
Logical Methods in Computer Science
Vol. 11(2:12)2015, pp. 1–37
www.lmcs-online.org

Submitted Mar. 19, 2014
Published Jun. 23, 2015

DECIDING THE VALUE 1 PROBLEM

FOR PROBABILISTIC LEAKTIGHT AUTOMATA ∗

NATHANAËL FIJALKOW a, HUGO GIMBERT b, EDON KELMENDI c,
AND YOUSSOUF OUALHADJ e

a LIAFA, Université Denis Diderot - Paris 7, France, and University of Warsaw, Poland.
e-mail address: nath@liafa.univ-paris-diderot.fr

b LaBRI, CNRS, Bordeaux, France.
e-mail address: hugo.gimbert@labri.fr

c LaBRI and Université de Bordeaux, France.
e-mail address: edon.kelmendi@labri.fr

e Université Paris-Est, LACL, France.
e-mail address: youssouf.oualhadj@lacl.fr

Abstract. The value 1 problem is a decision problem for probabilistic automata over
finite words: given a probabilistic automaton, are there words accepted with probability
arbitrarily close to 1? This problem was proved undecidable recently; to overcome this,
several classes of probabilistic automata of different nature were proposed, for which the
value 1 problem has been shown decidable. In this paper, we introduce yet another class
of probabilistic automata, called leaktight automata, which strictly subsumes all classes of
probabilistic automata whose value 1 problem is known to be decidable.

We prove that for leaktight automata, the value 1 problem is decidable (in fact, PSPACE-
complete) by constructing a saturation algorithm based on the computation of a monoid
abstracting the behaviours of the automaton. We rely on algebraic techniques developed
by Simon to prove that this abstraction is complete. Furthermore, we adapt this saturation
algorithm to decide whether an automaton is leaktight.

Finally, we show a reduction allowing to extend our decidability results from finite
words to infinite ones, implying that the value 1 problem for probabilistic leaktight parity
automata is decidable.

2012 ACM CCS: [Theory of computation]: Models of computation—Probabilistic computation.
Key words and phrases: Probabilistic automata, Value 1 problem, Algebraic Techniques in Automata

Theory.
∗ A preliminary version appeared in LiCS’2012 [FGO12]. The sections about probabilistic automata over

infinite words and the comparisons with structurally simple automata are new. The latter is mostly due to
Edon Kelmendi.

This project was supported by the french ANR project ”Stoch-MC” as well as ”LaBEX CPU” of Université
de Bordeaux.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(2:12)2015

c© N. Fijalkow, H. Gimbert, E. Kelmendi, and Y. Oualhadj
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

Introduction

Probabilistic automata. Rabin invented a very simple yet powerful model of probabilistic
machine called probabilistic automata, which, quoting Rabin, “are a generalization of finite
deterministic automata” [Rab63]. A probabilistic automaton has a finite set of states and
reads input words from a finite alphabet. The computation starts from the initial state and
consists in reading the input word sequentially; the state is updated according to transition
probabilities determined by the current state and the input letter. The probability to accept
a finite input word is the probability that the computation ends in one of the final states.

Probabilistic automata, and more generally partially observable Markov decision pro-
cesses and stochastic games, are a widely studied model of probabilistic machines used in
many fields like software verification [BBG12, CDHR07], image processing [CK97], compu-
tational biology [DEKM99] and speech processing [Moh97]. As a consequence, it is crucial
to understand which decision problems are algorithmically tractable for probabilistic au-
tomata. From a language-theoretic perspective, several algorithmic properties of probabilis-
tic automata are known: while language emptiness is undecidable [Paz71, Ber74, GO10],
functional equivalence is decidable [Sch61, Tze92] as well as other properties [CMRR08].

Our initial motivation for this work comes from control and game theory: we aim
at solving algorithmic questions about partially observable Markov decision processes and
stochastic games. For this reason, we consider probabilistic automata as machines controlled
by a blind controller, who is in charge of choosing the sequence of input letters in order to
maximize the acceptance probability. While in a fully observable Markov decision process
the controller can observe the current state of the process to choose adequately the next
input letter, a blind controller does not observe anything and its choice depends only on
the number of letters already chosen. In other words, the strategy of a blind controller is
an input word of the automaton.

The value of a probabilistic automaton. With this game-theoretic interpretation
in mind, we define the value of a probabilistic automaton as the supremum acceptance
probability over all input words, and we would like to compute this value. Unfortunately,
as a consequence of Paz undecidability result, the value of an automaton is not computable
in general. However, the following decision problem was conjectured by Bertoni [Ber74] to
be decidable:

Value 1 problem: Given a probabilistic automaton, does it have value 1? In other

words are there input words whose acceptance probability is arbitrarily close to 1?

Recently, the second and fourth authors of the present paper proved that the value 1
problem is undecidable [GO10].

Our result. We introduce a new class of probabilistic automata, called leaktight au-

tomata, for which the value 1 problem is decidable. This subclass strictly subsumes all
known subclasses of probabilistic automata sharing this decidability property and has good
closure properties. Our algorithm to decide the value 1 problem computes in polynomial
space a finite monoid whose elements are directed graphs and checks whether it contains a
certain type of elements that are value 1 witnesses.

Related works. Introducing subclasses of probabilistic automata to cope with unde-
cidability results has been a fruitful and lively topic recently. We discuss some of them
here.

PROBABILISTIC LEAKTIGHT AUTOMATA 3

The first subclass which was introduced specifically to decide the value 1 problem are the
♯-acyclic automata [GO10]. Later on, Chatterjee and Tracol [CT12] introduced structurally
simple automata, which are probabilistic automata satisfying a structural property (related
to the decomposition-separation theorem from probability theory), and proved that the
value 1 problem is decidable for structurally simple automata. At the same time, a subset
of the authors introduced leaktight automata, and proved a similar result. As we shall
see, both ♯-acyclic and structurally simple automata are leaktight, hence our results extend
both [GO10] and [CT12].

Quite recently, Chadha, Sistla and Viswanathan introduced the subclass of hierarchical
automata [CSV11], and showed that over infinite words, they recognize exactly the class
of ω-regular languages. As we shall see, hierarchical automata are leaktight, hence as a
consequence of our result, the value 1 problem is decidable for hierarchical automata.

Proof techniques. Our proof techniques totally depart from the ones used in [CSV11,
CT12, GO10]. We make use of algebraic techniques and in particular Simon’s factorization
forest theorem, which was used successfully to prove the decidability of the boundedness
problem for distance automata [Sim94], and extended models as desert automata and B-
automata [Kir05, Col09]

Outline. Basic definitions are given in Section 1.
In Section 2, we introduce the Markov monoid and the Markov monoid algorithm for the

value 1 problem; since the problem is in general undecidable, the algorithm is incomplete:
a positive answer implies that the automaton has value 1, but a negative answer gives no
guarantee.

In Section 3, we define the class of leaktight automata and show that the leaktight
property is a sufficient condition for this algorithm to be complete; in particular, this
implies that the value 1 problem is decidable for leaktight automata.

In Section 4, we show that the Markov monoid algorithm runs in polynomial space, and
obtain as a corollary that the value 1 problem for leaktight automata is PSPACE-complete.
Furthermore, we extend the Markov monoid algorithm to check at the same time whether
an automaton is leaktight and whether in such case it has value 1.

In Section 5, we further investigate the class of leaktight automata: we provide examples
of leaktight automata and show that all subclasses of probabilistic automata whose value 1
problem is known to be decidable are leaktight.

In Section 6, we give a general theorem allowing to extend the decidability results from
finite words to infinite words.

1. Definitions

1.1. Probabilistic automata. We fix A a finite alphabet. A (finite) word u is a (possibly
empty) sequence of letters u = a0a1 · · · an−1, the set of finite words is denoted by A∗. For
i ≤ j we denote by u[i, j] the subword ai · · · aj−1, and u<p = u[0, p] = a0a1 · · · ap−1.

Let Q be a finite set of states. A probability distribution over Q is a function δ : Q→
[0, 1] such that

∑
q∈Q δ(q) = 1; we often see δ as a row vector of size |Q|. We denote by

1
3 ·q+

2
3 ·q

′ the distribution that picks q with probability 1
3 and q′ with probability 2

3 , and by
q the trivial distribution picking q with probability 1. For a subset R of states, the uniform
distribution over R picks each state in R with probability 1

|R| . The support of a distribution

4 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

δ is the set of states picked with positive probability, i.e. Supp(δ) = {q ∈ Q | δ(q) > 0}.
Finally, the set of probability distributions over Q is D(Q).

Definition 1.1 (Probabilistic automaton). A tuple A = (Q, q0,∆, F) represents a proba-
bilistic automaton, where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ defines the
transitions and F ⊆ Q is the set of accepting states.

The transitions of a probabilistic automaton are given by a function ∆ : Q×A→ D(Q),
where ∆(q, a) is the probability distribution obtained by reading the letter a from the
state q. The function ∆ induces the function ∆′ : D(Q) × A → D(Q), where ∆′(δ, a) =∑

q∈Q δ(q) · ∆(q, a). Going further, ∆ naturally extends to ∆∗ : D(Q) × A∗ → D(Q) by

induction: for a letter a ∈ A, we set ∆∗(δ, a) = ∆′(δ, a), and for an input word u = av, we
set ∆∗(δ, u) = ∆∗(∆′(δ, a), v). Intuitively, ∆∗(δ, u) is the probability distribution obtained
by reading the word u starting at the initial probability distribution δ. From now on, we
will make no difference between ∆, ∆′ and ∆∗, and denote the three of them by ∆.

We denote by PA(s
u
−→ t) the probability to go from state s to state t reading u on the

automaton A, i.e. ∆(s, u)(t). Then PA(s
u
−→ T) is defined as

∑
t∈T PA(s

u
−→ t). Finally, the

acceptance probability of a word u ∈ A∗ by A is PA(q0
u
−→ F), which we denote by PA(u).

For computational purposes, we assume that each value is a rational number given by
two integers in binary decomposition.

Definition 1.2 (Value). The value of a probabilistic automaton A, denoted by val(A), is
the supremum acceptance probability over all input words:

val(A) = sup
u∈A∗

PA(u). (1.1)

1.2. The value 1 problem. We are interested in the following decision problem:

Problem 1.3 (Value 1 Problem). Given a probabilistic automaton A, decide whether

val(A) = 1.

The value 1 problem can be reformulated using the notion of isolated cut-point intro-
duced by Rabin in his seminal paper [Rab63]: an automaton has value 1 if and only if the
cut-point 1 is not isolated.

0

L1

L2

R1

R2a

b, 1
2

a, 1− xb

a, x

a, b

b, 1
2

a, x b

a, 1− x

a, b

Figure 1: This automaton has value 1 if and only if x > 1
2 .

PROBABILISTIC LEAKTIGHT AUTOMATA 5

The automaton depicted on figure 1 has value 1 if and only if x > 1
2 (a similar example

appears in [BBG12]). The input alphabet is A = {a, b}, the initial state is the central state
0 and the unique final state is L2.

We describe the behaviour of this automaton. After reading one b, the distribution is
uniform over L1, R1. To reach L2, one needs to read a b from the state L1, but on the
right-hand side this leads to the non-accepting absorbing state R2. In order to maximize
the probability to reach L2, one tries to “tip the scales” to the left.

If x ≤ 1
2 , there is no hope to achieve this: reading a letter a gives more chance to stay

in R1 than in L1 thus all words are accepted with probability at most 1
2 , and val(A) = 1

2 .

However, if x > 1
2 then we show that A has value 1.

We have:

PA(0
ban
−−→ L1) =

1

2
· xn and PA(0

ban
−−→ R1) =

1

2
· (1− x)n

We fix an integer N and analyse the action of reading (ban)N · b: there are N “rounds”,
each of them corresponding to reading ban from 0. In a round, there are three outcomes:
winning (that is, remaining in L1) with probability pn = 1

2 ·x
n, losing (that is, remaining in

R2) with probability qn = 1
2 · (1− x)n, or going to the next round (that is, reaching 0) with

probability 1− (pn + qn). If a round is won or lost, then the next b leads to an accepting or
rejecting sink; otherwise it goes on to the next round, for N rounds. Hence:

PA((ba
n)N · b) =

∑N
k=1(1− (pn + qn))

k−1 · pn

= pn ·
1−(1−(pn+qn))N

1−(1−(pn+qn))

= 1
1+ qn

pn

·
(
1− (1− (pn + qn))

N
)

We now set N = 2n. A simple calculation shows that the sequence ((1−(pn+qn))
2n)n∈N

converges to 0 as n goes to infinity. Furthermore, if x > 1
2 then 1−x

x
< 1, so qn

pn
=
(
1−x
x

)n
converges to 0 as n goes to infinity. It follows that the acceptance probability converges to
1 as n goes to infinity. Consequently:

lim
n

PA((ba
n)2

n

· b) = 1.

This example witnesses two surprising phenomena:

• the value is discontinuous with respect to the transition probabilities, as for x = 1
2 the

value is 1
2 , and for x > 1

2 the value is 1;

• the sequence of words ((ban)2
n
· b)n∈N witnessing the value 1 involves two convergence

speeds: indeed, the words anb are repeated an exponential number of times, namely 2n.
One can show that repeating only n times does not lead to words accepted with arbitrarily
high probability.

1.3. Recurrent states and idempotent words. We fix A a probabilistic automaton,
and define two main notions: recurrent states and idempotent words.

Definition 1.4 (Induced Markov chain). Let u be a finite word, it induces a Markov chain
MA,u whose state space is Q and transition matrix MA,u is defined by:

MA,u(s, t) = PA(s
u
−→ t).

6 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

We rely on the classical notion of recurrent states in Markov chains.

Definition 1.5 (Recurrent state). A state s is u-recurrent if it is recurrent inMA,u.

A finite word u is idempotent if reading once or twice the word u does not change
qualitatively the transition probabilities.

Definition 1.6 (Idempotent word). A Markov chain is idempotent if its transition matrix
M satisfies that for all states s, t:

M(s, t) > 0 ⇐⇒ M2(s, t) > 0.

A finite word u is idempotent ifMA,u is idempotent.

In the case of idempotent words, recurrence of a state is easily characterized, relying
on simple graph-theoretical arguments:

Lemma 1.7. Let u be an idempotent word. A state s is u-recurrent if and only if for all

states t we have:

MA,u(s, t) > 0 =⇒ MA,u(t, s) > 0.

2. An (incomplete) algorithm for the value 1 problem

In this section, we present an algebraic algorithm for the value 1 problem, called the Markov
monoid algorithm. Since the problem is undecidable, this algorithm does not solve the
problem on all instances; we will show that it is correct, i.e. if it answers that an automaton
has value 1, then the automaton does have value 1, but not complete, i.e. the converse does
not hold. In the next section, we shall show that this algorithm is complete for the class of
leaktight automata.

2.1. The Markov monoid algorithm. Our algorithm for the value 1 problem computes
iteratively a set G of directed graphs called limit-words. Each limit-word is meant to
represent the asymptotic effect of a sequence of input words, and some particular limit-
words can witness that the automaton has value 1.

Definition 2.1 (Limit-word). A limit-word is a function u : Q2 → {0, 1}, such that for all
states s, there exists a state t such that u(s, t) = 1.

In proofs and examples, we will adopt either of the two equivalent views for limit-words:
graphs over the set Q or square matrices over Q×Q.

We now explain the algorithm in detail. For the remainder of this section, we fix A a
probabilistic automaton. Initially, G only contains those limit-words a that are induced by
input letters a ∈ A :

∀s, t ∈ Q, (a(s, t) = 1 ⇐⇒ PA(s
a
−→ t) > 0),

plus the limit-word 1 which is induced by the empty word:

∀s, t ∈ Q, (1(s, t) = 1 ⇐⇒ s = t).

The algorithm repeatedly adds new limit-words to G. There are two ways for that:
concatenating two limit-words or iterating an idempotent limit-word.

PROBABILISTIC LEAKTIGHT AUTOMATA 7

ALGORITHM 1: The Markov monoid algorithm.

Data: A probabilistic automaton.
G ← {a | a ∈ A} ∪ {1}.
repeat

if there is u,v ∈ G such that u · v /∈ G then
add u · v to G

end

if there is u ∈ G such that u is idempotent and u♯ /∈ G then

add u♯ to G
end

until there is nothing to add ;

if there is a value 1 witness in G then

return true;

else

return false;

end

Concatenation of two limit-words The concatenation of two limit-words u and v

is the limit-word u · v such that:

(u · v)(s, t) = 1 ⇐⇒ ∃q ∈ Q, u(s, q) = 1 and v(q, t) = 1.

In other words, concatenation corresponds to the multiplication of matrices with coefficients
in the boolean semiring ({0, 1},∨,∧). Intuitively, the concatenation of two limit-words
corresponds to the concatenation of two sequences (un)n∈N and (vn)n∈N of input words into
the sequence (un · vn)n∈N.

We say that a limit-word u is idempotent if u ·u = u. The following lemma gives simple
properties of idempotent limit-words.

Lemma 2.2. For all limit-words u:

• the limit-word u|Q|! is idempotent,

• if u is idempotent, then for all states r ∈ Q, there exists a state r′ ∈ Q such that

u(r, r′) = 1 and r′ is u-recurrent.

The proof is omitted and relies on simple graph-theoretical arguments.

Iteration of an idempotent limit-word The iteration u♯ of a limit-word u is only
defined when u is idempotent. It relies on the notion of u-recurrent state.

Definition 2.3 (u-recurrence). Let u be an idempotent limit-word. A state s is u-recurrent
if for all states t, we have:

u(s, t) = 1 =⇒ u(t, s) = 1.

Note that this echoes Lemma 1.7. The iterated limit-word u♯ removes from u any edge that
does not lead to a recurrent state:

u♯(s, t) = 1 ⇐⇒ u(s, t) = 1 and t is u-recurrent.

Intuitively, if a limit-word u represents a sequence (un)n∈N then its iteration u♯ represents

the sequence
(
u
f(n)
n

)
n∈N

for some increasing function f : N→ N.

8 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

2.2. The Markov monoid and value 1 witnesses. The set of limit-words G computed
by Algorithm 1 is called the Markov monoid.

Definition 2.4 (Markov monoid). The Markov monoid associated with A is the smallest
set of limit-words containing {a | a ∈ A}∪{1} and closed under concatenation and iteration.

Two key properties, consistency and completeness, ensure that the limit-words of the
Markov monoid reflect exactly every possible asymptotic effect of a sequence of input words.

Definition 2.5 (Reification). A sequence (un)n∈N of words reifies a limit-word u if for all

states s, t, (PA(s
un−→ t))n∈N converges and:

u(s, t) = 1 ⇐⇒ lim
n

PA(s
un−→ t) > 0. (2.1)

Note that if (un)n∈N reifies u, then any subsequence of (un)n∈N also does. We will use
this simple observation several times.

Definition 2.6 (Consistency). A set of limit-words G is consistent with A if for every
limit-word u ∈ G, there exists a sequence of input words (un)n∈N which reifies u.

Definition 2.7 (Completeness). A set of limit-words G is complete forA if for each sequence
of input words (un)n∈N

, there exists u ∈ G such that for all states s, t ∈ Q:

lim sup
n

PA(s
un−→ t) = 0 =⇒ u(s, t) = 0. (2.2)

Limit-words are useful to decide the value 1 problem because some of these are witnesses
that the automaton has value 1.

Definition 2.8 (Value 1 witness). A value 1 witness is a limit-word u such that for all
states t:

u(q0, t) = 1 =⇒ t ∈ F, (2.3)

where q0 is the initial state of the automaton.

Thanks to value 1 witnesses, the answer to the value 1 problem can be read in a
consistent and complete set of limit-words:

Lemma 2.9 (A criterion for value 1). If G is consistent with A and complete for A, then
A has value 1 if and only if G contains a value 1 witness.

Specifically:

• If G is consistent with A and contains a value 1 witness, then A has value 1,
• If G is complete for A and A has value 1, then A contains a value 1 witness.

Proof. We prove the first item. Assume that G is consistent with A and contains a value
1 witness u. Since G is consistent, there exists a sequence (un)n∈N reifying u. It follows

from (2.1) and (2.3) that for t /∈ F , we have limn PA(q0
un−→ t) = 0. Thus limn PA(un) =∑

t∈F limn PA(q0
un−→ t) = 1, so A has value 1.

We now prove the second item. Assume that G is complete for A and that A has
value 1. Then there exists a sequence of words (un)n∈N such that limn PA(un) = 1, i.e.

limn

∑
t∈F PA(q0

un−→ t) = 1. Since for all n ∈ N, we have
∑

q∈Q PA(q0
un−→ q) = 1, then

for all t /∈ F , lim supn PA(q0
un−→ t) = 0. Since G is complete, there exists a limit-word u

such that (2.2) holds. Then u is a value 1 witness: let t ∈ Q such that u(q0, t) = 1, then

according to (2.2), lim supn PA(q0
un−→ t) > 0, hence t ∈ F .

PROBABILISTIC LEAKTIGHT AUTOMATA 9

2.3. Correctness of the Markov monoid algorithm.

Theorem 2.10. The Markov monoid associated with A is consistent.

This implies that if the Markov monoid algorithm outputs “true”, then for sure the
input automaton has value 1. This positive result holds for every automaton (leaktight or
not).

To prove Theorem 2.10, recall that the Markov monoid is the smallest set of limit-words
containing {a | a ∈ A}∪ {1} and closed under concatenation and iteration, hence it suffices
to prove that the initial elements form a consistent set, and the closure under the two
operations.

First, a is reified by the constant sequence (a)n∈N, and 1 by the constant sequence
(ε)n∈N. We state the closure under the two operations in the following proposition:

Proposition 2.11. Let (un)n∈N and (vn)n∈N be two sequences that reify the limit-words u

and v respectively. Then:

(1) the sequence of words (un · vn)n∈N reifies u · v,
(2) if u is idempotent, then there exists an increasing function f : N→ N such that for all

increasing functions g : N → N satisfying g ≥ f , the sequence
(
un
g(n)

)
n∈N

reifies the

limit-word u♯.

The statement about iteration is stronger than required: the existence of f such that
(un

f(n))n∈N reifying the limit-word u♯ is enough to prove Theorem 2.10. However, we will

use this stronger result later on (in Section 5.4).

Proof.

(1) Let wn = un · vn. Then (wn)n∈N reifies u · v, since:

PA(s
wn−−→ t) =

∑

r∈Q

PA(s
un−→ r) · PA(r

vn−→ t).

(2) Consider the Markov chainM with state space Q and transition matrix M defined by

M(s, t) = limn PA(s
un−→ t). Since (un)n∈N reifies u, we have u(s, t) = 1 if and only if

M(s, t) > 0. First observe that since u is idempotent, the Markov chainM is aperiodic.
According to standard results about finite Markov chains, this implies that the sequence
of matrices (Mk)k∈N has a limit which we denote by M∞, satisfying the following:

∀s, t ∈ Q, M∞(s, t) > 0 =⇒ t is recurrent inM. (2.4)

By definition the sequence of matrices (MA,un)n∈N converges to M . Since the matrix

product operation is continuous, for every k ∈ N,
(
Mk

A,un

)
n∈N

converges to Mk. So

for every k ≥ 1, there exists Nk ∈ N such that for all p ≥ Nk, ||M
k −Mk

A,up
||∞ ≤

1
k
.

We define f : N → N by induction, so that f(k) is the maximum of f(k − 1) + 1 and
of Nk, ensuring that f is increasing. Then for any increasing function g : N → N

satisfying g ≥ f , the sequence of matrices
(
Mn

A,ug(n)

)
n∈N

converges to M∞. We prove

10 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

that
(
un
g(n)

)
n∈N

reifies u♯:

u♯(s, t) = 1 ⇐⇒ u(s, t) = 1 and t is u-recurrent

⇐⇒ M(s, t) > 0 and t is recurrent inM

⇐⇒ M∞(s, t) > 0

⇐⇒ lim
n

PA(s
un
g(n)
−−−→ t) > 0,

where the first equivalence is by definition of the iteration, the second holds because

(un)n∈N reifies u, the third by definition of M∞, and the fourth because
(
MA,un

g(n)

)
n∈N

converges to M∞.

This concludes the proof.

Note that completeness is not true in general; for instance, one can show that the
Markov monoid of the automaton represented in figure 1 is not complete. The next section
gives a sufficient condition for completeness: the leaktight property.

3. Decidability of the value 1 problem for leaktight automata

In this section we establish our main result:

Theorem 3.1. The value 1 problem is decidable for leaktight automata.

The definition of leaktight automata is given in the next subsection. For now (in this
section), we are only interested in decidability issues; we will actually prove in Section 4
that the value 1 problem is PSPACE-complete for leaktight automata.

Note that as observed in the literature [BBG12, CSV13, Fij14], the value 1 problem for
probabilistic automata over finite words is equivalent to the emptiness problem for proba-
bilistic Büchi automata with positive semantics, hence we obtain the following corollary:

Corollary 3.2. The emptiness problem is decidable for probabilistic Büchi leaktight au-

tomata with positive semantics.

The following theorem proves that the Markov monoid of a leaktight automaton is
complete; since it is always consistent, by Lemma 2.9, the Markov monoid algorithm solves
the value 1 problem for leaktight automata.

Theorem 3.3. If a probabilistic automaton is leaktight then its Markov monoid is complete.

The remainder of this section is devoted to the proof of Theorem 3.3. We first define
the leaktight property, and extend the Markov monoid. This extended version allows to
state an algebraic characterization of the leaktight property. Then, the technical core of the
proof relies on a subtle algebraic argument based on the existence of ♯-factorization trees of
bounded height [Sim90, Sim94, Col09, Tor11].

PROBABILISTIC LEAKTIGHT AUTOMATA 11

3.1. Leaks. The undecidability of the value 1 problem comes from the necessity to compare
parallel convergence rates in order to track down vanishing probabilities. Comparing two
convergence rates may require to compare the decimals of the rates up to an arbitrary pre-
cision, which in turn can encode a Post correspondence problem, hence the undecidability.

One of the phenomena that makes tracking vanishing probabilities difficult are leaks.
A leak occurs in an automaton when a sequence of words turns a set of states C ⊆ Q into
a recurrence class C on the long run, but on the short run, some of the probability of the
recurrence class is “leaking” to a different recurrence class.

L1

L2

0

b

a

b

a

a, b

a
an

· b

L1

L2

0

ε

Figure 2: (an · b)n∈N is a leak from L1 to L2.

Such leaks occur in the automaton depicted in the left hand side of figure 2 with the
input sequence (anb)n∈N. As n grows large, the probability to reach L2 from L1 while reading
the input word anb vanishes, thus the sets {L1} and {L2} are two different recurrence classes
on the long run (i.e. asymptotically), however on the short run remains a small yet positive
probability to reach L2 from L1.

The right hand side of figure 2 shows the asymptotic behaviour of reading (anb)n∈N.
Since the automaton in figure 1 contains two symmetric parts identical to figure 2, it

features one leak on the left hand side and another in the right hand side. As a consequence,
the real asymptotic behaviour is complex and depends on the compared speeds of these
leaks.

An automaton without leak is called a leaktight automaton. In this section we prove
that the value 1 problem is decidable when restricted to the subclass of leaktight automata.

The formal definition of a leak is as follows:

Definition 3.4 (Leak). Let (un)n∈N be a sequence of idempotent words. Assume that
the sequence of matrices PA(un) converges to a limit M , that this limit is idempotent and
denoteM the assocaited Markov chain.

The sequence (un)n∈N is a leak if there exist r, q ∈ Q such that the following three
conditions hold:

(1) r and q are recurrent inM,

(2) limn PA(r
un−→ q) = 0,

(3) for all n ∈ N, PA(r
un−→ q) > 0.

Definition 3.5 (Leaktight automata). A probabilistic automaton is leaktight if it has no
leak.

Several examples of leaktight automata are given in Section 5.

12 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

3.2. The extended Markov monoid. The existence of leaks can be decided by a slight
extension of the Markov monoid algorithm which keeps track of strictly positive transition
probabilities.

Definition 3.6 (Extended limit-word). An extended limit-word is a couple (u,u+) of two
limit-words, such that for all s, t ∈ Q, we have u(s, t) = 1 =⇒ u+(s, t) = 1.

As for limit-words, extended limit-words can be seen either as graphs over the set Q,
or couples of square matrices over Q×Q. Such a graph has two different kind of edges: an
edge (s, t) is “normal” if u(s, t) = 1, and is a +-edge if u(s, t) = 0 but u+(s, t) = 1.

We define the concatenation and iteration operations for extended limit-words. The
concatenation of two extended limit-words (u,u+) and (v,v+) is the component-wise con-
catenation, i.e. (u · v,u+ · v+). The iteration of an extended limit-word (u,u+) is only
defined when it is idempotent (i.e. component-wise idempotent), by (u,u+)

♯ = (u♯,u+).

Definition 3.7 (Extended Markov monoid). The extended Markov monoid is the small-
est set of extended limit-words containing {(a,a) | a ∈ A} ∪ {(1,1)} and closed under
concatenation and iteration.

Note that if (u,u+) is in the extended Markov monoid, then u is in the Markov monoid.
The essential difference between the Markov monoid and its extended version is that

the extension keeps track of those edges that are deleted by successive iteration operations.
This serves two purposes: first, to characterize the leaktight property in algebraic terms,
and second, to prove Theorem 3.3.

We state a consistency result for the extended Markov monoid, extending Theorem 2.10.
The proofs of both these results are similar and given only once.

Lemma 3.8. For each (u,u+) in the extended Markov monoid, there exists a sequence

(un)n∈N such that for all states s, t ∈ Q, (PA(s
un−→ t))n∈N converges and:

u(s, t) = 1 ⇐⇒ lim
n

PA(s
un−→ t) > 0, (3.1)

for all n ∈ N,
(
u+(s, t) = 1 ⇐⇒ PA(s

un−→ t) > 0
)
. (3.2)

3.3. Leak witnesses.

Definition 3.9 (Leak witness). An idempotent extended limit-word (u,u+) is a leak witness
if there exist r, q ∈ Q such that the following three conditions hold:

(1) r and q are u-recurrent,
(2) u(r, q) = 0,
(3) u+(r, q) = 1.

Lemma 3.10. If a probabilistic automaton is leaktight, then its extended Markov monoid

does not contain any leak witness.

Proof. Suppose that there is a leak witness (u,u+) in the extended Markov monoid: u and
u+ are idempotent and there exists r, q ∈ Q such that r and q are u-recurrent, u(r, q) = 0
and u+(r, q) = 1. We prove that there exists a leak.

Thanks to Lemma 3.8, there exists a sequence (un)n∈N satisfying (3.1) and (3.2). Note
that since u+ is idempotent, (3.2) implies that for all n ∈ N, un is idempotent.

PROBABILISTIC LEAKTIGHT AUTOMATA 13

Consider the Markov chainM with state space Q and transition matrix M defined by

M(s, t) = limn PA(s
un−→ t). M is idempotent since u is idempotent and thanks to (3.1).

We show that (un)n∈N is a leak. There are three conditions to be met.
First, r and q are recurrent in M: this follows from (3.1) and the fact that r and q

are u-recurrent. Second, limn PA(r
un−→ q) = 0: this follows from (3.1) and the fact that

u(r, q) = 0. Third, for all n ∈ N, PA(r
un−→ q) > 0: this follows from (3.2) and the fact that

u+(r, q) = 1.

As we will show in the next section, the converse of Lemma 3.10 is also true, which
gives an algebraic characterization of the leaktight property using the extended Markov
monoid. However, the proof of the converse implication is more involved and requires the
lower bound lemma (Lemma 3.15), which is the object of the next subsection.

3.4. Stabilization monoids and ♯-factorization trees. We now introduce the technical
material required to state and prove the lower bound lemma. The key notions here are
stabilization monoids and ♯-factorization trees.

Factorization trees for monoids have been introduced by Simon [Sim90]. Roughly speak-
ing, Simon’s factorization theorem states that given a morphism φ : A∗ → M from the set
of finite words over A to a finite monoid M , the following holds: for all words u, the com-
putation of φ(u) can be factorized in a tree whose depth is bounded independently of the
length of the word.

Simon later developed the notion of decomposition trees to solve the limitedness prob-
lem for distance automata [Sim94]. To this end, he defined an iteration operation ♯ for
monoids over the tropical semiring (N ∪ {∞},min,+). Then Kirsten extended this tech-
nique to desert automata and the nested distance desert automata [Kir05]. After him,
Colcombet generalized this approach by defining stabilization monoids [Col09], which are
monoids equipped with an iteration operation, and proved the existence of ♯-factorization
trees of bounded depth. The formal definition is as follows:

Definition 3.11 (Stabilization monoid). A stabilization monoid (M, ·, ♯) is a finite monoid
(M, ·) equipped with an iteration operation ♯ : E(M) → E(M), where E(M) is the set of
idempotents of M , such that:

(a · b)♯ · a = a · (b · a)♯ for a · b ∈ E(M) and b · a ∈ E(M), (3.3)

(e♯)♯ = e♯ for e ∈ E(M), (3.4)

e♯ · e = e♯ for e ∈ E(M). (3.5)

Lemma 3.12. The extended Markov monoid is a stabilization monoid.

Proof. To start with, the extended Markov monoid is a monoid for the concatenation: 1 is
the neutral element, and the concatenation is associative.

Now, let us prove the three properties required for the iteration operation ♯.
Proof of (3.3). Let (u,u+), (v,v+) such that (u · v,u+ · v+) and (v · u,v+ · u+) are

idempotent. By definition ((u,u+) · (v,v+))
♯ · (u,u+) is equal to

(
(u · v)♯ · u,u+ · v+ · u+

)
,

and (u,u+) · ((v,v+) · (u,u+))
♯ to

(
u · (v · u)♯,u+ · v+ · u+

)
. Let s, t ∈ Q, we have the

following equivalence:
(
(u · v)♯ · u

)
(s, t) = 1 if and only if:

there exists r, q ∈ Q, u(s, r) = 1 ∧ v(r, q) = 1 ∧ u(q, t) = 1 ∧ q is (u · v)-recurrent, (3.6)

14 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

and similarly,
(
u · (v · u)♯

)
(s, t) = 1 if and only if:

there exists r, q ∈ Q, u(s, r) = 1 ∧ v(r, q) = 1 ∧ u(q, t) = 1 ∧ t is (v · u)-recurrent. (3.7)

We show that (3.6) and (3.7) are equivalent. Assume (3.6), and prove that t is (v · u)-
recurrent. Let p ∈ Q such that (v · u)(t, p) = 1. Since v is a limit-word, there exists
ℓ ∈ Q such that v(p, ℓ) = 1. Observe that u(q, t) = 1, (v · u)(t, p) = 1 and v(p, ℓ) = 1, so
(u · v)2(q, ℓ) = 1. As u · v is idempotent, this implies (u · v)(q, ℓ) = 1. Since q is (u · v)-
recurrent, we have (u · v)(ℓ, q) = 1. Altogether, v(p, ℓ) = 1, (u · v)(ℓ, q) = 1 and u(q, t) = 1
imply that (v · u)2(p, t) = 1. As v · u is idempotent, this implies (v · u)(p, t) = 1, so t is
(v · u)-recurrent, and (3.7) is proved. Conversely, assume (3.7), and prove that q is (u · v)-
recurrent. Note that from v(r, q) = 1, u(q, t) = 1 and the fact that t is (v ·u)-recurrent, we
obtain that (v · u)(t, r) = 1. Let p ∈ Q such that (u · v)(q, p) = 1. Since u is a limit-word,
there exists ℓ ∈ Q such that u(p, ℓ) = 1. Observe that v(r, q) = 1, (u · v)(q, p) = 1 and
u(p, ℓ) = 1, so (v · u)2(r, ℓ) = 1, and with (v · u)(t, r) = 1 this implies (v · u)3(t, ℓ) = 1.
As v · u is idempotent, this implies (v · u)(t, ℓ) = 1. Since t is (v · u)-recurrent, we have
(v · u)(ℓ, t) = 1. Altogether, u(p, ℓ) = 1, (v · u)(ℓ, t) = 1, (v · u)(t, r) = 1 and v(r, q) = 1
imply that (u · v)3(p, q) = 1. As u · v is idempotent, this implies (u · v)(p, q) = 1, so q is
(u · v)-recurrent, and (3.6) is proved. The property (3.3) follows.

Proof of (3.4). This boils down to proving (u♯)♯ = u♯. This is clear from the definition
of u♯, since the notions of u-recurrence and u♯-recurrence coincide.

Proof of (3.5). This boils down to proving u♯ · u = u♯. It follows from the observation
that if r ∈ Q is u-recurrent and u(r, t) = 1, then t is u-recurrent (under the assumption
that u is idempotent).

Definition 3.13. Let A be a finite alphabet, (M, ·, ♯) a stabilization monoid and φ : A∗ →
M a morphism into the submonoid (M, ·). A ♯-factorization tree of a word u ∈ A∗ is a finite
unranked ordered tree, whose nodes have labels in A∗ ×M and such that:

i) the root is labelled by (u,u), for some u ∈M ,
ii) every internal node with two children (called concatenation nodes) labelled by (u1,u1)

and (u2,u2) is labelled by (u1 · u2,u1 · u2),
iii) every internal node with three or more children (called iteration nodes) is labelled by

(u1 . . . un, e
♯) for some e ∈ E(M), and its children are labelled by (u1, e), . . . , (un, e).

iv) every leaf is labelled by (a,a) where a is a letter, or (ε,1).

Note that in a factorization tree, the second label is not always the image of the first
component under φ; indeed, it is an element of the stabilization monoid (M, ·, ♯) whereas
the image of a finite word under φ is an element of the submonoid (M, ·). However, the
projection of second label into this submonoid (which consists in ignoring the operation ♯)
is indeed the image of the first component under φ.

The following theorem was stated for the tropical semiring in [Sim94], and generalized
in [Col09]. A simple proof can be found in [Tor11].

Theorem 3.14. Let A be a finite alphabet, (M, ·, ♯) a stabilization monoid and φ : A∗ →M
a morphism into the submonoid (M, ·). Every word u ∈ A∗ has a ♯-factorization tree whose

depth is less than 3 · |M |.

PROBABILISTIC LEAKTIGHT AUTOMATA 15

3.5. The lower bound lemma. We are ready to state and prove the lower bound lemma,
which is the central argument in the proof of completeness of leaktight Markov monoids.

Lemma 3.15 (Lower bound lemma). Let A be a probabilistic automaton whose extended

Markov monoid contains no leak witness. Let pmin the smallest non-zero transition proba-

bility of A. Then for all words u ∈ A∗, there exists (u,u+) in the extended Markov monoid

such that, for all states s, t:

u+(s, t) = 1 ⇐⇒ PA(s
u
−→ t) > 0, (3.8)

u(s, t) = 1 =⇒ PA(s
u
−→ t) ≥ p2

3|Q|2+1

min . (3.9)

Proof. Consider a finite word u ∈ A∗; by Theorem 3.14 applied to the extended Markov
monoid G+ associated with A (which is a stabilization monoid thanks to Lemma 3.12) and
the morphism φ : A → M defined by φ(a) = (a,a), there exists a ♯-factorization tree of
depth at most 3 · |G+|, whose root is labelled by (u, (u,u+)) for some extended limit-word
(u,u+).

The depth of a node in this tree is defined in a bottom-up fashion: the leaves have
depth zero, and a node has depth one plus the maximum of the depths of its children.

We prove by a bottom-up induction (on h) that for every node (u, (u,u+)) of this tree
at depth h, for all states s, t:

u+(s, t) = 1 ⇐⇒ PA(s
u
−→ t) > 0, (3.10)

u(s, t) = 1 =⇒ PA(s
u
−→ t) ≥ p2

h

min. (3.11)

The case h = 0 is for leaves. Here, either u is a letter a and u = u+ = a, or u is the
empty word ε and u = u+ = 1. Then both (3.10) and (3.11) hold.

Assume h > 0, there are two cases.
First case: a concatenation node labelled by (u, (u,u+)) with two children labelled

by (u1, (u1,u+,1)) and (u2, (u2,u+,2)). By definition u = u1 · u2, u = u1 · u2 and u+ =
u+,1 · u+,2.

We first prove that (3.10) holds. Indeed, for s, t ∈ Q, u+(s, t) = 1 if and only if there
exists r ∈ Q such that u+,1(s, r) = 1 and u+,2(r, t) = 1. On the other side, since:

PA(s
u
−→ t) =

∑

r∈Q

PA(s
u1−→ r) · PA(r

u2−→ t),

then PA(s
u
−→ t) > 0 if and only if there exists r ∈ Q such that PA(s

u1−→ r) ·PA(r
u2−→ t) > 0,

which is equivalent to PA(s
u1−→ r) > 0 and PA(r

u2−→ t) > 0. We conclude with the induction
hypothesis.

Now we prove that (3.11) holds. Let s, t ∈ Q such that u(s, t) = 1. Then there exists
r ∈ Q such that u1(s, r) = 1 and u2(r, t) = 1. So:

PA(s
u
−→ t) ≥ PA(s

u1−→ r) · PA(r
u2−→ t) ≥ p2

h

min · p
2h

min = p2
h+1

min ,

where the second inequality is by induction hypothesis. This completes the proof of (3.11).
Second case: an iteration node labelled by (u, (u♯,u+)) with k sons labelled by

(u1, (u,u+)), . . . , (uk, (u,u+)). By definition, u = u1 · · · uk, and (u,u+) is idempotent.
The proof that (3.10) holds is similar to the concatenation node case.

16 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

Now we prove that (3.11) holds. Let s, t ∈ Q such that u♯(s, t) = 1. Since k ≥ 3:

PA(s
u
−→ t) ≥ PA(s

u1−→ t) ·
∑

q∈Q

PA(t
u2···uk−1
−−−−−−→ q) · PA(q

uk−→ t). (3.12)

To establish (3.11) we prove that:

PA(s
u1−→ t) ≥ p2

h

min, (3.13)

for all q ∈ Q, PA(t
u2···uk−1
−−−−−−→ q) > 0 =⇒ PA(q

uk−→ t) ≥ p2
h

min. (3.14)

We prove (3.13). Since u♯(s, t) = 1, by definition u(s, t) = 1 and t is u-recurrent. The

induction hypothesis for the node (u1, (u,u+)) implies that PA(s
u1−→ t) ≥ p2

h

min, i.e. (3.13).
Now we prove (3.14). For that we use the hypothesis that (u,u+) is not a leak witness.

Let q ∈ Q such that PA(t
u2···uk−1
−−−−−−→ q) > 0. By induction hypothesis for each child, (3.10)

implies that uk−2
+ (t, q) = 1. Since u+ is idempotent, u+(t, q) = 1. We argue that u(q, t) = 1.

Let ℓ ∈ Q a u-recurrent state such that u(q, ℓ) = 1. Then u+(t, ℓ) = 1, and t, ℓ are u-
recurrent. Since (u,u+) is not a leak witness, it follows that u(t, ℓ) = 1, which implies that
u(ℓ, t) = 1 since t is u-recurrent. Together with u(q, ℓ) = 1, this implies u(q, t) = 1. Thus,

by induction hypothesis and according to (3.11), PA(q
uk−→ t) ≥ p2

h

min, so (3.14) holds.
Now, putting (3.12), (3.13) and (3.14) altogether:

PA(s
u
−→ t) ≥ PA(s

u1−→ t) ·
∑

q∈Q

PA(t
u2···uk−1
−−−−−−→ q) · PA(q

uk−→ t)

≥ p2
h

min ·
∑

q∈Q

PA(t
u2···uk−1
−−−−−−→ q) · p2

h

min

= p2
h+1

min ,

where the last equality holds because
∑

q∈Q PA(t
u2···uk−1
−−−−−−→ q) = 1. This completes the proof

of (3.11).

To conclude, note that G+ has less than 3|Q|2 elements.

3.6. Completeness of the Markov monoid algorithm for leaktight automata. In
this subsection we rely on the lower bound lemma (Lemma 3.15) to prove Theorem 3.3.
Let A be a leaktight automaton. By Lemma 3.10, its extended Markov monoid does not
contain any leak witness, hence Lemma 3.15 applies.

We prove the completeness of the Markov monoid associated with A. Let (un)n∈N be
a sequence of finite words. By Lemma 3.15, for each word un there exists (un,u+,n) in the
extended Markov monoid such that for all states s, t:

un(s, t) = 1 =⇒ PA(s
un−→ t) ≥ p2

3|Q|2+1

min .

Since the set of limit-words is finite, there exists N ∈ N such that {n ∈ N | uN = un} is
infinite. To complete the proof, we prove that uN satisfies, for all states s, t:

lim supPA(s
un−→ t) = 0 =⇒ uN (s, t) = 0.

PROBABILISTIC LEAKTIGHT AUTOMATA 17

Assume lim supPA(s
un−→ t) = 0, then lim supPA(s

un−→ t) < p2
3|Q|2+1

min for n sufficiently large.
Since uN = un for infinitely many n ∈ N, this implies uN (s, t) = 0, which completes the
proof of Theorem 3.3.

4. Properties of leaktight automata

In this section, we extend the algorithm presented in Section 2, and investigate its running
complexity. The extended algorithm has two features: first, it checks at the same time

whether an automaton is leaktight and whether it contains a value 1 witness, second, it
runs in polynomial space.

We present an algebraic characterization of the leaktight property based on the extended
Markov monoid, allowing the extended algorithm to check the leaktight property. For the
complexity, one needs a deeper understanding of the Markov monoid; in this section, we will
show a linear bound on the ♯-height, allowing to compute the extended Markov monoid in
polynomial space. As a corollary, we obtain that the value 1 problem for leaktight automata
is PSPACE-complete.

4.1. Characterization of the leaktight property. In this subsection, we show the con-
verse of Lemma 3.10, which implies the following theorem, characterizing the leaktight
property in algebraic terms.

Theorem 4.1. An automaton A is leaktight if and only if its extended Markov monoid does

not contain any leak witness.

Lemma 3.15 is instrumental in the proof of this lemma.

Proof. We prove that if the extended Markov monoid of an automaton A does not contain
any leak witness, then A is leaktight. The converse was proved in Lemma 3.10.

Assume A has a leak (un)n∈N, we show that its extended Markov monoid contains a
leak witness. Consider the Markov chain M with state space Q and transition matrix M

defined by M(s, t) = limn PA(s
un−→ t). By assumption M is idempotent.

By definition of a leak:

r and q are recurrent inM, (4.1)

M(r, q) = 0, (4.2)

for all n ∈ N, PA(r
un−→ q) > 0. (4.3)

Assume towards contradiction that the extended Markov monoid does not contain any
leak witness, then Lemma 3.15 applies. For each word un, there exists (un,u+,n) in the
extended Markov monoid such that for all states s, t:

u+,n(s, t) = 1 ⇐⇒ PA(s
un−→ t) > 0, (4.4)

un(s, t) = 1 =⇒ PA(s
un−→ t) ≥ p2

3|Q|2+1

min . (4.5)

Since the extended Markov monoid is finite, there exists N ∈ N such that for infinitely
many n ∈ N, we have (uN ,u+,N) = (un,u+,n).

Note that since each un is idempotent, (4.4) implies that each u+,n is idempotent as
well.

18 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

Let (v,v+) = (uN ,u+,N)|Q|!. The power |Q|! ensures that u
|Q|!
N is idempotent, by

Lemma 2.2. Since u+,N is idempotent, v+ = u+,N . Also, since v is idempotent, there
exists r′ and q′ which are v-recurrent, such that v(r, r′) = 1 and v(q, q′) = 1, again thanks
to Lemma 2.2.

Now, we prove that (v,v+) is a leak witness:

r′ and q′ are v-recurrent, (4.6)

v(r′, q′) = 0, (4.7)

v+(r
′, q′) = 1. (4.8)

Let η = p2
3|Q|2+1

min and K = |Q|!.
Observe that for all states s, t, we have v(s, t) = 1 =⇒ M(s, t) > 0:

v(s, t) = 1

=⇒ uK
N (s, t) = 1 (by definition of v)

=⇒ uK
n (s, t) = 1 for infinitely many n (by definition of N)

=⇒ PA(s
uK
n−−→ t) ≥ ηK for infinitely many n (by (4.5))

=⇒ lim
n

PA(s
uK
n−−→ t) ≥ ηK

=⇒ MK(s, t) > 0 (by definition of M)

=⇒ M(s, t) > 0 (since M is idempotent).

First, (4.6) is by definition of r′ and q′.
We prove (4.7). Towards contradiction, assume that v(r′, q′) = 1. Then M(r′, q′) > 0,

so together with M(r, r′) > 0 (which follows from v(r, r′) = 1) this implies M2(r, q′) > 0,
so M(r, q′) > 0 as M is idempotent. Since M(q, q′) > 0 (which follows from v(q, q′) = 1)
and q is recurrent in M , we have M(q′, q) > 0. This implies M2(r, q) > 0, and M(r, q) > 0
because M is idempotent, which contradicts (4.2).

We prove (4.8). Thanks to (4.3) and (4.4), we have u+,N(r, q) = 1, i.e. v+(r, q) =
1. Since M(r, r′) > 0 and r is recurrent in M , we have M(r′, r) > 0, so (4.4) implies
that u+,N(r′, r) = 1, i.e. v+(r

′, r) = 1. Similarly, M(q, q′) > 0, so (4.4) implies that
u+,N (q, q′) = 1, i.e. v+(q, q

′) = 1. The three equalities v+(r
′, r) = 1, v+(r, q) = 1 and

v+(q, q
′) = 1 imply v3

+(r
′, q′) = 1, and since v+ is idempotent v+(r

′, q′) = 1.
It follows that (v,v+) is a leak witness, which completes the proof.

The immediate corollary of Theorem 4.1 is that checking whether an automaton is
leaktight can be done by computing the extended Markov monoid and looking for leak
witnesses, hence it is decidable.

4.2. The extended Markov monoid algorithm. Algorithm 2 computes the extended
Markov monoid, and looks for value 1 witnesses, which in the extended Markov monoid is
an extended limit-word (u,u+) such that u is a value 1 witness (in the Markov monoid). If
there is a value 1 witness, then the automaton has value 1, even if it is not leaktight, thanks
to Theorem 2.10. Otherwise, the algorithm looks for a leak witness; if there is no leak
witness, then the automaton is leaktight thanks to Theorem 4.1, and it does not have value

PROBABILISTIC LEAKTIGHT AUTOMATA 19

1 thanks to Theorem 3.3. In case there is a leak witness, the automaton is not leaktight,
and nothing can be said.

ALGORITHM 2: The extended Markov monoid algorithm.

Data: A probabilistic automaton.
G+ ← {(a, a) | a ∈ A} ∪ {(1,1)}.
repeat

if there is (u,u+), (v,v+) ∈ G+ such that (u · v,u+ · v+) /∈ G+ then
add (u · v,u+ · v+) to G+

end

if there is (u,u+) ∈ G+ such that (u,u+) is idempotent and (u♯,u+) /∈ G+ then

add (u♯,u+) to G+
end

until there is nothing to add ;

if there is a value 1 witness in G+ then

return true;

else

if there is no leak witness in G+ then

return false;

else

return fail: the automaton is not leaktight;

end

end

4.3. Parallel composition and PSPACE-hardness. The objective of this subsection is
to prove the PSPACE-hardness of the value 1 problem for leaktight automata. To this end,
we give a reduction from the emptiness problem of n deterministic automata. To prove that
the reduction indeed constructs leaktight automata, we need to show that deterministic
automata are leaktight, and the closure under parallel composition.

Proposition 4.2. Deterministic automata are leaktight.

Proof. For all limit-words u ∈ {a | a ∈ A} ∪ {1}, for all states s, there exists a unique
state t such that u(s, t) = 1. In particular, each recurrence class is formed of only one state
with a self-loop. This property is preserved by concatenation, and implies that the iteration
operation is trivial, i.e. u♯ = u. Consequently, for all extended limit-words (u,u+) in the
extended Markov monoid, we have u = u+, which implies that there are no leak witnesses.

Definition 4.3 (Parallel composition). Consider two probabilistic automata, denoted A =
(QA, qA0 ,∆

A, FA) and B = (QB, qB0 ,∆
B, FB). We assume that QA and QB are disjoint.

The parallel composition of A and B is:

A || B = (QA ⊎QB , δ0 , ∆ , FA ∪ FB),

where δ0 =
1
2 · q

A
0 + 1

2 · q
B
0 , and:

∆(q, a) =

{
∆A(q, a) if q ∈ QA,

∆B(q, a) if q ∈ QB.

20 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

By definition, for u ∈ A∗, we have PA||B(u) = 1
2 · PA(u) +

1
2 · PB(u). Note that in

this definition, we allowed an initial probability distribution rather than only one initial
state. This could be avoided by adding a new initial state that leads to each previous initial
state with probability half, but we do it here for technical convenience in the proof of the
following proposition.

Proposition 4.4. The leaktight property is stable by parallel composition.

Proof. The extended Markov monoid G
A||B
+ of the parallel composition embeds into the

direct product GA+ × G
B
+ of the extended Markov monoids of each automaton.

Note that for (u,u+) ∈ G
A||B
+ , if u(s, t) = 1, then either s, t ∈ QA or s, t ∈ QB, and

similarly for u+. Relying on this, we map (u,u+) ∈ G
A||B
+ to ((u,u+)[A] , (u,u+)[B]),

where (u,u+)[A] is the restriction to A and similarly for B. An easy induction on (u,u+)
shows that this map is an embedding into GA+ × G

B
+.

Consequently, the extended Markov monoid of the parallel composition contains a leak
witness if and only if one of the extended Markov monoid contains a leak witness.

Now that we proved that deterministic automata are leaktight, and the closure under
parallel composition, the PSPACE-hardness of the value 1 problem for leaktight automata
is easy.

Proposition 4.5. The value 1 problem for leaktight automaton is PSPACE-hard.

Proof. We give a reduction from the following problem: given n deterministic automata
over finite words, decide whether the intersection of the languages they accept is empty.
This problem is PSPACE-hard [Koz77].

The reduction is as follows: given n deterministic automata, we construct the parallel
composition of the n automata, where each copy is reached with probability 1

n
. This au-

tomaton has value 1 if and only if the intersection of the languages is not empty, and is
leaktight by Proposition 4.2 and Proposition 4.4.

4.4. Bounding the ♯-height in the Markov monoid. We now consider the running
complexity of the extended Markov monoid algorithm. A näıve argument shows that it

terminates in less than 3|Q|2 iterations, since each iteration adds a new extended limit-word

in the monoid and there are at most 3|Q|2 different limit-words. This gives an EXPTIME
upper bound.

A better complexity can be achieved by looking for a value 1 witness or a leak witness
in a non-deterministic way. The algorithm guesses the witness by its decomposition into
concatenations and iterations. The key observation, made by Kirsten [Kir05] in the context
of distance desert automata, is that the ♯-height, that is the number of nested applications
of the iteration operation, can be restricted to at most |Q|.

Note that when dealing with ♯-height, it suffices to consider limit-words instead of
extended limit-words, as by definition the second component of an extended limit-word
does not contain any ♯.

Formally, we define the ♯-hierarchy inside the Markov monoid as follows:

S0 = 〈{a | a ∈ A} ∪ {1}〉,

Sp+1 = 〈Sp ∪ {u
♯ | u ∈ E(Sp)}〉,

PROBABILISTIC LEAKTIGHT AUTOMATA 21

where 〈T 〉 is the set of limit-words obtained as concatenation of limit-words in T .

Definition 4.6 (♯-height of a limit-word). The ♯-height of a limit-word u is the minimal p
such that u ∈ Sp.

Theorem 4.7. Every limit-word has ♯-height at most |Q|, i.e. the ♯-hierarchy collapses at

level |Q|.

In the following, we adapt Kirsten’s proof from [Kir05] to the setting of probabilistic
automata. Roughly speaking, the proof consists in associating a quantity to each idempotent
element of the Markov monoid, and to show the following:

• the quantity is bounded above by |Q|.
• the quantity strictly decreases when iterating an unstable limit-word (i.e. if u♯ 6= u),
• the quantity does not increase when concatenating.

Let u be an idempotent limit-word, we define ∼u the relation on Q by s ∼u t if
u(s, t) = 1 and u(t, s) = 1. Clearly, ∼u is symmetric, and since u is idempotent, ∼u is
transitive. If for some state s there exists a state t such that s ∼u t, then s ∼u s since u is
idempotent. Consequently, the restriction of ∼u to the set

Zu = {s ∈ Q | s ∼u s}

is reflexive, i.e. ∼u is an equivalence relation on Zu. From now on by equivalence class
of ∼u we mean an equivalence class of ∼u on Zu. We denote by [s]u the equivalence class
of s, and by Cl(u) the set of equivalence classes of ∼u. The quantity associated with u is
|Cl(u)|, the number of equivalence classes of ∼u, that is the number of non-trivial connected
components in the underlying graph of u. Note that |Cl(u)| ≤ |Q|.

Here are two useful observations.

Lemma 4.8.

• Let u,v be two limit-words and s, t, r ∈ Q. Then (u · v)(s, t) ≥ u(s, r) · v(r, t).
• Let u be an idempotent limit-word and s, t ∈ Q. There exists r ∈ Q such that u(s, t) =
u(s, r) · u(r, r) · u(r, t).

Proof. The first claim is clear and follows from the equality:

(u · v)(s, t) =
∑

r∈Q

u(s, r) · v(r, t).

Consider now the second claim. For all states r ∈ Q, since u is idempotent we have:

u(s, t) = u3(s, t) =
∑

p,q∈Q

u(s, p) · u(p, q) · u(q, t) ≥ u(s, r) · u(r, r) · u(r, t).

Since u is idempotent, we have u = un+2, so there exist s = r0, . . . , rn+2 = t such that
u(s, t) = u(r0, r1) · · ·u(rn+1, rn+2). By a counting argument, there exist i, j such that
1 ≤ i < j ≤ (n+ 1) and ri = rj, denote it by r. We have:

u(s, r) = ui(s, r) ≥ u(r0, r1) · · ·u(ri−1, ri),

u(r, r) = uj−i(r, r) ≥ u(ri, ri+1) · · ·u(rj−1, rj),

u(r, t) = un+2−j(r, t) ≥ u(rj , rj+1) · · ·u(rn+1, rn+2).

Hence, u(s, r) · u(r, r) · u(r, t) ≥ u(r0, r1) · · ·u(rn+1, rn+2) = u(s, t), and the second claim
follows.

22 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

The following lemma shows that the quantity |Cl(u)| strictly decreases when iterating
an unstable limit-word (i.e. if u♯ 6= u).

Lemma 4.9. Let u be an idempotent limit-word.

Cl(u♯) ⊆ Cl(u), (4.9)

if u 6= u♯, then Cl(u♯) 6= Cl(u). (4.10)

Proof. We prove (4.9). Let s ∈ Z
u
♯ ; by definition we have s ∼

u
♯ s. We show that [s]

u
♯ = [s]u.

For all states t ∈ Q such that s ∼
u
♯ t, we have s ∼u t, so [s]

u
♯ ⊆ [s]u. Conversely, let t ∈ [s]u;

we have u(s, t) = 1 and u(t, s) = 1. Since s ∼
u
♯ s, we have u♯(s, s) = 1. So u♯(s, t) =

(u♯ ·u)(s, t) ≥ u♯(s, s) ·u(s, t) = 1, and similarly u♯(t, s) = (u ·u♯)(t, s) ≥ u(t, s) ·u♯(s, s) = 1.
Thus s ∼

u
♯ t, i.e. t ∈ [s]

u
♯ , which concludes to the equality [s]

u
♯ = [s]u. In other words,

the equivalence classes for u♯ are also equivalence classes for u, so Cl(u♯) ⊆ Cl(u).
We prove (4.10). Assume u 6= u♯; let s, t such that u(s, t) = 1 and u♯(s, t) = 0. By

Lemma 4.8, there exists r such that u(s, t) = u(s, r) ·u(r, r) ·u(r, t), so u(r, r) = 1. Towards
contradiction, assume u♯(r, r) = 1. It follows that:

u♯(s, t) = (u · u♯ · u)(s, t) ≥ u(s, r) · u♯(r, r) · u(r, t) = u(s, r) · u(r, r) · u(r, t) = 1,

i.e., u♯(s, t) = 1 which is a contradiction. Consequently, u♯(r, r) = 0, so r ∼u r and r 6∼
u
♯ r.

Thus, r ∈ Zu but r /∈ Z
u
♯ . Hence, there is a class [r]u in Cl(u), but there is no class [r]

u
♯

in Cl(u♯).

The following lemma shows that the quantity |Cl(u)| is common to all idempotents in
the same J -class. The notion of J -class is a classical notion for the theory of monoids,
derived from one of the four Green’s relations called the J -preorder (for details about
Green’s relations, see [Lal79, How95], or [Col11] for its applications to automata theory).

Define u ≤J v if there exist a,b such that a · v · b = u, and uJv, i.e. u and v are in
the same J -class, if u ≤J v and v ≤J u.

Lemma 4.10. Let u,v be idempotent limit-words. If u ≤J v, then |Cl(u)| ≤ |Cl(v)|.

Proof. Let a,b two limit-words such that a · v · b = u. First, without loss of generality we
assume that a ·v = a and v ·b = b. Indeed, if a and b do not satisfy these conditions, then
we consider a = a · v and b = v · b.

We construct a partial surjective mapping β : Cl(v) → Cl(u), which depends on the
choice of a and b. For all states s ∈ Zv and t ∈ Zu satisfying a(t, s) · v(s, s) ·b(s, t) = 1 we
set β([s]v) = [t]u. To complete the proof, we have to show that β is well defined and that
β is indeed surjective.

We show that β is well defined. Let s, s′ ∈ Zv and t, t′ ∈ Zu, and assume a(t, s) ·v(s, s) ·
b(s, t) = 1 and a(t′, s′)·v(s′, s′)·b(s′, t′) = 1. By definition β([s]v) = [t]u and β([s′]v) = [t′]u.
To show that β is well defined, we have to show that if [s]v = [s′]v, then [t]u = [t′]u.
Assume [s]v = [s′]v, i.e., s ∼v s′, so v(s, s′) = 1. Since a(t, s) · v(s, s) · b(s, t) = 1, we have
a(t, s) = b(s, t) = 1. Similarly, a(t′, s′) · v(s′, s′) · b(s′, t′) = 1, so a(t′, s′) = b(s′, t′) = 1.
Consequently, a(t, s) · v(s, s′) · b(s′, t′) = 1, so u(t, t′) = (a · v · b)(t, t′) = 1. Symmetrically,
a(t′, s′) · v(s′, s) · b(s, t) = 1, so u(t′, t) = 1, concluding to t ∼u t′, i.e. [t]u = [t′]u.

We show that β is surjective. Let t ∈ Zu. We exhibit some s such that β([s]v) = [t]u.
Since u = a · v · b, there are p, q such that a(t, p) · v(p, q) · b(q, t) = u(t, t) = 1, so
a(t, p) = v(p, q) = b(q, t) = 1. By Lemma 4.8 there exists s such that v(p, s) · v(s, s) ·
v(s, q) = v(p, q) = 1, so, v(p, s) = v(s, s) = v(s, q) = 1. We have a(t, s) = (a · v)(t, s) ≥

PROBABILISTIC LEAKTIGHT AUTOMATA 23

a(t, p) · v(p, s) = 1, and b(s, t) = (v · b)(s, t) ≥ v(s, q) · b(q, t) = 1. To sum up, a(t, s) ·
v(s, s) · b(s, t) = 1, and hence, β([s]v) = [t]u.

The following lemma wraps up the previous two lemma. For technical convenience, we
set S−1 = ∅.

Lemma 4.11. Let u be an idempotent limit-word and p ≥ 0. If u ∈ Sp \ Sp−1, then

|Cl(u)| ≤ |Q| − p.

Proof. We proceed by induction on p. For p = 0, the assertion is obvious. Let p ≥ 0, we
show the claim for p + 1. Let u be an idempotent limit-word such that u ∈ Sp+1 \ Sp. By

definition, u = v1 · · · vk where for all i, either vi ∈ Sp or vi = u
♯
i for ui ∈ Sp and vi /∈ Sp.

If for all i, vi ∈ Sp, then u = v1 · · ·vk ∈ Sp, which is a contradiction. Consequently,

there exists i such that vi = u
♯
i for ui ∈ Sp and vi /∈ Sp. Since ui ∈ Sp and vi = u

♯
i /∈ Sp,

we have u
♯
i 6= ui. Towards contradiction, assume ui ∈ Sp−1, then p ≥ 1, and this implies

u
♯
i ∈ Sp, which is a contradiction. Hence, ui ∈ Sp \ Sp−1.

By induction, we have |Cl(ui)| ≤ |Q| − p. Since u
♯
i 6= ui, by Lemma 4.9 we have

|Cl(u♯
i)| < |Cl(ui)|. Since u ≤J u

♯
i , by Lemma 4.10 we have |Cl(u)| ≤ |Cl(u♯

i)|. Altogether,
it follows |Cl(u)| ≤ |Q| − (p+ 1).

It follows from Lemma 4.11 that S|Q| = S|Q|+1, i.e. the ♯-hierarchy collapses at level
|Q|, proving Theorem 4.7.

The bound is almost tight, as shown in figure 3. The only value 1 witness of this

automaton is (· · · ((a♯0 a1)
♯ a2)

♯ a3)
♯ · · · an−1)

♯, whose ♯-height is |Q| − 2. Note that this

0 1 2 n− 1 n

⊥

a0,
1
2

(ai)i≥0

(ai)i≤0 (ai)i≤1 (ai)i≤n−2

(ai)i≥0

a0,
1
2

a1,
1
2 a1,

1
2

a2,
1
2

a2,
1
2

an−1,
1
2

an−1,
1
2

(ai)i≥1

(ai)i≥2 (ai)i≥3

(ai)i≥n

.

.

Figure 3: A leaktight automaton with value 1 and ♯-height |Q| − 2.

automaton is leaktight, so the extended Markov monoid algorithm will find the value 1
witness and correctly answers that it has value 1.

24 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

4.5. Finding witnesses in the Markov monoid. In the subsection, we will prove the
following complexity result.

Proposition 4.12. There exists an algorithm which checks in polynomial space whether an

automaton is leaktight and whether in such case it has value 1.

Following Theorem 3.3, checking whether a leaktight automaton has value 1 boils down
to finding a value 1 witness in the Markov monoid. Similarly, following Theorem 4.1,
checking whether an automaton is not leaktight boils down to finding a leak witness in the
extended Markov monoid. Note that in both cases, checking whether a given limit-word or
extended limit-word is a witness is easily done in polynomial time.

Since we aim at proving that those two tasks can be computed in PSPACE, which is
closed under complementation, it suffices to show how to find a witness in the (extended)
Markov monoid. For the sake of readability, we here only deal with the Markov monoid,
but similar ideas apply to the extended Markov monoid.

We describe an algorithm to guess a witness in the Markov monoid. The key property
given by Theorem 4.7 is that we can restrict ourselves to at most |Q| nested iteration
operations.

As the corresponding property was proved by Kirsten [Kir05] in the context of distance
automata, also to obtain a PSPACE algorithm, the following algorithm is also an adaptation
of [Kir05]. Rather than a formal proof, we here give an intuitive description of the algorithm.

A witness can be described as a tree whose nodes are labelled by limit-words, of depth
at most 2 · |Q|+ 1, as follows:

• a leaf is labelled either by a for a ∈ A or by 1,
• an internal node can be a concatenation node, then it is labelled by u = v1 · · ·vk for

k ≤ 2|Q|2 and has k children, labelled by v1, . . . ,vk,
• an internal node can be an iteration node, then it is labelled by u♯ and has one child
labelled u.

We describe an algorithm that guesses such a tree. It starts from the root, and travels over
nodes in a depth-first way: from top to bottom (and up again) and from left to right. In
a node, the algorithm stores the branch that leads to this node, and for each node in the
branch the limit-word obtained by concatenating all the left siblings of this node. From
a node, the algorithm guesses a limit-word, and whether it will be a leaf, a concatenation
node or an iteration node. In the first case, it goes up and checks the consistency of this
guess. In the two other cases, it updates the value of this node by concatenating the new
guess with the previous value and goes down.

Although the tree is of exponential size, in each step the algorithm only stores 2 · |Q|+1
limit-words at most, so it runs in polynomial space.

5. Examples and subclasses of leaktight automata

In this section, we investigate further the class of leaktight automata, by giving examples
of leaktight automata, exhibiting subclasses, and showing closure properties. In particular,
we prove that hierarchical automata, ♯-acylic automata and simple automata are all strict
subclasses of leaktight automata. (Actually, since ♯-acylic automata are already a subclass
of simple automata, we do not consider them.) This implies that our decidability result
extends the decidability results from [GO10, CT12].

PROBABILISTIC LEAKTIGHT AUTOMATA 25

5.1. Two basic examples. The automaton on figure 4 is leaktight. As we shall see, it is
not hierarchical, nor simple, hence it witnesses that leaktight automata are not subsumed
by hierarchical or simple automata. Its extended Markov monoid is depicted on the right-
hand side. Each of the four directed graphs represents an extended limit-word (u,u+): if
u(s, t) = 1, then (s, t) is an edge, and if u(s, t) = 0 but u+(s, t) = 1, then (s, t) is marked
with +.

The initial state of the automaton is state 0, and the unique final state is state 1. This
automaton has value 1 and this can be checked using the extended Markov monoid: the
two value 1 witnesses are a♯ and b · a♯.

0 1

a, 1

2

b

a

a, 1

2

b

a

0 1

a
♯

0 1

+

b

0 1

b · a
♯

0 1

+

+

Figure 4: A leaktight automaton and its extended Markov monoid.

The automaton on figure 5 is leaktight. The initial state of the automaton is state 0,
and the unique final state is state F . The Markov monoid has too many elements to be
represented here. This automaton does not have value 1.

0

L R

F

a, 1
2

a, 1
2

b

a

a

b, 1
2

b

a, 1
2

b, 1
2a, 1

2
.

Figure 5: A leaktight automaton which does not have value 1.

26 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

5.2. Some closure properties. In this subsection, we show some closure properties: syn-
chronised product and composition with a deterministic transducer. As for Proposition 4.4,
the automata constructions reflect in algebraic constructions, allowing to use the character-
ization with leak witnesses given by Theorem 4.1.

In this subsection, we will omit initial and final states, as we are only interested in
preserving the leaktight property, which does not depend on it.

Definition 5.1 (Synchronised product). Let A = (QA,∆A) and B = (QB,∆B) be two
probabilistic automata.

A synchronised product of A and B is:

A× B = (QA ×QB , ∆),

where ∆(q, a) = (∆A(q, a),∆B(q, a)).

Proposition 5.2. The leaktight property is stable by synchronized product.

Proof. The extended Markov monoid GA×B
+ of the synchronized product embeds into the

direct product GA+ × G
B
+ of the extended Markov monoids of each automaton.

Let (u,u+) be an extended limit-word in GA×B
+ . Define uA(s, t) = 1 if there exists

s′, t′ ∈ QB such that u((s, s′), (t, t′)) = 1, and similarly for u+,A, uB and u+,B. We have the
following equivalence:

u((s, s′), (t, t′)) = 1 ⇐⇒ uA(s, t) = 1 ∧ uB(s
′, t′) = 1,

and similarly for u+.
Relying on this, we map (u,u+) ∈ G

A×B
+ to ((uA,u+,A) , (uB,u+,B)). An easy induc-

tion shows that this map is an embedding into GA+ × G
B
+.

Consequently, the extended Markov monoid of the synchronised product contains a leak
witness if and only if one of the extended Markov monoid contains a leak witness.

The last closure property we prove will be useful in the next section.

Definition 5.3 (Composition with a deterministic transducer). Let A = (QA,∆A) be a
probabilistic automaton, and M = (QM, QA,∆M) a deterministic transducer over A, i.e.
∆M : QM ×QA → QM.

The composition of A byM is:

A⊗M = (QA ×QM , ∆),

where ∆(q, p, a) = (∆A(q, a),∆M(p, q)).

Proposition 5.4. The leaktight property is stable by composition with a deterministic trans-

ducer.

Proof. Following the same reasoning as in 4.2, one can show that the extended Markov
monoids for A and for A⊗M are isomorphic.

PROBABILISTIC LEAKTIGHT AUTOMATA 27

5.3. Leaktight automata strictly contain hierarchical automata. The class of hier-
archical automata has been defined in [CSV11], where it was proved that they are recognize
exactly the class of ω-regular languages. The states Q of a hierarchical automaton are
sorted according to levels such that for each letter, at most one successor is at the same
level and all others are at higher levels.

Formally, there exists a mapping rank : Q → N such that for all a ∈ A, for all states

s, t such that PA(s
a
−→ t) > 0, we have rank(s) ≤ rank(t). Furthermore, if PA(s

a
−→ t) > 0

and PA(s
a
−→ t′) > 0 but rank(s) = rank(t) = rank(t′), then t = t′.

Proposition 5.5. Every hierarchical automata is leaktight.

Proof. We prove by induction that for every extended limit-word (u,u+) in the extended
Markov monoid of a hierarchical automaton, for every states s, t, t′:

u+(s, t) = 1 =⇒ rank(s) ≤ rank(t), (5.1)

u+(s, t) = 1 ∧ u+(s, t
′) = 1 ∧ rank(s) = rank(t) = rank(t′) =⇒ t = t′, (5.2)

u(s, t) = 1 =⇒ rank(s) ≤ rank(t), (5.3)

u(s, t) = 1 ∧ u(s, t′) = 1 ∧ rank(s) = rank(t) = rank(t′) =⇒ t = t′. (5.4)

Note that (5.1) and (5.2) imply (5.3) and (5.4), since u(s, t) = 1 implies u+(s, t) = 1. The
key property following from (5.2) and (5.3) is that the recurrence classes of u and of u+ are
singletons.

This is trivial for (1,1). The case of (a,a) is the definition of hierarchical automata.
The induction step for concatenation is routinely checked, and trivial for the iteration.

We now prove that the extended Markov monoid of a hierarchical automaton does not
contain any leak witness. We prove a slightly stronger statement; for every extended limit-
word (u,u+) in the extended Markov monoid of a hierarchical automaton, for all states
q, r:

u+(r, q) = 1 ∧ r is u-recurrent =⇒ u(r, q) = 1. (5.5)

This is clear for (1,1) and for (a,a).
Concatenation. Let (u,u+) and (v,v+) be two extended limit-words satisfying (5.5).

Consider two states r, q such that (u+ · v+)(r, q) = 1 and r is (u · v)-recurrent.
Since r is (u·v)-recurrent, the recurrence class of r for (u·v) is r itself, so (u·v)(r, r) = 1

and (u · v)(r, p) = 1 implies p = r. Let t be a state such that u(r, t) = 1 and v(t, r) = 1.
Thanks to (5.3), rank(t) = rank(r).

We argue that u(r, p) = 1 implies p = t. Indeed, let p be a state such that u(r, p) = 1.
There exists a state p′ such that v(p, p′) = 1, so in particular (u · v)(r, p′) = 1, so p′ = r.
By (5.3), rank(r) ≤ rank(p) ≤ rank(r), so they are equal. By (5.4), since u(r, t) = 1,
u(r, p) = 1 and rank(r) = rank(t) = rank(p), we have p = t. It follows that the state t is
u-recurrent: by Lemma 2.2, there exists a state p such that u(r, p) = 1 and p is u-recurrent.
The above remark implies that p = t.

We argue that v(t, p) = 1 implies p = r. Indeed, let p be a state such that v(t, p) = 1.
We have (u ·v)(r, p) = 1, so p = r. It follows that the state r is v-recurrent: by Lemma 2.2,
there exists a state p such that v(t, p) = 1 and p is u-recurrent. The above remark implies
that p = r.

Since (u+ ·v+)(r, q) = 1, there exists s ∈ Q such that u+(r, s) = 1 and v+(s, q) = 1. By
induction hypothesis for (u,u+), since u+(r, s) = 1 and r is u-recurrent, we have u(r, s) = 1.

28 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

Since r is u-recurrent, its recurrence class is r itself, so s = r. By induction hypothesis for
(v,v+), since v+(r, q) = 1 and r is v-recurrent, we have v(r, q) = 1.

It follows that (u · v)(r, q) = 1.
The case of iteration is easy.

The inclusion is strict, an example is given by figure 4.

5.4. Leaktight automata strictly contain simple automata. The class of simple au-
tomata has been defined in [CT12], where it was proved that the value 1 problem is decidable
for a subset of this class (namely, for structurally simple automata). In the following we show
that the class of simple automata is strictly contained in the class of leaktight automata.

We fix A a probabilistic automaton.

Definition 5.6 (Jets). A jet is a sequence (Jn)n∈N where Jk ⊆ Q for each k ∈ N.

Definition 5.7 (Simple process [CT12]). Let w ∈ Aω be an infinite word. The process
induced by w from the state p is simple if there exists λ > 0 and two jets (An)n∈N, (Bn)n∈N
such that:

(1) for all k ∈ N, Ak and Bk are disjoint and Ak ∪Bk = Q,

(2) for all k ∈ N and all q ∈ Ak, PA(p
w<k
−−→ q) ≥ λ,

(3) limn→∞ PA(p
w<n
−−−→ Bn) = 0.

Definition 5.8 (Simple automata [CT12]). A is simple if for every infinite word w and
every state p the process induced by w from p is simple.

Theorem 5.9. Every simple automaton is leaktight.

The remainder of this subsection is devoted to the proof of Theorem 5.9. The proof is
divided into two parts: first, we define non-simplicity witnesses, which are elements of the
Markov monoid that witnesses the non-simplicity of an automaton, and second we show that
if the Markov monoid of an automaton contains a leak, then it also contains a non-simplicity
witness.

5.4.1. Non-simplicity witness.

Definition 5.10 (Non-simplicity witness). A triple (u,v,w) of elements of the Markov
monoid is a non-simplicity witness if there exist states r, t such that:

(1) uv♯w is idempotent,
(2) r is uv♯w-recurrent,
(3) uv(r, t) = 1,
(4) t is v-transient.

Proposition 5.11. If the Markov monoid of a probabilistic automaton contains a non-

simplicity witness, then it is not simple.

To prove Proposition 5.11, we rely on the following two lemmata:

Lemma 5.12. Let u be an idempotent element of the Markov monoid, r be a state u-

recurrent, and (un)n∈N a sequence of words that reifies u. Then there exists a constant

γ > 0 and a strictly increasing map h : N→ N such that for all n ∈ N, we have:

PA(r
uh(0)···uh(n−1)
−−−−−−−−−→ r) ≥ γ.

PROBABILISTIC LEAKTIGHT AUTOMATA 29

Proof. Since the sequence of words (un)n∈N reifies the limit-word u, for all states s, t,

PA(s
un−→ t) converges and:

u(s, t) = 1 ⇐⇒ lim
n

PA(s
un−→ t) > 0. (5.6)

Define:

λ =
1

2
·min{lim

n
PA(s

un−→ t) | u(s, t) = 1}.

Thanks to (5.6), there exists an increasing map h : N → N such that the following two
conditions hold, for all states s, t and for all n ∈ N:

if u(s, t) = 0, then PA(s
uh(n)
−−−→ t) ≤

1

|Q| · 2n+2
, (5.7)

if u(s, t) = 1, then PA(s
uh(n)
−−−→ t) ≥ λ. (5.8)

We now use (5.7) and (5.8) to prove the desired result, for γ = λ
2 .

Let wn = uh(0)uh(1) · · · uh(n−1). Denote the u-recurrence class of r by R = {q ∈ Q |

u(r, q) = 1}. We first bound the quantity PA(r
wn−−→ Q \ R). Note that for q ∈ R and t

a state, the following holds: if u(q, t) = 1 then t ∈ R, i.e. R is not left while following
transitions consistent with u. It follows that the probability to leave R from r while reading

wn is smaller than
∑n−1

k=0 PA(R
uh(k)
−−−→ Q \ R), which is smaller than 1

2 by (5.7). Thus

PA(r
wn−1
−−−→ R) ≥ 1

2 . Now, since r is u-recurrent, and u is idempotent, for all q ∈ R we have

u(q, r) = 1, so using (5.8) we get that PA(q
uh(n−1)
−−−−−→ r) ≥ λ. It follows that PA(r

wn−−→ r) ≥ λ
2 ,

which concludes.

Lemma 5.13. Let w ∈ Aω be an infinite word. If there exist states p, s, t, (in)n∈N, (jn)n∈N
and γ > 0 such that:

(1) for all n ∈ N, PA(p
w<in−−−→ s) ≥ γ,

(2) for all n ∈ N, in < jn and PA(s
w[in,jn]
−−−−−→ t) > 0,

(3) limn→∞ PA(p
w<jn−−−→ t) = 0,

then the process induced by w from p is not simple.

Proof. Assume towards contradiction that w induces a simple process from p with bound
λ. We first argue that for infinitely many n ∈ N, we have s ∈ Ain and t ∈ Bjn . Indeed, if
this is not the case, then for n ∈ N large enough either s /∈ Ain or t /∈ Bjn , so either for
infinitely many n ∈ N we have s /∈ Ain , or for infinitely many n ∈ N we have t /∈ Bjn . The
first case is contradicted by (1), the second case by (3).

Let n ∈ N such that s ∈ Ain and t ∈ Bjn , since PA(s
w[in,jn]
−−−−−→ t) > 0, along a path from s

to t there is a transition from the jet A to the jet B. Formally, there exists kn such that in ≤
kn < jn and the kn

th transition goes from qkn ∈ Akn to qkn+1 ∈ Bkn+1. This transition is a
one-step transition in the automaton A; denote by pmin the minimal non-zero probabilistic

transition inA, we have PA(qkn
w[kn,kn+1]
−−−−−−−→ qkn+1) ≥ pmin. Now, consider PA(p

w≤kn−−−→ qkn+1);

since qkn ∈ Akn , we have PA(p
w<kn−−−→ qkn) ≥ λ, so PA(p

w≤kn−−−→ qkn+1) ≥ λ · pmin. But for

infinitely many n ∈ N, qkn+1 ∈ Bkn+1, contradicting limn→∞ PA(p
w<n
−−−→ Bn) = 0.

30 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

Now we are ready to prove Proposition 5.11.

Proof. Let (u,v,w) be a non-simplicity witness, and r, t ∈ Q such that r is uv♯w-recurrent,
uv(r, t) = 1 and t is v-transient. Let (un)n∈N, (vn)n∈N, (wn)n∈N be sequences of words which
reify u,v,w respectively.

Thanks to Proposition 2.11, there exists a strictly increasing map f : N→ N such that
(vn

f(n))n∈N reifies v♯. Note that since (vf(n))n∈N is a subsequence of (vn)n∈N, it also reifies

v. Since v is idempotent, for all k ∈ N, (vk
f(n))n∈N reifies vk. By assumption uv(r, t) = 1,

so there exists Nk ∈ N such that for all n ≥ Nk, PA(r
unv

k
f(n)

−−−−−→ t) > 0.

Let g(n) = max(n,Nn). Since g is increasing, (ug(n)v
g(n)
f(g(n))wg(n))n∈N is a subsequence

of (unv
n
f(n)wn)n∈N, so it reifies uv♯w as well. By definition of the function g, we have:

for all n ∈ N, PA(r
ug(n)v

n
f(g(n))

−−−−−−−−→ t) > 0. (5.9)

We apply Lemma 5.12 to the limit-word uv♯w, the state r and the sequence of words

(ug(n)v
g(n)
f(g(n))wg(n))n∈N, and obtain h a strictly increasing map and a constant γ > 0.

Define the new sequence of words (zn)n∈N = (ug(h(n)) · v
g(h(n))
f(g(h(n))) · wg(h(n)))n∈N, and

(xn)n∈N = (ug(h(n)) · v
h(n)
f(g(h(n))))n∈N. We have:

for all n ∈ N, PA(r
z0···zn−1
−−−−−→ r) ≥ γ. (5.10)

Let z = z0z1 · · · . We argue that the conditions of Lemma 5.13 are met:

(1) for all n ∈ N, PA(r
z0···zn−1
−−−−−→ r) ≥ γ,

(2) for all n ∈ N, PA(r
xn−→ t) > 0,

(3) limn→∞ PA(r
z0···zn−1·xn
−−−−−−−→ t) = 0,

The item (1) is (5.10), the item (2) follows from (5.9), so we consider (3).
First, note that (xn)n∈N reifies uv♯. Indeed, we first argue that (vn

f(g(n)))n∈N reifies

v♯: it follows from Proposition 2.11, since f ◦ g : N → N is a strictly increasing map

satisfying f ◦ g ≥ f , and that (vn
f(n))n∈N reifies v♯. Now, (v

h(n)
f(g(h(n))))n∈N is a subsequence

of (vn
f(g(n)))n∈N, so it reifies v♯ as well, and it follows that (xn)n∈N reifies uv♯.

Second, let q ∈ Q, since t is v-transient, uv♯(q, t) = 0. Since (xn)n∈N reifies uv♯, we

have limn→∞ PA(q
xn−→ t) = 0. Now,

PA(r
z0···zn−1·xn
−−−−−−−→ t) =

∑

q∈Q

PA(r
z0···zn−1
−−−−−→ q) · PA(q

xn−→ t),

and for each term in the sum, the second factor converges to zero, so limn→∞ PA(r
z0···zn−1·xn
−−−−−−−→

t) = 0.
Thus Lemma 5.13 applies, and z induces a non-simple process from p, so A is not

simple.

PROBABILISTIC LEAKTIGHT AUTOMATA 31

5.4.2. The presence of a leak implies the presence of a non-simplicity witness. Now we show
that the presence of a leak witness implies the presence of a non-simplicity witness.

Proposition 5.14. If the extended Markov monoid of a probabilistic automaton contains

a leak witness, then it also contains a non-simplicity witness.

In the following proof, we will make use of the notion of ♯-height for an extended limit-
word. The ♯-height of a limit-word was defined in Section 4.6, the ♯-height of an extended
limit-word (u,u+) is the ♯-height of u.

Proof. Let A be a probabilistic automaton whose extended Markov monoid contains a leak
witness. Consider the subset C of extended limit-words (u,u+) in the extended Markov
monoid such that there exist states r, t satisfying:

(1) (u,u+) is idempotent,
(2) r is u-recurrent,
(3) u(r, t) = 0,
(4) u+(r, t) = 1.

Note that C is non-empty since every leak witness is in C.
Consider an element (z, z+) in C of minimal ♯-height and let r, t ∈ Q such that r

is z-recurrent, z(r, t) = 0 and z+(r, t) = 1. In particular, we have z 6= z+, so in any
decomposition of (z, z+) into concatenation and iteration there must be at least one iteration.
Consequently, z = uv♯w for some u,v,w, and uvw has a strictly smaller ♯-height than z.

Let R be the z-recurrence class of r, and T the set of v-transient states. We argue that
the following holds:

there exist r′ ∈ R and t′ ∈ T such that uv(r′, t′) = 1. (5.11)

Assume towards contradiction that (5.11) does not hold, i.e. for all r′ ∈ R and t′ ∈ T , we

have uv(r′, t′) = 0, then we prove that (uvw, z+)
|G+|! is in C, contradicting the minimality

of (z, z+) as it has strictly smaller ♯-height.
First observe that for all states q we have uv(r′, q) = uv♯(r′, q), which implies that for

all r′ ∈ R and state q, we have:

uvw(r′, q) = uv♯w(r′, q) = z(r′, q). (5.12)

We check that (uvw, z+)
|G+|! is in C, with the states r, t as witnesses:

(1) (uvw, z+)
|G+|! is idempotent, this follows from Lemma 2.2.

(2) r is (uvw)|G+|!-recurrent. Indeed, let q ∈ Q such that (uvw)|G+|!(r, q) = 1. It follows
that (uv♯w)|G+|!(r, q) = 1, but (uv♯w)|G+|! = z|G+|! = z, so z(r, q) = 1. Since r is
z-recurrent, we have z(q, r) = 1 and q ∈ R, so (5.12) implies that z(q, r) = uvw(q, r),
thus uvw(q, r) = 1. Also, z(r, r) = uvw(r, r), so uvw(r, r) = 1, and altogether

(uvw)|G+|!(q, r) = 1.

(3) (uvw)|G+|!(r, t) = 0. Indeed, assume towards contradiction that (uvw)|G+|!(r, t) = 1.
Then there exist q0, q1, . . . , q|G+|! such that q0 = r, for i ∈ {0, . . . , |G+|! − 1} we have
uvw(qi, qi+1) = 1 and q|G+|! = t. We prove by induction on i ∈ {0, . . . , |G+|! − 1} that
qi is in R and that z(qi, qi+1) = 1. Assume qi is in R, then by (5.12), uvw(qi, qi+1) =
z(qi, qi+1), so z(qi, qi+1) = 1. But qi is in R, which is a recurrence class for z, so qi+1

is in R as well, concluding the induction. Thus, we have z|G+|!(r, t) = 1, and since z is
idempotent z(r, t) = 1, a contradiction.

(4) z
|G+|!
+ (r, t) = 1. It follows from the fact the z+ is idempotent, and that z+(r, t) = 1.

32 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

We reached a contradiction, since (uvw, z+)
|G+|! has a strictly smaller ♯-height than

(z, z+). It follows from (5.11) that (u,v,w) is a non-simplicity witness for the states r′ and
t′, concluding the proof.

The proof of Theorem 5.9 is now a simple combination of Proposition 5.11 and Propo-
sition 5.14. The inclusion is strict: figure 4 provides an example of a leaktight automaton
which is not simple.

6. Probabilistic ω-automata

In this section, we relate the value 1 problem for probabilistic automata over finite words
and over infinite words, as introduced and studied in [BBG12]. We state a general theorem,
showing the equivalence of the value 1 problem for automata over finite words and the value
1 problem for automata over infinite words with the parity condition. This theorem allows
to extend the decidability results from finite words to infinite ones.

For the definitions of probabilistic automata over infinite words, we refer to [BBG12].
For the sake of readability, we introduce two notations in this section. First, we denote
by PA,w(E) the probability of the measurable event E when reading the infinite word w

on A. Second, we denote by P
δ
A(u) the probability that the finite word u is accepted by

A with δ as initial distribution. Note that in our definition, probabilistic automata have
a unique initial state; however here we need to deal with automata having general initial
distributions, so we sometimes consider the more general tuples A = (Q, δ,∆, F) where δ is
the initial probability distribution.

Theorem 6.1. Let A = (Q, δ0,∆, c) be a probabilistic parity automaton where c : Q → N

is a priority function. Consider the deterministic transducer M over A, which keeps track

of the minimal priority seen: M = (c(Q), QA,∆M) where ∆M(q, c) = min(c, c(q)).
The automaton A over infinite words has value 1 if and only if there exists R ⊆ Q, such

that the two following probabilistic automata over finite words have value 1:

• The automaton A(R) with R as set of final states;

• The automaton A ⊗M with the uniform distribution over Rc = {(q, c(q)) | q ∈ R} as

initial distribution and {(q, e) | q ∈ R and e even} as set of final states.

Before giving the proof, we need two lemma.

Lemma 6.2. Let A = (Q, δ,∆, F) be a probabilistic automaton, u a word and ε > 0. Let

µ = min{δ(q) | q ∈ Supp(δ)}. If Pδ
A(u) ≥ 1− ε · µ, then for all q ∈ Supp(δ), Pq

A(u) ≥ 1− ε.

Proof.

P
δ
A(u) =

∑

q∈Supp(δ)

δ(q) · Pq
A(u) ≥ 1− ε · µ.

Let q ∈ Supp(δ), since the probabilities are bounded by 1:

δ(q) · Pq
A(u) +

∑

p∈Supp(δ), p 6=q

δ(p)

︸ ︷︷ ︸
1−δ(q)

≥ 1− ε · µ.

Hence:
P
q
A(u) ≥ 1− ε ·

µ

δ(q)
≥ 1− ε.

PROBABILISTIC LEAKTIGHT AUTOMATA 33

Corollary 6.3. Let A = (Q, δ,∆, F) be a probabilistic automaton. If A has value 1, then:

• For all distributions δ′ such that Supp(δ′) ⊆ Supp(δ), it has value 1 with δ′ as initial

distribution.

• For all distributions δ′ such that
∑

q∈Supp(δ) δ
′(q) ≥ θ, it has value at least θ with δ′ as

initial distribution.

Proof. AssumeA has value 1. Let ε > 0, then there exists a word u such that PA(u) ≥ 1−ε·µ.
Thanks to Lemma 6.2, this implies that for all q ∈ Supp(δ), we have P

q
A(u) ≥ 1− ε.

Now for δ′:

P
δ′

A(u) =
∑

q∈Q

δ′(q) · Pq
A(u) ≥

∑

q∈Supp(δ)

δ′(q) · Pq
A(u) ≥


 ∑

q∈Supp(δ)

δ′(q)


 · (1− ε).

For the first item, note that if Supp(δ′) ⊆ Supp(δ), then
∑

q∈Supp(δ) δ
′(q) = 1, so P

δ′

A(u) ≥

1− ε, so A has value 1 with δ′ as initial distribution.
The second item follows from the last inequality, implying P

δ′

A(u) ≥ θ · (1− ε), so A has
value at least θ with δ′ as initial distribution.

Lemma 6.4. For all ε > 0, there exists a sequence (εk)k≥0 satisfying:

(1) For all k ≥ 0, we have 0 < εk < 1;
(2)

∏
k≥0 εk ≥ 1− ε;

(3) For all k ≥ 0, we have
∏

p≤k εp > εk+1.

Proof. Define νk = 1− 1

22k
, which clearly satisfies 1. It also satisfies 3.:

∏
p≤k νp =

∏
p≤k

22
p
−1

22
p

=
∏

p≤k 22
p
−1

22k+1−1

The inequality
∏

p≤k νp > νk+1 is equivalent to:

2 ·


∏

p≤k

(22
p

− 1)


 < 22

k+1
− 1,

which is easily proved by induction, since (22
k+1
− 1)2 < 22

k+2
− 1.

The infinite product
∏

k≥0 νk has a value ν ≈ 0.350184, in particular 0 < ν < 1. Let

ε > 0, then for λ = ln(1−ε)
ln(ν) , which satisfies λ > 0, the sequence (νλk)k∈N satisfies the three

conditions.

We are now fully equipped for the proof of Theorem 6.1

We begin with the left-to-right direction. Let (wn)n∈N be a sequence of infinite words
such that PA,wn(Parity(c)) converges to 1. For each n, denote by (δnk)k∈N the sequence
of distributions assumed by A when reading wn. Since there are finitely many possible
supports, there exists a subsequence where all distributions have the same support. Since
[0, 1]Q is a compact space, we can extract from this subsequence another one, denoted by
(δn

φn(k)
)k∈N, which converges to a distribution denoted by δn. By the same compactness

34 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

argument, at the expense of considering a subsequence of (wn)n∈N, we can assume that
(δn)n∈N converges to a distribution δ, whose support is denoted by R.

We now prove that A(R) as well as A⊗M have value 1.

The automaton A(R). Let ε > 0. Since (δn)n∈N converges to δ, for n large enough,
we have ||δn − δ||∞ ≤

ε
2·|R| . We fix n large enough; since (δn

φn(k)
)k∈N converges to δn, for k

large enough, we have ||δn
φn(k)

− δn||∞ ≤
ε

2·|R| . We fix such a large k, altogether this implies

||δn
φn(k)

− δ||∞ ≤
ε
|R| .

Now consider u the prefix of wn until position φn(k). We have:

PA(R)(u) =
∑

q∈R

δnφn(k)
(q) ≥

∑

q∈R

(
δ(q)−

ε

|R|

)
= 1− ε.

It follows that A(R) has value 1.

The automaton A⊗M. Let ν = min{δ(q) | q ∈ Supp(δ)}, clearly 0 < ν < 1. Since
(δn)n∈N converges to δ, we can assume that for all n ≥ 0, ||δn − δ||∞ ≤

ν
4 , considering the

sequence (wn)n∈N from some index on. For each n, the sequence (δn
φn(k)

)k∈N converges to

δn, so again by considering the sequence from some index on, we can assume that for all
k ≥ 0, ||δn

φn(k)
− δn||∞ ≤

ν
4 , hence ||δ

n
φn(k)

− δ||∞ ≤
ν
2 . As a result, for all q ∈ R, we have

δn
φn(k)

(q) ≥ ν
2 > 0, so R = Supp(δ) ⊆ Supp(δn) ⊆ Supp(δn

φn(k)
).

Let ε > 0, and n such that PA,wn(Parity(c)) ≥ 1− ε · ν4 .
Let Büchi(d) be the set of runs where the color d is reached infinitely often and by

CoBüchi(< d) the set of runs where colors less than d are reached only finitely often. Observe
that:

Parity(c) =
⊎

d even color

Büchi(d) ∩ CoBüchi(< d).

Let Safe(< d, k) be the set of runs where colors less than d are not reached anymore
after the position φn(k). Observe that:

Büchi(d) ∩CoBüchi(< d) ⊆ Büchi(d) ∩
⋃

k≥0

Safe(< d, k),

so:

PA,wn (Büchi(d) ∩ CoBüchi(< d)) ≤ PA,wn


Büchi(d) ∩

⋃

k≥0

Safe(< d, k)


 .

Since the sequence Büchi(d) ∩ (Safe(< d, k))k≥0 is increasing with respect to set inclusion,
for some k we have:

PA,wn(Büchi(d) ∩ Safe(< d, k)) ≥ PA,wn(Büchi(d) ∩ CoBüchi(< d))− ε ·
ν

4
.

Note that here, k depends on d; however, since if it holds for k then it holds for any bigger
k and that there are finitely many even colors d, we can assume that k is uniform over all
even colors d.

Now, let Reach(d, k, k′) be the set of runs where the color d is reached between the
positions φn(k) and φn(k

′). Observe that:

Büchi(d) ∩ Safe(< d, k) ⊆
⋃

k′>k

Reach(d, k, k′) ∩ Safe(< d, k),

PROBABILISTIC LEAKTIGHT AUTOMATA 35

so:

PA,wn(Büchi(d) ∩ Safe(< d, k)) ≤ PA,wn

(
⋃

k′>k

Reach(d, k, k′) ∩ Safe(< d, k)

)
.

Since the sequence (Reach(d, k, k′) ∩ Safe(< d, k))k′>k is increasing with respect to set in-
clusion, for some k′ we have:

PA,wn(Reach(d, k, k
′) ∩ Safe(< d, k)) ≥ PA,wn (Büchi(d) ∩ Safe(< d, k)) − ε ·

ν

4
.

Here again, k′ depends on d; however with the same reasoning as above, we can assume
that k′ is uniform over all even colors d.

Altogether, this implies:

PA,wn(Reach(d, k, k
′) ∩ Safe(< d, k)) ≥ PA,wn(Büchi(d) ∩ CoBüchi(< d))− ε ·

ν

2
,

and summing these equalities for each even color d:

PA,wn(Parity(c, k, k
′)) ≥

∑
d even color PA,wn(Reach(d, k, k

′) ∩ Safe(< d, k))

≥ PA,wn(Parity(c)) − ε · ν2 ,

where Parity(c, k, k′) is the set of runs where the minimal color seen between the positions
φn(k) and φn(k

′) is even.
Let v be the infix of wn between the positions φn(k) and φn(k

′). The distribution

δn
φn(k)

is over the set of states Q; we embed it as δ̂ over the set of states Q × c(Q), set-

ting δ̂(q, c(q)) = δn
φn(k)

(q) and 0 otherwise. By construction of v, we have P
δ̂
A⊗M(v) =

PA,wn(Parity(c, k, k
′)) ≥ 1−ε · ν2 . However, the initial distribution of A⊗M is uniform over

Rc. We apply Lemma 6.2; by construction µ ≥ ν
2 , so P

δ̂
A⊗M(v) ≥ 1−ε ·µ. It follows that for

all q ∈ Supp(δn
φn(0)

), P
q,c(q)
A⊗M(v) ≥ 1− ε. Since R ⊆ Supp(δn

φn(k)
), we have PA⊗M(v) ≥ 1− ε,

hence A⊗M has value 1.

We now prove the right-to-left direction. Let R such that both A(R) and A⊗M have
value 1. Let ε > 0, consider the sequence (εk)k≥0 given by Lemma 6.4.

Since A(R) has value 1, there exists u such that PA(R)(u) ≥ ε0. We show the existence
of a sequence w1, w2, . . . of words such that for all k ≥ 0:

PA(R)(u · w1 · w2 · . . . · wk) ≥
∏

p≤k

εp and P
δ′k
A⊗M(wk+1) ≥ εk+1,

where δk is the distribution obtained by reading u · w1 · w2 · . . . · wk on A; the distribution
δk is over the set of states Q, we embed it as δ′k over the set of states Q × c(Q), setting
δ′k(q, c(q)) = δk(q) and 0 otherwise.

We proceed inductively; assume w1, . . . , wk have been chosen. Note that by construc-
tion,

∑
q∈R δk(q) ≥

∏
p≤k εp. However, the support of δk is not included in R, so the first

item of Corollary 6.3 does not apply. Then
∑

q∈Rc
δ′k(q) ≥

∏
p≤k εp.

Since A ⊗M has value 1, thanks to the second item of Corollary 6.3, it has value at
least

∏
p≤k εp for δ′k as initial distribution. Together with 3., this implies that there exists

wk+1 such that P
δ′k
A⊗M(wk+1) ≥ εk+1.

36 N. FIJALKOW, H. GIMBERT, E. KELMENDI, AND Y. OUALHADJ

We have:

PA(R)(u · w1 · w2 · . . . · wk+1) ≥ PA(R)(u · w1 · w2 · . . . · wk) · P
δk
A(R)(wk+1)

≥ PA(R)(u · w1 · w2 · . . . · wk) · P
δ′k
A⊗M(wk+1)

≥
(∏

p≤k εp

)
· εk+1

=
∏

p≤k+1 εp,

which concludes the inductive construction.
Let w = u · w1 · w2 · We evaluate PA,w(Parity(c)):

PA,w(Parity(c)) ≥ PA(R)(u) ·
∏

k≥0

P
δ′k
A⊗M(wk+1) ≥ ε0 ·

∏

k≥1

εk =
∏

k≥0

εk ≥ 1− ε.

It follows that A has value 1 as a probabilistic parity automaton, which concludes the proof
of Theorem 6.1.

Corollary 6.5. The value 1 problem for leaktight automata over infinite words with the

parity condition is decidable and PSPACE-complete.

Indeed, observe that if A is leaktight, then by Proposition 5.4, so is A⊗M.

Acknowledgment

We thank Thomas Colcombet for having pointed us to the work of Leung and Simon, and
the anonymous reviewers for their constructive comments.

Conclusion

We introduced a subclass of probabilistic automata, called leaktight automata, for which
we proved that the value 1 problem is PSPACE-complete. This subclass generalizes all
subclasses of probabilistic automata whose value 1 problem is known to be decidable.

A challenging perspective is now to find subclasses of partially observable Markov deci-
sion processes where the value 1 problem is decidable (some preliminary results were given
in [GO14]), and to extend our results to the setting of partially observable stochastic games,
which is even more challenging.

References

[BBG12] Christel Baier, Nathalie Bertrand, and Marcus Größer. Probabilistic ω-automata. Journal of the
ACM, 59(1):1, 2012.

[Ber74] Alberto Bertoni. The solution of problems relative to probabilistic automata in the frame of the
formal languages theory. In GI Jahrestagung, pages 107–112, 1974.

[CDHR07] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Al-
gorithms for omega-regular games with imperfect information. Logical Methods in Computer
Science, 3(3), 2007.

[CK97] Karel Culik and Jarkko Kari. Digital images and formal languages. Springer-Verlag New York,
Inc., 1997.

[CMRR08] Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley. On the computation of the
relative entropy of probabilistic automata. International Journal of Foundations of Computer
Science, 19(1):219–242, 2008.

[Col09] Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In ICALP
(2), pages 139–150, 2009.

PROBABILISTIC LEAKTIGHT AUTOMATA 37

[Col11] Thomas Colcombet. Green’s relations and their use in automata theory. In LATA, pages 1–21,
2011.

[CSV11] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Power of randomization in automata
on infinite strings. Logical Methods in Computer Science, 7(3), 2011.

[CSV13] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Probabilistic automata with isolated
cut-points. In MFCS, pages 254–265, 2013.

[CT12] Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for probabilistic automata on
infinite words. In LICS, pages 185–194, 2012.

[DEKM99] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1999.

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the value 1 problem for
probabilistic leaktight automata. In LICS, pages 295–304, 2012.

[Fij14] Nathanaël Fijalkow. What is known about the value 1 problem for probabilistic automata?
CoRR, abs/1410.3770, 2014.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and
undecidable problems. In ICALP (2), pages 527–538, 2010.

[GO14] Hugo Gimbert and Youssouf Oualhadj. Deciding the value 1 problem for sharp-acyclic partially
observable markov decision processes. In SOFSEM, pages 281–292, 2014.

[How95] John M. Howie. Fundamentals of semigroup theory. Clarendon Press, Oxford, 1995.
[Kir05] Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455–509, 2005.
[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266, 1977.
[Lal79] Gérard Lallement. Semigroups and Combinatorial Applications. Wiley, 1979.
[Moh97] Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Lin-

guistics, 23:269–311, June 1997.
[Paz71] Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
[Sch61] Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control,

4(2-3):245–270, 1961.
[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,

1990.
[Sim94] Imre Simon. On semigroups of matrices over the tropical semiring. ITA, 28(3-4):277–294, 1994.
[Tor11] Szymon Toruńczyk. Languages of profinite words and the limitedness problem. PhD thesis, Uni-

versity of Warsaw, 2011.
[Tze92] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.

SIAM Journal of Computation, 21(2):216–227, 1992.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Definitions
	1.1. Probabilistic automata
	1.2. The value 1 problem
	1.3. Recurrent states and idempotent words

	2. An (incomplete) algorithm for the value 1 problem
	2.1. The Markov monoid algorithm
	2.2. The Markov monoid and value 1 witnesses
	2.3. Correctness of the Markov monoid algorithm

	3. Decidability of the value 1 problem for leaktight automata
	3.1. Leaks
	3.2. The extended Markov monoid
	3.3. Leak witnesses
	3.4. Stabilization monoids and sharp-factorization trees
	3.5. The lower bound lemma
	3.6. Completeness of the Markov monoid algorithm for leaktight automata

	4. Properties of leaktight automata
	4.1. Characterization of the leaktight property
	4.2. The extended Markov monoid algorithm
	4.3. Parallel composition and PSPACE-hardness
	4.4. Bounding the sharp-height in the Markov monoid
	4.5. Finding witnesses in the Markov monoid

	5. Examples and subclasses of leaktight automata
	5.1. Two basic examples
	5.2. Some closure properties
	5.3. Leaktight automata strictly contain hierarchical automata
	5.4. Leaktight automata strictly contain simple automata

	6. Probabilistic omega-automata
	Acknowledgment
	Conclusion
	References

