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Abstract. We propose novel controller synthesis techniques for probabilistic systems
modelled using stochastic two-player games: one player acts as a controller, the second
represents its environment, and probability is used to capture uncertainty arising due to,
for example, unreliable sensors or faulty system components. Our aim is to generate robust
controllers that are resilient to unexpected system changes at runtime, and flexible enough
to be adapted if additional constraints need to be imposed. We develop a permissive
controller synthesis framework, which generates multi-strategies for the controller, offering a
choice of control actions to take at each time step. We formalise the notion of permissivity
using penalties, which are incurred each time a possible control action is disallowed by
a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that
minimises these penalties, whilst guaranteeing the satisfaction of a specified system property.
We establish several key results about the optimality of multi-strategies and the complexity
of synthesising them. Then, we develop methods to perform permissive controller synthesis
using mixed integer linear programming and illustrate their effectiveness on a selection of
case studies.

1. Introduction

Probabilistic model checking is used to automatically verify systems with stochastic behaviour.
Systems are modelled as, for example, Markov chains, Markov decision processes, or stochastic
games, and analysed algorithmically to verify quantitative properties specified in temporal
logic. Applications include checking the safe operation of fault-prone systems (“the brakes fail
to deploy with probability at most 10−6”) and establishing guarantees on the performance
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of, for example, randomised communication protocols (“the expected time to establish
connectivity between two devices never exceeds 1.5 seconds”).

A closely related problem is that of controller synthesis. This entails constructing a
model of some entity that can be controlled (e.g., a robot, a vehicle or a machine) and its
environment, formally specifying the desired behaviour of the system, and then generating,
through an analysis of the model, a controller that will guarantee the required behaviour. In
many applications of controller synthesis, a model of the system is inherently probabilistic.
For example, a robot’s sensors and actuators may be unreliable, resulting in uncertainty
when detecting and responding to its current state; or messages sent wirelessly to a vehicle
may fail to be delivered with some probability.

In such cases, the same techniques that underly probabilistic model checking can be
used for controller synthesis. For, example, we can model the system as a Markov decision
process (MDP), specify a property φ in a probabilistic temporal logic such as PCTL or LTL,
and then apply probabilistic model checking. This yields an optimal strategy (policy) for the
MDP, which instructs the controller as to which action should be taken in each state of the
model in order to guarantee that φ will be satisfied. This approach has been successfully
applied in a variety of application domains, to synthesise, for example: control strategies
for robots [22], power management strategies for hardware [16], and efficient PIN guessing
attacks against hardware security modules [29].

Another important dimension of the controller synthesis problem is the presence of
uncontrollable or adversarial aspects of the environment. We can take account of this by
phrasing the system model as a game between two players, one representing the controller
and the other the environment. Examples of this approach include controller synthesis for
surveillance cameras [24], autonomous vehicles [11] or real-time systems [1]. In our setting,
we use (turn-based) stochastic two-player games, which can be seen as a generalisation of
MDPs where decisions are made by two distinct players. Probabilistic model checking of
such a game yields a strategy for the controller player which guarantees satisfaction of a
property φ, regardless of the actions of the environment player.

In this paper, we tackle the problem of synthesising robust and flexible controllers, which
are resilient to unexpected changes in the system at runtime. For example, one or more of
the actions that the controller can choose at runtime might unexpectedly become unavailable,
or additional constraints may be imposed on the system that make some actions preferable
to others. One motivation for our work is its applicability to model-driven runtime control of
adaptive systems [5], which uses probabilistic model checking in an online fashion to adapt
or reconfigure a system at runtime in order to guarantee the satisfaction of certain formally
specified performance or reliability requirements.

We develop novel, permissive controller synthesis techniques for systems modelled as
stochastic two-player games. Rather than generating strategies, which specify a single action
to take at each time-step, we synthesise multi-strategies, which specify multiple possible
actions. As in classical controller synthesis, generation of a multi-strategy is driven by a
formally specified quantitative property: we focus on probabilistic reachability and expected
total reward properties. The property must be guaranteed to hold, whichever of the specified
actions are taken and regardless of the behaviour of the environment. Simultaneously, we
aim to synthesise multi-strategies that are as permissive as possible, which we quantify by
assigning penalties to actions. These are incurred when a multi-strategy disallows (does not
make available) a given action. Actions can be assigned different penalty values to indicate
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the relative importance of allowing them. Permissive controller synthesis amounts to finding
a multi-strategy whose total incurred penalty is minimal, or below some given threshold.

We formalise the permissive controller synthesis problem and then establish several key
theoretical results. In particular, we show that randomised multi-strategies are strictly more
powerful than deterministic ones, and we prove that the permissive controller synthesis
problem is NP-hard for either class. We also establish upper bounds, showing that the
problem is in NP and PSPACE for the deterministic and randomised cases, respectively.

Next, we propose practical methods for synthesising multi-strategies using mixed integer
linear programming (MILP) [27]. We give an exact encoding for deterministic multi-strategies
and an approximation scheme (with adaptable precision) for the randomised case. For the
latter, we prove several additional results that allow us to reduce the search space of
multi-strategies. The MILP solution process works incrementally, yielding increasingly
permissive multi-strategies, and can thus be terminated early if required. This is well suited
to scenarios where time is limited, such as online analysis for runtime control, as discussed
above, or “anytime verification” [28]. Finally, we implement our techniques and evaluate
their effectiveness on a range of case studies.

This paper is an extended version of [13], containing complete proofs, optimisations for
MILP encodings and experiments comparing performance under two different MILP solvers.

1.1. Related Work. Permissive strategies in non-stochastic games were first studied in [2]
for parity objectives, but permissivity was defined solely by comparing enabled actions.
Bouyer et al. [3] showed that optimally permissive memoryless strategies exist for reachability
objectives and expected penalties, contrasting with our (stochastic) setting, where they may
not. The work in [3] also studies penalties given as mean-payoff and discounted reward
functions, and [4] extends the results to the setting of parity games. None of [2, 3, 4] consider
stochastic games or even randomised strategies, and they provide purely theoretical results.
As in our work, Kumar and Garg [20] consider control of stochastic systems by dynamically
disabling events; however, rather than stochastic games, their models are essentially Markov
chains, which the possibility of selectively disabling branches turns into MDPs. [26] studies
games where the aim of one opponent is to ensure properties of systems against an opponent
who can modify the system on-the-fly by removing some transitions.

Finally, although tackling a rather different problem (counterexample generation), [31]
is related in that it also uses MILP to solve probabilistic verification problems.

2. Preliminaries

We denote by Dist(X) the set of discrete probability distributions over a set X. A Dirac
distribution is one that assigns probability 1 to some s ∈ X. The support of a distribution
d ∈ Dist(X) is defined as supp(d) = {x ∈ X | d(x) > 0}.

2.1. Stochastic Games. In this paper, we use turn-based stochastic two-player games,
which we often refer to simply as stochastic games. A stochastic game takes the form
G = 〈S♦, S�, s, A, δ〉, where S = S♦ ∪ S� is a finite set of states, each associated with player
♦ or �, s ∈ S is an initial state, A is a finite set of actions and δ : S×A → Dist(S) is a
(partial) probabilistic transition function such that the distributions assigned by δ only select
elements of S with rational probabilities.
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An MDP is a stochastic game in which either S♦ or S� is empty. Each state s of a
stochastic game G has a set of enabled actions, given by A(s) = {a ∈ A | δ(s, a) is defined}.
The unique player ◦ ∈ {♦,�} such that s ∈ S◦ picks an action a ∈ A(s) to be taken in state
s. Then, the next state is determined randomly according to the distribution δ(s, a), i.e., a
transition to state s′ occurs with probability δ(s, a)(s′).

A path through G is a (finite or infinite) sequence ω = s0a0s1a1 . . . , where si ∈ S,
ai ∈ A(si) and δ(si, ai)(si+1) > 0 for all i. We denote by IPaths the set of all infinite paths
starting in state s. For a player ◦ ∈ {♦,�}, we denote by FPath◦ the set of all finite paths
starting in any state and ending in a state from S◦.

A strategy σ : FPath◦ → Dist(A) for player ◦ of G is a resolution of the choices of
actions in each state from S◦ based on the execution so far, such that only enabled actions
in a state are chosen with non-zero probability. In standard fashion [19], a pair of strategies
σ and π for ♦ and � induces, for any state s, a probability measure Prσ,πG,s over IPaths. A

strategy σ is deterministic if σ(ω) is a Dirac distribution for all ω, and randomised if not.
In this work, we focus purely on memoryless strategies, where σ(ω) depends only on the
last state of ω, in which case we define the strategy as a function σ : S◦ → Dist(A). We
write Σ◦G for the set of all (memoryless) player ◦ strategies in G.

2.2. Properties and Rewards. In order to synthesise controllers, we need a formal de-
scription of their required properties. In this paper, we use two common classes of properties:
probabilistic reachability and expected total reward, which we will express in an extended
version of the temporal logic PCTL [18].

For probabilistic reachability, we write properties of the form φ = P./p[ F g ], where
./ ∈ {6,>}, p ∈ [0, 1] and g ⊆ S is a set of target states, meaning that the probability
of reaching a state in g satisfies the bound ./ p. Formally, for a specific pair of strategies
σ ∈ Σ♦G, π ∈ Σ�G for G, the probability of reaching g under σ and π is

Prσ,πG,s(F g) = Prσ,πG,s({s0a0s1a1 · · · ∈ IPaths | si ∈ g for some i}).

We say that φ is satisfied under σ and π, denoted G, σ, π |= φ, if Prσ,πG,s(F g) ./ p.

We also augment stochastic games with reward structures, which are functions of the
form r : S ×A→ Q>0 mapping state-action pairs to non-negative rationals. In practice, we
often use these to represent “costs” (e.g. elapsed time or energy consumption), despite the
terminology “rewards”. The restriction to non-negative rewards allows us to avoid problems
with non-uniqueness of total rewards, which would require special treatment [30].

Rewards are accumulated along a path and, for strategies σ ∈ Σ♦G and π ∈ Σ�G , the
expected total reward is defined as:

Eσ,πG,s (r) =

∫
ω=s0a0s1a1···∈IPaths

∞∑
j=0

r(sj , aj) dPrσ,πG,s.

For technical reasons, we will always assume the maximum possible reward supσ,π E
σ,π
G,s (r)

is finite (which can be checked with an analysis of the game’s underlying graph); similar
assumptions are commonly introduced [25, Section 7]. In our proofs, we will also use
Eσ,πG,s (r↓s) for the expected total reward accumulated before the first visit to s, defined by:

Eσ,πG,s (r↓s) =

∫
ω=s0a0s1a1...∈IPaths

fst(s,ω)−1∑
i=0

r(si, ai) dPrσ,πG,s
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Figure 1: A stochastic game G used as a running example (see Ex. 2.2).

where fst(s, ω) is min{i | si = s} if ω = s0a0s1a1 . . . contains si, and ∞ otherwise.
An expected reward property is written φ = Rr./b[ C ] (where C stands for cumulative),

meaning that the expected total reward for r satisfies ./ b. We say that φ is satisfied under
strategies σ and π, denoted G, σ, π |= φ, if Eσ,πG,s (r) ./ b.

In fact, probabilistic reachability can easily be reduced to expected total reward (by
replacing any outgoing transitions from states in the target set with a single transition to a
sink state labelled with a reward of 1). Thus, in the techniques presented in this paper, we
focus purely on expected total reward.

2.3. Controller Synthesis. To perform controller synthesis, we model the system as a
stochastic game G = 〈S♦, S�, s, A, δ〉, where player ♦ represents the controller and player
� represents the environment. A specification of the required behaviour of the system is a
property φ, either a probabilistic reachability property P./p[ F g ] or an expected total reward
property Rr./b[ C ].

Definition 2.1 (Sound strategy). A strategy σ ∈ Σ♦G for player ♦ in stochastic game G is

sound for a property φ if G, σ, π |= φ for any strategy π ∈ Σ�G .

To simplify notation, we will consistently use σ and π to refer to strategies of player ♦
and �, respectively, and will not always state explicitly that σ ∈ Σ♦G and π ∈ Σ�G . Notice
that, in Defn. 2.1, strategies σ and π are both memoryless. We could equivalently allow π to
range over history-dependent strategies since, for the properties φ considered in this paper
(probabilistic reachability and expected total reward), the existence of a history-dependent
counter-strategy π for which G, σ, π 6|= φ implies the existence of a memoryless one.

The classical controller synthesis problem asks whether there exists a sound strategy
for game G and property φ. We can determine whether this is the case by computing the
optimal strategy for player ♦ in G [12, 15]. This problem is known to be in NP ∩ co-NP,
but, in practice, methods such as value or policy iteration can be used efficiently.

Example 2.2. Fig. 1 shows a stochastic game G, with controller and environment player
states drawn as diamonds and squares, respectively. It models the control of a robot moving
between 4 locations (s0, s2, s3, s5). When moving east (s0→s2 or s3→s5), it may be impeded
by a second robot, depending on the position of the latter. If it is impeded, there is a chance
that it does not successfully move to the next location.

We use a reward structure moves, which assigns 1 to the controller actions north, east ,
south, and define property φ = Rmoves

65 [ C ], meaning that the expected number of moves to
reach s5 is at most 5 (notice that s5 is the only state from which all subsequent transitions
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have reward zero). A sound strategy for φ in G (found by minimising moves) chooses south
in s0 and east in s3, yielding an expected number of moves of 3.5.

3. Permissive Controller Synthesis

We now define a framework for permissive controller synthesis, which generalises classical
controller synthesis by producing multi-strategies that offer the controller flexibility about
which actions to take in each state.

3.1. Multi-Strategies. Multi-strategies generalise the notion of strategies, as defined in
Section 2. They will always be defined for player ♦ of a game.

Definition 3.1 (Multi-strategy). Let G = 〈S♦, S�, s, A, δ〉 be a stochastic game. A (memo-
ryless) multi-strategy for G is a function θ : S♦→Dist(2A) with θ(s)(∅) = 0 for all s ∈ S♦.

As for strategies, a multi-strategy θ is deterministic if θ always returns a Dirac distribu-
tion, and randomised otherwise. We write Θdet

G and Θrand
G for the sets of all deterministic

and randomised multi-strategies in G, respectively.
A deterministic multi-strategy θ chooses a set of allowed actions in each state s ∈ S♦,

i.e., those in the unique set B ⊆ A for which θ(s)(B) = 1. When θ is deterministic, we
will often abuse notation and write a ∈ θ(s) for the actions a ∈ B. The remaining actions
A(s) \B are said to be disallowed in s. In contrast to classical controller synthesis, where a
strategy σ can be seen as providing instructions about precisely which action to take in each
state, in permissive controller synthesis a multi-strategy provides (allows) multiple actions,
any of which can be taken. A randomised multi-strategy generalises this by selecting a set
of allowed actions in state s randomly, according to distribution θ(s).

We say that a controller strategy σ complies with multi-strategy θ, denoted σ / θ, if
it picks actions that are allowed by θ. Formally (taking into account the possibility of
randomisation), we define this as follows.

Definition 3.2 (Compliant strategy). Let θ be a multi-strategy and σ a strategy for a game
G. We say that σ is compliant (or that it complies) with θ, written σ / θ, if, for any state
s ∈ S♦ and non-empty subset B ⊆ A(s), there is a distribution ds,B ∈ Dist(B) such that,
for all a ∈ A(s), σ(s)(a) =

∑
B3a θ(s)(B) · ds,B(a).

Example 3.3. Let us explain the technical definition of a compliant strategy on the
game from Ex. 2.2 (see Fig. 1). Consider a randomised multi-strategy θ that, in s0, picks
{east , south} with probability 0.5, {south} with probability 0.3, and {east} with probability
0.2. A compliant strategy then needs to, for some number 0 6 x 6 1, pick south with
probability 0.3+0.5 ·x and east with probability 0.2+0.5 ·(1−x). The number x corresponds
to the probability ds0,{east ,south}(south) in the formal definition above.

Hence, a strategy σ that picks east and south with equal probability 0.5 satisfies the
requirements of compliance in state s0, as witnessed by selecting x = 0.4, or, in other words,
the distribution ds0,{east ,south} assigning 0.4 and 0.6 to south and east , respectively. On the
other hand, a strategy that picks east with probability 0.8 cannot be compliant with θ.

Each multi-strategy determines a set of compliant strategies, and our aim is to design
multi-strategies which allow as many actions as possible, but at the same time ensure that
any compliant strategy satisfies some specified property. We define the notion of a sound
multi-strategy, i.e., one that is guaranteed to satisfy a property φ when complied with.
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Definition 3.4 (Sound multi-strategy). A multi-strategy θ for game G is sound for a
property φ if any strategy σ that complies with θ is sound for φ.

Example 3.5. We return again to the stochastic game from Ex. 2.2 (see Fig. 1) and re-use
the property φ = Rmoves

65 [ C ]. A strategy that picks south in s0 and east in s3 results in an
expected reward of 3.5 (i.e., 3.5 moves on average to reach s5). A strategy that picks east in
s0 and south in s2 yields expected reward 5. Thus, a (deterministic) multi-strategy θ that
picks {south, east} in s0, {south} in s2 and {east} in s3 is sound for φ since the expected
reward is always at most 5.

3.2. Penalties and Permissivity. The motivation behind synthesising multi-strategies is
to offer flexibility in the actions to be taken, while still satisfying a particular property φ.
Generally, we want a multi-strategy θ to be as permissive as possible, i.e., to impose as few
restrictions as possible on actions to be taken. We formalise the notion of permissivity by
assigning penalties to actions in the model, which we then use to quantify the extent to
which actions are disallowed by θ. Penalties provide expressivity in the way that we quantify
permissivity: if it is more preferable that certain actions are allowed than others, then these
can be assigned higher penalty values.

A penalty scheme is a pair (ψ, τ), comprising a penalty function ψ : S♦×A→ Q>0 and a
penalty type τ ∈ {sta, dyn}. The function ψ represents the impact of disallowing each action
in each controller state of the game. The type τ dictates how penalties for individual actions
are combined to quantify the permissivity of a specific multi-strategy. For static penalties
(τ = sta), we simply sum penalties across all states of the model. For dynamic penalties
(τ = dyn), we take into account the likelihood that disallowed actions would actually have
been available, by using the expected sum of penalty values.

More precisely, for a penalty scheme (ψ, τ) and a multi-strategy θ, we define the resulting
penalty for θ, denoted penτ (ψ, θ) as follows. First, we define the local penalty for θ at state
s ∈ S♦ as pen loc(ψ, θ, s) =

∑
B⊆A(s)

∑
a/∈Bθ(s)(B)ψ(s, a). If θ is deterministic, pen loc(ψ, θ, s)

is simply the sum of the penalties of actions that are disallowed by θ in s. If θ is randomised,
pen loc(ψ, θ, s) gives the expected penalty value in s, i.e., the sum of penalties weighted by
the probability with which θ disallows them in s.

Now, for the static case, we sum the local penalties over all states, i.e., we put:

pensta(ψ, θ) =
∑

s∈S♦
pen loc(ψ, θ, s).

For the dynamic case, we use the (worst-case) expected sum of local penalties. We define an
auxiliary reward structure ψθrew given by the local penalties: ψθrew (s, a) = pen loc(ψ, θ, s) for
all s ∈ S♦ and a ∈ A(s), and ψθrew (s, a) = 0 for all s ∈ S� and a ∈ A(s). Then:

pendyn(ψ, θ, s) = sup{Eσ,πG,s (ψθrew ) |σ ∈ Σ♦G, π ∈ Σ�G and σ complies with θ}.
We use pendyn(ψ, θ) = pendyn(ψ, θ, s) to reference the dynamic penalty in the initial state.

3.3. Permissive Controller Synthesis. We can now formally define the central problem
studied in this paper.

Definition 3.6 (Permissive controller synthesis). Consider a game G, a class of multi-
strategies ? ∈ {det , rand}, a property φ, a penalty scheme (ψ, τ) and a threshold c ∈ Q>0.
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The permissive controller synthesis problem asks: does there exist a multi-strategy θ ∈ Θ?
G

that is sound for φ and satisfies penτ (ψ, θ) 6 c?

Alternatively, in a more quantitative fashion, we can aim to synthesise (if it exists) an
optimally permissive sound multi-strategy.

Definition 3.7 (Optimally permissive). Let G, ?, φ and (ψ, τ) be as in Defn. 3.6. A sound

multi-strategy θ̂ ∈ Θ?
G is optimally permissive if its penalty penτ (ψ, θ̂) equals the infimum

inf{penτ (ψ, θ) | θ ∈ Θ?
G and θ is sound for φ}.

Example 3.8. We return to Ex. 3.5 and consider a static penalty scheme (ψ, sta) assigning
1 to the actions north, east , south (in any state). The deterministic multi-strategy θ from
Ex. 3.5 is optimally permissive for φ = Rmoves

65 [ C ], with penalty 1 (just north in s3 is
disallowed). If we instead use φ′ = Rmoves

616 [ C ], the multi-strategy θ′ that extends θ by also
allowing north is now sound and optimally permissive, with penalty 0. Alternatively, the
randomised multi-strategy θ′′ that picks {north} with probability 0.7 and {north, east} with
probability 0.3 in s3 is sound for φ with penalty just 0.7.

It is important to point out that penalties will typically be used for relative comparisons
of multi-strategies. If two multi-strategies θ and θ′ incur penalties x and x′ with x < x′,
then the interpretation is that θ is better than θ′; there is not necessarily any intuitive
meaning assigned to the values x and x′ themselves. Accordingly, when modelling a system,
the penalties of actions should be chosen to reflect the actions’ relative importance. This is
different from rewards, which usually correspond to a specific measure of the system.

Next, we establish several fundamental results about the permissive controller synthesis
problem. Proofs that are particularly technical are postponed to the appendix and we only
highlight the key ideas in the main body of the paper.

Optimality. Recall that two key parameters of the problem are the type of multi-strategy
sought (deterministic or randomised) and the type of penalty scheme used (static or dynamic).
We first note that randomised multi-strategies are strictly more powerful than deterministic
ones, i.e., they can be more permissive (yield a lower penalty) whilst satisfying the same
property φ.

Theorem 3.9. The answer to a permissive controller synthesis problem (for either a static
or dynamic penalty scheme) can be “no” for deterministic multi-strategies, but “yes” for
randomised ones.

Proof. Consider an MDP with states s, t1 and t2, and actions a1 and a2, where δ(s, ai)(ti) = 1
for i ∈ {1, 2}, and t1, t2 have self-loops only. Let r be a reward structure assigning 1 to
(s, a1) and 0 to all other state-action pairs, and ψ be a penalty function assigning 1 to (s, a2)
and 0 elsewhere. We then ask whether there is a multi-strategy satisfying φ = Rr>0.5[ C ] with
penalty at most 0.5.

Considering either static or dynamic penalties, the randomised multi-strategy θ that
chooses distribution 0.5:{a1}+ 0.5:{a2} in s is sound and yields penalty 0.5. However, there
is no such deterministic multi-strategy. ut

This is why we explicitly distinguish between classes of multi-strategies when defining
permissive controller synthesis. This situation contrasts with classical controller synthesis,
where deterministic strategies are optimal for the same classes of properties φ. Intuitively,
randomisation is more powerful in this case because of the trade-off between rewards
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and penalties: similar results exist in, for example, multi-objective controller synthesis on
MDPs [14].

Next, we observe that, for the case of static penalties, the optimal penalty value for a
given property (the infimum of achievable values) may not actually be achievable by any
randomised multi-strategy.

Theorem 3.10. For permissive controller synthesis using a static penalty scheme, an
optimally permissive randomised multi-strategy does not always exist.

Proof. Consider a game with states s and t, and actions a and b, where we define
δ(s, a)(s) = 1 and δ(s, b)(t) = 1, and t has just a self-loop. The reward structure r assigns 1
to (s, b) and 0 to all other state-action pairs. The penalty function ψ assigns 1 to (s, a) and
0 elsewhere.

Now observe that any multi-strategy which disallows the action a with probability ε > 0
and allows all other actions incurs penalty ε and is sound for Rr>1[ C ], since any strategy
which complies with the multi-strategy leads to action b being taken eventually. Thus, the
infimum of achievable penalties is 0. However, the multi-strategy that incurs penalty 0, i.e.
allows all actions, is not sound for Rr>1[ C ]. ut

If, on the other hand, we restrict our attention to deterministic strategies, then an
optimally permissive multi-strategy does always exist (since the set of deterministic, memo-
ryless multi-strategies is finite). For randomised multi-strategies with dynamic penalties,
the question remains open.

Complexity. Next, we present complexity results for the different variants of the permissive
controller synthesis problem. We begin with lower bounds.

Theorem 3.11. The permissive controller synthesis problem is NP-hard, for either static
or dynamic penalties, and deterministic or randomised multi-strategies.

We prove NP-hardness by reduction from the Knapsack problem, where weights of
items are represented by penalties, and their values are expressed in terms of rewards to be
achieved. The most delicate part is the proof for randomised strategies, where we need to
ensure that the multi-strategy cannot benefit from picking certain actions (corresponding to
items being put into the Knapsack) with probability other than 0 or 1. See Appx. A.1 for
details. For upper bounds, we have the following.

Theorem 3.12. The permissive controller synthesis problem for deterministic (resp. ran-
domised) strategies is in NP (resp. PSPACE) for dynamic/ static penalties.

For deterministic multi-strategies, it is straightforward to show NP membership in both
the dynamic and static penalty case, since we can guess a multi-strategy satisfying the
required conditions and check its correctness in polynomial time. For randomised multi-
strategies, with some technical effort, we can encode existence of the required multi-strategy
as a formula of the existential fragment of the theory of real arithmetic, solvable with
polynomial space [7]. See Appx. A.2. A natural question is whether the PSPACE upper
bound for randomised multi-strategies can be improved. We show that this is likely to be
difficult, by giving a reduction from the square-root-sum problem.

Theorem 3.13. There is a reduction from the square-root-sum problem to the permissive
controller synthesis problem with randomised multi-strategies, for both static and dynamic
penalties.
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We use a variant of the problem that asks, given positive rationals x1,. . . ,xn and y,
whether

∑n
i=1

√
xi 6 y. This problem is known to be in PSPACE, but establishing a better

complexity bound is a long-standing open problem in computational geometry [17]. See
Appx. A.3 for details.

4. MILP-Based Synthesis of Multi-Strategies

We now consider practical methods for synthesising multi-strategies that are sound for a
property φ and optimally permissive for some penalty scheme. Our methods use mixed
integer linear programming (MILP), which optimises an objective function subject to linear
constraints that mix both real and integer variables. A variety of efficient, off-the-shelf MILP
solvers exists.

An important feature of the MILP solvers we use is that they work incrementally,
producing a sequence of increasingly good solutions. Here, that means generating a series of
sound multi-strategies that are increasingly permissive. In practice, when computational
resources are constrained, it may be acceptable to stop early and accept a multi-strategy
that is sound but not necessarily optimally permissive.

Here, and in the rest of this section, we assume that the property φ is of the form Rr>b[ C ].
Upper bounds on expected rewards (φ = Rr6b[ C ]) can be handled by negating rewards and
converting to a lower bound. For the purposes of encoding into MILP, we rescale r and
b such that supσ,π E

σ,π
G,s (r) < 1 for all s, and rescale every (non-zero) penalty such that

ψ(s, a) > 1 for all s and a ∈ A(s).
We begin by discussing the synthesis of deterministic multi-strategies, first for static

penalties and then for dynamic penalties. Subsequently, we present an approach to synthe-
sising approximations to optimal randomised multi-strategies. In each case, we describe
encodings into MILP problems and prove their correctness. We conclude this section with a
brief discussion of ways to optimise the MILP encodings. Then, in Section 5, we investigate
the practical applicability of our techniques.

4.1. Deterministic Multi-Strategies with Static Penalties. Fig. 2 shows an encoding
into MILP of the problem of finding an optimally permissive deterministic multi-strategy
for property φ = Rr>b[ C ] and a static penalty scheme (ψ, sta). The encoding uses 5 types of
variables: ys,a ∈ {0, 1}, xs ∈ [0, 1], αs ∈ {0, 1}, βs,a,t ∈ {0, 1} and γt ∈ [0, 1], where s, t ∈ S
and a ∈ A. The worst-case size of the MILP problem is O(|A|·|S|2·κ), where κ stands for
the longest encoding of a number used.

Variables ys,a encode a multi-strategy θ as follows: ys,a has value 1 iff θ allows action a in
s ∈ S♦ (constraint (4.2) enforces at least one allowed action per state). Variables xs represent
the worst-case expected total reward (for r) from state s, under any controller strategy
complying with θ and under any environment strategy. This is captured by constraints
(4.3)–(4.4) (which are analogous to the linear constraints used when minimising the reward
in an MDP). Constraint (4.1) puts the required bound of b on the reward from s.

The objective function minimises the static penalty (the sum of all local penalties) minus
the expected reward in the initial state. The latter acts as a tie-breaker between solutions
with equal penalties (but, thanks to rescaling, is always dominated by the penalties and
therefore does not affect optimality).

As an additional technicality, we need to ensure the values of xs are the least solution
of the defining inequalities, to deal with the possibility of zero reward loops. To achieve this,
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Minimise: − xs +
∑

s∈S♦

∑
a∈A(s)

(1− ys,a)·ψ(s, a) subject to:

xs > b (4.1)

1 6
∑

a∈A(s)
ys,a for all s ∈ S♦ (4.2)

xs 6
∑

t∈S
δ(s, a)(t)·xt + r(s, a) + (1− ys,a) for all s ∈ S♦, a ∈ A(s) (4.3)

xs 6
∑

t∈S
δ(s, a)(t)·xt + r(s, a) for all s ∈ S�, a ∈ A(s) (4.4)

xs 6 αs for all s ∈ S (4.5)

ys,a = (1− αs) +
∑

t∈supp(δ(s,a))
βs,a,t for all s ∈ S, a ∈ A(s) (4.6)

ys,a = 1 for all s ∈ S�, a ∈ A(s) (4.7)

γt < γs + (1− βs,a,t) + r(s, a) for all s, a, t with t ∈ supp(δ(s, a)) (4.8)

Figure 2: MILP encoding for deterministic multi-strategies with static penalties.

Minimise: zs subject to (4.1),. . . ,(4.8) and:

`s =
∑

a∈A(s)
ψ(s, a)·(1− ys,a) for all s ∈ S♦ (4.9)

zs >
∑

t∈S
δ(s, a)(t)·zt + `s − c·(1− ys,a) for all s ∈ S♦, a ∈ A(s) (4.10)

zs >
∑

t∈S
δ(s, a)(t)·zt for all s ∈ S�, a ∈ A(s) (4.11)

Figure 3: MILP encoding for deterministic multi-strategies with dynamic penalties.

we use an approach similar to the one taken in [31]. It is sufficient to ensure that xs = 0
whenever the minimum expected reward from s achievable under θ is 0, which is true if and
only if, starting from s, it is possible to avoid ever taking an action with positive reward.

In our encoding, αs = 1 if xs is positive (constraint (4.5)). The binary variables
βs,a,t = 1 represent, for each such s and each action a allowed in s, a choice of successor
t = t(s, a) ∈ supp(δ(s, a)) (constraint (4.6)). The variables γs then represent a ranking
function: if r(s, a) = 0, then γs > γt(s,a) (constraint (4.8)). If a positive reward could be
avoided starting from s, there would in particular be an infinite sequence s0, a1, s1, . . . with
s0 = s and, for all i, either (i) xsi > xsi+1 , or (ii) xsi = xsi+1 , si+1 = t(si, ai) and r(si, ai) = 0,
and therefore γsi > γsi+1 . This means that the sequence (xs0 , γs0), (xs1 , γs1), . . . is (strictly)
decreasing w.r.t. the lexicographical order, but at the same time S is finite, and so this
sequence would have to enter a loop, which is a contradiction.

Correctness. Before proving the correctness of the encoding (stated in Theorem 4.2,
below), we prove the following auxiliary lemma that characterises the reward achieved under
a multi-strategy in terms of a solution of a set of inequalities.
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Lemma 4.1. Let G = 〈S♦, S�, s, A, δ〉 be a stochastic game, φ = Rr>b[ C ] a property, (ψ, sta)
a static penalty scheme and θ a deterministic multi-strategy. Consider the inequalities:

xs 6 mina∈θ(s)
∑

s′∈S δ(s, a)(s′)xs′ + r(s, a) for s ∈ S♦
xs 6 mina∈A(s)

∑
s′∈S δ(s, a)(s′)xs′ + r(s, a) for s ∈ S�.

Then the following hold:

• x̄s = infσ/θ,π E
σ,π
G,s (r) is a solution to the above inequalities.

• A solution x̄s to the above inequalities satisfies x̄s 6 infσ/θ,π E
σ,π
G,s (r) for all s whenever

the following condition holds: for every s with x̄s > 0, every σ / θ and every π there is a
path ω = s0a0 . . . snan starting in s that satisfies Prσ,πG,s(ω) > 0 and r(sn, an) > 0.

Proof. The game G, together with θ, determines a Markov decision process Gθ = 〈∅, S♦ ∪
S�, s, A, δ

′〉 in which the choices disallowed by θ are removed, i.e. δ′(s, a) is equal to δ(s, a)
for every s ∈ S� and every s ∈ S♦ with a ∈ θ(s), and is undefined for any other combination
of s and a. We have:

inf
σ/θ,π

Eσ,πG,s (r) = inf
σ̄
Eσ̄Gθ,s(r)

since, for any strategy pair σ / θ and π in G, there is a strategy σ̄ in Gθ which is defined,
for every finite path ω of Gθ ending in t, by σ̄(ω) = σ(ω) or σ̄(ω) = π(ω), depending on
whether t ∈ S♦ or t ∈ S�, and which satisfies Eσ,πG,s (r) = Eσ̄

Gθ,s
(r). Similarly, a strategy σ̄

for Gθ induces a compliant strategy σ and a strategy π defined for every finite path ω of G
ending in S♦ (resp. S�) by σ(ω) = σ̄(ω) (resp. π(ω) = σ̄(ω)).

The rest is then the following simple application of results from the theory of Markov
decision processes. The first item of the lemma follows from [25, Theorem 7.1.3], which
gives a characterisation of values in MDPs in terms of Bellman equations; the inequalities in
the lemma are in fact a relaxation of these equations. For the second part of the lemma,
observe that if, infσ/θ,π E

σ,π
G,s (r) is infinite, then the claim holds trivially. Otherwise, from

the assumption on the existence of ω we have that, under any compliant strategy, there is a
path ω′ = s0a0s1 . . . sn of length at most |S| in Gθ such that infσ/θ,π E

σ,π
G,sn

(r) = 0 (otherwise

the reward would be infinite) and so x̄sn = 0. We can thus apply [25, Proposition 7.3.4],
which states that a solution to our inequalities gives optimal values whenever under any
strategy the probability of reaching a state s with xs = 0 is 1. Note that the result of [25]
applies for maximisation of reward in “negative models”; our problem can be easily reduced
to this setting by multiplying the rewards by −1 and looking for maximising (instead of
minimising) strategies. ut

Theorem 4.2. Let G be a game, φ = Rr>b[ C ] a property and (ψ, sta) a static penalty
scheme. There is a sound multi-strategy in G for φ with penalty p if and only if there is an
optimal assignment to the MILP instance from Fig. 2 which satisfies p =

∑
s∈S♦

∑
a∈A(s)(1−

ys,a)·ψ(s, a).

Proof. We prove that every multi-strategy θ induces a satisfying assignment to the variables
such that the static penalty under θ is

∑
s∈S♦

∑
a∈A(s)(1− ys,a)·ψ(s, a), and vice versa. The

theorem then follows from the rescaling of rewards and penalties that we performed.
We start by proving that, given a sound multi-strategy θ, we can construct a satisfying

assignment {ȳs,a, x̄s, ᾱs, β̄s,a,t, γ̄t}s,t∈S,a∈A to the constraints from Fig. 2. For s ∈ S♦ and
a ∈ A(s) we set ȳs,a = 1 if a ∈ θ(s), and otherwise we set ȳs,a = 0. This gives satisfaction of
contraint (4.2). For s ∈ S� and a ∈ A(s) we set ȳs,a = 1, ensuring satisfaction of (4.7). We
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then put x̄s = infσ/θ,π E
σ,π
G,s (r). By the first part of Lemma 4.1 we get that constraints (4.1),

(4.3) (for a ∈ θ(s)) and (4.4) are satisfied. Constraint (4.3) for a /∈ θ(s) is satisfied because
in this case ȳs,a = 0, and so the right-hand side is always at least 1.

We further set ᾱs = 1 if xs > 0 and ᾱs = 0 if xs = 0, thus satisfying constraint (4.5).
For a state s, let ds be the maximum distance to a positive reward. Formally, the values ds
are defined inductively by putting ds = 0 for any state s such that we have r(s, a) > 0 for
all a ∈ A(s), and then for any other state s:

ds = 1 + min
a∈θ(s),r(s,a)=0

max
δ(s,a)(t)>0

dt if s ∈ S♦

ds = 1 + min
a∈A(s),r(s,a)=0

max
δ(s,a)(t)>0

dt if s ∈ S�

Put ds = ⊥ if ds was not defined by the above. For s such that ds 6= ⊥, we put γ̄s = ds/|S|,
and for every a we choose t such that dt < ds, and set β̄s,a,t = 1, leaving β̄s,a,t = 0 for all
other t. For s such that ds = ⊥ we define γ̄s = 0 and for all a and t put β̄s,a,t = 0. This
ensures the satisfaction of the remaining constraints.

In the opposite direction, assume that we are given a satisfying assignment. Firstly, we
create a game G′ from G by making any states s with x̄s = 0 sink states (i.e. imposing a
self-loop with no penalty on s and removing all other transitions). Any sound multi-strategy
θ for φ in G′ directly gives a sound multi-strategy θ′ for φ in G defined by θ′(s) = θ(s) for
states s ∈ S♦ with xs > 0, and otherwise letting θ allow all available actions.

We construct θ for G′ by putting θ(s) = {a ∈ A(s) | ȳs,a = 1} for all s ∈ S♦ with
x̄s > 0, and by allowing the self-loop in the states s ∈ S♦ with xs = 0; note that θ(s) is
non-empty by constraint (4.2). First, by definition, the multi-strategy yields the penalty∑

s∈S♦

∑
a∈A(s)(1− ȳs,a)·ψ(s, a). Next, we will show that θ satisfies the assumption of the

second part of Lemma 4.1, from which we get that:

inf
σ/θ,π

Eσ,πG′,s(r) > x̄s

which, together with constraint (4.1) being satisfied, gives us the desired result.
Consider any s such that infσ/θ,π E

σ,π
G′,s(r) > 0. Then we have x̄s > 0 (by the definition

of G′). Let us fix any σ / θ and any π, and let s0 = s. We show that there is a path ω
satisfying the assumption of the lemma. We build ω = s0 . . . snan inductively, to satisfy: (i)
r(sn, an) > 0, (ii) x̄si > x̄si−1 for all i, and (iii) for any sub-path siai . . . sj with x̄si = x̄sj
we have that γ̄sk < γ̄sk−1

for all i+ 1 6 k 6 j.
Assume we have defined a prefix s0a0 . . . si to satisfy conditions (ii) and (iii). We put ai

to be the action picked by σ (or π) in si. If r(si, ai) > 0, we are done. Otherwise, we pick
si+1 as follows:

• If there is s′ ∈ supp(δ(si, ai)) with x̄s′ > x̄s, then we put si+1 = s′. Such a choice again
satisfies (ii) and (iii) by definition.
• If we have x̄s′ = x̄s for all s′ ∈ supp(δ(si, ai)), then any choice will satisfy (ii). To satisfy

the other conditions, we pick si+1 so that β̄si,ai,si+1 = 1 is true. We argue that such an si+1

can be chosen. We have x̄si > 0 and so ᾱs = 1 by constraint (4.5). We also have ȳs,a = 1:
for s ∈ S♦ this follows from the definition of θ, for s ∈ S� from constraint (4.7). Hence,
since constraint (4.6) is satisfied, there must be si+1 such that β̄si,a,si+1 = 1. Then, we
apply constraint (4.8) (for s = si, t = si+1 and a = ai) and, since the last two summands
on the right-hand side are 0, we get γ̄si+1 < γ̄si , thus satisfying (iii).
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Note that the above construction must terminate after at most |S| steps since, due to
conditions (ii) and (iii), no state repeats on ω. Because the only way of terminating is
satisfaction of (i), we are done. ut

4.2. Deterministic Multi-Strategies with Dynamic Penalties. Next, we show how
to compute a sound and optimally permissive deterministic multi-strategy for a dynamic
penalty scheme (ψ, dyn). This case is more subtle since the optimal penalty can be infinite.
Hence, our solution proceeds in two steps as follows.

Initially, we determine if there is some sound multi-strategy. For this, we just need
to check for the existence of a sound strategy, using standard algorithms for solution of
stochastic games [12, 15]. If there is no sound multi-strategy, we are done. Otherwise, we
use the MILP problem in Fig. 3 to determine the penalty for an optimally permissive sound
multi-strategy. This MILP encoding extends the one in Fig. 2 for static penalties, adding
variables `s and zs, representing the local and the expected penalty in state s, and three
extra sets of constraints. First, (4.9) and (4.10) define the expected penalty in controller
states, which is the sum of penalties for all disabled actions and those in the successor states,
multiplied by their transition probabilities. The behaviour of environment states is then
captured by constraint (4.11), where we only maximise the penalty, without incurring any
penalty locally.

The constant c in (4.10) is chosen to be no lower than any finite penalty achievable by a
deterministic multi-strategy, a possible value being:

∞∑
i=0

(1− p|S|)i · p|S| · i · |S| · penmax (4.12)

where p is the smallest non-zero probability assigned by δ, and penmax is the maximal local
penalty over all states. To see that (4.12) indeed gives a safe bound on c (i.e. it is lower than
any finite penalty achievable), observe that for the penalty to be finite under a deterministic
multi-strategy, for every state s there must be a path of length at most |S| to a state from

which no penalty will be incurred. This path has probability at least p|S|, and since the
penalty accumulated along a path of length i · |S| is at most i · |S| · penmax, the properties of
(4.12) follow easily.

If the MILP problem has a solution, this is the optimal dynamic penalty over all sound
multi-strategies. If not, no deterministic sound multi-strategy has a finite penalty and
the optimal penalty is ∞ (recall that we already established there is some sound multi-
strategy). In practice, we might choose a lower value of c than the one above, resulting in a
multi-strategy that is sound, but possibly not optimally permissive.

Correctness. Formally, correctness of the MILP encoding for the case of dynamic penalties
is captured by the following theorem.

Theorem 4.3. Let G be a game, φ = Rr>b[ C ] a property and (ψ, dyn) a dynamic penalty
scheme. Assume there is a sound multi-strategy for φ. The MILP formulation from Fig. 3
satisfies: (a) there is no solution if and only if the optimally permissive deterministic multi-
strategy yields infinite penalty; and (b) there is a solution z̄s if and only if an optimally
permissive deterministic multi-strategy yields penalty z̄s.
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Proof. We show that any sound multi-strategy with finite penalty z̄s gives rise to a satisfying
assignment with the objective value z̄s, and vice versa. Then, (b) follows directly, and (a)
follows by the assumption that there is some sound multi-strategy.

Let us prove that for any sound multi-strategy θ we can construct a satisfying assignment
to the constraints. For constraints (4.1) to (4.8), the construction works exactly the same
as in the proof of Theorem 4.2. For the newly added variables, i.e. zs and `s, we put
¯̀
s = pen loc(ψ, θ, s), ensuring satisfaction of constraint (4.9), and:

z̄s = sup
σ/θ,π

Eσ,πG,s (ψθrew )

which, together with [25, Section 7.2.7, Equation 7.2.17] (giving characterisation of optimal
reward in terms of a linear program), ensures that constraints (4.10) and 4.11 are satisfied.

In the opposite direction, given a satisfying assignment we construct θ for G′ exactly
as in the proof of Theorem 4.2. As before, we can argue that constraints (4.1) to (4.8) are
satisfied under any sound multi-strategy. We now need to argue that the multi-strategy
satisfies pendyn(ψ, θ, s) > z̄s. It is easy to see that pen loc(ψ, θ, s) = ¯̀

s. Moreover, by [25,
Section 7.2.7, Equation 7.2.17] the penalty is the least solution to the inequalities:

z′s > max
a∈θ(s)

∑
s′∈S

δ(s, a)(s) · z′s′ + ¯̀
s for all s ∈ S♦ (4.13)

z′s > max
a∈A(s)

∑
s′∈S

δ(s, a)(s) · z′s′ for all s ∈ S� (4.14)

We can replace (4.13) with:

z′s > max
a∈A(s)

∑
s′∈S

δ(s, a)(s) · z′s′ + ¯̀
s − c · (1− ȳs,a) (4.15)

since for a ∈ θ(s) we have c · (1 − ȳs,a) = 0 and otherwise c · (1 − ȳs,a) is greater than∑
s′∈S δ(s, a)(s) · z′s′ + ¯̀

s in the least solution to (4.13) and (4.14), by the definition of c.
Finally, it suffices to observe that the set of solutions to (4.14) and (4.15) is the same as the
set of solutions to (4.10) and (4.11). ut

4.3. Approximating Randomised Multi-Strategies. In Section 3, we showed that
randomised multi-strategies can outperform deterministic ones. The MILP encodings in
Fig.s 2 and 3, though, cannot be adapted to the randomised case, since this would need
non-linear constraints (intuitively, we would need to multiply expected total rewards by
probabilities of actions being allowed under a multi-strategy, and both these quantities
are unknowns in our formalisation). Instead, in this section, we propose an approximation
which finds the optimal randomised multi-strategy θ in which each probability θ(s)(B) is a
multiple of 1

M for a given granularity M . Any such multi-strategy can then be simulated
by a deterministic one on a transformed game, allowing synthesis to be carried out using
the MILP-based methods described in the previous section. Before giving the definition
of the transformed game, we show that we can simplify our problem by restricting to
multi-strategies which in any state select at most two actions with non-zero probability.

Theorem 4.4. Let G be a game, φ = Rr>b[ C ] a property, and (ψ, τ) a (static or dynamic)
penalty scheme. For any sound multi-strategy θ we can construct another sound multi-strategy
θ′ such that penτ (ψ, θ) > penτ (ψ, θ′) and |supp(θ′(s))| 6 2 for any s ∈ S♦.
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Proof. If the (dynamic) penalty under θ is infinite, then the solution is straightforward:
we can simply take θ′ which, in every state, allows a single action so that the reward is
maximised. This restrictive multi-strategy enforces a strategy that maximises the reward
(so it performs at least as well as any other multi-strategy), and at the same time it cannot
yield the dynamic penalty worse than θ, as the dynamic penalty under θ is already infinite.
From now on, we will assume that the penalty is finite.

Let θ be a multi-strategy allowing n > 2 different sets A1, . . . , An with non-zero
probabilities λ1, . . . , λn in s1 ∈ S♦. We construct a multi-strategy θ′ that in s1 allows only
two of the sets A1, . . . , An with non-zero probability, and in other states behaves like θ.

We first prove the case of dynamic penalties and then describe the differences for static
penalties. Supposing that infσ/θ,π E

σ,π
G,s1

(r) 6 infσ/θ′,π E
σ,π
G,s1

(r), we have that the total reward
is:

inf
σ/θ,π

Eσ,πG,s (r) = inf
σ/θ,π

(
Eσ,πG,s (r↓s1) + Prσ,πG,s(F s1) · Eσ,πG,s1

(r)
)

= inf
σ/θ,π

(
Eσ,πG,s (r↓s1) + Prσ,πG,s(F s1) · inf

σ′/θ,π′
Eσ
′,π′

G,s1
(r)
)

6 inf
σ/θ,π

(
Eσ,πG,s (r↓s1) + Prσ,πG,s(F s1) · inf

σ′/θ′,π′
Eσ
′,π′

G,s1
(r)
)

= inf
σ/θ′,π

(
Eσ,πG,s (r↓s1) + Prσ,πG,s(F s1) · inf

σ′/θ′,π′
Eσ
′,π′

G,s1
(r)
)

(∗)

= inf
σ/θ′,π

Eσ,πG,s (r)

where the equation (∗) above follows by the fact that, up to the first time s1 is reached,
θ and θ′ allow the same actions. Hence, it suffices to define θ′ so that infσ/θ,π E

σ,π
G,s1

(r) 6

infσ/θ′,π E
σ,π
G,s1

(r). Similarly, for the penalties, it is enough to ensure supσ/θ,π E
σ,π
G,s1

(ψθrew ) >

supσ/θ′,π E
σ,π
G,s1

(ψθ
′

rew ).

Let Pi and Ri, where i ∈ {1, ..., n}, be the penalties and rewards from θ after allowing
Ai against an optimal opponent strategy, i.e.:

Pi =
∑
a/∈Ai

ψ(s1, a) + sup
σ/θ,π

max
a∈Ai

∑
s′∈S

δ(s1, a)(s′) · Eσ,πG,s′(ψ
θ
rew )

Ri = inf
σ/θ,π

min
a∈Ai

(r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · Eσ,πG,s′(r))

We also define R = infσ/θ,π E
σ,π
G,s1

(r) and P = supσ/θ,π E
σ,π
G,s1

(ψθrew ) and have R =
∑n

i=1 λiRi
and P =

∑n
i=1 λiPi.

Let S0 ⊆ S be those states for which there are σ/θ and π ensuring a return to s1 without
accumulating any reward. Formally, S0 contains all states s0 which satisfy Prσ,πG,s0

(F {s1}) = 1

and Eσ,πG,s0
(r↓s1) for some σ / θ and π. We say that Ai is progressing if for all a ∈ Ai we have

r(s1, a) > 0 or supp(δ(s1, a)) 6⊆ S0. We note that Ai is progressing whenever Ri > R (since
any a violating the condition above could have been used by the opponent to force Ri 6 R).

For each tuple µ = (µ1, . . . , µn) ∈ Rn, let Rµ = µ1R1 + · · · + µnRn and Pµ = µ1P1 +
· · ·+µnPn. Then the set T = {(Rµ, Pµ) | 0 6 µi 6 1, µ1 + · · ·+µn = 1} is a bounded convex
polygon, with vertices given by images (Rei , P ei) of unit vectors (i.e., Dirac distributions)
ei = (0, . . . , 0, 1, 0, . . . , 0), and containing (Rλ, P λ) = (R,P ). To each vertex (Rj , Pj) we
associate the (non-empty) set Ij = {i | (Rei , P ei) = (Rj , Pj)} of indices.
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We will find α ∈ (0, 1) and 1 6 u, v 6 n such that one of Au or Av is progressing, and
define the multi-strategy θ′ to pick Au and Av with probabilities α and 1− α, respectively.
We distinguish several cases, depending on the shape of T :

(1) T has non-empty interior. Let (R1, P1), . . . , (Rm, Pm) be its vertices in the anticlockwise
order. Since all λi are positive, (R,P ) is in the interior of T . Now consider the point
(R,P ′) directly below (R,P ) on the boundary of T , i.e. P ′ = min{P ′′ | (R,P ′′) ∈ T}.
If (R,P ′) is not a vertex, it is a convex combination of adjacent vertices (R,P ′) =
α(Rj , Pj) + (1− α)(Rj+1, Pj+1), and we pick such α and u ∈ Ij and v ∈ Ij+1. If (R,P ′)
happens to be a vertex (Rj , Pj) we can (since Pj < P ) instead choose sufficiently small
α > 0 so that R > αRj + (1 − α)Rj+1 and P 6 αPj + (1 − α)Pj+1 and again pick
u ∈ Ij and v ∈ Ij+1. In either case, we necessarily have Rj+1 > R (by ordering of the
vertices in the anticlockwise order and since (R,P ) is in the interior of T ), and so Av is
progressing.

(2) T is a vertical line segment, i.e. it is the convex hull of two extreme points (R,P0) and
(R,P1) with P0 < P1. In case R = 0, we can simply always allow some Ai with i ∈ I0,
minimising the penalty and still achieving reward 0.

If R > 0, there must be at least one progressing Au. Since all λi are positive, (R,P )
lies inside the line segment, and in particular P > P0. We can therefore choose some v
and α ∈ (0, 1) such that P 6 α · Pu + (1− α) · Pv.

(3) T is a non-vertical line segment, i.e. it is the convex hull of two extreme points (R0, P0)
and (R1, P1) with R0 < R1. Since all λi are positive, (R,P ) is not one of the extreme
points, i.e. (R,P ) = α(R0, P0) + (1 − α)(R1, P1) with 0 < α < 1. We can therefore
choose u ∈ I0, v ∈ I1. Again, since R1 > R, Av is progressing.

(4) T consists of a single point (R,P ). This can be treated like the second case: either
R = 0, and we can allow any combination, or R > 0, and there is some progressing Au,
and we then pick arbitrary v and α.

We now want to show that the reward of the updated multi-strategy is indeed no worse than
before. For i ∈ {u, v} we define:

R′i = inf
σ/θ′,π

min
a∈Ai

(r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · Eσ,πG,s′(r))

and we define R′ = αR′u + (1− α)R′v. Pick an action a (resp. a′) that realises the minimum
and strategies σ and π (resp. σ′ and π′) that realise the infimum in the definition of Ri
(resp. R′i). (Such strategies indeed exist). Define:

ci =
∑
s′

δ(s1, a)(s′) · Prσ,πG,s′(F s1) c′i =
∑
s′

δ(s1, a
′)(s′) · Prσ,πG,s′(F s1)

di = r(s, a) +
∑
s′

δ(s1, a)(s′) · Eσ,πG,s′(r↓s1) d′i = r(s, a′) +
∑
s′

δ(s1, a
′)(s′) · Eσ,πG,s′(r↓s1)
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Figure 4: A node in the original game G (left), and the corresponding nodes in the trans-
formed game G′ for approximating randomised multi-strategies (right, see Sec-
tion 4.3).

We have Ri = ci ·R+ di for every 1 6 i 6 n, and R′i = c′i ·R′ + d′i for all i ∈ {u, v}. Then:

R′ −R = (αR′u + (1− α)R′v)−
∑

i
λiRi

= (αR′u + (1− α)R′v)− (αRu + (1− α)Rv) + (αRu + (1− α)Rv)−
∑

i
λiRi

> (αR′u + (1− α)R′v)− (αRu + (1− α)Rv)

(by the choice of α, u, v)

= (α(c′uR
′ + d′u) + (1− α)(c′vR

′ + d′v))− (α(cuR+ du) + (1− α)(cvR+ dv))

> (α(c′uR
′ + d′u) + (1− α)(c′vR

′ + d′v))− (α(c′uR+ d′u) + (1− α)(c′vR+ d′v))

(ciR+ di 6 c′iR+ d′i by optimality of actions/strategies defining ci and di)

= (αc′u + (1− α)c′v)(R
′ −R),

i.e., (1 − αc′u − (1 − α)c′v)(R
′ − R) > 0. By finiteness of rewards and the choice of θ(s1),

at least one of the return probabilities c′u, c
′
v is less than 1, and thus so is αc′u + (1− α)c′v,

therefore R′ > R.
We can show that the penalty under θ′ is at most as big as the penalty under θ in

exactly the same way (note that in addition using ψθ
′

rew instead of ψθrew for c′, d′, R′ and R′i).
For static penalties, the proof that the new multi-strategy is no worse than the old one is
straightforward from the choice of θ′(s1). ut

The result just proved allows us to simplify the game construction that we use to map
between (discretised) randomised multi-strategies and deterministic ones. Let the original
game be G and the transformed game be G′. The transformation is illustrated in Fig. 4.
The left-hand side shows a controller state s ∈ S♦ in the original game G (i.e., the one for
which we are seeking randomised multi-strategies). For each such state, we add the two
layers of states illustrated on the right-hand side of the figure: gadgets s′1, s

′
2 representing the

two subsets B ⊆ A(s) with θ(s)(B) > 0, and selectors si (for 1 6 i 6 m), which distribute
probability among the two gadgets. Two new actions, b1 and b2, are also added to label the
transitions between selectors si and gadgets s′1, s

′
2.

The selectors si are reached from s via a transition using fixed probabilities p1, . . . , pm
which need to be chosen appropriately. For efficiency, we want to minimise the number of
selectors m for each state s. We let m = b1 + log2Mc and pi = li

M , where l1 . . . , lm ∈ N
are defined recursively as follows: l1 = dM2 e and li = dM−(l1+···+li−1)

2 e for 2 6 i 6 m. For

example, for M=10, we have m = 4 and l1, . . . , l4 = 5, 3, 1, 1, so p1, . . . , p4 = 5
10 ,

3
10 ,

1
10 ,

1
10 .
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We are now able to find optimal discretised randomised multi-strategies in G by finding
optimal deterministic multi-strategies in G′. This connection will be formalised in Lemma 4.5
below. But we first point out that, for the case of static penalties, a small transformation
to the MILP encoding (see Fig. 2) used to solve game G′ is required. The problem is that
the definition of static penalties on G′ does not precisely capture the static penalties of the
original game G. In this, case we adapt Fig. 2 as follows. For each state s, action a ∈ A(s)
and i ∈ {1, . . . , n}, we add a binary variable y′si,a and constraints y′si,a > ys′j ,a − (1− ysi,bj )
for j ∈ {1, 2}. We then change the objective function that we minimise to:

−xs +
∑

s∈S♦

∑
a∈A(s)

∑m

i=1
pi · (1− y′si,a) · ψ(s, a)

Lemma 4.5. Let G be a game, φ = Rr>b[ C ] a property, (ψ, τ) a (static or dynamic) penalty

scheme, and let G′ be the game transformed as described above. The following two claims
are equivalent:

(1) There is a sound multi-strategy θ in G with pendyn(ψ, θ) = x (or, for static penalties,

pensta(ψ, θ) = x), and θ only uses probabilities that are multiples of 1
M .

(2) There is a sound deterministic multi-strategy θ′ in G′ and pendyn(ψ, θ) = x (or, for
static penalties,

∑
s∈S♦

∑m
i=1 pi · ψ′(i) = x where ψ′(i) is

∑
a∈A(s)\(θ′(s′1)∪θ′(s′2)) ψ(s, a) if

θ′(si) = {b1, b2}, and otherwise ψ′(i) is
∑

a∈A(s)\θ′(s′j)
ψ(s, a) where j is the (unique)

number with bj ∈ θ′(si)).

Proof. Firstly, observe that for any integer 0 6 k 6M there is a set Ik ⊆ {1, . . . ,m} with∑
j∈Ik lj = k. The opposite direction also holds.

Let θ be a multi-strategy in G. By Theorem 4.4 we can assume that |supp(θ(s))| 6 2 for
any s. We create θ′ as follows. For every state s ∈ S♦ with {A1, A2} = supp(θ(s)), we set
θ′(s′1)(A1) = 1 and θ′(s′2)(A2) = 1. Then, supposing θ(s)(A) = k

M , we let θ′(si)({b1}) = 1
whenever i ∈ Ik, and θ′(si)({b2}) = 1 whenever i 6∈ Ik. If θ(s) is a singleton set, the
construction is analogous. Clearly, the property for static penalties is preserved. For
any memoryless σ′ / θ′ there is a memoryless strategy σ / θ that is given by σ(s)(a) =
k
M · σ(s′1)(a) + (1− k

M ) · σ(s′1)(a) for any a, and conversely for any σ / θ we can define σ′ / θ′

by putting σ′(s′1) = ds,A1 and σ′(s′2) = ds,A2 for all s, where ds,A1 and ds,A2 are distributions
witnessing that σ is compliant with θ. It is easy to see that both σ and σ′ in either of the
above yield the same reward and dynamic penalty.

In the other direction, we define θ from θ′ for all s ∈ S♦ as follows. Let A1 and A2 be
the sets allowed by θ′ in s′1 and s′2 respectively. If A1 = A2, then θ(s) allows this set with
probability 1. Otherwise θ(s) allows the set A1 ∪A2 with probability

∑
i:θ(si)={b1,b2} pi, the

set A1 with probability
∑

i:θ(si)={b1} pi and the set A2 with probability
∑

i:θ(si)={b2} pi. The

correctness can be proved similarly to above. ut

Our next goal is to show that, by varying the granularity M , we can get arbitrarily close
to the optimal penalty for a randomised multi-strategy and, for the case of static penalties,
define a suitable choice of M . This will be formalised in Theorem 4.7 shortly. First, we need
to establish the following intermediate result, stating that, in the static case, in addition to
Theorem 4.4 we can require the action subsets allowed by a multi-strategy to be ordered
with respect to the subset relation.

Theorem 4.6. Let G be a game, φ = Rr>b[ C ] a property and (ψ, sta) a static penalty scheme.

For any sound multi-strategy θ we can construct another sound multi-strategy θ′ such that
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pensta(ψ, θ) > pensta(ψ, θ′) and for each s ∈ S♦, if supp(θ′(s))={B,C}, then either B ⊆ C
or C ⊆ B.

Proof. Let θ be a multi-strategy and fix s1 such that θ takes two different actions B and C
with probability p ∈ (0, 1) and 1− p where B * C and C * B. If infσ/θ,π E

σ,π
G,s1

(r) = 0, then

we can in fact allow deterministically the single set A(s1) and we are done. Hence, suppose
that the reward accumulated from s1 is non-zero.

Suppose, w.l.o.g., that:

min
a∈B

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · inf
σ/θ,π

Eσ,πG,s′(r) 6 min
a∈C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · inf
σ/θ,π

Eσ,πG,s′(r)

(4.16)
It must be the case that, for some D ∈ {B,C}, we have:

min
a∈D

r(s1, a) + inf
σ/θ,π

∑
s′∈S

δ(s1, a)(s′) · Eσ,πG,s′(r↓s1) > 0 (4.17)

(otherwise the minimal reward accumulated from s1 is 0 since there is a compliant strategy
that keeps returning to s1 without ever accumulating any reward), and if the inequality in
(4.16) is strict, then (4.17) holds for D = C. W.l.o.g., suppose that the above property holds
for C. We define θ′ by modifying θ and picking B ∪ C with probability p, C with (1− p),
and B with probability 0.

Under θ, the minimal reward achievable by some compliant strategy is given as the
least solution to the following equations [25, Theorem 7.3.3] (as before, the notation of [25]
requires “negative” models):

xs =
∑

A∈supp(θ(s))

θ(s)(A) ·min
a∈A

∑
s′∈S

r(s, a) + δ(s, a)(s′) · xs′ for s ∈ S♦

xs = min
a∈A(s)

∑
s′∈S

r(s, a) + δ(s, a)(s′) · xs′ for s ∈ S�

The minimal rewards x′s achievable under θ′ are defined analogously. In particular, for the
equation with s1 on the left-hand side we have:

xs1 = p ·min
a∈B

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · xs′ + (1− p) ·min
a∈C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · xs′

x′s1 = p · min
a∈B∪C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · x′s′ + (1− p) ·min
a∈C

r(s1, a) +
∑
s′∈S

δ(s1, a)(s′) · x′s′

We show that the least solution x̄ to x is also the least solution to x′.
First, note that x̄ is clearly a solution to any equation with s 6= s1 on the left-hand side

since these equations remain unchanged in both sets of equations. As for the equation with s1,
we have mina∈B

∑
s′ r(s1, a)+δ(s1, a)(s′) · x̄s′ 6 mina∈C

∑
s′ r(s1, a)+δ(s1, a)(s′) · x̄s′ , and so

necessarily mina∈B
∑

s′ r(s1, a) + δ(s1, a)(s′) · x̄s′ = mina∈B∪C
∑

s′ r(s1, a) + δ(s1, a)(s′) · x̄s′ .
To see that x̄ is the least solution to x′, we show that (i) for all s, if infσ/θ′,π E

σ,π
G,s (r) = 0

then x̄s = 0; and (ii) there is a unique fixpoint satisfying x̄s = 0 for all s such that
infσ/θ′,π E

σ,π
G,s (r) = 0.

For (i), suppose x̄s > 0. Let σ′ be a strategy compliant with θ′, and π an arbitrary

strategy. Suppose Prσ
′,π

G,s (F s1) = 0, then there is a strategy σ compliant with θ which

behaves exactly as σ′ when starting from s, and by our assumption on the properties of x̄s



PERMISSIVE CONTROLLER SYNTHESIS FOR PROBABILISTIC SYSTEMS 21

we get that Eσ,πG,s (r) > 0 and so Eσ
′,π

G,s (r) > 0. Now suppose that Prσ
′,π

G,s (F s1) > 0. For this

case, by condition (4.17), the fact that it holds for D = C and by defining θ′ so that it picks
C with nonzero probability we get that the reward under any strategy compliant with θ′ is

non-zero when starting in s1, and so Eσ
′,π

G,s (r) > 0.

Point (ii) can be obtained by an application of [25, Proposition 7.3.4]. ut

We can now return to the issue of how to vary the granularity M to get sufficiently
close to the optimal penalty. We formalise this as follows.

Theorem 4.7. Let G be a game, φ = Rr>b[ C ] a property, and (ψ, τ) a (static or dynamic)
penalty scheme. Let θ be a sound multi-strategy. For any ε > 0, there is an M and a sound
multi-strategy θ′ of granularity M satisfying penτ (ψ, θ

′) − penτ (ψ, θ) 6 ε. Moreover, for

static penalties it suffices to take M = d
∑

s∈S,a∈A(s)
ψ(s,a)
ε e.

Proof. By Theorem 4.4, we can assume supp(θ(t)) = {A1, A2} for any state t ∈ S♦.
We deal with the cases of static and dynamic penalties separately. For static penalties,

let t ∈ S♦ and θ(t)(A1) = q, θ(t)(A2) = 1 − q for A1 ⊆ A2 ⊆ A(t). Modify θ by rounding
q up to the number q′ which is the nearest multiple of 1

M . The resulting multi-strategy
θ′ is again sound, since any strategy compliant with θ′ is also compliant with θ: the
witnessing distributions (see Definition 3.2) dt,A1 and dt,A2 for θ are obtained from the
distributions d′t,A1

and d′t,A2
for θ′ by setting dt,A1(a) = d′t,A1

(a) for all a ∈ A1 and dt,A2(a) =
q′−q
1−q · d

′
t,A1

(a) + 1−q′
1−q · d

′
t,A2

(a) for all a ∈ A2; note that both dt,A1 and dt,A2 are indeed

probability distributions. Further, the penalty in θ′ changes by at most 1
M

∑
a∈A(s) ψ(t, a).

To obtain the result we repeat the above for all t.
Now let us consider dynamic penalties. Intuitively, the claim follows since by making

small changes to the multi-strategy, while not (dis)allowing any new actions, we only cause
small changes to the reward and penalty.

Let θ be a multi-strategy and t ∈ S♦ a state. W.l.o.g., suppose:

inf
σ/θ,π

min
a∈A1

r(s, a) +
∑
s′

δ(s, a)(s′) · Eσ,πG,s′(r) > inf
σ/θ,π

min
a∈A2

r(s, a) +
∑
s′

δ(s, a)(s′) · Eσ,πG,s′(r)

For 0 < x < θ(t)(A2), we define a multi-strategy θx by θx(t)(A1) = θ(t)(A1) + x and
θx(t)(A2) = θ(t)(A2)−x , and θx(s) = θ(s) for all s 6= t. We will show that infσ/θx,π E

σ,π
G,s (r) >

infσ/θ,π E
σ,π
G,s (r). Consider the following functional Fx : (S → R) → (S → R), constructed

for the multi-strategy θx

Fx(f)(s) =
∑

A∈supp(θ(s))

θx(s) ·min
a∈A

∑
s′∈S

r(s, a) + δ(s, a)(s′) · f(s′) for s ∈ S♦

Fx(f)(s) = min
a∈A(s)

∑
s′∈S

r(s, a) + δ(s, a)(s′) · f(s′) for s ∈ S�

Let f be the function assigning infσ/θ,π E
σ,π
G,t (r) to s. Observe that f(s) = 0 whenever

infσ/θx,π E
σ,π
G,t (r); this follows since x < min{θ(t)(A1), θ(t)(A2)} and so both θ and θx

allow the same actions with non-zero probability. Also, Fx(f)(s) > f(s): for s 6= t in
fact Fx(f)(s) = f(s) because the corresponding functional F for θ coincides with Fx on
s; for s = t, we have Fx(f)(s) > f(s) since mina∈A1 r(s, a) +

∑
s′ δ(s, a)(s′) · f(s′) >

mina∈A2 r(s, a) +
∑

s′ δ(s, a)(s′) · f(s′) by the properties of A1 and A2 and since x is non-
negative. Hence, we can apply [25, Proposition 7.3.4] and obtain that θx ensures at least
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the same reward as θ. Thus, by increasing the probability of allowing A1 in t the soundness
of the multi-strategy is preserved.

Further, for any strategy σ′ compliant with θx and any π, the penalty when starting in

t, i.e. Eσ
′,π

G,t (ψθxrew ), is equal to:

pen loc(ψ, θx, t) +
∑
a∈A

ξ′(t)(a)
∑
t′∈S

δ(t, a)(t′) ·
(
Eσ
′,π

G,t′ (ψ
θx
rew↓t) + Prσ

′,π
G,t′ (F t) · E

σ′,π
G,t (ψθxrew )

)
for ξ′ = σ′ ∪π. There is a strategy σ compliant with θ which differs from σ′ only on t, where∑

a∈A |σ′(s, a)− σ(s, a)| 6 x. We have, for any π:

Eσ,πG,t (ψθrew )

= pen loc(ψ, θ, t) +
∑
a∈A

ξ(t, a)
∑
s∈S

δ(t, a)(s) · (Eσ,πG,s (ψθrew↓t) + Prσ,πG,s(F t) · E
σ,π
G,t (ψθrew ))

> pen loc(ψ, θx, t)−x+
∑
a∈A

(ξ′(t, a)−x)
∑
s∈S

δ(t, a)(s)·(Eσ
′,π

G,s (ψθxrew↓t)+Prσ
′,π

G,s (F t)·Eσ,πG,t (ψθxrew ))

where ξ = σ ∪ π and the rest is as above.
Thus:

Eσ
′,π

G,t (ψθxrew ) =
pen loc(ψ, θx, t) +

∑
a∈A ξ

′(t)(a)
∑

t′∈S δ(t, a)(t′) · Eσ
′,π

G,t′ (ψ
θx
rew↓t)

1−
∑

a∈A ξ
′(t)(a)

∑
t′∈S δ(t, a)(t′) · Prσ

′,π
G,t′ (F t)

Eσ,πG,t (ψθrew ) >
pen loc(ψ, θ, t)− x+

∑
a∈A(ξ′(t)(a)− x)

∑
t′∈S δ(t, a)(t′) · Eσ

′,π
G,t′ (ψ

θ
rew↓t)

1−
∑

a∈A(ξ′(t)(a)− x)
∑

t′∈S δ(t, a)(t′) · Prσ
′,π

G,t′ (F t)

and so Eσ
′,π

G,t (ψθxrew )−Eσ,πG,t (ψθrew ) goes to 0 as x goes to 0. Hence, pendyn(ψ, θx)−pendyn(ψ, θ)
goes to 0 as x goes to 0.

The above gives us that, for any error bound ε and a fixed state s, there is an x such
that we can modify the decision of θ in s by x, not violate the soundness property and
increase the penalty by at most ε/|S|. We thus need to pick M such that 1/M 6 x. To
finish the proof, we repeat this procedure for every state s. ut

For the sake of completeness, we also show that Theorem 4.6 does not extend to dynamic
penalties. This is because, in this case, increasing the probability of allowing an action can
lead to an increased penalty if one of the successor states has a high expected penalty. An
example is shown in Fig. 5, for which we want to reach the goal state s3 with probability at
least 0.5.

s0 s1

s2

s3

s4

b

c

d

e

action penalty
b 0

c 1
d 0

e 1

Figure 5: Counterexample for Theorem 4.6 in case of dynamic penalties.

This implies θ(s0, {b})·θ(s1)({d})>0.5, and so θ(s0)({b})>0, θ(s1)({d})>0. If θ satisfies the
condition of Theorem 4.6, then θ(s0)({c}) = θ(s1)({e}) = 0, so an opponent can always use b,
forcing an expected penalty of θ(s0)({b}) + θ(s1)({d}), for a minimal value of

√
2. However,
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the sound multi-strategy θ with θ(s0)({b})=θ(s0)({c})=0.5 and θ(s1, {d})=1 achieves a
dynamic penalty of just 1.

4.4. Optimisations. We conclude this section on MILP-based multi-strategy synthesis by
presenting some optimisations that can be applied to our methods. The general idea is to
add additional constraints to the MILP problems that will reduce the search space to be
explored by a solver. We present two different optimisations, targeting different aspects of
our encodings: (i) possible variable values; and (ii) penalty structures.

Bounds on variable values. In our encodings, for the variables xs, we only specified very
general lower and upper bounds that would constrain their value. Narrowing down the set
of values that a variable may take can significantly reduce the search space and thus the
solution time required by an MILP solver. One possibility that works well in practice is to
bound the values of the variables by the minimal and maximal expected reward achievable
from the given state, i.e., add the constraints:

inf
σ,π

Eσ,πG,s (r) 6 xs 6 sup
σ,π

Eσ,πG,s (r) for all s ∈ S

where both the infima and suprema above are constants obtained by applying standard
probabilistic model checking algorithms.

Actions with zero penalties. Our second optimisation exploits the case where an action
has zero penalty assigned to it. Intuitively, this action could always be disabled without
harming the overall penalty of the multi-strategy. On the other hand, enabling an action
with zero penalty might be the only way to satisfy the property and therefore we cannot
disable all such actions. However, it is enough to allow at most one action that has zero
penalty. For simplicity of the presentation, we assume Zs = {a ∈ A(s) |ψ(s, a) = 0}; then
formally we add the constraints

∑
a∈Zs ys,a 6 1 for all s ∈ S♦.

5. Experimental Results

We have implemented our techniques within PRISM-games [9], an extension of the PRISM
model checker [21] for performing model checking and strategy synthesis on stochastic
games. PRISM-games can thus already be used for (classical) controller synthesis problems
on stochastic games. To this, we add the ability to synthesise multi-strategies using the
MILP-based method described in Section 4. Our implementation currently uses CPLEX [32]
or Gurobi [33] to solve MILP problems. We investigated the applicability and performance
of our approach on a variety of case studies, some of which are existing benchmark examples
and some of which were developed for this work. These are described in detail below and
the files used can be found online [34]. Our experiments were run on a PC with a 2.8GHz
Xeon processor and 32GB of RAM, running Fedora 14.

5.1. Deterministic Multi-strategy Synthesis. We first discuss the generation of optimal
deterministic multi-strategies, the results of which are presented in Tab.s 1 and 2. Tab. 1
summarises the models and properties considered. For each model, we give: the case study
name, any parameters used, the number of states (|S|) and of controller states (|S♦|), and
the property used. The final column gives, for comparison purposes, the time required for
performing classical (single) strategy synthesis on each model and property φ.
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Name

[parameters]

Parameter

values
States

Controller

states
Property

Strat. synth.

time (s)

cloud

[vm]

5 8,841 2,177 P>0.9999[ F deployed ] 0.04
6 34,953 8,705 P>0.999[ F deployed ] 0.10

android

[r, s]

1, 48 2,305 997
Rtime
610000[ C ]

0.16
2, 48 9,100 3,718 0.57
3, 48 23,137 9,025 0.93

mdsm

[N ]

3 62,245 9,173 P60.1[ F deviated ]
5.64

3 62,245 9,173 P60.01[ F deviated ]

investor

[vinit, vmax]

5,10 10,868 3,344 R
profit
>4.98[ C ] 0.87

10, 15 21,593 6,644 R
profit
>8.99[ C ] 2.20

team-form

[N ]

3 12,476 2,023
P>0.9999[ F done1 ]

0.20
4 96,666 13,793 0.83

cdmsn [N ] 3 1240 604 P>0.9999[ F prefer1] 0.05

Table 1: Details of the models and properties used for experiments with deterministic
multi-strategies, and execution times for single strategy synthesis.

Name

[parameters]

Parameter

values
Penalty

Multi-strategy synthesis time (s)
CPLEX Gurobi

No-opts Bounds Zero Both Both

cloud

[vm]

5 0.001 2.5 3.35 13.04 10.36 1.45
6 0.01 62.45 ∗ 63.59 25.37 4.73

android

[r, s]

1, 48 0.0009 1.07 0.66 1.04 0.48 0.53
2, 48 0.0011 28.56 8.41 28.48 8.42 3.6
3, 48 0.0013 ∗ 13.41 ∗ 13.30 47.62

mdsm

[N ]

3 52 28.06 36.28 27.88 33.72 19.40
3 186 11.89 11.57 11.88 11.56 12.27

investor

[vinit, vmax]

5,10 1 68.64 131.38 68.90 131.36 12.02
10, 15 1 ∗ ∗ ∗ ∗ 208.95

team-form

[N ]

3 0.890 0.15 0.26 0.15 0.26 0.80
4 0.890 249.36 249.49 186.41 184.50 3.84

cdmsn [N ] 3 2 0.57 0.62 0.62 0.61 1.65

* No optimal solution to MILP problem within 5 minute time-out.

Table 2: Experimental results for synthesising optimal deterministic multi-strategies.

In Tab. 2, we show, for each different model, the penalty value of the optimal multi-
strategy and the time to generate it. We report several different times, each for different
combinations of the optimisations described in Section 4.4 (either no optimisations, one or
both). For the last result, we give times for both MILP solvers: CPLEX and Gurobi.

Case studies. Now, we move on to give further details for each case study, illustrating
the variety of ways that permissive controller synthesis can be used. Subsequently, we will
discuss the performance and scalability of our approach.
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cloud: We adapt a PRISM model from [6] to synthesise deployment of services across
virtual machines (VMs) in a cloud infrastructure. Our property φ specifies that, with high
probability, services are deployed to a preferred subset of VMs, and we then assign unit
(dynamic) penalties to all actions corresponding to deployment on this subset. The resulting
multi-strategy has very low expected penalty (see Tab. 2) indicating that the goal φ can be
achieved whilst the controller experiences reduced flexibility only on executions with low
probability.

android: We apply permissive controller synthesis to a model created for runtime control of
an Android application that provides real-time stock monitoring. We extend the application
to use multiple data sources and synthesise a multi-strategy which specifies an efficient
runtime selection of data sources (φ bounds the total expected response time). We use static
penalties, assigning higher values to actions that select the two most efficient data sources
at each time point and synthesise a multi-strategy that always provides a choice of at least
two sources (in case one becomes unavailable), while preserving φ.

mdsm: Microgrid demand-side management (MDSM) is a randomised scheme for managing
local energy usage. A stochastic game analysis [8] previously showed it is beneficial for users
to selfishly deviate from the protocol, by ignoring a random back-off mechanism designed to
reduce load at busy times. We synthesise a multi-strategy for a (potentially selfish) user, with
the goal (φ) of bounding the probability of deviation (at either 0.1 or 0.01). The resulting
multi-strategy could be used to modify the protocol, restricting the behaviour of this user to
reduce selfish behaviour. To make the multi-strategy as permissive as possible, restrictions
are only introduced where necessary to ensure φ. We also guide where restrictions are made
by assigning (static) penalties at certain times of the day.

investor: This example [23] synthesises strategies for a futures market investor, who chooses
when to reserve shares, operating in a (malicious) market which can periodically ban him/her
from investing. We generate a multi-strategy that achieves 90% of the maximum expected
profit (obtainable by a single strategy) and assign (static) unit penalties to all actions,
showing that, after an immediate share purchase, the investor can choose his/her actions
freely and still meet the 90% target.

team-form: This example [10] synthesises strategies for forming teams of agents in order to
complete a set of collaborative tasks. Our goal (φ) is to guarantee that a particular task is
completed with high probability (0.9999). We use (dynamic) unit penalties on all actions
of the first agent and synthesise a multi-strategy representing several possibilities for this
agent while still achieving the goal.

cdmsn: Lastly, we apply permissive controller synthesis to a model of a protocol for collective
decision making in sensor networks (CDMSN) [8]. We synthesise strategies for nodes in the
network such that consensus is achieved with high probability (0.9999). We use (static)
penalties inversely proportional to the energy associated with each action a node can perform
to ensure that the multi-strategy favours more efficient solutions.

Performance and scalability. Unsurprisingly, permissive controller synthesis is more
costly to execute than classical controller synthesis – this is clearly seen by comparing the
times in the rightmost column of Tab. 1 with the times in Tab. 2. However, we successfully
synthesised deterministic multi-strategies for a wide range of models and properties, with
model sizes ranging up to approximately 100,000 states. The performance and scalability of
our method is affected (as usual) by the state space size. In particular, it is also affected
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Name

[parameters]

Parameters

values
States

Controller

states
Property

android

[r, s]

1,1 49 10 P>0.9999[ F done]
1,10 481 112 P>0.999[ F done]

cloud

[vm]
5 8,841 2,177 P>0.9999[ F deployed ]

investor

[vinit, vmax]
5,10 10,868 3,344 R

profit
>4.98[ C ]

team-form

[N ]
3 12,476 2,023 P>0.9999[ F done1 ]

cdmsn

[N ]
3 1240 604 P>0.9999[ F prefer1]

Table 3: Details of models and properties for approximating optimal randomised multi-
strategies.

by the number of actions in controller states, since these result in integer MILP variables,
which are the most expensive part of the solution.

The performance optimisations presented in Section 4.4 often allowed us to obtain
an optimal multi-strategy quicker. In many cases, it proved beneficial to apply both
optimisations at the same time. In the best case (android , r=3, s=48), an order of magnitude
gain was observed. We reported a slowdown after applying optimisation in the case of
investor. We attribute this to the fact that adding bounds on variable value can make
finding the initial solution of the MILP problem harder, causing a slowdown of the overall
solution process.

Both solvers were run using their off-the-shelf configuration and Gurobi proved to be
a more efficient solver. In the case of CPLEX, we also observed worse numerical stability,
causing it to return a sub-optimal multi-strategy as optimal. In the case of Gurobi, we did
not see any such behaviour.

5.2. Randomised multi-strategy synthesis. Next, we report the results for approximat-
ing optimal randomised multi-strategies. Tab. 3 summarises the models and properties used.
In Tab. 4, we report the effects on state space size caused by adding the approximation
gadgets to the games. We picked three different granularities M = 100,M = 200 and
M = 300; for higher values of M we did not observe improvements in the penalties of the
generated multi-strategies. Finally, in Tab. 5, we show the penalties obtained by the ran-
domised multi-strategies that were generated. We compare the (static) penalty value of the
randomised multi-strategies to the value obtained by optimal deterministic multi-strategies
for the same models. The MILP encodings for randomised multi-strategies are larger than
deterministic ones and thus slower to solve, so we impose a time-out of 5 minutes. We used
Gurobi as the MILP solver in every case.

We are able to generate a sound multi-strategy for all the examples; in some cases it is
optimally permissive, in others it is not (denoted by a ∗ in Tab. 5). As would be expected,
often, larger values of M give smaller penalties. In some cases, this is not true, which we
attribute to the size of the MILP problem (which grows with M). For all examples, we built
randomised multi-strategies with smaller or equal penalties than the deterministic ones.
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Name

[parameters]

Parameters

values
States

Controller

states

States
M=100 M=200 M=300

android

[r, s]

1,1 49 10 90 94 98
1,10 481 112 1629 1741 1853

cloud [vm] 5 8,841 2,177 29447 32686 35233

investor

[vinit, vmax]
5,10 10,868 3,344 33440 35948 38456

team-form

[N ]
3 12,476 2,023 31928 33716 35504

cdmsn [N ] 3 1240 604 3625 3890 4155

Table 4: State space growth for approximating optimal randomised multi-strategies.

Name

[parameters]

Parameters

values
States

Controller

states

Pen.

(det.)

Penalty (randomised)
M=100 M=200 M=300

android

[r, s]

1,1 49 10 1.01 0.91 0.905 0.903
1,10 481 112 19.13 12.27∗ 9.12∗ 17.18∗

cloud

[vm]
5 8,841 2,177 1 0.91∗ 0.905∗ 0.91∗

investor

[vinit, vmax]
5,10 10,868 3,344 1 1∗ 1∗ 1∗

team-form

[N ]
3 12,476 2,023 264 263.96∗ 263.95∗ 263.95∗

cdmsn [N ] 3 1240 604 2 0.38∗ 1.9∗ 0.5∗

∗ Sound but possibly non-optimal multi-strategy obtained after 5 minute MILP time-out.

Table 5: Experimental results for approximating optimal randomised multi-strategies.

6. Conclusions

We have presented a framework for permissive controller synthesis on stochastic two-player
games, based on generation of multi-strategies that guarantee a specified objective and are
optimally permissive with respect to a penalty function. We proved several key properties,
developed MILP-based synthesis methods and evaluated them on a set of case studies.

In this paper, we have imposed several restrictions on permissive controller synthesis.
Firstly, we focused on properties expressed in terms of expected total reward (which also
subsumes the case of probabilistic reachability). A possible topic for future work would be
to consider more expressive temporal logics or parity objectives. The results might also
be generalised so that both positive and negative rewards can be used, for example by
using the techniques of [30]. We also restricted our attention to memoryless multi-strategies,
rather than the more general class of history-dependent multi-strategies. Extending our
theory to the latter case and exploring the additional power brought by history-dependent
multi-strategies is another interesting direction of future work.
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Appendix A. Appendix

A.1. Proof of Theorem 3.11 (NP-hardness). We start with the case of randomised
multi-strategies and static penalties which is the most delicate. Then we analyse the case
of randomised multi-strategies and dynamic penalties, and finally show that this case can
easily be modified for the remaining two combinations.

Randomised multi-strategies and static penalties. We give a reduction from the
Knapsack problem. Let n be the number of items, each of which can either be or not be
put in a knapsack, let vi and wi be the value and the weight of item i, respectively, and let
V and W be the bounds on the value and weight of the items to be picked. We assume
that vi 6 1 for every 1 6 i 6 n, and that all numbers vi and wi are given as fractions with
denominator q. Let us construct the following MDP, where m is chosen such that 2−m < 1

q
and 2−m ·W 6 1

q .

s0

t1 t′1

t′′1 >

⊥

tn t′n

t′′1 >

⊥

1/n

1/n

a1

b1, w1

d1
v1

1

1− v1

c1, 2
3m · w1

an

bn, wn

dn
vn

1

1− vn

cn, 2
3m · wn

The rewards and penalties are as given by the overlined and underlined expressions, and
set to 0 where not present. In particular, note that for any state s different from > the
probability of reaching > from s is the same as the expected total reward from s.

We show that there is a multi-strategy θ sound for the property Rr>V/n[ C ] such that
pensta(ψ, θ) 6W + 2−m ·W if and only if the answer to the Knapsack problem is “yes”.

In the direction ⇐, let I ⊆ {1, . . . , n} be the set of items put in the knapsack. It suffices
to define the multi-strategy θ by:

• θ(t′i)({ci, di}) = 1− 2−4m, θ(t′i)({di}) = 2−4m, θ(ti)({ai}) = 1 for i ∈ I,
• θ(t′i)({ci, di}) = 1, θ(t1)({ai, bi}) = 1 for i 6∈ I.

In the direction ⇒, let us have a multi-strategy θ satisfying the assumptions. Let
P (s→ s′) denote the lower bound on the probability of reaching s′ from s under a strategy
which complies with the multi-strategy θ. Denote by I ⊆ {1, . . . , n} the indices i such that
P (ti → >) > 2−m.

Let βi = θ(ti)({ai}) and αi = θ(t′1)({di}). We will show that for any i ∈ I we
have αi > 2−m(1 − βi). When βi = 1, this obviously holds. For βi < 1, assume that
αi > 2−m(1 − βi). Because the optimal strategy σ will pick bi and ci whenever they are
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available, we have:

P (ti → >) = βi ·
∞∑
j=0

((1− αi) · βi)j · αi · vi =
αiβivi

1− (1− αi)βi
=

αiβivi
1− βi + αiβi

<
αiβi

1− βi + αiβi
<

2−m(1− βi)βi
1− βi + 2−m(1− βi)βi

<
2−mβi

1 + 2−mβi
6 2−m

which is a contradiction with i ∈ I. Hence, αi > 2−m(1− βi) and so:

pensta(ψ, θ, ti) + pensta(ψ, θ, t′i) = βiwi + αi2
3mwi > βiwi + 2−m(1− βi)23mwi > wi

We have: ∑
i∈I

wi 6
∑
i∈I

(
pensta(ψ, θ, ti) + pensta(ψ, θ, t′i)

)
6W + 2−m ·W

and, because
∑

i∈I wi and W are fractions with denominator q, by the choice of m, we can
infer that

∑
i∈I wi 6W . Similarly:∑

i∈I

1

n
vi >

∑
i∈I

1

n
P (ti → >) >

( 1

n

n∑
i=1

P (ti → >)
)
− 1

n
2−mn >

1

n
V − 2−m

and again, because
∑

i∈I vi and V are fractions with denominator q, by the choice of m we
can infer that

∑
i∈I vi > V . Hence, in the instance of the knapsack problem, it suffices to

pick exactly items from I to satisfy the restrictions.

Randomised multi-strategies with dynamic penalties. The proof is analogous to the
proof above, we only need to modify the MDP and the computations. For an instance of
the Knapsack problem given as before, we construct the following MDP:

s0

t1

>

⊥

tn

>

⊥

1/n

1/n

a1

v1
1

1− v1

b1, w1

an

vn
1

1− vn

bn, wn

We claim that there is a multi-strategy θ sound for the property Rr>V/n[ C ] such that
pendyn(ψ, θ) 6 1

nW if and only if the answer to the Knapsack problem is “yes”.
In the direction ⇐, for I ⊆ {1, . . . , n} the set of items in the knapsack, we define θ by

θ(ti)({ai}) = 1 for i ∈ I and by allowing all actions in every other state.
In the direction ⇒, let us have a multi-strategy θ satisfying the assumptions. Let

P (s→ s′) denote the lower bound on the probability of reaching s′ from s under a strategy
which complies with the multi-strategy θ. Denote by I ⊆ {1, . . . , n} the indices i such that
θ(ti)({ai}) > 0. Observe that P (ti → >) = vi if i ∈ I and P (ti → >) = 0 otherwise. Hence:∑

i∈I

1

n
vi =

∑
i∈I

1

n
P (ti → >) =

1

n

n∑
i=1

P (ti → >) >
1

n
V
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and for the penalty, denoting xi := θ(ti)({ai}), we get:

1

n
W > pendyn(ψ, θ) =

1

n

n∑
i=0

∞∑
j=0

(1− xi)jxiwi =
1

n

∑
i∈I

∞∑
j=0

(1− xi)jxiwi =
1

n

∑
i∈I

wi (A.1)

because the strategy that maximises the penalty will pick bi whenever it is available. Hence,
in the instance of the knapsack problem, it suffices to pick exactly items from I to satisfy
the restrictions.

Deterministic multi-strategies and dynamic penalties. The proof is identical to
the proof for randomised multi-strategies and dynamic penalties above: observe that the
multi-strategy constructed there from an instance of Knapsack is in fact deterministic.

Deterministic multi-strategies and static penalties. The proof is obtained by a small
modification of the proof for randomised multi-strategies and dynamic penalties above.
Instead of requiring pendyn(ψ, θ) 6 1

nW , we require pensta(ψ, θ) 6W and (A.1) changes to:

W > pensta(ψ, θ) =
n∑
i=0

xiwi =
∑
i∈I

wi .

A.2. Proof of Theorem 3.12 (Upper Bounds). We consider the two cases of determin-
istic and randomised multi-strategies separately, showing that they are in NP and PSPACE,
respectively. To simplify readability, the proofs make use of constructions that appear later
in the main paper than Theorem 3.12. Note that those constructions do not build on the
theorem and so there is no cyclic dependency.

Deterministic multi-strategies. For deterministic multi-strategies, it suffices to observe
that the problem can be solved by verifying an MILP instance constructed in polynomial
time (and, additionally, in the case of dynamic penalties: a polynomial-time identification of
the infinite-penalty case – see Theorem 4.2 and Theorem 4.3). Since the problem of solving
an MILP instance is in NP, the result follows.

Randomised multi-strategies. We now show that the permissive controller synthesis
problem is in PSPACE for randomised multi-strategies and static penalties. The proof for
dynamic penalties is similar.

The proof proceeds by constructing a polynomial-size closed formula Ψ of the existential
fragment of (R,+, ·,6) such that Ψ is true if and only if there is a multi-strategy ensuring
the required penalty and reward. Because determining the validity of a closed formula of
the existential fragment of (R,+, ·,6) is in PSPACE [7], we obtain the desired result.

We do not construct the formula Ψ explicitly, but only sketch the main idea. Recall
that in Section 4.3 we presented a reduction that allows us to approximate the existence
of a multi-strategy using the construction described on page 15 and in Fig. 4. Note that
if we knew the probabilities with which the required multi-strategy θ chooses some sets in
a state s, we could use these probabilities instead of the numbers p1, . . . , pm in Fig. 4. In
fact, by Theorem 4.4 we would only need n = 2, i.e. two numbers per state. Now knowing
these numbers ps1, p

s
2 for each state, we can construct, in polynomial time a polynomial-size

instance (disregarding the size of representation of the numbers ps1, p
s
2) of an MILP problem

such that the optimal solution for the problem is the optimal reward/penalty under the
multi-strategy θ. Of course, we do not know the numbers ps1, p

s
2 a priori, and so we cannot
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s0

t1

t′1

t̄1

⊥

tn

t′n

t̄n

⊥

1/n

1− x1
x1

c′1

a′1, 1

c̄1

ā1, 1

b1, 1/x1

1/n 1− xn
xn

c′1

a′n, 1

c̄n

ān, 1

bn, 1/xn

Figure 6: The game for the proof of Theorem 3.13.

use MILP for the solution. Instead, we treat those numbers as variables in the formula Ψ
which is build from the constraints in the MILP problem, by adding existential quantification
for ps1, p

s
2 for all s ∈ S and all other variables from the MILP problem, requiring ps1, p

s
2 to be

from (0, 1) and ps1 = 1− ps2, and adding the restriction on the total reward. Note that in the
case of dynamic penalties we need to treat optimal infinite penalty separately, similarly to
the construction on page 14.

A.3. Proof of Theorem 3.13 (Square-root-sum Reduction). Let x1,. . . ,xn and y be
numbers giving the instance of the square-root-sum problem, i.e. we aim to determine
whether

∑n
i=1

√
xi 6 y. We construct the game from Fig. 6.

The penalties are as given by the underlined numbers, and the rewards 1/xi are awarded
under the actions bi.

Static penalties. We first give the proof for static penalties. We claim that there is a
multi-strategy θ sound for the property Rr>1[ C ] such that pensta(ψ, θ) 6 2 · y if and only if∑n

i=1

√
xi 6 y.

In the direction ⇐ let us define a multi-strategy θ by θ(t′i)({c′i}) = θ(t̄i)({c̄i}) =
√
xi

and θ(t′i)({a′i, c′i}) = θ(t̄i)({āi, c̄i}) = 1−√xi, and allowing all actions in all remaining states.
We then have: pensta(ψ, θ) =

∑n
i=1 2 · √xi and the reward achieved is:

1

n

n∑
i=1

min{xi ·
1

xi
,
√
xi ·
√
xi

1

xi
} = 1.

In the direction ⇒, let θ be an arbitrary multi-strategy sound for the property Rr>1[ C ]
satisfying pensta(ψ, θ) 6 2 ·y . Let z′i = θ(t′i)({c′i}) and z̄i = θ(t̄i)({c̄i}). The reward achieved
is:

1

n

n∑
i=1

min{xi ·
1

xi
, z′i · z̄i

1

xi
} =

1

n

n∑
i=1

min{1, z′i · z̄i
1

xi
}

which is greater or equal to 1 if and only if z′i · z̄i > xi for every i. We show that
z′i + z̄i > 2 · √xi, by analysing the possible cases: If both z′i and z̄i are greater than
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√
xi, we are done. The case z′i, z̄i <

√
xi cannot take place. As for the remaining case,

w.l.o.g., suppose that z′i =
√
xi + p and z̄i =

√
xi − q for some non-negative p and q. Then

xi 6 (
√
xi + p) · (√xi− q) = xi + (p− q)√xi− pq, and for this to be at least xi we necessarily

have p > q, and so z′i + z̄i =
√
xi + p+

√
xi − q > 2 · √xi.

Hence, we get
∑n

i=1 2 · √xi 6
∑n

i=1

(
z′i + z̄i

)
= pensta(ψ, θ) 6 2 · y.

Dynamic penalties. We now proceed with dynamic penalties, where the analysis is similar.
Let us use the same game as before, but in addition assume that the penalty assigned to
actions c′i and c̄′i is equal to 1. We claim that there is a multi-strategy θ sound for the
property Rr>1[ C ] such that pendyn(ψ, θ) 6 2 · y/n if and only if

∑n
i=1

√
xi 6 y.

In the direction ⇐ let us define a multi-strategy θ as before, and obtain pendyn(ψ, θ) =
1
n

∑n
i=1 2 · √yi.
In the direction ⇒, let θ be an arbitrary multi-strategy sound for the property Rr>1[ C ]

satisfying pendyn(ψ, θ) 6 2 · y/n . Let z′i = θ(t′i)({c′i}), z̄i = θ(t̄i)({c̄i}), u′i = θ(t′i)({a′i}), and
ūi = θ(t̄i)({āi}).

Exactly as before we show that z′i + z̄i > 2 · √xi, and so:

1

n

n∑
i=1

2 ·
√
xi 6

1

n

n∑
i=1

(
z′i + z̄i

)
6

1

n

n∑
i=1

(
(z′i + u′i) + (1− u′i) · (z̄i + ūi)

)
= pendyn(ψ, θ) 6 2 · y/n.
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