of generality the first 2n1 bits encode
satisfying assignement for C) by performing the following concatenation test:

Pick random x, y ∈ {0, 1}n1 and denote by XY ∈ {0, 1}t the string whose first n1
bits are x, the next n1 bits are y and the remaining bits are all 0. Accept if and only if
f(XY ) = π1(x) + π2(y).

The algorithm D runs in time sk
′
and examines ≤ d bits in π1, π2, π3 for some constants

k′, d. It satisfies the first property from Proposition 7.7. Moreover, assuming that π1 =
WH(u), π2 = WH(v) and z is the string encoded by a linear function f , the concatenation
test rejects with probability 1/2 if u, v differs from the first 2n1 bits of z. Hence, if D accepts
π1, π2, π2 with probability ≥ 1/2, it is because π1, π2 are 0.99-close to linear functions
encoding u1, u2 such that C(u1, u2) = 1.

In the rest of this section we derive Proposition 7.5. To do this, we will need two facts
about probability:

Proposition 7.8. 1. Let t be a square and St be the binomial distribution over t fair coins,
i.e. Pr[St = k] = t!/((t−k)!k!)2−t . Then for i ∈ {0, 1} and any δ such that 0 ≤ δ < 1, PV1
proves:

Σk|Pr[St = k] − Pr[St+(−1)i⌊δ
√
t⌋ = k]| ≤ 20δ

2. For any k, PV1 proves that for each n ∈ Log, if V is a nonnegative random variable
defined on a sample space of size nk, then Pr[V > 0] ≥ E[V ]2/E[V 2].

The first part of Proposition 7.8 is an estimation of a so called statistical distance of two
binomial distributions which is known to hold (see [1] page 469) and as all its parameters
are quantified outside of the theory PV1, it is trivially provable by an explicit “brute force”
enumeration.

The second part is obtained from a simple expansion:

(E[X])2 = (E[X · 1X>0])2 ≤ E[X2]E[(1X>0)2] = E[X2]Pr[X > 0]

where we used a form of Cauchy-Schwarz inequality E[XY ]2 ≤ E[X2]E[Y 2] which can
be derived in the same way as our Cauchy-Schwarz inequality from Section 6 but with
〈x, y〉 := E[XY ].

The proof of Proposition 7.5 is divided into two parts. The first part shows how to
reduce any qCSP instance into a 2CSPW instance which is nice (in a sense defined below)
and the second part gives us a CL-reduction from nice instances which amplifies the gap as
it is required in Proposition 7.5.

Definition 7.9. (in PV1)

1. Let φ be a 2CSPW instance mapping [W ]n to {0, 1}. The constraint graph of φ is the
graph G with vertex set [n] where for every constraint φ depending on the variables ui, uj ,
the graph G has the edge (i, j). G is allowed to have parallel edges and self-loops. Then
G is d-regular for some constant d independent of W , and at every node, at least half
the edges incident to it are self-loops.

2. A qCSPW instance φ is nice if q = 2 and the constraint graph of φ denoted G satisfies
λ(G) ≤ 0.9.
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The reduction into nice instances which we need is a consequence of the following three
Propositions.

Proposition 7.10. There is a constant k such that for every q there is a CLk-reduction
h : qCSP → 2CSP2q such that PV1 proves that for any qCSP instance φ and any ǫ

val(φ) ≤ 1 − ǫ→ val(h(φ)) ≤ 1 − ǫ/q

Proof. The CLk reduction works as follows. Given qCSP instance φ over n variables
u1, ..., un with m constraints, it produces 2CSP2q instance ψ over the variables u1, ..., un,
y1, ..., ym such that for each φi in φ depending on the variables uf1 , ..., ufq , ψ contains
q constraints ψi,j , j = 1, ..., q where ψi,j(yi, ufj ) is true iff yi encodes an assignment to
uf1 , ..., ufq satisfying φi and ufj ∈ {0, 1} agrees with the assignment yi.

The number of constraints in ψ is qm and if ψ is satisfiable, then so is ψ. Suppose that
val(φ) ≤ 1− ǫ and let u1, ..., un, y1, ..., ym be any assignment to ψ. By the assumtion, there
is a set S ⊆ [m] of size ≥ ǫm such that all constraints φi, i ∈ S are violated by u1, ..., un.
Then, for any i ∈ S there is j ∈ [q] such that ψi,j is violated.

Proposition 7.11. There are constants d, e, k such that for every W there is a CLk-
reduction h : 2CSPW → 2CSPW such that PV1 proves that for any 2CSPW instance
φ, and any ǫ

val(φ) ≤ 1 − ǫ→ val(h(φ)) ≤ 1 − ǫ/(100Wed)

and the constraint graph of h(φ) is d-regular.

Proof. By Proposition 6.12 and Proposition 6.4 there are constants d, e such that for each
et, t ∈ LogLog, there is a d-regular graph Get which for any S ⊆ V, |V | = et, |S| ≤ et/2
satisfies |E(S, V −S)| ≥ d|S|/4 − 1/8. In particular, for each W and S ⊆ V , |S| ≤ et/2, we
have (∗): |E(S, V − S)| ≥ |S|/(10W ).

The CLk-reduction h works as follows.

Let φ be a 2CSPW instance. First, erase variables in φ that do not appear in any
constraint. Suppose next that ul is a variable that appears in c′ ≥ 1 constraints. Put
c := et for the smallest natural t such that c′ ≤ et. Replace ul by c variables y1l , ..., y

c
l so

that in each constraint ul originally appeared in we have different yfl (different c’s might be

needed for each ul). Add a constraint requiring that yjl ↔ yj
′

l for every edge (j, j′) in the
graph Gc. Do this for every variable in φ until each variable appears in d+ 1 constraints, d
equality constraints and one original constraint resp. a null constraint that always accepts
which is added if necessary. Denote the resulting 2CSPW instance as ψ (= h(φ)).

If φ has m constraints, ψ has ≤ m + 2dem + 2em constraints (m original constraints,

≤ 2em null constraints and ≤ 2dem “yjl ↔ yj
′

l ” constraints). If φ is satisfiable, then so is ψ.
Suppose that val(φ) ≤ 1 − ǫ and let y be any assignment to ψ. Consider then the plurality
assignment u to φ’s variables: ui gets the most likely value that is claimed for it by y1i , ..., y

c
i .

Define ti to be the number of yji ’s that disagree with the plurality value of ui.

If Σn
i=1ti ≥ ǫm/2, then by (∗) there are ≥ ǫm/(20W ) equality constraints violated in

ψ.
Suppose that Σn

i=1ti < ǫm/2. Since val(φ) ≤ 1 − ǫ, there are ≥ ǫm constraints in φ
violated by u. All of these constraints are also present in ψ. If more than ǫm/2 of them
were assigned a different value by y than by u, then Σn

i ti ≥ ǫm/2. Thus y violates ≥ ǫm/2
constraints in ψ.
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Note that all the sets we counted had polynomial size so we had exact counting for
them in PV1.

Proposition 7.12. There are constants d, e, k such that for any d′,W there is a CLk-
reduction h : 2CSPW → 2CSPW such that PV1 proves that for any 2CSPW instance φ
with d′-regular constraint graph for d ≥ d′ and for any ǫ,

val(φ) ≤ 1 − ǫ → val(h(φ)) ≤ 1 − ǫ/(10de)

Moreover, the constraint graph G of h(φ) is 4d-regular with at least half the edges coming
out of each vertex being self-loops and λ(G) ≤ 0.9.

Proof. By Proposition 6.12 there are constants d, e such that for each et where t ∈ LogLog,
there is a d-regular graph Get in PV1 with λ(Get) ≤ 0.1. The CLk-reduction h works as
follows.

Let φ be a 2CSPW -instance with n variables, m constraints, and d′-regular constraint
graph G′ for d′ ≤ d. Without loss of generality 2m ≥ n. Otherwise, φ contains variables
that are not in any constraint so d′ = 0 and φ is empty. Add new vertices and self-loops to
G′ so that it becomes d-regular with et vertices for the smallest et ≥ n. For each of these
new vertices add new variables and for the new self-loops add null constraints that always
accept. Then add null constraints for every edge in the graph Get . Finally, add 2d null
constraints forming self-loops for each vertex in Get .

The resulting instance ψ(=h(φ)) has 4d-regular constraint graph with ≤ 2den con-
straints, and at least half the edges coming out of each vertex being self-loops. Assuming
val(φ) < 1 − ǫ, there are ≥ ǫm ≥ ǫ2den/(4de) violated constraints in ψ.

Let G be ψ’s constraint graph and A its random-walk matrix. Then A = 3/4B + C/4
for C the random-walk matrix of Get and B the random walk matrix of a 3d-regular graph.
In Section 6.3, we observed that for any x ∈ Qn/m, ||Ax|| ≤ 3/4||Bx|| + 1/4||Cx|| + 1/L1/2

and by Proposition 6.3, for any δ > 0, λ(B) ≤ 1 + δ+ 1/L. Thus, assuming δ is sufficiently

small and L sufficiently big, λ(G) ≤ 3/4(1 + δ + 1/L1/2) + 1/4λ(Get) + 1/L ≤ 0.9.

Note that the constant d from Proposition 7.12 can be chosen so that it is bigger
than the constant d from Proposition 7.11. Therefore, Propositions 7.10, 7.11 and 7.12
show that there are constants d, e, k such that for any q (and W = 2q) there is a CLk-
reduction h : qCSP → 2CSP2q such that PV1 proves that h maps any qCSP instance into
an instance which is nice with the constraint graph being d-regular while the fraction of
violated constraints is reduced by a factor at most 1/(1000We2d2q). This shows that to
derive Proposition 7.5 it suffices to prove the following powering proposition:

Proposition 7.13. There is k such that for any W > 0 and sufficiently big square t ≥ 1
there is an algorithm A with properties described below such that PV1 proves that for any
nice 2CSPW instance ψ with n variables with n ∈ Log the algorithm A produces a 2CSPW ′

instance ψt such that:

1. W ′ ≤ W d5t, where d is the degree of ψ’s constraint graph. The instance ψt has ≤ d5tn
constraints.

2. If ψ is satisfiable, then so is ψt.
3. For every ǫ < 1/(d

√
t),

val(ψ) ≤ 1 − ǫ → val(ψt) ≤ 1 − ǫ
√
t/(106dW 5)

4. The formula ψt is produced from ψ (by A) in time (nd)kW kd5t.
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Proof. (It might be helpful to the reader to consult the proof we present here in conjunction
with the exposition from [1, Lemma 22.9] where some concepts are explained with additional
details.)

Let ψ be a 2CSPW instance with n variables u1, ..., un and m ≤ nd/2 constraints and
let G denote the constraint graph of ψ.

The formula ψt will have n variables y1, ..., yn over an alphabet of size W ′ = W d5t . A
value of a variable yi is a d5t-tuple of values in {0, ...,W − 1} and we will think of it as
giving a value yi(uj) in {0, ...,W −1} to every variable uj in ψ where j can be reached from

i using a path of ≤ t +
√
t steps in G. Since G is d-regular the number of such nodes is

≤ dt+
√
t+1 ≤ d5t.

For every path p = 〈i1, ..., i2t+2〉 in G we will have a constraint Cp in ψt depending on
variables yi1 and yi2t+2 which outputs 0 if and only if there is some j ∈ [2t+ 1] such that

1. ij can be reached from i1 using a path of ≤ t+
√
t steps in G

2. ij+1 can be reached from i2t+2 using a path of ≤ t +
√
t steps n G

3. yi1(uij ), yi2t+2(uij+1) violate the constraint in ψ depending on uij and uij+1

The 2CSPW ′ instance ψt can be produced in time (nd)kW kd5t and has ≤ d5tn con-
straints. Any assignment u1, ..., un satisfying ψ induces an assignment y1, ..., yn satisfying
ψt: each yi encodes values uj for j’s that can be reached from i by ≤ t+

√
t steps in G. There-

fore, it remains to show that for ǫ < 1/(d
√
t), val(ψ) ≤ 1−ǫ→ val(ψt) ≤ 1−ǫ

√
t/(106dW 5).

Every assignment y for ψt induces the so called plurality assignment u for ψ: ui gets
the value σy(ui) which is the most likely value yk(ui) for yk’s where k is obtained by
taking a t-step random walk from i in G. If more than one value is most likely, take the
lexicographically first one.

Suppose that val(ψ) ≤ 1 − ǫ, then there is a set F of ǫm constraints violated by the
plurality assignment.

Pick a random path p = 〈i1, ..., i2t+2〉 in G. For j ∈ {1, ..., 2t + 1} we say that the
edge (ij , ij+1) in p is truthful if yi1(uij ) = σy(uij ) and yi2t+2(uij+1) = σy(uij+1). Let

δ = 1/(1000W ) and denote by V the number of edges in
〈

it, ..., it+⌊δ
√
t⌋+1

〉

that are truthful

and in F . That is, V is a nonnegative random variable defined on a sample space of size
poly(n). If there is at least one such edge, the corresponding constraint in ψt is unsatisfied
so we want to show that Prp[V > 0] ≥ ǫ

√
t/(106dW 5).

For each edge e of G and each j ∈ {1, 2, ..., 2t + 1}, Prp[e = (ij , ij+1)] = 1/m, i.e. each
edge has the same probability to be the j-th edge in p.

Claim 7.14. For any edge e of G and any j ∈ {t, ..., t + ⌊δ
√
t⌋},

Prp[(ij , ij+1) is truthful | e = (ij , ij+1)] ≥ 1/(2W 2)

Proof. To prove the claim, let i1 be the endpoint of a random walk p1 of length j out of
ij and i2t+2 be the endpoint of a random walk p2 of length 2t− j out of ij+1. We need to
show that

Prp1 [yi1(uij ) = σy(uij )]Prp2 [yi2t+2(uij+1) = σy(uij+1)] ≥ 1/(2W 2)

Since half of the edges incident to each vertex are self-loops, we can see an l-step random
walk from a vertex i as follows:
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1. throw l fair coins and let Sl denote the number of “heads”;
2. take Sl non-self-loop steps along the graph.

Denote by l(p) the length of a path p not counting self-loops. Then,

Prp1 [yi1(uij ) = σy(uij )] = ΣlPr[Sj = l]Prp1 [l(p1) = l ∧ yi1(uij ) = σy(uij )]

≥ ΣlPr[St = l]Prp1 [l(p1) = l ∧ yi1(uij ) = σy(uij )] − 20δ

≥ 1/W − 20δ

where the first inequality results from Proposition 7.8, while the last inequality follows from
the definition of the plurality assignment which implies that for j = t, Prp1 [yi1(uij ) =
σy(uij )] ≥ 1/W . Similarly we obtain

Prp2 [yi2t+2(uij+1) = σy(uij+1)] ≥ (1/W − 20δ).

This proves our claim.

The claim implies Prp[(ij , ij+1) is truthful and in F ] ≥ |F |/(m2W 2) for any j from

{t, ..., t+⌊δ
√
t⌋}. Without a loss of generality, |{t, ..., t+⌊δ

√
t⌋}| is ⌈δ

√
t⌉. Thus by linearity

of expectation,
E[V ] ≥ ǫ⌈δ

√
t⌉/(2W 2)

By Proposition 7.8 2., Pr[V > 0] ≥ E[V ]2/E[V 2], so to conclude the proof it suffices to
show that E[V 2] ≤ 50dǫ⌈δ

√
t⌉.

Denote by V ′ the number of edges in
〈

it, ..., it+⌊δ
√
t⌋+1

〉

that are in F . For any j from

{t, ..., t+ ⌊δ
√
t⌋} put Ij := 1 iff (ij , ij+1) ∈ F . Further, let S be the set of vertices contained

in an edge from F . Then, assuming that the constant L from our definition of λ(G) satisfies
L > d and L > δ

√
t,

E[V 2] ≤ E[V ′2]

= E[Σj,j′IjIj′ ]

= E[ΣjI
2
j ] +E[Σj 6=j′IjIj′ ]

= ǫ⌈δ
√
t⌉ + 2Σj<j′Prp[(ij , ij+1) ∈ F ∧ (ij′ , ij′+1) ∈ F ]

≤ ǫ⌈δ
√
t⌉ + 2Σj<j′Pr(ij ,ij′ )∈Gj′−j [ij ∈ S ∧ ij′ ∈ S]

≤ ǫ⌈δ
√
t⌉ + 2Σj<j′ǫd(ǫd+ 2 · 0.9j

′−j) by Proposition 6.5

≤ ǫ⌈δ
√
t⌉ + 2ǫ2d2⌈δ

√
t⌉2 + 40ǫd⌈δ

√
t⌉ ≤ 50ǫd⌈δ

√
t⌉ using ǫ < 1/(d

√
t)

This concludes our formalization of the PCP theorem in the theory PV1. It can be
briefly summarized as follows. In Theorem 7 we formulated the PCP theorem as a ∀Σb

1-
formula. Thus, by ∀Σb

1-conservativity of S1
2 over PV1 we could afford to work instead in

the theory S1
2 . Specifically, we used Πb

1-LLIND induction available in S1
2 to show that

the PCP theorem is a consequence of a statement about CSP instances, Proposition 7.4.
Then we observed that the CSP formulation of the PCP theorem is a collorary of two
propositions, Gap amplification 7.5 and Alphabet reduction 7.6. The latter one was an
application of the exponential PCP theorem in a scaled-down setting where we needed to
count only sets of constant size, hence it was provable already in PV1. The gap amplification
was a consequence of a CL-reduction into nice CSP instances and Powering proposition
7.13. The reduction to nice instances used the (n, d, λ)-graphs which we constructed in
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Section 6. Section 6 contained the most challenging part where we needed to employ certain
approximating tools to reason about algebraic definitions of pseudorandom constructions
in PV1. In the remaining part of the proof of the PCP theorem, including the powering
proposition, we were mainly verifying step by step that the reasoning used in the standard
proof does not exceed the possibilities of the theory PV1.
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